

1 **MAIT cells protect against sterile lung injury**

2

3 **Authors:** Xiawei Zhang¹, Shuailin Li², Wojciech Lason¹, Maria Greco³, Paul Klenerman⁴,

4 Timothy SC Hinks^{1*}

5 **Affiliations:**

6 ¹Respiratory Medicine Unit, Experimental Medicine Division, Nuffield Department of
7 Medicine, University of Oxford, John Radcliffe Hospital; Oxford, United Kingdom.

8 ²Jenner Institute, Nuffield Department of Medicine, University of Oxford; Oxford, United
9 Kingdom.

10 ³MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of
11 Oxford; Oxford, United Kingdom.

12 ⁴Peter Medawar Building for Pathogen Research and Translational Gastroenterology Unit,
13 Nuffield Department of Clinical Medicine, University of Oxford; Oxford, United Kingdom.

14 *Corresponding author. Email: timothy.hinks@ndm.ox.ac.uk

15 **Abstract:**

16 Mucosal-associated invariant T (MAIT) cells, the most abundant unconventional T cells in the
17 lung, have been recently linked to tissue protection and repair. Their role, especially in sterile
18 lung injury, is unknown. Using single cell RNA sequencing (scRNA-seq), spectral analysis
19 and adoptive transfer in a bleomycin-induced sterile lung injury, we found that bleomycin
20 activates murine pulmonary MAIT cells and induces an accompanying tissue repair
21 programme, associated with a protective role against bleomycin-induced lung injury. MAIT
22 cells drive the accumulation of type 1 conventional dendritic cells (cDC1), limiting tissue
23 damage in a DNLR-1 dependent manner. Human scRNA-seq data revealed that MAIT cells
24 were activated, with increased cDC populations in idiopathic pulmonary fibrosis patients. Thus,
25 MAIT cells enhance defence against sterile lung injury by fostering cDC1-driven anti-fibrotic
26 pathways.

27 INTRODUCTION

28 Mucosal-associated invariant T (MAIT) cells are innate-like T cells that recognise small
29 molecule derivatives of riboflavin synthesis ¹ such as 5-(2-oxopropylideneamino)-6-d-
30 ribitylaminouracil (5-OP-RU) presented on the major histocompatibility complex (MHC)-
31 related protein-1 (MR1) ^{2,3}. MAIT cells have potential for multiple diverse functions in the host
32 response to a wide variety of bacterial, viral and fungal pathogens and in promoting tissue
33 repair ⁴⁻⁷. MAIT cells are particularly abundant in the lung, comprising up to 10% of all
34 pulmonary T cells in a healthy human ^{8,9}. They are characterised by expression of a semi-
35 invariant T-cell receptor (TCR)- α chain: typically V α 7.2–J α 33/12/20 in humans and V α 19–
36 J α 33 in mice^{2,3}. These features imply an essential role of MAIT cells in pulmonary mucosal
37 immunology, particularly during the initial stages of an immune response, yet our
38 understanding of the full repertoire of MAIT cell functions remains incomplete, particularly in
39 the context of tissue injury and repair. Increasing evidence implicates MAIT cells in bridging
40 innate and adaptive immunity, an important role being the recruitment of other immune cells,
41 particularly dendritic cells (DC) and monocytes during TCR-dependent ¹⁰⁻¹² and cytokine-
42 dependent activation ^{13,14}.

43

44 Strategically located within the airway epithelium and interstitium, pulmonary DCs bridge the
45 external and internal environments ^{15,16}. The lung features two distinct conventional dendritic
46 cell subsets (cDC, MHCII $^+$ CD11c $^+$): CD103 $^+$ type 1 cDC (CD103 $^+$ CD11b $^{lo/-}$ XCR1 $^+$ DNKR-
47 1 $^+$ SIRP- α^- CX3CR1 $^-$ F4/80 $^-$, cDC1) and CD11b $^+$ type 2 cDC (CD11b hi CD103 $^-$ SIRP- α^+
48 CX3CR1 $^+$ F4/80 $^+$, cDC2) ¹⁷. cDC1 specialize in cross-presenting antigens to CD8 $^+$ T cells,
49 promoting Th1 cells. In contrast, cDC2 excel at stimulating CD4 $^+$ T cell responses, mainly Th2
50 or Th17 cells. Lung cDCs originate from common dendritic cell precursors (CDPs) in the bone
51 marrow. These CDPs mature into pre-dendritic cells (pre-DCs), which migrate to the lungs

52 through the bloodstream and differentiate into either cDC1 or cDC2 subsets guided by local
53 signals and specific transcription factors¹⁸⁻²⁰.

54

55 DCs play a regulatory role in pulmonary fibrosis, accumulating in the lungs in idiopathic
56 pulmonary fibrosis (IPF) patients²¹⁻²³ and in bleomycin mouse models^{24,25}, whilst diminishing
57 in the circulation²⁶. Pulmonary cDC1s increase with bleomycin treatment, but are reduced with
58 transforming growth factor (TGF)- β inhibition, suggesting anti-inflammatory and anti-fibrotic
59 roles in pulmonary fibrosis²⁵. Moreover, increased fibrosis severity and impaired lung function
60 were seen in DC-deficient mice, but mitigated when DC counts were boosted²⁷, though their
61 protective mechanism is still unclear.

62

63 In this study, we aim for the first time to define the role of MAIT cells in sterile lung injury
64 and to investigate the underlying mechanisms. We employed a model of lung injury using
65 bleomycin: a potent chemotherapeutic agent, with a well-characterised side effect profile of
66 acute lung injury, followed by a chronic phase with pathological hallmarks of human IPF²⁸.
67 We have shown for the first-time that MAIT cells accumulate and are activated upon sterile
68 injury, in a cytokine-dependent manner, and we have discovered an *in vivo* mechanism by
69 which pulmonary MAIT cells make an important contribution to protection against sterile lung
70 tissue damage in mice.

71

72 RESULTS

73 **Activated MAIT cells accumulate in the lung upon bleomycin treatment in a cytokine-
74 dependent manner**

75 Our initial objective was to establish whether sterile lung injury could stimulate pulmonary
76 MAIT cells *in vivo*. We administered bleomycin intratracheally to C57BL/6 (wild type, WT)
77 mice, to precipitate acute, sterile lung inflammation, followed by a tissue repair phase and
78 subsequent fibrosis over a fortnight ²⁸. We detected an early surge of pulmonary MAIT cells
79 (characterised as CD45.2⁺ TCR β ⁺ CD19⁻ MR1-5-OP-RU tetramer⁺ cells, Supplementary Fig.
80 1A), peaking approximately three days post-challenge. By comparison, the peak number of
81 non-MAIT $\alpha\beta$ T cells occurred later at day 7 post-challenge (Fig. 1A and Supplementary Fig.
82 2, G to H). On both day 3 and 5 post-challenge, the fold change in MAIT cell frequency was
83 significantly higher than that in non-MAIT $\alpha\beta$ T cells frequency (Fig. 1B and Supplementary
84 Fig. 2, J to K). Moreover, pulmonary MAIT cell CD69 expression increased significantly at
85 days 3 and 5 post challenge relative to unchallenged controls, and CD69 expression was
86 significantly higher in MAIT cells than that in non-MAIT $\alpha\beta$ T cells (Fig. 1C, Supplementary
87 Fig. 2, I and L).

88
89 In nature, early life microbial exposures are essential for the development of MAIT cell
90 populations. When mice have been raised in a specific pathogen free environment, MAIT cells
91 constitute less than 1% of total pulmonary $\alpha\beta$ T cells ²⁹ but can be up to 10% in healthy humans
92 ^{8,30}. Therefore, we employed an established MAIT cell-enriched model by infecting WT
93 C57BL/6 mice intranasally with 10⁶ CFU *Salmonella typhimurium* BRD509 four weeks prior
94 to initial bleomycin challenge for clearer population delineation (Fig. 1D and Supplementary
95 Fig. 1, B to D) ^{31,32}. This bacterial inoculum is rapidly cleared from the lungs but transiently
96 provides the required combination of MAIT cell ligands and pathogen-associated molecular
97 patterns necessary to produce rapid and lasting expansion of the MAIT cell population ³³.
98 While it was previously reported that post-*Salmonella* BRD509 infection MAIT cells adopt an
99 effector memory phenotype, with relatively high baseline CD69 expression (Supplementary

100 Fig. 1E)³¹, we still observed rapid MAIT cell accumulation, peaking on day 3 post-challenge
101 (Supplementary Fig. 2, A and B, M and N), along with activation upon bleomycin stimulation,
102 evidenced by significantly increased CD69 expression on day 3 and 7, compared to
103 unchallenged PBS controls (Supplementary Fig. 2, C and O). Conversely, no significant
104 changes were observed in either the accumulation or activation of non-MAIT $\alpha\beta$ T cells post-
105 bleomycin challenge (Supplementary Fig. 2, A and B, P to R). Collectively, these results
106 indicate MAIT cells accumulate and are activated early in the lungs following bleomycin-
107 induced sterile injury of mice.

108

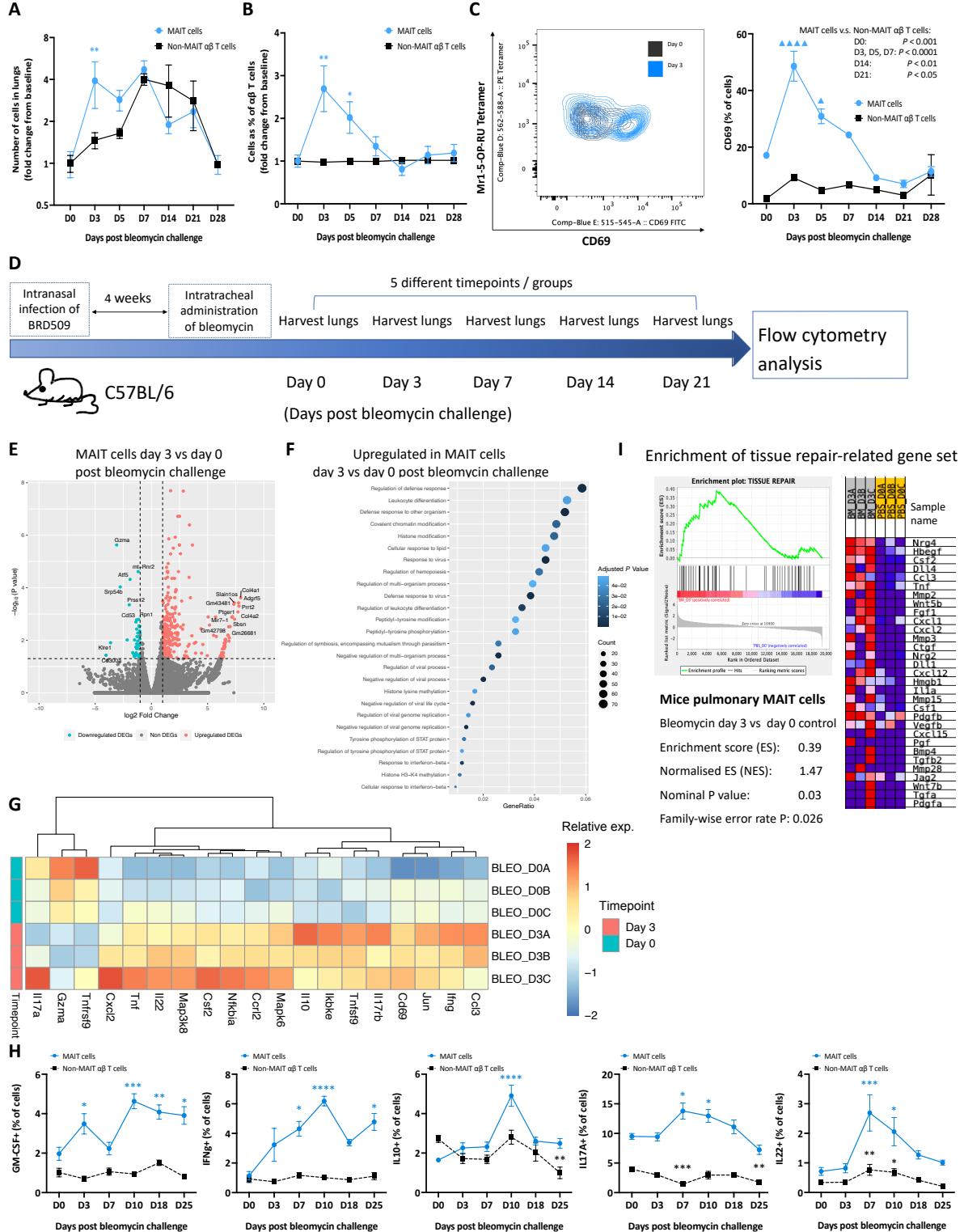
109 As MAIT cells can be activated in a TCR-independent manner by cytokines, including
110 interleukin (IL)-12, -15, -18, and type I interferon (IFN), in antiviral responses³⁴, we examined
111 MAIT cell responses post bleomycin challenge utilising mouse strains deficient in the two most
112 important of these pathways, IL-18R or IFN- α R without a preliminary MAIT boost. Relative
113 to WT C57BL/6 mice, we observed a marked impairment in pulmonary MAIT cell
114 accumulation on day 3 post-bleomycin in both IL-18R and IFN α R-deficient mice
115 (Supplementary Fig. 2, D and E, S and T, V and W). Conversely MAIT cell activation was
116 significantly impeded solely in the absence of IFN α R (Supplementary Fig. 2, F, U and X).
117 These findings suggest bleomycin-induced MAIT cell activation is predominantly cytokine
118 driven, with IFN- α R playing a key role.

119

120 A transcriptional programme related to tissue repair, initially identified in Tc17 cells³⁵, has
121 been observed in both human MAIT cells following 5-OP-RU stimulation and mice lung MAIT
122 cells during acute *L. longbeachae* infection³⁶. Consequently, we assessed whether bleomycin
123 could activate the MAIT cell tissue repair programme after bleomycin challenge in lungs of *S.*
124 *typhi*-treated mice using bulk RNA-seq of flow-sorted pulmonary MAIT cells. The numbers of

125 DEGs in bleomycin-challenged lung MAIT cells compared with unchallenged controls, were
126 425 (361 up, 64 down), 1230 (399 up, 831 down), 0, 24 (4 up, 20 down) and 131 (40 up, 91
127 down) genes at day 3, 7, 14, 21 and 28 post-bleomycin challenge, respectively (Supplementary
128 Fig. 3A, for full list of DEGs see data S1). Intriguingly, the top 15 upregulated genes in
129 pulmonary MAIT cells at day 3 post-bleomycin included tissue-damage related genes such as
130 Col4α1, Col4α2, Ptger1, and Wwtr1 (Fig. 1E). The predominant GO pathways upregulated in
131 MAIT cells at day 3 post-bleomycin challenge compared to those from unchallenged mice were
132 associated with the regulation of the defence response, leukocyte differentiation, and response
133 to viruses (Fig. 1F). We also observed a notable rise in the Cd69 gene expression and a modest
134 upregulation of several inflammatory cytokines, such as Csf2, Ifn- γ , Tnf, Il17a, Il10 and Il22,
135 in MAIT cells (Fig. 1G), and verified selected cytokines by flow cytometry (Fig. 1H and S3B).

136


137 We then conducted a gene set enrichment analysis (GSEA) to compare the TCR-triggered
138 MAIT cell tissue repair gene signature³⁶⁻³⁸, previously characterised in response to commensal
139 bacteria in H2-M3-restricted ROR γ t⁺ CD8⁺ T cells in murine skin³⁵, with the gene expression
140 profile of pulmonary MAIT cells following bleomycin exposure. This revealed significant
141 enrichment of the tissue repair gene set in MAIT cells at day 3 post-bleomycin challenge (Fig.
142 1I). These findings suggested that *in vivo* bleomycin challenge activates the tissue repair
143 programme of MAIT cells.

144

145 Current research indicates that MAIT cells are activated by MR1-TCR dependent or cytokine-
146 dependent pathways; with the latter being key in antiviral response. Consequently, we further
147 expanded our inquiry to investigate a different, albeit highly pertinent, condition of cytokine-
148 dependent MAIT cell activation – viral infection. We performed bulk RNA-seq of MAIT cells
149 isolated from the lungs of mice infected with 100 plaque forming units (PFU) of the mouse-

150 adapted influenza virus strain A/Puerto Rico/8/34/1934 (PR8, H1N1). As expected, key
151 upregulated genes included interferon-inducible genes, such as Ifi205 and Ifi44
152 (Supplementary Fig. 4, A and B, data S2). Upregulated GO terms included those related to
153 defence responses against viruses and other organisms (Supplementary Fig. 4C). Intriguingly,
154 our time-series analysis (Supplementary Fig. 4D) uncovered a tissue repair-oriented cluster –
155 Cluster 2, characterised by enriched GO terms such as wound healing and regulation of cell
156 morphogenesis (Supplementary Fig. 4, E and F). Importantly, the previously discussed tissue
157 repair programme³⁵, was also activated in the MAIT cells at early timepoints post-infection
158 (Supplementary Fig. 4, G to J), echoing the pattern we identified post-bleomycin, implying
159 activation of this programme in both viral and sterile lung injury.

160

161

162 **Fig. 1: *In vivo* bleomycin challenge induces cytokine-modulated accumulation and**
163 **activation of pulmonary MAIT cells, triggering their tissue repair programme. (A)** Fold
164 change in the absolute MAIT cell and non-MAIT $\alpha\beta$ T cell number in the lungs of naïve mice
165 post-bleomycin challenge, relative to unchallenged PBS controls (Day 0). Comparisons

166 between MAIT cell subsets and non-MAIT $\alpha\beta$ T cell subsets at individual time-points, were
167 conducted using unpaired t tests or Mann-Whitney tests, $*P < 0.05$, $**P < 0.01$, $***P < 0.001$,
168 $****P < 0.0001$. **(B)** Fold change in MAIT cell and non-MAIT $\alpha\beta$ T cell frequency as the
169 percentage of total pulmonary $\alpha\beta$ T cells in the lungs of naïve mice relative to unchallenged
170 controls. Comparisons between MAIT cell subsets and non-MAIT $\alpha\beta$ T cell subsets at
171 individual time-points, were conducted using unpaired t tests or Mann-Whitney tests, $*P <$
172 0.05 , $**P < 0.01$, $***P < 0.001$, $****P < 0.0001$. **(C)** Proportion of pulmonary MAIT cells
173 and non-MAIT $\alpha\beta$ T cells expressing CD69 in naïve mice. Statistical comparisons across
174 different timepoints post-bleomycin challenge and unchallenged PBS control were made using
175 one-way ANOVA with Dunnett's or Dunn's multiple comparison tests, $\blacktriangle P < 0.05$, $\blacktriangle\blacktriangle P < 0.01$,
176 $\blacktriangle\blacktriangle\blacktriangle P < 0.001$, $\blacktriangle\blacktriangle\blacktriangle\blacktriangle P < 0.0001$. Comparisons between MAIT cell subsets and non-MAIT $\alpha\beta$
177 T cell subsets at individual time-points, were conducted using unpaired t tests or Mann-
178 Whitney tests. The data are presented as the mean \pm SEM of a single experiment, with 3-5 mice
179 in each group. **(D)** Schematic of protocol: Both WT and $Mr1^{-/-}$ mice were infected with 10^6
180 CFU *S. typhimurium* BRD509 to augment the MAIT cell population, followed by intratracheal
181 bleomycin administration. Mouse lung samples were collected at days 0, 3, 7, 14 and 21 after
182 the challenge. **(E)** Volcano plot of DEGs [\log_2 fold change (FC) > 1 , adjusted $P < 0.05$] of
183 mouse lung MAIT cells on day 3 post-bleomycin challenge compared with unchallenged PBS
184 controls. The top 10 up and down-regulated genes are annotated. Horizontal line indicates P
185 value threshold of 0.05. Vertical line indicates \log_2 fold change threshold of 1. **(F)** Top 25
186 significantly enriched ($P < 0.05$) pathways from Gene Ontology (GO) database (biological
187 process) among upregulated DEGs in mouse lung MAIT cells at day 3 post-bleomycin
188 challenge compared with unchallenged PBS controls. The colour intensity indicates the
189 statistical significance of the enrichment, with the dot size representing the number of genes
190 upregulated in each pathway. The x-axis illustrates the proportion of all DEGs included in each

191 pathway (Gene Ratio). (G) Heatmap depicting expression of cytokines and chemokines in lung
192 MAIT cells at days 0 (PBS control) and 3 post bleomycin challenge (red, highest expression;
193 blue, lowest). (H) Proportion of pulmonary MAIT cells expressing GM-CSF, IFN- γ , IL-10,
194 IL17A and IL22 expressed as percentage of MAIT and non-MAIT $\alpha\beta$ T cells. Graphs show
195 combined data (mean \pm SEM) from two independent experiments with similar results, with 3–
196 5 mice per group in each replicate. Statistical tests compare each time-point with day 0 control
197 in each subset by one-way ANOVA with Dunnett's multiple comparisons test or Kruskal-
198 Wallis with Dunn's multiple comparisons test; * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$, **** $P <$
199 0.0001. (I) GSEA for tissue repair gene signature³⁵. Heatmap showing the expression of
200 leading-edge gene subsets in mice pulmonary MAIT cells at day 3 post-bleomycin challenge
201 and unchallenged control (red indicates highest expression; blue indicates lowest).

202

203 **MAIT cell-deficient mice show dysregulated pulmonary immune responses upon
204 bleomycin challenge**

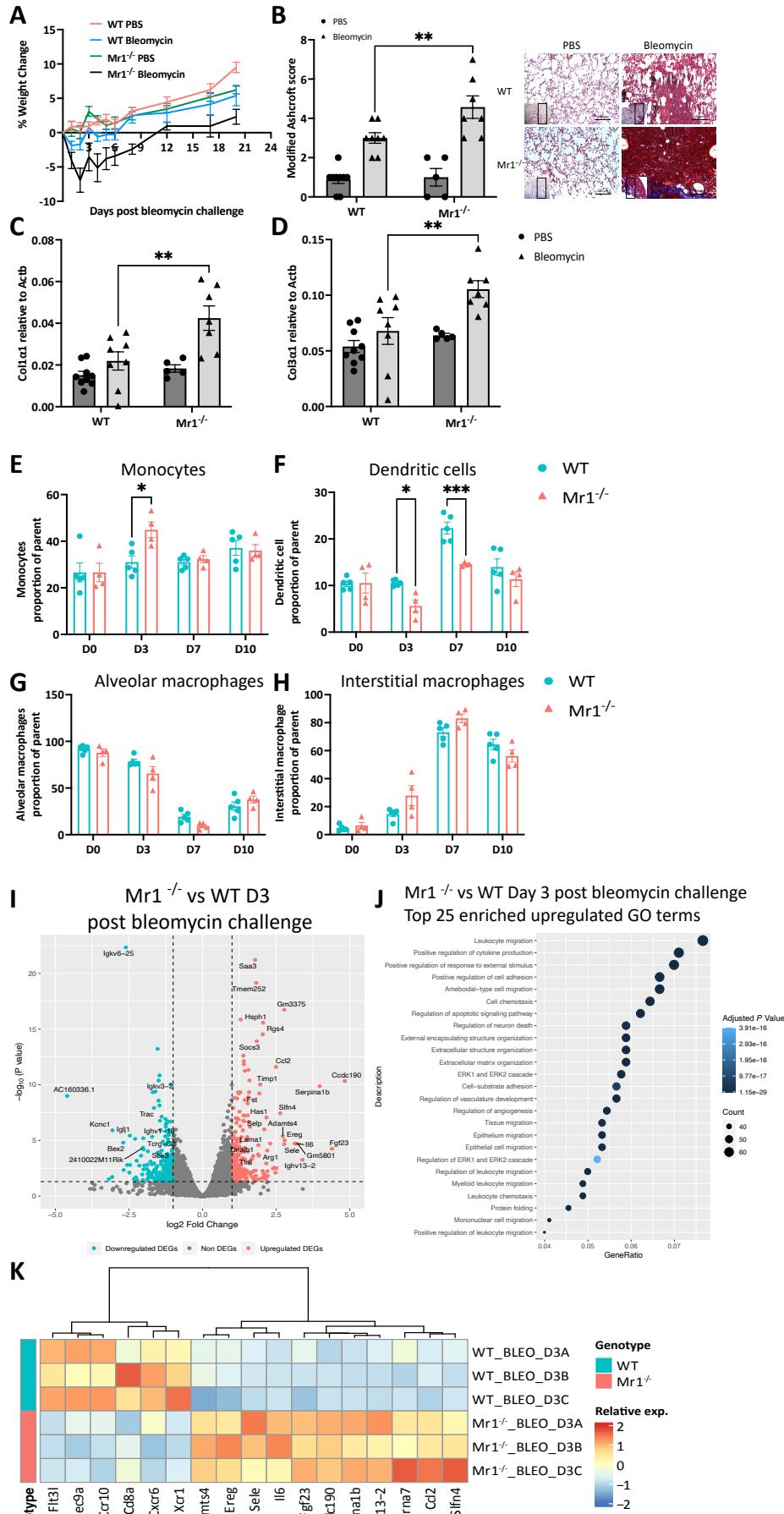
205 We next sought to determine whether the recruitment and activation of MAIT cells in response
206 to bleomycin have an impact on the phenotype. To this end, we assessed weight loss and tissue
207 damage between WT and MAIT cell-deficient Mr1^{−/−} mice. WT and Mr1^{−/−} mice were
208 subjected to 10⁶ CFU *S. typhimurium* BRD509 infection to expand the MAIT cell population
209 followed by intratracheal bleomycin administration four weeks post-MAIT cell enrichment
210 (Fig. 1D). Notably, Mr1^{−/−} mice exhibited more substantial weight loss (Fig. 2A), heightened
211 tissue damage (Fig. 2B), and increased gene expression of Coll1 α 1 and Col3 α 1 compared to
212 WT mice (Fig. 2, C and D). Hydroxyproline levels in the lungs showed no significant
213 difference between WT and Mr1^{−/−} mice (Supplementary Fig. 5A).

214

215 To elucidate the mechanism underlying the observed phenotypic differences, we evaluated
216 immune cell infiltration between WT and $\text{Mr1}^{-/-}$ mouse lungs using spectral flow cytometry
217 analysis (Cytek Aurora) following a published gating strategy ³⁹ (Supplementary Fig. 5B).
218 Lung samples were collected on days 0, 3, 7 and 10 post challenge (Fig. 1D). $\text{Mr1}^{-/-}$ mice
219 exhibited a decreased frequency of DCs ($\text{MerTK}^- \text{ CD11c}^+ \text{ MHII}^+$) on days 3 and 7, and an
220 increased frequency of monocytes on day 3 post bleomycin challenge. Notably, differences in
221 the frequencies of alveolar macrophages, interstitial macrophages, neutrophils, eosinophils,
222 NK cells, NK T cells, CD4^+ T cells, CD8^+ T cells, and $\gamma\delta$ -T cells post-challenge between WT
223 and $\text{Mr1}^{-/-}$ mice were not statistically significant (Fig. 2, E to H; Supplementary Fig. 5, C to
224 U).

225

226 We then investigated the transcriptomic variations between WT and $\text{Mr1}^{-/-}$ mouse lungs.
227 Accordingly, we obtained bulk RNA sequencing (RNA-seq) data from MAIT cell-enriched,
228 bleomycin-challenged whole lungs. Lung samples were collected on days 0, 3, 7, 14 and 21
229 post challenge (Fig. 1D). Compared with WT mice, 9 (3 up, 6 down), 1729 (967 up, 762 down),
230 116 (54 up, 62 down), 173 (65 up, 108 down) and 192 (107 up, 85 down) genes were
231 differentially expressed in $\text{Mr1}^{-/-}$ mice lungs at days 0, 3, 7, 14 and 21 post-bleomycin
232 challenge, respectively (Supplementary Fig. 5W, Fig. 2I, and data S3).


233

234 The chemokine Ccl2 (monocyte chemoattractant protein-1, MCP-1), which recruits myeloid
235 cells towards sites of inflammation, and the proinflammatory cytokine Il6 were prominently
236 upregulated in $\text{Mr1}^{-/-}$ mice at day 3. Both CCL2 and IL-6 are known contributors to lung
237 fibrosis ⁴⁰. Gene Ontology (GO) enrichment analysis for biological processes ⁴¹ revealed only
238 3 significantly enriched ($P < 0.05$) upregulated gene sets in $\text{Mr1}^{-/-}$ mice lungs versus WT mice
239 lungs without bleomycin challenge (Supplementary Fig. 5X), but 1526 significantly enriched

240 gene sets at day 3 post-bleomycin, of which the top ranked terms include leukocyte migration,
241 regulation of cytokine production, regulation of response to external stimulus, cell adhesion,
242 migration and chemotaxis (Fig. 2J).

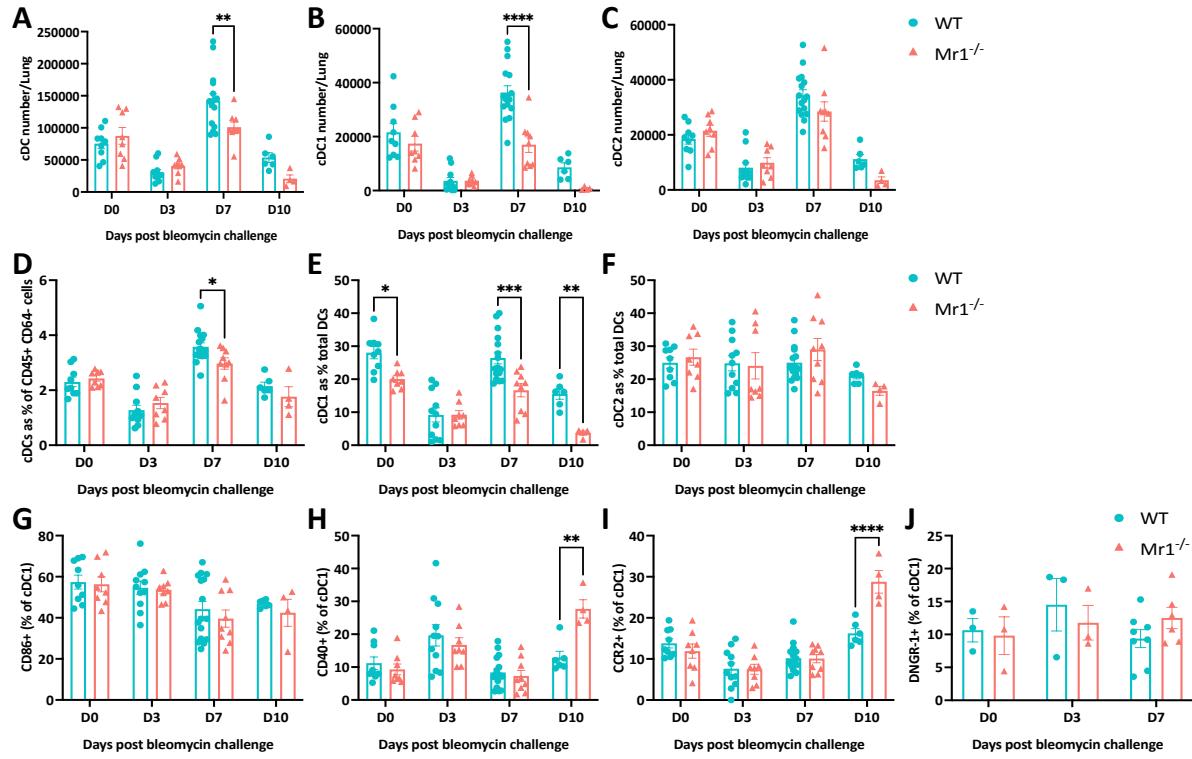
243

244 Notably, expression of Xcr1, Clec9a, markers of DC⁴² – and Flt3l and Ccr10, both essential
245 for DC development and recruitment^{42,43}, were significantly downregulated in Mr1^{–/–} mice
246 relative to WT mice at day 3 post-bleomycin (Fig. 2K), consistent with downregulation of the
247 DC population in Mr1^{–/–} mice relative to WT after bleomycin challenge shown in flow
248 cytometry. Our data imply that MAIT cells may modulate the accumulation of immune cells
249 in the lung after sterile lung challenge, notably DCs, during sterile lung challenges.

251 **Fig. 2: Dysregulated immune responses in the lungs of MAIT cell-deficient mice following**
252 **bleomycin challenge. (A)** Body weight loss expressed as a percentage of the weight before
253 bleomycin challenge. **(B and C)** Modified Ashcroft score **(B)** and representative images **(C)** of
254 lung slices of PBS or bleomycin-challenged WT and $Mr1^{-/-}$ mice at day 21, stained with
255 Masson's trichrome. **(D)** Gene expression of $Col1\alpha 1$, and $Col3\alpha 1$ in lung homogenates of PBS
256 or bleomycin-challenged WT and $Mr1^{-/-}$ mice at day 21. $Actb$ was used as a housekeeping
257 gene. **(E to H)** Frequencies of monocytes **(E)**, dendritic cells **(F)**, alveolar macrophages **(G)**
258 and interstitial macrophages **(H)** as percentages of parent in WT and $Mr1^{-/-}$ mice lungs after
259 bleomycin challenge. Data are one representative experiment of two independent experiments,
260 with 4–6 mice per group in each replicate. Graphs show mean \pm SEM. Statistical significance
261 tested by two-way ANOVA with Holm-Sidak's multiple comparisons test; $*P < 0.05$, $**P <$
262 0.01 , $***P < 0.001$. **(I)** Volcano plot of DEGs [\log_2 fold change (FC) > 1 , adjusted $P < 0.05$]
263 in whole lung tissue between $Mr1^{-/-}$ and WT mice lungs at day 3 post-bleomycin challenge.
264 The top 25 up and down-regulated genes are labelled. Horizontal line indicates P value
265 threshold of 0.05. Vertical line indicates \log_2 fold change threshold of 1. **(J)** Top 25
266 significantly enriched ($P < 0.05$) pathways from Gene Ontology (GO) database (biological
267 process) in upregulated DEGs in the lungs of $Mr1^{-/-}$ mice compared with WT mice lungs at
268 day 3 post-bleomycin challenge. Colour intensity indicates the statistical significance of the
269 enrichment, and dot size signifies the number of genes upregulated in the pathway. The x axis
270 denotes the proportion of all DEGs included in the pathway (Gene Ratio). **(K)** Heatmap
271 depicting relative expression of selected genes of mice lungs (Day 3 and Day 0).

272

273 **Early accumulation of pulmonary CD103⁺ type 1 DCs is impaired in $Mr1^{-/-}$ mice**


274 We subsequently aimed to explore the subpopulations of DCs to determine which subsets
275 contributed to the decreased accumulation observed in $Mr1^{-/-}$ mice, following established

276 guidelines ⁴⁴ (Supplementary Fig. 6A). We noted an accumulation of CD45⁺ CD64⁻ CD11c⁺
277 MHCII⁺ cDCs (Fig. 3, A and D), particularly CD103⁺ cDC1, in lungs of WT mice on day 7
278 post-bleomycin. In contrast, Mr1^{-/-} mice failed to accumulate CD103⁺ DCs, with significantly
279 lower total count and percentage of pulmonary CD103⁺ DCs at day 7 post-challenge compared
280 to WT counterparts (Fig. 3, B and E). There was also a tendency towards impaired CD11b⁺
281 cDC2 accumulation in Mr1^{-/-} lungs on day 7 post-bleomycin but this did not reach statistical
282 significance (Fig. 3, C and F).

283

284 To assess functional differences in cDC1 we investigated surface expression of activation
285 markers (Supplementary Fig. 6B). No discernible difference in the expression of co-
286 stimulatory molecules CD86 (Fig. 3G) or CD40 (Fig. 3H) was observed in the first week.
287 Additionally, we detected no variation in the levels of CCR2, known to facilitate DC migration
288 and recruitment ⁴⁵, or DNGR1, a C-type lectin receptor exclusively expressed in cDC1, which
289 is encoded by Clec9a ⁴⁶, on cDC1 between WT and Mr1^{-/-} mice lungs at day 7 post-bleomycin
290 (Fig. 3, I and J). However, on day 10 post bleomycin-induced lung damage, we did see an
291 upregulation of CD40 and CCR2 in lung cDC1 cells from Mr1^{-/-} mice, suggesting that the
292 cDC1s are showing a delayed inflammatory response in the Mr1^{-/-} mice.

293

294

295 **Fig. 3. Early accumulation of CD103⁺ type 1 dendritic cells in the lungs upon bleomycin**
296 **challenge is impaired in Mr1^{-/-} mice.** (A to C) Absolute numbers of total cDCs (A), cDC1
297 (B) and cDC2 (C) in WT and Mr1^{-/-} mice lungs post-bleomycin challenge. (D) Frequencies of
298 cDC as percentages of total CD45⁺ CD64⁺ cells in WT and Mr1^{-/-} mice lungs. (E and F)
299 Frequencies of cDC1 (E) and cDC2 (F) as percentages of total cDC population in WT and
300 Mr1^{-/-} mice lungs. Data represent combined data from two (Day 0, 3 and 7) or one (Day 10)
301 independent experiments, with 3-6 mice per group. (G to J) Fraction of pulmonary cDC1 cells
302 expressing CD86 (G), CD40 (H), CCR2 (I) and DNLR-1 (J) expressed as a percentage of
303 pulmonary cDC1 in lungs of WT and Mr1^{-/-} mice. For CD86, CD40 and CCR2 expression on
304 cDC1 cells, data represent combined data from two (Day 0, 3 and 7) or one (Day 10)
305 independent experiments, with 3-6 mice per group. For DNLR-1 expression on cDC1 cells,
306 data represent combined data from two (Day 7) or one (Day 0 and 3) independent experiments,
307 with 2-4 mice per group. Data are presented as mean ± SEM. Significance was tested by two-

308 way ANOVA with Sidak's multiple comparisons test; $*P < 0.05$, $**P < 0.01$, $***P < 0.001$,
309 $****P < 0.0001$.

310

311 **Single-cell RNA Sequencing reveals diminished cDC1 proportions in Mr1^{−/−} mice**

312 To comprehensively delineate the cellular dynamics of major cell lineages post-bleomycin
313 injury, we utilised single-cell RNA sequencing (scRNA-seq) (10x Genomics), Cellular
314 Indexing of Transcriptomes and Epitopes by Sequencing (CITE-seq) and TCR sequencing. We
315 again used the previously described MAIT-cell enriched mouse model, and obtained single cell
316 suspensions from both WT and Mr1^{−/−} whole lungs of PBS-treated controls, as well as at days
317 3 and 7 post-injury, with three replicates for each time point (Fig. 4A). We obtained
318 transcriptomes from 117,908 cells following quality control filtering. Principal component
319 analysis highlighted variability influenced by both timepoints and mouse genotype
320 (Supplementary Fig. 7A and B). Post-data integration and unsupervised clustering analysis, 27
321 cell type identities were annotated using canonical marker genes and existing scRNA-seq
322 datasets from mouse lungs⁴⁷⁻⁴⁹ (Fig. 4B, Supplementary Fig. 7C). All lineages were observed
323 across both WT and Mr1^{−/−} mice at all three timepoints (Supplementary Fig. 7, D and E). MAIT
324 cells exhibited a single-cell transcriptional profile akin to $\gamma\delta$ -T cells, leading to a shared cluster
325 in the Uniform Manifold Approximation and Projection (UMAP) (Fig. 4B). Expectedly, MAIT
326 cells were absent in Mr1^{−/−} mice (Supplementary Fig. 7F), but there was a non-significant
327 tendency towards an increase in CD4⁺ and CD8⁺ T cells in Mr1^{−/−} mice compared to WT mice
328 (Supplementary Fig. 8), possibly due to a compensatory mechanism.

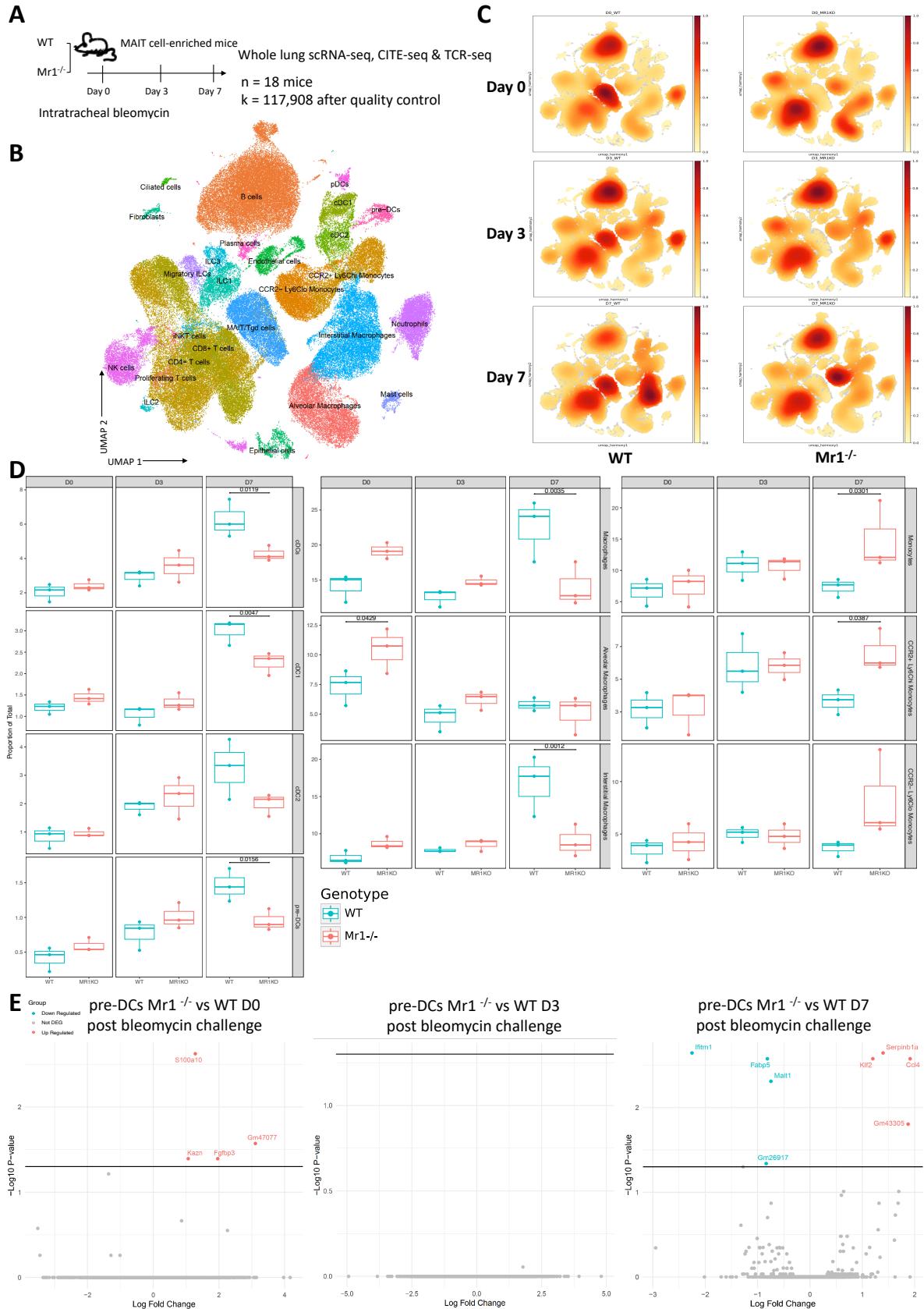
329

330 We observed an accumulation of cDC1 ($P=0.0047$) and cDC2 (non-significant) in the lungs of
331 WT mice but not in Mr1^{−/−} mice. These observations align with the flow cytometry data
332 depicting a deficiency in cDC1 accumulation in Mr1^{−/−} mice (Fig. 3). Concomitantly,

333 accumulation of monocyte and NK cells was prominently detected in the lungs of $\text{Mr1}^{-/-}$ mice,
334 whereas this was not the case in WT counterparts (Fig. 4, C and D; Supplementary Fig. 8).
335 Furthermore, in the lungs of WT mice, there was a discernible expansion of both interstitial
336 macrophages (Fig. 4D) and fibroblasts (Supplementary Fig. 8), and such expansions were
337 absent in the $\text{Mr1}^{-/-}$ mice.

338

339 Next we investigated the differences in cell type-specific DEGs between $\text{Mr1}^{-/-}$ and WT mice
340 (Supplementary Fig. 9 and data S4). Gene expression differences across most cell types were
341 limited, with very few DEGs identified – fewer than 64 in any given cell type. Amongst
342 pulmonary DCs and monocytes, we observed downregulation of genes in $\text{Mr1}^{-/-}$ mice on both
343 day 3 and 7 post-bleomycin, including *Pbx1*, *Fcgr2b* and *Sh2d1b1* (Supplementary Fig. 9, data
344 S4). The inhibitory Fc receptor *Fcgr2b* was consistently downregulated in $\text{Mr1}^{-/-}$ cDC1 across
345 all time points. This is paired with downregulation of *Cxcl1/Cxcl2* in cDC2 on day 7 post-
346 challenge (Supplementary Fig. 9), suggesting a disrupted chemokine expression profile within
347 the cDC2 of $\text{Mr1}^{-/-}$ mice.

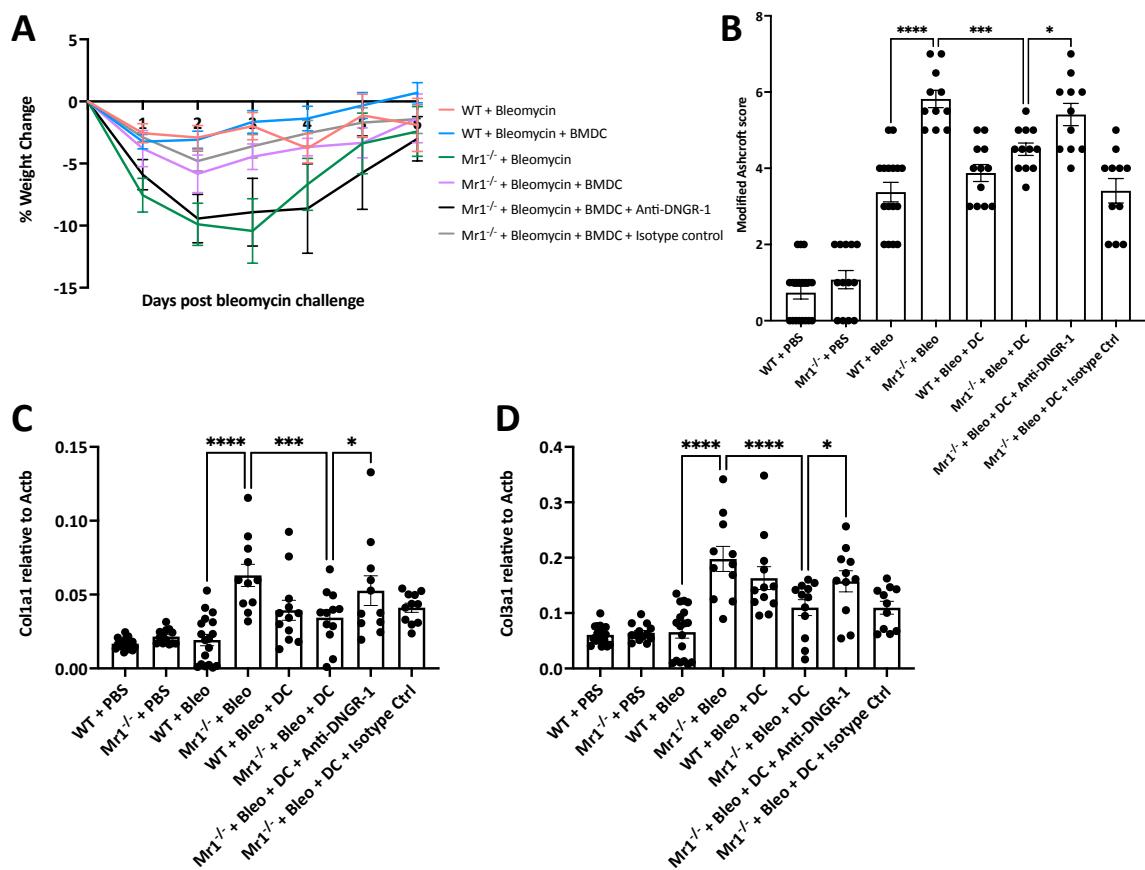

348

349 We then looked at the precursor cells leading to cDCs – pre-DC population, in the lungs of
350 both mice strains. Derived from CDP in the bone marrow, pre-DCs traffic to various tissues
351 where they differentiate into cDC1 or cDC2, contingent upon tissue-specific and local
352 environmental cues¹⁸⁻²⁰. Employing Monocle2 for trajectory analysis⁵⁰, we discerned a clear
353 differentiation pathway commencing from pre-DCs (CD45^+ MHCII^+ $\text{CD11c}^- \text{Flt3}^{\text{hi}}$ $\text{SIRP-}\alpha^-$)
354 and culminating in cDC1 and cDC2 subsets (Supplementary Fig. 10A). During the
355 differentiation from pre-DCs into cDC1 and cDC2, we noticed that *Irf8* levels go up in cDC1
356 but go down in cDC2. Conversely, *Irf4* levels rise in cDC2 and fall in cDC1 (Supplementary
357 Fig. 10B). Of particular interest, $\text{Mr1}^{-/-}$ mice exhibited a diminished pre-DC population (Fig.

358 4D). However, when contrasting the transcriptomic profile of pre-DCs from WT and Mr1^{-/-}
359 mice, differential gene expression was minimal (Fig. 4E). This suggests that, during the
360 bleomycin challenge, MAIT cells predominantly modulate the accumulation dynamics of the
361 pre-DC population, without substantially altering their functional profile.

362

363 To test enrichment of pathways we performed GSEA analysis for all cell types across
364 timepoints (Supplementary Fig. 11). A proinflammatory response was upregulated across
365 various cell types in Mr1^{-/-} mice compared with WT following bleomycin. Notably, NK cells,
366 ciliated cells, and endothelial cells exhibited this exaggerated response on day 3, while
367 monocytes and interstitial macrophages demonstrated a similar response on day 7, which
368 would be expected to contribute to enhanced systemic inflammation. In summary, MAIT cells
369 predominantly influence accumulation of immune cells in response to sterile lung injury,
370 particularly by increasing the number of cDC1s, pre-DCs and interstitial macrophages, but
371 have more limited influence on the transcriptome of most cell types.


374 **Fig. 4. Single-cell RNA Sequencing reveals diminished cDC1 proportions in Mr1^{-/-} mice.**
375 (A) Single cell suspensions from whole-mouse lungs were analysed using scRNA-seq at the
376 indicated time points after bleomycin-mediated lung injury. (B) UMAP embedding of 117,908
377 high-quality single cells colour-coded by predicted cell lineage. (C) UMAP embedding of cell
378 density displaying the proportion of each cell lineage at baseline (PBS control, Day 0) and post
379 bleomycin challenge (Day 3 and 7), stratified by timepoint and mice genotype. (D) Proportion
380 of the indicated cell types of total lung cells was calculated for individual mice at the indicated
381 time points at baseline (PBS control, Day 0) and after bleomycin challenge (Day 3 and 7) (n = 3
382 for each genotype). *P* values generated using a two-way ANOVA with Sidak's multiple
383 comparisons test. (E) Volcano plots showing pre-DC-specific DEGs based on adjusted *P* value
384 < 0.05 between Mr1^{-/-} and WT mice before and post-bleomycin challenge. Horizontal line
385 indicates *P* value threshold of 0.05.

386

387 **Adoptive transfer of Flt3 ligand-generated bone marrow-derived dendritic cells to Mr1^{-/-}**
388 **mice reverts weight loss and reduces tissue damage**

389 We reported compromised accumulation of cDC1 in Mr1^{-/-} mice in the absence of MAIT cells.
390 Given the exclusive presence of DNGR-1, a C-type lectin receptor, in cDC1 and its crucial role
391 in managing tissue damage by detecting actin filaments exposed on necrotic cell death⁵¹, we
392 further probed its specific influence in our context. Previous studies have shown that DNGR-
393 1 in DCs limits tissue damage in pancreatitis by dampening neutrophil recruitment, and DNGR-
394 1 also controls neutrophil recruitment and pathology associated with systemic candidiasis⁵².
395 We therefore examined the role of cDC1-DNGR-1 in weight loss and tissue fibrosis in both
396 WT and Mr1^{-/-} mice following bleomycin challenge. Consistent with previous data (Fig. 2, A
397 to D), Mr1^{-/-} mice showed greater weight loss (Fig. 5A), more pronounced tissue fibrosis (Fig.
398 5B and Supplementary Fig. 12A), and elevated gene expression of Col1 α 1 and Col3 α 1 on D21

399 post-bleomycin challenge, when in comparison with WT mice (Fig. 5C and D). Significantly,
400 weight loss and tissue fibrosis in $Mr1^{-/-}$ mice was alleviated by intranasal adoptive transfer of
401 Flt3L-generated bone marrow-derived dendritic cells (FLT3L-BMDC) (Supplementary Fig. 12,
402 B to D) on day 1 post-bleomycin challenge (Fig. 5). This alleviating effect was abrogated by
403 antibody blockade of DNGR-1, but persisted in $Mr1^{-/-}$ mice treated with isotype control (Fig.
404 5). These results suggest that the protective effects offered by MAIT cells are mediated, at least
405 partially, by regulating cDC1, and that cDC1s curb tissue damage through DNGR-1 signalling.
406

407
408 **Fig. 5. Adoptive transfer of bone marrow-derived dendritic cells (BMDC) to $Mr1^{-/-}$ mice**
409 **reverts weight loss and reduces tissue damage.** (A) Body weight loss expressed as a
410 percentage of the weight before bleomycin challenge. Adoptive transfer, performed twice, used
411 5×10^5 BMDC from *Salmonella typhimurium* BRD509-infected mice bone marrows. Cells
412 were transferred 1-day post-bleomycin challenge. (B) Modified Ashcroft score of lung slices

413 of PBS or bleomycin-challenged WT and $\text{Mr1}^{-/-}$ mice at day 21, stained with Masson's
414 trichrome. (C and D) Gene expression of $\text{Col1}\alpha 1$ (C), and $\text{Col3}\alpha 1$ (D) in lung homogenates of
415 PBS or bleomycin-challenged WT and $\text{Mr1}^{-/-}$ mice at day 21. Actb was used as a housekeeping
416 gene. For weight loss results, data are one representative experiment of two independent
417 experiments, with 4–6 mice per group in each replicate. For histology score and RT-qPCR
418 results, data were pooled from two independent experiments (n=4-6 per group). Graphs show
419 mean \pm SEM. Statistical significance tested by one-way ANOVA with Holm-Sidak's multiple
420 comparisons test; * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$, **** $P < 0.0001$.

421

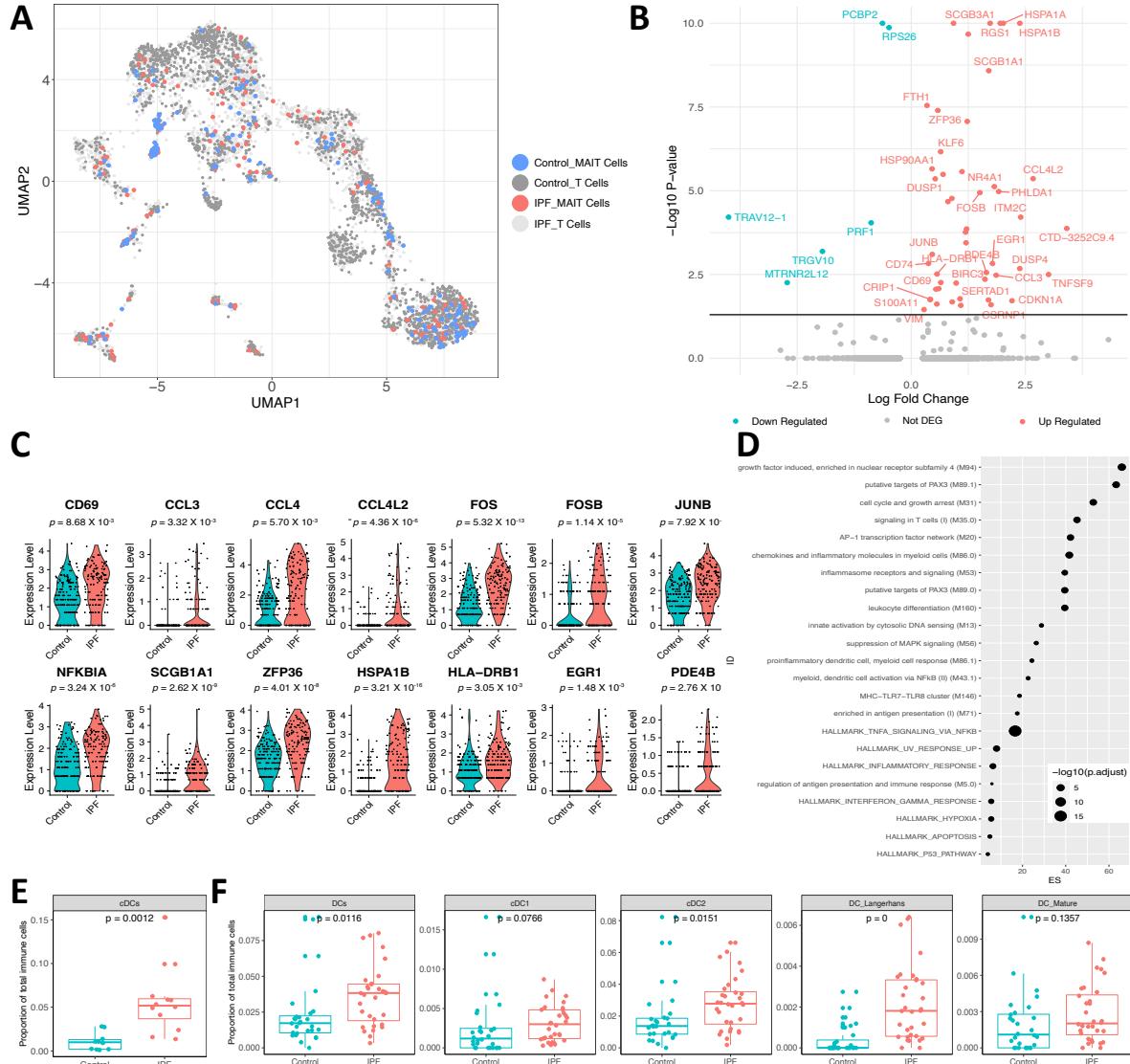
422 **Human scRNA-sequencing datasets demonstrate differences in MAIT cell and cDC
423 population in IPF versus non-fibrotic control lungs tissues**

424 To compare our murine findings with human clinical data from pulmonary fibrosis, we
425 examined published scRNA-seq datasets of IPF in the Human Lung Cell Atlas (HLCA)⁵³ and
426 the IPF Cell Atlas⁵⁴. MAIT cells were prominently identified only in one dataset⁵⁵, where 176
427 MAIT cells were identified in non-fibrotic controls and 141 in IPF patients (GEO reference:
428 GSE135893) (Fig. 6A). Two datasets^{55,56} provided adequate participant numbers to compare
429 cell proportions between IPF and controls (GEO reference: GSE135893 and GSE136831).

430

431 MAIT cells from IPF patients' lungs (n=10) exhibited 55 DEGs (49 up, 6 down, Supplementary
432 Table 1) compared to controls (n=6). Notably, the MAIT cell activation marker, CD69, was
433 among the prominently upregulated genes (Fig. 6B and C). We also observed a significant
434 upregulation of chemokines in MAIT cells, including CCL3, CCL4, and CCL4L2, which play
435 a pivotal role in the recruitment and activation of immune cells. Additionally, MAIT cells
436 demonstrated enhanced expression of FOS, FOSB, and JUNB – integral components of the
437 AP-1 transcription factor complex, which might indicate alterations in cellular signaling and

438 responses to lung injury. The elevated expression of NFKBIA, an inhibitor of the NF- κ B
439 transcription factor, suggests potential modulations in inflammatory response pathways. And
440 the elevated anti-inflammatory genes SCGB1A1⁵⁷ and ZFP36⁵⁸ in MAIT cells suggesting their
441 modulatory role and a potential protective mechanism in the lungs of IPF patients.


442

443 We conducted an overrepresentation analysis of these DEGs using blood transcriptional
444 modules (BTMs)⁵⁹. This analysis pinpointed a pronounced activation of the AP-1 transcription
445 factor network, chemokines and inflammatory molecules in myeloid cells, as well as
446 heightened activity related to pro-inflammatory dendritic cells and myeloid cell responses in
447 IPF (Fig. 6D).

448

449 In the GSE135893 dataset, cDC (marked by the genes: FCER1A, CD1C, and CLEC9A)
450 emerged as the sole cell population with a significant increase in IPF patients' lungs (Fig. 6E
451 and Supplementary Fig. 13B). Based on gene expression, these cDCs express CD1C, PKIB,
452 and CLEC10A, suggesting that they are phenotypically cDC2 (Supplementary Fig. 13A).
453 Analysis of the GSE136831 dataset revealed an elevation in the DC population within IPF
454 patients' lungs, with significant accumulations specifically in cDC2 (marked by FCGR2B,
455 CLEC10A, FOXN3, ABHD12) and Langerhans cells (indicated by CD1A, FCER1A, CD1E,
456 HLA-DQB2, S100B). There was a non-significant tendency towards an increase in cDC1
457 (marked by CADM1, SIPA1L3, CLEC9A, WDFY4, HDAC9) or mature DC populations
458 (marked by CCL19, LAD1, CCR7, LAMP3, NCCRP1) (Fig. 6F and Supplementary Fig. 13C).
459 This observation aligns with findings from our mouse lung scRNA-seq dataset, wherein DC
460 accumulation was noted in WT mouse lungs post-bleomycin challenge, suggesting a potential
461 role of DCs in modulating IPF-associated inflammation and fibrosis.

462

463

464 **Fig. 6. Differential gene expression and cellular frequencies in IPF patient lung MAIT**
 465 **cells. (A)** UMAP showing the MAIT cells and other T cells after reintegration. **(B)** Volcano
 466 plot displays DEGs (adjusted $P < 0.05$) in IPF lung MAIT cells relative to controls. The 25
 467 most upregulated and downregulated genes are annotated. **(C)** Violin plots illustrate expression
 468 levels of specified genes in MAIT cells, contrasting IPF with controls (GSE135893). **(D)**
 469 Analysis of DEGs for overrepresentation of blood transcriptional modules (BTM). The top 25
 470 pathways significantly enriched ($P < 0.05$) from BTM are shown, contrasting IPF lung MAIT
 471 cells with controls. Dot size corresponds to the adjusted P value for each pathway, while the
 472 x-axis depicts the enrichment score (ES), calculated as the ratio of gene ratio to background

473 ratio. (E) Boxplots showing the proportion of cDC relative to total immune cells in lungs of
474 IPF patients versus controls using data from GSE135893. (F) Boxplots present frequencies of
475 various DC subsets, including cDC1, cDC2, Langerhans, and mature DC, as proportions of
476 total immune cells in lungs of IPF patients and controls, sourced from GSE136831.

477

478 DISCUSSION

479 In this study of sterile lung injury, we uncover a novel role for MAIT cells; they are activated
480 and promote tissue repair, enhancing pulmonary accumulation of CD103⁺ cDC1, which limit
481 pathology via DNGR-1. Consistent with these findings, scRNA-seq data from IPF patients
482 reveal activated MAIT cells, and increased cDC populations in the lungs of IPF patients
483 compared with controls. Our observations demonstrate the potential of MAIT cells as
484 important orchestrators of tissue protection and modulators of inflammatory disease pathology.

485

486 In the context of inflammatory stimuli, MAIT cell activation is known to be triggered in at least
487 two distinct ways: either through an MR1-TCR-dependent pathway, typically associated with
488 antibacterial host defence, or via an MR1-TCR-independent route mediated by interleukins
489 (IL-12/-15/-18) and type I interferon, which is often linked to antiviral responses ³⁴. We
490 observed upregulation of CD69 in lung MAIT cells of mice subjected to bleomycin challenge.
491 This activation manifested earlier and more intensely than in non-MAIT $\alpha\beta$ T cells,
492 underscoring the rapid response of MAIT cells to sterile injury. There was substantial
493 impairment in MAIT cell accumulation in both IL-18R^{-/-} and IFN α R^{-/-} mice, whilst MAIT
494 cell CD69 upregulation was significantly impaired only in the IFN α R^{-/-} mice, consistent with
495 our previous studies in murine influenza infection ¹³. Our findings suggest that bleomycin-

496 induced responses are strongly cytokine-driven, with IFN- α emerging as the dominant
497 activating cytokine in this model of sterile challenge.

498

499 After bleomycin exposure, Mr1^{-/-} mice not only suffer more severe weight loss, but also
500 display an upregulated gene expression of Col1a1 and Col3a1, suggesting intensified tissue
501 damage in the lungs of Mr1^{-/-} mice. Owing to their anatomical placement and resemblance to
502 other tissue-resident lymphocytes³⁶, MAIT cells have been proposed to contribute to tissue
503 protection^{6,37,60}. For instance, in the nonobese diabetic (NOD) mouse model of type 1 diabetes,
504 Mr1^{-/-} NOD mice have displayed impaired intestinal barrier integrity, accelerated disease
505 progression, enhanced intestinal permeability, and augmented bacterial translocation, implying
506 a protective role of MAIT cells in maintaining surface homeostasis⁶¹. Similarly, in scenarios
507 involving allogeneic bone marrow transplantation, Mr1^{-/-} mice showed compromised survival,
508 escalated colonic graft versus host disease (GVHD), and diminished intestinal barrier integrity
509⁶². These observations underscore the role of MAIT cells in preserving barrier integrity. Similar
510 results have been observed in a mouse model of non-alcoholic steatohepatitis, where Mr1^{-/-}
511 mice on a diet deficient in methionine and choline exhibited more severe liver damage and
512 disease intensity compared with WT. The underlying mechanism may involve an altered ratio
513 of pro- and anti-inflammatory hepatic macrophages⁶³, though further research is needed to
514 determine the exact role of MAIT cells in modulating macrophage function. Moreover, a recent
515 study showed that MAIT cells were present in the meninges and expressed high levels of
516 antioxidant molecules, and their absence led to meningeal reactive oxygen species (ROS)
517 accumulation and barrier leakage, highlighting the function of MAIT cells in preserving
518 meningeal homeostasis and cognitive function⁶⁴. Collectively, these findings highlight the
519 importance of MAIT cells in maintaining tissue homeostasis and reducing damage, especially
520 in the context of inflammatory diseases.

521

522 Although MAIT cells have never been assessed in pulmonary fibrosis, murine skin resident
523 MAIT cells exhibit a distinct tissue repair transcriptional signature⁶, similar to H2-M3
524 restricted CD8⁺ T cells³⁵, and seen in TCR-activated MAIT cells in humans and mice^{36,65,66},
525 indicating their local repair programme similar to other tissue resident cell types. MAIT cells
526 have also been implicated in models of collagen-induced arthritis⁶⁷ and chronic liver injury⁶⁸,
527 where their absence diminished inflammation and pathology, and their presence intensified
528 these conditions. Pharmacological inhibition of MAIT cells alleviated fibrosis, hinting at
529 interactions with monocytes/macrophages⁶⁹.

530

531 While most transcriptomic analyses in existing literature have focused on the tissue repair
532 programme of MAIT cells under an MR1-TCR dependent activation pathway, recent published
533 research suggests that cytokine involvement might also play a role⁷. Our research demonstrates
534 for the first time that both a sterile chemical insult, namely a bleomycin challenge, and a viral
535 infection can trigger such a tissue repair programme in a cytokine-dependent manner,
536 suggesting a functional versatility and broader applicability of the underlying mechanisms
537 governing MAIT cell activation than previously recognised. Thus, future research would be
538 valuable into the cytokine-dependent activation pathway and their connection to the tissue
539 repair programme of MAIT cells, as well as the spatial relationships between MAIT cells,
540 inflammatory and stromal cells.

541

542 Significant differences in weight loss were observed between Mr1^{-/-} and WT mice in the initial
543 days following bleomycin challenge, yet the notable decrease in cDC1 accumulation in Mr1^{-/-}
544 mice only occurred on day 7 post-challenge. This could indicate additional roles for MAIT
545 cells in maintaining tissue homeostasis, in addition to the DNGR1-cDC1 mechanism

546 elucidated here. As mentioned, our scRNA-seq dataset highlights baseline differences between
547 Mr1^{-/-} and WT mice, notably a reduced frequency of alveolar macrophages and diminished
548 Pbx1 expression within these cells in Mr1^{-/-} mice (Supplementary Fig. 8 and data S4). Pbx1,
549 a key transcriptional regulator in macrophages, initiates IL10 transcription during apoptotic
550 cell clearance via the apoptotic cell-response element (ACRE) in the IL10 promoter, indicating
551 its significance in mitigating inflammation and maintaining tissue homeostasis during
552 apoptosis⁷⁰⁻⁷². Our data suggests that MAIT cells might facilitate an anti-inflammatory state
553 in alveolar macrophages, potentially crucial in shaping the lung's response to tissue injury.
554 Additionally, our total lung RNA-seq dataset highlights an early upregulation (as soon as day
555 3 post-bleomycin challenge) of pro-inflammatory genes, Il6 and Ccl2, in Mr1^{-/-} mice. This
556 rapid upregulation might contribute to the early onset of weight loss observed in these mice.
557 Further scrutiny of the scRNA-seq data identifies mast cells, interstitial macrophages,
558 fibroblasts and CCR2⁺ Ly6C^{hi} monocytes as the primary sources of these pro-inflammatory
559 genes (Supplementary Fig. 14).

560
561 MAIT cells and DCs coordinate in orchestrating immune responses against various pathogens
562 and maintaining immune protection. During *Francisella tularensis* infection in mice, MAIT
563 cell-dependent GM-CSF production contributed to monocyte differentiation into DCs,
564 although MAIT cells were not explicitly identified as the GM-CSF source¹¹. *In vitro*
565 investigations with human MAIT cells revealed their capacity to induce DC maturation. When
566 co-cultured with immature human DCs in the presence of 5-Amino-6-D
567 ribitylaminouracil/methylglyoxal (5-A-RU/MeG), MR1-dependent upregulation of CD86,
568 CD80, CD40, and PD-L1 was observed on the DCs. Additionally, DC IL-12 production was
569 contingent upon both MR1 and CD40L⁷³. Furthermore, pulmonary MAIT cell stimulation *in*
570 *vivo* with 5-A-RU/MeG or CpG led to the accumulation of CD11b⁺ DCs in the lung and

571 migration of both CD11b⁺ and CD103⁺ DCs from the lung to the mediastinal lymph node.
572 However this study did not explore the underlying mechanism driving the accumulation of
573 DCs in response to MAIT cell activation¹². We have also shown MAIT cells amplify the early
574 immune response to adenovirus vector vaccines, a mechanism necessitating pDC-derived IFN-
575 α , monocyte-derived IL-18, and IFN- α -induced tumour necrosis factor (TNF) from
576 monocytes¹⁴. Additionally, intranasal immunisation with MAIT cell agonists and proteins
577 activates DCs via CD40L, priming T follicular helper cells and inducing protective humoral
578 immunity, establishing MAIT cells as potential cellular adjuvants in mucosal vaccines⁷⁴.

579

580 Currently, there are no *in vivo* studies examining the impact of MAIT cell and DC interactions
581 within the context of sterile injury and tissue damage. In MAIT cell-deficient Mr1^{-/-} mice, we
582 observed an impaired early accumulation of CD103⁺ cDC1 and pre-DC populations in the
583 lungs upon bleomycin challenge. Interestingly, there were minimal DEGs specific to pre-DC
584 and cDC1 when comparing WT and Mr1^{-/-} mice. This finding suggests that while MAIT cells
585 are essential for the accumulation of cDC1, they may not modify the functional characteristics
586 of these cells to influence their accumulation. The mechanism behind this remains to be
587 elucidated: it is uncertain whether MAIT cells directly recruit DCs from the peripheral blood
588 and bone marrow, indirectly draw in the precursor pre-DC population, or engage an alternative
589 pathway. Our findings highlight that MAIT cells produce GM-CSF, IFN- γ and IL17A in the
590 context of bleomycin-induced lung injury. Both GM-CSF and IFN- γ are important for the
591 maturation, differentiation, and recruitment of DCs to sites of inflammation^{75,76}. Moreover,
592 IL-17 has been observed to augment the activation, migration, and overall functionality of
593 airway DCs, which leads to more effective antigen-specific T cell activation and the
594 progression of experimental allergic asthma⁷⁷. Our study also demonstrates an upregulation in
595 the gene expression of Ccrl2, Ccl3, and Cxcl2 in MAIT cells following bleomycin exposure

596 (Fig. 1G). This upregulation could be instrumental in the accumulation of pre-DC and cDC1.
597 Notably, Ccrl2, known as an inflammatory chemokine receptor, is implicated in the trafficking
598 of lung DCs and in managing excessive airway inflammatory responses ⁷⁸. Ccl3, on the other
599 hand, has been identified as a significant mobilizer of DCs, facilitating their movement into
600 the bloodstream and toward inflammation sites ^{79,80}. We also noted a pronounced reduction in
601 the ILC3 population in Mr1^{-/-} mice relative to WT counterparts during sterile injury,
602 suggesting a putative role of MAIT cells in maintaining ILC3 numbers. ILC3s are known to
603 regulate the activity of various immune cells including DCs, macrophages, eosinophils, and
604 neutrophils, contributing to their recruitment, movement, and tissue reparative functions. In
605 steady-state conditions, ILC3s secrete Th17-associated cytokines such as IL-17A, IL-17F, IL-
606 22, and GM-CSF, while during inflammatory responses, they are also capable of producing
607 IFN- γ ^{81,82}. These cytokines interact with respective receptors – IL-17R, IFN- γ R, and GM-
608 CSFR – on myeloid cells, which are particularly receptive to GM-CSF ^{83,84}. The GM-CSF
609 produced by ILC3s has been implicated in bridging innate and adaptive immunity through its
610 influence on myeloid cells ⁸⁵. Thus, MAIT cells, through the production of cytokines such as
611 GM-CSF, IFN- γ and IL17A, along with various chemokines, may exert a direct influence on
612 the migration and functionality of DCs. Additionally, these factors could indirectly affect the
613 function and maintenance of ILC3s, subsequently affecting the downstream accumulation and
614 activity of diverse myeloid populations in response to sterile lung injury.

615
616 Our research provides evidence that cDC1 cells contribute to tissue protection by mediating
617 responses to cellular damage through DNGR-1 signaling. DNGR-1, or CLEC9A, a type II
618 transmembrane protein categorized within the C-type lectin receptor (CLR) family's group V,
619 is abundantly expressed on cDC1 cells. This receptor has a unique role in recognizing dead
620 cells by binding with its C-type lectin-like domain (CTLD) to F-actin, which becomes exposed

621 upon disruption of cell membrane integrity⁵¹. The subsequent phosphorylation of a hemITAM,
622 especially at the tyrosine 7 residue, leads to SYK activation⁸⁶⁻⁸⁸. This triggers an intracellular
623 response involving activation of NADPH oxidase and production of ROS, which induces lipid
624 peroxidation, damages phagosomal membranes and causes the release of their contents into the
625 cytosol^{87,89}. Consequently, this permits cross-presentation of antigens to CD8⁺ T cells through
626 the MHC-I pathway, traditionally used for presenting endogenous antigens. The ability of
627 DNGR-1-mediated cDC1 signaling to detect and respond to cell damage not only mitigates the
628 risk of excessive inflammation and collateral damage but also facilitates the prompt resolution
629 of the immune response, underlying the critical role of cDC1s in adaptive immunity and tissue
630 homeostasis.

631

632 Our study indicates that MAIT cells are notably activated in the lungs of IPF patients compared
633 to non-fibrotic controls. To date, there has been limited literature examining the function of
634 MAIT cells in IPF. One notable study reported decreased counts of MAIT cells in the
635 peripheral blood of IPF patients, suggesting a potential migration to the lungs⁹⁰. Future
636 research could delve into the involvement of MAIT cells in the onset and progression of
637 pulmonary fibrosis. Another promising area of exploration is the interaction between MAIT
638 cells and lung microbiota during fibrosis, given the known responsiveness of MAIT cells to
639 bacterial and viral infections. Evaluating MAIT cells as potential therapeutic targets through
640 the use of synthetic blocking or activating ligands may also yield valuable insights.

641

642 Our study has several limitations. Firstly, while we identified the central role of MAIT cells in
643 the accumulation of CD103⁺ cDC1 and pre-DC populations, the specific mechanisms through
644 which MAIT cells influence this accumulation remain ambiguous. The exact interplay between
645 MAIT cell-produced cytokines, such as GM-CSF and IFN- γ , and the accumulation of DC

646 requires further elucidation. The potential interactions and crosstalk between MAIT cells and
647 other myeloid cells also warrant a deeper investigation to comprehensively understand their
648 combined roles in shaping immune responses to sterile challenge. Secondly, in contrast to the
649 early accumulation of cDC1 in the lungs of WT mice subjected to bleomycin challenge, human
650 IPF patient data shows a more pronounced accumulation of cDC2, indicating species
651 differences and the need for careful interpretation in the context of the chronic nature of human
652 IPF and the dynamics of DC infiltration and function. Thirdly, the intricate processes of tissue
653 damage and fibrosis, which involve numerous structural cells such as epithelial cells and
654 fibroblasts, present difficulties for us to study. The methods we used, like flow cytometry or
655 scRNA-seq, inherently lose information about structural cells and spatial resolution during
656 single cell preparation, leaving various questions unanswered: How are MAIT cells spatially
657 distributed and interacting within the lung tissue? Do their gene expression pattern and
658 intercellular signalling pathways vary across regions, correlating with tissue damage? These
659 questions could be answered through spatial transcriptomic approaches.

660
661 Employing the bleomycin-challenged murine model, a well-accepted surrogate of interstitial
662 lung disease (ILD) pathogenesis⁹¹, we have identified a crucial role for MAIT cells in
663 counteracting lung injury. This offers invaluable insights into the complex mechanisms
664 underpinning pulmonary tissue repair. Specifically, airway damage and tissue remodelling
665 emerge as common pathological traits across a wide spectrum of respiratory disorders,
666 significantly contributing to their progression. While acting as a marker for disease progression,
667 tissue remodelling is also a contributor to severe clinical symptoms and disease severity,
668 causing impaired quality of life⁹². These effects of remodelling are prominent in conditions
669 such as ILD, pneumonia, and acute respiratory distress syndrome⁹³. Given the pathological
670 importance of remodelling in lung diseases our findings are potentially important for the

671 development of novel antifibrotic therapeutic strategies. For instance, the protective activities
672 of MAIT cells could be enhanced by use of MAIT cell stimulating ligands, either synthetically
673 produced, or administered through riboflavin-competent commensal organisms⁹⁴, or through
674 targeting the DNGR-1 pathway. Future studies will be required to further delineate the precise
675 roles of MAIT cells in the context of human lung injury and repair, and to validate the
676 translational potential of our findings in real-world clinical settings, but in summary we have
677 for the first time generated *in vivo* data of MAIT cells protecting against lung damage,
678 independently of a bacterial or viral pathogen.

679

680 MATERIALS AND METHODS

681 **Mice model and *in vivo* bleomycin challenge**

682 C57BL/6 mice (aged 8–10 weeks) were purchased from University of Oxford Biomedical
683 Services (BMS), Charles River or Envigo. Mr1^{−/−} mice⁹⁵ (kindly provided by Dr Claire
684 Hutchings, University of Oxford, MGI ID: 3664578), Il18r1^{tm1Aki} mice (kindly provided by
685 Prof Kevin Maloy, University of Oxford, MGI: 2136765), and Ifnar1^{tm1Agt} mice (kindly
686 provided by Dr Claire Hutchings, University of Oxford, MGI ID: 1930950) were bred in house
687 and used at 8–10 weeks of age. Sex and age were matched between groups. All mice were
688 housed in specific pathogen-free conditions. For indicated experiments, C57BL/6 and Mr1^{−/−}
689 mice were co-housed for ≥ 28 days to normalize the microbiome between strains⁶². All work
690 was performed under UK Home Office license PPL P61FAD253 in accordance with the UK
691 Animal (Scientific Procedures) Act 1986. For bleomycin challenge, mice were anaesthetized
692 with isoflurane then treated intratracheally with 1.875 U/Kg (mice weight) of bleomycin
693 sulphate (Apollo Scientific, Cat. No. BI3543) in 50 µL of PBS.

694

695 **Mice pulmonary MAIT cell expansion using *Salmonella Typhimurium* BRD509**

696 *S. typhimurium* BRD509 were prepared as previously described¹³. Mice were infected
697 intranasally with 10⁶ CFU *S. typhimurium* BRD509 in 50 µL PBS under isoflurane anaesthesia.

698

699 **Generation of MR1 tetramers**

700 Murine MR1-5-OP-RU and MR1-6-FP monomers were provided by the NIH Tetramer
701 Facility. Tetramers were generated using Brilliant Violet 421 (BV421)-Streptavidin and
702 Phycoerythrin (PE)-Streptavidin (BioLegend, Cat. No. 405225 and 405245, respectively)
703 following the NIH Tetramer Facility's guidelines.

704

705 **Antibodies staining for flow cytometry and cell sorting**

706 Murine lung tissues were prepared as described previously³⁶. For measurement of intracellular
707 markers, 1 × Brefeldin A (eBioscienceTM, Cat. No. 00-4506-51) was added 4 hours before
708 staining. Lung cells were blocked with anti-Fc receptor 2.4G2 and/or 6-FP tetramer for 15 min
709 at room temperature (RT), stained with viability dye, fluorescently-labelled MR1 tetramer
710 and/or flow cytometric antibodies for 20 min at RT. Staining antibodies, clones and
711 concentrations are listed in Supplementary Table 2. Samples were washed in FACS buffer
712 (PBS + 0.5% BSA + 2 mM EDTA), and cells were fixed for 15 min RT using IC fixation buffer
713 then washed twice with 1 × permeabilization buffer (eBioscienceTM, Cat. No. 00-8222-49 and
714 00-8333-56, respectively). Intracellular staining was performed overnight at 4°C. Samples
715 were subsequently washed twice and stored in FACS buffer at 4°C until analysed on BD LSRII
716 flow cytometer.

717

718 For live cell sorting on murine lung MAIT cells, lung single-cell suspension was purified with
719 a 40%: 70% Percoll gradient. The sorting was conducted on a BD Aria III directly into a 350µL

720 lysis buffer (Buffer RLT plus, supplemented with 10µL β-ME per 1mL Buffer RLT plus from
721 the QiaGen RNeasy Plus Micro Kit, Cat. No. 74034) and subsequently stored at -80 oC for
722 future batch RNA extraction.

723

724 For multiparameter spectral flow cytometry analysis, we used the “AF as a tag” (AF) function
725 in the SpectroFlo (Cytek Biosciences, CA) software ⁹⁶. 6 unique AF tags were disassociated
726 from unstained mouse lung samples and included in the unmixing strategy.

727

728 **Total RNA extraction and RNA integrity assessment**

729 RNA extraction was performed by single column centrifugation using the RNeasy® Plus Micro
730 Kit (Qiagen, Cat No. 74034) following the manufacturer’s protocol. RNA integrity was
731 assessed by Agilent High Sensitivity RNA ScreenTape Assay on an Agilent 4200 TapeStation
732 following the manufacturer’s protocol (Agilent, Cat. No. 5067-5579, 5580 and 5581).

733

734 **mRNA isolation, library preparation, sequencing by Novogene**

735 Total RNA was subsequently submitted to Novogene following their sample preparation and
736 shipping instructions. All further laboratory work was performed by Novogene using their
737 commercial protocol. RNA was reverse transcribed and cDNA amplified by *in vitro*
738 transcription with the TaKaRa SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing
739 (TaKaRa, Cat. No. 634889) or a low input method using NEB Next® Ultra RNA Library Prep
740 Kit for Illumina® (NEB, Cat. No. 7530). First-strand cDNA synthesis and tailing by reverse
741 transcription were performed using SMART (Switching Mechanism at 5’ End of RNA
742 Template) technology. Following first-strand synthesis, cDNA was amplified by PCR to
743 produce the library. Quality control of the library was performed by quantification with a Qubit
744 2.0 fluorimeter and by qPCR. Insert size was measured by the Agilent 2100 Bioanalyzer

745 automated gel electrophoresis system. The library was sequenced using the NovaSeq platform
746 with Illumina sequencing technology to generate 150bp paired-end reads.

747

748 **RNA-sequencing data analysis**

749 NovaSeq platform images were first converted into raw sequence reads via Illumina's
750 CASAVA software, stored in FASTQ format. After filtering out low-quality and adapter reads,
751 the remaining clean reads were mapped using STAR version 2.6.1⁹⁷ against the *mus musculus*
752 GRCm38 reference genome (GenBank accession number GCA_000001635.2). Successful
753 mapping was determined by a rate over 70%, with the results preserved as BAM files⁹⁸. Read
754 quantification involved featureCounts 1.5.0⁹⁹, which converted BAM files to a table of gene
755 IDs and counts per sample. Differential expression analysis was performed in R (version
756 4.1.0) using DESeq2 (version 1.30.1)¹⁰⁰. DEGs were defined as \log_2 fold-change > 1 and
757 adjusted $P < 0.05$. VennDiagram (version 1.6.20). And ggplot2 (version 3.2.1), pheatmap
758 (version 1.4.3) and ggrepel (version 0.8.1) were used for data visualization. clusterProfiler
759 (version 4.0)¹⁰¹ and Mfuzz¹⁰² are used for GO enrichment and time-series analysis,
760 respectively. GSEA was performed using GSEA software (version 4.1.0)¹⁰³. Bulk RNA-seq
761 data cell type deconvolution was performed utilising Multi-Subject Single Cell deconvolution
762 (MuSiC) method¹⁰⁴. For this analysis, cell-type-specific gene expression data from a
763 bleomycin-induced lung injury mouse model, acquired from the single-cell RNA-seq dataset
764 (GSE141259) published by Strunz. M. *et al.* was used as the reference dataset⁴⁹.

765

766 **Propagation, quantification and mice infection of PR8 influenza A virus**

767 Propagation, quantification and mice infection of PR8 influenza A virus were performed as
768 previously described³³.

769

770 **10x Genomics library generation, sequencing and computational analysis**

771 Sequencing libraries were generated using 10x Genomics Chromium Next GEM Single Cell 5'
772 Reagent kit v2 (Dual Index) following manufacturer's instructions (CG000330 Rev D). ADT-
773 labelled (BioLegend, Cat. No. 155861, 155863 and 199903) cells were loaded onto the
774 Chromium iX (10x Genomics) at a concentration of $\sim 1 \times 10^6$ cells/mL, with 50,000 cells loaded
775 per channel. One channer was loaded per 2 mice lung samples. Library generation was
776 performed using Biomek FX^P Laboratory Automation Workstation (Beckman Coulter) at MRC
777 Weatherall Institute of Molecular Medicine Single-Cell Facility (WIMM, University of
778 Oxford). Library quality and concentration was assessed using a Bioanalyzer (Agilent) and
779 Qubit 2.0 Fluorometer (Thermo Fisher Scientific), respectively. Libraries were sequenced on
780 an Illumina NovaSeq 6000 to a mean depth of 40,000 read pairs/cell for scRNA-seq, 10,000
781 read pairs/cell for Cite-seq and TCR-seq, performed at Novogene.

782

783 10x Genomics cellranger analysis pipelines were used to generate single cell gene counts.
784 Reads from gene expression and TCR library were aligned to the mouse mm10 reference
785 genome (version 2020-A) and GRCm38 Mouse V(D)J Reference-7.0.0 (May 17, 2022),
786 respectively, and quantified using cellranger multi pipeline together with those from ADT
787 library.

788

789 Hashtag oligo (HTO) data underwent a transformation using Seurat's centred log-ratio (CLR)
790 transformation ¹⁰⁵. Demultiplexing of HTO hashtags was subsequently performed manually
791 with CITEviz ¹⁰⁶, followed by normalisation of CITE-seq data via the dsb package ¹⁰⁷. Ambient
792 RNA was removed using decontX ¹⁰⁸. The RNA-seq data were then processed using Scanpy
793 ¹⁰⁹, which involved doublet removal with Scrublet ¹¹⁰ and cell filtering with specified
794 thresholds for total counts (1,000 – 60,000), genes by counts (500 – 6,000), and mitochondrial

795 counts (0 – 10%). The filtered data underwent normalization to achieve a total sum of 10,000
796 and were log-transformed with a pseudocount of 1. Highly variable genes were identified by
797 setting the flavour to “cell_ranger”. Principal Component Analysis (PCA) was conducted, with
798 the number of principal components set using the KneeLocator function. Cells from different
799 mice were subsequently integrated using the Harmony algorithm ¹¹¹. Neighbourhoods were
800 identified with n_neighbors set to 5, followed by dimensionality reduction with UMAP ¹¹² and
801 partitioning cell type with Leiden clustering at a resolution of 2.0 ¹¹³. DEGs between cell types
802 were identified using the rank_genes_groups function with a t-test. Cell clusters were identified
803 using both RNA and protein expression data. T cells were further selected for reintegration and
804 subset identification using the same method as previously stated, except that the clustering
805 resolution was set to 1.0.

806
807 PCA on the overall transcriptome for each mouse was based on pseudobulk counts, computed
808 by summing the counts of all cells in each mouse. Genes with low expression was filtered using
809 filterByExpr in edgeR (version 3.36.0) ¹¹⁴ by setting min.count to 3, and using model matrix
810 adjusted for time point and genotype. Normalisation factors were calculated using
811 calcNormFactors in edgeR and the pseudocounts were then normalised using voom in limma
812 (version 3.50.3) ¹¹⁵.

813
814 MAIT cells and iNKT cells were identified using clonotypes.csv and
815 filtered_contig_annotations.csv, based on the output generated by cellranger multi pipeline. A
816 cell is designated as a MAIT cell if it is part of a clonotype that exhibits Trav1 and Traj33
817 expression. A cell is designated as an iNKT cell if it is part of a clonotype that exhibits Trav11
818 and Traj18 expression.

819

820 Differential gene expression between $\text{Mr1}^{-/-}$ and WT mice across various time points and cell
821 types was analysed using DESeq2¹⁰⁰ and pseudobulk counts, computed by summing the counts
822 of all cells within each cell type for each mouse. Enriched gene sets were identified using the
823 pre-ranked gene-set enrichment analysis (GSEA) algorithm implemented in the FGSEA R
824 package¹¹⁶. Genes were ranked with the log2 fold change for the relevant coefficient calculated
825 by DESeq2. Enrichment was assessed with gene set list from MSigDB's Hallmark collection.

826

827 In the trajectory analysis of DC populations, Monocle 2⁵⁰ (version 2.22.0) was utilized. The
828 raw count data was processed to establish a CellDataSet object within Monocle 2 by setting
829 the expressionFamily to a negative binomial distribution with a fixed variance. Cell ordering
830 was achieved using genes identified by dpFeature. Dimension reduction for visualization was
831 carried out using DDRTree. Pre-cDCs were identified as the root_state during the cell ordering
832 process. Trajectories were generated independently for cells from different groups. The
833 expression profiles of selected genes in the two differentiation branches (cDC1 and cDC2)
834 were visualized using the “plot_genes_branched_heatmap” function within the Monocle2
835 package⁵⁰.

836

837 **Analysis of human IPF scRNA-seq datasets in HLCA and IPF cell atlas**

838 Cells within the HLCA and IPF cell atlas were assessed for TRAV1-2 expression. Those
839 exhibiting positive TRAV1-2 expression levels were categorized as MAIT cells. The primary
840 identification of MAIT cells was in GSE135893⁵⁵, and only these MAIT cells were utilized in
841 subsequent analyses. Differential gene expression between MAIT cells from IPF patients and
842 those from healthy controls was determined using the FindMarkers function in Seurat¹⁰⁵, with
843 a pseudocount set to 1. For the overrepresentation test, modules in BTM⁵⁹ were employed,
844 utilizing the enricher function in clusterProfiler¹⁰¹.

845

846 Both GSE135893 and GSE136831^{55,56} were analysed in terms of immune cell composition
847 changes, given that both datasets contained more than three samples from the IPF and healthy
848 control groups, respectively. Marker genes for DC populations were derived from the original
849 publication.

850

851 **Culture and adoptive transfer of Flt3 ligand-generated bone marrow-derived dendritic
852 cells**

853 B6.SJL-Ptprc^a Pepc^b/BoyJ mice were used as donor mice and all donor mice were infected
854 with 10⁶ CFU *S. typhimurium* BRD509 4 weeks before harvesting bone marrow cells. FLT3L-
855 BMDC were generated by culture in RPMI complete containing murine Flt3L at 200ng/mL
856 and murine GM-CSF at 20ng/mL as previously described¹¹⁷. DNGR-1 was highly expressed
857 in the MHCII⁺ CD11c⁺ CD24^{hi} subsets of Flt3L BMDCs (Supplementary Fig. 10), which
858 correspond to the CD103⁺ subset of lung DCs. CD11c⁺ FLT3L-BMDCs were enriched using
859 anti-PE microbeads (Miltenyi Biotec, Cat. No. 130-048-801). 5 × 10⁵ FLT3L-BMDCs were
860 given into each recipient Mr1^{−/−} mouse intranasally¹¹⁸ at day 1 post-bleomycin challenge.
861 When necessary, mice were treated i.p. with 100 µg of 7H11 anti-DNGR-1 blocking antibody
862 or isotype-matched control (BioXCell, Cat. No. BE0305 and BE0088, respectively). Injections
863 were administered daily from day -1 to day 10 post-bleomycin challenge.

864

865 **Histology**

866 The left lobes of the mice lungs were preserved in 10% neutral buffered formalin, sequentially
867 dehydrated with an ethanol gradient, cleared with Histo-Clear II, and infiltrated with paraffin
868 wax. Subsequently, paraffin-embedded sections (4 µm thick) of these lobes were stained with
869 Masson's trichrome (Abcam, Cat. No. ab150686) following manufacturer's instructions. To

870 evaluate the extent of fibrosis, the modified Ashcroft scoring system was employed for a
871 semiquantitative analysis¹¹⁹.

872

873 **Hydroxyproline assay**

874 Hydroxyproline was measured using 10 mg of lung tissue using a hydroxyproline assay kit
875 (Sigma-Aldrich, Cat. No. MAK008) per the manufacturer's instructions.

876

877 **RNA quantification, purity check and reverse transcription**

878 For RT-qPCR experiments, total lung RNA was extracted as described above. RNA quantity
879 and quality were assessed using a Nanodrop 2000 (Thermo Scientific) following the
880 manufacturer's protocol. Isolated RNA was converted to cDNA in preparation for qPCR using
881 a High-Capacity cDNA Reverse Transcription Kit with RNase Inhibitor (Applied Biosystems,
882 Cat. No. 4374966) following manufacturer's protocol. Template RNA and reagents were
883 thawed on ice. The reverse transcription reaction mix was prepared and incubated in the
884 Programmable Thermal Controller as the following steps: Step 1: 25°C, 10 minutes; Step 2:
885 37°C, 120 minutes; Step 3: 85°C, 5 minutes; Step 4: 4°C, ∞.

886

887 **Reverse transcription quantitative polymerase chain reaction (RT-qPCR)**

888 For qPCR reactions, 2 × QuantiFast SYBR Green PCR Master Mix kit (QiaGen, Cat No.
889 204056) was used following the manufacturer's instructions. PCR reaction mix was prepared,
890 mixed, and appropriate volumes were dispensed into the wells of a PCR plate. Template cDNA
891 was added to the individual wells containing the reaction mix. qPCR plate was in loaded into
892 a Bio-Rad CFX96. qPCR was performed following the manufacturer (Bio-Rad)'s instructions.
893 Thermal cycling conditions were set up as the following steps: PCR initial heat activation:

894 95°C, 5 minutes; 2-step cycling: Denaturation: 95°C, 10s; Combined annealing/extension:
895 60°C, 30s; 35-40 cycles in total. For all tests, $P < 0.05$ was considered statistically significant.

896

897 **Data analysis and statistics**

898 Flow cytometry data were acquired on a BD LSRII Flow Cytometer (BD Biosciences) or Cytek
899 Aurora (Cytek Biosciences) and processed in FlowJo version 10.8.1 (FlowJo, LLC). All data
900 was analysed in Prism version 9.2.0 (GraphPad) and RStudio version 1.4.1717. For *in vivo*
901 mouse data analysis, various tests were deployed as required, including unpaired t tests, Mann-
902 Whitney tests, one-way ANOVA with Dunnett's or Sidak's multiple comparisons, Kruskal-
903 Wallis with Dunn's multiple comparisons, and two-way ANOVA with Sidak's multiple
904 comparisons, Holm-Sidak's multiple comparisons or Fisher's LSD test. A P value less than
905 0.05 was considered significant.

906

907 **Supplementary Materials:**

908 **Supplementary Figs. 1 to 14**

909 Supplementary Fig. 1. Temporal dynamics of MAIT cells in pulmonary immune response to *S.*
910 *typhimurium* infection.

911 Supplementary Fig. 2: Cytokine-modulated accumulation and activation of pulmonary MAIT
912 cells upon bleomycin stimulation.

913 Supplementary Fig. 3: Gene expression and cytokine profile of pulmonary MAIT cells
914 following bleomycin-induced lung injury.

915 Supplementary Fig. 4. PR8 influenza A virus (IAV) infection activates tissue repair programme
916 of lung MAIT cells.

917 Supplementary Fig. 5. Pulmonary cellular dynamics and gene expression in both WT and
918 Mr1^{-/-} mice following bleomycin challenge.

919 Supplementary Fig. 6. Characterisation and activation status of mouse lung conventional
920 dendritic cells subsets.

921 Supplementary Fig. 7. Differential gene expression and cellular distribution in mouse lung cell
922 lineages across genotypes and timepoints post-challenge.

923 Supplementary Fig. 8. Cell type distribution in both WT and Mr1^{-/-} mouse lungs post-
924 bleomycin challenge.

925 Supplementary Fig. 9. Differential gene expression in dendritic cell and macrophage
926 populations in Mr1^{-/-} vs. WT mice in response to bleomycin.

927 Supplementary Fig. 10. Differentiation trajectories and gene expression patterns of pre-DCs to
928 cDC1 and cDC2 in WT and Mr1^{-/-} mouse lungs.

929 Supplementary Fig. 11. Gene Set Enrichment Analysis in lung cells of Mr1^{-/-} and WT mice
930 post-bleomycin challenge.

931 Supplementary Fig. 12. Lung tissue response and dendritic cell characterisation in WT and
932 Mr1^{-/-} mice post-bleomycin challenge and -adoptive transfer of FLT3L-BMDC.

933 Supplementary Fig. 13. Gene expression profiling of cDCs in IPF patients' lungs and
934 comparative analysis of cell frequencies between IPF patients and controls.

935 Supplementary Fig. 14. Differential expression of inflammatory markers Il6 and Ccl2 in lung
936 cell types pre- and post-bleomycin challenge.

937

938 **Supplementary Tables 1 and 2**

939 Supplementary Table 1. DEGs of human lung MAIT cells, IPF vs Control

940 Supplementary Table 2. Flow cytometry reagents

941

942 **Other Supplementary Materials**

943 Supplementary Data 1 to 4

944 Supplementary Data 1 – DEGs of MAIT cells, WT bleomycin-challenged versus WT
945 unchallenged

946 Supplementary Data 2 – DEGs of MAIT cells, WT PR8 virus infected versus WT B6
947 uninfected

948 Supplementary Data 3 – DEGs of total lung, Mr1^{−/−} versus WT B6

949 Supplementary Data 4 – DEGs, cell type-specific, WT versus Mr1^{−/−}

950 **References**

951 1 Corbett, A. J. *et al.* T-cell activation by transitory neo-antigens derived from distinct
952 microbial pathways. *Nature* **509**, 361-365, doi:10.1038/nature13160 (2014).

953 2 Tilloy, F. *et al.* An invariant T cell receptor alpha chain defines a novel TAP-
954 independent major histocompatibility complex class Ib-restricted alpha/beta T cell
955 subpopulation in mammals. *The Journal of experimental medicine* **189**, 1907-1921,
956 doi:10.1084/jem.189.12.1907 (1999).

957 3 Porcelli, S., Yockey, C. E., Brenner, M. B. & Balk, S. P. Analysis of T cell antigen
958 receptor (TCR) expression by human peripheral blood CD4-8- alpha/beta T cells
959 demonstrates preferential use of several V beta genes and an invariant TCR alpha
960 chain. *The Journal of experimental medicine* **178**, 1-16, doi:10.1084/jem.178.1.1
961 (1993).

962 4 Hinks, T. S. C. *et al.* Activation and In Vivo Evolution of the MAIT Cell
963 Transcriptome in Mice and Humans Reveals Tissue Repair Functionality. *Cell Rep*
964 **28**, 3249-3262 e3245, doi:10.1016/j.celrep.2019.07.039 (2019).

965 5 Leng, T. *et al.* TCR and Inflammatory Signals Tune Human MAIT Cells to Exert
966 Specific Tissue Repair and Effector Functions. *Cell Rep* **28**, 3077-3091 e3075,
967 doi:10.1016/j.celrep.2019.08.050 (2019).

968 6 Constantinides, M. G. *et al.* MAIT cells are imprinted by the microbiota in early life
969 and promote tissue repair. *Science (New York, N.Y.)* **366**,
970 doi:10.1126/science.aax6624 (2019).

971 7 du Halgouet, A. *et al.* Role of MR1-driven signals and amphiregulin on the
972 recruitment and repair function of MAIT cells during skin wound healing. *Immunity*
973 **56**, 78-92.e76, doi:10.1016/j.jimmuni.2022.12.004 (2023).

974 8 Hinks, T. S. *et al.* Innate and adaptive T cells in asthmatic patients: Relationship to
975 severity and disease mechanisms. *J Allergy Clin Immunol* **136**, 323-333,
976 doi:10.1016/j.jaci.2015.01.014 (2015).

977 9 Hinks, T. S. *et al.* Steroid-induced Deficiency of Mucosal-associated Invariant T Cells
978 in the COPD Lung: Implications for NTHi Infection. *Am J Respir Crit Care Med* **194**,
979 1208-1218, doi:10.1164/rccm.201601-0002OC (2016).

980 10 Meierovics, A., Yankelevich, W. J. & Cowley, S. C. MAIT cells are critical for
981 optimal mucosal immune responses during in vivo pulmonary bacterial infection.
982 *Proceedings of the National Academy of Sciences of the United States of America*
983 **110**, E3119-3128, doi:10.1073/pnas.1302799110 (2013).

984 11 Meierovics, A. I. & Cowley, S. C. MAIT cells promote inflammatory monocyte
985 differentiation into dendritic cells during pulmonary intracellular infection. *J Exp Med*
986 **213**, 2793-2809, doi:10.1084/jem.20160637 (2016).

987 12 Philipp, M.-S. *MAIT cell diversity, function and impact on dendritic cells*, The
988 Rheinische Friedrich-Wilhelms-Universität Bonn, The University of Melbourne,
989 (2020).

990 13 van Wilgenburg, B. *et al.* MAIT cells contribute to protection against lethal influenza
991 infection in vivo. *Nature communications* **9**, 4706, doi:10.1038/s41467-018-07207-9
992 (2018).

993 14 Provine, N. M. *et al.* MAIT cell activation augments adenovirus vector vaccine
994 immunogenicity. *Science (New York, N.Y.)* **371**, 521-526,
995 doi:10.1126/science.aax8819 (2021).

996 15 Holt, P. G., Schon-Hegrad, M. A., Phillips, M. J. & McMenamin, P. G. Ia-positive
997 dendritic cells form a tightly meshed network within the human airway epithelium.
998 *Clin Exp Allergy* **19**, 597-601, doi:10.1111/j.1365-2222.1989.tb02752.x (1989).

999 16 von Garnier, C. *et al.* Anatomical location determines the distribution and function of
1000 dendritic cells and other APCs in the respiratory tract. *Journal of immunology*
1001 (*Baltimore, Md. : 1950*) **175**, 1609-1618, doi:10.4049/jimmunol.175.3.1609 (2005).

1002 17 Guilliams, M., Lambrecht, B. N. & Hammad, H. Division of labor between lung
1003 dendritic cells and macrophages in the defense against pulmonary infections. *Mucosal
1004 immunology* **6**, 464-473, doi:10.1038/mi.2013.14 (2013).

1005 18 Liu, K. *et al.* In vivo analysis of dendritic cell development and homeostasis. *Science*
1006 (*New York, N.Y.*) **324**, 392-397, doi:10.1126/science.1170540 (2009).

1007 19 Onai, N. *et al.* A clonogenic progenitor with prominent plasmacytoid dendritic cell
1008 developmental potential. *Immunity* **38**, 943-957, doi:10.1016/j.jimmuni.2013.04.006
1009 (2013).

1010 20 Schlitzer, A. *et al.* Identification of cDC1- and cDC2-committed DC progenitors
1011 reveals early lineage priming at the common DC progenitor stage in the bone marrow.
1012 *Nature immunology* **16**, 718-728, doi:10.1038/ni.3200 (2015).

1013 21 Marchal-Sommé, J. *et al.* Dendritic cells accumulate in human fibrotic interstitial lung
1014 disease. *Am J Respir Crit Care Med* **176**, 1007-1014, doi:10.1164/rccm.200609-
1015 1347OC (2007).

1016 22 Tsoumakidou, M. *et al.* Increased bronchoalveolar lavage fluid CD1c expressing
1017 dendritic cells in idiopathic pulmonary fibrosis. *Respiration* **78**, 446-452,
1018 doi:10.1159/000226244 (2009).

1019 23 Greer, A. M. *et al.* Accumulation of BDCA1⁺ dendritic cells in interstitial fibrotic
1020 lung diseases and Th2-high asthma. *PLoS One* **9**, e99084,
1021 doi:10.1371/journal.pone.0099084 (2014).

1022 24 Bantsimba-Malanda, C. *et al.* A role for dendritic cells in bleomycin-induced
1023 pulmonary fibrosis in mice? *Am J Respir Crit Care Med* **182**, 385-395,
1024 doi:10.1164/rccm.200907-1164OC (2010).

1025 25 Chakraborty, K., Chatterjee, S. & Bhattacharyya, A. Modulation of CD11c⁺ lung
1026 dendritic cells in respect to TGF- β in experimental pulmonary fibrosis. *Cell Biol Int*
1027 **41**, 991-1000, doi:10.1002/cbin.10800 (2017).

1028 26 Galati, D. *et al.* Circulating dendritic cells are severely decreased in idiopathic
1029 pulmonary fibrosis with a potential value for prognosis prediction. *Clin Immunol* **215**,
1030 108454, doi:10.1016/j.clim.2020.108454 (2020).

1031 27 Tort Tarrés, M. *et al.* The FMS-like tyrosine kinase-3 ligand/lung dendritic cell axis
1032 contributes to regulation of pulmonary fibrosis. *Thorax* **74**, 947-957,
1033 doi:10.1136/thoraxjnl-2018-212603 (2019).

1034 28 Tashiro, J. *et al.* Exploring Animal Models That Resemble Idiopathic Pulmonary
1035 Fibrosis. *Front Med (Lausanne)* **4**, 118, doi:10.3389/fmed.2017.00118 (2017).

1036 29 Wang, H. *Mucosal associated invariant T cell-mediated vaccination and protection*
1037 *against pathogenic bacteria* Doctor of Philosophy thesis, The University of
1038 Melbourne, (2018).

1039 30 Hinks, T. S. *et al.* Steroid-induced Deficiency of Mucosal-associated Invariant T Cells
1040 in the Chronic Obstructive Pulmonary Disease Lung. Implications for Nontypeable
1041 Haemophilus influenzae Infection. *Am J Respir Crit Care Med* **194**, 1208-1218,
1042 doi:10.1164/rccm.201601-0002OC (2016).

1043 31 Chen, Z. *et al.* Mucosal-associated invariant T-cell activation and accumulation after
1044 in vivo infection depends on microbial riboflavin synthesis and co-stimulatory
1045 signals. *Mucosal immunology* **10**, 58-68, doi:10.1038/mi.2016.39 (2017).

1046 32 Riffelmacher, T. *et al.* Divergent metabolic programmes control two populations of
1047 MAIT cells that protect the lung. *Nature Cell Biology* **25**, 877-891,
1048 doi:10.1038/s41556-023-01152-6 (2023).

1049 33 Hinks, T. S. C. *et al.* Study of MAIT Cell Activation in Viral Infections In Vivo.
1050 *Methods in molecular biology (Clifton, N.J.)* **2098**, 261-281, doi:10.1007/978-1-0716-
1051 0207-2_17 (2020).

1052 34 Hinks, T. S. C. & Zhang, X.-W. MAIT Cell Activation and Functions. *Frontiers in*
1053 *immunology* **11**, doi:10.3389/fimmu.2020.01014 (2020).

1054 35 Linehan, J. L. *et al.* Non-classical Immunity Controls Microbiota Impact on Skin
1055 Immunity and Tissue Repair. *Cell* **172**, 784-796.e718, doi:10.1016/j.cell.2017.12.033
1056 (2018).

1057 36 Hinks, T. S. C. *et al.* Activation and In Vivo Evolution of the MAIT Cell
1058 Transcriptome in Mice and Humans Reveals Tissue Repair Functionality. *Cell reports*
1059 **28**, 3249-3262.e3245, doi:10.1016/j.celrep.2019.07.039 (2019).

1060 37 Leng, T. *et al.* TCR and Inflammatory Signals Tune Human MAIT Cells to Exert
1061 Specific Tissue Repair and Effector Functions. *Cell reports* **28**, 3077-3091.e3075,
1062 doi:10.1016/j.celrep.2019.08.050 (2019).

1063 38 Lamichhane, R. *et al.* TCR- or Cytokine-Activated CD8+ Mucosal-Associated
1064 Invariant T Cells Are Rapid Polyfunctional Effectors That Can Coordinate Immune
1065 Responses. *Cell reports* **28**, 3061-3076.e3065,
1066 doi:<https://doi.org/10.1016/j.celrep.2019.08.054> (2019).

1067 39 Svedberg, F. R. *et al.* The lung environment controls alveolar macrophage
1068 metabolism and responsiveness in type 2 inflammation. *Nature immunology* **20**, 571-
1069 580, doi:10.1038/s41590-019-0352-y (2019).

1070 40 Liu, X. *et al.* The CC chemokine ligand 2 (CCL2) mediates fibroblast survival
1071 through IL-6. *American journal of respiratory cell and molecular biology* **37**, 121-
1072 128, doi:10.1165/rcmb.2005-0253OC (2007).

1073 41 Ashburner, M. *et al.* Gene Ontology: tool for the unification of biology. *Nature*
1074 *Genetics* **25**, 25-29, doi:10.1038/75556 (2000).

1075 42 Merad, M., Sathe, P., Helft, J., Miller, J. & Mortha, A. The dendritic cell lineage:
1076 ontogeny and function of dendritic cells and their subsets in the steady state and the
1077 inflamed setting. *Annu Rev Immunol* **31**, 563-604, doi:10.1146/annurev-immunol-
1078 020711-074950 (2013).

1079 43 Liu, J., Zhang, X., Cheng, Y. & Cao, X. Dendritic cell migration in inflammation and
1080 immunity. *Cellular & Molecular Immunology* **18**, 2461-2471, doi:10.1038/s41423-
1081 021-00726-4 (2021).

1082 44 Cossarizza, A. *et al.* Guidelines for the use of flow cytometry and cell sorting in
1083 immunological studies (third edition). *European journal of immunology* **51**, 2708-
1084 3145, doi:10.1002/eji.202170126 (2021).

1085 45 Osterholzer, J. J. *et al.* CCR2 mediates conventional dendritic cell recruitment and the
1086 formation of bronchovascular mononuclear cell infiltrates in the lungs of mice
1087 infected with *Cryptococcus neoformans*. *Journal of immunology (Baltimore, Md. : 1950)* **181**, 610-620, doi:10.4049/jimmunol.181.1.610 (2008).

1089 46 Cueto, F. J., Del Fresno, C. & Sancho, D. DNGR-1, a Dendritic Cell-Specific Sensor
1090 of Tissue Damage That Dually Modulates Immunity and Inflammation. *Frontiers in*
1091 *immunology* **10**, 3146, doi:10.3389/fimmu.2019.03146 (2019).

1092 47 Han, X. *et al.* Mapping the Mouse Cell Atlas by Microwell-Seq. *Cell* **172**, 1091-
1093 1107.e1017, doi:10.1016/j.cell.2018.02.001 (2018).

1094 48 Angelidis, I. *et al.* An atlas of the aging lung mapped by single cell transcriptomics
1095 and deep tissue proteomics. *Nature communications* **10**, 963, doi:10.1038/s41467-
1096 019-08831-9 (2019).

1097 49 Strunz, M. *et al.* Alveolar regeneration through a Krt8+ transitional stem cell state
1098 that persists in human lung fibrosis. *Nature communications* **11**, 3559,
1099 doi:10.1038/s41467-020-17358-3 (2020).

1100 50 Qiu, X. *et al.* Single-cell mRNA quantification and differential analysis with Census.
1101 *Nature Methods* **14**, 309-315, doi:10.1038/nmeth.4150 (2017).

1102 51 Zhang, J. G. *et al.* The dendritic cell receptor Clec9A binds damaged cells via
1103 exposed actin filaments. *Immunity* **36**, 646-657, doi:10.1016/j.jimmuni.2012.03.009
1104 (2012).

1105 52 Del Fresno, C. *et al.* DNGR-1 in dendritic cells limits tissue damage by dampening
1106 neutrophil recruitment. *Science (New York, N.Y.)* **362**, 351-356,
1107 doi:10.1126/science.aan8423 (2018).

1108 53 Sikkema, L. *et al.* An integrated cell atlas of the lung in health and disease. *Nature*
1109 *Medicine* **29**, 1563-1577, doi:10.1038/s41591-023-02327-2 (2023).

1110 54 Neumark, N., Cosme, C., Jr., Rose, K. A. & Kaminski, N. The Idiopathic Pulmonary
1111 Fibrosis Cell Atlas. *Am J Physiol Lung Cell Mol Physiol* **319**, L887-1893,
1112 doi:10.1152/ajplung.00451.2020 (2020).

1113 55 Habermann, A. C. *et al.* Single-cell RNA sequencing reveals profibrotic roles of
1114 distinct epithelial and mesenchymal lineages in pulmonary fibrosis. *Sci Adv* **6**,
1115 eaba1972, doi:10.1126/sciadv.aba1972 (2020).

1116 56 Adams, T. S. *et al.* Single-cell RNA-seq reveals ectopic and aberrant lung-resident
1117 cell populations in idiopathic pulmonary fibrosis. *Sci Adv* **6**, eaba1983,
1118 doi:10.1126/sciadv.aba1983 (2020).

1119 57 Zhu, L. *et al.* The Club Cell Marker SCGB1A1 Downstream of FOXA2 is Reduced in
1120 Asthma. *American journal of respiratory cell and molecular biology* **60**, 695-704,
1121 doi:10.1165/rcmb.2018-0199OC (2019).

1122 58 Cao, Y. *et al.* ZFP36 protects lungs from intestinal I/R-induced injury and fibrosis
1123 through the CREBBP/p53/p21/Bax pathway. *Cell Death & Disease* **12**, 685,
1124 doi:10.1038/s41419-021-03950-y (2021).

1125 59 Li, S. *et al.* Molecular signatures of antibody responses derived from a systems
1126 biology study of five human vaccines. *Nature immunology* **15**, 195-204,
1127 doi:10.1038/ni.2789 (2014).

1128 60 Lamichhane, R. *et al.* Type I interferons are important co-stimulatory signals during T
1129 cell receptor mediated human MAIT cell activation. *European journal of*
1130 *immunology*, doi:10.1002/eji.201948279 (2019).

1131 61 Rouxel, O. *et al.* Cytotoxic and regulatory roles of mucosal-associated invariant T
1132 cells in type 1 diabetes. *Nature immunology* **18**, 1321-1331, doi:10.1038/ni.3854
1133 (2017).

1134 62 Varelias, A. *et al.* Recipient mucosal-associated invariant T cells control GVHD
1135 within the colon. *J Clin Invest* **128**, 1919-1936, doi:10.1172/jci91646 (2018).

1136 63 Li, Y. *et al.* Mucosal-Associated Invariant T Cells Improve Nonalcoholic Fatty Liver
1137 Disease Through Regulating Macrophage Polarization. *Frontiers in immunology* **9**,
1138 1994, doi:10.3389/fimmu.2018.01994 (2018).

1139 64 Zhang, Y. *et al.* Mucosal-associated invariant T cells restrict reactive oxidative
1140 damage and preserve meningeal barrier integrity and cognitive function. *Nature
1141 immunology* **23**, 1714-1725, doi:10.1038/s41590-022-01349-1 (2022).

1142 65 Leng, T. *et al.* TCR and Inflammatory Signals Tune Human MAIT Cells to Exert
1143 Specific Tissue Repair and Effector Functions. *Cell reports* **28**, 3077-3091.e3075,
1144 doi:10.1016/j.celrep.2019.08.050 (2019).

1145 66 Lamichhane, R. *et al.* TCR- or Cytokine-Activated CD8(+) Mucosal-Associated
1146 Invariant T Cells Are Rapid Polyfunctional Effectors That Can Coordinate Immune
1147 Responses. *Cell reports* **28**, 3061-3076.e3065, doi:10.1016/j.celrep.2019.08.054
1148 (2019).

1149 67 Chiba, A. *et al.* Mucosal-associated invariant T cells promote inflammation and
1150 exacerbate disease in murine models of arthritis. *Arthritis Rheum* **64**, 153-161,
1151 doi:10.1002/art.33314 (2012).

1152 68 Hegde, P. *et al.* Mucosal-associated invariant T cells are a profibrogenic immune cell
1153 population in the liver. *Nature communications* **9**, 2146, doi:10.1038/s41467-018-
1154 04450-y (2018).

1155 69 Mabire, M. *et al.* MAIT cell inhibition promotes liver fibrosis regression via
1156 macrophage phenotype reprogramming. *Nature communications* **14**, 1830,
1157 doi:10.1038/s41467-023-37453-5 (2023).

1158 70 Chung, E. Y. *et al.* Interleukin-10 expression in macrophages during phagocytosis of
1159 apoptotic cells is mediated by homeodomain proteins Pbx1 and Prep-1. *Immunity* **27**,
1160 952-964, doi:10.1016/j.immuni.2007.11.014 (2007).

1161 71 Saraiva, M. & O'Garra, A. The regulation of IL-10 production by immune cells.
1162 *Nature Reviews Immunology* **10**, 170-181, doi:10.1038/nri2711 (2010).

1163 72 Zhao, Y. *et al.* Thrombospondin-1 triggers macrophage IL-10 production and
1164 promotes resolution of experimental lung injury. *Mucosal immunology* **7**, 440-448,
1165 doi:10.1038/mi.2013.63 (2014).

1166 73 Salio, M. *et al.* Activation of Human Mucosal-Associated Invariant T Cells Induces
1167 CD40L-Dependent Maturation of Monocyte-Derived and Primary Dendritic Cells.
1168 *Journal of immunology (Baltimore, Md. : 1950)* **199**, 2631-2638,
1169 doi:10.4049/jimmunol.1700615 (2017).

1170 74 Pankhurst, T. E. *et al.* MAIT cells activate dendritic cells to promote T(FH) cell
1171 differentiation and induce humoral immunity. *Cell reports* **42**, 112310,
1172 doi:10.1016/j.celrep.2023.112310 (2023).

1173 75 Cabeza-Cabrerizo, M., Cardoso, A., Minutti, C. M., Costa, M. P. d. & Sousa, C. R. e.
1174 Dendritic Cells Revisited. *Annual Review of Immunology* **39**, 131-166,
1175 doi:10.1146/annurev-immunol-061020-053707 (2021).

1176 76 Pan, J. *et al.* Interferon- γ is an autocrine mediator for dendritic cell maturation.
1177 *Immunology Letters* **94**, 141-151, doi:<https://doi.org/10.1016/j.imlet.2004.05.003>
1178 (2004).

1179 77 Jirmo, A. C. *et al.* IL-17 regulates DC migration to the peribronchial LNs and allergen
1180 presentation in experimental allergic asthma. *European journal of immunology* **50**,
1181 1019-1033, doi:<https://doi.org/10.1002/eji.201948409> (2020).

1182 78 Otero, K. *et al.* Nonredundant role of CCRL2 in lung dendritic cell trafficking. *Blood*
1183 116, 2942-2949, doi:10.1182/blood-2009-12-259903 (2010).

1184 79 Dieu, M. C. *et al.* Selective recruitment of immature and mature dendritic cells by
1185 distinct chemokines expressed in different anatomic sites. *The Journal of
1186 experimental medicine* 188, 373-386, doi:10.1084/jem.188.2.373 (1998).

1187 80 Zhang, Y. *et al.* Mobilization of dendritic cell precursors into the circulation by
1188 administration of MIP-1alpha in mice. *J Natl Cancer Inst* 96, 201-209,
1189 doi:10.1093/jnci/djh024 (2004).

1190 81 Robinette, M. L. *et al.* Transcriptional programs define molecular characteristics of
1191 innate lymphoid cell classes and subsets. *Nature immunology* 16, 306-317,
1192 doi:10.1038/ni.3094 (2015).

1193 82 Klose, C. S. N. & Artis, D. Innate lymphoid cells as regulators of immunity,
1194 inflammation and tissue homeostasis. *Nature immunology* 17, 765-774,
1195 doi:10.1038/ni.3489 (2016).

1196 83 Lavin, Y. *et al.* Tissue-resident macrophage enhancer landscapes are shaped by the
1197 local microenvironment. *Cell* 159, 1312-1326, doi:10.1016/j.cell.2014.11.018 (2014).

1198 84 Miller, J. C. *et al.* Deciphering the transcriptional network of the dendritic cell
1199 lineage. *Nature immunology* 13, 888-899, doi:10.1038/ni.2370 (2012).

1200 85 Mortha, A. & Burrows, K. Cytokine Networks between Innate Lymphoid Cells and
1201 Myeloid Cells. *Frontiers in immunology* 9, doi:10.3389/fimmu.2018.00191 (2018).

1202 86 Sancho, D. *et al.* Identification of a dendritic cell receptor that couples sensing of
1203 necrosis to immunity. *Nature* 458, 899-903, doi:10.1038/nature07750 (2009).

1204 87 Canton, J. *et al.* The receptor DNLR-1 signals for phagosomal rupture to promote
1205 cross-presentation of dead-cell-associated antigens. *Nature immunology* 22, 140-153,
1206 doi:10.1038/s41590-020-00824-x (2021).

1207 88 Iborra, S. *et al.* The DC receptor DNGR-1 mediates cross-priming of CTLs during
1208 vaccinia virus infection in mice. *J Clin Invest* **122**, 1628-1643, doi:10.1172/jci60660
1209 (2012).

1210 89 Henry, C. M., Castellanos, C. A. & Reis e Sousa, C. DNGR-1-mediated cross-
1211 presentation of dead cell-associated antigens. *Seminars in Immunology* **66**, 101726,
1212 doi:<https://doi.org/10.1016/j.smim.2023.101726> (2023).

1213 90 Zhao, A. Y. *et al.* Peripheral Blood Single-Cell Sequencing Uncovers Common and
1214 Specific Immune Aberrations in Fibrotic Lung Diseases. *bioRxiv*,
1215 doi:10.1101/2023.09.20.558301 (2023).

1216 91 Moore, B. B. & Hogaboam, C. M. Murine models of pulmonary fibrosis. *Am J*
1217 *Physiol Lung Cell Mol Physiol* **294**, L152-160, doi:10.1152/ajplung.00313.2007
1218 (2008).

1219 92 James, A. L. & Wenzel, S. Clinical relevance of airway remodelling in airway
1220 diseases. *Eur Respir J* **30**, 134-155, doi:10.1183/09031936.00146905 (2007).

1221 93 Michalski, J. E., Kurche, J. S. & Schwartz, D. A. From ARDS to pulmonary fibrosis:
1222 the next phase of the COVID-19 pandemic? *Transl Res* **241**, 13-24,
1223 doi:10.1016/j.trsl.2021.09.001 (2022).

1224 94 Hinks, T. S. C. Boosting MAIT cells as immunotherapy: context is everything.
1225 *Mucosal immunology* **14**, 1-3, doi:10.1038/s41385-020-00337-8 (2021).

1226 95 Treiner, E. *et al.* Selection of evolutionarily conserved mucosal-associated invariant T
1227 cells by MR1. *Nature* **422**, 164-169, doi:10.1038/nature01433 (2003).

1228 96 Chang, M. Y., Brune, J. E., Black, M., Altemeier, W. A. & Frevert, C. W.
1229 Multicompartmental analysis of the murine pulmonary immune response by spectral
1230 flow cytometry. *American Journal of Physiology-Lung Cellular and Molecular*
1231 *Physiology* **325**, L518-L535, doi:10.1152/ajplung.00317.2022 (2023).

1232 97 Dobin, A. *et al.* STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15-21,
1233 doi:10.1093/bioinformatics/bts635 (2013).

1234 98 Dündar, F., Skrabaneck, L. & Zumbo, P. *Introduction to differential gene expression*
1235 *analysis using RNA-seq*. (Weill Cornell Medical College, 2019).

1236 99 Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program
1237 for assigning sequence reads to genomic features. *Bioinformatics* **30**, 923-930,
1238 doi:10.1093/bioinformatics/btt656 (2014).

1239 100 Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and
1240 dispersion for RNA-seq data with DESeq2. *Genome Biology* **15**, 550,
1241 doi:10.1186/s13059-014-0550-8 (2014).

1242 101 Wu, T. *et al.* clusterProfiler 4.0: A universal enrichment tool for interpreting omics
1243 data. *Innovation (Camb)* **2**, 100141, doi:10.1016/j.xinn.2021.100141 (2021).

1244 102 Kumar, L. & M, E. F. Mfuzz: a software package for soft clustering of microarray
1245 data. *Bioinformation* **2**, 5-7, doi:10.6026/97320630002005 (2007).

1246 103 Subramanian, A. *et al.* Gene set enrichment analysis: a knowledge-based approach for
1247 interpreting genome-wide expression profiles. *Proc Natl Acad Sci U S A* **102**, 15545-
1248 15550, doi:10.1073/pnas.0506580102 (2005).

1249 104 Wang, X., Park, J., Susztak, K., Zhang, N. R. & Li, M. Bulk tissue cell type
1250 deconvolution with multi-subject single-cell expression reference. *Nature*
1251 *communications* **10**, 380, doi:10.1038/s41467-018-08023-x (2019).

1252 105 Hao, Y. *et al.* Integrated analysis of multimodal single-cell data. *Cell* **184**, 3573-
1253 3587.e3529, doi:10.1016/j.cell.2021.04.048 (2021).

1254 106 Kong, G. L. *et al.* CITE-Viz: Replicating the Interactive Flow Cytometry Workflow
1255 in CITE-Seq. *bioRxiv*, 2022.2005.2015.491411, doi:10.1101/2022.05.15.491411
1256 (2022).

1257 107 Mulè, M. P., Martins, A. J. & Tsang, J. S. Normalizing and denoising protein
1258 expression data from droplet-based single cell profiling. *Nature communications* **13**,
1259 2099, doi:10.1038/s41467-022-29356-8 (2022).

1260 108 Yang, S. *et al.* Decontamination of ambient RNA in single-cell RNA-seq with
1261 DecontX. *Genome Biology* **21**, 57, doi:10.1186/s13059-020-1950-6 (2020).

1262 109 Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene
1263 expression data analysis. *Genome Biology* **19**, 15, doi:10.1186/s13059-017-1382-0
1264 (2018).

1265 110 Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: Computational Identification of
1266 Cell Doublets in Single-Cell Transcriptomic Data. *Cell Systems* **8**, 281-291.e289,
1267 doi:<https://doi.org/10.1016/j.cels.2018.11.005> (2019).

1268 111 Korsunsky, I. *et al.* Fast, sensitive and accurate integration of single-cell data with
1269 Harmony. *Nature Methods* **16**, 1289-1296, doi:10.1038/s41592-019-0619-0 (2019).

1270 112 Becht, E. *et al.* Dimensionality reduction for visualizing single-cell data using UMAP.
1271 *Nature Biotechnology* **37**, 38-44, doi:10.1038/nbt.4314 (2019).

1272 113 Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: guaranteeing
1273 well-connected communities. *Scientific Reports* **9**, 5233, doi:10.1038/s41598-019-
1274 41695-z (2019).

1275 114 Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package
1276 for differential expression analysis of digital gene expression data. *Bioinformatics* **26**,
1277 139-140, doi:10.1093/bioinformatics/btp616 (2010).

1278 115 Ritchie, M. E. *et al.* limma powers differential expression analyses for RNA-
1279 sequencing and microarray studies. *Nucleic Acids Research* **43**, e47-e47,
1280 doi:10.1093/nar/gkv007 (2015).

1281 116 Sergushichev, A. A. An algorithm for fast preranked gene set enrichment analysis
1282 using cumulative statistic calculation. *bioRxiv*, 060012, doi:10.1101/060012 (2016).
1283 117 Sancho, D. *et al.* Tumor therapy in mice via antigen targeting to a novel, DC-
1284 restricted C-type lectin. *J Clin Invest* **118**, 2098-2110, doi:10.1172/jci34584 (2008).
1285 118 Srivastava, S., Grace, P. S. & Ernst, J. D. Antigen Export Reduces Antigen
1286 Presentation and Limits T Cell Control of *M. tuberculosis*. *Cell Host Microbe* **19**, 44-
1287 54, doi:10.1016/j.chom.2015.12.003 (2016).
1288 119 Hübner, R. H. *et al.* Standardized quantification of pulmonary fibrosis in histological
1289 samples. *Biotechniques* **44**, 507-511, 514-507, doi:10.2144/000112729 (2008).
1290

1291 **Acknowledgements:**

1292 We thank S. B. Morgan for the guidance to X.Z. during the initial stage of this work; H. Ferry
1293 for help with cell sorting; A. Byrne for support with the bleomycin mice model; the NIH
1294 Tetramer Facility for the MR1 tetramers; A. Davison from Cytek Biosciences for assistance
1295 with the analysis of spectral flow cytometry data. This work was funded by China Scholarship
1296 Council (CSC) – Nuffield Department of Medicine (NDM) award (X.Z) and grants from the
1297 Wellcome Trust (104553/z/14/z, 211050/Z/18/z to T.S.C.H. and 222426/Z/21/Z P.K.).
1298

1299 **Author contributions**

1300 T.S.C.H., P.K. and X.Z. jointly conceived the work. X.Z. performed all the mice experiments.
1301 X.Z., W.L. and M. G. performed the single-cell RNA sequencing experiment. X.Z., S.L.,
1302 T.S.C.H. and P.K. performed the data analysis. X.Z. drafted the manuscript, and all authors
1303 contributed to editing of the manuscript.

1304

1305 Competing interests

1306 The authors declare no competing interests.