

1 A new story of four Hexapoda classes: *Protura* as the sister to all other hexapods

2 Shiyu Du¹, Erik Tihelka^{2,3}, Daoyuan Yu⁴, Wan-Jun Chen⁵, Yun Bu⁶, Chenyang Cai^{2,3}, Michael S. Engel^{7,8}, Yun-
3 Xia Luan^{9*}, and Feng Zhang^{1,10*}

4 ¹Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China

5 ²State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology,
6 and Centre for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China

7 ³School of Biological Sciences & School of Earth Sciences, University of Bristol, Bristol, UK

8 ⁴Soil Ecology Laboratory, College of Resources and Environmental Sciences, Nanjing Agricultural University,
9 Nanjing, China

10 ⁵Mammoth (Shenzhen) education technology co. ltd, Shenzhen, China

11 ⁶Natural History Research Center, Shanghai Natural History Museum, Shanghai Science & Technology
12 Museum, Shanghai, China

13 ⁷Division of Entomology, Natural History Museum, University of Kansas, Lawrence, KS, USA

14 ⁸Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA

15 ⁹Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of
16 Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China

17 ¹⁰Lead contact

18 *Correspondence: fzhang@njau.edu.cn (F.Z.), yxluan@scnu.edu.cn (Y.-X.L.)

21 SUMMARY

22 Insects represent the most diverse animal group, yet previous phylogenetic analyses based on the
23 morphological and molecular data have failed to agree on the evolutionary relationships of early insects and
24 their six-legged relatives (together constituting the clade Hexapoda). In particular, the phylogenetic positions
25 of the three early-diverging hexapod groups, the coneheads (*Protura*), springtails (*Collembola*), and two-
26 pronged bristletails (*Diplura*), have been debated for over a century, with alternative topologies implying
27 drastically different scenarios of the evolution of the insect body plan and hexapod terrestrialisation. We
28 addressed this issue by sampling of all hexapod orders, and experimented with a broad range of across-site
29 compositional heterogeneous models designed to tackle ancient divergences. Our analyses support *Protura* as
30 the earliest-diverging hexapod lineage (*Protura*-sister) and *Collembola* as a sister group to the *Diplura*, a clade
31 we refer to as ‘Antennomusculata’ characterised by the shared possession of internal muscles in the antennal
32 flagellum. The universally recognized ‘Ellipura’ hypothesis is recovered under the site-homogenous LG
33 model. Our cross-validation analysis shows that the CAT-GTR model that recovers *Protura*-sister fits
34 significantly better than homogenous model. Furthermore, as a very unusual group, *Protura* as the first
35 diverging lineage of hexapods is also supported by other lines of evidence, such as mitogenomics,
36 comparative embryology, and sperm morphology. The backbone phylogeny of hexapods recovered in this
37 study will facilitate the exploration of the underpinnings of hexapod terrestrialisation and mega-diversity.

38
39 **Keywords:** genome-scale phylogeny; insect; Hexapoda; *Protura*-sister

40 41 INTRODUCTION

42 Insects represent the most prolific radiation in the animal kingdom, accounting for over half of all described
43 metazoan species¹. Winged insects came to dominate most terrestrial ecosystems by the late Carboniferous,

44 over 310 Mya [million years ago]². Partly due to its great antiquity, the origins of insect mega-diversity remain
45 elusive. Current hypotheses tie the radiation of insects with their geological age, diversification rate, critical
46 anatomical innovations, ecosystem change, and/or dietary breadth^{3–7}. As the closest relatives of insects, the
47 non-insect hexapods play a pivotal role in understanding the unparalleled evolutionary success of six-legged
48 life^{8,9}. This group comprises small-bodied, elusive terrestrial arthropods with pronounced adaptations to a soil-
49 dwelling lifestyle. Unlike insects, these ‘basal’ hexapod clades account for <1% of animal diversity, with
50 some 10,800 species described to date^{10–12}. This group includes the comparatively species-poor and blind
51 Protura (coneheads), the similarly speciose Diplura (two-pronged bristletails), and the considerably more
52 diverse Collembola (springtails) armed with a characteristic abdominal jumping apparatus that gave them their
53 name¹³. Together with insects, they constitute the clade Hexapoda^{8,14}.

54 The availability of genome-scale datasets has helped settle numerous historical conundrums in insect
55 phylogeny over the last two decades^{8,15,16}. The dawn of the phylogenomic era has confirmed the monophyly of
56 Hexapoda and elucidated the group’s closest relatives^{8,17,18}. While traditional morphological studies
57 considered hexapods as close relatives of myriapods¹⁹, molecular datasets have revealed that the group is
58 nested within the ‘crustaceans’, as sister group to the enigmatic clade Remipedia, which inhabits flooded
59 coastal caves^{8,18,20,21}. These results backdate the origin of crown-group insects to the Silurian–Cambrian^{8,22,23}
60 and imply that insect diversification was preceded by a terrestrialisation event¹⁸. However, remipedes possess
61 numerous specializations for aquatic life and so there remains some morphological differences between them
62 and modern hexapods. The early evolution of the hexapods thus remains veiled in mystery, not only because
63 of the extreme scarcity of hexapod fossils before the Late Carboniferous²⁴, but also because the relationships
64 among the earliest-diverging hexapods have proven resistant to resolution, whether interrogated with
65 morphological^{14,25,26–28}, single-gene^{29,30}, mitochondrial^{31,32}, phylogenomic data^{8,17,18,33}, as well as combined
66 analyses^{34–36}. Recent studies are mostly split between favouring a clade of Protura + Collembola (the ‘Ellipura’
67 hypothesis)⁸, Protura + Diplura (the ‘Nonoculata’ hypothesis)^{17,27,37–40}, or Diplura + Collembola^{20,41}, and
68 Diplura + Insecta (the ‘Cercophora’ hypothesis)^{42,43}. Earlier morphological studies have cautiously treated the
69 ‘basal’ hexapod clades as a single clade, ‘Entognatha’^{14,44}, while others maintain that the ‘basal’ hexapods
70 form a paraphyletic grade⁴⁵. Traditional morphological studies, conducted since the 19th century^{46,47}, are
71 confounded by the ‘basal’ hexapod’s extreme specialisations for life in the soil, which makes inferring
72 homologous characters challenging^{48,49}. Molecular studies are complicated by the rarity and small size of
73 many morphologically peculiar ‘basal’ hexapod groups, which have so far been sampled only sparsely in
74 phylogenomic studies. Moreover, the great antiquity of the divergence between the ‘basal’ hexapods and
75 crown-group insects represents a formidable challenge to conventional molecular phylogenetic methods, as
76 ancient rapid divergences often induce phylogenetic artifacts such as long-branch attraction^{50,51}.

77 Here we address the problem of insect origins by increasing the taxon and gene sampling of overlooked
78 groups. We sequenced the transcriptome for a second proturan species, belonging to the genus *Sinentomon*^{29–}
79 ³¹, along with two new transcriptomes for dipluran species. We employ a variety of analytical approaches to
80 account for common sources of error in phylogenomics, interrogate the robustness of the results, and interpret
81 them with respect to the origin of insect body plan and hexapod terrestrialisation.

82

83 RESULTS

84 Genomic sequencing and matrix assembly

85 We sequenced the transcriptome of the proturan *Sinentomon erythranum* (SRX480876; Fig. 1). *S. erythranum*
86 is a member of the rare monogenic family Sinentomidae endemic to eastern Asia. This group was not
87 discovered until the 1960s⁵² and its phylogenetic position has stirred much controversy given the proturan’s

88 unusual head morphology and sperm ultrastructure^{53–55}. An analysis of two ribosomal RNA gene sequences
89 recovered Sinentomidae as the earliest-diverging proturan lineage²⁹, albeit substantial incongruence persists
90 among studies^{30,31,37,56,57}. We furthermore additionally sequenced two transcriptomes belonging to the
91 diplurans *Octostigma sinensis* (SRX3641158) and *Lepidocampa weberi* (SRX3641157), representing the
92 superfamilies Projapygoidea and Campodeoidea, respectively. Projapygoids are a presumed evolutionary link
93 between Campodeoidea and Japygoidea⁵⁸, but they are very rare and hard to collect for comparative studies.
94 The interrelationships of three superfamilies and the monophyly of Diplura have been much debated. It has
95 been suggested that diplurans may together represent a polyphyletic grade rather than a clade based on ovarian
96 and spermatozoal characters^{59,60} albeit comparative embryological evidence and molecular evidence so far
97 overwhelmingly supports dipluran monophyly^{8,29,32,61}.

98 We compiled genomic and transcriptomic data for 42 other hexapod species (downloaded from the
99 NCBI; see part of METHOD DETAILS) with high near-universal single-copy orthologs gene completeness
100 (BUSCO) scores plus three aquatic ‘crustacean’ clades (outgroups) recovered as close relatives of
101 hexapods^{18,20,21}. The inclusion of early-diverging dipluran and proturan groups is of particular relevance, as
102 previous studies have indicated that the hexapod tree is prone to long-branch artifacts^{16,20,32}, which are
103 exacerbated by limited taxon sampling⁶². To ensure the quality of the genome/transcriptome, all species’
104 BUSCO assessments in this study were all above 70% (Supplementary Table 1).

105 Our dataset comprised a total of 48 species (including the additional three outgroups). Phylogenetic
106 analyses were based on four amino acid (AA) alignments to explore alternative sources of phylogenomic
107 signal. Matrix1 was generated by selecting universal single-copy orthologues (USCOs) for the 48 taxa.
108 Trimming reduced the original dataset by 59.8% (from 1,281,520 AA sites to 515,770), and increased data
109 occupancy from 32.68% to 66.81%. Filtering by the number of parsimony-informative sites, relative
110 composition variability (RCV), and stationary, reversible and homogeneous (SRH) assumptions reduced the
111 dataset by 1.7% (from 515,770 AA sites to 506,831), 20.0% (from 506,831 AA sites to 405,537), and 8.3%
112 (from 405,537 AA sites to 371,709), respectively. TreeShrink was further used to generate a matrix with 75%
113 completeness (the BUSCO ids and names of the putatively spurious sequence after spurious homolog
114 identification by using TreeShrink are listed in Supplementary Table 2). In its final form, Matrix1 contained
115 780 loci (342,252 AA sites). Matrix2 (USCO75_abs70) was generated using genes from Matrix1 with average
116 bootstraps support (ABS) values over 70 and consisted of 505 genes (255,095 AA sites). Subsequently, in
117 order to detect conflicts between concatenation and coalescent-based phylogenies, Matrix1-con and Matrix2-
118 con were generated by selecting inconsistent genes (i.e., those with gene-wise phylogenetic signal (Δ GLS) >0 ,
119 or gene-wise quartet scores (Δ GQS) <0 ; see part of METHOD DETAILS) from Matrix1 and Matrix2,
120 respectively. Matrix1-con consisted of 468 genes (201,896 AA sites) and Matrix2-con of 298 genes (149,903
121 AA sites; Supplementary Table 3).

122 The length, number of parsimony-informative sites, RCV values, and SRH values for every locus from
123 each matrix were compared with a paired *t*-test (Supplementary Fig. 1). The analysis shows significant
124 differences between Matrix1 and Matrix2, and Matrix1-con and Matrix2-con in terms of their length (*p*-value
125 < 0.001 between Matrix1 and Matrix2, *p*-value < 0.001 between Matrix1-con and Matrix2-con) and the
126 number of parsimony-informative sites (*p*-value < 0.001 between Matrix 1 and Matrix 2, *p*-value < 0.001
127 between Matrix1-con and Matrix2-con; Supplementary Fig. 1a, b). The RCV and SRH values showed no
128 significant difference between the matrices (Supplementary Fig. 1c, d).

130 Hexapod phylogeny

131 All our phylogenomic analyses recovered strong support for the monophyly of Collembola, Protura, Diplura,

132 and Insecta, respectively (Bayesian Posterior Probabilities (BPP) = 1, SH-aLRT/UFBoot2 = 100/100, and
133 ASTRAL bootstraps= 1; Fig. 2). A total of 28 ML trees and one BI tree were inferred from the four matrices
134 (Supplementary Table 4; Supplementary Data 2) to test the effect of the substitution model on the recovered
135 topology. Trees based on different matrices and inference models were congruent at most nodes (Fig. 2) but
136 resulted in four different topological hypotheses (H1–4) about the relationships of the early-diverging hexapod
137 clades (Fig. 3). Hypothesis 1 supported the placement of Collembola as sister group to the remaining
138 hexapods (H1: ‘Collembola-first’, i.e., Collembola + (Protura + (Diplura + Insecta))). Under the second
139 hypothesis (H2: (Collembola + Protura) + (Diplura + Insecta)), Collembola and Protura formed a
140 monophyletic group as sister Diplura + Insecta, corresponding to the ‘Ellipura’ hypothesis⁸. Protura was
141 inferred as the sister group to the remaining three hexapod groups in the third hypothesis (H3: ‘Protura-first’,
142 i.e, Protura + ((Collembola + Diplura) + Insecta)). Under the fourth hypothesis (H4: (Protura + (Collembola +
143 Diplura)) + Insecta), the clade (Protura + (Collembola + Diplura)) formed a sister group to Insecta,
144 corresponding to the traditional concept of ‘Entognatha’²⁵.

145 The most complex models, the finite mixture site-heterogeneous models C60+F+R and LG+PMSF(C60)
146 and the infinite site-heterogeneous model CAT-GTR, supported H3 when Matrix1-con and Matrix2-con were
147 analysed. Under this topology, Protura was the sister group to Diplura + Collembola and the remaining
148 hexapods (H3). In a cross-validation test conducted on Matrix2-con, the infinite mixture model CAT-GTR
149 fitted the dataset better than LG (cross-validation log-likelihood scores = $-48079.05 \pm 917.74 > -49316.14 \pm 958.82$; Supplementary Table 5). The Wilcoxon test analysis shows that there is a significant difference
150 between these two models (p -value = 0.01469; Supplementary Fig. 2). Support for H3 declined with other
151 finite mixture models C60+F+R and LG+PMSF(C60) that supported a broader range of topologies, with
152 Matrix1 favouring H1 and H3, and Matrix2 H1, H2, and H3 (Supplementary Data 2). All partitioned analysis
153 reconstructions supported topology H2 (Supplementary Table 4), while multispecies coalescent analyses of
154 the four matrices recovered three hypotheses (H1, H3, and H4), albeit some nodes were poorly supported
155 (Supplementary Data 2). In addition, the gene concordance factors (gCF) and the site concordance factors
156 (sCF) were used to gain a deeper understanding of how well different genes and sites support the different
157 hypotheses (Supplementary Data 3). For most branches in all four topologies, the gCF values are lower than
158 the sCF values, suggesting that the sites that support these topologies are scattered across the different genes.
159

160 To test the effect of the outgroup sampling on the ingroup topology, a rooted tree without the outgroups
161 was inferred using reversible models. Relative positions between or within the four classes in the unrooted
162 topology are shown in Supplementary Data 4. A rooted tree (Supplementary Data 4) inferred with a non-
163 reversible models placed ((Collembola + Protura) + Diplura) at the root, with a bootstrap value of 84.
164 Bootstrap support for each branch is defined as the proportion of rooted bootstrap trees that have the root on
165 that branch. Two nodes presented the bootstrap support values (Supplementary Data 4, rootbootstrap.nex): 69.3 for
166 the root ((Collembola + Protura) + Diplura), and 15.3 for Collembola. These two largest bootstrap values
167 supported the topologies H4 (‘Entognatha’) and H1 (‘Collembola-first’). Furthermore, topology tests
168 (Supplementary Data 4, root_test.csv) provided AU p -values greater than 0.05 for three branches indicating
169 them as the possible root (H4, H2, H1). Overall, all these two analyses indicate that the outgroup choice has
170 little effect on the reconstructions of ingroup relationships.
171

172 Evaluating alternative hypotheses and phylogenetic support

173 Topology tests conducted on all four matrices with the PMSF(C60) model (H3_guide-trees) and C60+F+R
174 model using approximately the unbiased (AU), weighted Kishino-Hasegawa (WKH), and weighted
175 Shimodaira-Hasegawa (WSH) tests. Under the PMSF(C60) model rejected hypotheses H1, H2 and H4 with

176 strong confidence ($p < 0.05$ in most of cases) and supported hypothesis H3, with Protura as sister group to the
177 remaining hexapods (Supplementary Table 6). But under the C60+F+R model, four matrices rejected
178 hypothesis H4 with strong confidence ($p < 0.05$ in all cases), but only Matrix2-con supported hypothesis H3.
179 Matrix1 and Matrix2 supported hypothesis H2 with no significant, and Matrix1-con supported hypothesis H2
180 with no significant (Supplementary Table 6).

181 To further explore the phylogenetic signal of different models and assess their impact on tree inferences
182 considering distinct gene properties, we quantified the phylogenetic signal, or comparison of topological
183 differences. Detailed information regarding the methods and results can be found in Supplementary Data 1.
184

185 DISCUSSION

186 Molecular and morphological congruence

187 As with many other ancient radiations¹⁶, molecular phylogenetic studies have found it challenging to elucidate
188 the relationships of the ‘basal’ hexapod clades, which may have diverged as early as the Cambrian –
189 Silurian^{8,63}. Expanding the taxon sampling of ‘basal’ hexapods, including sequencing the transcriptome of the
190 enigmatic *Sinentomon*, enabled us to explore various sources of phylogenomic signal and mitigate common
191 artifacts at the base of the hexapod tree of life, which has been plagued by topological uncertainty^{9,16}. We
192 recovered four alternative topologies, corresponding to long-standing competing hypotheses regarding insect
193 origins^{8,39,64} (Table S3; Fig. 3). Under the partitioned LG model, which supports the ‘Ellipura’ hypothesis as in
194 Misof et al.⁸, the multispecies coalescent analyses resulted in the recovery of three hypotheses (Table S3).
195 Moreover, the results suggest that the finite mixture site-heterogeneous models C60+F+R and
196 LG+PMSF(C60), as well as the infinite site-heterogeneous model CAT-GTR analyses, specifically provide
197 support for Protura as the first diverging lineage of hexapods. The question, then, is not why similar analyses
198 give different results, but how we should interpret variation in results obtained from different analyses. The
199 first important insights pertain to model fit. In PhyloBayes, cross-validation is a reliable and recommended
200 approach for assessing the fit of models and is often employed to test if different substitution models
201 significantly improve the fit to the datasets. We used cross-validation in PhyloBayes to evaluate CAT-GTR
202 and LG models for the Matrix2-con. Our analysis revealed that CAT-GTR provided a better fit to the dataset
203 compared to LG (Supplementary Fig. 2). The Wilcoxon test analysis indicated a significant difference
204 between these two models. Therefore, cross-validation supports the hypothesis that the heterogenous model
205 CAT-GTR are a better fit than the homogenous models with LG. Other topologies were supported by less
206 well-fitting models, and by partitioned analyses, the latter of which has been shown to fit empirical data
207 significantly less than approaches that consider heterogeneity at the site level, in most cases⁶⁵. The second
208 insight pertains to topology tests. We compared the four topologies on all matrices under LG+PMSF(C60) (H3
209 as the guide tree) and C60+F+R models using the AU, WKH, and WSH tests. All results rejected hypothesis
210 H4 with strong confidence. Most of the results supported hypothesis H3 with strong confidence. These
211 analyses suggest that we could recover Protura-sister over the much broader substitution model and topology
212 test.

213 Proturans have long been considered as the most morphologically divergent hexapods, leading some
214 early authors argue that they may not be related to hexapods at all⁶⁶. The status of proturans as the earliest-
215 diverging hexapods is further supported by a suite of morphological characters shared with myriapods and
216 crustaceans. In proturans, the first three abdominal segments retain segmented or unsegmented vestigial
217 appendages (Fig. 1d & 1g: al)⁶⁷, a plesiomorphy shared with most myriapods and crustaceans where all trunk
218 segments are equipped with a pair of segmented limbs⁶⁸. These abdominal appendages have been reduced to
219 unsegmented stubs or have been lost altogether in most hexapods⁶⁹. A further plesiomorphic character

220 proturans share with myriapods and crustaceans⁷⁰, but not other hexapods, is their anamorphic postembryonic
221 development (anamorphic development may be plesiomorphic), but it is highly variable in groups like
222 myriapods, where epimorphic development is common (e.g., Scolopendromorpha, Geophilomorpha). That is,
223 proturans emerge from the egg with nine abdominal segments, add a segment with the first molt and two more
224 segments with the second molt, which results in 12 segments in the adult abdomen, including a distinct telson
225 segment. The proturan embryonic membrane possess the ability to differentiate into the dorsal body wall, a
226 feature shared with aquatic ‘crustaceans’ and myriapods, but not with other hexapods⁷¹. A further potential
227 plesiomorphy of proturans may be the single claw (pretarsus) on each leg, while other hexapods have a pair of
228 tarsal claws⁷². Proturans have no antennae, and they walk on four legs with the front two re-purposed as
229 antennae, which diverges strongly from other hexapods⁷³. They have no eyes, just pseudoculi, whose
230 homology remains uncertain, which probably only sense light without forming images (Fig. 1e & 1f: po)⁷⁴.
231 Flagellate spermatozoa in proturans show a variable axonemal pattern, but a common, distinctive feature is the
232 absence of central microtubules⁷⁵. Proturans moreover possess a simplified or absent tracheal system unlike
233 any other hexapods⁷⁶; when tracheae are present at all, they are present as only two pairs of spiracles on the
234 thorax⁷⁷.

235 Characters supporting a Collembola + Diplura clade are fewer but include a similar process of
236 blastokinesis⁷⁸, and each antennal division with intrinsic musculature, whereas in the Insecta only the antennal
237 scape possesses intrinsic muscles²⁶. A close relationship between the two groups is moreover supported by
238 some analyses of mitochondrial protein-coding genes⁶¹ and genomic datasets under heterogeneous models²⁰.
239 We herein propose the name ‘Antennomusculata’ for the Collembola + Diplura clade, in reference to the
240 group’s shared antennal flagellum with intrinsic muscles.

241

242 **Implications for hexapod terrestrialisation**

243 The terrestrialisation of hexapods, the most cryptic episode of the clade’s evolutionary history, has long
244 remained shrouded in mystery, but equally attracted interest due to its importance for delimitating the
245 groundplan of the ancestral hexapod. The resolution of proturans as the earliest-diverging hexapods enables to
246 trace the sequence of character evolution and establishing homologies. Our results suggest that the last
247 common ancestor of the hexapods was terrestrial, in contrary to some earlier hypotheses that suggested
248 possible aquatic or semi-aquatic modes of life in early hexapod^{48,79}. Fossil mycorrhizal fungi are known from
249 the Early Devonian⁸⁰, and molecular clock studies suggest they were present as early as the Cambrian⁸¹,
250 highlighting a possible food source for early hexapods that may have facilitated their invasion of land.

251 A lasting contention in understanding hexapod terrestrialisation is whether adaptations for life on land
252 were acquired in a step-wise fashion, or if the last common ancestor of Hexapoda already possessed a
253 complex respiratory, reproductive, and sensory systems^{82,83}. Some molecular and morphological studies over
254 the past decade have argued that given their unusual organ systems, some proturan characters of the
255 reproductive and respiratory systems may not be homologous with other hexapods and instead represent an
256 independent ancient lineage^{41,82,84}. We refrain from a more extensive discussion of ancestral hexapod traits,
257 since some character systems are scarcely known in the ‘basal’ lineages such as Protura and Diplura.
258 Resolution of the relationships among ‘basal’ hexapods will further facilitate ground plan comparisons with
259 other arthropod lineages and the reinterpretation of controversial fossils⁸⁵ that may help trace the transition of
260 marine pancrustaceans to the terrestrial realm.

261

262 **SUPPLEMENTARY MATERIAL**

263 Data available from the GitHub:

264 https://github.com/xtmtD/Phylogenomics/tree/main/basal_hexapods/Supplementary_Material

265

266 **ACKNOWLEDGEMENTS**

267 We thank two anonymous reviewers for their valuable comments. This research was funded by the National
268 Natural Science Foundation of China (32270470, 31970434, 32170425, 31970438), and the National Science
269 and Technology Fundamental Resources Investigation Program of China (2018FY100300).

270

271 **AUTHOR CONTRIBUTIONS**

272 Conceptualization, S.D., Y.X.L. and F.Z.; formal analysis, S.D., F.Z. and E.T.; investigation, S.D., F.Z., CC.
273 and E.T.; methodology, S.D., F.Z. and E.T.; transcriptome sequencing: W.J.C., Y.B. and Y.X.L.; data
274 acquisition, S.D. and F.Z.; writing – review & editing, all authors.

275

276 **DECLARATION OF INTERESTS**

277 The authors declare no competing interests.

278

279 **REFERENCES**

- 280 1. May, R. M. Biological diversity: how many species are there? *Nature* **324**, 514–515 (1986).
281 10.1038/324514a0.
- 282 2. Engel, M. S. Insect evolution. *Curr. Biol.* **25**, R868–R872 (2015). 10.1016/j.cub.2015.07.059.
- 283 3. Mayhew, P. J. Why are there so many insect species? Perspectives from fossils and phylogenies. *Biol. Rev.*
284 **82**, 425–454 (2007). <https://doi.org/10.1111/j.1469-185X.2007.00018.x>.
- 285 4. Mayhew, P. J. Explaining global insect species richness: lessons from a decade of macroevolutionary
286 entomology. *Entomol. Exp. Appl.* **166**, 225–250 (2018). 10.1111/eea.12673.
- 287 5. Carroll, S. B. Chance and necessity: the evolution of morphological complexity and diversity. *Nature* **409**,
288 1102–1109 (2001). 10.1038/35059227.
- 289 6. Wiens, J. J., Lapoint, R. T. & Whiteman, N. K. Herbivory increases diversification across insect clades. *Nat.*
290 *Commun.* **6**, 1–7 (2015). 10.1038/ncomms9370.
- 291 7. Nicholson, D. B., Ross, A. J. & Mayhew, P. J. Fossil evidence for key innovations in the evolution of insect
292 diversity. *Proc. Roy. Soc. B.* **281**, 20141823 (2014). 10.1098/rspb.2014.1823.
- 293 8. Misof, B. et al. Phylogenomics resolves the timing and pattern of insect evolution. *Science* **346**, 763–767
294 (2014). 10.1126/science.1257570.
- 295 9. Beutel, R. G., Yavorskaya, M. I., Mashimo, Y., Fukui, M. & Meusemann, K. The phylogeny of Hexapoda
296 (Arthropoda) and the evolution of megadiversity. *Proc. Arthropod. Embryol. Soc. Jpn.* **51**, 1–15 (2017).
- 297 10. Szeptycki, A. Catalog of the world Protura. *Acta Zool. Cracov. Ser. B* **50**, 1–210 (2007).
- 298 11. Potapov, A. et al. Towards a global synthesis of Collembola knowledge – challenges and potential
299 solutions. *Soil Organisms* **92**, 161–188 (2020). 10.25674/so92iss3pp161.

300 12. Sendra, A., Jiménez-Valverde, A., Selfa, J. & Reboleira, A. S. P. S. Diversity, ecology, distribution and
301 biogeography of Diplura. *Insect Conserv. Divers.* **14**, 415–425 (2021). 10.1111/icad.12480.

302 13. Grimaldi, D. & Engel, M. S. Evolution of the Insects 1st ed. (Cambridge University Press). (2005).

303 14. Hennig, W. Die Stammesgeschichte der Insekten 1st ed. (Waldemar Kramer). (1969).

304 15. Trautwein, M. D., Wiegmann, B. M., Beutel, R., Kjer, K. M. & Yeates, D. K. Advances in insect phylogeny at
305 the dawn of the postgenomic era. *Annu. Rev. Entomol.* **57**, 449–468 (2012). 10.1146/annurev-ento-
306 120710-100538.

307 16. Tihelka, E. et al. The evolution of insect biodiversity. *Curr. Biol.* **31**, R1299–R1311 (2021).
308 10.1016/j.cub.2021.08.057.

309 17. Meusemann, K. et al. A phylogenomic approach to resolve the arthropod tree of life. *Mol. Biol. Evol.* **27**,
310 2451–2464 (2010). 10.1093/molbev/msq130.

311 18. von Reumont, B. M. et al. Pancrustacean phylogeny in the light of new phylogenomic data: support for
312 Remipedia as the possible sister group of Hexapoda. *Mol. Biol. Evol.* **29**, 1031–1045 (2012).
313 10.1093/molbev/msr270.

314 19. Telford, M. J. & Thomas, R. H.. Demise of the Atelocerata? *Nature* **376**, 123 (1995).

315 20. Lozano-Fernandez, J. et al. Pancrustacean evolution illuminated by taxon-rich genomic-scale data sets
316 with an expanded remipede sampling. *Genome Biol. Evol.* **11**, 2055–2070 (2019). 10.1093/gbe/evz097.

317 21. Schwentner, M., Combosch, D. J., Nelson, J. P. & Giribet, G. A phylogenomic solution to the origin of
318 insects by resolving crustacean-hexapod relationships. *Curr. Biol.* **27**, 1818–1824 (2017).
319 <https://doi.org/10.1016/j.cub.2017.05.040>.

320 22. Howard, R. J. et al. The Ediacaran origin of Ecdysozoa: integrating fossil and phylogenomic data. *J. Geol.*
321 *Soc.* **179** (2022). 10.1144/jgs2021-107.

322 23. Giribet, G. & Edgecombe, G. D. The phylogeny and evolutionary history of arthropods. *Curr. Biol.* **29**,
323 R592–R602 (2019). 10.1016/j.cub.2019.04.057.

324 24. Shear, W. A. An insect to fill the gap. *Nature* **488**, 34–35 (2012). 10.1038/488034a.

325 25. Kristensen, N. P. Phylogeny of insect orders. *Annu. Rev. Entomol.* **26**, 135–157 (1981).
326 10.1146/annurev.en.26.010181.001031.

327 26. Bitsch, C. & Bitsch, J. Phylogenetic relationships of basal hexapods among the mandibulate arthropods: a
328 cladistic analysis based on comparative morphological characters. *Zool. Scripta* **33**, 511–550 (2004).
329 10.1111/j.0300-3256.2004.00162.x.

330 27. Bitsch, C. & Bitsch, J. Internal Anatomy and Phylogenetic Relationships Among Apterygote Insect Clades
331 (Hexapoda). *Ann. Soc. Entomol. Fr. (N.S.)* **34**, 339–363 (1998).

332 28. Bitsch, C. & Bitsch, J. The phylogenetic interrelationships of the higher taxa of apterygote hexapods. *Zool.*
333 *Scripta* **29**, 131–156 (2000).

334 29. Luan, Y., Mallatt, J. M., Xie, R., Yang, Y. & Yin, W. The phylogenetic positions of three basal-hexapod
335 groups (Protura, Diplura, and Collembola) based on ribosomal RNA gene sequences. *Mol. Biol. Evol.* **22**,
336 1579–1592 (2005). 10.1093/molbev/msi148.

337 30. Gao, Y., Bu, Y. & Luan, Y.-X. Phylogenetic relationships of basal hexapods reconstructed from nearly
338 complete 18S and 28S rRNA gene sequences. *Zool. Sci.* **25**, 1139–1145 (2008). 10.2108/zsj.25.1139.

339 31. Carapelli, A. et al. Going deeper into high and low phylogenetic relationships of Protura. *Genes (Basel)*
340 **10**, 292 (2019). 10.3390/genes10040292.

341 32. Chen, W.-J. et al. The mitochondrial genome of *Sinentomon erythranum* (Arthropoda: Hexapoda: Protura):
342 an example of highly divergent evolution. *BMC Evol. Biol.* **11**, 246 (2011). 10.1186/1471-2148-11-246.

343 33. Dell'Ampio, E. et al. Decisive data sets in phylogenomics: lessons from studies on the phylogenetic
344 relationships of primarily wingless insects. *Mol. Biol. Evol.* **31**, 239–249 (2014). 10.1093/molbev/mst196.

345 34. Bitsch, J., Bitsch, C., Bourgoin, T. & D'Haese, C. The phylogenetic position of early hexapod lineages:
346 morphological data contradict molecular data. *Syst. Entomol.* **29**, 433–440 (2004).

347 35. Giribet, G., Edgecombe, G. D., Carpenter, J. M., D'Haese, C. A. & Wheeler, W.C. Is Ellipura monophyletic?
348 A combined analysis of basal hexapod relationships with emphasis on the origin of insects. *Org. Divers.
349 Evol.* **4**, 319–340 (2004).

350 36. Wheeler, W. C., Whiting, M., Wheeler, Q. D. & Carpenter, J. M. The Phylogeny of the Extant Hexapod
351 Orders. *Cladistics* **17**, 113–169 (2001).

352 37. von Reumont, B. M. et al. Can comprehensive background knowledge be incorporated into substitution
353 models to improve phylogenetic analyses? A case study on major arthropod relationships. *BMC Evol. Biol.*
354 **9**, 119 (2009). 10.1186/1471-2148-9-119.

355 38. Mallatt, J., Craig, C. W. & Yoder, M. J. Nearly complete rRNA genes assembled from across the metazoan
356 animals: effects of more taxa, a structure-based alignment, and paired-sites evolutionary models on
357 phylogeny reconstruction. *Mol. Phylogenet. Evol.* **55**, 1–17 (2010). 10.1016/j.ympev.2009.09.028.

358 39. Dell'Ampio, E. et al. Testing for misleading effects in the phylogenetic reconstruction of ancient lineages
359 of hexapods: influence of character dependence and character choice in analyses of 28S rRNA sequences.
360 *Zool. Scripta* **38**, 155–170 (2009). 10.1111/j.1463-6409.2008.00368.x.

361 40. Rainford, J. L., Hofreiter, M., Nicholson, D. B. & Mayhew, P. J. Phylogenetic distribution of extant richness
362 suggests metamorphosis is a key innovation driving diversification in insects. *PLoS ONE* **9**, e109085 (2014).
363 10.1371/journal.pone.0109085.

364 41. Sasaki, G., Ishiwata, K., Machida, R., Miyata, T. & Su, Z.-H. Molecular phylogenetic analyses support the
365 monophyly of Hexapoda and suggest the paraphyly of Entognatha. *BMC Evol. Biol.* **13**, 236 (2013).

366 10.1186/1471-2148-13-236.

367 42. Kukalová-Peck, J. Fossil History and the evolution of Hexapod Structures. *The Insects of Australia, a*
368 *Textbook for Students and Researchers*, 2nd ed., Ed. by I. D. Naumann (Melbourne Univ. Press, Melbourne,
369 1991), pp. 141–179 (1991).

370 43. Beutel, R. G., Yavorskaya, M. I., Mashimo, Y., Fukui, M. & Meusemann, K. The Phylogeny of Hexapoda
371 (Arthropoda) and the Evolution of Megadiversity. *Proc. Arthropod. Embryol. Soc. Jpn.* **51**, 1–15 (2017).

372 44. Regier, J. C. et al. Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding
373 sequences. *Nature* **463**, 1079–1083 (2010). 10.1038/nature08742.

374 45. Letsch, H. & Simon, S. Insect phylogenomics: New insights on the relationships of lower neopteran orders
375 (Polyneoptera). *Syst. Entomol.* **38**, 783–793 (2013). 10.1111/syen.12028.

376 46. Imms, A. D. The ancestry of insects. *Nature* **139**, 399–400 (1937). 10.1038/139399a0.

377 47. Lubbock, S. J. *Monograph of the Collembola and Thysanura* (Ray Society). (1873).

378 48. Kukalová-Peck, J. Fossil history and the evolution of hexapod structures. In *Insects of Australia*, Vol. 1, I.
379 D. Naumann, ed. (Melbourne University Press), pp. 141–179. (1991).

380 49. Mashimo, Y., Beutel, R. G., Dallai, R., Lee, C.-Y. & Machida, R. Embryonic development of Zoraptera with
381 special reference to external morphology, and its phylogenetic implications (Insecta). *J. Morphol.* **275**,
382 295–312 (2014). <https://doi.org/10.1002/jmor.20215>.

383 50. Salichos, L. & Rokas, A. Inferring ancient divergences requires genes with strong phylogenetic signals.
384 *Nature* **497**, 327–331 (2013). 10.1038/nature12130.

385 51. Jermiin, L. S., Ho, S. Y. W., Ababneh, F., Robinson, J. & Larkum, A. W. D. The biasing effect of compositional
386 heterogeneity on phylogenetic estimates may be underestimated. *Syst. Biol.* **53**, 638–643 (2004).
387 10.1080/10635150490468648.

388 52. Yin, W. Y. Studies on Chinese Protura. II. A new family of the suborder Eosentomoidea. *Acta Entomol. Sin.*
389 **14**, 186–195 (1965).

390 53. Dallai, R. & Yin, W. Y. Sperm structure of *Sinentomon* (Protura) and phylogenetic considerations.
391 *Pedobiologia* **25**, 313–316 (1983).

392 54. François, J., Dallai, R. & Yin, W. Y. Cephalic anatomy of *Sinentomon erythranum* Yin (Protura :
393 *Sinentomidae*). *Int. J. Insect Morphol. Embryol.* **21**, 199–213 (1992). 10.1016/0020-7322(92)90016-G.

394 55. Tuxen, S. L. Systematical position of *Sinentomon* (Insecta, Protura). *Bull. Natl. Mus. Nat. Sci., Ser. A, Zool.*
395 (1977).

396 56. Xie, Q., Tian, X., Qin, Y. & Bu, W. Phylogenetic comparison of local length plasticity of the small subunit
397 of nuclear rDNAs among all Hexapoda orders and the impact of hyper-length-variation on alignment.
398 *Mol. Phylogenet. Evol.* **50**, 310–316 (2009). 10.1016/j.ympev.2008.10.025.

399 57. Dell'Ampio, E., Szucsich, N. U. & Pass, G. Protura and molecular phylogenetics: status quo of a young love.
400 *Soil Organisms* **83**, 347–358 (2011).

401 58. Rusek, J. *Octostigma herbivora* n. gen. & sp. (Diplura: Projapygoidea: Octostigmatidae n. fam.) injuring
402 plant roots in the Tonga Islands. *New Zeal. J Zool.* **9**, 25–32 (1982).

403 59. Štys, P., ZRZAVÝ, J. & Weyda, F. Phylogeny of the Hexapoda and ovarian metamerism. *Biol. Rev.* **68**, 365–
404 379 (1993). 10.1111/j.1469-185X.1993.tb00736.x.

405 60. Jamieson, B. G. M. *The Ultrastructure and Phylogeny of Insect Spermatozoa* (Cambridge University Press).
406 (1987).

407 61. Chen, W.-J., Koch, M., Mallatt, J. M. & Luan, Y.-X. Comparative analysis of mitochondrial genomes in
408 Diplura (Hexapoda, Arthropoda): taxon sampling is crucial for phylogenetic inferences. *Genome Biol. Evol.*
409 **6**, 105–120 (2014). 10.1093/gbe/evt207.

410 62. Nabhan, A. R. & Sarkar, I. N. The impact of taxon sampling on phylogenetic inference: a review of two
411 decades of controversy. *Brief. Bioinform.* **13**, 122–134 (2012). 10.1093/bib/bbr014.

412 63. Klopstein, S. The age of insects and the revival of the minimum age tree. *Austral Entomol.* **60**, 138–146
413 (2021). 10.1111/aen.12478.

414 64. Simon, S. & Hadrys, H. A comparative analysis of complete mitochondrial genomes among Hexapoda.
415 *Mol. Phylogenet. Evol.* **69**, 393–403 (2013). 10.1016/j.ympev.2013.03.033.

416 65. Wang, H.-C., Susko, E. & Roger, A. J. The relative importance of modeling site pattern heterogeneity
417 versus partition-wise heterotachy in phylogenomic inference. *Syst. Biol.* **68**, 1003–1019 (2019).
418 10.1093/sysbio/syz021.

419 66. Berlese, A. Nuovi Acerentomidi. *Redia* **5**, 16–19 (1908).

420 67. Sharov, A. G. *Basic Arthropodan Stock, with Special Reference to Insects*. 1st ed. (Pergamon Press). (1966).

421 68. Neiber, M. T. et al. Global biodiversity and phylogenetic evaluation of Remipedia (Crustacea). *PLoS ONE*
422 **6**, e19627 (2011). 10.1371/journal.pone.0019627.

423 69. Grimaldi, D. A. 400 million years on six legs: On the origin and early evolution of Hexapoda. *Arthropod
424 Struct. Devel.* **39**, 191–203 (2010). 10.1016/j.asd.2009.10.008.

425 70. Koenemann, S. et al. Post-embryonic development of remipede crustaceans. *Evol. Dev.* **9**, 117–121 (2007).
426 10.1111/j.1525-142X.2007.00142.x.

427 71. Machida, R. Evidence from embryology for reconstructing the relationships of hexapod basal clades.
428 *Arthropod Struct. Devel.* **64**, 95–104 (2005).

429 72. Boudreux, H. B. *Arthropod Phylogeny with Special Reference to Insects* (Wiley-Interscience). (1979).

430 73. Dallai, R., Gottardo, M. & Beutel, R. G. Structure and evolution of insect sperm: new interpretations in the

431 age of phylogenomics. *Annu. Rev. Entomol.* **61**, 1–23 (2016). 10.1146/annurev-ento-010715-023555.

432 74. Bedini, C. & Tongiorgi, P. The fine structure of the pseudoculus of acerentomids Protura (insecta
433 Apterygota). *Monitor Zoologico Italiano - Italian Journal of Zoology* **5**, 25–38 (1971).
434 10.1080/00269786.1971.10736163.

435 75. Yin, W. & Xue, L. Comparative spermatology of Protura and its significance on proturan systematics.
436 *Scientia Sinica (Series B)* **36**, 575–586 (1993).

437 76. Beutel, R. G., Friedrich, F., Yang, X.-K. & Ge, S.-Q. Insect Morphology and Phylogeny: A Textbook for
438 Students of Entomology (Walter de Gruyter). (2013).

439 77. Yin, W. Y. A new idea on phylogeny of Protura with approach to its origin and systematic position. *Sci.
440 Sin. Ser. B* **27**, 149–160 (1984).

441 78. Ikeda, Y. & Machida, R. Embryogenesis of the dipluran *Lepidocampa weberi* Oudemans (Hexapoda,
442 Diplura, Campodeidae): external morphology. *J. Morphol.* **237**, 101–115 (1998). 10.1002/(SICI)1097-
443 4687(199808)237:2<101::AID-JMOR2>3.0.CO;2-4.

444 79. Shear, W. A. & Kukalová-Peck, J. The ecology of Paleozoic terrestrial arthropods: the fossil evidence. *Can.
445 J. Zool.* **68**, 1807–1834 (1990). 10.1139/z90-262.

446 80. Taylor, T. N., Remy, W., Hass, H. & Kerp, H. Fossil arbuscular mycorrhizae from the Early Devonian.
447 *Mycologia* **87**, 560–573 (1995). 10.1080/00275514.1995.12026569.

448 81. Berbee, M. L. et al. Genomic and fossil windows into the secret lives of the most ancient fungi. *Nat. Rev.
449 Microbiol.* **18**, 717–730 (2020). 10.1038/s41579-020-0426-8.

450 82. Dittrich, K. & Wipfler, B. A review of the hexapod tracheal system with a focus on the apterygote groups.
451 *Arthropod Struct. Dev.* **63**, 101072 (2021). 10.1016/j.asd.2021.101072.

452 83. Beutel, R. G., Friedrich, F. & Economo, E. P. Patterns of morphological simplification and innovation in the
453 megadiverse Holometabola (Insecta). *Cladistics* **38**, 227–245 (2022). 10.1111/cla.12483.

454 84. Dallai, R. et al. The spermatogenesis and sperm structure of *Acerentomon microrhinus* (Protura, Hexapoda)
455 with considerations on the phylogenetic position of the taxon. *Zoomorphol.* **129**, 61–80 (2010).
456 10.1007/s00435-009-0100-1.

457 85. Haas, F., Waloszek, D. & Hartenberger, R. *Devonohexapodus bocksbergensis*, a new marine hexapod from
458 the Lower Devonian Hunsrück Slates, and the origin of Atelocerata and Hexapoda. *Org. Divers. Evol.* **3**,
459 39–54 (2003). 10.1078/1439-6092-00057.

460 86. Du, S. et al. Construction of a phylogenetic matrix: Scripts and guidelines for phylogenomics. *Zool. Syst.
461* **48**, 107–116 (2023). 10.11865/zs.2023201.

462 87. Prjibelski, A., Antipov, D., Meleshko, D., Lapidus, A. & Korobeynikov, A. Using SPAdes De Novo Assembler.
463 *Curr. Protoc. Bioinformatics* **70**, 1–29 (2020). 10.1002/cpbi.102.

464 88. Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: Assessing
465 genome assembly and annotation completeness with single-copy orthologs. *Bioinformatics* **31**, 3210–
466 3212 (2015). 10.1093/bioinformatics/btv351.

467 89. Smirnov, V. & Warnow, T. MAGUS: Multiple sequence Alignment using Graph clUStering. *Bioinformatics*
468 **37**, 1666–1672 (2021). 10.1093/bioinformatics/btaa992.

469 90. Steenwyk, J. L., Buida, T. J., Li, Y., Shen, X. X. & Rokas, A. ClipKIT: A multiple sequence alignment trimming
470 software for accurate phylogenomic inference. *PLoS Biology* **18**, 1–17 (2020).
471 10.1371/journal.pbio.3001007.

472 91. Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: Improving the Ultrafast
473 Bootstrap Approximation. *Molecular biology and evolution*. *Mol. Biol. Evol.* **35**, 518–522 (2018).
474 10.5281/zenodo.854445.

475 92. Young, A. D. & Gillung, J. P. Phylogenomics — principles, opportunities and pitfalls of big-data
476 phylogenetics. *Syst. Entomol.* **45**, 225–247 (2020). 10.1111/syen.12406.

477 93. Shen, X. X., Salichos, L. & Rokas, A. A genome-scale investigation of how sequence, function, and tree-
478 based gene properties influence phylogenetic inference. *Genome Biol. Evol.* **8**, 2565–2580 (2016).
479 10.1093/gbe/evw179.

480 94. Phillips, M. J. & Penny, D. The root of the mammalian tree inferred from whole mitochondrial genomes.
481 *Mol. Phylogenet. Evol.* **28**, 171–185 (2003). 10.1016/S1055-7903(03)00057-5.

482 95. Naser-Khdour, S., Quang Minh, B. & Lanfear, R. Assessing Confidence in Root Placement on Phylogenies:
483 An Empirical Study Using Nonreversible Models for Mammals. *Syst. Biol.* **0**, 1–14 (2021).
484 10.1093/sysbio/syab067.

485 96. Shen, X. X. et al. Tempo and Mode of Genome Evolution in the Budding Yeast Subphylum. *Cell* **175**, 1533–
486 1545.e20 (2018). 10.1016/j.cell.2018.10.023.

487 97. Steenwyk, J. L. et al. PhyKIT: a broadly applicable UNIX shell toolkit for processing and analyzing
488 phylogenomic data. *Bioinformatics* **37**, 2325–2331 (2021). 10.1093/bioinformatics/btab096.

489 98. Minh, B. Q. et al. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic
490 Era. *Mol. Biol. Evol.* **37**, 1530–1534 (2020). 10.1093/molbev/msaa015.

491 99. Mai, U. & Mirarab, S. TreeShrink: Fast and accurate detection of outlier long branches in collections of
492 phylogenetic trees. *BMC Genomics* **19**. (2018). 10.1186/s12864-018-4620-2.

493 100. Kocot, K. M. et al. Phylogenomics of lophotrochozoa with consideration of systematic error. *Syst. Biol.* **66**,
494 256–282 (2017). 10.1093/sysbio/syw079.

495 101. Smith, B. T., Mauck, W. M., Benz, B. W. & Andersen, M. J. Uneven missing data skew phylogenomic
496 relationships within the lorises and lorikeets. *Genome Biol. Evol.* **12**, 1131–1147 (2020).
497 10.1093/GBE/EVAA113.

498 102.Siu-Ting, K. et al. Inadvertent paralog inclusion drives artifactual topologies and timetree estimates in
499 phylogenomics. *Mol. Biol. Evol.* **36**, 1344–1356 (2019). 10.1093/molbev/msz067.

500 103.Crotty, S. M. et al. GHOST: Recovering Historical Signal from Heterotachously Evolved Sequence
501 Alignments. *Syst. Biol.* **69**, 249–264 (2020). 10.1093/sysbio/syz051.

502 104.Borowiec, M. L. et al. Compositional heterogeneity and outgroup choice influence the internal phylogeny
503 of the ants. *Mol. Phylogenet. Evol.* **134**, 111–121 (2019). 10.1016/j.ympev.2019.01.024.

504 105.Kapli, P., Yang, Z. & Telford, M. J. Phylogenetic tree building in the genomic age. *Nat. Rev. Genet.* **21**,
505 428–444 (2020). 10.1038/s41576-020-0233-0.

506 106.Zhang, C., Rabiee, M., Sayyari, E. & Mirarab, S. ASTRAL-III: Polynomial time species tree reconstruction
507 from partially resolved gene trees. *BMC Bioinform.* **19**, (2018). 10.1186/s12859-018-2129-y.

508 107.Sayyari, E. & Mirarab, S. Fast Coalescent-Based Computation of Local Branch Support from Quartet
509 Frequencies. *Mol. Biol. Evol.* **33**, 1654–1668 (2016). 10.1093/molbev/msw079.

510 108.Lartillot, N., Rodrigue, N., Stubbs, D. & Richer, J. Phylobayes mpi: Phylogenetic reconstruction with infinite
511 mixtures of profiles in a parallel environment. *Syst. Biol.* **62**, 611–615 (2013). 10.1093/sysbio/syt022.

512 109.Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., Von Haeseler, A. & Jermiin, L. S. ModelFinder: Fast model
513 selection for accurate phylogenetic estimates. *Nat. Methods* **14**, 587–589 (2017). 10.1038/nmeth.4285.

514 110.Lanfear, R., Calcott, B., Kainer, D., Mayer, C. & Stamatakis, A. Selecting optimal partitioning schemes for
515 phylogenomic datasets. *BMC Evol. Biol.* **14**, 1–14 (2014). 10.1186/1471-2148-14-82.

516 111.Quang, L. S., Gascuel, O. & Lartillot, N. Empirical profile mixture models for phylogenetic reconstruction.
517 *Bioinformatics* **24**, 2317–2323 (2008). 10.1093/bioinformatics/btn445.

518 112.Wang, H. C., Minh, B. Q., Susko, E. & Roger, A. J. Modeling Site Heterogeneity with Posterior Mean Site
519 Frequency Profiles Accelerates Accurate Phylogenomic Estimation. *Syst. Biol.* **67**, 216–235 (2018).
520 10.1093/sysbio/syx068.

521 113.Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing
522 the performance of PhyML 3.0. *Syst. Biol.* **59**, 307–321 (2010). 10.1093/sysbio/syq010.

523 114.Johnson, K. P. et al. Phylogenomics and the evolution of hemipteroid insects. *Proc. Natl. Acad. Sci. USA*
524 **115**, 12775–12780 (2018). 10.1073/pnas.1815820115.

525 115.Wipfler, B. et al. Evolutionary history of Polyneoptera and its implications for our understanding of early
526 winged insects. *Proc. Natl. Acad. Sci. USA* **116**, 3024–3029 (2019). 10.1073/pnas.1817794116.

527 116.Tihelka, E. et al. Compositional phylogenomic modelling resolves the ‘Zoraptera problem’: Zoraptera are
528 sister to all other polyneopteran insects. bioRxiv, (2021). <https://doi.org/10.1101/2021.09.23.461539>.

529 117.Letunic, I. & Bork, P. Interactive Tree of Life (iTOL) v4: Recent updates and new developments. *Nucleic
530 Acids Res.* **47**, 2–5 (2019). 10.1093/nar/gkz239.

531 118. Minh, B. Q., Hahn, M. W. & Lanfear, R. New methods to calculate concordance factors for phylogenomic
532 datasets. *Mol. Biol. Evol.* **37**, 2727–2733 (2020). 10.1093/molbev/msaa106.

533 119. Shen, X. X., Steenwyk, J. L. & Rokas, A. Dissecting Incongruence between Concatenation- and Quartet-
534 Based Approaches in Phylogenomic Data. *Syst. Biol.* **70**, 997–1014 (2021). 10.1093/sysbio/syab011.

535

536 **STAR METHODS**

537

538 **KEY RESOURCES TABLE**

539

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Software and algorithms		
ASTRAL-III v5.6.1	https://github.com/smirarab/ASTRAL	N/A
BUSCO v3.0.2	https://gitlab.com/ezlab/busco	N/A
CD-HIT v4.8.1	https://github.com/weizhongli/cdhit	N/A
ClipKIT v1.1.5	https://jlsteenwyk.com/ClipKIT	N/A
FASconCAT-G v1.04	https://github.com/PatrickKueck/FASconCAT-G	N/A
GNU Parallel 2018	https://www.gnu.org/software/parallel	N/A
IQ-TREE v2.0.0-rc1	https://github.com/iqtree/iqtree2	N/A
IQ-TREE v2.0.7		
IQ-TREE v2.1.3		
iTOL v4	https://itol.embl.de/upload.cgi	N/A
MAFFT v7.487	https://mafft.cbrc.jp/alignment/software	N/A
MAGUS v0.1.0	https://github.com/vlasmirnov/MAGUS	N/A
PhyKIT v1.11.10	https://github.com/JLSteenwyk/PhyKIT	N/A
PhyloBayes MPI v1.8b	http://www.atgc-montpellier.fr/phylobayes	N/A
R v4.3.1	R Core Team	N/A
SPAdes v3.14.1	https://github.com/ablab/spades	N/A
TransDecoder v5.5.0	https://github.com/TransDecoder/TransDecoder	N/A
TreeShrink v1.3.7	https://github.com/uym2/TreeShrink	N/A
trimAl v1.4.1	https://github.com/inab/trimal	N/A

540

541 **RESOURCE AVAILABILITY**

542

543 **Lead contact**

544

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Feng Zhang (fzhang@njau.edu.cn).

545

546 **Data and code availability**

547

All custom scripts are based on Du et al.⁸⁶ and can be found at GitHub (<https://github.com/xtmtD/Phylogenomics/tree/main/scripts> and https://github.com/xtmtD/Phylogenomics/tree/main/basal_hexapods/scripts). All datasets are available at <https://doi.org/XXX> and are publicly available as of the date of publication. NCBI accession numbers are provided in Supplementary Table 1. Any additional information required to reanalyse the data reported in this paper is available from the lead contact upon request.

553

554 **METHOD DETAILS**

555

556 **Specimens, transcriptome sequencing, and taxon sampling**

557

We newly sequenced three ‘basal’ hexapod transcriptomes, representing rare dipluran and proturan groups that have not been sampled previously. All three ‘basal’ hexapods were collected by YXL’s group. Specimens of

558 *Sinentomon erythranum* Yin, 1965 were extracted from soil samples from the Tianping Mountain (Jiangsu
559 Province, China) using Tullgren funnels. More than 200 individuals were pooled together to extract total RNA
560 for transcriptome sequencing. The proctigeroids *Octostigma sinensis* Xie & Yang, 1991 were sampled from
561 the type locality in Zhanjiang (Guandong Province, China), a mixture of about 30 individuals was used for
562 RNA extraction. The campodeids *Lepidocampa weberi* Oudemans, 1890 were sampled from the Shanghai
563 Botanic Garden and the total RNA was extracted using Qiagen RNeasy Micro Kit following the
564 manufacturer's recommendations. Transcriptome sequencing was performed by commercial services from
565 Beijing Genomics Institute (BGI) in Shenzhen, China using an Illumina Hiseq 2000/2500 sequencer (PE150).
566 Raw sequencing data, and assembly accessions are provided in Supplementary Table 1.

567 A total of 45 hexapod species were sampled, including seven species of Collembola (representing all five
568 orders), five diplurans (representing all three superfamilies), two proturans (representing two of three orders),
569 and 31 insects (representing all 27 orders) (Supplementary Table 1). Care was taken to sample the three 'basal'
570 hexapod groups as densely as possible. Within Insecta, only one species of each order (except for two species
571 from Archaeognatha, three species from Zygentoma, and two species from Mecoptera) was sampled
572 (Supplementary Table 1). Since the aim of this study is not to clarify the relationship within Insecta, the
573 sampling of these taxa will not affect our main results and conclusion. The monophyly of hexapods has been
574 well established^{8,17,18}, three crustacean taxa were used as outgroups, following recent phylogenomic studies
575 (e.g., Misof et al.⁸). Altogether, 48 taxa were sampled including 25 genomes and 23 transcriptomes. Publicly
576 available genome and transcriptome assemblies for 42 species were downloaded from NCBI (Supplementary
577 Table 1). Outgroup taxa included three non-hexapod pancrustaceans based on previous phylogenomic
578 analyses. Species names, taxonomic ranks, raw sequencing data, and assembly accessions are provided in
579 Supplementary Table 1.

580

581 **Genome assembly and BUSCO assessment**

582 All paired-end reads from the three newly sequenced transcriptomes were assembled using SPAdes v3.15.5⁸⁷.
583 BUSCO assessments of all 48 species were conducted using the OrthoDB version 10 of the Arthropoda
584 database ($n=1,013$) from BUSCO v3.0.2 (Supplementary Fig. 3; ⁸⁸), with the command of '-m geno'.
585 Modified the standard deviations (σ) of the mean USCO length to 2σ to be identified as 'complete'. The
586 BUSCO completeness values (complete and single-copy BUSCOs + complete and duplicated BUSCOs)
587 ranged from 74.8% to 99.7% (936 ± 67.9 ; Supplementary Table 1).

588

589 **Gene properties and matrix generation**

590 Universal single-copy orthologues (USCOs) of each species were extracted, and the USCO amino acid (AA)
591 sequences were used for subsequent analyses. Each USCO AA sequence was separately aligned using
592 MAGUS (similar to MAFFT-linsi; ⁸⁹). All alignments were trimmed with ClipKIT⁹⁰
593 (<https://jlsteenwyk.com/ClipKIT/>) with the '-m kpic' algorithm (a strategy that retains sites that are either
594 parsimony-informative or constant) to reduce compositional heterogeneity. Gene trees were inferred using IQ-
595 TREE with the mixture protein model '-m EX_EHO' and 1,000 UFBoot2 bootstraps⁹¹.

596 Genes used for analyses were filtered based on their properties to mitigate common confounding factors
597 in phylogenomic inference⁹². Previous studies have shown that some gene properties are strongly correlated
598 with phylogenetic signal. For alignments, these properties include the number of parsimony-informative
599 sites⁹³, relative composition variability (RCV)⁹⁴, and stationary, reversible and homogeneous (SRH)⁹⁵. Tree-
600 based properties include potentially spurious homologs⁹⁶, and average bootstraps support (ABS) values⁵⁰. We
601 calculated three sequence-based properties (number of parsimony-informative sites, RCV, and SRH) and two

602 tree-based properties (potentially spurious sequences, and ABS) to subsample genes and generate matrices for
603 analyses.

604 The number of parsimony-informative sites of each locus was calculated using default parameters in
605 PhyKIT⁹⁷ (<https://jlsteenwyk.com/PhyKIT/usage/index.html>), which in an alignment is associated with strong
606 phylogenetic signal⁹³, and kept the loci whose number of parsimony-informative sites exceeded 100. Genes
607 with low RCV values are similarly more suitable for phylogenetic analyses, since they harbour less
608 compositional bias. Therefore, we kept genes with RCV values of less than 0.35 using default parameters in
609 PhyKIT. We excluded the SRH assumptions of each locus with ‘--symtest-only’ strategy, *p*-value 0.05, using
610 IQ-TREE v2.0-rc1⁹⁸. The loci with higher *p*-value (usually 0.01–0.1) of symmetry tests should be removed,
611 which means rejected SRH hypotheses. Potentially spurious sequences, i.e., genes with abnormally long
612 branch lengths, were identified using TreeShrink v1.3.7⁹⁹ with an α threshold of ‘-q 0.05’.

613 Two matrices were generated for phylogenomic analyses. The USCO matrix (USCO75), named as
614 ‘Matrix1’, with 75% completeness, which represents the lowest ratio of taxa for all partitions, was generated
615 using PhyKIT. Genes with ABS values greater than 70 were selected⁴³ to generate a new matrix
616 (USCO75_abs70), named as ‘Matrix2’, while maintaining a good number of loci (approximately 50%).
617

618 Phylogenetic analyses

619 To account for common sources of systematic errors in phylogenetic inferences, namely missing data^{100,101},
620 paralogy¹⁰², the heterogeneous nature of amino acid substitution^{103,104}, and incomplete lineage sorting
621 (ILS)^{92,105}, we conducted phylogenetic analyses with a multi-species coalescent (MSC) model, as well as
622 concatenation-based analyses using heterogeneous models and partitioned maximum likelihood (ML)
623 analyses. The coalescent-based phylogenies were reconstructed in ASTRAL-III v5.6.1¹⁰⁶ using the MSC
624 model with default parameters to account for ILS, which uses a set of gene trees to estimate branch supports
625 from quartet frequencies¹⁰⁷. For concatenation-based analyses, we used IQ-TREE and PhyloBayes MPI
626 v1.8b¹⁰⁸. For partitioned analyses, the best partitioning scheme and substitution models were selected using
627 the relaxed hierarchical clustering algorithm on ModelFinder¹⁰⁹ implemented in IQ-TREE using the
628 parameters ‘-rclusterf 10’¹¹⁰ and ‘--mset LG’. We also conducted unpartitioned analyses to account for
629 different aspects of heterogeneity in the substitution process. To account for across-site compositional
630 heterogeneity in a ML framework, analyses were conducted with the C60+F+R^{111,112} and PMSF
631 (LG+C60+F+R) models in IQ-TREE that partition the sites of an alignment into 60 compositional categories.
632 For PMSF trees, the corresponding ASTRAL trees with Matrix1 (H1_guide-tree), Matrix1-con (H4_guide-
633 tree), partitioned ML tree with Matrix1 (H2_guide-tree), and C60 tree with Matrix1 (H3_guide-tree) were
634 treated as the initial guide trees. 1,000 SH-aLRT replicates¹¹³ and 1,000 UFBoot2 bootstraps were calculated
635 for all node supports in the ML analyses. To account for across-site compositional heterogeneity in a Bayesian
636 setting, we combined the unconstrained category (CAT) and general time reversible (GTR) substitution
637 matrices (CAT-GTR) in PhyloBayes. Six independent Markov Chain Monte Carlo (MCMC) of 1,164–5,317
638 generations sampled every one generation were run. The two chains converged on a similar topology, except
639 for incongruences within Paraneoptera and Polyneoptera, likely due to narrower taxon sampling for these
640 clades. The phylogenetic relationships within both groups have been the subject of previous studies^{114–116} and
641 do not affect our main results and conclusion, which concern the early-diverging hexapods. We removed the
642 first 3,000 generations as the burn-in. All trees were visualized and edited with iTOL v4¹¹⁷. The gCF and sCF
643 were calculated by using IQ-TREE with the option ‘--scf 100’, to quantify genealogical concordance in
644 phylogenomic datasets¹¹⁸.
645

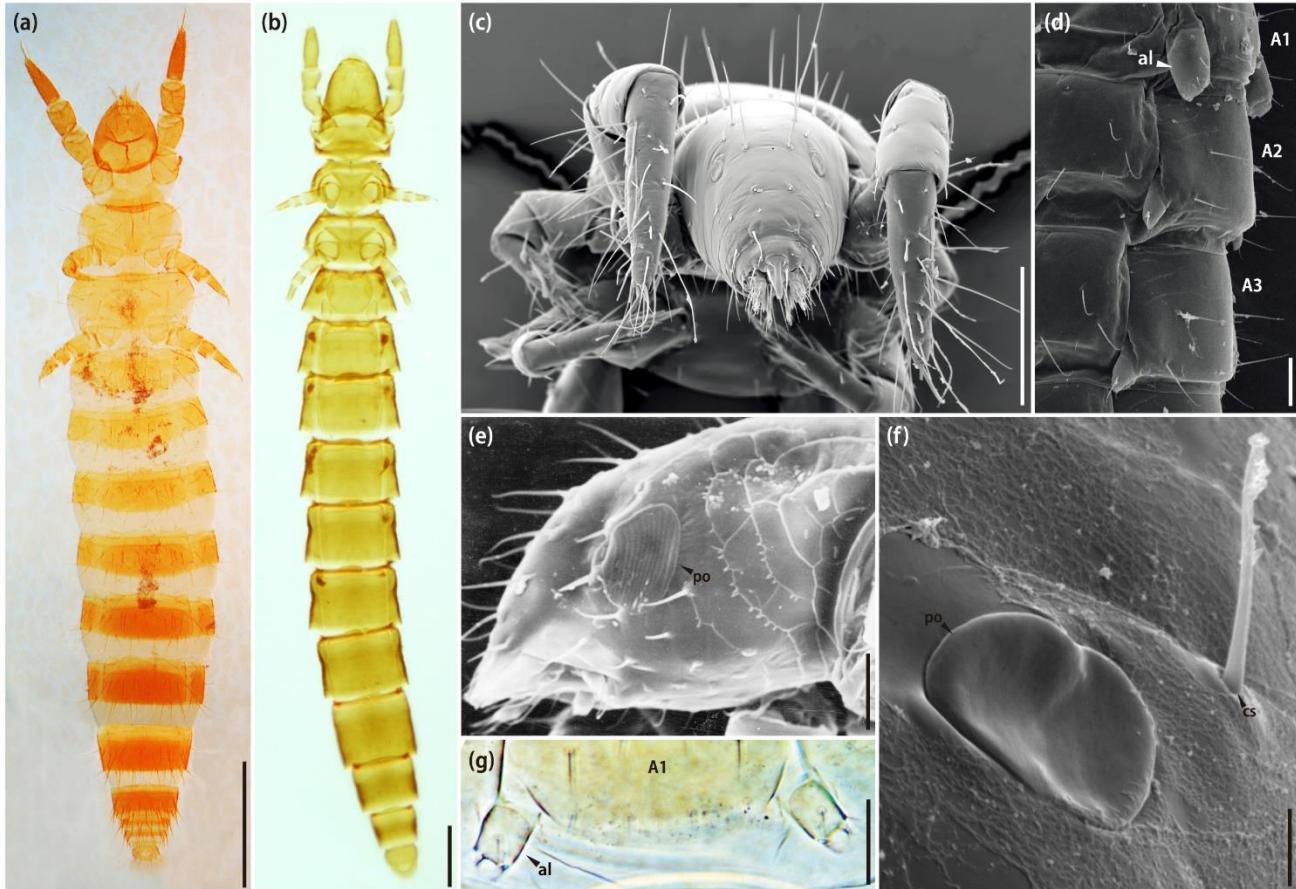
646 **Inconsistent genes and gene-wise phylogenetic signal conflict in phylogenomic data matrices**
647 Topological conflict is widespread in phylogenomics¹¹⁹. We estimated the gene-wise phylogenetic signal
648 (Δ GLS) for each gene by comparing the sequence alignment to the ML concatenated species (T1: Protura +
649 ((Collembola + Diplura) + Insecta); inferred by C60 model based on Matrix1) and the ASTRAL tree (T2:
650 Collembola + (Protura + (Diplura + Insecta)); inferred by MSC model based on Matrix1). Furthermore, we
651 also calculated gene-wise quartet scores (Δ GQS), which estimates the number of congruent quartets recovered
652 from each gene tree compared to the concatenated species tree. The inconsistent genes in Matrix1 and
653 Matrix2, i.e., those with Δ GLS>0 (a higher log-likelihood score for T1 versus T2) or Δ GQS<0 (a lower
654 quartet score for T1 versus T2), or vice versa, were identified and filtered. Therefore, the two new matrices,
655 USCO75_consistent-genes (referred to as ‘Matrix1-con’) and USCO75_abs70_consistent-genes (referred to as
656 ‘Matrix2-con’), were generated. These two matrices were subjected to the same phylogenomic analyses as
657 those outlined above for Matrix1 and Matrix2.

658
659 **Topology tests**
660 A total of four different hypotheses (H1–4; Fig. 3) were generated with our four analysed matrices. The
661 hypotheses were compared, with all four matrices, using the approximately unbiased (AU), weighted Kishino-
662 Hasegawa (WKH), and weighted Shimodaira-Hasegawa (WSH) tests under the C60+F+R and
663 LG+PMSF(C60) (H3_guide-tree) models in IQ-TREE. The four hypotheses were as follows: H1: Collembola
664 + (Protura + (Diplura + Insecta)); H2: (Collembola + Protura) + (Diplura + Insecta); H3: Protura +
665 ((Collembola + Diplura) + Insecta); H4: (Protura + (Collembola + Diplura)) + Insecta.
666

667 **Cross-validation analyses**
668 We conducted Bayesian cross-validation (CV) in PhyloBayes¹⁰⁸ to compare the fit of the CAT-GTR and LG
669 models for Matrix2-con. A random subsample of 10,000 sites for ten replicates were run, and each replicate
670 containing 9,000 sites for training the model and 1,000 sites for computing the cross-validation log-likelihood
671 scores. Two independent runs were run for 5,000 generations of each replicate, with parameters and trees
672 sampled every one generation, and the first 2,000 generations were discarded as burn-in. The Wilcoxon test
673 was conducted using R v4.3.1 to compare the difference of cross-validation log-likelihood scores between the
674 two models. Custom script and commands are available from GitHub
675 https://github.com/xtmtD/Phylogenomics/tree/main/basal_hexapods/scripts.
676

677 **Phylogeny without outgroup taxa**
678 To test whether outgroup sampling affected reconstructions of deep nodes in the ingroup, we performed
679 analyses of Matrix2-con with the three outgroup species excluded, using IQ-TREE. First, an unrooted tree was
680 inferred using reversible models⁹⁸. The partition file followed the same results of phylogeny with outgroup
681 included. Second, a rooted tree with linked non-reversible models⁹⁸ was inferred. A rooted tree with linked
682 non-reversible models was inferred to measure the confidence in the root placement. These unrooted and
683 rooted trees were compared with those from phylogenies with the outgroup included.
684
685

686 **Highlights**


687 • Protura are ‘basal’ to all other hexapods

688 • Genome-scale analyses show that Diplura and Collembola form a clade

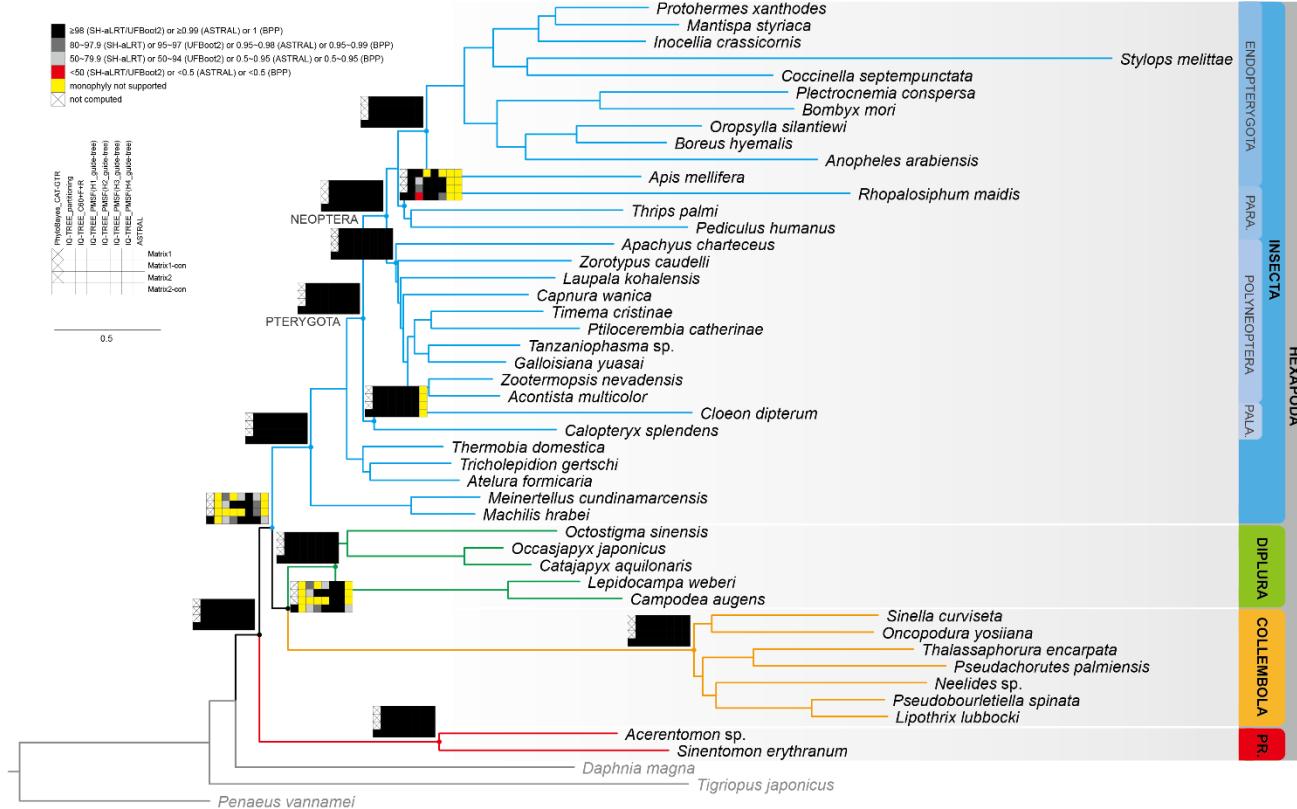
689 • Previous contentious results likely result from restricted taxon sampling and inadequate substitution

690 modelling

691

692
693 **Fig. 1 Morphology of the proturans *Acerentomon microrhinus* (Acerentomidae) and *Sinentomon***
694 ***erythranum* (Sinentomidae).** (A) Habitus view of *A. microrhinus* under reflected light. (B) Habitus view of *S.*

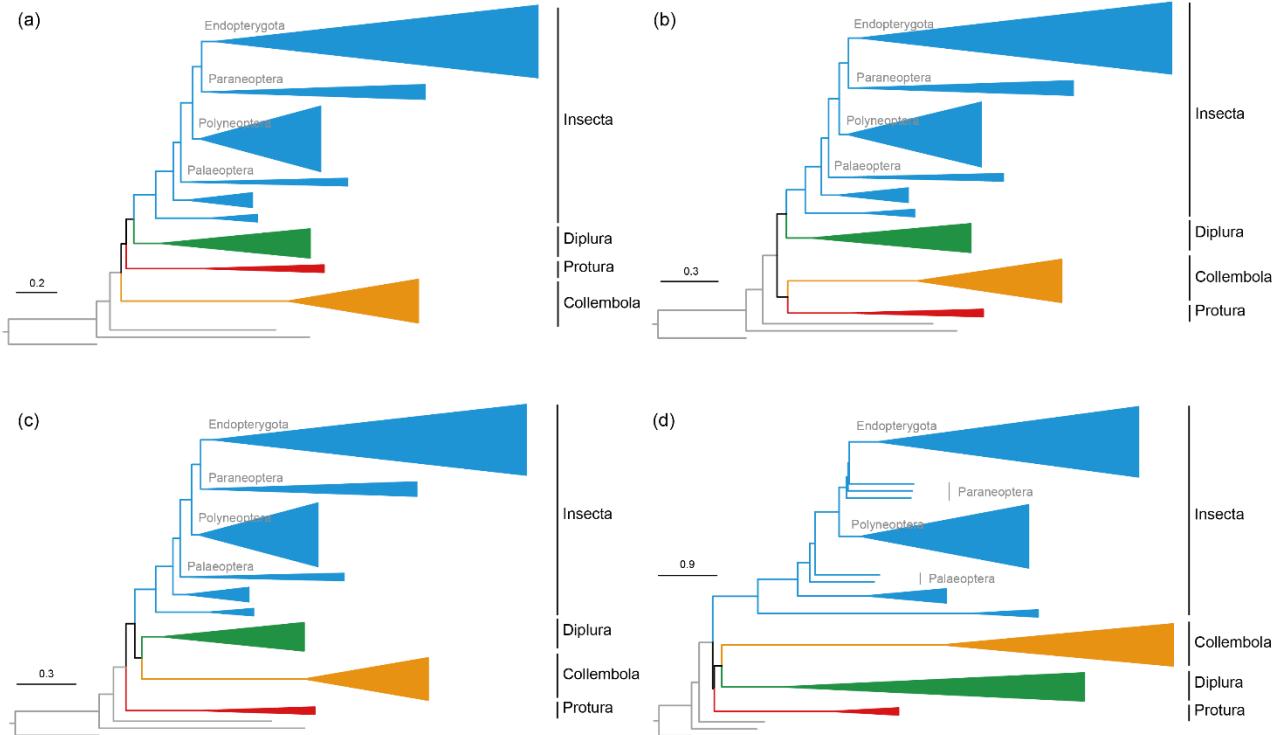
695 *erythranum* under reflected light. (C) Scanning electron micrograph of *A. microrhinus* head and forelegs. (D)


696 Scanning electron micrograph of the abdomen of *A. microrhinus* in lateral view. (E) Scanning electron

697 micrograph of *S. erythranum* head in lateral view. (F) Detail of the pseudoculus of *A. microrhinus*. (G)

698 Abdominal legs of *S. erythranum*. Abbreviations: A1–3: abdominal segments 1; al, abdominal legs; cs,

699 cephalic seta; po, pseudoculus. Scale: 5 μ m (G); 10 μ m (F); 20 μ m (C, D, E); 50 μ m (A, B).


700

701

702 **Fig. 2 Phylogeny of the ‘basal’ hexapods.** Main topology inferred from Matrix2-con using the Bayesian
703 across-site compositional heterogeneity model CAT-GTR model implemented in PhyloBayes. Node supports
704 from all analyses are indicated by the coloured squares (The node supports of each phylogenetic tree is shown
705 in Supplementary Appendix A). Only the lowest support values are shown when different matrices or different
706 models produced conflict results. Abbreviations: PARA., Paraneoptera; PALA., Palaeoptera; PR., Protura.
707 (H1_guide-tree: Collembola + (Protura + (Diplura + Insecta)); H2_guide-tree: (Collembola + Protura) +
708 (Diplura + Insecta); H3_guide-tree: Protura + ((Collembola + Diplura) + Insecta); H4_guide-tree: (Protura +
709 (Collembola + Diplura)) + Insecta).

710

711

712 **Fig. 3 Four different topological hypotheses analysed in this study.** (A) Hypotheses H1 inferred from
713 Matrix2 using C60+F+R model implemented in IQ-TREE: Collembola + [Protura + [Diplura + Insecta]]
714 (Collembola-first). (B) Hypotheses H2 inferred from Matrix1 using partitioned maximum likelihood model
715 implemented in IQ-TREE: [Collembola + Protura] + [Diplura + Insecta] (the ‘Ellipura’ hypothesis). (C)
716 Hypotheses H3 inferred from Matrix2-con using C60+F+R model implemented in IQ-TREE: Protura +
717 [[Collembola + Diplura] + Insecta] (Protura-first). (D) Hypotheses H4 inferred from Matrix1-con using MSC
718 model implemented in ASTRAL: [Protura + [Collembola + Diplura]] + Insecta (the ‘Entognatha’ hypothesis).