

1 The cervical and meningeal lymphatic network as a pathway for

2 retrograde nanoparticle transport to the brain

3 Héctor M Ramos-Zaldívar¹, Iva Polakovicova^{2,3} †, Edison Salas-Huenuleo⁴, Claudia P Yeffi⁵,
4 David Silva^{2,6}, Pedro Jara-Guajardo^{2,6}, Juan Esteban Oyarzún^{5,7}, Álvaro Neira-Troncoso^{3,8},
5 Patricia V. Burgos⁸, Viviana A. Cavieres⁸, Eloisa Arias-Muñoz⁸, Carlos Martínez⁹, Ana L.
6 Riveros^{2,6}, Alejandro H Corvalán^{2,3}, Marcelo J Kogan^{2,6}, Marcelo E Andia^{5,7}

7 †: Deceased author

8 1. Doctoral Program in Medical Sciences, Faculty of Medicine, Pontificia Universidad Católica de Chile,
9 Santiago, Chile.

10 2. Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile.

11 3. Department of Hematology and Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile.

12 4. Advanced Integrated Technologies SpA, (AINTECH), Santiago, Chile.

13 5. Millennium Institute for Intelligent Healthcare Engineering, Santiago, Chile.

14 6. Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas,
15 Laboratorio de Nanobiotecnología, Universidad de Chile, Carlos Lorca 964, Independencia, Chile

16 7. Biomedical Imaging Center, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.

17 8. Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San
18 Sebastián, Santiago, Chile.

19 9. Experimental Surgery and Simulation Center, Department of Digestive Surgery, Clinic Hospital, School of
20 Medicine, Pontificia Universidad Católica de Chile, Marcoleta 377, Santiago, Chile.

22 Corresponding author: Héctor M. Ramos-Zaldívar

23 Contact information: Primary email: hmramos@uc.cl

24

25

26

27 **Abstract**

28 **The meningeal lymphatic vessels have been described as a pathway that transports**
29 **cerebrospinal fluid and interstitial fluid in a unidirectional manner towards the deep**
30 **cervical lymph nodes. However, these vessels exhibit anatomical and molecular**
31 **characteristics typical of initial lymphatic vessels, with the absence of surrounding**
32 **smooth muscle and few or absent valves. Given its structure, this network could**
33 **theoretically allow for bidirectional motion. Nevertheless, it has not been assessed as**
34 **a potential route for nanoparticles to travel from peripheral tissues to the brain.**
35 **Here we show that extracellular vesicles derived from the B16F10 melanoma cell**
36 **line, along with superparamagnetic iron oxide nanoparticles, gold nanorods, and**
37 **Chinese ink nanoparticles can reach the meningeal lymphatic vessels and the brain**
38 **of C57BL/6 mice after administration within deep cervical lymph nodes *in vivo*,**
39 **exclusively through lymphatic structures. Since the functional anatomy of dural**
40 **lymphatics has been found to be conserved between mice and humans, we expect**
41 **that our results will encourage further research into the retrograde motion of**
42 **nanoparticles towards the brain for pharmacological purposes in nanomedicine, as**
43 **well as to better understand the fluid dynamics in different physiological or**
44 **neuropathological conditions.**

45

46 **Introduction**

47 The lymphatic system, including the meningeal lymphatic vessels, has usually been
48 described as a unidirectional transport system of fluid and macromolecules from tissues

49 to venous circulation^{1,2}. This concept has prevented its examination as a nanoparticle and
50 drug delivery pathway to the brain, as administered contents would be expected to all be
51 cleared to the thorax. Nevertheless, evaluating nanoparticle flow through these vessels is
52 relevant considering the participation of the lymphatic system in immune transportation,
53 its pathologic involvement in cancer metastasis and the spreading of some infectious
54 diseases, as well as its potential as a drug delivery pathway for its targeting and
55 pharmacokinetic advantages, including bypassing first-pass metabolism in the liver³.

56 Studies in mice have described the anatomical and morphological characteristics of
57 meningeal lymphatics to be consistent with initial lymphatic vessels^{4,5}. This includes a
58 noncontinuous basement membrane, sparse or no lymphatic valves, and no smooth
59 muscle cell lining^{4,5}; which implies that meningeal lymphatic vessels might not have a
60 preferential flow determined by its own structural components. Together, these findings
61 open a theoretical possibility for retrograde flow towards the brain that would depend on
62 the physiological and mechanical conditions of the vessels.

63 Here, we suggest that the cervical and meningeal lymphatic system can transport
64 nanoparticles not only towards the thorax but can also serve to carry particles towards the
65 brain.

66

67 **MRI imaging of SPIONs and SPION-loaded exosomes in cervical and**
68 **meningeal lymphatic vessels**

69 Extracellular vesicles (EVs) are membranous particles naturally emitted by cells, encased
70 in a lipid bilayer, and unable to undergo replication⁶. Exosomes are a subset of EVs that
71 have an endosomal origin and a size range of 40 to 160 nm (average 100 nm)⁷. How EVs
72 can travel between peripheral tissues and the brain in a bidirectional manner remains

73 poorly understood⁸. To investigate if the cervical and meningeal lymphatic system is a
74 possible route for EVs crossing to and from the central nervous system (CNS), we
75 prepared exosomes loaded with superparamagnetic iron oxide nanoparticles (SPIONs) to
76 evaluate their anterograde and retrograde directional flow through MRI imaging,
77 leveraging the high efficiency of SPIONs as contrast agents⁹. The anterograde directional
78 flow was defined as the classically described motion of lymphatic components towards
79 the thorax following an injection into the cisterna magna. The retrograde directional flow
80 was defined as nanoparticle motion towards the meningeal lymphatic vessels and the
81 brain after a deep cervical lymph node injection.

82 We first prepared SPIONs through coprecipitation of ferric and ferrous chlorides with
83 ammonium associated with an acidic pH. This produced SPIONs with mean diameter of
84 14.28 ± 5.57 nm measured by dynamic light scattering (DLS) (Fig. 1a). Scanning
85 transmission electron microscopy (STEM) confirmed SPIONs mean size of 7.08 ± 2.2
86 nm (Fig. 1a). The zeta potential was positive at 36.9 ± 0.51 mV (Fig. 1a). After a ten-fold
87 stock dilution with Milli-Q water, pH was increased to 7. Next, we proceeded to isolate
88 exosomes from the B16F10 melanoma cell line using the Exo-spin (CELL GS) protocol.
89 The MicroBCA (ThermoScientific) assay kit was used for total protein quantitation,
90 yielding $300 \mu\text{g/mL}$. Western blot analysis confirmed the presence of EV markers EEA1
91 and TSG101 (Fig. 1b). Finally, suspended exosomes were electroporated in 4 mm path
92 length electroporation cuvettes. A single pulse was applied to each exosome sample under
93 the high voltage setting and at an electric field of 0.75 kV/cm . After reisolating the labeled
94 exosomes with Exo-spin columns, DLS revealed an exosome population of an average
95 size of $106 \text{ nm} \pm 27.35$ and a mean zeta potential of -17.1 ± 0.53 mV (Fig. 1c). Fig. 1c
96 shows both B16F10 exosomes and exosomes electroporated with SPIONs as seen by
97 electron microscopy.

98 To evaluate the retrograde directional flow through the cervical and meningeal lymphatic
99 system, C57BL/6 mice (n=3 per condition) were injected *in vivo* with a 10 μ L solution of
100 either SPIONs (3200 μ g/mL) or SPION-loaded exosomes (1.67×10^{11} particles/mL).
101 These were compared with control mice with no injections (n=3). Animals were
102 anesthetized with 5% isoflurane for 5 min and kept under anesthesia with a nasal cannula
103 supplying 1%-2% isoflurane during the entire procedure. A syringe with a 30G needle
104 was loaded with 10 μ L of each solution and administered into the deep cervical lymph
105 node. To locate the lymph node, skin and subcutaneous tissue were dissected at the
106 midline of the neck, extending the field laterally at the supraclavicular area until both
107 mandibular glands were exposed. Glands were detached from the clavicle surface and
108 moved cranially. The sternocleidomastoid muscles were then displaced until the deep
109 cervical nodes, surrounded by adipose tissue, were identified. Euthanasia by
110 intraperitoneal sodium thiopental overdose (100 mg/kg) was performed 30 min after
111 injection. The head and neck were preserved by fixation with 4% paraformaldehyde for
112 MR imaging (Philips Achieva 1.5 T MR scanner) and histological analysis.

113 Both SPIONs and SPION-loaded exosomes revealed hypointense signals in the brain
114 ventricles and parenchyma, particularly in the T2* MRI maps (Fig. 2a). Hypointense
115 signals were also detected at the level of the neck where the injections were administered.
116 Retrograde directional flow of SPIONs injected into the deep cervical lymph node *in vivo*
117 was observed in staining of neck and head lymphatic vessels, including meningeal
118 lymphatics, in all mice (n=3) (Supplementary Fig. S1 and Supplementary Fig. S2c).
119 However, no staining was observed within the brain parenchyma with the Perls' Prussian
120 Blue technique. Iron detection through this staining method is prone to yield false
121 negatives, as the detection requires the accumulation of several hundreds of nm in
122 diameter¹⁰, which could hinder signals from SPIONs smaller than 10 nm diluted in the

123 volume of the brain parenchyma. Combined Perls' Prussian Blue staining and anti-
124 LYVE-1 (lymphatic vessel endothelial hyaluronan receptor-1) immunohistochemistry
125 revealed nanoparticles within the cervical lymphatic vessels towards the meningeal
126 lymphatic vessels in the *in vivo* retrograde directional flow experiments performed on all
127 C57BL/6 mice (n=3). No SPION staining was detected within arterial or venous
128 structures within the head and neck (Supplementary Fig. S3b). As expected, exosomes
129 loaded with SPIONS did not stain, indicating the presence of iron nanoparticles within
130 exosome membranes.

131 To evaluate the anterograde directional flow, we injected C57BL/6 mice (n=3 per
132 condition) *in vivo* with a 10 μ L solution of either SPIONS (3200 μ g/mL) or SPION-loaded
133 exosomes (1.67 \times 10¹¹ particles/mL). These were compared with control mice with no
134 injections. Animals were anesthetized with 5% isoflurane and kept under anesthesia with
135 a nasal cannula supplying 1% isoflurane during the entire procedure. A syringe with a
136 30G needle was loaded with 10 μ L of each solution and administered into the cisterna
137 magna; by placing the mouse in prone position, flexing the head at a 135° angle with the
138 body, and penetrating directly underneath and laterally to the end of the occipital bone
139 towards the foramen magnum through the intact skin. Euthanasia by intraperitoneal
140 sodium thiopental overdose (100 mg/kg) was performed 30 min after injection. The head
141 and neck were preserved by fixation with 4% paraformaldehyde for 1.5 Tesla MRI
142 scanner and histological analysis.

143 Both SPIONS and SPION-loaded exosomes showed hypointense signals of cervical
144 lymphatic structures after intracerebroventricular injections through the cisterna magna,
145 as seen in the T2w images and T2* maps (Fig. 2b). Anterograde directional flow in *in*
146 *vivo* procedures (n=3) of SPIONS after administration into the cisterna magna was

147 confirmed by the detection of Perls' Prussian Blue staining in cervical lymphatic vessels
148 in all mice (Supplementary Fig. S4). At the level of the head, the injection into the cisterna
149 magna also showed staining within the ventricles. As expected, exosomes loaded with
150 SPIONs did not stain, indicating the presence of iron nanoparticles within exosome
151 membranes.

152 Together, MRI imaging results indicate that the cervical and meningeal lymphatic system
153 can transport SPIONs and SPION-labeled exosomes both towards the thorax and in the
154 direction of the brain.

155

156 **Gold nanorods bidirectional motion through the cervical and meningeal** 157 **lymphatic system**

158 With MRI imaging suggesting the possibility of retrograde flow of SPIONs and SPION-
159 loaded exosomes towards the brain after a cervical administration, we further examined
160 other nanoparticles that could be more effectively assessed through histological
161 techniques in the brain parenchyma. This also allowed the evaluation of different
162 alternatives that can be subsequently explored in pharmacology and nanomedicine.
163 Therefore, we used gold nanorods functionalized with polyethylene glycol (GNR-PEG)
164 as described in Methods. GNR-PEG with a mean size of 49.1 ± 0.9 nm and mean zeta
165 potential of 45 ± 8 mV were obtained and measured by DLS and Nanoparticle Tracking
166 Analysis (NTA) (Fig. 1d). GNR-PEG morphology can be observed in the STEM image
167 seen in Fig. 1d. The GNR-PEG size distribution determined by STEM showed a length
168 of 34.6 ± 4.2 nm and a width of 11.4 ± 1.6 nm. The anterograde and retrograde directional
169 flow were evaluated in two scenarios with *post-mortem* or *in vivo* administrations of

170 GNR-PEG solutions in C57BL/6 mice (n=3 per condition) into the cisterna magna or the
171 deep cervical lymph node. These interventions were compared with control mice with no
172 injections (n=3).

173 *Post-mortem* procedures were performed using 50 μ L of GNR-PEG at a concentration of
174 1.71×10^{14} particles/mL. Dissections for identifying the deep cervical lymph node during
175 retrograde administrations followed the method described previously for *in vivo*
176 procedures. The head and neck were preserved by fixation with 4% paraformaldehyde for
177 histological Gold Enhancement (Nanoprobes GoldEnhance TM LM Kit) analysis.

178 Retrograde directional flow in *post-mortem* procedures (n=3) of gold nanorods after deep
179 cervical lymph node administration was confirmed by the detection of Gold Enhancement
180 staining at different CNS regions in all mice. These included the olfactory bulb, the brain
181 parenchyma, and within the meningeal lymphatic vessels (Fig. 3a). No staining was
182 detected within arterial or venous structures within the head and neck, ruling out other
183 sources of nanoparticle distribution to the brain in *post-mortem* GNR-PEG assays.
184 Control mice with no GNR-PEG administrations showed no Gold Enhancement staining
185 in any anatomical structure.

186 Anterograde directional flow in *post-mortem* procedures (n=3) of GNR-PEG after
187 administration into the cisterna magna was also confirmed by the detection of Gold
188 Enhancement staining in cervical lymphatic vessels in all mice, as well as in the
189 connective tissue of the neck (Fig. 5a). Gold nanoparticles were also identified in the
190 cervical spinal cord as well as its surrounding subdural space and associated peripheral
191 nerves (Fig. 5a). At the level of the head, the injection into the cisterna magna also showed
192 staining within lateral ventricles, the third ventricle, the olfactory bulb, and the optic
193 chiasm in all mice. No Gold Enhancement staining was observed in any anatomical
194 structure of the control mice that did not receive GNR-PEG administrations.

195 To investigate the directional flow of GNR-PEG under physiological conditions and to
196 minimize the potential impact of volume, we administered 10 μ L of GNR-PEG at a
197 concentration of 1.71×10^{14} particles/mL *in vivo*. The administration technique was as
198 previously described for deep cervical lymph node and cisterna magna injections.
199 Combined Gold Enhancement and anti-LYVE-1 immunohistochemistry revealed gold
200 nanoparticles within the cervical and meningeal lymphatic vessels in the *in vivo*
201 retrograde directional flow experiments performed on all C57BL/6 mice (n=3) (Fig. 4a).
202 GNR-PEG also reached the brain parenchyma through the retrograde flow from the
203 cervical lymphatic vessels in all mice (Fig. 4a). GNR-PEG were found staining within
204 anti-LYVE1 cervical lymphatic vessels towards the meningeal lymphatics
205 (Supplementary Fig. S2a). No staining was detected within arterial or venous structures
206 within the head and neck, ruling out other sources of nanoparticle distribution to the brain
207 in *in vivo* gold nanoparticle assays (Supplementary Fig. S3a). Anterograde directional
208 flow of gold nanoparticles after administration into the cisterna magna *in vivo* was
209 established by the detection of Gold Enhancement staining in cervical lymphatic vessels
210 in all mice (Fig. 6a). Gold Enhancement staining was not detected in any anatomical
211 structure of the control mice that did not undergo GNR-PEG administrations.
212 The results of histological analyses collectively suggest that the cervical and meningeal
213 lymphatic system is capable of bidirectional transportation of gold nanorods,
214 encompassing movement towards both the thorax and the brain.

215

216 **Chinese ink bidirectional motion through the cervical and meningeal**
217 **lymphatic system**

218 Chinese ink has been previously used for staining of lymphatic structures¹¹⁻¹³, which led
219 to its consideration for our evaluation on the bidirectional motion of nanoparticles through
220 the cervical and meningeal lymphatic system. Interestingly, Chinese ink (Artel, Santiago,
221 Chile) was characterized by DLS, which revealed nanoparticles with a mean (\pm SD) size
222 of 61.62 ± 4.84 nm and mean (\pm SD) surface zeta potential of -6.34 ± 0.63 mV (Fig. 1e),
223 which are measurements similar to the range values observed in purified exosomes. To
224 our surprise, we found that Chinese ink can also be stained with the Gold Enhancement
225 technique (Nanoprobes GoldEnhance TM LM Kit) used previously with GNR, confirmed
226 by the lack of staining of control mice brain parenchyma slides with no nanoparticle
227 administration. The anterograde and retrograde directional flow were evaluated after
228 *post-mortem* and *in vivo* administrations of Chinese ink solutions in C57BL/6 mice (n=3
229 per condition) in the cisterna magna and the deep cervical lymph node, respectively.
230 These were compared with control mice with no injections (n=3).

231 *Post-mortem* procedures were performed using 50 μ L of 10% Chinese ink (Artel,
232 Santiago, Chile). Dissections for identifying the deep cervical lymph node during
233 retrograde administrations followed the method described previously for procedures with
234 SPION-loaded exosomes. The head and neck were preserved by fixation with 4%
235 paraformaldehyde for histological Gold Enhancement (Nanoprobes GoldEnhance TM
236 LM Kit) analysis. Retrograde directional flow in *post-mortem* procedures (n=3) of
237 Chinese ink after deep cervical lymph node administration was confirmed by the
238 detection of Gold Enhancement staining at different CNS regions in all mice (Fig. 3b).
239 Staining was detected within the meningeal lymphatic vessels, the third ventricle, and
240 cortical regions near meningeal lymphatic vessels. No staining was detected within
241 arterial or venous structures within the head and neck, ruling out other sources of
242 nanoparticle distribution to the brain in *post-mortem* Chinese ink assays. In control mice

243 that did not undergo Chinese ink administrations, there was no presence of Gold
244 Enhancement staining in any anatomical structure.

245 Anterograde directional flow in post-mortem procedures (n=3) of Chinese ink
246 nanoparticles after administration into the cisterna magna was confirmed by the detection
247 of staining in cervical lymphatic vessels in all mice, as well as in connective tissue of the
248 neck (Fig. 5b). Chinese ink nanoparticles were also identified in the cervical spinal cord
249 as well as its surrounding subdural space (Fig. 5b). At the level of the head, the injection
250 into the cisterna magna also showed staining within lateral ventricles. The anatomical
251 structures of the control mice that did not receive Chinese ink administrations exhibited
252 no signs of Gold Enhancement staining.

253 To examine the Chinese ink directional flow under physiological conditions and reducing
254 the potential effects of volume, we conducted *in vivo* administrations of 10 μ L of 10%
255 Chinese ink (Artel, Santiago de Chile). The administration procedure followed the
256 previously established method for injections into the deep cervical lymph nodes and the
257 cisterna magna. Retrograde directional flow of *in vivo* procedures (n=4) was confirmed
258 in all mice after deep cervical lymph node administration. Combined Gold Enhancement
259 and anti-LYVE-1 immunohistochemistry showed Chinese ink within the meningeal
260 lymphatic vessels and cortical regions near these lymphatic structures (Fig. 4b). One
261 mouse died at minute two before the expected completion time of 30 min before
262 euthanasia. Nevertheless, after histological analysis of this specimen, Chinese ink
263 nanoparticles were identified in the meningeal lymphatic vessels and the brain
264 parenchyma. Chinese ink was found staining within anti-LYVE1 cervical lymphatic
265 vessels towards the meningeal lymphatics (Supplementary Fig. S2b). No staining was
266 detected within arterial or venous structures within the head and neck of two out of three
267 mice (Supplementary Fig. S3c). One mouse presented staining within the jugular vein but

268 not the carotid artery (Supplementary Fig. S3), which also indicates that the observed
269 nanoparticles at the meningeal lymphatic vessels and the brain parenchyma originate
270 mainly from the lymphatic system distribution and not through arterial circulation of
271 cardiac and other thoracic vessels. Anterograde directional flow in *in vivo* procedures
272 (n=3) after administration into the cisterna magna was confirmed by the detection of
273 staining in cervical lymphatic vessels in all mice (Fig. 6b). Chinese ink nanoparticles were
274 also identified in the subarachnoid space, the cervical spinal cord, and peripheral nerves
275 (Fig. 6b). No staining was observed in any anatomical structure of the control mice that
276 did not receive any administrations.

277 Taken together, the findings of histological analyses indicate that the cervical and
278 meningeal lymphatic system is capable of bidirectional transportation of Chinese ink
279 nanoparticles, involving movement towards both the thorax and the brain.

280

281 **Discussion**

282 We have shown evidence that suggests that the cervical and meningeal lymphatic system
283 can transport nanoparticles not only in the classically described lymphatic drainage
284 towards the thorax but can also serve as an access gate to the brain. SPIONs and SPION-
285 loaded exosomes were detected by MRI in the brain of C57BL/6 mice after deep cervical
286 lymph node administration *in vivo*. Gold nanorods and Chinese ink nanoparticles were
287 also identified within the meningeal lymphatic vessels and the brain parenchyma of mice
288 in the retrograde directional flow histological analysis from cervical injections in *post-*
289 *mortem* and *in vivo* procedures. Anterograde directional flow experiments from all
290 nanoparticle experiments also showed motion from the cisterna magna to the deep

291 cervical lymph nodes. Together, these indicate that the system allows for bidirectional
292 flow after administration.

293 Two pertinent factors to examine regarding this newly described retrograde lymphatic
294 flow towards the brain include alternative vascular pathways and the influence of pressure
295 exerted at the cervical injection site. The initial consideration, particularly in *in vivo*
296 assays, was whether nanoparticles in meningeal lymphatic vessels and the brain might
297 have originated from their distribution from the cervical lymphatic vessels, passing
298 through the jugular vein, the superior vena cava, the right atrium and ventricle of the
299 heart, through the pulmonary circulation, to the left atrium and ventricle of the heart, and
300 towards the carotid arteries before entering the cerebral circulation. This would entail that
301 nanoparticles would have been present in histological analyses within the jugular veins
302 and the common carotid arteries during cervical examinations. However, as previously
303 indicated, all *in vivo* SPION, GNR-PEG, and Chinese ink retrograde experiments
304 (collectively n=10) showed no staining of carotid arteries. Moreover, nine out of the ten
305 deep cervical lymphatic nanoparticle administrations showed no staining of jugular veins.
306 GNR-PEG and Chinese ink post-mortem retrograde injections (collectively n=6) also
307 concurred with these findings. Given that nanoparticles were indeed found staining within
308 anti-LYVE1 cervical lymphatic vessels towards the meningeal lymphatics, this data
309 supports the conclusion that nanoparticles reaching the brain were following a lymphatic
310 pathway.

311 It is important to consider that although the volume injected in *in vivo* procedures was
312 small (10 μ L) the pressure exerted at the cervical injection site could have been
313 significantly greater than the intranodal pressure, changing the fluid dynamics within the
314 lymph node. However, this relationship is complex to determine at this stage because
315 cervical intranodal pressures have not yet been established. Previous studies have

316 analyzed intranodal pressure of other anatomical locations in mice with different results.

317 Bouda *et al.* described intranodal popliteal and axillary pressures of an average 9 and 12
318 cmH₂O, respectively, in normal wild type mice¹⁴. Kato *et al.* and Miura *et al.* used
319 MXH10/Mo-lpr/lpr, a mouse model that develops systemic swelling of lymph nodes,
320 obtaining lower values for intranodal pressures^{15,16}. Miura *et al.* showed that mean
321 pressures within subiliac and axillary nodes were 0.10 cm H₂O and 0.03 cm H₂O,
322 respectively¹⁶. When examining their data, Kato *et al.* found subiliac lymph nodes with a
323 mean pressure of 1.63 cm H₂O¹⁵. Finally, Rhoner *et al.* have even described
324 subatmospheric pressures of -1 cm H₂O in axillary and brachial lymph nodes of immune-
325 competent C57Bl/6 mice¹⁷.

326 Another factor to consider is that the pressure that can be produced for any syringe at a
327 predetermined speed depends on the force applied divided by the surface area of the
328 syringe plunger¹⁸. While humans can apply considerable forces to a plunger, with an
329 average maximum force of 79N, this implies that a lower injection force is needed to
330 generate equivalent pressures when syringe caliber is reduced¹⁸. Therefore, injections
331 performed by a human operator may differ considerably in force and pressure exerted
332 depending on the syringe caliber and intranodal state. Future research should address
333 cervical intranodal pressures and the biomechanics of fluid administration to better
334 understand the fluid dynamics of this anatomical region.

335 It should be highlighted that mice and human functional anatomy of dural lymphatics has
336 been found to be conserved. Jacob *et al.* found similar circa-cerebral meningeal lymphatic
337 architecture and relationship with dural venous sinuses, with limited connections with the
338 nasal lymphatic bed, and a conserved pattern of cavernous sinus associated vessels
339 penetrating the skull through several bilateral foramina of the skull base¹⁹. They
340 emphasized that murine models are relevant to predict the pathophysiological

341 contribution of the dural lymphatic system and test lymphatic-targeted drugs in
342 neurological disease models¹⁹. Here we evaluated different nanoparticles with
343 pharmacological applications through these lymphatic vessels and point to a bidirectional
344 potential that opens the possibility of a new access to the brain. Our experiments therefore
345 can also give insights into possible human fluid dynamics that should be explored.

346 The exact drivers of this bidirectional flow could involve pressure changes within the
347 lymphatic vessels and nodes in a system with few valves and no smooth muscle cell lining
348 when entering the head. This means that anatomical position changes or physiological
349 changes in pressure surrounding lymphatic tissues could create conditions favoring
350 motion in the retrograde or anterograde flow when necessary. Pathological conditions
351 producing pressure changes in or around lymphatic tissues could also promote and
352 determine directional flow in the cervical and meningeal lymphatic system. Particularly
353 in mammals such as humans that experience radical changes in head and neck dynamics
354 with the upright and recumbent position, the possibility of bidirectional lymphatic flow
355 could be relevant in many physiological processes such as during sleep.

356 The pharmacological implications of our findings could be important in the field of
357 nanomedicine. The methodology used for labeling exosomes in this project could be
358 modified to carry drugs through the lymphatic system and improve specific distribution
359 to the brain. Further studies can evaluate if an interstitial injection in the neck could
360 deliver enough nanoparticles through this system to develop noninvasive treatment
361 procedures, as homing characteristics to lymph nodes have been seen in previous studies
362 of SPION-loaded exosomes to popliteal lymphatics²⁰. Given that cancer exosomes could
363 potentially move towards the brain through this pathway, and that an anecdotal case report
364 has suggested that cancer cells can move in a retrograde lymphatic manner in other organs
365 even in valve-equipped lymphatic vessels²¹, mortality in these patients would be

366 substantially reduced if cerebral metastatic mechanisms could be prevented. In this
367 regard, future investigations can delve into cancer exosome lymphatic inhibitors, by
368 regulating or blocking movement through these vessels.

369 In neurodegenerative diseases, the use of promising peptide inhibitors of polyglutamine
370 aggregation (QBP1, NT17, and PGQ9P2) in Huntington's disease has been hindered
371 precisely because of poor BBB penetration and low bioavailability²². A cervical
372 lymphatic route could be an attractive pathway to evaluate more efficient means for
373 accessing the brain without complex nanoparticle constructions. A recent publication by
374 Dominy et al. has associated *P. gingivalis* with Alzheimer's disease²³. Bacterial DNA and
375 RNA found in the brain of patients with this disease could be transported by exosomes
376 through the lymphatic system. Other rapidly rising fields, such as the connection between
377 the gut microbiota with diseases such as autism, neurological disorders like multiple
378 sclerosis, and mental disorders²⁴, could potentially involve retrograde lymphatic flow of
379 exosomes and different nanoparticles towards the brain.

380 In conclusion, the cervical and meningeal lymphatic system can serve as an access route
381 for nanoparticles to the brain, allowing bidirectional flow. This newly discovered
382 mechanism for the meningeal lymphatic pathway could be exploited in the theranostic
383 field of nanomedicine to deliver drugs for the treatment of various neurological diseases.
384 Additionally, our findings using exosomes from the metastatic B16F10 melanoma cell
385 line could aid in a more profound comprehension of brain metastasis pathophysiology
386 regarding the participation of extracellular vesicles.

387

388 **Methods**

389 **Superparamagnetic iron oxide nanoparticle synthesis**

390 Samples of iron oxide nanoparticles were prepared by a chemical coprecipitation process
391 from $\text{FeCl}_3 \cdot 6\text{H}_2\text{O}$ (432 mg), and $\text{FeCl}_2 \cdot 4\text{H}_2\text{O}$ (159mg). Ferric and ferrous chlorides
392 were dissolved in 19mL of Milli-Q water with vigorous magnetic agitation at room
393 temperature. One mL of ammonium (25%) was added to the solution with vigorous
394 magnetic agitation for 10 min. Then, three washes with Milli-Q water were performed,
395 maintaining iron-nanoparticles in an 80 mL beaker with a neodymium magnet.
396 Subsequently, the superparamagnetic iron oxide nanoparticles were washed twice with
397 nitric acid. Finally, iron-nanoparticles were dissolved in Milli-Q water for later
398 characterization. A ten-fold stock dilution with Milli-Q water increased pH to 7.

399 **Characterization of iron oxide nanoparticles**

400 The morphology and particle size of SPIONs was investigated by scanning transmission
401 electron microscopy (STEM, FEI Quanta 250) operating at 10.00 kV. The Malvern
402 Zetasizer was used for dynamic light scattering size determination and superficial charge.
403 SPIONs concentrations obtained from the synthesis were measured using Nanoparticle
404 Tracking Analysis by NanoSight. pH of the solutions was determined by pH meter. The
405 concentration of iron nanoparticles in solutions was determined by inductively coupled
406 plasma mass spectrometry (ICP MS).

407 **Cell culture and exosome purification**

408 The B16F10 melanoma cell line was cultured using Exo-free medium. The isolated
409 supernatant was centrifuged twice: first at 300g for 10 min at 4 °C and then at 16000g for
410 20 min at 4 °C. Filtration followed through 0.2 μm pore size filters. For purification, an
411 Exo-spin (CELL GS) protocol was conducted. Extracellular vesicles were first

412 concentrated using a 10 kDa filter to separate larger cellular structures and then diluted
413 in filtered PBS (0.1 μ m pore size). The samples were then precipitated using Exo-spin
414 Buffer overnight and then centrifuged for 1 hour at 16000g. The obtained pellet with
415 exosomes was resuspended in 100 μ L of PBS. Exo-spin columns were prepared with two
416 consecutive washes with 250 μ L of PBS at 50g for 10 sec. Finally, diluted exosomes were
417 passed through the column using 200 μ L of PBS and collected in microcentrifuge tubes.

418 **Nanoparticle internalization to exosomes**

419 Suspended exosomes, purified as previously described, were electroporated in 4 mm path
420 length electroporation cuvettes. A single pulse was applied to each exosome sample under
421 the high voltage setting and at an electric field of 0.75 kV/cm. Following electroporation,
422 nanoparticle-loaded exosomes were reisolated using the Exo-spin protocol.

423 **Characterization of exosomes**

424 Exosomes were characterized by protein concentration (microBCA assay), shape by
425 scanning transmission electron microscopy (STEM, FEI Quanta 250), concentration and
426 size with NanoSight. Western blot analysis was performed to determine the presence of
427 exosome markers EEA1 and TSG101. Cell extracts and exosomes were lysed at 4°C in
428 lysis buffer (50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100)
429 supplemented with a cocktail of protease inhibitors [416 μ M 4-(2-
430 Aminoethyl)benzenesulfonyl fluoride, 0.32 μ M Aprotinin, 16 μ M Bestatin, 5.6 μ M E-64,
431 8 μ M Leupeptin and 6 μ M Pepstatin A; Sigma-Aldrich] and phosphatase inhibitors (1
432 mM NaF, 0,3 mM Na2P2O7 and 1 mM Na3VO4; Sigma-Aldrich). Cell lysates were
433 collected and lysed for 30 min at 4°C in rotation. Extracts were further centrifuged for 20
434 min at 13.000xg at 4°C. Samples with an equivalent amount of protein were denatured at
435 65°C for 5 min with Laemmli SDS- PAGE sample buffer and analyzed by SDS-PAGE.

436 **Gold nanorods synthesis**

437 For the preparation of a seed solution of gold nanoparticles, a cold-prepared sodium
438 borohydride solution (600 μ L, 0.01 M) was added to 250 μ L of 0.01 M HAuCl₄ in 9.75
439 mL of 0.1 M cetyltrimethylammonium bromide (CTAB) in a flask, under vigorous
440 magnetic stirring. The seed solution was kept at 27 °C for 2 h, before use. After that, 55
441 μ L of 0.1 M ascorbic acid solution (Sigma Chemical Co., St. Louis, MO, USA) was added
442 to a growth solution containing 75 μ L of 0.01 M AgNO₃ (Sigma Chemical Co., St. Louis,
443 MO, USA), 9.5 mL of 0.1 M CTAB, and 500 μ L of 0.01 M HAuCl₄. Further, 250 μ L of
444 0.1 M HCl and 12 μ L of the previously prepared seed solution were added. The solution
445 was incubated for 10 min at 27 °C and then centrifuged at a 7030g for 15 min. After
446 centrifugation, the supernatant was removed, and the pellet was resuspended in milli-Q
447 water.

448 The GNRs were conjugated with asymmetrical PEGs that have a thiol group (SH) at one
449 end, and a methoxy (HS-PEG-OMe MW 5K, JenKem Technology, TX, USA) or a
450 carboxylic acid group (HS-PEG-COOH MW 5K, JenKem Technology, TX, USA) at the
451 other. A total of 50 μ L of 1 mM HS-PEG-OMe in a water solution was added to 10 mL
452 of 1 nM GNRs-CTAB and stirred for 10 min. After centrifugation at RCF of 16,100g for
453 10 min, the pellet was resuspended in 10 mL of milli-Q water. Subsequently, 300 μ L of
454 1 mM HS-PEG-COOH solution was added into the water solution, and the suspension
455 obtained was stirred for one hour. Further, the suspension was centrifuged at 16,100g for
456 10 min, and the pellet was resuspended in 100 μ L of 0.1 M 2-(N-
457 morpholino)ethanesulfonic acid (MES) buffer pH 5.5. Subsequently, 0.2 mg of ethyl-3-
458 (3-dimethylaminopropyl)-carbodiimide (EDC) and 0.5 mg of sulfo-N-
459 hydroxysuccinimide (Sulfo-NHS) in 100 μ L of MES were added and mixed for 15 min.

460 The excess of EDC/Sulfo-NHS was subsequently removed by centrifugation at 16,100g
461 for 10 min. The resulting pellet was dissolved in phosphate buffered saline (PBS) pH 7.4.
462 The final solution was stirred overnight and centrifuged again the next day, at 16,100× g
463 for 10 min. Then, the pellet was resuspended in milli-Q water and stored at 4 °C.

464 **Characterization of gold nanorods and Chinese ink**

465 The morphology and particle size of SPIONs was investigated by scanning transmission
466 electron microscopy (STEM, FEI Quanta 250) operating at 10.00 kV. Dynamic light
467 scattering system for nanoparticle analysis was used for size determination. The
468 superficial charge was measured by a Zeta Potential Analyzer. Concentrations obtained
469 from the synthesis were measured using Nanoparticle Tracking Analysis by NanoSight.
470 Chinese ink was obtained from commercially available ARTEL and used at a
471 concentration of 10%.

472 **Experimental design for retrograde and anterograde directional flow evaluation in
473 mice**

474 For *post-mortem* anterograde evaluations different nanoparticle solutions (gold nanorods
475 and Chinese ink) were injected into the cisterna magna of C57BL/6 mice (n=3 per
476 condition), after euthanasia by ketamine (300mg/kg) and xylazine (30 mg/kg) overdose.
477 These were compared with control mice with no injections (n=3). A syringe with a 30G
478 needle was loaded with 50 µL of each solution and administered in the cisterna magna;
479 by placing the mouse in prone position, flexing the head at a 135° angle with the body,
480 and penetrating directly underneath and laterally to the end of the occipital bone towards
481 the foramen magnum through the intact skin. The head and neck were preserved by
482 fixation with 4% paraformaldehyde for histological Gold Enhancement (Nanoprobes
483 GoldEnhance TM LM Kit) analysis.

484 For *post-mortem* retrograde flow evaluation different nanoparticle solutions (gold
485 nanorods and Chinese ink) were injected into the deep cervical lymph node of C57BL/6
486 mice (n=3 per condition), after euthanasia by intraperitoneal ketamine (300mg/kg) and
487 xylazine (30 mg/kg) overdose. These were compared with control mice with no injections
488 (n=3). A syringe with a 30G needle was loaded with 50 μ L of each solution and
489 administered into the deep cervical lymph node. To locate the lymph node, skin and
490 subcutaneous tissue were dissected at the midline of the neck, extending the field laterally
491 at the supraclavicular area until both mandibular glands were exposed. Glands were
492 detached from the clavicle surface and moved cranially. The sternocleidomastoid muscles
493 were then displaced until the deep cervical nodes, surrounded by adipose tissue, were
494 identified. The head and neck were preserved by fixation with 4% paraformaldehyde for
495 histological Gold Enhancement (Nanoprobes GoldEnhance TM LM Kit) analysis.

496 For *in vivo* anterograde flow evaluation different nanoparticle solutions (SPIONs,
497 exosomes loaded with SPIONs, gold nanorods, and Chinese ink) were injected into the
498 cisterna magna of C57BL/6 mice (n=3 per condition). These were compared with control
499 mice with no injections (n=3). Animals were anesthetized with 5% isoflurane and kept
500 under anesthesia with a nasal cannula supplying 1% isoflurane during the entire
501 procedure. A syringe with a 30G needle was loaded with 10 μ L of each solution and
502 administered in the cisterna magna; by placing the mouse in prone position, flexing the
503 head at a 135⁰ angle with the body, and penetrating directly underneath and laterally to
504 the end of the occipital bone towards the foramen magnum through the intact skin.
505 Euthanasia by intraperitoneal sodium thiopental overdose (100 mg/kg) was performed 30
506 min after injection. The head and neck were preserved by fixation with 4%
507 paraformaldehyde for MRI and histological analysis.

508 For *in vivo* retrograde flow evaluation different nanoparticle solutions (SPIONs,
509 exosomes loaded with SPIONs, gold nanorods, and Chinese ink) were injected into the
510 deep cervical lymph node of C57BL/6 mice (n=3 per condition; Chinese ink n=4). These
511 were compared with control mice with no injections (n=3). Animals were anesthetized
512 with 5% isoflurane and kept under anesthesia with a nasal cannula supplying 1%
513 isoflurane during the entire procedure. A syringe with a 30G needle was loaded with 10
514 μ L of each solution and administered into the deep cervical lymph node. To locate the
515 lymph node, skin and subcutaneous tissue were dissected at the midline of the neck,
516 extending the field laterally at the supraclavicular area until both mandibular glands were
517 exposed. Glands were detached from the clavicle surface and moved cranially. The
518 sternocleidomastoid muscles were then displaced until the deep cervical nodes,
519 surrounded by adipose tissue, were identified. Euthanasia by intraperitoneal sodium
520 thiopental overdose (100 mg/kg) was performed 30 min after injection. The head and
521 neck were preserved by fixation with 4% paraformaldehyde for MRI and histological
522 analysis.

523 The image acquisition was performed with a clinical Philips Achieva 1.5T MR scanner
524 (Philips Healthcare, Best, Netherlands) and a single-loop surface coil (diameter=47 mm).
525 Perls' Prussian blue was used for iron tissular content analysis. Gold Enhancement
526 (Nanoprobes GoldEnhance TM LM Kit) was used for GNR and Chinese ink analysis.

527 **Formalin-fixed, paraffin-embedded (FFPE) tissue processing for histology and
528 special stains**

529 Whole brain and neck samples were fixed for 24 hours on 4% PFA and then processed
530 for paraffin embedding. Coronal sections of 4 μ m were cut from each paraffin block, then
531 sections were dried, deparaffinized and re-hydrated on distilled water. Gold Enhancement

532 was performed with Nanoprobes GoldEnhance TM LM Kit according to manufacturer's
533 instructions. Once this procedure was done, the sections were counterstained with eosin.
534 Nanoparticles were illustrated by Perls' Prussian blue staining for iron content²⁵. Tissue
535 was deparaffinized and hydrated with distilled water, immersed in 10% aqueous
536 potassium ferrocyanide and 20% aqueous hydrochloric acid for 20 min. Images of the
537 stained slides were taken with an ICC50W Camera on a DM500 Leica Microscope at 4x,
538 10x, 20x, and 40x magnification.

539 Immunohistochemistry analysis was performed on the different sections with joint
540 staining with Gold Enhancement and Perls' Prussian blue to evaluate colocalization with
541 an endothelial marker of lymphatic vessels (LYVE-1). After deparaffinization, antigen
542 recovery was done using buffer Tris-EDTA pH 9.0 in a pressure cooker for 20 min.
543 Endogenous peroxidase was blocked with 3% hydrogen peroxide for 15 min. Blocking
544 of non-specific binding was performed with 3% BSA/PBS for 30 min. Overnight
545 incubation at 4°C with the primary antibody, Recombinant Anti-LYVE1 antibody
546 [EPR21771] (ab218535), was done at 1:5000 dilution. This was followed by incubation
547 with the secondary antibody, Goat Anti-Rabbit IgG H&L (HRP) ab6721 (Abcam), for 1
548 hour at 25°C. Each slide was then developed with DAB for 1 min. Lung, gall bladder,
549 and spleen tissues were used as controls. Quantification of histological images were
550 performed with the software Image J.

551 **Animals**

552 All procedures complied with regulations of the Research Ethics Committee of the
553 Pontificia Universidad Católica de Chile. 49 Male C57BL/6 mice were purchased from
554 the animal facility of the Pontificia Universidad Católica de Chile and housed in
555 temperature and humidity-controlled rooms, maintained on a 12h/12h light/dark cycle.

556 Only adult animals (eight to ten weeks) were used in this study. Nine animals were
557 assigned to *post-mortem* anterograde directional flow experiments, nine to *post-mortem*
558 retrograde directional flow analyses, 15 to *in vivo* anterograde directional flow
559 experiments, and 16 to the *in vivo* retrograde directional flow group. The sample size was
560 chosen following similar, previously published research ^{4,20,26,27}. Animals from different
561 cages in the same experimental group were selected to assure randomization.

562 **Ethical approval**

563 All experimental protocols were approved by the Research Ethics Committee of the
564 Pontificia Universidad Católica de Chile, the CEC-CAA (Comité Ético Científico para el
565 Cuidado de Animales y Ambiente), with Protocol ID: 190826005. This study was
566 conducted according to ARRIVE guidelines.

567

568 **References**

- 569 1. Hershenhouse, K. S., Shauly, O., Gould, D. J. & Patel, K. M. Meningeal Lymphatics: A
570 Review and Future Directions From a Clinical Perspective. *Neurosci Insights* **14**,
571 1179069519889027 (2019).
- 572 2. Jiang, H. *et al.* Overview of the meningeal lymphatic vessels in aging and central
573 nervous system disorders. *Cell Biosci* **12**, 202 (2022).
- 574 3. Ali Khan, A., Mudassir, J., Mohtar, N. & Darwis, Y. Advanced drug delivery to the
575 lymphatic system: lipid-based nanoformulations. *Int J Nanomedicine* **8**, 2733–2744
576 (2013).
- 577 4. Louveau, A. *et al.* Structural and functional features of central nervous system
578 lymphatic vessels. *Nature* **523**, 337–341 (2015).
- 579 5. Aspelund, A. *et al.* A dural lymphatic vascular system that drains brain interstitial fluid
580 and macromolecules. *J Exp Med* **212**, 991–999 (2015).
- 581 6. Théry, C. *et al.* Minimal information for studies of extracellular vesicles 2018
582 (MISEV2018): a position statement of the International Society for Extracellular Vesicles
583 and update of the MISEV2014 guidelines. *J Extracell Vesicles* **7**, (2018).

584 7. Kalluri, R. & LeBleu, V. S. The biology, function, and biomedical applications of
585 exosomes. *Science* **367**, (2020).

586 8. Ramos-Zaldívar, H. M. *et al.* Extracellular vesicles through the blood-brain barrier: a
587 review. *Fluids Barriers CNS* **19**, 60 (2022).

588 9. Vangijzegem, T. *et al.* Superparamagnetic Iron Oxide Nanoparticles (SPION): From
589 Fundamentals to State-of-the-Art Innovative Applications for Cancer Therapy.
590 *Pharmaceutics* **15**, (2023).

591 10. Curdt, F. *et al.* Prussian blue technique is prone to yield false negative results in
592 magnetoreception research. *Sci Rep* **12**, 8803 (2022).

593 11. CAO, Q., WANG, S., XU, K., LIU, X. & LIU, L. Experimental Study of Chinese Ink as a New
594 Type of Dye Tracer in Sentinel Lymph Node Biopsy. *The Chinese-German Journal of*
595 *Clinical Oncology* **5**, 36–39 (2006).

596 12. Mori, K. Identification of lymphatic vessels after intra-arterial injection of dyes and
597 other substances. *Microvasc Res* **1**, 268–274 (1969).

598 13. Kato, S., Shirai, Y., Sakamoto, M., Mori, S. & Kodama, T. Use of a Lymphatic Drug
599 Delivery System and Sonoporation to Target Malignant Metastatic Breast Cancer Cells
600 Proliferating in the Marginal Sinuses. *Sci Rep* **9**, 13242 (2019).

601 14. Bauta, E. M. *et al.* Measuring intranodal pressure and lymph viscosity to elucidate
602 mechanisms of arthritic flare and therapeutic outcomes. *Ann N Y Acad Sci* **1240**, 47–52
603 (2011).

604 15. Kato, S. *et al.* Intranodal pressure of a metastatic lymph node reflects the response to
605 lymphatic drug delivery system. *Cancer Sci* **111**, 4232–4241 (2020).

606 16. Miura, Y. *et al.* Early diagnosis of lymph node metastasis: Importance of intranodal
607 pressures. *Cancer Sci* **107**, 224–232 (2016).

608 17. Rohner, N. A. *et al.* Lymph node biophysical remodeling is associated with melanoma
609 lymphatic drainage. *FASEB J* **29**, 4512–4522 (2015).

610 18. Vo, A., Doumit, M. & Rockwell, G. The Biomechanics and Optimization of the Needle-
611 Syringe System for Injecting Triamcinolone Acetonide into Keloids. *J Med Eng* **2016**,
612 5162394 (2016).

613 19. Jacob, L. *et al.* Conserved meningeal lymphatic drainage circuits in mice and humans. *J*
614 *Exp Med* **219**, (2022).

615 20. Hu, L., Wickline, S. A. & Hood, J. L. Magnetic resonance imaging of melanoma exosomes
616 in lymph nodes. *Magn Reson Med* **74**, 266–271 (2015).

617 21. Oshiro, H. *et al.* Retrograde Lymphatic Spread of Esophageal Cancer: A Case Report.
618 *Medicine* **94**, e1139 (2015).

619 22. Joshi, A. S., Singh, V., Gahane, A. & Thakur, A. K. Biodegradable Nanoparticles
620 Containing Mechanism Based Peptide Inhibitors Reduce Polyglutamine Aggregation in
621 Cell Models and Alleviate Motor Symptoms in a Drosophila Model of Huntington’s
622 Disease. *ACS Chem Neurosci* **10**, 1603–1614 (2019).

623 23. Dominy, S. S. *et al.* Porphyromonas gingivalis in Alzheimer's disease brains: Evidence for
624 disease causation and treatment with small-molecule inhibitors. *Sci Adv* **5**, eaau3333
625 (2019).

626 24. Ahmadi Badi, S. *et al.* Microbiota-Derived Extracellular Vesicles as New Systemic
627 Regulators. *Front Microbiol* **8**, 1610 (2017).

628 25. Grauer, O. *et al.* Combined intracavitary thermotherapy with iron oxide nanoparticles
629 and radiotherapy as local treatment modality in recurrent glioblastoma patients. *J
630 Neurooncol* **141**, 83–94 (2019).

631 26. Da Mesquita, S. *et al.* Functional aspects of meningeal lymphatics in ageing and
632 Alzheimer's disease. *Nature* **560**, 185–191 (2018).

633 27. Ahn, J. H. *et al.* Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid.
634 *Nature* **572**, 62–66 (2019).

635

636 Acknowledgements

637 We thank Sergio Alvarez for his collaboration with electroporation equipment. The
638 authors acknowledge Wilda Olivares, Andrés Rodriguez, Pablo Santoro, Ignacio
639 Wichmann, Rocío Bustos, Leticia Gonzalez, Miguel Urrutia, Mauricio Cuello, and Flavia
640 Zacconi for comments and assistance. This study was supported by ANID
641 BECAS/DOCTORADO NACIONAL 21211334; ANID - Millennium Science Initiative
642 Program - ICN2021_004, ANID – FONDECYTs 1220922, 1231773 and 1211482;
643 CONICYT-FONDAP 15130011, FONDEQUIP NTA (EQM160157), and FONDEQUIP
644 SEM (EQM170111).

645 Author contributions

646 H.M.R.Z. and I.P. conceived the study. H.M.R.Z., I.P., E.S.H. A.H.C., M.J.K., C.P.Y.,
647 J.E.O., A.N.T., P.V.B., and M.E.A. designed the experiments. H.M.R.Z., I.P., E.S.H.,
648 P.J.G., A.N.T., P.V.B., V.A.C., E.A.M., and A.R. performed preparation and
649 characterization of nanoparticles. H.M.R.Z., C.P.Y., and C.M. conducted mouse
650 experiments. D.S. performed histological analysis and immunohistochemistry

651 techniques. J.E.O. conducted cytotoxicity analysis. All authors participated in data
652 analysis. H.M.R.Z. wrote the paper and all the authors contributed to its editing.

653 **Data availability**

654 The data that support the findings of this study are available from the corresponding
655 author upon reasonable request.

656 **Competing interests**

657 The authors declare no competing interests.

658 **Corresponding author**

659 Correspondence and requests for materials should be addressed to Héctor M. Ramos-
660 Zaldívar. Primary email: hmramos@uc.cl.

661

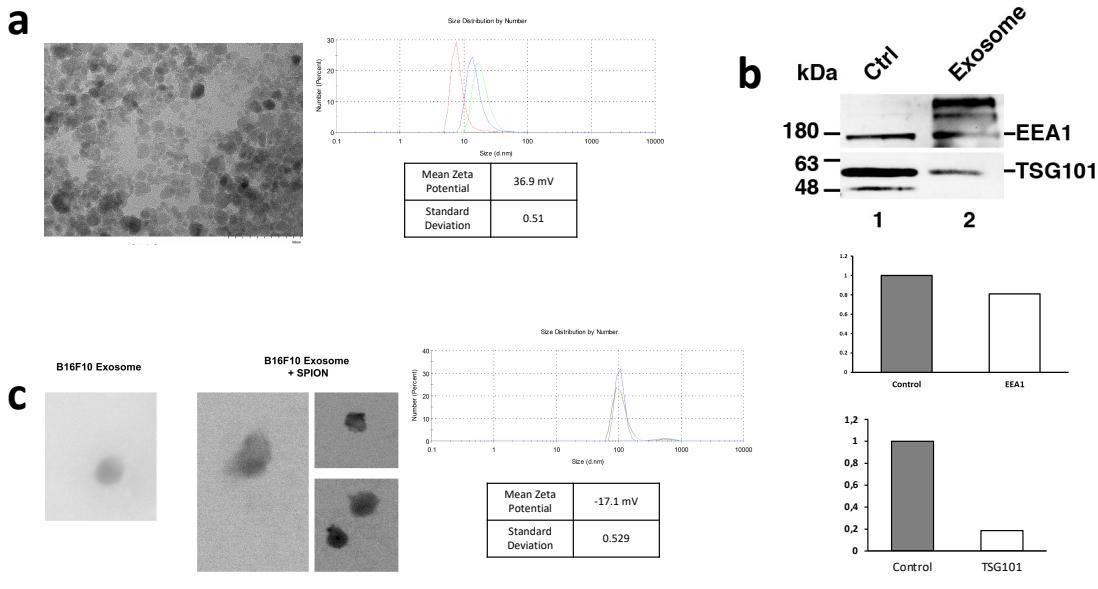
662

663

664

665

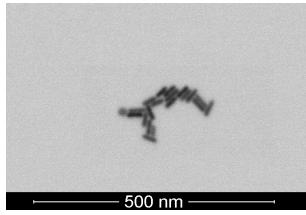
666


667

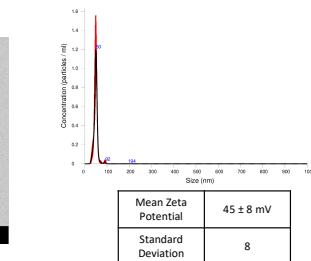
668

669

670


671 **Figures and figure legends**

672

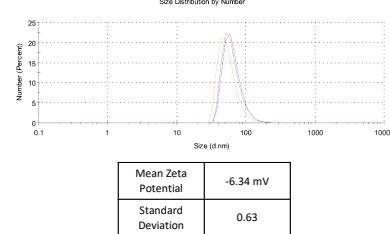

673

d

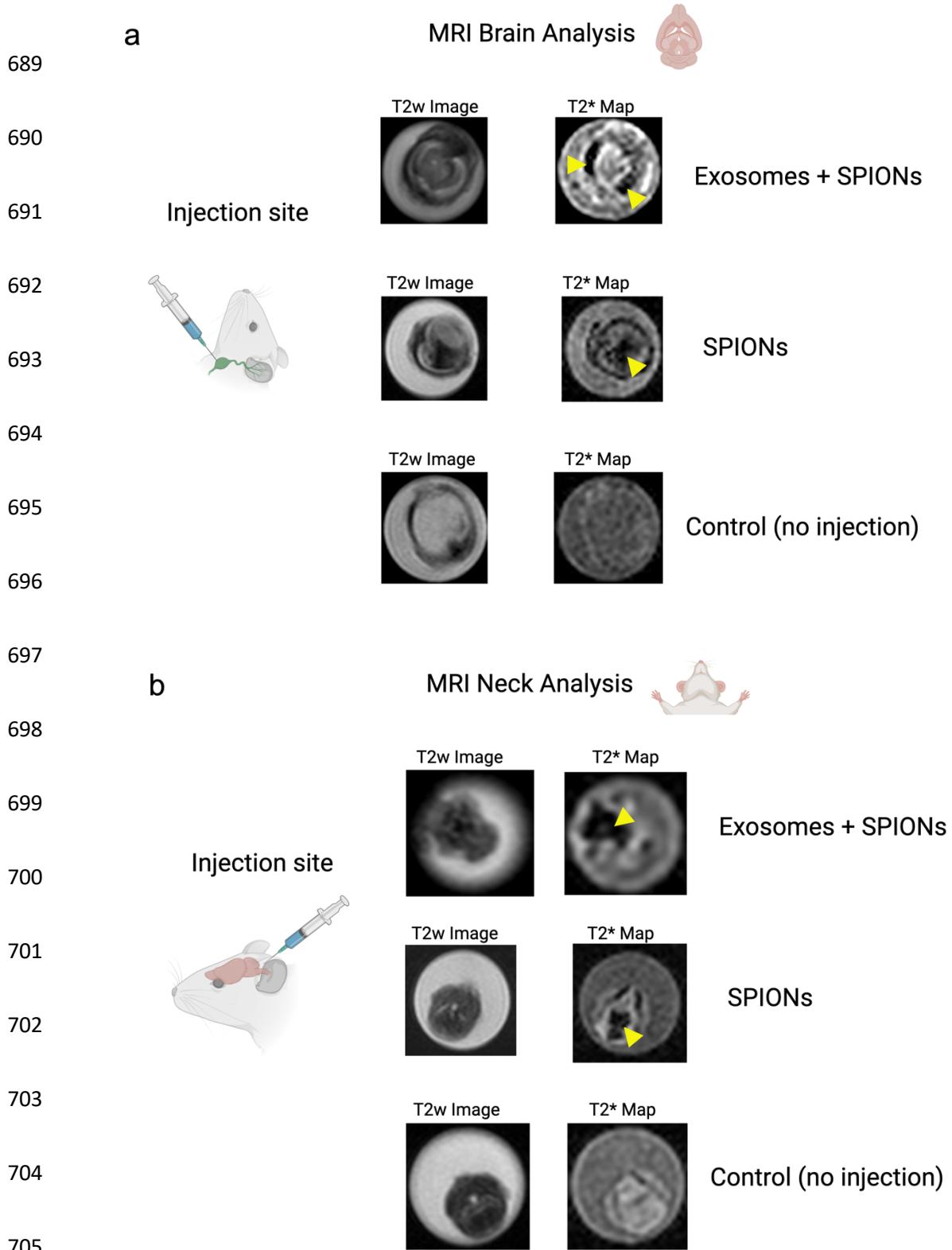
674

675

676


677

e

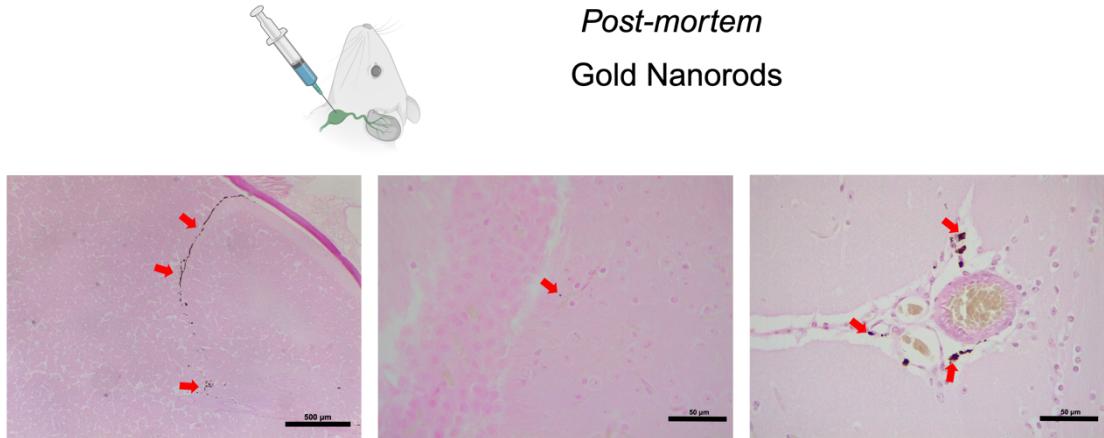

678

679

680

681 **Fig. 1: Characterization of nanoparticles.** **a**, STEM visualization of SPIONs; size distribution and zeta potential measured by DLS. **b**, STEM visualization of exosomes with and without SPIONs labeling; size distribution and zeta potential measured by DLS. **c**, Western blot of EV markers EEA1 and TSG101 on exosomes from the B16F10 melanoma cell line. Control was performed using a cellular extract from the B16F10 cell line. Quantification of EEA1 and TSG101 with respect to control is shown. **d**, STEM visualization of gold nanorods; size distribution measured by NTA and zeta potential determined by DLS. **e**, STEM visualization of Chinese ink; size distribution and zeta potential measured by DLS.

706 **Fig. 2: Directional flow analysis by MRI of SPIONs and SPION-labeled exosomes through the**
707 **cervical and meningeal lymphatic system. a, Retrograde Directional Analysis:** Brain images
708 **reveal the detection of nanoparticles in this region 30 minutes after injection into the deep**
709 **cervical lymph node (n=3), particularly evident in the T2* map (yellow arrowheads).** These two
710 **conditions were compared to control mice with no injected solutions (n=3). b, Anterograde**
711 **Directional Analysis:** Neck images reveal the detection of nanoparticles in this region 30 minutes
712 **after injection into the cisterna magna (n=3), particularly evident in the T2* map (yellow arrowheads).**
713 **These two conditions were compared to control mice with no injected solutions (n=3).**

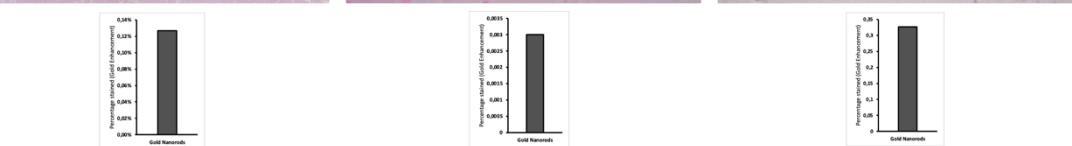

714

Histological Brain Analysis

715

a **Injection site**

717

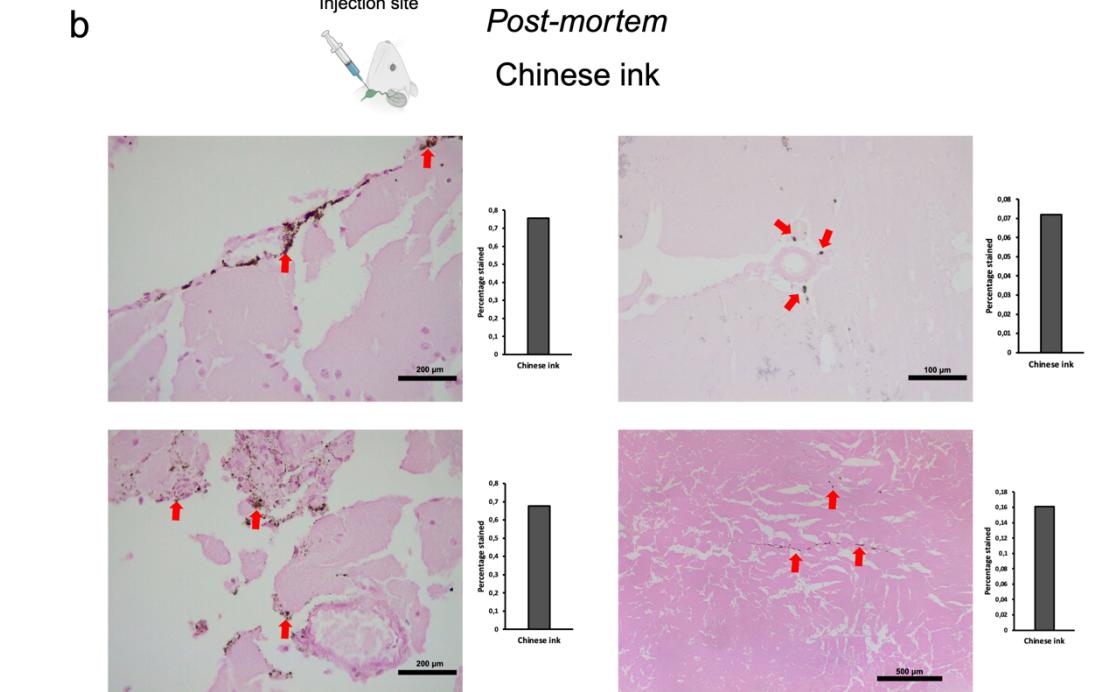

718

719

720

721

722



723

b **Injection site**

Post-mortem

Chinese ink

725

726

727

728

729

730

731

Fig. 3: Retrograde directional flow analysis by brain histology after *post-mortem* nanoparticle administration into the deep cervical lymph node. a, Gold nanorods were identified by the Gold Enhancement technique in the olfactory bulb, the brain parenchyma, and the meningeal lymphatic vessels (red arrows) (n=3). **b**, Chinese ink nanoparticles stained the meningeal lymphatic vessels, the brain parenchyma, and the third ventricle wall (red arrows) (n=3).

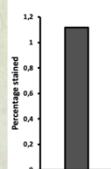
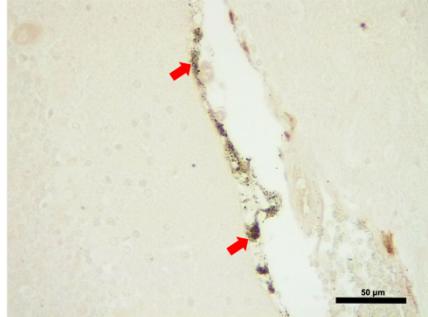
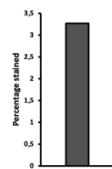
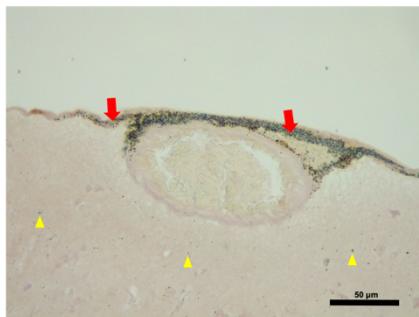
737

Histological Brain Analysis

738

a

Injection site

In vivo

Gold Nanorods

739

740

741

742

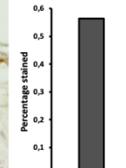
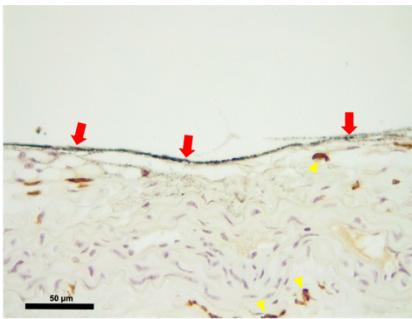
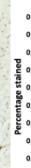
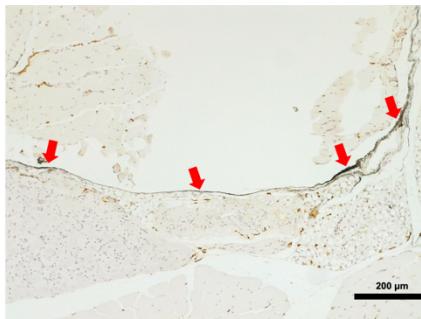
743

744

745

b

Injection site





In vivo

Chinese ink

746

747

748

749

750

751

752

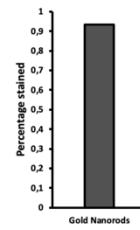
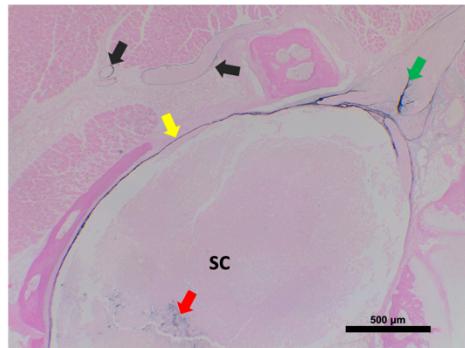
753

Fig. 4: Retrograde directional flow analysis by brain histology after *in vivo* nanoparticle administration into the deep cervical lymph node. a, Combined Gold Enhancement and anti-LYVE-1 immunohistochemistry showed gold nanorods within meningeal lymphatic vessels (red arrows) and the brain parenchyma (yellow arrows), with no staining within cerebral arteries (n=3). **b**, Meningeal lymphatic vessels stained with anti-LYVE-1 immunohistochemistry and colocalized with Chinese ink nanoparticles (red arrows). Chinese ink was also identified in the brain parenchyma (yellow arrows) (n=4). LYVE-1: lymphatic vessel endothelial hyaluronan receptor-1.

761

762

Histological Neck Analysis

763

a

Injection site
Post-mortem
Gold Nanorods

764

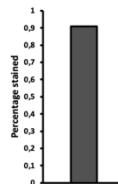
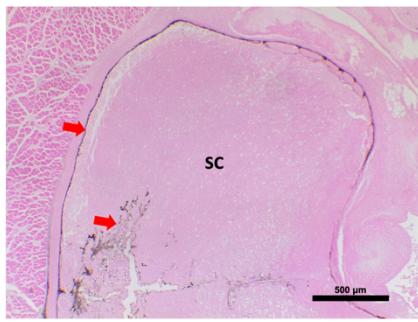
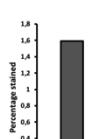
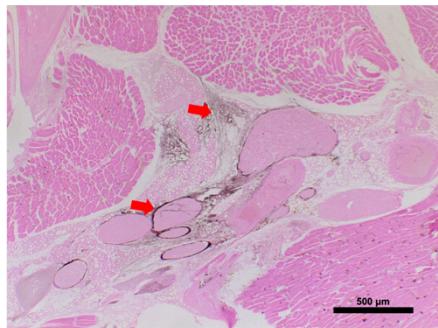
765

766

767

768

769





770

b

Injection site
Post-mortem
Chinese ink

771

772

773

774

775

776

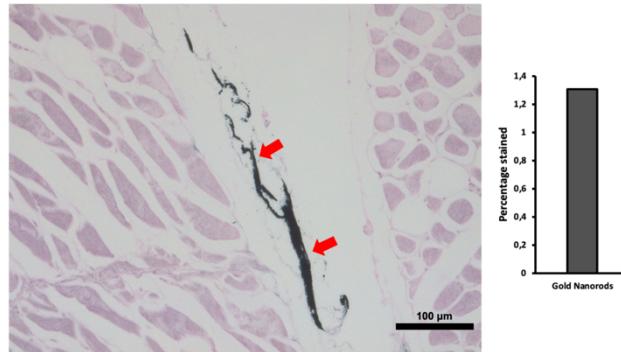
Fig. 5: Anterograde directional flow analysis by brain histology after post-mortem nanoparticle administration into the cisterna magna. **a**, Gold Enhancement showed staining of the cervical spinal cord (red arrow), its surrounding subdural space (yellow arrow) and associated peripheral nerves (green arrow). Gold nanoparticles were also detected in cervical lymphatic vessels and connective tissue (black arrows) (n=3). **b**, Chinese ink nanoparticles were identified in cervical lymphatic vessels, connective tissue, as well as the cervical spinal cord and its surrounding subdural space (indicated by red arrows) (n=3). SC: spinal cord.

784

785

786

Histological Neck Analysis


787

a

Injection site
In vivo
Gold Nanorods

788

789

790

791

792

793

794

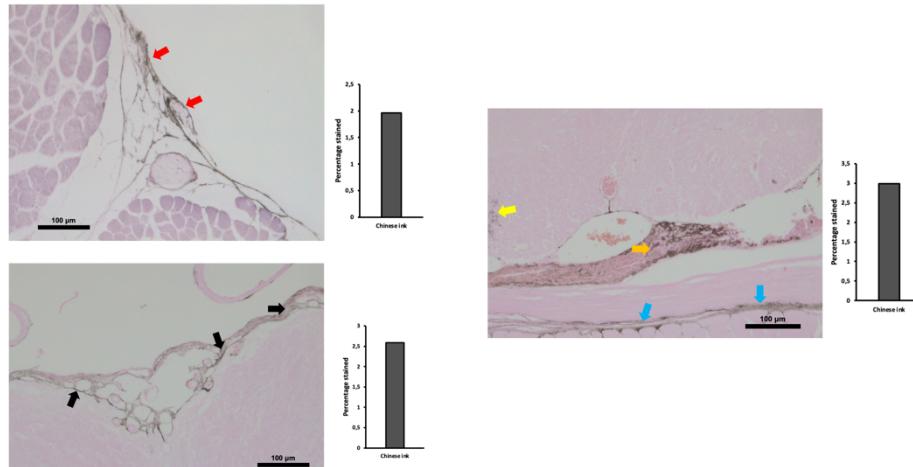
795

b

Injection site
In vivo
Chinese ink

796

797


798

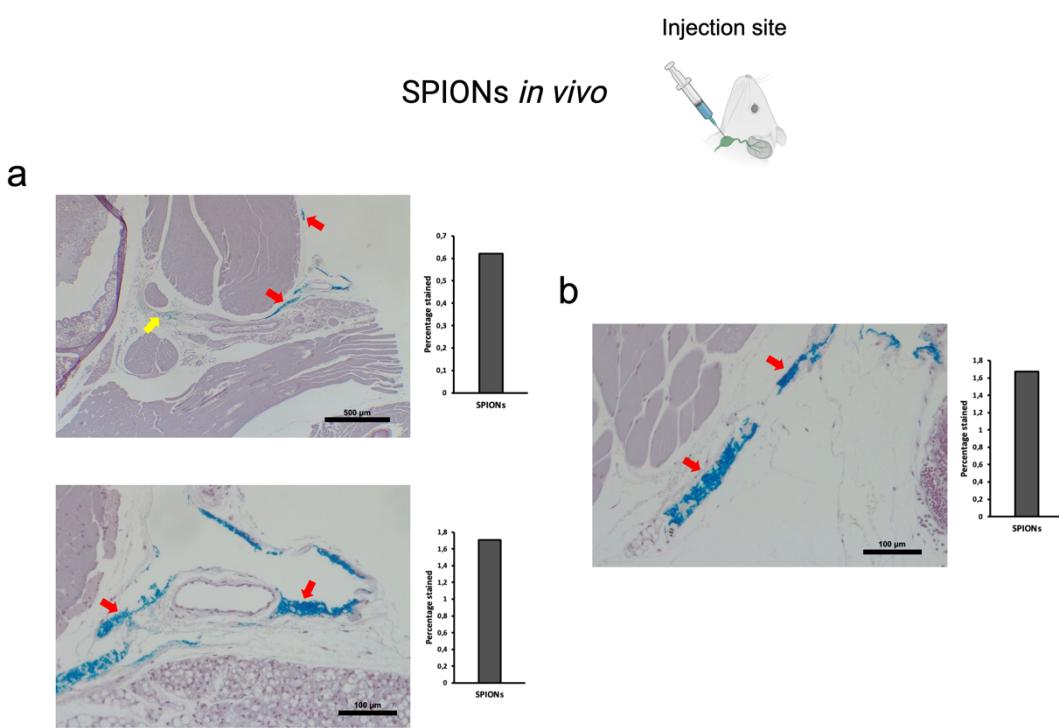
799

800

801

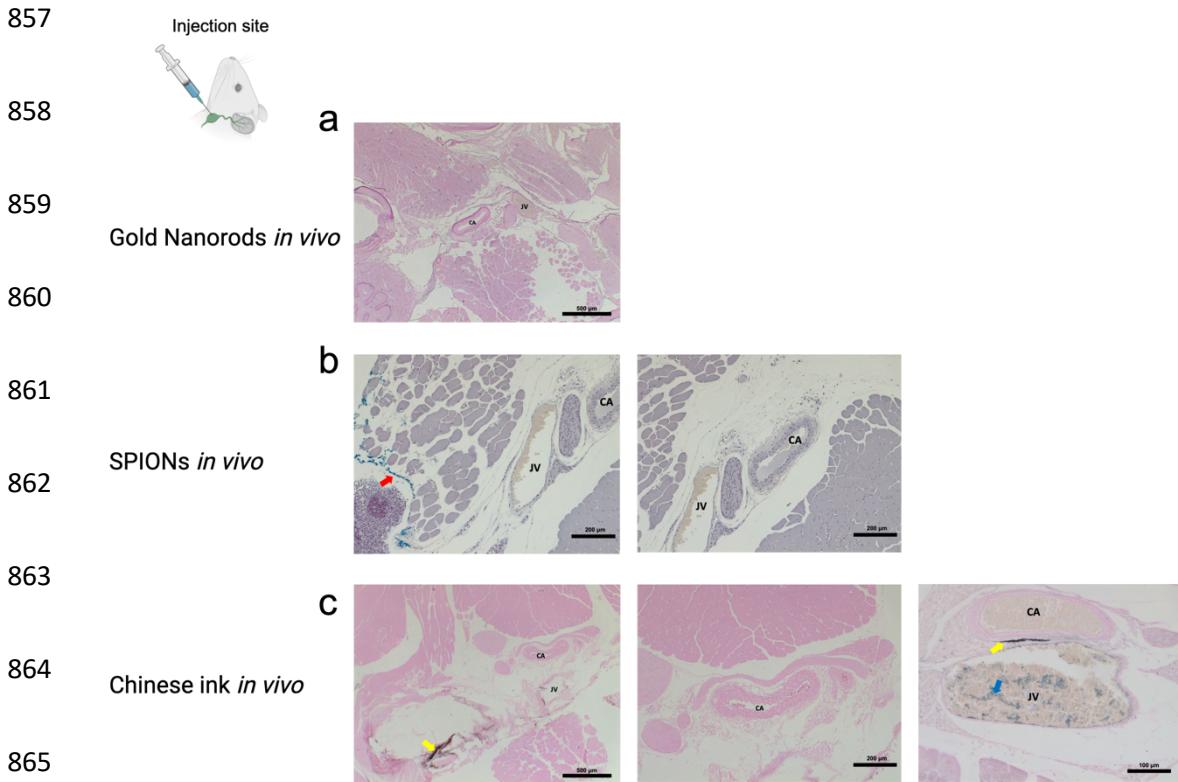
802

803


Fig. 6: Anterograde directional flow analysis by brain histology after *in vivo* nanoparticle administration into the cisterna magna. a, Gold Enhancement showed staining of lymphatic vessels in the cervical region (red arrows) (n=3). b, Chinese ink nanoparticles were identified in the cervical lymphatic vessels (red arrows), the subarachnoid space (black arrows), as well as the cervical spinal cord (yellow arrow), peripheral nerves (orange arrow), and connective tissue (blue arrows) (n=3).

809

810 **Supplementary figures**


811

812

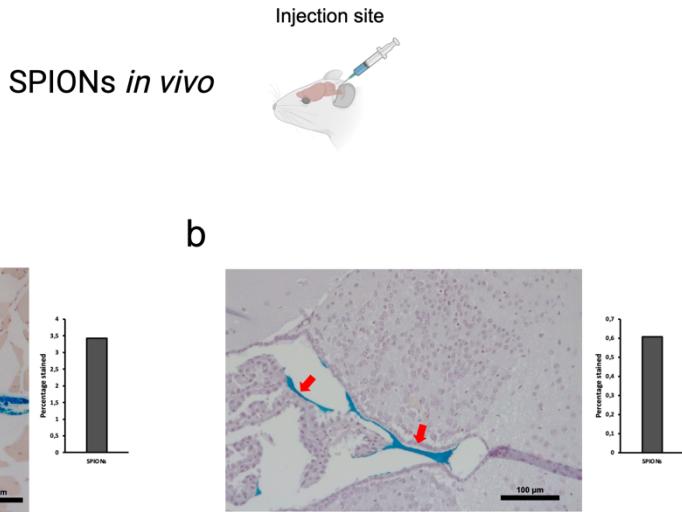
Supplementary Fig. S1: Retrograde directional flow analysis after *in vivo* administration of SPIONs into the deep cervical lymph node. a, Perls' Prussian Blue shows staining of lymphatic vessels of the head (red arrows), including the meningeal lymphatic vessels, as well as connective tissue (yellow arrow) (n=3). **b**, SPIONs were also identified within lymphatic vessels of the neck (red arrows) (n=3). SPIONs: superparamagnetic iron oxide nanoparticles.

881

882

883

884


885

886

887

888 **Supplementary Fig. S4: Anterograde directional flow analysis after *in vivo* administration of**
889 **SPIONs into the cisterna magna. a**, Perls' Prussian Blue shows staining of cervical lymphatic
890 **vessels (red arrows) (n=3). b**, SPIONs were identified within ventricular spaces of the brain (n=3).
891 **SPIONs: superparamagnetic iron oxide nanoparticles.**

892

