

1 **Title:** Multiplex Imaging Reveals Novel Subcellular, Microenvironmental, and Racial Patterns of
2 MRTFA/B Activation in Invasive Breast Cancers and Metastases

3 **Running Title:** MRTF in Breast Cancer Microenvironments

4 **Authors:** Stephanie M. Wilk¹, Kihak Lee¹, Alexa M. Gajda¹, Mohamed Haloul¹, Virgilia Macias²,
5 Elizabeth L. Wiley², Zhengjia Chen^{3,4}, Xinyi Liu⁵, Xiaowei Wang⁵, Maria Sverdlov⁶, Kent F.
6 Hoskins⁷, Ekrem Emrah Er¹ *

7 **Affiliations:**

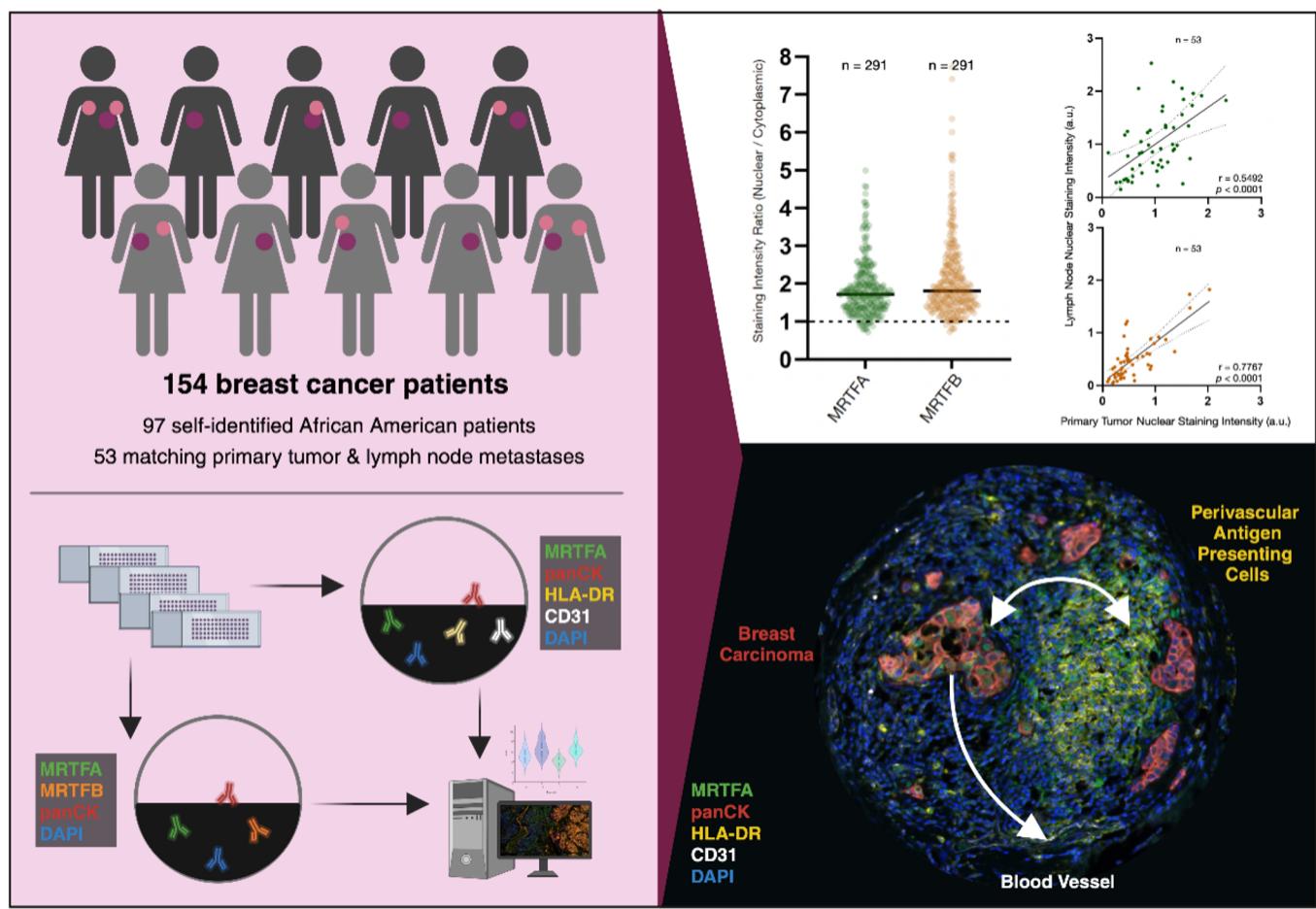
8 ¹ Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago,
9 Chicago, IL

10 ² Department of Pathology, University of Illinois Chicago, Chicago, IL

11 ³ Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois
12 Chicago, Chicago, IL

13 ⁴ Biostatistics Shared Resource, University of Illinois Cancer Center, Chicago, IL

14 ⁵ Department of Pharmacology & Regenerative Medicine, College of Medicine, University of
15 Illinois Chicago, Chicago, IL


16 ⁶ Research Histology Core, Research Resources Center, College of Medicine, University of Illinois
17 Chicago, Chicago, IL

18 ⁷ Division of Hematology/Oncology, College of Medicine, University of Illinois Chicago, Chicago,
19 IL

20 **Corresponding Author:** Ekrem Emrah Er (eer@uic.edu)

21 **Funding:** This work is supported by NCI-R37CA269370 (E.E.E) and Department of Physiology
22 and Biophysics and University of Illinois Cancer Center Startup Funds (E.E.E).

23 **Conflict of Interest:** Dr. Hoskins reports non-financial research support from Agendia outside
24 the submitted work; financial support to the institution from Merck, Novartis, Abbvie, and
25 Genetech outside the submitted work for clinical trials. Other authors declare no conflicts of
26 interest.

27 **Abstract**

28 Breast cancer progression and metastasis involve the action of multiple transcription factors in
29 tumors and in the cells of the tumor microenvironment (TME) and understanding how these
30 transcription factors are coordinated can guide novel therapeutic strategies. Myocardin related
31 transcription factors A and B (MRTFA/B) are two related transcription factors that redundantly
32 control cancer cell invasion and metastasis in mouse models of breast cancer, but their roles in
33 human cancer are incompletely understood. Here, we used a combination of multiplexed
34 immunofluorescence and bioinformatics analyses to show that MRTFA/B are concurrently
35 activated in tumor cells, but they show distinct patterns of expression across different
36 histological subtypes and in the TME. Importantly, MRTFA expression was elevated in
37 metastatic tumors of African American patients, who disproportionately die from breast cancer.
38 Interestingly, in contrast to publicly available mRNA expression data, MRTFA was similarly
39 expressed across estrogen receptor (ER) positive and negative breast tumors, while MRTFB
40 expression was highest in ER+ breast tumors. Furthermore, MRTFA was specifically expressed
41 in the perivascular antigen presenting cells (APCs) and its expression correlated with the
42 expression of the immune checkpoint protein V-set immunoregulatory receptor (VSIR). These
43 results provide unique insights into how MRTFA and MRTFB can promote metastasis in human
44 cancer, into the racial disparities of their expression patterns, and their function within the
45 complex breast cancer TME.

46

47 **Key Words:** Myocardin related transcription factors; MRTFA; MRTFB; breast cancer;
48 metastasis; tumor microenvironment; cancer health disparities; antigen presenting cells;
49 dendritic cells; tumor immunity; immune checkpoint; VSIR

50

51 **Introduction**

52 Breast cancer claims the lives of over 43,000 women in the United States each year and the
53 vast majority of breast cancer-related deaths result from distant metastases^{1,2}. Unfortunately,
54 there are very few treatment options for women diagnosed with metastatic breast cancer and
55 some existing therapeutic strategies are even less effective in prolonging the lives of vulnerable
56 patient populations, such as African American women, who are more likely to die from breast
57 cancer than women from other racial groups^{1,3,4}. This survival disparity is caused by structural
58 racism and social determinants of health, which are thought to foster a chronic level of elevated
59 stress that, in turn, influences tumor evolution, promotes an inflammatory microenvironment and
60 leads to metastases⁵⁻⁷. Therefore, to create more equitable treatment strategies, it is imperative
61 to identify molecular mechanisms of breast tumor initiation, progression, and metastasis in
62 women from diverse racial and ethnic backgrounds.

63

64 Breast cancer is thought to evolve through multiple steps that start with ductal carcinoma *in situ*
65 (DCIS), followed by progression into invasive breast cancer (IBC) and ultimately into
66 metastases to lymph nodes and to vital secondary organs such as the bones, lungs, liver and
67 the brain⁸. DCIS represents 20% of new breast cancer diagnoses and, unlike IBC, it rarely
68 relapses as distant metastases following local treatment. DCIS involves a pre-invasive lesion of
69 tumor cells isolated from the stroma via a barrier of myoepithelium and basement membrane
70 proteins. In IBC, the myoepithelial layer is loosened and lost and the tumor cells overcome the
71 stromal barriers to invade into the lymphovascular system for metastasis⁹. Recent studies
72 seeking to understand the changes in the tumor microenvironment (TME) that accompany the
73 transition from DCIS to IBC suggest that the structure of the tumor stroma can predict IBC
74 relapse¹⁰. For example, DCIS cases that present with a thick, continuous E-cadherin-rich
75 myoepithelium and accumulation of perivascular antigen presenting cells (APCs) are more likely
76 to progress into IBC and relapse¹⁰. These collective changes are coordinated through precise

77 action of transcription factors (TFs) that promote a tumor conducive TME and that regulate
78 breast cancer cells' proliferation, migration, invasion, survival at distant secondary organs, and
79 evasion of the immune system¹¹.

80

81 Myocardin related transcription factors A and B (MRTFA/B) are two related TFs that have been
82 extensively studied for their pro-metastatic roles in experimental mouse models of breast
83 cancer. MRTFA/B bind to the serum response factor (SRF), which recognizes CArG box DNA
84 sequences, and their loss-of-function reduces actin cytoskeleton polymerization, perturbs
85 cellular migration and contractility, and thereby inhibits subsequent metastatic invasion¹²⁻¹⁵.

86 However, recent work showed that these pro-metastatic functions of MRTFA/B highly depend
87 on the composition of the TME¹⁶. For example, despite their higher metastatic potential in
88 immune compromised mice, MRTFA/B expressing cancer cells are eliminated by
89 mechanosurveillance if the host has intact cytotoxic lymphocyte activity. Mouse genetics also
90 highlights the potential roles of MRTFA/B in regulating cells of the TME, such as myoepithelial
91 cells, endothelial cells, immune cells, and fibroblasts⁹. For example, MRTFA knockout results in
92 lactation/involution defects in postpartum mice, suggesting that MRTFA is critical for
93 myoepithelial function¹⁷. MRTFB knockout in mice is embryonic lethal because of defects in
94 smooth muscle investment during cardiovascular development and MRTFA, MRTFB and SRF
95 have all been shown to be critical for endothelial cell function during hemostasis and vascular
96 remodeling¹⁸⁻²¹. In mouse models of breast tumorigenesis, MRTFA/B have been shown to

97 enforce the pathological role of cancer associated fibroblasts (CAFs), which promote
98 extracellular matrix deposition and remodeling to facilitate cancer cell invasion²². These findings
99 highlight the importance of gaining a holistic view of the tumors and the TME when studying the
100 functional relevance of tumorigenic and metastatic TFs, but despite these fundamental findings
101 from mouse genetics, the tumor intrinsic and microenvironmental roles of MRTFA and MRTFB
102 in human breast cancer remain incompletely understood. To address this, we decided to

103 investigate the clinical, demographic, tumor-intrinsic and microenvironmental patterns of
104 MRTFA/B's expression and activation by using a combination of multiplex imaging on multiple
105 racially diverse tissue microarrays (TMA) and bioinformatics analyses of The Cancer Genome
106 Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC)
107 datasets.

108

109 **Materials and Methods**

110 *Patient cohort*

111 Demographic and histological summary of the UIC patient cohort is provided in **Table 1**, and
112 this TMA includes breast cancer tissues from 97 Black/African American, 46 White, and 11
113 Other/Race Unknown self-identified women with a median age at diagnosis of 55 years (range
114 28-89 years). Invasive ductal carcinoma is the predominant histological subtype (n = 118). Half
115 of cases involve high-grade tumors (n = 77). Clinical immunohistochemistry (IHC) and
116 fluorescent in situ hybridization (FISH) results were used to determine estrogen receptor (ER),
117 progesterone receptor (PR), HER2, Ki67, and p53 status of tumor samples. 68.1% of women
118 present with ER+ tumors (n = 105). All samples were collected according to approved
119 Institutional Review Board (IRB, UIC IRB Protocol # 2017-0466) protocols and patient
120 information was de-identified.

121

122 *Breast tumor TMA construction*

123 The UIC TMA (BRWG UIC-001-TMA) used in this study includes a consecutive series of
124 invasive breast cancer cases undergoing surgery at the University of Illinois Cancer Center
125 between 2013 and 2019 and is offered through the University of Illinois Cancer Center Breast
126 Cancer Working Group (BCWG). Cases were arranged on 4 blocks, with many cases having
127 matching normal breast tissue and/or lymph node metastases samples. Tumor cores (1.0 mm
128 diameter) were sampled from areas of largest grade and focus by a breast pathology specialist.

129 Most tumor samples are arrayed in duplicate, and some have cores from additional tumor foci.
130 All normal breast tissue and lymph node metastases cores are arrayed in singlicate. Cases with
131 neoadjuvant therapy were excluded from this TMA.

132

133 *Multiplex immunofluorescence staining*

134 We optimized a six-color Opal TSA multiplex immunofluorescence panel labeling MRTFA,
135 MRFTB, CD31, HLA-DRA, panCK, and the nuclear marker DAPI on breast cancer control
136 samples. Key elements of the protocol are described in **Table 2**. Staining was performed on a
137 Leica BOND RX autostainer according to the modified Opal 7-color (v5.2 plus) preset protocol
138 using the Opal 6-Plex Detection kit for Whole Slide Imaging (Akoya Biosciences). Prior to the
139 first staining round, tissue was subjected to sequential heat-based antigen retrieval for 40
140 minutes at 99°C with Bond Epitope retrieval buffer 2 (pH 9.0) and buffer 1 (pH 6.0). For each
141 staining round, tissue sections were incubated with 1X Antibody Diluent/Block (Akoya
142 Biosciences) for 5 minutes, followed by the incubation with primary antibody for 30 minutes,
143 Opal Polymer-HRP for 10 minutes, and corresponding Opal dye for 10 minutes. All incubations
144 were conducted at room temperature. After each round of staining, slides were incubated with
145 Bond Epitope retrieval buffer 1 for 30 minutes at 98°C to remove primary and secondary
146 antibodies. For optimization, serial dilutions of each antibody were run as single stains with the
147 corresponding Opal dye detection, and signal localization and morphology were compared to
148 those detected in single chromogen IHC staining performed on adjacent slide. The built-in
149 spectral library was used for signal unmixing. All optimization images were unmixed and
150 assessed in inForm V2.6 and Phenochart V1.1.0 (Akoya Biosciences).

151 *Image analysis*

152 Slides were scanned on Phenolmager HT (Akoya Biosciences) in 4-color motif mode. InForm
153 software (Akoya Biosciences) was used to remove autofluorescence and cleanly separate

154 signals from each target into individual channels. Image analysis was performed using HALO
155 software (Indica Labs). Images were manually annotated to identify tissue and remove artifacts.
156 HALO mininet AI classifier was trained to identify panCK-positive regions, representing tumor
157 areas in tumor cores and epithelial areas in normal cores. This classifier was used to label each
158 cell as either within or outside of the tumor/epithelial area. Nuclei were segmented via a custom-
159 trained HALO AI nuclear segmentation classifier. Cytoplasm regions were approximated by
160 segmenting a ring around each nucleus. Mean pixel intensity was reported for MRTFA and
161 MRTFB in the nucleus, cytoplasm, and whole cell areas.

162

163 *Statistical analysis*

164 Statistical analyses were performed using GraphPad Prism 9 (GraphPad Software Inc.).
165 Analyses considered staining intensity values from the nuclear compartment, cytoplasmic
166 compartment, and whole cell area of primary tumor and lymph node metastases cores. Cores
167 that lacked staining intensity values for either compartment or the whole cell area due to factors
168 such as loss of tissue or poor staining quality were excluded from analyses. Fewer than 20
169 tumors had a secondary tumor and thus secondary tumor cores, when available, were
170 excluded. In the case of multiple primary tumor or lymph node metastasis samples from a single
171 patient, the mean staining intensity values were calculated and used in the analyses. Primary
172 tumor samples were matched to corresponding lymph node metastasis in 53 cases. Pearson's
173 correlation analysis and Wald's test were performed to obtain and test the correlation coefficient
174 values between the nuclear, cytoplasmic, and total cell expression of MRTFA/B in the individual
175 tumor cells of primary tumor cores (**Fig. 2** and **Supplemental Fig. S1**). Pearson's correlation
176 analysis and Wald's test for p-value, along with simple linear regression and a 99% confidence
177 interval, were used to plot the staining intensities of matching primary tumor and lymph node
178 metastasis cores (**Fig. 3A, 3C** and **Supplemental Fig. S2A-D**). Fisher's exact test was used to
179 explore how categorical clinical and demographic variables influenced the lymph node staining

180 intensities of MRTFA/B (**Fig. 3B**), and continuous clinical and demographic variables were
181 explored with multiple linear regression models (**Fig. 3D-G** and **Supplemental Fig. S2E-H**).
182 Cases that did not have data available for every variable tested for were excluded from the
183 analysis. Staining intensity values from our TMA and mRNA expression values from databases
184 across hormone receptor types were plotted with Tukey-presentation box plots (**Fig. 4A-D, 4F,**
185 **4G** and **Supplemental Fig. S3A, S3B**). CTL dysfunction, exclusion, and infiltration and MRTFA
186 mRNA expression among African American and White American patients are shown with violin
187 plots (**Fig. 6A-D**) and MRTFA staining intensity in stromal cells across racial groups and tissue
188 types is shown with histograms (**Fig. 6E**). Histograms are plotted with mean and SEM error
189 bars. Across all figures, the means between two groups means were compared with unpaired t-
190 tests; in the case of non-Gaussian distribution, the Mann-Whitney test was used instead. For
191 more than two groups, their means were compared with one-way ANOVA; in the case of non-
192 Gaussian distribution, the Kruskal-Wallis test was used instead. A *P* value <0.05 was
193 considered statistically significant.

194

195 *Bioinformatics analysis*

196 Bulk RNA sequencing data for TCGA and METABRIC databases were accessed using the
197 cBioportal. mRNA expression values for Tumor Immune Dysfunction and Exclusion analyses
198 were downloaded from the Broad Institute and analyzed as previously described³⁸. Single cell
199 RNA sequencing data was accessed by the Broad Institute's Single Cell Portal
200 https://singlecell.broadinstitute.org/single_cell. Dendritic cell and cancer associated fibroblast
201 infiltration scores were calculated by using the Tumor Immune Estimation Resource 2.0 web
202 interface <http://timer.cistrome.org/>.

203

204

205

206 **Results**

207 To measure the degree of MRTFA and MRTFB protein expression in human tumors, we worked
208 with two breast cancer TMAs. The first TMA was from the Cooperative Human Tissue Network
209 and included normal breast tissue, ductal carcinoma *in situ* (DCIS), invasive cancer and lymph
210 node metastases samples (designated as CHTN_BrCaProg3). The second TMA was designed
211 by the Breast Cancer Working Group at the University of Illinois Cancer Center to represent our
212 Cancer Center's patient population residing in neighborhoods on the West Side and South Side
213 of Chicago (designated as BRWG UIC-001-TMA). In contrast to commercially available
214 alternatives, this unique TMA has a strong representation of African American breast cancer
215 patients: 97 out of 154 patients who donated their samples self-identified as African American
216 (**Fig. 1A**). Almost all tumors had a matching uninvolved adjacent breast tissue sample and 53
217 patients had matching lymph node metastases, which allowed us to measure MRTFA and
218 MRTFB expression across tumorigenesis and metastasis. We conducted the first round of
219 multiplex imaging on the CHTN_BrCaProg3 TMA by using an MRTFA antibody, an MRTFB
220 antibody, panCytokeratin epithelial marker (panCK) and, DAPI for nuclear identification and by
221 using the Opal-TSA detection system (**Fig. 1B**). In the uninvolved breast tissue, MRTFA
222 antibody strongly labeled the nucleus of panCK+ myoepithelial cells as judged by basal position
223 of these cells with respect to the mammary alveoli, but MRTFB expression was mostly non-
224 detectable (**Fig. 1C**). The strong MRTFA protein expression is consistent with mouse genetics
225 studies, where MRTFA knockout most prominently impacts lactation/involution cycle¹⁷.
226 Interestingly, we observed that in IBC samples, this strong MRTFA signal in the myoepithelial
227 compartment was lost, which is consistent with the loss of myoepithelial layer during transition
228 from DCIS to IBC (**Fig. 1D** and Ref 23). Interestingly, in multiple cores in the CHTN_BrCaProg3
229 TMA, we found that cancer cells gained MRTFA and MRTFB signal in primary tumor cells and
230 lymph node metastases, yet there were also instances of DCIS and IBC where no MRTFA/B

231 expression was detected. These data suggest that transformation and tumor progression is
232 coupled to expression of MRTFA/B in a subset of breast tumors.

233

234 Next, we decided to measure the degree of MRTFA/B activation, which requires their nuclear
235 localization. Both in 2-dimensional (2D) tissue culture experiments and in 3D models of
236 mammary sphere formation, MRTFA/B nuclear localization is driven by acute stimuli, such as
237 mitogens or cell adhesion to extracellular matrix, but nuclear MRTFA is exported to the
238 cytoplasm by G-actin binding in asynchronously growing cells^{15,24-26}. Therefore, we set out to
239 measure MRTFA/B nuclear/cytoplasmic ratios as proxies for their activation state. We used the
240 HALO AI neural network driven cell classification module for identifying panCK⁺ tumor cells and
241 the nuclei segmentation module for cytoplasmic and nuclear signal detection in each cell in
242 each of the primary tumors and metastatic lesions in the BRWG UIC-001-TMA (**Fig. 2A**). We
243 found that in the vast majority of tumor cores the average MRTFA/B nuclear/cytoplasmic ratios
244 were above 1, which suggests that MRTFA/B were more likely to be active when expressed
245 (**Fig. 2B**). MRTFA and MRTFB perform redundant functions in tumorigenesis and metastasis in
246 experimental models and we reasoned that if they performed redundant functions in human
247 tumors, the expression of one MRTF would alleviate the need for the expression of the
248 other^{13,14,16}. Therefore, we calculated the Pearson correlation coefficient between MRTFA and
249 MRTFB nuclear intensities in each cancer cell in each primary tumor core. We found that in 181
250 cores, Pearson correlation was higher than 0.5, while only 2 tumor cores had a negative
251 correlation coefficient (**Fig. 2C, Supplemental Fig. S1A, S1B**) The average MRTFA nuclear
252 signal intensity also positively correlated with the average MRTFB intensity (**Fig. 2D**,
253 **Supplemental Fig. S1C, S1D**). This pattern of concurrent MRTFA and MRTFB expression
254 suggests that MRTFA expression does not alleviate the need for MRTFB expression and that
255 MRTFA and MRTFB can perform non-redundant functions in tumorigenesis and metastasis.

256

257 Metastatic cancer cells often retain and enrich for the expression of proteins that promote
258 cancer cell invasion and dissemination as these proteins can provide a survival advantage
259 during outgrowth at distant organs^{11,27,28}. However, continued MRTFA/B activity can also pose
260 an immune vulnerability at metastatic sites^{14,16}. Therefore, to determine whether MRTFA/B
261 expression was retained or lost at the secondary sites, we measured the average MRTFA/B
262 staining intensities in lymph node metastases and compared it to their expression in primary
263 tumors (**Fig. 3A**, and **Supplemental Fig S2A, S2B**). We found that lymph node staining
264 intensity positively correlated with tumor staining intensity for both MRTFA and MRTFB. To
265 explore how clinical and demographic parameters influenced these staining patterns, we ran a
266 series of Fisher's tests in which we dichotomized cases based on their MRTFA/B staining level
267 with respect to the group's median staining (**Fig. 3B**). Interestingly, of the 9 clinical and
268 demographic parameters tested, self-identifying as African American was the only significant
269 parameter for MRTFA lymph node staining intensity. In addition to race, having a progesterone
270 receptor-positive (PR+) tumor was a significant parameter for MRTFB lymph node staining
271 intensity. Since race was a shared significant parameter, we wanted to know if separating
272 African American patients' samples from White American patients' samples would reveal distinct
273 distribution patterns for matched primary tumor and lymph node metastasis cores (**Fig. 3C** and
274 **Supplemental Fig. S2C, S2D**). Indeed, African American patients' samples had noticeably
275 steeper regression lines for both MRTFA and MRTFB and higher MRTFA lymph node
276 intensities. Next, we ran multiple linear regression models for predicting MRTFA and MRTFB
277 lymph node staining intensity values based on parametric and continuous variables such as age
278 and primary staining intensity (**Fig. 3D-G** and **Supplemental Fig. S2E-S2H**). Consistent with
279 the results of the Fisher's tests, African American race significantly and positively correlated with
280 MRTFA lymph node staining intensity (**Fig. 3E**). In contrast, the positive correlation between

281 race and MRTFB staining intensity and PR status was lost (**Fig. 3G**). These results demonstrate
282 that MRTFA and MRTFB expression levels are retained during the metastatic cascade and that
283 the most significant parameter for MRTFA/B expression was race and likely the associated
284 social determinants of health, but not the hormone receptor status.

285
286 The lack of evidence for a role of hormone receptor status in dictating MRTFA/B expression
287 patterns was surprising because MRTFA expression is primarily thought to be prevalent in triple
288 negative breast cancers and ER positive breast cancer models do not express high levels of
289 endogenous MRTFA^{29,30}. Therefore, we decided to compare the MRTFA/B expression levels
290 across hormone receptor subtypes in TCGA and METABRIC cohorts to MRTFA/B expression
291 levels in our BRWG-UIC-001 TMA. *MRTFB* mRNA expression and protein expression was
292 significantly lower in basal and ER- negative tumors across all platforms (**Fig. 4A-4D and**
293 **Supplemental Fig. S3A, S3B**). However, MRTFA mRNA and protein expression across
294 different subtypes in our TMA, TCGA and the METABRIC samples were discordant: *MRTFA*
295 mRNA was more highly abundantly expressed by the ER negative and basal cancer patient
296 cohorts in the TCGA and METABRIC datasets, respectively, but MRTFA protein expression was
297 lower in the BRWG-UIC-001 TMA ER negative primary tumor samples. We reasoned that the
298 reason *MRTFA* mRNA is higher in the ER- negative samples in TCGA and METABRIC may be
299 that ER- samples have a higher degree of stromal and immune cell content than ER+ samples
300 and that these TME cells also express MRTFA³¹. To test this, we used the Tumor Immune
301 Estimation Reporter (TIMER2.0) algorithm and calculated the tumor purity as a function of
302 *MRTFA* (also known as *MKL1*) and *MRTFB* (*MKL2*) expression. Indeed, we found that MRTFA,
303 but not MRTFB expression was negatively correlated with tumor purity (**Fig. 4E**). Furthermore,
304 we found that in the BRWG-UIC-001 TMA, even though the MRTFA/B signals were significantly
305 lower in stromal cells than in cancer cells, the stroma/cancer MRTFA signal ratio (~0.81) was
306 much higher than that of stroma/cancer MRTFB signal ratio (~0.44) (**Fig. 4F, 4G**). Taken

307 together, these results highlight the subtype specific expression patterns of MRTFA and MRTFB
308 and reveal the TME as a significant source of MRTFA expression in breast cancers.

309

310 Based on the prominent expression of MRTFA in the TME, we decided to identify which stromal
311 and immune cells expressed MRTFA/B in human breast cancers. Therefore, we queried an
312 existing single cell sequencing database that contained 100,064 cells from 26 different breast
313 cancer patients^{32,33}. We found that MRTFB expression was highest in ACKR1+ endothelial cells
314 and it was detected in approximately 27%-46% of various endothelial cell populations (**Fig. 5A**).

315 Given the pathological roles of MRTFA in CAFs, we anticipated MRTFA to be most strongly
316 expressed by the CAFs. Surprisingly, however, MRTFA expression was highest in the dendritic
317 cells (DCs) in comparison to all the other cells of the TME. By using the TIMER2.0 algorithm on
318 the TCGA dataset, we found that MRTFA, but not MRTFB, expression correlated strongly with
319 DC infiltration and the level of correlation was higher for than the correlation between MRTFA
320 expression and CAF infiltration (**Fig. 5B**). Next, we co-stained a breast cancer sample with

321 MRTFA, panCK (tumor marker), CD31 (endothelial cell marker) and HLA-DRA, which is a major
322 histocompatibility complex II (MHC II) protein that broadly marks most antigen presenting cells
323 (APCs), including B-cells and DCs. We identified several HLA-DRA+ cells across the tumor

324 microenvironment, but most prominently HLA-DRA+ cells showed a significant levels of MRTFA
325 near expression CD31+ blood vessels (**Fig. 5C**). Since accumulation of perivascular APCs in
326 human breast cancer has been recently associated with immune suppression and with DCIS

327 progression to IBC, we decided to also stain the CHTN_BrCaProg3 TMA with our panel of
328 antibodies¹⁰. Strikingly, we found strong MRTFA expression in the perivascular HLA-DRA+ cells
329 in a DCIS sample (**Fig. 5D**). However, there was no prominent MRTFA expression in the HLA-
330 DRA+ B-cell zones in the lymph nodes (**Fig. 5E**). Taken together, these data suggest that
331 MRTFA may uniquely regulate antigen presenting APCs in the breast cancer TME.

332

333 The unique expression of MRTFA in APCs and its elevated expression in cancer cells of African
334 American patients in our BRWG-UIC-001 TMA encouraged us to examine the potential
335 connection between MRTFA expression and immune dysfunction, which is prominent in African
336 American patients. First, we investigated how MRTFA could contribute to immune dysfunction.
337 In non-small cell lung cancer and melanoma models MRTFA activity promotes programmed cell
338 death 1 ligand (PD-L1) expression, which is an immune checkpoint protein that leads to
339 cytotoxic T-cell exhaustion and tumor immune dysfunction³⁴⁻³⁶. Therefore, we interrogated the
340 breast cancer single cell sequencing data for the expression of several well-established immune
341 checkpoint proteins, such as PD-L1 (also known as CD274), PD-L2 (encoded by *PDCD1LG2*),
342 V-set immunoregulatory receptor (VSIR, also known as V-domain immunoglobulin suppressor
343 of T cell activation (VISTA) or C10orf54) and other immune suppressive molecules such as
344 interleukin 10 (IL10) and Indoleamine 2,3-dioxygenase-1 (IDO1) (reviewed in 37). Among these
345 immune suppressive molecules breast cancer DCs most prominently expressed VSIR (**Fig. 6A**).
346 Interestingly, VSIR expression positively correlated with MRTFA expression in breast cancers in
347 the TCGA dataset, to the same extent as some of the well-established direct transcriptional
348 targets of MRTFA, such as myosin heavy chain and light chain genes, *MYH9* and *MYL9* (**Fig.**
349 **6B** and **Supplemental Fig. S4A and S4B**). To investigate whether MRTFA could directly
350 regulate VSIR at the mRNA level, we used the University of California Santa Cruz (UCSC)
351 Genome Browser to search experimentally validated SRF binding sites at the promoter region of
352 the *VSIR* gene³⁸. Indeed, we identified 5 distinct SRF binding sites that were experimentally
353 validated by 12 different chromatin immunoprecipitation (ChIP) studies (**Fig. 6C**). In contrast,
354 PDL1 contained only 2 SRF binding sites that were validated in 2 different experiments and
355 PDL1 expression did not positively correlate with MRTFA expression in TCGA (**Supplemental**
356 **Fig. S4C, S4D**). Taken together, these results suggest that MRTFA expression in APCs may
357 lead to immune dysfunction by promoting VSIR expression.
358

359 Finally, we interrogated whether MRTFA could contribute to cancer health disparities by
360 promoting immune dysfunction in African American patients. Social and racial injustices African
361 American women endure are the root cause of immune weathering and dysfunction and they
362 significantly contribute to postpartum lethality of mothers and to manifestation of chronic
363 inflammatory diseases^{7,39,40}. To measure the contribution of MRTFA expression to immune
364 dysfunction, we measured MRTFA expression in African American patients in the stromal cells
365 of the BRWG-UIC-001 TMA and in the TCGA dataset. We found that MRTFA was more highly
366 expressed in stromal cells of lymph node metastases of the African American patients in the
367 BRWG-UIC-001 TMA and in TCGA samples (**Fig. 6D and Fig. 6E**). Since elevated MRTFA
368 expression in African American patients could be captured in the TCGA dataset, we tested
369 whether African American breast cancer patients in TCGA also presented with a higher degree
370 of immune dysfunction. Indeed, African American patients had elevated levels of T-cell
371 infiltration, T-cell dysfunction as measured by the Tumor Immune Dysfunction and Exclusion
372 (TIDE) algorithm⁴¹. Importantly, *VISR* gene expression was also modestly, but significantly
373 increased in tumor samples from African American patients (**Fig. 6I**). Taken together, this data
374 affirms the immune suppressive role of MRTFA expression in the TME and points to its
375 activation as a biological mechanism contributing to breast cancer health disparities.

376

377 **Discussion**

378 In this study, we used a series of multiplex imaging methods to analyze MRTFA/B expression in
379 2 different TMAs. CHTN_BrCaProg3 allowed us to interrogate MRTFA/B expression throughout
380 transformation, tumorigenesis, and metastasis, while BRWG UIC-001-TMA allowed us to reveal
381 racial disparities in MRTFA/B expression in invasive breast cancers. While our analyses
382 complement the existing experimental knowledge on the role of MRTFA/B in breast cancer
383 evolution and metastasis, we also report several novel findings on MRTFA/B activity across
384 different breast cancer subtypes, racial categories and in cells of the TME. Importantly, we

385 cross-validated these new findings with bioinformatics analyses of existing single cell and bulk
386 tumor transcriptomics data.

387

388 Our first finding relates to MRTFA/B expression and activation. In published *in vitro* 2D models
389 and 3D models, MRTFA/B primarily localizes to the cytoplasm unless it is stimulated by
390 exogenous mitogens or cell adhesion to the extracellular matrix. This was in stark contrast to
391 the human cancer samples we stained, where most tumor cells showed, on average, a higher
392 degree of nuclear localization of MRTFA/B than their cytoplasmic localization. Importantly,
393 however, MRTFA was not universally expressed in all DCIS or IBC samples: There were
394 several samples that expressed very low levels of MRTFA/B, while a very few others had more
395 abundant cytoplasmic localization than nuclear localization. Nevertheless, the observation that
396 MRTFA/B show strong nuclear localization *in vivo*, as opposed to *in vitro*, suggests that the *in*
397 *vitro* culture conditions may be lacking MRTFA/B stimulating factors that are present *in vivo*.
398 One possibility is that the ECM composition, structure, and physical characteristics in tumor
399 tissues may be more stimulatory toward MRTFA/B than the ECM *in vitro*. However, we reason
400 that if ECM was the only source of MRTFA/B activation *in vivo*, we would have observed the
401 most prominent MRTFA/B nuclear localization in the cells at the invasive front, which most
402 extensively interact with ECM^{27,42}. However, our imaging did not show as profound of a
403 phenotype as is seen for other markers of the leading-edge such as p63 and Keratin 14 (Ref.
404 27). Therefore, we speculate that the broad nuclear MRTFA/B localization in human tissues
405 may stem from cytokines and chemokines that are expressed by the stromal and immune cells
406 of the TME. The identities and the prominent sources of these secreted factors will be the focus
407 of future studies.

408

409 Our results also revealed differences in MRTFA/B expression across primary and metastatic
410 tumors, different histological subtypes, and patients of different races. Molecular mechanisms

411 that govern hematogenous and lymphatic metastases are distinct, and one limitation of our
412 study is that we worked with only lymph node metastases^{28,43}. Regardless of the dissemination
413 route, expression of proteins that are important for metastasis are thought to be either (1)
414 retained, (2) enriched or (3) lost at secondary sites. The third category includes, for example,
415 regulators of epithelial to mesenchymal transition (EMT) that promote primary dissemination but
416 become restrictive to outgrowth later in metastatic colonization¹¹. Similarly, we had recently
417 described that MRTFA/B are needed for the metastatic cascade, but their expression also
418 presents with an immune vulnerability during colonization¹⁶. Therefore, we had speculated that
419 MRTFA/B expression could be lost at the lymph node metastases even if the primary tumor
420 expressed them. In contrast, we found that active MRTFA/B expression in the nucleus in the
421 primary tumor cells positively correlated with lymph node expression. We also had anticipated
422 that highest MRTFA expression levels would be observed in ER- negative subtype because
423 single nucleotide polymorphisms within *MRTFA* gene have been associated with triple negative
424 breast cancer risk^{44,45}. However, race, but not ER status, was the strongest contributor to the
425 MRTFA expression. The revelation that the tumors from African American patients expressed
426 elevated levels of MRTFA led us to interrogate whether MRTFA+ metastatic tumor cells thrived
427 due to an immune exhausted TME in these patients.

428

429 The TME of African American and White American breast patients present with quantitative
430 differences in inflammatory signaling, macrophage infiltration and cytotoxic T-cell exhaustion⁴⁶⁻
431 ⁴⁸. Accordingly, we also found that the breast tumors from African American patients in TCGA
432 presented with a higher degree of cytotoxic lymphocyte infiltration, but these tumors also had a
433 higher level of exhaustion compared to breast tumors from White American patients. Our results
434 are in line with comprehensive studies that show cytotoxic T-cell exhaustion in African American
435 breast cancer patients^{46,49}, and we speculate that this exhausted immune microenvironment

436 contributes to immune evasion of aggressively metastatic MRTFA+ breast cancer cells in
437 African American patients.

438

439 These observations suggest that there may be multiple therapeutic strategies to alleviate breast
440 cancer disparities for African American breast cancer patients. One approach could be to target
441 aggressively metastatic MRTFA+ cells through the use of immune checkpoint inhibitors as
442 would be predicted from melanoma studies, where MRTFA's transcriptional activity makes
443 these cancer cells more vulnerable to anti-PD1 treatment through mechanosurveillance¹⁶.

444 Another approach could be to target MRTFA+ APCs in the TME. Our studies revealed MRTFA+
445 APCs in the perivascular niche that resembled the perivascular immune suppressive APCs
446 associated with DCIS progression to IBC¹⁰. Based on the positive correlation between MRTFA
447 expression and the immune checkpoint protein VSIR expression, we propose that the use of
448 anti-VSIR neutralizing antibodies can prevent the immune suppressive function of these
449 MRTFA+ APCs and help alleviate cancer health disparities that African American breast cancer
450 suffer from⁵⁰. The overall increase in MRTFA expression in the TME of African American
451 patients' breast tumors also point to a broader role of immune suppression by MRTFA
452 expressing stromal cells such as those residing in tertiary lymphoid structures (TLS) or the
453 recently described "suppressed expansion" zones, or the CAFs^{51,52}. We also consider that
454 some of the immune suppressive functions of MRTFA could be attributed to its negative role in
455 dendritic cell maturation as has been described in recent murine models of MRTFA knockout or
456 B2 Integrin-Kindlin3 loss-of-function^{53,54}. Future work will investigate how pharmacological
457 suppression of MRTFA in patients would alter the tumor immune microenvironment to help
458 alleviate breast cancer disparities.

459

460 **Acknowledgements**

461 The authors wish to acknowledge the Breast Cancer Working Group and Translational
462 Pathology Shared Resource of the University of Illinois Cancer Center, and the University of
463 Illinois Biorepository, for providing access to the tissue microarrays. We thank Eileen Brister and
464 Ryan Deaton from the Research Histology and Imaging Collaborative Core for their assistance
465 with automated tissue staining, image acquisition and implementation of HaLO segmentation
466 and measurements; Klara Valyi-Nagy for their UI Health Biorepository access, Peter Gann, for
467 their help with multiplex antibody panel design and thoughtful discussions. Research reported in
468 this publication was supported in part by the University of Illinois Cancer Center Biostatistics
469 Shared Resource (BSR) core.

470

471 **Author contributions**

472 S.W. and E.E.E. initiated the project, wrote the manuscript, analyzed data; S.W. collected data;
473 K.L., A.G., M.H., conducted experiments, collected data, edited the manuscript; K.F.H. collected
474 data, provided study materials, critically reviewed the manuscript drafts; E.L.W. selected tissue
475 samples to be tested, curated and selected tissue samples for BRWG UIC-001-TMA
476 construction; V.M. constructed the BRWG UIC-001-TMA; Z.C. assisted with statistical analyses
477 and data interpretation; X.L. and X.W conducted the bioinformatics analyses for T-cell
478 dysfunction; M.S. optimized multiplex staining, collected and interpreted data.

479

480 **References**

- 481 1 Giaquinto, A. N. *et al.* Breast Cancer Statistics, 2022. *CA Cancer J Clin* **72**, 524-541,
482 doi:10.3322/caac.21754 (2022).
- 483 2 Hoskins, K. F., Danciu, O. C., Ko, N. Y. & Calip, G. S. Association of Race/Ethnicity and
484 the 21-Gene Recurrence Score With Breast Cancer-Specific Mortality Among US
485 Women. *JAMA Oncol* **7**, 370-378, doi:10.1001/jamaoncol.2020.7320 (2021).
- 486 3 Alvarez, A., Bernal, A. M. & Anampa, J. Racial disparities in overall survival after the
487 introduction of cyclin-dependent kinase 4/6 inhibitors for patients with hormone receptor-
488 positive, HER2-negative metastatic breast cancer. *Breast Cancer Res Treat* **198**, 75-88,
489 doi:10.1007/s10549-022-06847-2 (2023).

490 4 Linnenbringer, E., Gehlert, S. & Geronimus, A. T. Black-White Disparities in Breast
491 Cancer Subtype: The Intersection of Socially Patterned Stress and Genetic Expression.
492 *AIMS Public Health* **4**, 526-556, doi:10.3934/publichealth.2017.5.526 (2017).

493 5 Carlos, R. C. et al. Linking Structural Racism and Discrimination and Breast Cancer
494 Outcomes: A Social Genomics Approach. *J Clin Oncol* **40**, 1407-1413,
495 doi:10.1200/JCO.21.02004 (2022).

496 6 Islami, F. et al. American Cancer Society's report on the status of cancer disparities in
497 the United States, 2021. *CA Cancer J Clin* **72**, 112-143, doi:10.3322/caac.21703 (2022).

498 7 Valencia, C. I., Gachupin, F. C., Molina, Y. & Batai, K. Interrogating Patterns of Cancer
499 Disparities by Expanding the Social Determinants of Health Framework to Include
500 Biological Pathways of Social Experiences. *Int J Environ Res Public Health* **19**,
501 doi:10.3390/ijerph19042455 (2022).

502 8 Wiechmann, L. & Kuerer, H. M. The molecular journey from ductal carcinoma in situ to
503 invasive breast cancer. *Cancer* **112**, 2130-2142, doi:10.1002/cncr.23430 (2008).

504 9 Gibson, S. V. et al. Everybody needs good neighbours: the progressive DCIS
505 microenvironment. *Trends Cancer* **9**, 326-338, doi:10.1016/j.trecan.2023.01.002 (2023).

506 10 Risom, T. et al. Transition to invasive breast cancer is associated with progressive
507 changes in the structure and composition of tumor stroma. *Cell* **185**, 299-310 e218,
508 doi:10.1016/j.cell.2021.12.023 (2022).

509 11 Er, E. E., Tello-Lafoz, M. & Huse, M. Mechanoregulation of Metastasis beyond the
510 Matrix. *Cancer Res* **82**, 3409-3419, doi:10.1158/0008-5472.CAN-22-0419 (2022).

511 12 Er, E. E. et al. Pericyte-like spreading by disseminated cancer cells activates YAP and
512 MRTF for metastatic colonization. *Nat Cell Biol* **20**, 966-978, doi:10.1038/s41556-018-
513 0138-8 (2018).

514 13 Kim, T. et al. MRTF potentiates TEAD-YAP transcriptional activity causing metastasis.
515 *EMBO J* **36**, 520-535, doi:10.15252/embj.201695137 (2017).

516 14 Medjkane, S., Perez-Sanchez, C., Gaggioli, C., Sahai, E. & Treisman, R. Myocardin-
517 related transcription factors and SRF are required for cytoskeletal dynamics and
518 experimental metastasis. *Nat Cell Biol* **11**, 257-268, doi:10.1038/ncb1833 (2009).

519 15 Seifert, A. & Posern, G. Tightly controlled MRTF-A activity regulates epithelial
520 differentiation during formation of mammary acini. *Breast Cancer Res* **19**, 68,
521 doi:10.1186/s13058-017-0860-3 (2017).

522 16 Tello-Lafoz, M. et al. Cytotoxic lymphocytes target characteristic biophysical
523 vulnerabilities in cancer. *Immunity* **54**, 1037-1054 e1037,
524 doi:10.1016/j.immuni.2021.02.020 (2021).

525 17 Li, S., Chang, S., Qi, X., Richardson, J. A. & Olson, E. N. Requirement of a myocardin-
526 related transcription factor for development of mammary myoepithelial cells. *Mol Cell
527 Biol* **26**, 5797-5808, doi:10.1128/MCB.00211-06 (2006).

528 18 Li, J. et al. Myocardin-related transcription factor B is required in cardiac neural crest for
529 smooth muscle differentiation and cardiovascular development. *Proc Natl Acad Sci U S
530 A* **102**, 8916-8921, doi:10.1073/pnas.0503741102 (2005).

531 19 Wei, K., Che, N. & Chen, F. Myocardin-related transcription factor B is required for
532 normal mouse vascular development and smooth muscle gene expression. *Dev Dyn*
533 **236**, 416-425, doi:10.1002/dvdy.21041 (2007).

534 20 Oh, J., Richardson, J. A. & Olson, E. N. Requirement of myocardin-related transcription
535 factor-B for remodeling of branchial arch arteries and smooth muscle differentiation.
536 *Proc Natl Acad Sci U S A* **102**, 15122-15127, doi:10.1073/pnas.0507346102 (2005).

537 21 Weinl, C. et al. Endothelial SRF/MRTF ablation causes vascular disease phenotypes in
538 murine retinae. *J Clin Invest* **123**, 2193-2206, doi:10.1172/JCI64201 (2013).

539 22 Foster, C. T., Gualdrini, F. & Treisman, R. Mutual dependence of the MRTF-SRF and
540 YAP-TEAD pathways in cancer-associated fibroblasts is indirect and mediated by
541 cytoskeletal dynamics. *Genes Dev* **31**, 2361-2375, doi:10.1101/gad.304501.117 (2017).

542 23 Lopez-Garcia, M. A., Geyer, F. C., Lacroix-Triki, M., Marchio, C. & Reis-Filho, J. S.
543 Breast cancer precursors revisited: molecular features and progression pathways.
544 *Histopathology* **57**, 171-192, doi:10.1111/j.1365-2559.2010.03568.x (2010).

545 24 Miralles, F., Posern, G., Zaromytidou, A. I. & Treisman, R. Actin dynamics control SRF
546 activity by regulation of its coactivator MAL. *Cell* **113**, 329-342, doi:10.1016/s0092-
547 8674(03)00278-2 (2003).

548 25 Vartiainen, M. K., Guettler, S., Larijani, B. & Treisman, R. Nuclear actin regulates
549 dynamic subcellular localization and activity of the SRF cofactor MAL. *Science* **316**,
550 1749-1752, doi:10.1126/science.1141084 (2007).

551 26 Montel, L., Sotiropoulos, A. & Henon, S. The nature and intensity of mechanical
552 stimulation drive different dynamics of MRTF-A nuclear redistribution after actin
553 remodeling in myoblasts. *PLoS One* **14**, e0214385, doi:10.1371/journal.pone.0214385
554 (2019).

555 27 Cheung, K. J., Gabrielson, E., Werb, Z. & Ewald, A. J. Collective invasion in breast
556 cancer requires a conserved basal epithelial program. *Cell* **155**, 1639-1651,
557 doi:10.1016/j.cell.2013.11.029 (2013).

558 28 Massague, J. & Obenauf, A. C. Metastatic colonization by circulating tumour cells.
559 *Nature* **529**, 298-306, doi:10.1038/nature17038 (2016).

560 29 Jehanno, C. *et al.* Nuclear translocation of MRTFA in MCF7 breast cancer cells shifts
561 ERalpha nuclear/genomic to extra-nuclear/non genomic actions. *Mol Cell Endocrinol*
562 **530**, 111282, doi:10.1016/j.mce.2021.111282 (2021).

563 30 Kerdivel, G. *et al.* Activation of the MKL1/actin signaling pathway induces hormonal
564 escape in estrogen-responsive breast cancer cell lines. *Mol Cell Endocrinol* **390**, 34-44,
565 doi:10.1016/j.mce.2014.03.009 (2014).

566 31 Livasy, C. A. *et al.* Phenotypic evaluation of the basal-like subtype of invasive breast
567 carcinoma. *Mod Pathol* **19**, 264-271, doi:10.1038/modpathol.3800528 (2006).

568 32 Wu, S. Z. *et al.* A single-cell and spatially resolved atlas of human breast cancers. *Nat
569 Genet* **53**, 1334-1347, doi:10.1038/s41588-021-00911-1 (2021).

570 33 Tarhan, L. *et al.* Single Cell Portal: an interactive home for single-cell genomics data.
571 *bioRxiv*, doi:10.1101/2023.07.13.548886 (2023).

572 34 Wei, S. C., Duffy, C. R. & Allison, J. P. Fundamental Mechanisms of Immune Checkpoint
573 Blockade Therapy. *Cancer Discov* **8**, 1069-1086, doi:10.1158/2159-8290.CD-18-0367
574 (2018).

575 35 Du, F. *et al.* MRTF-A-NF-kappaB/p65 axis-mediated PDL1 transcription and expression
576 contributes to immune evasion of non-small-cell lung cancer via TGF-beta. *Exp Mol Med*
577 **53**, 1366-1378, doi:10.1038/s12276-021-00670-3 (2021).

578 36 Foda, B. M., Misek, S. A., Gallo, K. A. & Neubig, R. R. Inhibition of the Rho/MRTF
579 pathway improves the response of BRAF-resistant melanoma to PD1/PDL1 blockade.
580 *bioRxiv*, 2023.2012.2020.572555, doi:10.1101/2023.12.20.572555 (2023).

581 37 Wculek, S. K. *et al.* Dendritic cells in cancer immunology and immunotherapy. *Nat Rev
582 Immunol* **20**, 7-24, doi:10.1038/s41577-019-0210-z (2020).

583 38 Kent, W. J. *et al.* The human genome browser at UCSC. *Genome Res* **12**, 996-1006,
584 doi:10.1101/gr.229102 (2002).

585 39 Geronimus, A. T. The weathering hypothesis and the health of African-American women
586 and infants: evidence and speculations. *Ethn Dis* **2**, 207-221 (1992).

587 40 Das, A. How does race get "under the skin"?: inflammation, weathering, and metabolic
588 problems in late life. *Soc Sci Med* **77**, 75-83, doi:10.1016/j.socscimed.2012.11.007
589 (2013).

590 41 Jiang, P. *et al.* Signatures of T cell dysfunction and exclusion predict cancer
591 immunotherapy response. *Nat Med* **24**, 1550-1558, doi:10.1038/s41591-018-0136-1
592 (2018).

593 42 Han, Y. L. *et al.* Cell swelling, softening and invasion in a three-dimensional breast
594 cancer model. *Nat Phys* **16**, 101-108, doi:10.1038/s41567-019-0680-8 (2020).

595 43 Jones, D., Pereira, E. R. & Padera, T. P. Growth and Immune Evasion of Lymph Node
596 Metastasis. *Front Oncol* **8**, 36, doi:10.3389/fonc.2018.00036 (2018).

597 44 Purrinton, K. S. *et al.* Genome-wide association study identifies 25 known breast
598 cancer susceptibility loci as risk factors for triple-negative breast cancer. *Carcinogenesis*
599 **35**, 1012-1019, doi:10.1093/carcin/bgt404 (2014).

600 45 Lindstrom, S. *et al.* Genome-wide association study identifies multiple loci associated
601 with both mammographic density and breast cancer risk. *Nat Commun* **5**, 5303,
602 doi:10.1038/ncomms6303 (2014).

603 46 Yao, S. *et al.* Breast Tumor Microenvironment in Black Women: A Distinct Signature of
604 CD8+ T-Cell Exhaustion. *J Natl Cancer Inst* **113**, 1036-1043, doi:10.1093/jnci/djaa215
605 (2021).

606 47 Martin, D. N. *et al.* Differences in the tumor microenvironment between African-American
607 and European-American breast cancer patients. *PLoS One* **4**, e4531,
608 doi:10.1371/journal.pone.0004531 (2009).

609 48 Marczyk, M. *et al.* Tumor immune microenvironment of self-identified African American
610 and non-African American triple negative breast cancer. *NPJ Breast Cancer* **8**, 88,
611 doi:10.1038/s41523-022-00449-3 (2022).

612 49 O'Meara, T. *et al.* Immune microenvironment of triple-negative breast cancer in African-
613 American and Caucasian women. *Breast Cancer Res Treat* **175**, 247-259,
614 doi:10.1007/s10549-019-05156-5 (2019).

615 50 Martin, A. S. *et al.* VISTA expression and patient selection for immune-based anticancer
616 therapy. *Front Immunol* **14**, 1086102, doi:10.3389/fimmu.2023.1086102 (2023).

617 51 Schumacher, T. N. & Thommen, D. S. Tertiary lymphoid structures in cancer. *Science*
618 **375**, eabf9419, doi:10.1126/science.abf9419 (2022).

619 52 Danenberg, E. *et al.* Breast tumor microenvironment structures are associated with
620 genomic features and clinical outcome. *Nat Genet* **54**, 660-669, doi:10.1038/s41588-
621 022-01041-y (2022).

622 53 Guenther, C. *et al.* A beta2-Integrin/MRTF-A/SRF Pathway Regulates Dendritic Cell
623 Gene Expression, Adhesion, and Traction Force Generation. *Front Immunol* **10**, 1138,
624 doi:10.3389/fimmu.2019.01138 (2019).

625 54 Morrison, V. L. *et al.* Loss of beta2-integrin-mediated cytoskeletal linkage reprogrammes
626 dendritic cells to a mature migratory phenotype. *Nat Commun* **5**, 5359,
627 doi:10.1038/ncomms6359 (2014).

628

629 **Figure Legends**

630 **Figure 1. MRTFA and MRTFB show distinct expression patterns in the normal mammary
631 gland.**

632 (A) Schematic representation of selected characteristics of patient cohort. (B) Illustrative
633 summary of methods to image MRTFA and MRTFB in the tumor microenvironment. (C)
634 Representative images of expression patterns of MRTFA and MRTFB in the normal mammary

635 gland and its compartments: MRTFA (Opal 520) in green, MRTFB (Opal 620) in cyan, panCK
636 (Opal 690) in red, and DAPI in blue. Asterisks (*) represent lumen of mammary epithelium and
637 arrowheads (►) point to the location of contractile myoepithelial cells. (D) Representative
638 images of expression patterns of MRTFA and MRTFB in mammary tissue, Invasive Ductal
639 Carcinoma, and lymph node metastases: MRTFA (Opal 520) in green, MRTFB (Opal 620) in
640 cyan, panCK (Opal 690) in red, and DAPI in blue.

641

642 **Figure 2. Subcellular segmentation reveals a correlation between MRTFA and MRTFB**
643 **staining in tumor cells and abundant nuclear localization.**

644 (A) Workflow for nuclear and cytoplasmic segmentation of 4-color multiplex
645 immunofluorescence in preparation for statistical and bioinformatic analyses, including training
646 of HALO AI to recognize panCK-positive tumor regions versus panCK-negative benign regions
647 of cores. (B) Violin plot of calculated staining intensity ratios (quotient of nuclear staining
648 intensity and cytoplasmic staining intensity) for MRTFA and MRTFB in panCK-positive tumor
649 cells of primary tumor cores (n = 291). Median staining intensity ratios greater than 1 suggest
650 activation and abundant nuclear expression. (C) Violin plot showing distribution of Pearson
651 correlation coefficients of average nuclear MRTFA and MRTFB staining intensities in panCK-
652 positive tumor cells of primary tumor cores (n = 289). Mann-Whitney test used to calculate p-
653 values. (D) Pearson correlation plot and simple linear regression of average nuclear MRTFA
654 and MRTFB staining intensities in panCK-positive tumor cells of primary tumor cores (n = 289).

655

656

657 **Figure 3. Clinical and demographic correlates of MRTFA and MRTFB expression in lymph**
658 **node metastases.**

659 (A) Pearson correlation plots of primary tumor nuclear staining intensity and matching lymph
660 node metastasis nuclear staining intensity of MRTFA and MRTFB for 53 cases. Dotted lines
661 signify 99% confidence interval. Cases were categorized into “Low MRTFA/B” and “High
662 MRTFA/B” groups based on falling above or below the median nuclear lymph node staining
663 intensity. (B) Chart with results from a series of Fisher’s exact tests run for patient demographic
664 and tumor characteristics variables. Cases that did not have data available for every variable
665 tested for were excluded from the analysis (n = 8). (C) Pearson correlation plots of primary
666 tumor nuclear staining intensity and matching lymph node nuclear staining intensity of MRTFA
667 and MRTFB for self-identified Black/African American patients (n = 31) and White patients (n =
668 18). Dotted lines signify 99% confidence interval. (D) Multiple linear regression model for
669 nuclear MRTFA lymph node intensity with patient demographic and tumor characteristics
670 predictor variables. (E) Multiple linear regression results with top five predictor variables for
671 nuclear MRTFA lymph node intensity based on *p*-value. (F) Multiple linear regression model for
672 nuclear MRTFB lymph node intensity with patient demographic and tumor characteristics
673 predictor variables. (G) Multiple linear regression results with top five predictor variables for
674 nuclear MRTFB lymph node intensity based on *p*-value. Significance level for *p*-values: *
675 (*p*<0.05), ** (*p*<0.01), *** (*p*<0.001), **** (*p*<0.0001).

676

677

678 **Figure 4. MRTFA and MRTFB have specific expression patterns based on ER status.**

679 (A) Box plots (Tukey presentation) for mRNA expression of MRTFA and MRTFB among
680 estrogen receptor-positive (n = 1431) and estrogen receptor-negative (n = 435) invasive breast
681 cancer cases. Data accessed via Molecular Taxonomy of Breast Cancer International
682 Consortium (METABRIC) and Mann-Whitney test used to calculate *p*-values. (B) Box plots
683 (Tukey presentation) for mRNA expression of MRTFA and MRTFB among Luminal A (n = 500),
684 Luminal B (n = 196), Her2 (n = 78) and Basal (n = 171) molecular subtypes of breast cancer.

685 Data accessed via The Cancer Genome Atlas (TCGA) and Kruskal-Wallis test used to calculate
686 *p*-values. (C) Box plots (Tukey presentation) for nuclear staining intensity and total staining
687 intensity (D) of MRTFA and MRTFB in panCK-positive tumor cells of primary tumor cores.
688 Immunohistochemistry was used to identify tumors' estrogen-receptor status as weak or
689 moderate positive (1-10% and 11-50% staining, n = 35), strong positive (51-100% staining, n =
690 168), or negative (0% staining, n = 88). Kruskal-Wallis test used to calculate *p*-values. (E) Dot
691 plot of all TCGA invasive breast cancer samples' tumor purity as calculated by the TIMER
692 algorithm as a function of *MRTFA* (*MKL1*) and *MRTFB* (*MKL2*) gene expression. (F) Box plots
693 (Tukey presentation) for nuclear staining intensity and total staining intensity (G) of MRTFA and
694 MRTFB in cancer and stromal compartments of primary tumor cores. Mann-Whitney test used
695 to calculate *p*-values.

696

697

698 **Figure 5. MRTFA shows a distinct expression pattern in antigen presenting cells in the**
699 **tumor microenvironment.**

700 (A) Single-cell transcriptomic data showing scaled mean expression of and percent of cells
701 expressing MRTFA and MRTFB in immune, structural, and antigen-presenting cell types of the
702 tumor microenvironment (n = 26). Data accessed via Broad Institute Single Cell Portal. (B)
703 Dendritic Cell (DC) and cancer associated fibroblast (CAF) enrichment scores based on TIMER
704 algorithm as a function of *MRTFA* and *MRTFB* expression without tumor purity adjustments. (C-
705 E) Multiplex image of (C) an invasive breast cancer sample from one patient included in the
706 BRWG UIC-001-TMA (Scale bar, 50 μ m) and (D) in a ductal carcinoma *in situ* sample (Scale
707 bar, 100 μ m for large view and scale bar, 50 μ m for insets) and (E) in a lymph node metastasis
708 sample from CHTN_BrCaProg3 TMA showing cancer cells (panCK, red), endothelial cells
709 (CD31, magenta), antigen presenting cells (HLA-DRA, yellow) and MRTFA (green) and MRTFB

710 (cyan). (E) * shows the nearby DCIS lesion, rectangle shows the area of inset for the bottom
711 panels.

712

713 **Figure 6. Immune exhaustion and MRTFA expression are elevated in tumors and the**
714 **stroma of African American breast cancer patients.** (A) Single cell RNA sequencing data
715 showing expression of several immune suppressor protein. Data accessed via Broad Institute
716 Single Cell Portal (B) Correlation between *MRTFA* and *VSIR* gene expression in TCGA
717 invasive breast cancer dataset. (C) Transcription factor density plots showing SRF binding sites
718 in the promoter region of human *VSIR* gene. Histone 3 Lysine 27 acetylation (H3K27Ac) show
719 accessibility of chromatin regions, red, orange and yellow blocks in candidate cis-regulatory
720 elements (cCREs) show promoter, and proximal cis enhancers respectively, JASPAR peaks
721 show predicted SRF binding sites, ReMap density shows experimentally validated SRF binding
722 sites by ChIP in experiments listed in purple font. Data accessed via <http://genome.ucsc.edu>.
723 Session URL: https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&lastVirtModeType=default&lastVirtModeExtraState=&virtModeType=def&virtMode=0&nonVirtPosition=&position=chr10%3A71761034%2D71778343&hgsid=1848347878_DsujX4MqToOVpoNLPdbawFAGvleA. (D) MRTFA staining intensity of stromal
727 (panCytokeratin negative) cells in the indicated selection of cores including normal/uninvolved
728 breast tissue, primary tumor cores and lymph node metastasis cores in the BRWG UIC-001-
729 TMA. *P*-values calculated by Mann-Whitney test. (E) MRTFA expression values (F) Cytotoxic T-
730 cell Dysfunction (G) T-cell Exclusion and (H) T-cell infiltration scores and (I) VSIR expression
731 values of breast cancer patients' tumors in TCGA separated by race. *P*-values are calculated by
732 Mann-Whitney test. (B,E-I) Data accessed via cBioportal.

733

734

735

736 **Supplemental Figure 1. Related to Figure 2.**

737 (A) Violin plot showing distribution of Pearson correlation coefficients of average total MRTFA
738 and MRTFB staining intensities and average cytoplasmic MRTFA and MRTFB staining
739 intensities (B) in panCK-positive tumor cells of primary tumor cores (n = 289). Mann-Whitney
740 test used to calculate *p*-values. (C) Pearson correlation plot and simple linear regression of
741 average total MRTFA and MRTFB staining intensities and average cytoplasmic MRTFA and
742 MRTFB staining intensities (D) in panCK-positive tumor cells of primary tumor cores (n = 291).

743

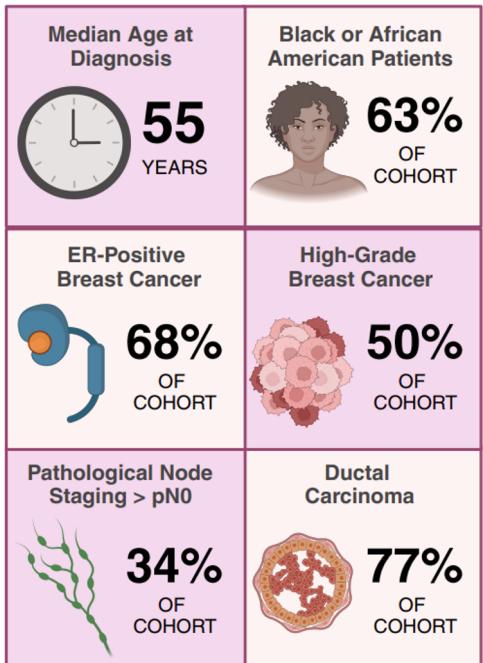
744 **Supplemental Figure 2. Related to Figure 3.**

745 (A) Pearson correlation plots of primary tumor total staining intensity and matching lymph node
746 metastasis total staining intensity of MRTFA and MRTFB. Dotted lines signify 99% confidence
747 interval (n = 53). (B) Pearson correlation plots of primary tumor cytoplasmic staining intensity
748 and matching lymph node metastasis cytoplasmic staining intensity of MRTFA and MRTFB.
749 Dotted lines signify 99% confidence interval (n = 53). (C) Pearson correlation plots of primary
750 tumor total staining intensity and matching lymph node total staining intensity of MRTFA and
751 MRTFB for self-identified Black/African American patients (n = 31) and White patients (n = 18).
752 Dotted lines signify 99% confidence interval. (D) Pearson correlation plots of primary tumor
753 cytoplasmic staining intensity and matching lymph node cytoplasmic staining intensity of
754 MRTFA and MRTFB for self-identified Black/African American patients (n = 31) and White
755 patients (n = 18). Dotted lines signify 99% confidence interval. (E) Residual plot for multiple
756 linear regression analysis of nuclear MRTFA lymph node intensity with patient demographic and
757 tumor characteristics predictor variables. (F) Residual plot for multiple linear regression analysis
758 of nuclear MRTFB lymph node intensity with patient demographic and tumor characteristics
759 predictor variables. (G) Complete multiple linear regression results with all predictor variables
760 for nuclear MRTFA lymph node intensity organized by *P*-value. (H) Complete multiple linear
761 regression results with all predictor variables for nuclear MRTFB lymph node intensity organized

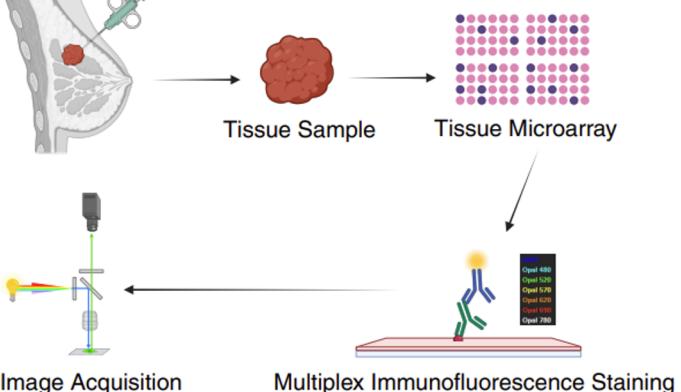
762 by P-value. Significance level for *p*-values: * (*p*<0.05), ** (*p*<0.01), *** (*p*<0.001), ****
763 (*p*<0.0001).

764

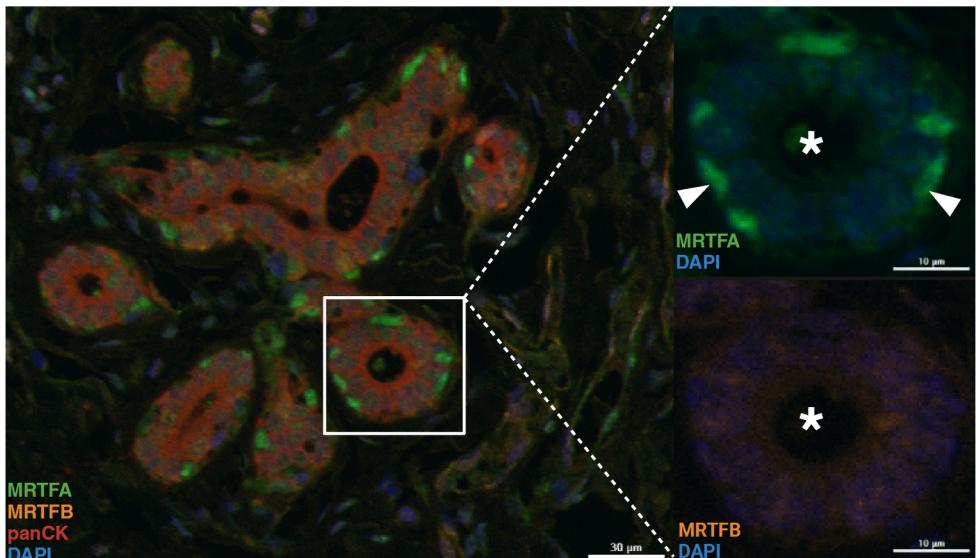
765 **Supplemental Figure 3. Related to Figure 4.**

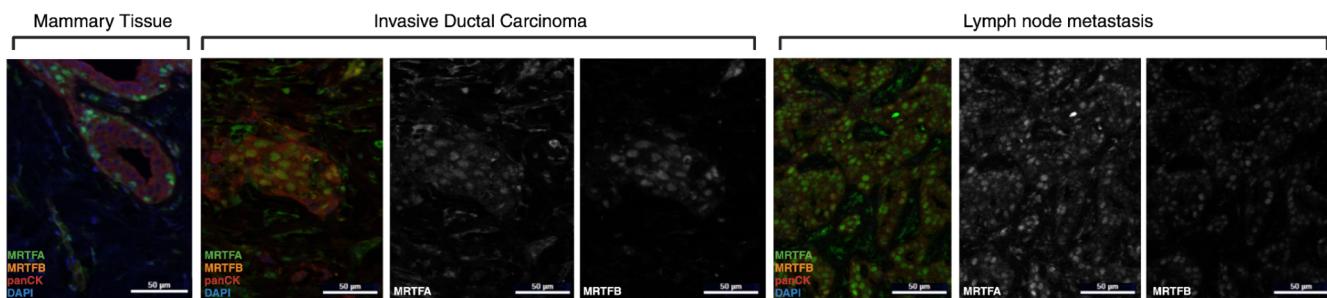

766 (A) Box plots (Tukey presentation) for cytoplasmic staining intensity of MRTFA and MRTFB in
767 panCK-positive tumor cells of primary tumor cores. Immunohistochemistry was used to identify
768 tumors' estrogen-receptor status as weak or moderate positive (1-10% and 11-50% staining, n
769 = 35), strong positive (51-100% staining, n = 168), or negative (0% staining, n = 88). Kruskal-
770 Wallis test used to calculate *p*-values. (B) Box plots (Tukey presentation) for cytoplasmic
771 staining intensity of MRTFA and MRTFB in cancer and stromal compartments of primary tumor
772 cores. Mann-Whitney test used to calculate *p*-values.

773

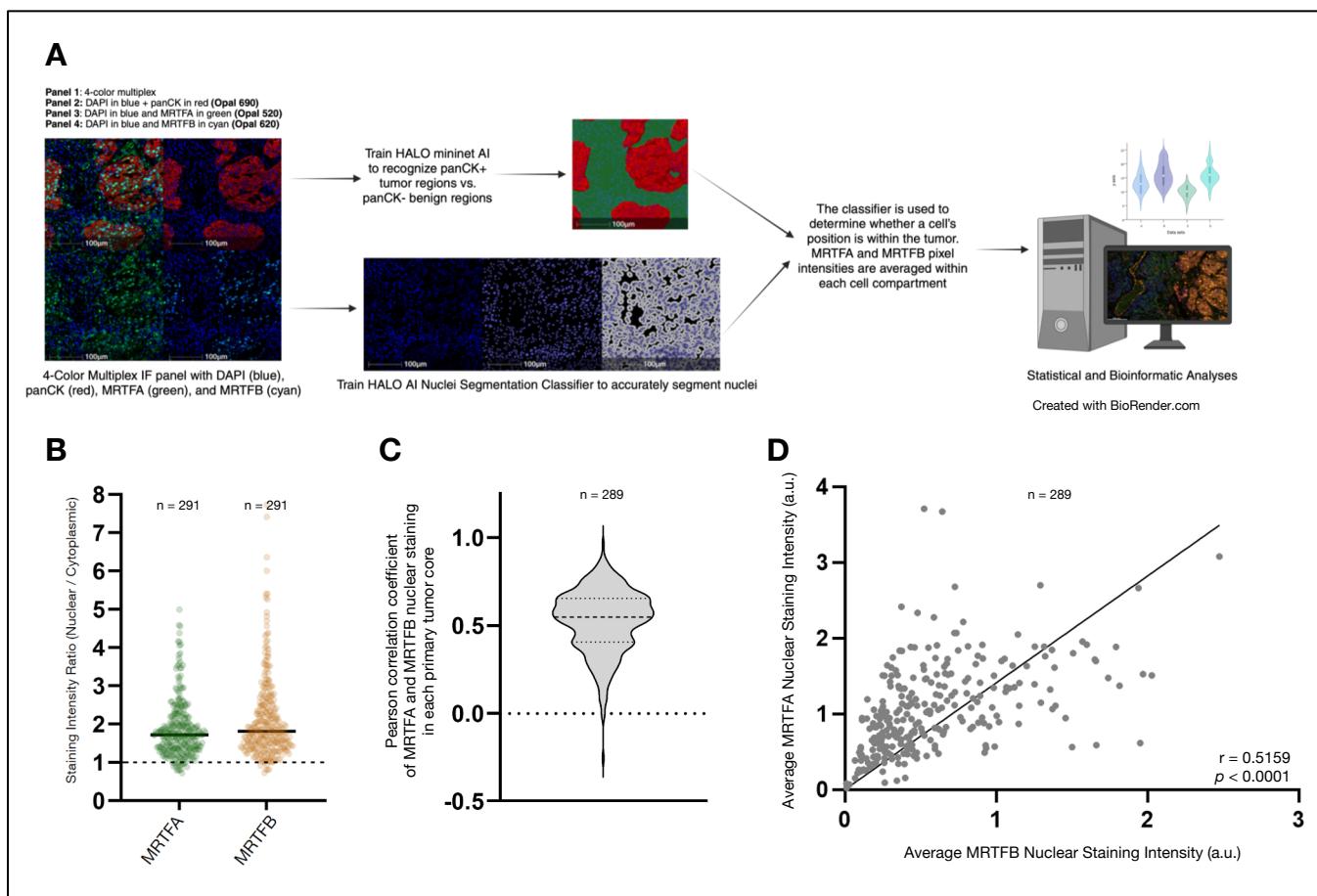

774 **Supplemental Figure 4. Related to Figure 6.**

775 (A-C) Correlation between *MRTFA* expression and (A) *MYH9* (B) *MYL9* and (C) *PDL1*
776 (encoded by *CD274*) gene expression in TCGA invasive breast cancer dataset. Data accessed
777 via cBioportal. (D) Transcription factor density plots showing SRF binding sites in the promoter
778 region of human *CD274* gene. Histone 3 Lysine 27 acetylation (H3K27Ac) show accessibility of
779 chromatin regions, red, orange and yellow blocks in candidate cis-regulatory elements (cCREs)
780 show promoter, and proximal cis enhancers respectively, JASPAR peaks show predicted SRF
781 binding sites, ReMap density shows experimentally validated SRF binding sites by ChIP in
782 experiments listed in purple font. Data accessed via <http://genome.ucsc.edu>. Session URL:
783 https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&lastVirtModeType=default&lastVirtModeExtraState=&virtModeType=default&virtMode=0&nonVirtPosition=&position=chr9%3A5445502%2D5455508&hgsid=1848344652_Gzjysw7sxcCdpuGrb4ZWbQgKRml.

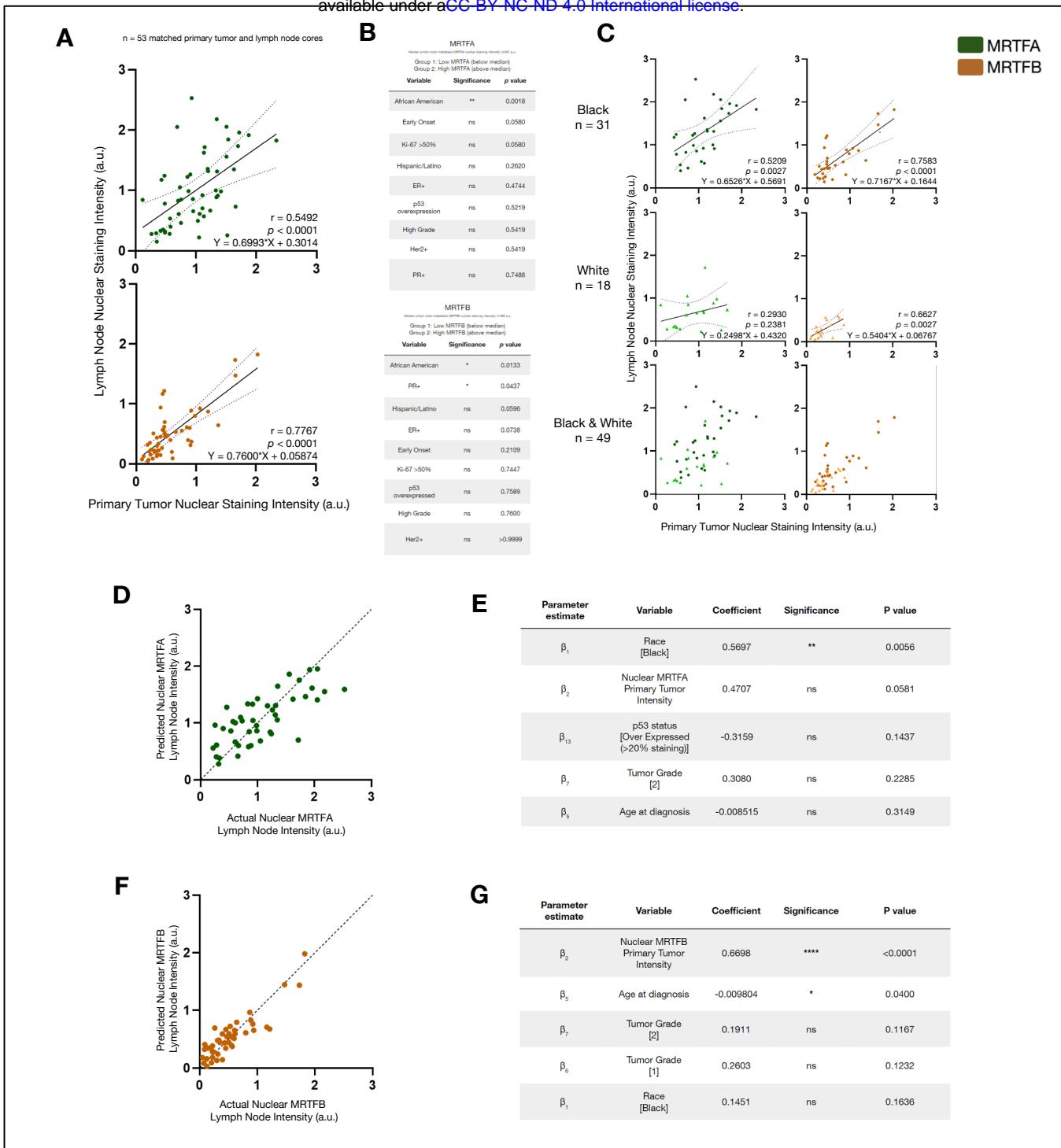

A


B

C



D



Created with BioRender.com

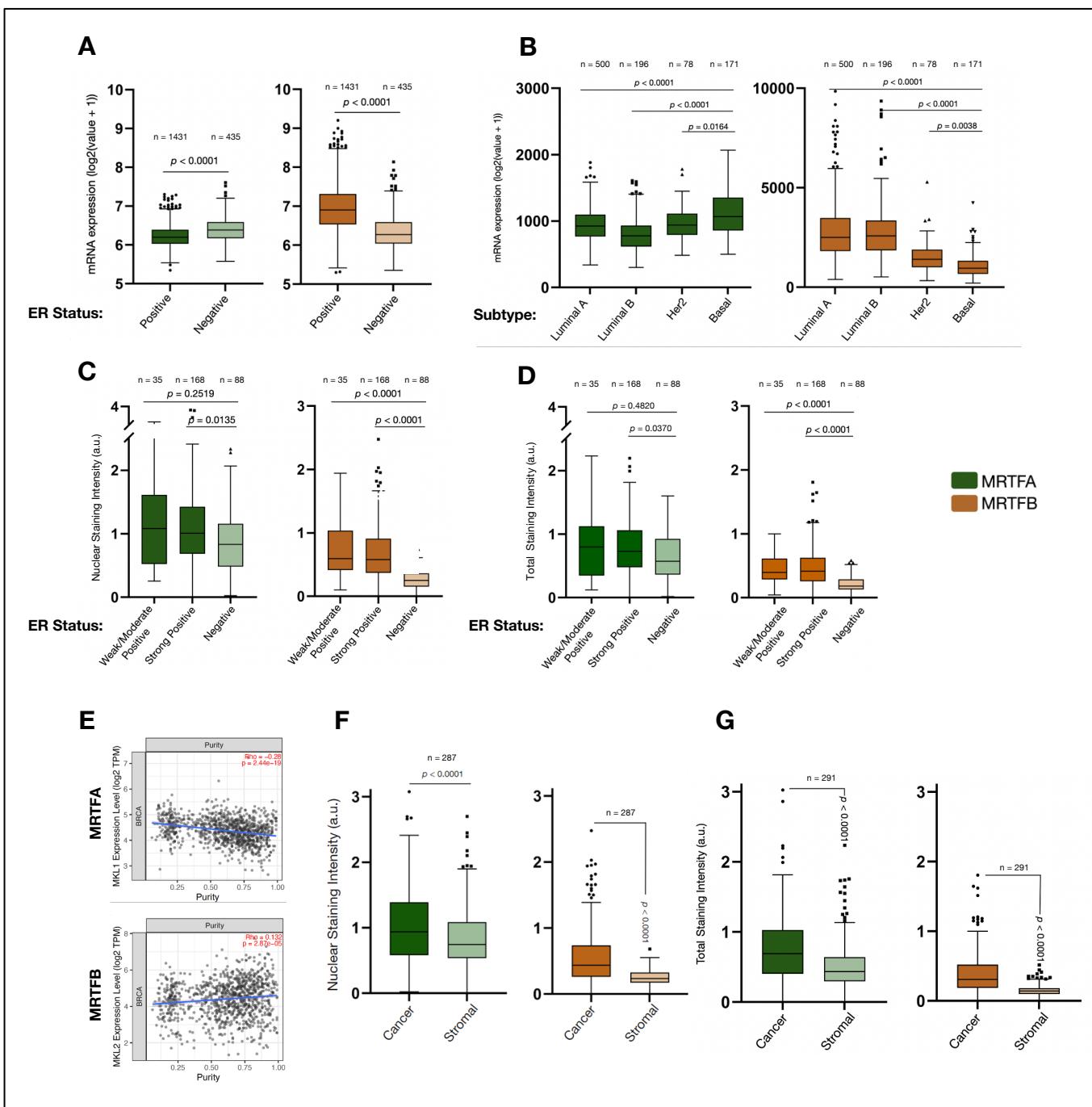

Figure 1. MRTFA and MRTFB show distinct expression patterns in the normal mammary gland.

Figure 2. Subcellular segmentation reveals a correlation between MRTFA and MRTFB staining in tumor cells and abundant nuclear localization.

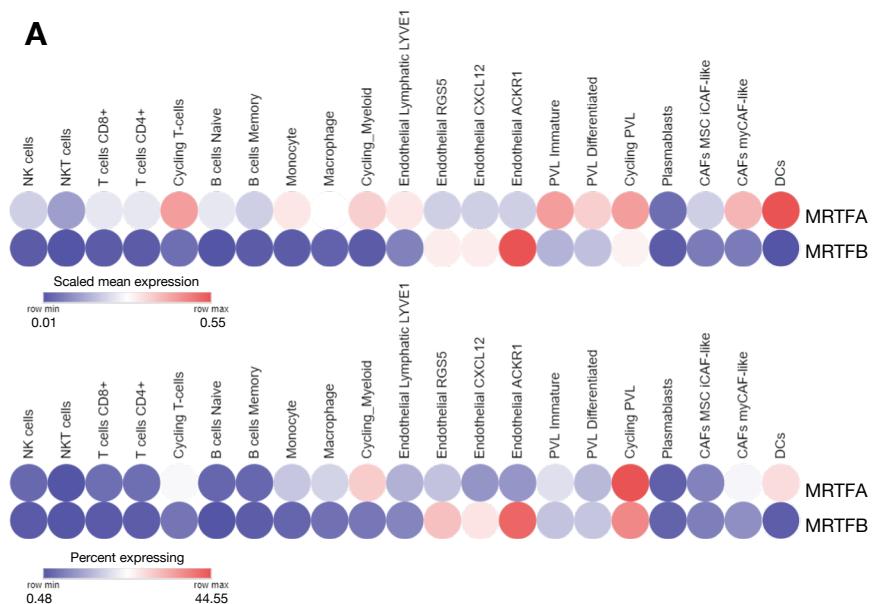


Figure 3. Clinical and demographic correlates of MRTFA and MRTFB expression in lymph node metastases.

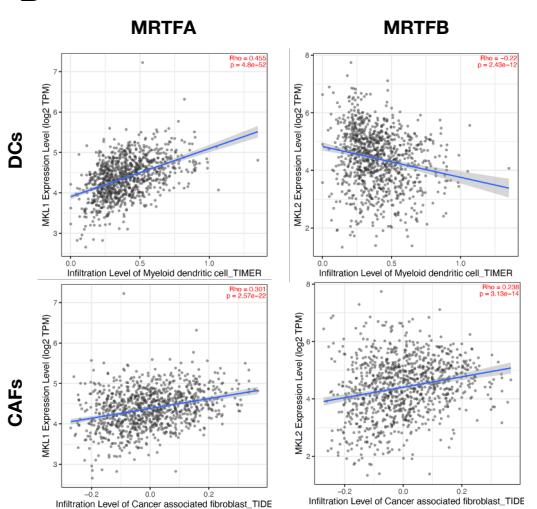
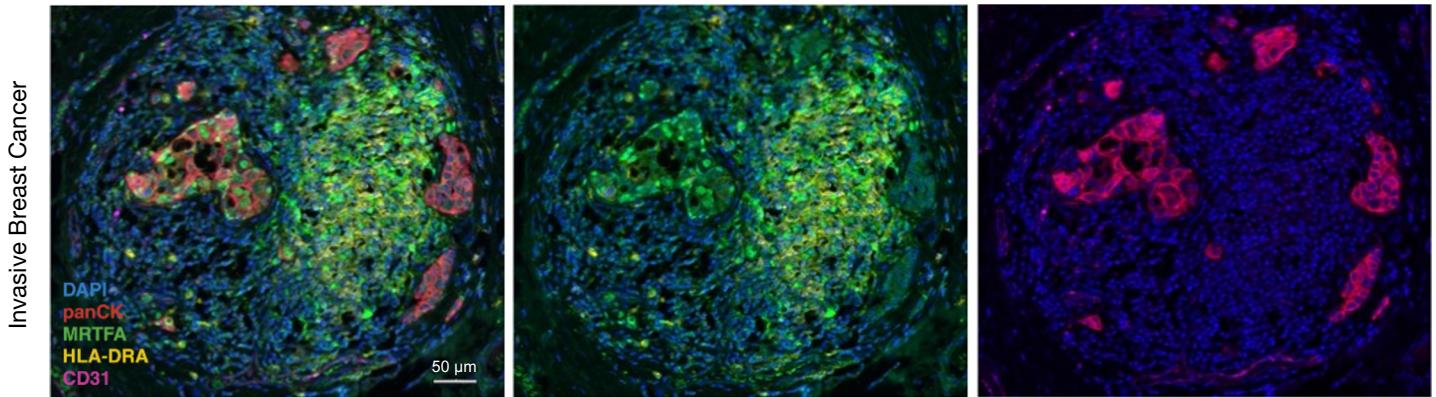
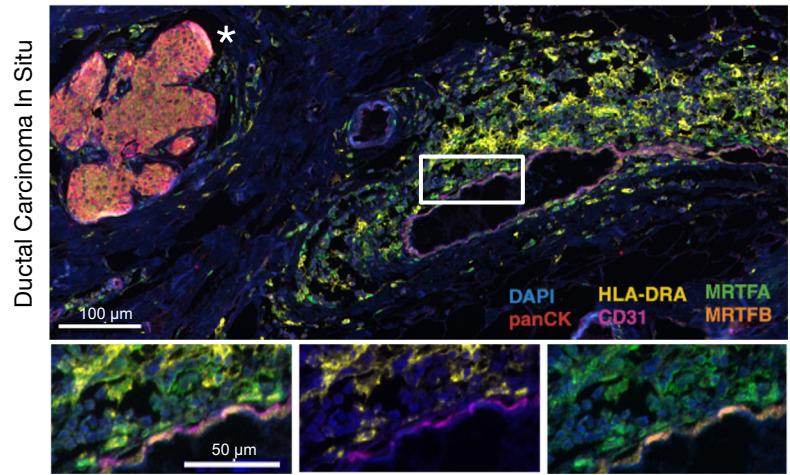
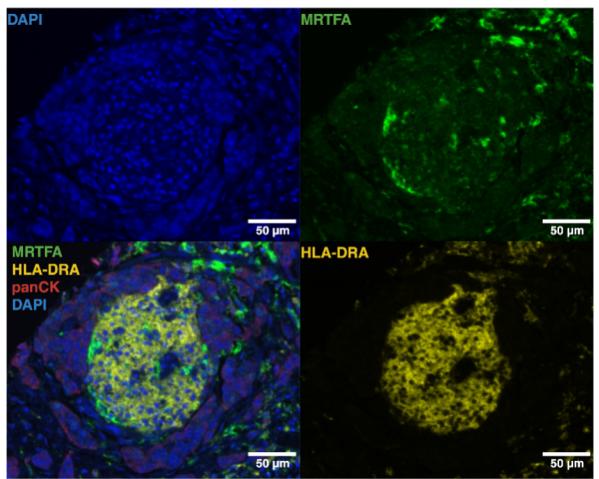
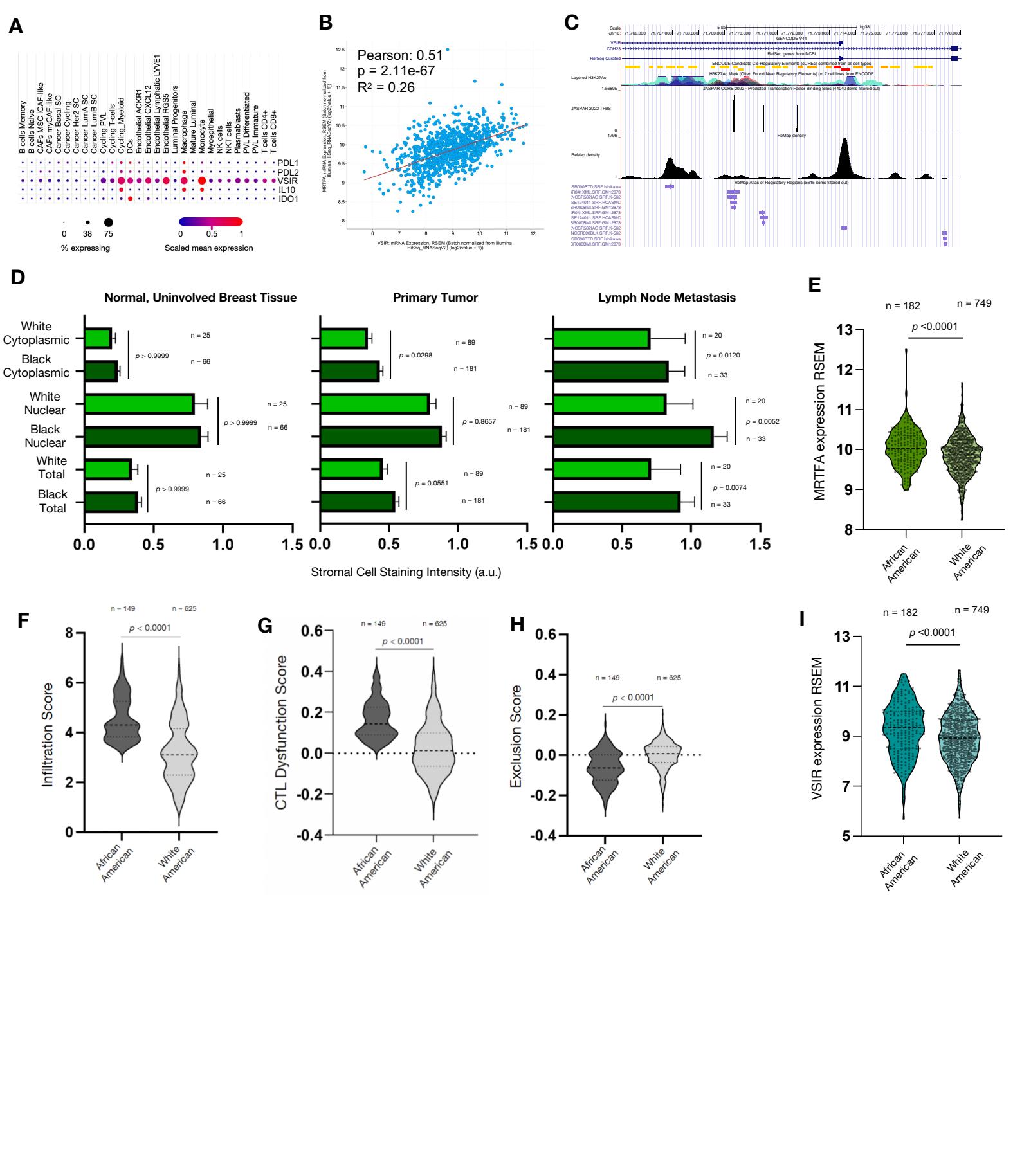


Figure 4. MRTFA and MRTFB have specific expression patterns based on ER status.


A

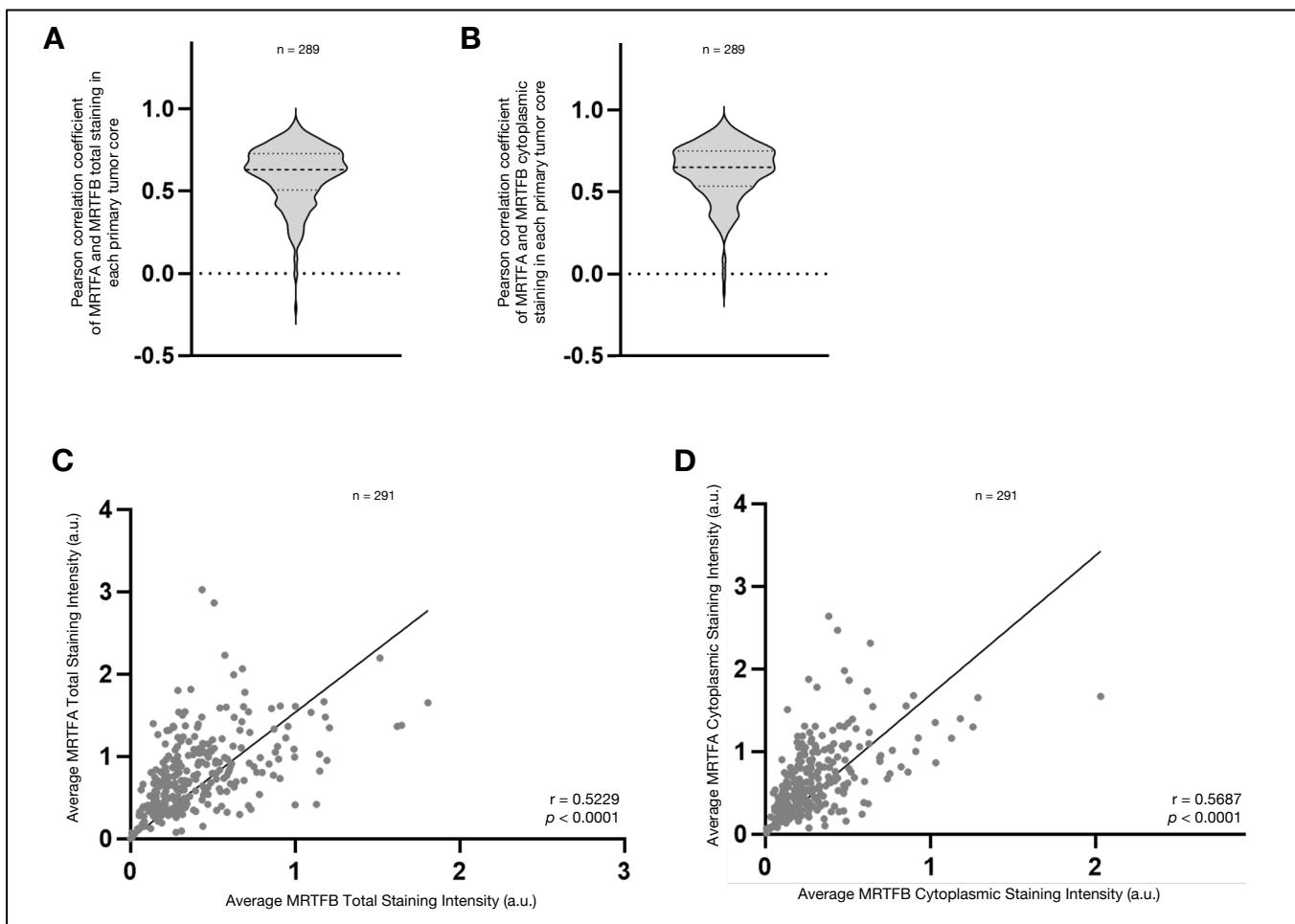

B


C

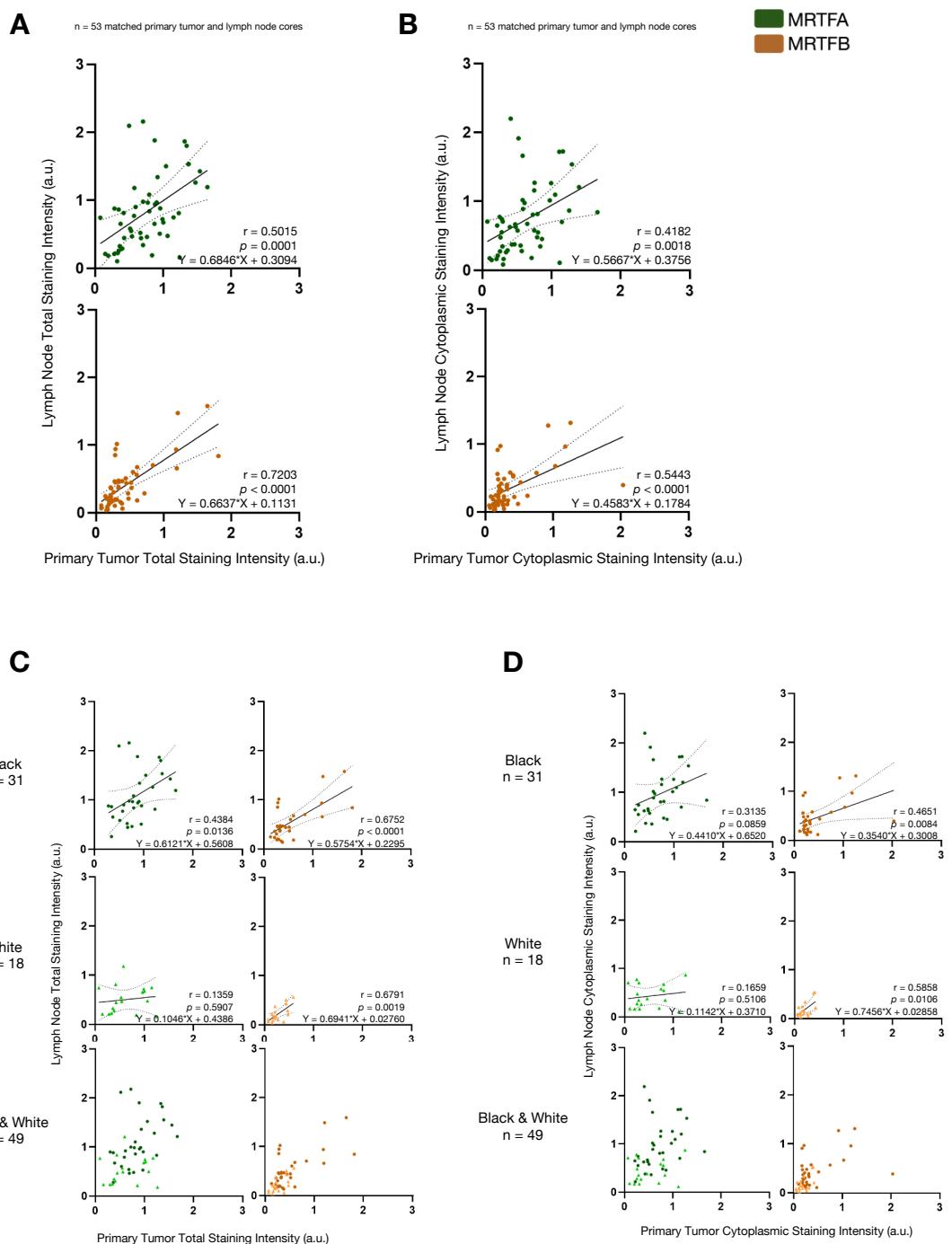

D

E

Figure 5. MRTFA shows a distinct expression pattern in antigen presenting cells in the tumor microenvironment.

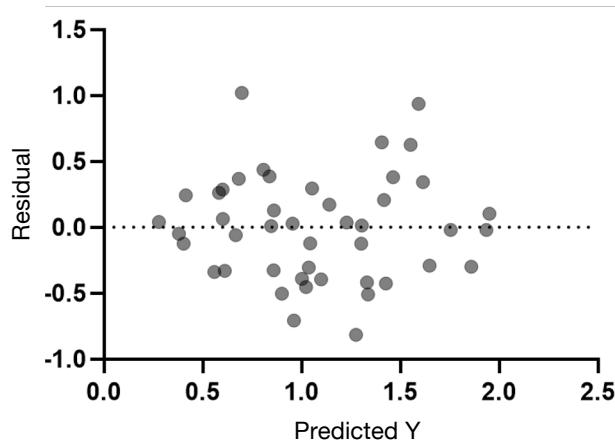

Figure 6. Immune exhaustion and MRTFA expression are elevated in tumors and the stroma of African American breast cancer patients.

Characteristics	Patients (n = 154; 100%), n (%)		
Median age at diagnosis (range), years	55 (28-89)	ER status	
Race		Negative	49 (31.8)
Black or African American	97 (63.0)	Weak or Moderate Positive	17 (11.0)
White	46 (29.9)	Strong Positive	88 (57.1)
Other/Unknown	11 (7.1)	PR status	
Ethnicity		Negative	55 (35.7)
Hispanic or Latino	20 (13.0)	Weak or Moderate Positive	49 (31.8)
Non-Hispanic or Latino	132 (85.7)	Strong Positive	50 (32.5)
Unknown	2 (1.3)	Ki67 status	
Histological Subtype		0-10%	33 (21.4)
Ductal	118 (76.6)	11-50%	76 (49.4)
Lobular	17 (11.0)	>50%	43 (27.9)
Other/Unknown	19 (12.3)	Unknown	2 (1.3)
Tumor grade		HER2 IHC status	
Grade 1	38 (24.7)	0	63 (40.9)
Grade 2	38 (24.7)	1+	32 (20.8)
Grade 3	77 (50.0)	2+	29 (18.8)
Unknown	1 (0.6)	3+	30 (19.5)
Tumor size		p53 status	
pT0	1 (0.6)	Negative	59 (38.3)
pT1	62 (40.3)	<20% staining	51 (33.1)
pT2	76 (49.4)	>20% staining	41 (26.6)
pT3	7 (4.5)	Unknown	3 (1.9)
pT4	7 (4.5)		
Unknown	1 (0.6)		
Lymph node involvement status			
pN0	101 (65.6)		
pN1	31 (20.1)		
pN2	14 (9.1)		
pN3	7 (4.5)		
Unknown	1 (0.6)		

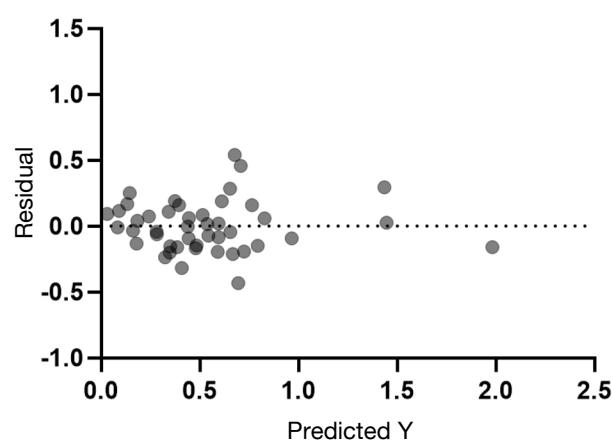

Table 1. Patient characteristics.

Antibody	Vendor	Catalog #	Clone	Conc.	Opal dye	Opal dilution
1 MRFTA	Sigma-Aldrich	HPA030782	polyclonal	1:50	520	1:100
2 MRTFB	Bethyl Laboratories	A302-768A	polyclonal	1:50	620	1:150
3 PanCK	Agilent DAKO	M3515	AE1/AE3	1:200	690	1:300
4 HLA-DR	Abcam	ab92511	EPR3692	1:5000	570	1:150
5 CD31	Cell Signaling	3528	89C2	1:2000	780	1:100/1:25

Table 2. Multiplex immunofluorescence staining protocol.



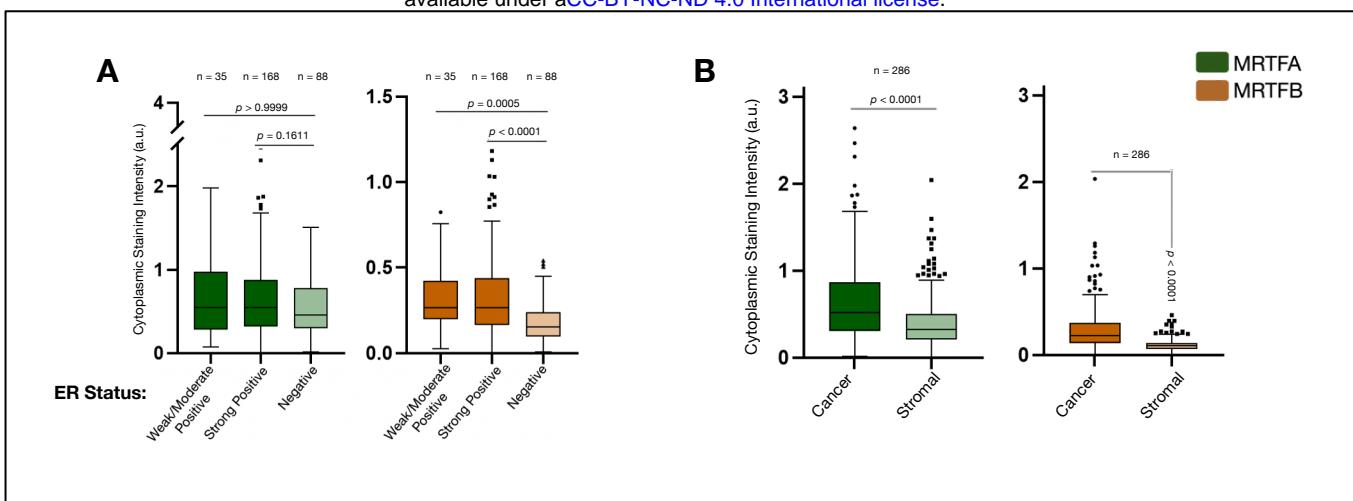
Supplemental Figure 1. Related to Figure 2.



Supplemental Figure 2. Related to Figure 3.

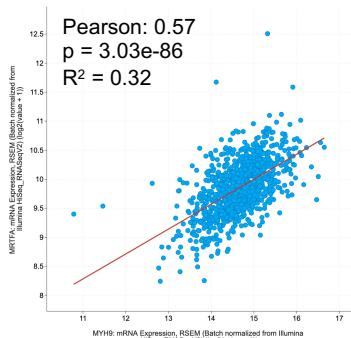
E

F

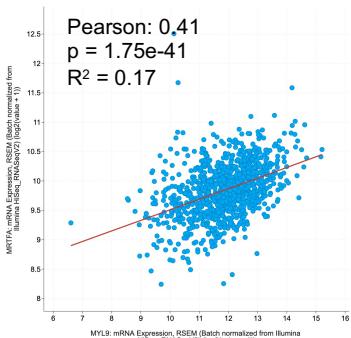

G

Parameter estimate	Variable	Coefficient	Significance	P value
β_1	Race [Black]	0.5697	**	0.0056
β_2	Nuclear MRTFA Primary Tumor Intensity	0.4707	ns	0.0581
β_{13}	p53 status [Over Expressed (>20% staining)]	-0.3159	ns	0.1437
β_7	Tumor Grade [2]	0.3080	ns	0.2285
β_5	Age at diagnosis	-0.008515	ns	0.3149
β_{10}	HER2 IHC Status [2]	0.2578	ns	0.4234
β_6	Tumor Grade [1]	0.2374	ns	0.4423
β_8	HER2 IHC Status [3]	0.1446	ns	0.4615
β_9	HER2 IHC Status [1]	0.1667	ns	0.4624
β_{11}	Ki67 Status [11-50%]	-0.1485	ns	0.4924
β_{12}	Ki67 Status [0-10%]	-0.2708	ns	0.4954
β_3	ER Status [Positive]	-0.2739	ns	0.5168
β_4	PR Status [Positive]	0.06422	ns	0.8651
β_{14}	p53 status [Not Over Expressed (<20% staining)]	-0.01864	ns	0.9304

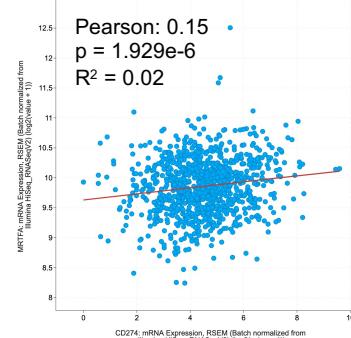
H

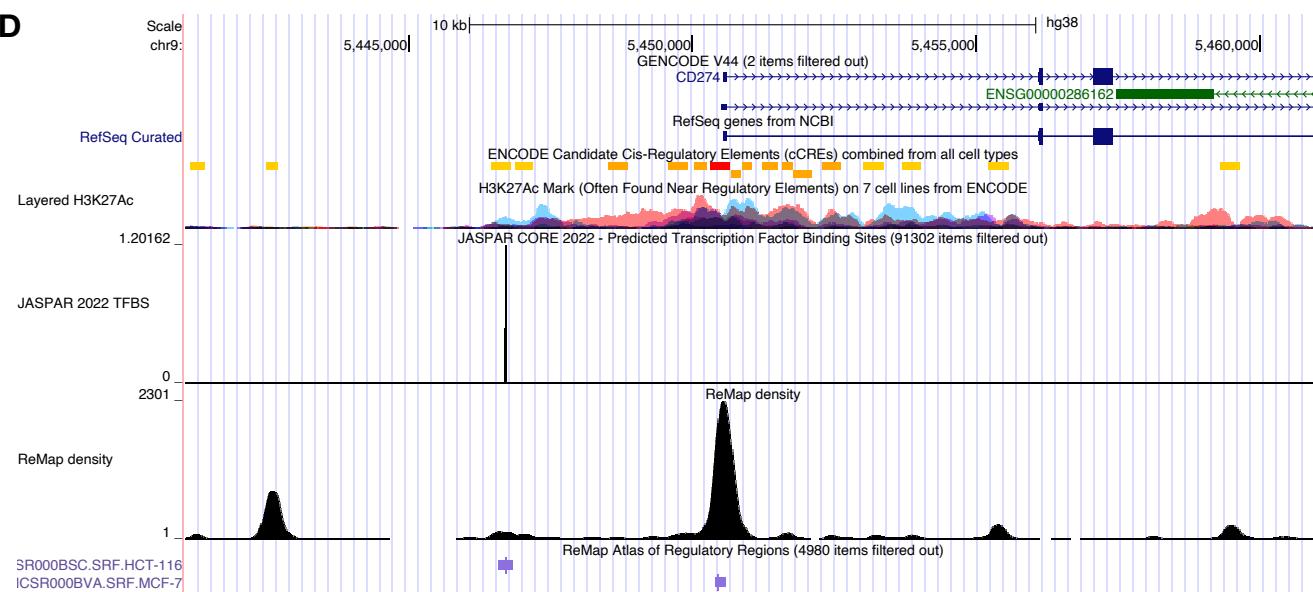

Parameter estimate	Variable	Coefficient	Significance	P value
β_2	Nuclear MRTFB Primary Tumor Intensity	0.6698	***	<0.0001
β_5	Age at diagnosis	-0.009804	*	0.0400
β_7	Tumor Grade [2]	0.1911	ns	0.1167
β_6	Tumor Grade [1]	0.2603	ns	0.1232
β_1	Race [Black]	0.1451	ns	0.1636
β_{10}	HER2 IHC Status [2]	-0.1702	ns	0.2777
β_{11}	Ki67 Status [11-50%]	0.1104	ns	0.2916
β_{13}	p53 status [Over Expressed (>20% staining)]	0.07203	ns	0.4823
β_8	HER2 IHC Status [3]	0.05231	ns	0.5694
β_3	ER Status [Positive]	0.07827	ns	0.6995
β_{14}	p53 status [Not Over Expressed (<20% staining)]	-0.03636	ns	0.7199
β_{12}	Ki67 Status [0-10%]	-0.05894	ns	0.7605
β_9	HER2 IHC Status [1]	0.02699	ns	0.8011
β_4	PR Status [Positive]	-0.02380	ns	0.8976

Supplemental Figure 2 (cont.). Related to Figure 3.



Supplemental Figure 3. Related to Figure 4.


A


B

C

D

Supplemental Figure 4. Related to Figure 6.