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Abstract 

The post-translational modification of proteins by ubiquitin and ubiquitin-like polypeptides 

controls multiple cellular processes including the abundance of a large fraction of the proteome. 

We applied genome-scale CRISPR/Cas9 screens to elucidate the genetic architecture of the 

response to inhibition of ubiquitin, NEDD8 and SUMO conjugation pathways as well as 

inhibition of the p97/VCP segregase. This effort identified 395 genes whose disruption alters the 

fitness of human cells when faced with perturbations in these pathways. We validated that the 

TMED2 and TMED10 proteins, which are localized to the secretory pathway, promote resistance 

to p97/VCP inhibition and also characterized NFATC2IP, an evolutionarily conserved protein 

harboring SUMO-like domains as a major player in promoting genomic integrity when 

SUMOylation is inhibited. We propose that NFATC2IP acts in interphase cells to promote the 

SUMO-dependent E3 ligase activity of the SMC5/SMC6 complex, which is critical for SUMO-

dependent genome integrity.  

 

Introduction 

The covalent attachment of ubiquitin and ubiquitin-like (Ubl) polypeptides to target proteins and 

other macromolecules modulate myriad cellular processes (Hershko and Ciechanover 1998; 

Dikic and Schulman 2022). By far the best characterized post-translational modification in this 

family is ubiquitin conjugation with the subsequent formation of ubiquitin chains that act as 

signals for degradation by the 26S proteasome (Finley 2009). Ubiquitin-dependent degradation 

controls the abundance of many signaling and cell cycle proteins and controls processes such as 

the termination of DNA replication and ribosome quality control (Hoeller and Dikic 2009; 

Dewar and Walter 2017; Joazeiro 2017). Ubiquitin also acts as a signaling or organizing 

molecule in processes such as DNA repair and receptor trafficking where non-degradative 

ubiquitin chain topologies are used to coordinate protein-protein interactions (Jackson and 

Durocher 2013; Foot et al. 2017). 

 Ubiquitin conjugation requires a multi-enzymatic cascade that is initiated by an E1 

activating enzyme that uses ATP to form a high energy ubiquitin~E1 thioester intermediate. 

Ubiquitin is then transferred to an E2 conjugating enzyme, which is then poised to conjugate the 

ubiquitin moiety to a substrate, usually by forming an isopeptide bond with the e-amino group of 

a lysine residue on the target protein (Hershko and Ciechanover 1998). In human cells, this latter 
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reaction is catalyzed by one of the nearly 600 E3 ubiquitin ligases encoded by in the genome 

(Zheng and Shabek 2017). Similar E1-E2-E3 enzymatic cascades exist for the conjugation of the 

other Ubl modifiers although, compared to ubiquitin, their repertoire of E3 ligases is much more 

restricted, ranging from ~8 E3s for SUMO to a single E3 for UFM1 (Cappadocia and Lima 

2018; Vertegaal 2022). 

 There is considerable crosstalk and interaction among the various ubiquitin and Ubl 

conjugation systems. For example, there are a number of SUMO-targeted E3 ubiquitin ligases 

such as RNF4 that catalyze the conjugation of ubiquitin chains on SUMOylated substrates 

(Tatham et al. 2008; Chang et al. 2021). Another example of crosstalk germane to this work is 

the conjugation of the Ubl NEDD8 on the cullin subunit of the cullin-RING-ligase (CRL) 

complexes, which form a large fraction of the E3 ubiquitin ligase complement of eukaryotic cells 

(Harper and Schulman 2021). Site-specific NEDD8 conjugation (neddylation) on cullin proteins 

is necessary to activate the E3 ligase activity of CRLs and, conversely, inhibition of neddylation 

blocks CRL activity and leads to the stabilization of their substrates (Harper and Schulman 

2021).  

 The control of genome stability is a process that is heavily influenced by degradative and 

non-degradative ubiquitylation, as well as SUMOylation (Jackson and Durocher 2013). For 

example, DNA double-strand breaks (DSBs) initiate a ubiquitin-dependent modification cascade 

on histones surrounding break sites, culminating with RNF168 ubiquitylating histone H2A at its 

N-terminus (Gatti et al. 2012; Mattiroli et al. 2012), a histone modification that is specifically 

read by the 53BP1 and BARD1 proteins that control DNA repair (Fradet-Turcotte et al. 2013; 

Wilson et al. 2016; Becker et al. 2021). In contrast, investigations on the role of SUMO in DNA 

repair by homologous recombination led to the concept that SUMO acts via group modification 

of target proteins, where multiple components of a pathway are SUMOylated to strengthen their 

collective action (Psakhye and Jentsch 2012; Vertegaal 2022). Additional Ubl proteins are also 

linked to genome maintenance processes, with ISG15 modification being identified by multiple 

groups as acting in the response to DNA replication stress (Park et al. 2014; Raso et al. 2020; 

Wardlaw and Petrini 2022).  

  The central role of ubiquitin-dependent degradation in controlling the activity of 

oncogenes and tumor suppressors have made the ubiquitin proteasome system (UPS) and Ubl 

conjugation pathways attractive drug targets. The regulatory approval of the proteasome inhibitor 
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bortezomib for the treatment of multiple myeloma provided an important proof-of-concept of the 

clinical utility of targeting the UPS (Adams 2001). This spurred the development of various 

inhibitors that exploit druggable nodes in the UPS pathways. These include the E1 activating 

enzymes (Wertz and Wang 2019) as well as p97/VCP, a hexameric ATPase that “extracts” 

ubiquitylated substrates from membranes, protein assemblies and chromatin to facilitate their 

degradation (Meyer and Weihl 2014). There is also considerable interest in the development of 

agents that target the reversal of ubiquitin or Ubl conjugation such as inhibitors of 

deubiquitylating enzymes or of the COP9/signalosome that catalyzes de-neddylation (Wertz and 

Wang 2019).  

In an effort to assess the function of ubiquitin and Ubl modifiers from the vantage point 

of cellular fitness, we sought to define how cells respond to perturbations in ubiquitin and Ubl 

conjugation pathways. We undertook genome-scale CRISPR Cas9 screens to identify genes that 

contribute to the cellular resistance to inhibition of ubiquitin, SUMO and NEDD8 conjugation as 

well as mapping genes that contribute to the response to p97/VCP inhibition. From these screens, 

we validated that the transmembrane proteins TMED2/TMED10 contribute to survival in 

response to p97/VCP inhibition, and also characterized the role of NFATC2IP, a protein with 

tandem SUMO-like domains, in promoting SUMO-dependent genome maintenance via a 

functional interaction with the SMC5/SMC6 complex. We contend that this work will provide a 

useful dataset to study the cellular functions of ubiquitin, SUMO and NEDD8, and identifies 

NFATC2IP as a key mediator of the role of SUMOylation in controlling genome integrity. 

 

Results 

 

A chemogenetic map of Ub/Ubl pathway inhibitors 

In a recent chemogenetic survey of the response to genotoxic agents undertaken by our group 

(Olivieri et al. 2020), we screened for genes that modulate sensitivity to MLN4924, an inhibitor 

of the NEDD8 E1, since neddylation inhibition causes DNA damage (Soucy et al. 2009). To 

expand this dataset with the view of charting the genetic interactions underlying the cellular 

responses to inhibitors of ubiquitin (Ub) and Ubl conjugation pathways, we undertook additional 

chemogenomic CRISPR screens with the UBA1 (ubiquitin E1) inhibitor TAK-243 (Hyer et al. 

2018), the SAE1 (SUMO E1) inhibitor TAK-981 (Langston et al. 2021), and the p97/VCP 
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segregase inhibitor CB-5083 (Zhou et al. 2015). The screens were carried out at doses that killed 

~20% of cells (LD20) in the hTERT-immortalized retinal pigment epithelial-1 (RPE1-hTERT) 

TP53-/- cells stably expressing Cas9 (Zimmermann et al. 2018) as depicted in Figure S1A and as 

described previously (Olivieri et al. 2020; Olivieri and Durocher 2021). Gene-level normalized 

Z-scores (NormZ) were computed using DrugZ (Colic et al. 2019) and are shown in Figure 1A 

and Table S1.   

To remain consistent with the analyses of Olivieri et al. (2020), we selected NormZ 

values less than -3 with false discovery rates (FDR) lower than 15% to identify genes whose 

mutation caused sensitization to the inhibitors. For genes whose mutation caused resistance to 

inhibitor treatment, we selected a NormZ value greater than 6. These cut-offs identified a total of 

395 genes that modulate the response of RPE1-hTERT cells to drug-mediated inhibition of 

Ub/Ubl pathways, with 92 genes being identified in two screens or more. We identified 235 hits 

for the MLN4924 screen, 130 for TAK-981, 94 for CB-5083, and 70 for TAK-243, (Figure 1B 

and Tables S1). We analyzed the connectivity of the 395 genes by building networks based on 

protein-protein interactions, using STRING (Figure S1B and Table S2) (Szklarczyk et al. 2021) 

or gene-gene essentiality score correlations in DepMap (Figure S2 and Table S2) (Dempster et 

al. 2019). When the 395 genes were mapped onto either the BioGRID or CORUM protein 

interaction datasets, 372 or 136 proteins encoded by genes in our hit gene set, respectively, were 

physically connected to at least one other protein in the dataset, which represents a statistically 

significant enrichment in protein-protein interactions (Oughtred et al. 2021; Tsitsiridis et al. 

2023) (Figure S3A). A number of distinct submodules were apparent in the protein-protein 

interaction network, including a module surrounding p97/VCP that was connected to a second 

submodule comprising HSP90 and HSP70 chaperones and adaptor proteins (Figure S1B). At the 

Pearson correlation coefficient threshold used (0.25), the DepMap-based network presented a 

highly connected network of 240 genes with some clear functional subnetworks (Figure S2). As 

an example, multiple genes encoding factors involved in protein glycosylation such as 

B4GALT7, SLC35B2 and NDST1 formed a clear subcluster of genes whose disruption was 

primarily causing sensitivity to MLN4924, suggesting that defects in protein glycosylation 

imposes a required response for CRL E3 ligases or non-cullin neddylation, possibly through the 

unfolded protein response.  
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Functional term analysis using ShinyGO (Ge et al. 2020) for the 395 genes using gene 

ontology (GO) Biological Process (BP) showed enrichment in pathways regulated by ubiquitin 

or Ubl modification, and in pathways pertaining to modifications by ubiquitin or Ubl proteins 

(Figure 1C; GO term enrichment for individual screens are in Figure S3B). For example, 

“ubiquitin-dependent protein catabolic process” (GO:0006511) was highly enriched (p=3.3 x 10-

14) alongside processes known to be modulated by ubiquitin or Ubls such as regulation of 

“mitotic cell cycle” (GO:0000278; 1.0 x 10-12) or “cellular response to DNA damage stimulus” 

(GO:0006974; 7.1 x 10-13). From these analyses, we conclude that the screens were successful in 

probing pathways that are relevant to ubiquitin and Ubl biology. 

 

TMED2-TMED10 promotes resistance to p97 inhibition 

To assess the usefulness of the dataset in providing new biological insights, we first examined 

the TMED2 and TMED10 genes that were among the top hits in the CB-5083 screen (Figure 1A 

and Table S1), which also identified genes encoding multiple p97/VCP adaptor proteins, 

UBXN1, UBXN2A, ASPSCR1, and PLAA (Ye et al. 2017), as well as proteins involved in 

NRF1 (encoded by NFE2L1) activation and processing such as NGLY1, DDI2 and NFE2L1 itself 

(Figure 1A). Both TMED2 and TMED10 are single-pass transmembrane proteins found in the 

Golgi and endoplasmic reticulum (ER) where they participate in the transport of GPI-anchored 

protein (Bonnon et al. 2010). We were attracted by these proteins since NRF1 is an ER-regulated 

transcription factor that controls proteasome subunit gene transcription, and whose activation is 

dependent on p97/VCP, which acts as part of a complex proteolytic processing event that causes 

NRF1 to translocate from the ER to the cytoplasm and then to the nucleus (Radhakrishnan et al. 

2014; Northrop et al. 2020; Ruvkun and Lehrbach 2023). Given the presence of 

TMED2/TMED10 in the Golgi and ER, along with their known role in protein transport, we 

initially hypothesized that these proteins may participate in NRF1 activation. 

 We first validated that two independent sgRNAs targeting TMED2 and TMED10 

sensitize cells to CB-5083 treatment by using clonogenic survival assays that employed sgRNAs 

targeting DDI2 as a positive control (Figure 2A,B). We next examined if the loss of TMED2/10 

influenced NRF1 processing by assessing NRF1 levels and isoforms by immunoblotting. Under 

normal conditions, NRF1 is synthesized as an ER-localized transmembrane protein but is then 

retrotranslocated into the cytoplasm where it is rapidly degraded by the proteasome (Steffen et 
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al. 2010; Radhakrishnan et al. 2014). However, under conditions of limiting proteasome activity 

(such as in response to proteasome inhibition), NRF1 is proteolytically processed by DDI2 to 

produce an isoform competent for nuclear translocation and transcriptional activation (Northrop 

et al. 2020). To our surprise, loss of either TMED2 or TMED10 led to increased, rather than 

decreased, levels of all NRF1 isoforms in response to proteasome inhibition with carfilzomib 

(Demo et al. 2007) (Figure 2C). This increase in NRF1 was accompanied by an increase in 

PSMB7 and PSMC4 mRNA levels, suggesting higher NRF1 activity (Figure 2D). Contrary to 

our initial expectation, these observations indicate that TMED2/10 are unlikely to promote 

resistance to p97/VCP inhibition by promoting NRF1 processing, and thus we suspect that 

TMED2/10 could impact ER-associated quality control pathways in a manner that imposes a 

higher burden on p97/VCP activity. In support of this possibility, we note that additional genes 

encoding proteins involved in such processes (SEC63 and DERL1) were also identified as genes 

promoting resistance to CB-5083 (Figure 1A and Table S1).  

 

NFATC2IP promotes survival in response to SUMOylation inhibition 

Another gene that attracted our attention was NFATC2IP (also known as NIP45) as this gene 

ranked just behind that encoding the multidrug resistance transporter MRP1 (ABCC1) (Robey et 

al. 2018), in the TAK-981 screen (Figure 1A and Table S1). NFATC2IP encodes a protein 

featuring two SUMO-like domains (SLDs; Figure 3A) and is the likely ortholog of the 

Saccharomyces cerevisiae Esc2 and Schizosaccaromyces pombe Rad60 proteins (Novatchkova 

et al. 2005) (Figure 3A). In yeast species, Esc2 and Rad60 promote replication fork integrity and 

tolerance to replication stress (Morishita et al. 2002; Boddy et al. 2003; Miyabe et al. 2006), but 

surprisingly in human cells, NFATC2IP has only been described as a co-factor of the nuclear 

factor of activated T-cells, cytoplasmic 2 (NFATc2) transcription factor (Hodge et al. 1996). 

Since NFATc2 was not a hit in the TAK-981 screen (Table S1) and since the TAK-981 screen 

hits were instead enriched for genes acting in the response to DNA damage (such as BLM and 

RMI1/2; Figure 1A and Figure S3B), we asked whether NFATC2IP promoted the normal cellular 

resistance to SUMOylation inhibition through a role in genome maintenance.  

We first generated clonal knock-outs (KO) of NFATC2IP in RPE1-hTERT TP53-/- Cas9 

cells (Figure 3B and Figure S4A,B) with CRISPR gene editing that generated a biallelic one-

nucleotide deletion (c.493delC), which caused a frameshift mutation (p.His165MetfsX15). Using 
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these clonal NFATC2IP-KO cells, we assessed the half-maximal lethal dose (LD50) of TAK-981 

in clonogenic survival assays. Loss of NFATC2IP decreased the TAK-981 LD50 from 28.5 ± 2.5 

nM, in the parental cell line, to 7.0 ± 0.8 nM (Figure 3C-E). This hypersensitivity of NFATC2IP-

KO cells was fully reversed by re-introducing exogenous NFATC2IP expressed as 3xFlag-

tagged protein from a lentiviral vector (WT; Figure 3C-E and Figure S4C). We conclude that 

NFATC2IP promotes cell survival upon SUMOylation inhibition. 

 

NFATC2IP promotes genomic integrity  

Given the role of NFATC2IP orthologs in genome maintenance, as well as the central role of 

SUMO in protecting genome integrity, we tested whether loss of NFATC2IP caused genome 

instability. We monitored micronucleation, a sensitive readout of genome instability (Fenech et 

al. 2011), in parental and NFATC2IP-KO cells, with or without TAK-981 treatment using an 

automated microscopy pipeline. When SUMOylation is unperturbed, loss of NFATC2IP did not 

impact micronucleation levels (Figure 4A,B). However, following SUMO E1 inhibition, 

NFATC2IP-KO cells displayed enhanced micronuclei (MN) formation at all doses, and this 

phenotype was entirely suppressed by re-expression of NFATC2IP tagged either with 3xFlag or 

GFP (Figure 4A,B and Figure S5A-D). NFATC2IP therefore suppresses the genome instability 

caused by inhibition of SUMOylation. 

MN formation can occur via two broadly distinct routes: either through whole 

chromosome mis-segregation, or through the segregation of acentric fragments (Fenech et al. 

2011). It is possible to distinguish between these possibilities simply by monitoring kinetochores 

and centromeres using anti-centromere antibodies (ACA). We observed that upon TAK-981 

treatment, NFATC2IP-KO cells produce primarily centromere-negative (ACA-) MN (Figure 

4B). These results suggest that NFATC2IP guards against acentric chromosome mis-segregation 

when SUMOylation is impaired.  

In addition to micronucleation, we observed that the combined loss of NFATC2IP and 

TAK-981 treatment was accompanied by the formation of long chromatin bridges connecting 

two nuclei (Figure 4C). We quantitated the formation of DAPI-stained chromatin bridges and 

binned the data according to whether we observed cells with normal chromatin or that displayed 

either short or long chromatin bridges (i.e. bridges > 15 µm). We observed that loss of 

NFATC2IP led to an increase in long chromatin bridges following TAK-981 treatment at all 
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doses tested compared to the parental cell line, with the strongest effect seen at the 50 nM TAK-

981 dose (Figure 4D). As with micronucleation, SUMOylation inhibition on its own is able to 

induce chromatin bridge formation but NFATC2IP-KO cells accumulate bridges at higher 

frequency and at lower concentrations of TAK-981 than wild type cells, indicating that the loss 

of NFATC2IP exacerbates a pathological process induced by inhibition of the SUMO E1 (Figure 

4D).  Since breakage of chromatin bridges during cytokinesis can generate acentric fragments 

(Warecki and Sullivan 2020; Hong et al. 2021), we surmise that they may be a source for the 

observed micronucleation and, possibly, the hypersensitivity of NFATC2IP-KO cells to SUMO 

E1 inhibition. 

 

NFATC2IP acts in interphase to promote genome maintenance 

Chromatin bridges can originate either from defective DNA replication, repair, recombination or 

via the failure to complete mitotic processes like chromosome decatenation (Hong et al. 2021). 

To begin distinguishing between these possibilities, we asked whether NFATC2IP acted to 

promote genome integrity in interphase or during mitosis. To do so, we fused a nuclear export 

signal (NES) to NFATC2IP so that it can only access chromatin after nuclear envelope 

breakdown at the onset of mitosis. As expected, the NES-NFATC2IP proteins, expressed either 

as GFP or 3xFlag fusions, were restricted to the cytoplasm during interphase (Figure 4E and 

Figure S5E). The nucleus-excluded form of NFATC2IP failed to fully restore resistance to TAK-

981 in NFATC2IP-KO cells, unlike its wild type counterpart (FL; Figure 4F). These observations 

indicate that NFATC2IP acts in interphase, requiring access to chromatin prior to mitosis to 

promote genome integrity when SUMOylation is impaired.  

 

Structure-function analysis of NFATC2IP 

To gain insights into the mechanism by which NFATC2IP may promote genomic integrity when 

SUMOylation is perturbed, we assessed the involvement of the SLD2 domain (Figure 3A) in 

promoting cell survival in response to TAK-981 treatment given the role of this domain in Esc2 

and Rad60 (Prudden et al. 2009; Sebesta et al. 2017; Li et al. 2021). We expressed, in 

NFATC2IP-KO cells, NFATC2IP lacking the SLD2 domain (DSLD2) or a variant that harbored 

the D394R mutation that corresponds to Rad60 E380R, a point mutation that abolishes 

interaction with the SUMO E2 UBC9 (Prudden et al. 2009; Sekiyama et al. 2010; Prudden et al. 
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2011). We found that loss of SLD2 or disruption of the putative interaction with UBC9 failed to 

restore normal resistance to TAK-981 (Figure 5A and Figure S6A,B), suggesting that the 

NFATC2IP SLD2 domain is critical for promoting survival in response to SUMOylation 

inhibition. Similarly, while micronucleation after TAK-981 treatment in NFATC2IP-deficient 

cells could be completely rescued by expression of epitope-tagged NFATC2IP, neither 

NFATC2IP D394R nor ∆SLD2 could do so (Figure 5B and Figure S6B). We also tested whether 

expression of NFATC2IP ∆SLD1 in NFATC2IP-KO cells could suppress TAK-981-induced 

micronucleation and found it did so partially (Figure 5B and Figure S6B). Together, these results 

indicate that NFATC2IP promotes genome integrity and cellular survival in response to SUMO 

E1 inhibition in a manner that requires its SLD2 domain, with some contribution from SLD1.  

Despite the functional importance of the SUMO-like domains, we found that expression 

of SLD2 or a fragment encompassing SLD1-SLD2 were insufficient to restore resistance of 

NFATC2IP-KO cells to SUMO E1 inhibition (Figure 5C and Figure S6CD) indicating that 

additional segments of the NFATC2IP protein contribute to its function. Therefore, to further 

dissect the structure-function relationship of NFATC2IP, we expressed protein deletion mutants 

(schematized in Figure S7) in NFATC2IP-KO cells and calculated their TAK-981 LD50 in 

clonogenic survival assays. From this analysis, we identified an additional region that contributes 

to NFATC2IP function in response to inhibition of SUMOylation that is encompassed within 

residues 101–140 (Figure 5D and Figure S6E-H). Furthermore, our data suggests that most of the 

first 100 amino acid residues of NFATC2IP are dispensable for its role in promoting resistance 

to TAK-981.  

 

NFATC2IP interacts with the SMC5/SMC6 complex 

We were struck by the similarities between the chromosome segregation phenotypes of 

NFATC2IP-KO cells following TAK-981 treatment and those of SMC5-, SMC6- and NSMCE2-

deficient cells (Gallego-Paez et al. 2014; Payne et al. 2014; Jacome et al. 2015; Pryzhkova and 

Jordan 2016). These genes encode for factors that constitute the SMC5/6 complex which ensures 

proper segregation of chromosomes and genome integrity, with NSMCE2 acting as a SUMO E3 

ligase  (Potts and Yu 2005; Aragón 2018; Venegas et al. 2020). Since Esc2/Rad60 is functionally 

linked with the SMC5/6 complex (Morishita et al. 2002; Sollier et al. 2009; Choi et al. 2010; 

Heideker et al. 2011; Prudden et al. 2011), we explored the possibility that NFATC2IP may 
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mediate resistance to SUMOylation inhibition by collaborating with the SMC5/6 complex. To do 

so, we first surveyed the potential for protein-protein interactions between NFATC2IP and 

SMC5/6 complex members using AlphaFold-Multimer (AF-Multimer; Evans et al. 2021; Jumper 

et al. 2021; Mirdita et al. 2022) by testing pairwise combinations among SMC5/6 complex 

members, known SMC5/6 regulators that included SLF1, SLF2 and RAD18, and NFATC2IP as 

previously described (Sifri et al. 2023) (Table S3). This analysis recapitulated known protein-

protein interactions in this complex, including the interaction between the BRCT domains of 

SLF1 and phosphorylatable residues in RAD18 (Raschle et al. 2015), or the NSMCE3 subunit 

with NSMCE1 and NSMCE4 (Figure 6A and Table S3) (Adamus et al. 2020; Vondrova et al. 

2020; Yu et al. 2021; Yu et al. 2022).With respect to NFATC2IP, AF-Multimer predicted an 

interaction with the SMC5 subunit of the SMC5/6 complex and the NFATC2IP SLD1 domain 

(Figure 6A,B and Table S3). We validated these predictions in co-immunoprecipitation studies in 

293T cells with Flag-tagged NFATC2IP variants and endogenous SMC5, which showed that the 

NFATC2IP-SMC5 interaction was absolutely dependent on SLD1, and to a lesser extent, SLD2 

(Figure 6C). Furthermore, NFATC2IP interacts with UBC9 via its SLD2 (Prudden et al. 2009; 

Prudden et al. 2011), raising the intriguing possibility that NFATC2IP makes contact with the 

SMC5/6-associated SUMO E3 ligase and suggesting a model where NFATC2IP could position 

UBC9 near the NSMCE2 RING domain. We therefore carried out a new round of AF-Multimer 

predictions with NFATC2IP, UBC9, the coiled-coil region of SMC5 and NSMCE2 (Figure 6D). 

A robust structural model was computed that was consistent with NFATC2IP SLD2 interacting 

with NSMCE2 through simultaneous interactions with UBC9 via distinct interfaces (Figure 6D). 

Interestingly, the SLD2-UBC9 interaction occurs via the same “SUMO backside” site on UBC9 

that promotes SUMOylation by yeast Nse2 (Figure 6E) (Varejao et al. 2021). Therefore, our 

interaction and modelling data suggest that NFATC2IP may act as a positive regulator of 

NSMCE2-dependent SUMOylation (Figure 6F).  

 

NFATC2IP promotes chromatin SUMOylation 

To investigate whether loss of NFATC2IP affects the levels of SUMOylation in cells, parental 

and NFATC2IP-KO cells were transduced with a plasmid stably expressing either His6-SUMO1 

or -SUMO2. SUMOylated proteins were purified from cell lysates using nickel-nitrilotriacetic 

acid (Ni-NTA) agarose beads in strong denaturing conditions, and global SUMOylation levels 
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were monitored by immunoblotting with antibodies to SUMO1 (Figure 7A) or SUMO2/3 (Figure 

7B). As control for the affinity purification, we monitored RanGAP1, which is a well-

characterized SUMOylated protein (Matunis et al. 1996). We found that in contrast to the 

abundance of SUMO1-modified proteins, which showed no difference in the pulldowns from the 

lysates derived of parental (WT) and NFATC2IP-KO cells (Figure 7A), there was a noticeable 

decrease in the amount of high molecular-weight SUMO2/3-modified proteins pulled down from 

NFATC2IP-KO cells, compared to those purified from parental cells (Figure 7B). The same was 

seen for SUMO2/3-modified RanGAP1 (Figure 7B). These data suggested that NFATC2IP may 

promote SUMOylation of proteins primarily by SUMO2/3. 

 Since the above experiments relied on overexpression of exogenous SUMO proteins, we 

next assessed whether NFATC2IP promotes SUMOylation under endogenous conditions. To do 

so, we subfractionated lysates of parental and NFATC2IP-KO cells and isolated SUMOylated 

proteins using a biotinylated S-Cap peptide that has high affinity for SUMOylated proteins. With 

this technique, we observed a large decrease in the amount of high molecular weight SUMO2/3-

modified proteins specifically in the chromatin fraction of NFATC2IP-KO cells (Figure 7C) with 

no difference observed in the amount of SUMO2/3-modified proteins retrieved from either the 

nucleoplasmic or cytoplasmic fractions (Figure S8). Collectively, these data indicate that 

NFATC2IP promotes SUMOylation of chromatin-associated proteins, and based on the above 

interaction studies, that this activity may be related to its interaction with the SMC5/6 complex. 

 

Discussion 

This work probed the genetic architecture of the response to compounds that perturb ubiquitin 

and Ubl conjugation pathways. This analysis identified a set 395 genes that modulate the fitness 

of human RPE1-hTERT TP53-/- cells to SUMO E1, ubiquitin E1, NEDD8 E1 and p97/VCP 

inhibition. As all four of these agents are or were investigated as anti-cancer agents in clinical 

trials, this dataset may offer new biomarkers of response or highlight the cellular pathways 

contributing to their anti-proliferative properties. In just one example, disruption of the SPOP 

gene, which is frequently mutated in prostate cancer (Zhang et al. 2023), sensitized RPE1 cells to 

the ubiquitin E1 inhibitor TAK-243 (Figure 1A). 

 The dataset can also be used to uncover new biological insights. As a first example, we 

validated the observation that TMED2 and TMED10, two transmembrane ER proteins, promote 
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normal cellular resistance to p97/VCP inhibition. TMED2/10 are linked to various processes, 

including the retention of proteins such as Smoothened in the ER/Golgi (Di Minin et al. 2022), 

formation of lipid nanodomains (Anwar et al. 2022) and transport of GPI-anchored proteins 

(Bonnon et al. 2010). The exact mechanism by which loss of TMED2/10 causes a need for 

p97/VCP segregase activity is not clear, but we suspect this may be linked to the induction of an 

ER-associated unfolded protein response. In support of this possibility, mice with heterozygous 

mutation in TMED2, display a dilated ER and increased levels of eIF2α phosphorylation, which 

are indicative of ER stress (Hou et al. 2017). In the future it may be of interest to assess whether 

TMED2/TMED10 promotes ER protein quality control and whether this function is connected to 

p97 activity. 

 We focused the bulk of our validation work on defining the role of NFATC2IP in 

promoting the normal cellular resistance to SUMOylation inhibition by TAK-981. NFATC2IP 

disruption showed the largest effect size with respect to sensitization to TAK-981 in our cell line, 

outside disruption of the gene encoding the multidrug transporter MRP1. These results place 

NFATC2IP as a key mediator of the response of human cells to SUMO E1 inhibition. 

While the developers of TAK-981 have highlighted its potential to stimulate anti-tumor 

immunity (Lightcap et al. 2021), we found that the intrinsic sensitivity of cells to SUMO E1 

inhibition is largely driven by a few pathways that include genome maintenance and 

transcriptional regulation (Figure S3B). With respect to genome maintenance, in addition to 

NFATC2IP, our screen identified many genes encoding factors known to be involved in the 

resolution of recombination intermediates as promoting normal cellular resistance to 

SUMOylation inhibition, such as components of the BLM-RMI1-RMI2-TOP3A complex, GEN1 

and the SMC5/6 complex. This is not entirely surprising given the key role of SUMO in 

controlling recombination in yeast (Ulrich et al. 2005; Branzei et al. 2006; Psakhye and Jentsch 

2012). Indeed, our data is consistent with a model where NFATC2IP promotes SUMOylation of 

one or more proteins involved in resolving either recombination intermediates or topological 

entanglements during interphase. In support of this model, we find that NFATC2IP loss 

exacerbates the genome instability phenotypes seen with TAK-981 treatment, and we observed 

that NFATC2IP promotes SUMOylation of chromatin-associated proteins. Although we have not 

been able to identify proteins whose SUMOylation status is specifically influenced by 

NFATC2IP, we anticipate that a subset of them will be substrates of NSMCE2, the SMC5/6-
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associated SUMO E3 ligase. Indeed, SMC5 interacts with NFATC2IP, with the NFATC2IP 

SLD2 modeled to be in a prime position to assist with NSMCE2-dependent SUMOylation by 

either positioning the SUMO E2 UBC9 or by promoting NSMCE2 catalytic activity in a manner 

similar to the described backside SUMO interaction with UBC9 (Varejao et al. 2021) (Figure 

6E). Interestingly, in addition to the SLD2, we identified another region essential for NFATC2IP 

action located within residues 101-140. The molecular function of this region remains unclear as 

it was not modeled to interact any other member of the SMC5/6 pathway. However, we note that 

NFATC2IP homologs have been shown to display DNA-binding activity that maps N-terminal 

of the SLD1/2 domains (Urulangodi et al. 2015; Sebesta et al. 2017). Whether this region in 

NFATC2IP also confers DNA-binding activity is currently unknown but represents an attractive 

starting point for future studies.  

 Finally, given that the phenotypes of NFATC2IP-KO cells treated with low doses of the 

SUMO E1 inhibitor are remarkably similar to the phenotypes associated with mutations in 

SMC5/6 or associated proteins (Gallego-Paez et al. 2014; Payne et al. 2014; Jacome et al. 2015; 

Pryzhkova and Jordan 2016), it may be of interest to screen for NFATC2IP mutations in patients 

that display chromosome breakage disorders linked to the SMC5/6 complex such as Atelis, 

Seckel and LICS syndromes, associated with SMC5, SLF2, NSMCE2 and NSMCE, respectively. 

However, as the NFATC2IP-KO cellular phenotypes are only uncovered when SUMOylation is 

perturbed, we expect that the phenotypes associated with loss of NFATC2IP will be milder than 

those seen with mutations in SMC5/6 complex-coding genes or will affect tissues that have 

lower levels of SUMOylation than our model cell line.  
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Figure legends 

 

Figure 1. Chemogenetic CRISPR screens charting Ub/Ubl pathways. 

(A) Chemogenomic CRISPR screen results for RPE1-hTERT Cas9 TP53-/- cells treated with the 

indicated ubiquitin or Ubl conjugation pathway inhibitor. Each data point represents a gene score 

(normZ value) for an individual gene in the indicated inhibitor screen, calculated using DrugZ. 

Blue points represent sensitizing genes (normZ < -3 with FDR < 0.15).  

(B) UpSet plot summarizing the CRISPR screen results. The set size values represent the total 

number of sensitizing (normZ < -3) and resistance (normZ > 6) genes in each screen. 

(C) Gene ontology enrichment of biological process terms using ShinyGo for the 395 hits 

identified in the four screens. An FDR cut-off of 0.05 was used, and the top 20 enriched 

functional terms are shown with their individual P-values. The relative size of the circle for each 

GO term represents significance of P-value. 

 

Figure 2. TMED2/TMED10 promotes resistance to p97 inhibitor CB-5083. 

(A) and (B) Clonogenic survival assays of RPE1-hTERT Cas9 TP53-/- cells transduced with a 

virus expressing the indicated sgRNA in response to p97 inhibitor CB-5083 treatment (200 nM). 

(A) Representative images of clonogenic survival assay plates. Percentage of the total cell 

population that underwent CRISPR-mediated gene editing (sgRNA editing efficiency) and 

percentage of the cell population that yielded an out-of-frame gene edit (KO-score) from each 

sgRNA are indicated. (B) Quantitation of the experiment shown in (A). Percentage of surviving 

fractions were normalized to the non-treated (DMSO) condition for each sgRNA tested. The bars 

represent the mean ± s.e.m. (n=3). Statistical comparisons were made to the surviving fraction 
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after transduction with sgAAVS1 by performing an unpaired t-test. ***: P < 0.001. **: P < 0.01. 

ns: P ≥ 0.05. 

(C) Immunoblot analysis of NRF1 expression in RPE1-hTERT Cas9 TP53-/- cells transduced 

with the indicated sgRNA and treated with carfilzomib (20 nM) for 4 h or left untreated. 

GAPDH was used as a loading control. 

(D) Quantitative RT-PCR to detect mRNA of PSMA7, PSMB7, and PSMC4 using TaqMan 

assays (Table S4) from extracts of RPE1-hTERT Cas9 TP53-/- cells treated with carfilzomib as in 

(C). Bars represent the mean ± s.e.m. (n=3). Statistical comparisons were made to control 

condition from the sgAAVS1-transduced cells by performing an unpaired t-test. *: P < 0.05. 

 

Figure 3. NFATC2IP promotes survival in response to SUMOylation inhibition. 

(A) Schematic of the structural domains of the human NFATC2IP protein and its ortholog 

proteins of the yeasts Saccharomyces cerevisiae (Esc2) and Schizosaccharomyces pombe 

(Rad60). SLD1: SUMO-like domain 1, SLD2: SUMO-like domain 2. 

(B) Immunoblot analyses of clonal NFATC2IP-KO cell lines isolated from a pool of RPE1-

hTERT Cas9 TP53-/- cells transfected with a Cas9 ribonucleoprotein complex containing 

NFATC2IP-targeting sgRNA2 (Table S4). GAPDH was used as a loading control. Asterisk (*) 

indicates the NFATC2IP-KO clone that was used for all further experiments in this study.  

(C), (D), and (E) TAK-981 dose-response clonogenic survival assays in parental RPE1-hTERT 

Cas9 TP53-/- (WT) or isogenic NFATC2IP-KO (KO) cells that were either transduced with 

lentivirus expressing 3xFLAG-tagged NFATC2IP, 3xFLAG alone, or left untransduced. 

(C) Representative images of the clonogenic survival assay.  

(D) Quantitation of surviving fractions normalized to the DMSO vehicle condition for the 

experiment shown in (C). Data are shown as the mean ± s.e.m. (n=3). FL: Full-length.  

(E) Determination of TAK-981 LD50. Data is shown as the mean ± s.e.m. (n=3). Statistical 

comparisons were performed using two-tailed unpaired t-tests. ****: P < 0.0001. ***: P < 0.001. 

ns: P ≥ 0.05. FL: Full-length. 

 

Figure 4. NFATC2IP protects genome integrity when SUMOylation is disrupted. 

(A) Quantitation of MN formation after treatment with increasing doses of TAK-981 for 72 h in 

RPE-hTERT Cas9 TP53-/- (WT) or isogenic NFATC2IP-KO cells that were either transduced 
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with the indicated lentivirus or left untransduced. Data are shown as the number of MN per cell. 

A minimum of 455 nuclei were counted for each condition. Bars represent the mean ± s.e.m. 

(n=4). Multiple unpaired t-tests were used for statistical analyses with Bonferroni-Dunn 

correction. ****: P < 0.0001. ns: P ≥ 0.05.  

(B) Quantitation of ACA-positive or -negative MN formation after treatment with or without 

TAK-981 (25 nM for 48 h) in parental RPE1-hTERT Cas9 TP53-/- (WT) or isogenic NFATC2IP-

KO cells that were either transduced with the indicated lentivirus or left untransduced. Data are 

shown as the number of MN per cell, and a minimum of 273 nuclei were counted for each 

condition. Bars represent the mean ± s.e.m. (n=5). FL: Full-length. Multiple unpaired t-tests were 

used for analyses with Bonferroni-Dunn correction. ****: P < 0.0001. ns: P ≥ 0.05.  

(C) Representative micrographs of chromatin bridge formations visualized by DAPI staining. 

Blue arrowheads point to chromatin bridges that were identified as short bridges (< ~15 µm), and 

yellow arrowheads point to long chromatin bridges (> ~15 µm). Scale bar=10 µm.  

(D) Quantitation of nuclei displaying chromatin bridges following treatment with the indicated 

doses of TAK-981 for 24 h in RPE1-hTERT Cas9 TP53-/- (WT) or isogenic NFATC2IP-KO 

cells. Data are shown as the percentage of nuclei counted that contain either short or long 

chromatin bridges. A minimum of 263 nuclei were assessed for each condition. Bars represent 

the mean ± s.e.m. (n=3). Analyses were performed using two-way ANOVA with Tukey’s 

multiple comparison testing. For comparisons of long chromatin bridges, ****: P < 0.0001. ***: 

P < 0.001. ns: P ≥ 0.05. For comparisons of short chromatin bridges, only significant 

comparisons were shown.  #: P < 0.05. LB: long bridge. SB: short bridge. 

(E) Representative immunofluorescence micrographs assessing the localization of GFP-tagged 

NFATC2IP in RPE1-hTERT Cas9 TP53-/- NFATC2IP-KO cells. Cells were stained with DAPI 

as a nuclear marker and antibodies against the indicated proteins. FL: Full-length. NES: NES-

NFATC2IP. Scale bar=10 µm.   

(F) TAK-981 LD50 values of independent clonogenic survival assays in parental RPE1-hTERT 

Cas9 TP53-/- (WT) or isogenic NFATC2IP-KO, or NFATC2IP-KO cells that were left 

untransduced or were transduced with a lentivirus encoding the indicated protein. Data is shown 

as the the mean ± s.e.m. (n=3). FL: full-length. NES: NES-NFATC2IP. Statistical comparisons 

were performed using two-tailed unpaired t-tests. ****: P < 0.0001. ***: P < 0.001. *: P < 0.05.  
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Figure 5. Structure-function analysis of NFATC2IP. 

(A)–(D) RPE1-hTERT Cas9 TP53-/- (WT) or isogenic NFATC2IP-KO cells were either left 

untransduced or were transduced with lentivirus encoding the indicated protein. FL: full-length. 

(A) Determination of TAK-981 LD50. Data are shown as the mean ± s.e.m. (n=3). Statistical 

comparisons were with two-tailed unpaired t-tests. ***: P < 0.001. ns: P ≥ 0.05. ΔSLD2: 

deletion of amino acid residue 345–419. 

(B) Quantitation of MN formation after treatment with TAK-981 (25 nM) for 48 h. Data are 

shown as the number of MN per cell, and a minimum of 1229 nuclei were counted for each 

condition. Bars represent the mean ± s.d. (n=3). Data were analyzed with multiple unpaired t-test 

with Bonferroni-Dunn correction. ****: P < 0.0001. ***: P < 0.001. **: P < 0.01. ns: P ≥ 0.05. 

ΔSLD1: deletion of amino acid residue 256–344. ΔSLD2: deletion of amino acid residue 345–

419.  

(C) Determination of TAK-981 LD50. Data are shown as the mean ± s.e.m. (n=3) and were 

analyzed with two-tailed unpaired t-tests. ***: P < 0.001. ns: P ≥ 0.05. SLD2: NFATC2IP amino 

acid residues 345–419. SLD1 + 2: NFATC2IP amino acid residues 251–419.  

(D) Determination of TAK-981 LD50. Data are shown as the mean ± s.e.m. (n=3) and were 

analyzed with two-tailed unpaired t-tests. ****: P < 0.0001. ***: P < 0.001. ns: P ≥ 0.05. 

Deletion mutants of NFATC2IP are schematized in Figure S7. 

 

Figure 6. NFATC2IP binds the SMC5/SMC6 complex through its SUMO-like domains. 

(A) Schematic of pairwise matrix screens by AF-Multimer to predict protein-protein interactions 

among NFATC2IP and the SMC5/SMC6 complex subunits. Predicted interactions where at least 

3 out of 5 models that met the cut-off scores of pDockQ < 0.23 and interface PAE < 15 Å are 

shown. Large proteins (SMC5, SMC6, SLF1, and SLF2) were divided into fragments according 

to either experimentally-determined or AF2-predicted structural domain boundaries. Fragments 

of the same protein are indicated with dashed lines connecting the nodes. For SMC5, SMC5_1: 

‘head’ region, residues 1–204, 951–1101. SMC5_2: ‘hinge’ region, resides 461-647. SMC5_3: 

‘coiled-coil’ region, resides 205–460, 648–950. For SMC6, SMC6_1: ‘head’ region, resides 1–

201, 952–1091. SMC6_2: ‘hinge’ region, residues 476–662. SMC6_3: ‘coiled-coil’ region, 

residues 202–475, 663–951 (derived from the human SMC5/6 complex structure (Adamus et al. 
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2020). For SLF1, SLF1_1: residues 1–364. SLF1_2: residues 365–1058. For SLF2, SLF2_1: 

residues 1–600. SLF2_2: residues 601–1173.  

(B) PAE plots of the interaction between the coiled-coil region of SMC5 (SMC5_3 fragment of 

the pairwise modeling) and NFATC2IP, ranked by predicted template model (pTM) scores. 

(C) Subcellular fractions of 293T cells transiently expressing the indicated Flag-tagged 

NFATC2IP constructs were subjected to immunoprecipitation with anti-Flag antibodies. Input 

samples and immunoprecipitation products were immunoblotted with the indicated antibodies.  

a-tubulin, lamin B1, or histone H3 were included as controls for cytoplasmic, nucleoplasmic, or 

chromatin subcellular fractionations, respectively. FL: full-length. 

(D) Top panel: representative model of the AF-Multimer predictions of protein-protein 

interactions among the NFATC2IP SLDs (yellow), NSMCE2 (sea green), UBC9 (purple), and a 

portion of the SMC5cc region (cyan). Bottom panel: the PAE plots of the prediction models 

associated with the top panel.  

(E) Overview of the representative AF-Multimer prediction model (colours as in (D)) overlaid 

with the structure of the Smc5/Nse2 complex with Ubc9~SUMO mimetic (PDB: 7P47, 

translucent). Proteins in the crystal structure are indicated alongside the AF-Multimer model at 

corresponding positions. 

(F) Functional model of the NFATC2IP-SMC5/6-NSMCE2-UBC9 complex. Arrow indicates the 

potential positive regulation of NSMCE2-dependent SUMOylation by NFATC2IP.  

 

Figure 7. NFATC2IP promotes SUMOylation levels in chromatin. 

(A) and (B) Immunoblot analysis of whole-cell extracts of parental RPE1-hTERT Cas9 TP53-/- 

(WT) or isogenic NFATC2IP-KO cells that were transiently transfected with plasmids for 

overexpression of (A) His6-SUMO1 or (B) His6-SUMO2, followed by purification of His-tagged 

peptides using Ni-NTA agarose beads under denaturing conditions. The immunoblots were 

probed with antibodies to the indicated proteins. RanGAP1 was used as a control for 

SUMOylation. GAPDH was used as a loading control. 

(C) Immunoblot analysis of chromatin subfractions of extracts derived from parental RPE1-

hTERT Cas9 TP53-/- (WT) or isogenic NFATC2IP-KO cells. SUMO-conjugated proteins were 

isolated by binding to the biotinylated S-Cap peptide, followed by affinity pulldown with 

streptavidin-conjugated magnetic beads. Input: input control fraction. UB: unbound supernatant 
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after binding of biotin S-Cap to streptavidin beads. PD: proteins from S-Cap pulldown eluted 

from streptavidin beads. WCE: whole cell extract. Immunoblots were probed using antibodies to 

the indicated proteins. ɑ-tubulin, lamin B1, and histone H3 were included as controls for 

cytoplasmic, nucleoplasmic, and chromatin subcellular fractions, respectively. 

 

Supplementary Figure Legends 

 

Figure S1. Protein-protein interaction network of the screen hits. 

(A) Schematic of the chemogenomic CRISPR screen performed in RPE1-hTERT Cas9 TP53-/- 

cells. 

(B) Network of genes who products have known protein-protein interactions among the 395 hit 

genes identified in the chemogenomic CRISPR screens with Ub/Ubl pathway inhibitor at a 

Pearson correlation coefficient (PCC) value greater than 0.7. A total of 210 genes were included 

in the network based on their protein products having experimentally examined and database-

annotated protein associations in the STRING database (version 4.0) with the protein products of 

other genes in the hit gene set. Colours of nodes represent specific chemogenomic CRISPR 

screen(s) in which a particular gene has been identified as a hit. Size of edge connecting different 

nodes indicates correlation level between nodes. Three clusters of interconnected submodules are 

highlighted with their known functions.  

 

Figure S2. Gene-gene essentiality correlation network of the screen hits. 

(A) Network of 240 genes, among the 395 hit gene set from the Ub/Ubl inhibitor CRISPR 

screens, whose gene essentiality scores are correlated with another gene at a PCC value greater 

than 0.25 based on the DepMap database version 22Q4. Colours of nodes indicate specific 

inhibitor CRISPR screen(s) in which a particular gene has been identified as a hit. Size of edge 

between different nodes represents the level of correlation between two nodes. Two highlighted 

clusters are enriched with genes whose protein product is involved in protein glycosylation or 

DNA damage responses. 
 

Figure S3. Gene ontology enrichment analyses. 
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(A) Enrichment of genes among the 395 hit gene set whose gene products are annotated for 

protein interactions with other genes using either BioGRID version 4.4.218 (left) or CORUM 

version 4.1 (right) protein interaction database. Pairs of genes were taken from the indicated 

protein interaction databases, and gene pairs that have at least one gene identified in our 395 hit 

gene set were assigned as ‘Gene hit pairs’. 10,000 gene pairs that did not include a gene present 

in our list of hit genes were assigned as ‘Random 10k gene pairs’. For each gene pair set, the 

Pearson correlation was calculated between normZ of the two genes in each gene pair and 

plotted as cumulative density functions. For statistical testing of the difference between the two 

distributions of hit gene pairs and random gene pairs, the Kolmogorov-Smirnov test was used to 

calculate the p-values. The results using the 890 hit gene set in Olivieri et al. (2020) are plotted 

(dashed lines) with the associated P-values. 

(B) Analysis of gene ontology enrichment of biological process terms using ShinyGo among the 

hit genes identified in the indicated Ub/Ubl inhibitor CRISPR screens (Ge et al. 2020). An FDR 

cut-off of 0.05 was used, and the top 20 enriched functional terms are shown with their 

individual P-values. The relative size of the circle for each GO term represents significance of P-

value.  

 

Figure S4. Validation of the NFATC2IP clonal KO. 

(A) Immunoblot analysis of the clonal NFATC2IP-KO cell lines isolated from parental RPE1-

hTERT Cas9 TP53-/- (WT) cells after transfection of a Cas9 ribonucleoprotein complex 

assembled with the NFATC2IP-targeting sgRNA2 (Table S4). Arrow indicates the endogenous 

NFATC2IP protein band. Cells transfected with an siRNA targeting NFATC2IP mRNA along 

with a non-targeting siRNA (siCTL) were included to validate the NFATC2IP antibody. ɑ-

Actinin was used as a loading control. Asterisk (*) indicates the NFATC2IP-KO clone of RPE1-

hTERT Cas9 TP53-/- cells that was used for all further experiments. 

(B) Genotyping of the NFATC2IP-KO clone 2 of RPE1-hTERT Cas9 TP53-/- cell line using 

Tracking of Indels by Decomposition (TIDE) analysis (Brinkman et al. 2014). Bars represent the 

percentage of the sequence of the PCR product amplified around the CRISPR-targeted genomic 

locus that contains a particular indel mutation. The red colour of the major bar indicates that the 

P-value is less than 0.001, with a R2 value of 0.98.  
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(C) Immunoblot analysis to validate expression of epitope-tagged NFATC2IP protein. Whole 

cell lysates from parental RPE1-hTERT Cas9 TP53-/- (WT) or isogenic NFATC2IP-KO cells that 

were left untransduced or were transduced with a lentivirus encoding Flag only or Flag-tagged 

full-length NFATC2IP protein were analyzed by immunoblotting with antibodies to FLAG, 

NFATC2IP, or GAPDH (loading control). 

 

Figure S5. NFATC2IP functions in interphase to suppress genome instability upon 

SUMOylation inhibition. 

(A) Representative micrographs from automated quantitation of MN formation after treatment 

with increasing doses of TAK-981 for 72 h, related to Figure 4A. The DAPI-stained parental 

RPE1-hTERT Cas9 TP53-/- (WT) or isogenic NFATC2IP-KO cells were imaged using an InCell 

6000 Analyzer with a 20x objective. The resulting images were used for generating initial 

nuclear masks (outlined in ‘nuclei’ image panels) and MN masks (outlined in ‘MN’ image 

panels) using the Columbus image analysis suite.  

(B) Immunoblot analysis to validate expression of exogenous NFATC2IP protein; related to 

Figure 4A. Whole cell lysates from parental RPE1-hTERT Cas9 TP53-/- (WT) or isogenic 

NFATC2IP-KO cells that were left untransduced or transduced with lentiviruses encoding GFP 

only or GFP-tagged full-length NFATC2IP protein were immunoblotted with antibodies to GFP, 

NFATC2IP, or ɑ-actinin (loading control). Asterisk indicates endogenous NFATC2IP.  

(C) Representative immunofluorescence micrographs from automated quantitation of MN 

formation and MN type determination after treatment with TAK-981 (25 nM) for 48 h; related to 

Figure 4B. RPE1-hTERT Cas9 TP53-/- (WT) or isogenic NFATC2IP-KO cells were stained with 

DAPI and anti-centromeric antibody (ACA). Images were acquired from DAPI and FITC (ACA) 

channels using an InCell 6000 Analyzer with a 60x objective. Images from the DAPI channel 

were used for generating initial nuclear masks (outlined in ‘DAPI (nuclei)’ panels) and the MN 

mask (outlined in ‘DAPI (MN)’ panels). Following identification of MN, the number of MN that 

are positive or negative for ACA signal were quantitated using the Columbus image analysis 

suite from the FITC (ACA) channel. Scale bars=20 µm. 

(D) Immunoblot analysis to validate expression of exogenous NFATC2IP proteins; related to 

Figure 4F. Whole cell lysates from RPE1-hTERT Cas9 TP53-/- NFATC2IP-KO cells that were 

transduced with lentiviruses encoding 3xFlag only or 3xFlag-tagged full-length or NES-tagged 
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NFATC2IP protein were immunoblotted with antibodies to FLAG, NFATC2IP, or GAPDH 

(loading control). FL: full-length NFATC2IP. NES: NES-NFATC2IP. 

(E) Representative micrographs of immunofluorescence analysis to examine localization of 

exogenous Flag-tagged NFATC2IP proteins; related to Figure 4F. RPE1-hTERT Cas9 TP53-/- 

NFATC2IP-KO cells were stained with the indicated antibodies and DAPI as a nuclear marker. 

FL: full-length NFATC2IP. NES: NES-NFATC2IP. Scale bar=10 µm. 

(F) Surviving fractions (normalized to the DMSO control condition) from TAK-981 dose-

response clonogenic survival assays in parental RPE1-hTERT Cas9 TP53-/- (WT) or isogenic 

NFATC2IP-KO cells that were left untransduced or were transduced with lentiviruses encoding 

exogenous full-length (FL) or NES-fused NFATC2IP protein. Related to Figure 4F. Data are 

shown as the mean ± s.e.m. (n=3). 

 

Figure S6. Supporting data for the structure-function analysis of NFATC2IP. 

Results of TAK-981 dose-response clonogenic survival assays (panels (A), (C), (E), and (G)) 

accompanied by immunoblot analysis of whole cell lysates (panels (B), (D), (F), and (H)) to 

validate the expression of exogenous NFATC2IP constructs. Parental RPE1-hTERT Cas9 TP53-/- 

(WT) or isogenic NFATC2IP-KO cells were left untransduced or were transduced with the 

indicated constructs. Data in plots of surviving fractions are normalized to the DMSO (vehicle) 

condition and are shown as the mean ± s.e.m. (n=3). Immunoblots were probed using antibodies 

to FLAG orNFATC2IP, along with GAPDH or ɑ-actinin as loading controls. The NFATC2IP 

antibody recognizes SLD2 of the NFATC2IP protein. FL: full-length NFATC2IP. NES: NES-

NFATC2IP.  

(A)–(D) Analysis of the SLD1 and SLD2 of NFATC2IP; related to Figure 5A–C. Asterisk beside 

NFATC2IP immunoblot in (B) indicates non-specific bands. Arrow in (D) indicates the 

migration of the 3xFLAG-NFATC2IP SLD2 protein. 

(E)–(H) Analysis of NFATC2IP proteins with the indicated deletion mutations schematized in 

Figure S7; related to Figure 5D.  

 

Figure S7. Schematics of the NFATC2IP deletion mutants. 

Schematic summary of the NFATC2IP proteins with various deletion mutations that were used 

in the experiments to elucidate functions of NFATC2IP SLDs and to identify regions outside of 
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SLD1 – SLD2 that contribute to the response of NFATC2IP to SUMOylation pathway 

inhibition. 

 

Figure S8. Analysis of SUMOylation levels of nucleoplasmic and cytoplasmic proteins, 

related to Figure 7C. 

Immunoblot analysis of nucleoplasmic and cytoplasmic subfractions of extracts derived from 

parental RPE1-hTERT Cas9 TP53-/- (WT) or isogenic NFATC2IP-KO cells. SUMO-conjugated 

proteins were isolated by binding to the biotinylated S-Cap peptide, followed by affinity 

pulldown using streptavidin-conjugated magnetic beads. Input: input control fraction. UB: 

unbound supernatant after binding of biotin S-Cap to streptavidin beads. PD: proteins from S-

Cap pulldown eluted from streptavidin beads. WCE: whole cell extracts. Immunoblots were 

probed with antibodies to the indicated proteins. ɑ-Tubulin, Lamin B1, or Histone H3 were 

included as controls for cytoplasmic, nucleoplasmic, or chromatin subcellular fractions, 

respectively. 
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Methods 

 

Cell lines and cell culture 

RPE1-hTERT Cas9 TP53-KO and 293T cell lines were cultured in Dulbecco’s Modified Eagle 

Medium (DMEM, Gibco, cat # 11965092) supplemented with 10% (v/v) FBS (Wisent 

Bioproducts, cat # 080-150) and 1% (v/v) penicillin/streptomycin (Wisent Bioproducts, cat # 

450-201-EL) and grown at 37˚C and 5% CO2. Where indicated, carfilzomib (Selleckchem, cat # 

S2853) was added at a concentration of 20 nM for 4 h. The clonal RPE1-hTERT Cas9 TP53-/- 

NFATC2IP-KO cell lines were generated by transfecting a ribonucleoprotein (RNP) complex of 

the NFATC2IP-targeting sgRNA2 (Table S4) and purified Cas9 protein into RPE1-hTERT Cas9 

TP53-/- cells using Lipofectamine CRISPRMAX Cas9 Transfection Reagent (Invitrogen, cat # 

CMAX00003). Transfection of the RNP complex was performed according to the 

manufacturer’s protocol for 24 h and seeded for clonal isolations. The selected NFATC2IP-KO 

clones were validated for successful gene editing by TIDE analysis (Brinkman et al. 2014) and 

by probing for endogenous NFATC2IP protein levels by immunoblotting.  

 

Plasmids 

For CRISPR-mediated gene perturbation, DNA oligonucleotides containing sgRNAs were 

cloned into LentiCRISPRv2 (Addgene # 52961) using BsmBI. For generating NFATC2IP-

expressing plasmids, a plasmid containing the human NFATC2IP cDNA was purchased from 

Lunenfeld-Tanenbaum Research Institute OpenFreezer repository (OpenFreezer ID V84563). 

The NFATC2IP coding sequence was amplified by PCR with primers containing flanking AscI 

and EcoRV restriction sites and cloned into pcDNA5-FRT/TO-FLAG, pcDNA5-FRT/TO-eGFP, 

and pcDNA5-FRT/TO-3xFLAG for N-terminal epitope tagging. To generate plasmids 

expressing NFATC2IP mutants, site-directed mutagenesis was performed via PCR. The 

sequences encoding FLAG- or eGFP-tagged NFATC2IP were then PCR-amplified with primers 

containing flanking NotI and XbaI restriction sites and cloned into the pHIV-NAT-T2A-hCD52 

lentiviral vector (kind gift from Dr. R. Scully). For generating NSMCE2-expressing plasmids, a 

plasmid with the human NSMCE2 cDNA was purchased from GenScript (cat # Ohu31586D). 

The NSMCE2 coding sequence was PCR-amplified to add a Kozak consensus sequence for 

efficient initiation of translation and flanking KpnI and XhoI restriction sites, and then cloned 
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into pcDNA3.1-C-2xHA vector (kind gift from Dr. R McInnes) for tagging the epitope at its C-

terminal end.  

 

Lentiviral transduction 

To produce lentivirus, 4 x 106 293T cells were seeded in a 10-cm plate 1 d prior to transfection 

and co-tranfected with the 3rd generation lentiviral packaging plasmids (5 µg pVSV.G, 3 µg 

pMDLg/pRRE, and 2.5 µg pRSV-Rev; Addgene # 14888, 12251, and 12253, respectively) plus 

10 µg of the vector of interest using Mirus TransIT-LT1 transfection reagent (Mirus Bio LLC, 

cat # MIR 2305). Medium was refreshed 16 h post-transfection, and the viral supernatant was 

collected approximately 36-40 h post-transfection and passed through a 0.45-µm filter. For 

infection of target cells, the viral supernatant was supplemented with 8 µg/ml polybrene (Sigma, 

cat # H9268). For selection of transduced RPE1-hTERT Cas9 TP53-/- WT or NFATC2IP-KO 

cells, cells were grown in media containing 1.5 µg/ml of puromycin (Life Technologies, cat # 

A1113802) for 48 h, or 400 µg/ml of nourseothricin (NAT, Gold Biotech, cat # N-500) for 4–5  

days. 

 

CRISPR Cas9 screens 

Chemogenomic CRISPR screens were performed by following the protocol described in 

(Olivieri and Durocher 2021). Briefly, RPE1-hTERT Cas9 TP53-/- cells were transduced with the 

TKOv3 lentiviral sgRNA library (Hart et al. 2017) at a multiplicity of infection (MOI) of ~ 0.3, 

and selected with puromycin (1.5 μg/ml) for 48 h. The pooled population of transduced cells 

were subcultured every 3 d in two technical replicates until 6 d post-selection (t6). At the t6 

timepoint, the subpopulations of cells were either exposed to DMSO (vehicle) as a non-treated 

control or treated with the Ub/Ubl pathway inhibitors at the dosages described in Table S1 for 12 

d. Cells were harvested at the t18 timepoint, genomic DNA was purified using the QIAmp DNA 

Blood Maxi kit (QIAGEN, cat # 51194) and the integrated sgRNA sequences were amplified and 

barcoded by two-step PCR using NEBNext Ultra II Q5 Master Mix (New England Biolabs, cat # 

M5044). The barcoded sgRNA samples were sequenced on an Illumina NextSeq500 to 

quantitate representation of each sgRNA in the Ub/Ubl pathway inhibitor-treated or non-treated 

control samples. As described previously, the gene-level normZ scores were computed using 

DrugZ from the readcounts (Table S5) (Colic et al. 2019). 
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Clonogenic survival assays 

For clonogenic survival assays with TAK-981, cells were seeded in media containing a range of 

TAK-981 concentrations at the seeding density of 400 cells per 10-cm plates. TAK-981-

containing media was refreshed every 4 d, and cells were grown for 14 d. Then, cells were rinsed 

with DPBS (Gibco, cat # 14190144) and stained with 0.5% (w/v) crystal violet/20% methanol 

for 30 min. Numbers of colonies were counted by images analysis using a GelCount (Oxford 

Optronix) and the relative surviving fractions were plotted by normalizing to DMSO controls.  

 For clonogenic survival assays with CB-5083, cells were lentivirally transduced with an 

sgRNA-expression construct and selected with puromycin (1.5 μg/ml) for 48 h. 72 h post-

selection, the transduced cells were seeded in media containing 200 nM CB-5083 at a seeding 

density of 500 cells per 10-cm plate and were grown for 13 d. CB-5083-containing media was 

refreshed every 6 days. Colonies were stained and quantitated as described above.  

 

Quantitative reverse transcription (qRT) PCR 

RNA was isolated from RPE1-hTERT Cas9 TP53-/- cells using an RNeasy kit (Qiagen, cat # 

74104), and cDNA was synthesized using SuperScript™ III Reverse Transcriptase (Invitrogen, 

cat # 18080093). The prepared cDNA was used as a template for qRT-PCR that was performed 

using TaqMan Gene Expression Assays (Thermo). The following TaqMan probes were used in 

the experiment (detailed sequence information in Table S4): PSMA7 (Hs00895424_m1), 

PSMB7 (Hs00160607_m1), PSMC4 (Hs00197826_m1), and GAPDH (Hs99999905_m1).  

 

Antibodies 

Primary antibodies used in this study were the following: rabbit anti-NRF1 (Cell Signaling 

Technologies, D5B10, cat # 8052, 1:1000), rabbit anti-GAPDH (Sigma, cat # G9545, 1:10000), 

mouse anti-NFATC2IP (Santa Cruz Biotechnology, B-1, cat # sc-377461, 1:100), rabbit anti-

GFP (Abcam, cat # ab290, 1:1000), mouse anti-ɑ-tubulin (Cell Signaling Technologies, DM1A, 

cat # 3873, 1:2000), anti-centromere protein antibody (ACA) (Antibodies Incorporated, cat # 15-

235, 1:1000), rat anti-FLAG (BioLegend, L5, cat # 637301, 1:500 for immunofluorescence), 

mouse anti-FLAG M2 (Sigma, cat # F1804, 1:500 for immunoblotting), rabbit anti-NSMCE2 

(Novus Biologicals, cat # NBP1-76263, 1:1000), rabbit anti-SMC5 (Novus Biologicals, cat # 
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NB100-469, 1:500), rabbit anti-RanGAP1 (Abcam, EPR3295, cat # ab92360, 1:2000), rabbit 

anti-SUMO1 (Abcam, Y299, cat # ab32058, 1:1000), rabbit anti-SUMO2/3 (Abcam, cat # 

ab3742, 1:1000), rabbit anti-Lamin B1 (Abcam, cat # ab16048, 1:1000), and rabbit anti-Histone 

H3 (Abcam, cat # ab1791, 1:4000). 

For immunoblotting, the following secondary antibodies were used: horseradish 

peroxidase (HRP)-conjugated AffiniPure goat anti-mouse IgG (H+L) (Jackson ImmunoResearch 

Laboratories Inc., cat # 115-035-003, 1:5000), HRP-conjugated AffiniPure goat anti-rabbit IgG 

(H+L) (Jackson ImmunoResearch Laboratories Inc., cat # 111-035-144, 1:5000), IRDye 680RD 

donkey anti-mouse IgG (LI-COR Biosciences, cat # 926-68072, 1:5000), IRDye 680RD goat 

anti-mouse IgG (LI-COR Biosciences, cat # 926-68070, 1:5000), and IRDye 800CW donkey 

anti-rabbit IgG (LI-COR Biosciences, cat # 926-32213, 1:5000). For immunofluorescence, the 

secondary antibodies used in this study include the following: Alexa Fluor 555 goat anti-rabbit 

IgG (H+L) (Invitrogen, cat # A21428, 1:1000), Alexa Fluor 555 goat anti-rat IgG (H+L) 

(Invitrogen, cat # A21434, 1:1000), Alexa Fluor 647 goat anti-rabbit IgG (H+L) (Invitrogen, cat 

# A21244, 1:1000), Alexa Fluor 647 goat anti-mouse IgG (Invitrogen, cat # A21236, 1:1000), 

and Alexa Fluor 488 goat anti-human IgG (H+L) (Invitrogen, cat # A11013, 1:1000). 

 

Immunofluorescence 

Cells were seeded on glass coverslips and subjected to various treatments detailed elsewhere. 

Cells on glass coverslips were washed with PBS and fixed with 4% (w/v) formaldehyde/PBS 

(Pierce, 16% formaldehyde (w/v), methanol-free, Thermo Fisher, cat # 28908, diluted in PBS) 

for 15 min and then permeabilized with 0.3% (v/v) Triton X-100/PBS for 30 min. Cells were 

incubated with PBG blocking buffer (0.2% fish gelatin and 0.5% (w/v) bovine serum albumin 

(BSA), diluted in PBS) for 30 min, and subsequently with primary antibodies diluted in PBG 

blocking buffer for 1-2 h. Following three washes with PBS, cells were incubated with PBG 

blocking buffer containing secondary antibodies and 0.4 μg/ml DAPI (4’,6-diaminido-2-

phenylindole, Sigma, cat # D9542) for 1 h, and subsequently washed with PBS three times. Cells 

were mounted onto glass slides using ProLong Gold Antifade mountant (Thermo Fisher, cat # 

P36930) and imaged on a Zeiss LSM780 confocal microscope.  

 

Quantitation of micronuclei formation 
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Cells were seeded in 96-well plates at a seeding density of 3000 cells per well, 24 h prior to the 

TAK-981 treatment. Cells were treated with TAK-981 for 48 h, followed by fixation with 4% 

(w/v) formaldehyde/PBS (Pierce, 16% formaldehyde (w/v), methanol-free, Thermo Fisher, cat # 

28908, diluted in PBS) for 15 min and permeabilization with 0.3% (v/v) Triton X-100/PBS for 

30 min. Cells were rinsed with PBS and incubated for 30 min with blocking buffer containing 

5% (w/v) BSA and 0.1% (v/v) Tween-20 diluted in PBS. Cells were incubated with primary 

antibodies diluted in blocking buffer for 2 h, followed by three washes with PBT (0.1% (v/v) 

Tween-20/1xPBS). Subsequently cells were incubated with the blocking buffer containing 

secondary antibodies and DAPI. After final washing with PBT three times and with PBS once, 

200 μl PBS was added to each well. Plates were scanned for image acquisitions on an InCell 

Analyzer 6000 automated microscope (GE Healthcare) with 20x or 60x objectives. Image 

analyses for micronuclei quantitation were performed using Columbus image storage and 

analysis software (Perkin Elmer).  

 

Quantitation of chromatin bridge formation 

Cells were seeded in 6-well plates with glass coverslips at a seeding density of 150,000 – 

200,000 cells per well, 24 h prior to the TAK-981 treatment. Media containing a range of TAK-

981 concentrations was added to the cells and incubated for 24 h. Cells were fixed with 4% (w/v) 

formaldehyde/PBS (Pierce, 16% formaldehyde (w/v), methanol-free, Thermo Fisher, cat # 

28908, diluted in PBS) for 15 min, blocked with PBG blocking buffer (0.2% fish gelatin and 

0.5% (w/v) BSA, diluted in PBS) for 30 min, and incubated in blocking buffer containing 0.8 

μg/ml DAPI (4’,6-diamidino-2-phenylindole, Sigma, cat # D9542) for 1 h. Cells were then 

mounted on glass slides using ProLong Gold Antifade mountant (Thermo Fisher, cat # P36930) 

and imaged on a Zeiss LSM780 confocal microscope. For quantitation of chromatin bridges, 300 

– 500 nuclei per condition were observed and categorized according to presence and length of 

chromatin bridges, and used to calculate the proportions of nuclei displaying short or long 

chromatin bridges.  

 

Immunoprecipitation 

293T cells were seeded in 10-cm plates and transfected with the plasmids expressing the 

NFATC2IP or NSMCE2 protein constructs that were cloned into pcDNA5-FRT/TO-3xFLAG or 
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pcDNA3.1-C-2xHA parental vectors, respectively, by using Mirus TransIT-LT1 transfection 

reagent (Mirus Bio LLC, cat # MIR 2305). 24 h post-transfection, the transfection mix was 

removed, and cells were allowed to recover in fresh media for another 24 h before harvesting. 

For immunoprecipitations of FLAG-tagged peptides, whole cell lysates were prepared with high 

salt lysis buffer (50 mM HEPES pH 8.0, 300 nM NaCl, 2 mM EDTA pH 8.0, 0.1% (v/v) NP-40, 

10% glycerol, 1x protease inhibitor cocktail (cOmplete mini, EDTA-free, Roche, cat # 

11836170001) and subjected to binding of FLAG-tagged peptide species with anti-FLAG M2 

magnetic beads (Sigma, cat # M8823). The purified FLAG-tagged peptides were harvested by 

eluting from the anti-FLAG M2 magnetic beads with 100 ng/µl 3xFLAG peptides.  

 

Purification of 6xHis-tagged SUMO-conjugated peptides 

Cells were plated in 10-cm plates and transfected with plasmids expressing His6-SUMO1 

(Addgene plasmid # 133770) or His6-SUMO2 (Addgene plasmid # 133771). 24 h post-

transfection, the transfection mix was removed, and the cells were allowed to recover in fresh 

media for 48 h before harvest. Purifications of peptides conjugated with His6-SUMO1 or His6-

SUMO2 were performed by following the protocol described in (Tatham et al. 2009), using 

nickel-nitrilotriacetic acid (Ni-NTA) agarose beads (QIAGEN, cat # 30230) and the 

manufacturer’s protocol. Briefly, cells were lysed in cell lysis buffer (6M guanidinium-HCl, 10 

mM Tris-HCl, 100 mM sodium phosphate buffer pH 8.0, 20 mM NEM, 10 mM imidazole, 5 

mM β-mercaptoethanol). Cell lysates were sonicated for 45 sec and cleared by centrifuging at 

3000x g for 15 min at room temperature. The supernatant samples were subjected to purification 

of His-tagged peptides with pre-washed Ni-NTA agarose beads overnight at 4°C. Samples were 

then washed sequentially with (i) cell lysis buffer supplemented with 0.01% (v/v) Triton X-100, 

(ii) pH 8.0 wash buffer (8M urea, 10 mM Tris-HCl, 100 mM sodium phosphate buffer pH 8.0, 20 

mM NEM, 10 mM imidazole, 0.1% (v/v) Triton X-100, 5 mM β-mercaptoethanol) and (iii) pH 

6.3 wash buffer (8M urea, 10 mM Tris-HCl, 100 mM sodium phosphate buffer pH 6.30, 20 mM 

NEM, 10 mM imidazole, 0.1% (v/v) Triton X-100, 5 mM β-mercaptoethanol). Purified samples 

were eluted in elution buffer (200 mM imidazole, 5% (w/v) sodium dodecyl sulfate, 150 mM 

Tris-HCl, 30% (v/v) glycerol, 720 mM β-mercaptoethanol, 0.0025% (w/v) bromophenol blue) 

for 30 min at room temperature.  
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Subcellular fractionation 

Cells were plated in 15-cm plates, and the harvested cells were subjected to subcellular 

fractionations as described previously (Fradet-Turcotte et al. 2013). Briefly, cells were lysed in 

EBC1 buffer (50 mM Tris-HCl pH 7.50, 100 mM NaCl, 0.5% NP-40, 1 mM EDTA, 1 mM DTT, 

1x protease inhibitor cocktail (cOmplete mini, EDTA-free, Roche, cat # 11836170001), 5 mM 

N-ethylmaleimide (NEM, Sigma, cat # E1271)). The nuclear fraction (pellet) was separated from 

the cytoplasmic fraction (supernatant) by centrifuging at 1000x g for 10 min at 4°C. The 

nucleoplasmic fraction was obtained by resuspending the nuclear pellet in EBC2 buffer (50 mM 

Tris-HCl pH 7.50, 300 mM NaCl, 5 mM CaCl2, 1x protease inhibitor cocktail (cOmplete mini, 

EDTA-free, Roche, cat # 11836170001), 5 mM NEM) for 30 min on ice with occasional 

vortexing, after which the soluble nucleoplasmic fraction (supernatant) was separated from the 

insoluble chromatin (pellet) by centrifuging at 21000x g for 10 min at 4°C. The insoluble 

chromatin pellets were then solubilized in EBC2 buffer supplemented with micrococcal nuclease 

(Sigma, cat # N3755) by digesting for 45 min at 30°C. The soluble chromatin fraction samples 

were harvested by centrifuging at 21000x g for 10 min at 4°C and collecting the supernatant.  

 

Purification of SUMO-conjugated peptides 

SUMO-conjugated peptides in subcellular fractionation samples were purified with biotin 

SUMO-Capture Reagent (Biotin S-Cap, LifeSensors Inc., cat # SM-101) following the 

manufacturer’s protocol. Prior to binding of SUMO-conjugated peptides, the concentrations of 

NP-40 in cytoplasmic fractionation samples were adjusted to 0.2% (v/v) NP-40 with dilution 

buffer (100 mM Tris-HCl pH 8.0, 150 mM NaCl, 5 mM EDTA pH 8.0). Samples were incubated 

with 1 µM Biotin S-Cap for 2 h on ice. Following the Biotin S-Cap reagent binding reaction, the 

input control samples were collected, and the remaining samples were incubated with Dynabeads 

M-280 streptavidin magnetic beads (Invitrogen, cat # 11206D) for 2 h at 4°C on an end-over-end 

rotator. Following the binding reaction of the Biotin S-Cap reagent to streptavidin beads, the 

supernatants were collected as unbound samples. The pulldown samples bound to streptavidin 

beads were washed 4 times with wash buffer (100 mM Tris-HCl pH 8.0, 150 mM NaCl, 5 mM 

EDTA pH 8.0, 0.05% (v/v) NP-40, 0.1% (v/v) Tween-20, 5 mM NEM, 1x protease inhibitor 

cocktail (cOmplete mini, EDTA-free, Roche, cat # 11836170001) and eluted by boiling at 95°C 

for 5 min.  
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