

1
2
3
4 **The acetylase activity of Cdu1 regulates bacterial exit from infected cells by protecting**
5 ***Chlamydia* effectors from degradation**
6
7
8

9 Robert J. Bastidas^{1*}, Mateusz Kędzior¹, Robert K. Davidson^{2,#}, Stephen C. Walsh^{2,#}, Lee
10 Dolat¹, Barbara S. Sixt^{3,4,5}, Jonathan N. Pruneda⁶, Jörn Coers^{1,2}, Raphael H. Valdivia^{1,2*}

11
12 Author affiliations: ¹Department of Integrative Immunobiology, Duke University, Durham, N.C
13 27708, USA. ²Department of Molecular Genetics and Microbiology, Duke University, Durham,
14 N.C 27708, USA. ³Department of Molecular Biology, Umeå University, Umeå, Sweden. ⁴The
15 Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden.
16 ⁵Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden. ⁶Department
17 of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR
18 97239, USA. [#]Authors contributed equally.

19
20 * Correspondence: robert.bastidas@duke.edu; raphael.valdivia@duke.edu

21
22
23
24

25 **Abstract**

26 Many cellular processes are regulated by ubiquitin-mediated proteasomal degradation.
27 Pathogens can regulate eukaryotic proteolysis through the delivery of proteins with de-
28 ubiquitinating (DUB) activities. The obligate intracellular pathogen *Chlamydia trachomatis*
29 secretes Cdu1 (ChlaDUB1), a dual deubiquitinase and Lys-acetyltransferase, that promotes
30 Golgi remodeling and survival of infected host cells presumably by regulating the ubiquitination
31 of host and bacterial proteins. Here we determined that Cdu1's acetylase but not its DUB
32 activity is important to protect Cdu1 from ubiquitin-mediated degradation. We further identified
33 three *C. trachomatis* proteins on the pathogen-containing vacuole (InaC, IpaM, and CTL0480)
34 that required Cdu1's acetylase activity for protection from degradation and determined that
35 Cdu1 and these Cdu1-protected proteins are required for optimal egress of *Chlamydia* from host
36 cells. These findings highlight a non-canonical mechanism of pathogen-mediated protection of
37 virulence factors from degradation after their delivery into host cells and the coordinated
38 regulation of secreted effector proteins.

39

40 **Introduction**

41 Ubiquitination is a conserved and ubiquitous post-translational modification (PTM) of proteins
42 involving the conjugation of the carboxy-terminal glycine residue of ubiquitin (Ub) to lysine
43 residues of target proteins. Poly-ubiquitination of substrates involves further conjugation of a Ub
44 internal lysine residue or amino-terminal methionine (M1) with a second Ub molecule. Seven
45 internal lysines in Ub (K6, K11, K27, K29, K33, K48, K63) and M1 are utilized by Ub conjugating
46 enzymes to form homogeneous, branched, or mixed poly-ubiquitin (polyUb) chains (Komander
47 and Rape., 2012). PolyUb chains with different linkage types exhibit distinct structures and
48 functions. For example, K48- and K11-linked polyUb chains exhibit a compact conformation and
49 are substrates for 26S proteasome-mediated degradation (Varadan et al., 2004; Tenno et al.,
50 2004; Eddins et al., 2007; Bremm et al., 2010; Saeki., 2017). In contrast, K63-linked polyUb

51 conjugates adopt more open conformations that enable the recruitment of multiprotein
52 complexes that regulate the function of the target protein by proteolytic independent events
53 (Komander et al., 2009b; Weeks et al., 2009; Datta et al., 2009; Komander and Rape., 2012).
54 Mixed and branched polyUb chains are also emerging as important regulators of physiological
55 functions (Swatek and Komander., 2016; Ohtake and Tsuchiya., 2017).
56
57 Protein ubiquitination regulates numerous eukaryotic cell processes including protein
58 degradation, signal transduction, cell cycle regulation, selective autophagy, the DNA damage
59 response, and programmed cell death. Ub also plays key roles in modulating host innate
60 immune responses to bacterial infection (Li et al., 2016), bacterial proteins, pathogen-containing
61 vacuoles, and bacteria themselves by targeting them for Ub-mediated degradation by
62 proteasomal or autophagic machineries (Li et al., 2016). Because the Ub system is critical for
63 pathogen containment, many pathogens have evolved mechanisms to counteract the impact of
64 this PTM (Vozandychova et al., 2021). For instance, bacterial deubiquitinases (DUBs) can
65 remove Ub from ubiquitinated substrates thereby dampening inflammatory and cell-autonomous
66 defense mechanisms (Kubori et al., 2019). Many DUBs are cysteine proteases with a catalytic
67 Cys, a nearby His and an Asn/Asp (Komander et al., 2009a). DUBs are typically dedicated to
68 the removal of Ub moieties and are unable to hydrolyze other Ub-like (Ubl) modifications such
69 as SUMO or NEDD8. However, the CE clan of Ubl proteases (ULPs) can catalyze the removal
70 of both SUMO and NEDD8 (Ronau et al., 2016). Bacterial pathogens also encode CE clan
71 enzymes that function as DUBs, ULPs or both. For instance, *Salmonella Typhimurium* SseL,
72 *Escherichia coli* ElaD, and *Shigella flexneri* ShiCE function as Ub specific proteases (Rytkönen
73 et al., 2007; Catic et al., 2007; Pruneda et al., 2016) while RickCE from *Rickettsia bellii* functions
74 as a protease directed towards both Ub and NEDD8 as does SidE from *Legionella pneumophila*
75 which displays mixed activities towards Ub, NEDD8, and ISG15 (Sheedlo et al., 2015; Pruneda
76 et al., 2016). Similarly, XopD from *Xanthomonas campestris* and LotB from *L. pneumophila* are

77 isopeptidases exhibiting cross reactivity towards both Ub and SUMO (Pruneda et al., 2016;
78 Schubert et al., 2020). Some CE clan bacterial effectors display acetyltransferase activity. *L.*
79 *pneumophila* LegCE, *S. Typhimurium* AvrA, and YopJ from *Yersinia pestis* function exclusively
80 as acetyltransferases (Mittal et al., 2006; Mukherjee et al., 2006; Jones et al., 2008; Pruneda et
81 al., 2016). In contrast, the *Chlamydia trachomatis* (Ct) effector Cdu1/*ChlaDUB1* is a CE clan
82 protein that exhibits both acetyltransferase and deubiquitinating activities (Misaghi et al., 2006;
83 Pruneda et al., 2016; Fischer et al., 2017; Pruneda et al., 2018).
84
85 Ct is an obligate intracellular bacterial pathogen responsible for human diseases of significant
86 clinical and public health importance (Haggerty et al., 2010). Ct has a biphasic developmental
87 cycle in which the Ct infectious propagule or elementary body (EB) invades the target host cell.
88 Upon internalization the EB transitions to the reticulate body (RB). RBs replicate by binary
89 fission within a pathogenic vacuole (“inclusion”) and asynchronously differentiate back to EBs.
90 In cell culture, starting at around 48 hours-post infection (hpi) Ct will egress after lysis of the
91 host cell or by a process termed extrusion, wherein the intact inclusion exits from the infected
92 cell (Moulder., 1991; Abdelrahman and Belland., 2005; Hybiske and Stephens., 2007; Lee et al.,
93 2018). The effector Cdu1 was originally identified as a deneddylating and deubiquitinating
94 enzyme and subsequently shown to exhibit *in-vitro* isopeptidase activity towards both Lys48 and
95 Lys63 linked di-Ub substrates (Misaghi et al., 2006; Claessen et al., 2013; Pruneda et al., 2016;
96 Fischer et al., 2017). Cdu1 is unique among CE clan enzymes in that it also functions as a bona
97 fide lysine acetylase with both is acetylase and DUB activities catalyzed by the same catalytic
98 active site (Pruneda et al., 2018). Intriguingly, Cdu1 autoacetylation is directed towards lysines
99 unlike other CE clan acetylases that predominantly target serine and threonine residues
100 (Pruneda et al., 2018). In transfected cells, Cdu1 protects the NF κ B cytoplasmic retention factor
101 I κ B α from ubiquitination and proteasomal degradation (Le Negrate et al., 2008). In infected

102 cells, Cdu1 localizes to the inclusion membrane where it functions to stabilize the anti-apoptotic
103 protein Mcl-1 and to promote the repositioning of Golgi ministacks around the Ct inclusion
104 (Fischer et al., 2017; Wang et al., 2018; Pruneda et al., 2018; Kunz et al., 2019; Auer et al.,
105 2020). However, the mechanism by which Cdu1 promotes redeployment of Golgi ministacks
106 and any additional roles that Cdu1 may play during Ct infection of epithelial cells remains
107 unknown.

108

109 In this study, we show that Cdu1 protects itself and three secreted Ct effectors, InaC, IpaM, and
110 CTL0480 from targeted ubiquitination and proteasomal degradation. InaC, IpaM, and CTL0480
111 are members of a larger family of bacterial proteins embedded within the inclusion membrane
112 (Inc proteins) (Bannantine et al., 2000; Rockey et al., 2002; Chen et al., 2006; Li et al., 2008;
113 Alzhanov et al., 2009; Dehoux et al., 2011; Lutter et al., 2012; Lutter et al., 2013; Kokes et al.,
114 2015; Weber et al., 2015). We show that Cdu1-mediated protection from degradation is
115 independent from its DUB activity but relies upon its Lys acetylase activity. We show that Cdu1
116 protects InaC to promote repositioning of Golgi ministacks and formation of actin scaffolds
117 around the Ct inclusion, and CTL0480 to promote recruitment of myosin phosphatase target
118 subunit 1 (MYPT1) to the inclusion. In addition, we determined that Cdu1 and Cdu1-protected
119 Incs are required for optimal extrusion of inclusions from host cells at the late stages of
120 infection.

121

122 **Results**

123

124 **The *C. trachomatis* inclusion membrane proteins InaC, IpaM, and CTL0480 are 125 differentially ubiquitinated in the absence of Cdu1**

126 Cdu1 is required for Golgi repositioning around the Ct inclusion (Pruneda et al., 2018; Auer et
127 al., 2020). To understand how Cdu1 promotes Golgi redistribution, we first generated a *cd1*

128 null strain in a Ct L2 background by TargeTron mediated insertional mutagenesis (pDFTT3-
129 *aadA*) (Lowden et al., 2015) (S. Figure 1). Loss of Cdu1 expression in the resulting L2 *cdu1::GII*
130 *aadA* (*cdu1::GII*) strain was verified by western blot analysis and by indirect
131 immunofluorescence with antibodies raised against Cdu1 (S. Figures 2A and 2B). Because
132 *cdu2* resides directly downstream of the *cdu1* locus and encodes a second Ct DUB
133 (*Cdu2/ChlaDUB2*) (Misaghi et al., 2006), we first determined whether the disruption of *cdu1*
134 impacted the expression of *cdu2*. We detected *cdu1* and *cdu2* transcripts in HeLa cells infected
135 with Ct L2 but not for the juncture between *cdu1* and *cdu2* (S. Figure 2C). In cells infected with
136 Ct *cdu1::GII* we only detected *cdu2* transcripts (S. Figure 2C) confirming that *cdu1* and *cdu2* are
137 not co-expressed as part of an operon in accordance with previous observations (Albrecht et al.,
138 2010).

139

140 In transfected Hela cells, Cdu1's DUB activity has been linked to fragmentation of the Golgi
141 apparatus (Pruneda et al., 2018). We therefore hypothesized that Cdu1s' DUB activity in
142 infected cells promoted Golgi redistribution around inclusions and that we could identify
143 potential targets by comparing the protein ubiquitination profile of cells infected with WT or
144 *cdu1::GII* strains by quantitative mass spectrometry (MS). HeLa cell were mock infected or
145 infected with either WT L2 or *cdu1::GII* strains. At 24 hpi, poly-ubiquitinated proteins were
146 enriched from lysed cells using Tandem Ubiquitin Binding Entities (TUBEs) (LifeSensors).
147 TUBEs consist of concatenated Ub binding associated domains (UBAs) that bind to polyUb-
148 modified proteins with nanomolar affinities. Poly-ubiquitinated proteins of both human and Ct
149 origin were enriched and identified by quantitative LC-MS/MS analysis.

150

151 Over 2,000 non-ubiquitinated proteins co-precipitated with TUBE 1 bound proteins across all
152 three conditions (mock, L2, and *cdu1::GII* infected HeLa cells) and 3 biological replicates (S.
153 Table 1). Among these, 47 human proteins were significantly enriched in mock infected HeLa

154 cells and 50 human proteins were significantly enriched during Ct infection (L2 and *cdu1::GII*)
155 (S. Table 3, S. Figure 3) Pathway enrichment analysis revealed that proteins involved in RNA
156 metabolism were overrepresented among co-precipitating proteins from mock infected cells (S.
157 Table 4, S. Figure 4) while no biological pathways or processes were overrepresented in
158 proteins enriched from infected cells (S. Figure 4). We also identified 8 TUBE1 co-precipitating
159 Ct proteins in HeLa cells infected with L2 and *cdu1::GII* (S. Table 5, S. Figure 3).

160
161 TUBE 1 affinity capture lead to the identification of 43 ubiquitinated proteins (35 human proteins
162 and 8 Ct proteins across all 3 conditions and replicates) based on the presence of peptides
163 containing a di-glycine remnant motif (Peng et al., 2003) (S. Tables 6-8). The lack of widespread
164 poly-ubiquitination of either human or Ct proteins in response to Ct infection (Figure 1) was
165 surprising given that wholesale changes in protein ubiquitination has been reported during
166 infection of HeLa cells by intracellular pathogens like *S. Typhimurium* (Fiskin et al., 2016). It is
167 also possible that had we conducted our analysis at different time points post-infection (hpi), we
168 might have identified additional Cdu1 targets, such as Mcl1 and I κ B α (Le Negrate et al., 2008;
169 Fischer et al., 2017) which were not identified in our analysis. However, given that we observed
170 Cdu1 at the inclusion membrane as early as 1 hpi (data not shown), we opted to focus on an
171 earlier stage of the infection cycle. Only two human ubiquitinated proteins (ZC3H7A and DDT4)
172 were found to be significantly enriched in response to WT L2 infection at 24 hpi (Figures 1A and
173 1C, S. Table 8) while only one human protein (MGC3121) was preferentially ubiquitinated in
174 HeLa cells infected with the *cdu1::GII* mutant strain (Figures 1B and 1C, S. Table 8). In contrast
175 three Ct proteins, InaC (K104, K107, and K149), IpaM (K29), and CTL0480 (K115) were
176 ubiquitinated at Lys residues in the absence of Cdu1 (Figures 1B, 1C, and 1D, S. Table 8).

177
178 InaC, IpaM, and CTL0480 are Ct effector proteins that localize to the inclusion membrane (Chen
179 et al., 2006; Alzhanov et al., 2009; Lutter et al., 2013; Kokes et al., 2015). These Type 3

180 secretion substrates belong to a family of over 36 inclusion membrane proteins (Incs) that
181 contain a signature bi-lobal hydrophobic transmembrane domain (Bannantine et al., 2000;
182 Rockey et al., 2002; Li et al., 2008; Dehoux et al., 2011; Lutter et al., 2012). Incs provide many
183 functions important for Ct intracellular replication ranging from providing structural integrity to
184 the inclusion membrane, to regulating membrane trafficking, to mediating interactions with host
185 organelles and cytoskeletal structures (reviewed in Bugalhão et al., 2019). InaC facilitates the
186 activation of the small GTPase RhoA, a crucial step for the assembly of actin scaffolds around
187 the inclusion (Haines et al., 2021; Kumar and Valdivia., 2008). Additionally, InaC plays a pivotal
188 role in the activation of Arf GTPases. This activation subsequently induces post-translational
189 modifications of microtubules in close proximity to the inclusion membrane, which are essential
190 for Ct to initiate the repositioning of Golgi ministacks around the inclusion (Wesolowski et al.,
191 2017). IpaM exhibits localization to discrete patches in the inclusion termed microdomains
192 (Alzhanov et al., 2009; Dumoux et al., 2015). Upon ectopic expression, IpaM induces alterations
193 in microtubule organization (Dumoux et al., 2015). CTL0480, facilitates the recruitment of
194 MYPT1 (myosin phosphatase target subunit 1) to the inclusion membrane. Recruitment of
195 MYPT1 is required for the efficient exit of Ct from host cells (Lutter et al., 2013; Shaw et al.,
196 2018). Because Cdu1 also localizes to the inclusion membrane (Fischer et al., 2017; Wang et
197 al., 2018; Pruneda et al., 2018; Kunz et al., 2019) we postulated that Cdu1 directly protects
198 InaC, IpaM, and CTL0480 from ubiquitination.

199

200 **Cdu1 associates with InaC, IpaM, and CTL0480**

201 We first determined if Cdu1 co-localized with InaC, IpaM, and CTL0480 at the inclusion
202 membrane. HeLa cells were infected for 24 hours with WT L2 or L2 expressing CTL0480-Flag
203 from its endogenous promoter and immunostained with antibodies against Cdu1, InaC, IpaM, or
204 the Flag epitope. Both InaC and CTL0480-Flag localized throughout the inclusion membrane
205 while IpaM was restricted to discrete microdomains as previously reported (Alzhanov et al.,

206 2009; Dumoux et al., 2015) (Figure 2A). Cdu1 co-localized with InaC and CTL0480-Flag and
207 with IpaM at microdomains (Figures 2A and 2B). All four antibodies specifically recognized their
208 corresponding antigens since immunostaining for Cdu1, InaC, IpaM or the Flag epitope was not
209 observed in Ct strains lacking Cdu1 (*cd1::GII*), InaC (M407, Kokes et al., 2015) IpaM
210 (*ipaM::GII*, Meier et al., 2022), or a strain that does not express CTL0480-Flag (Figure 2A).

211
212 We next determined if Cdu1 can interact with InaC, IpaM, and CTL0480 by co-transfected HEK
213 293 cells with vectors expressing either full length Cdu1-GFP or truncated versions of Cdu1-
214 GFP lacking transmembrane or catalytic domains (Figure 2C), and vectors expressing Flag-
215 InaC, V5-IpaM, and V5-CTL0480. Transfected cells were lysed and Cdu1-GFP was
216 immunoprecipitated with antibodies against GFP. Western blot analysis of the
217 immunoprecipitates showed that Flag-InaC, V5-IpaM, and V5-CTL0480 co-precipitated with
218 Cdu1-GFP (Figures 2D-F). Moreover, the transmembrane domain of Cdu1 was necessary for
219 Cdu1-GFP to interact with all three Incs (Figures 2D-F). The interaction between Cdu1-GFP and
220 the three tagged Incs was specific since we did not detect interactions between Cdu1-GFP and
221 a V5-tagged version of the inclusion membrane protein CpoS (Sixt et al., 2017) (Figure 2G). We
222 expected these interactions to be transient at the inclusion membrane as the engagement of
223 Cdu1 with its target(s) should mimic that of most enzymes with their substrates. Therefore, while
224 we could capture these complexes in co-immunoprecipitations in the context of overexpression,
225 this assay was not sensitive enough to reliably document the formation of complexes among
226 low abundance endogenous Ct proteins. Nevertheless, our findings from transfection
227 experiments lead us to conclude that Cdu1 can selectively interact with all three Incs even in the
228 absence of infection, and these interactions are facilitated by the transmembrane domain of
229 Cdu1.

230

231 **Cdu1 protects InaC, IpaM, and CTL0480 proteins from degradation during infection**

232 We next assessed if Cdu1 was required to stabilize endogenous InaC, IpaM, and CTL0480 in
233 infected cells. HeLa cells were infected with either WT L2 or *cdu1::GII* strains and at various
234 time points in the Ct infectious cycle crude cell lysates were analyzed by western blot to assess
235 the relative abundance of Inc proteins. At 36 and 48 hpi, the levels of InaC protein were found to
236 be undetectable in cells infected with *cdu1::GII* in comparison to cells infected with the WT L2
237 strain (Figures 3A and 3B). Conversely, IpaM protein levels exhibited a decrease at 36 and 48
238 hpi in cells infected with *cdu1::GII* (Figure 3C and 3D). We were not able to detect CTL0480
239 levels by western blot but were successful in following CTL0480 expression by indirect
240 immunofluorescence (Figure 3E). The relative abundance of CTL0480 at inclusion membranes
241 was not affected in *cdu1::GII* inclusions at 24 hpi. However, at 36 hpi, a subpopulation of cells
242 lost CTL0480 immunoreactivity and by 48 hpi, inclusion membranes of the *cdu1::GII* strain were
243 devoid of CTL0480 while CTL0480 was prominently detected at the inclusion membranes of WT
244 L2 (Figures 3E and Supplemental Figure 5). As controls for the specificity of antibodies used for
245 western blots and for indirect immunofluorescence, we included cells infected with Ct lacking
246 *ipaM* (*ipaM::GII*, Meier et al., 2022), with an *inaC* nonsense mutant (M407, Kokes et al.,
247 2015), and with Ct lacking *ctl0480* (*ctl0480::GII*, Shaw et al., 2018). Overall, our results
248 indicate that steady state protein levels of InaC and IpaM and CTL0480 localization at the
249 inclusion membrane, especially at late stages of infection, are dependent on Cdu1, and that
250 Cdu1 acts at different stages in the infection cycle.

251

252 **The acetylase activity of Cdu1 is required for Cdu1 to protect itself, InaC, and IpaM from
253 polyubiquitination and proteasomal degradation**

254 The crystal structures of Cdu1 bound to Ub or Coenzyme A indicated that the adenosine and
255 phosphate groups of Coenzyme A make contact with a helix in variable region 3 (VR-3) of Cdu1
256 while the Ile36-patch of Ub binds to the opposite face of the same helix (Pruneda et al., 2018).

257 Although Cdu1 catalyzes both of its DUB and acetylase (Act) activities with the same active site
258 (Pruneda et al., 2018) the two activities of Cdu1 can be uncoupled by the amino acid
259 substitution K268E in VR-3 which disrupts Coenzyme A binding required for Act activity and by
260 the amino acid substitution I225A in the Ub-binding region of VR-3 required for DUB activity
261 (Pruneda et al., 2018). These substitutions allowed us to test which of Cdu1's enzymatic
262 functions are required for the observed effects on protein stability. We generated Ct shuttle
263 plasmids, expressing WT Cdu1, a catalytically inactive variant of Cdu1 lacking both DUB and
264 Act activities ($\text{Cdu1}^{\text{C345A}}$) (Pruneda et al., 2018), a Cdu1 DUB-deficient variant ($\text{Cdu1}^{\text{I225A}}$), and
265 a Cdu1 Act-deficient variant ($\text{Cdu1}^{\text{K268E}}$). All Cdu1 constructs were expressed from the *cdu1*
266 endogenous promoter as 3X Flag epitope-tagged proteins.

267
268 Plasmids expressing each Cdu1 variant were transformed into the *cdu1::GII* mutant and the
269 resulting strains used to infect HeLa cells for 36 and 48 hours. The levels of endogenous InaC
270 and IpaM in cell extracts of infected cells were monitored by western blot analysis. At 36 hpi,
271 InaC protein levels drastically decreased in cells infected with *cdu1* null strains transformed with
272 empty vector or expressing the catalytic inactive variant of Cdu1 ($\text{Cdu1}^{\text{C345A}}$ -Flag) (Figure 4A).
273 Likewise, IpaM protein levels diminished at 48 hpi during infection with the same strains (Figure
274 4B). Both InaC and IpaM protein levels were restored to wild type levels in *cdu1* null strains
275 complemented with wild type Cdu1-Flag (Figures 4A and 4B). Unexpectedly, cells infected with
276 a *cdu1* null strain ectopically expressing the DUB deficient Cdu1 variant ($\text{Cdu1}^{\text{I225A}}$ -Flag)
277 displayed wild type levels of InaC and IpaM while the Act deficient variant ($\text{Cdu1}^{\text{K268E}}$ -Flag) did
278 not (Figures 4A and 4B). These results suggest that the acetylase activity of Cdu1 rather than
279 its DUB activity is required for Cdu1's ability to stabilize InaC and IpaM proteins.

280

281 When we monitored the stability of each Flag-tagged Cdu1 variant, we observed that the
282 catalytically inactive variant of Cdu1 (C345A-Flag) was destabilized (Figures 4A and 4B- Flag
283 WB). We reasoned that Cdu1 also protects itself from being targeted for degradation in infected
284 cells. As with InaC and IpaM, the acetylase but not the DUB activity of Cdu1 was required for
285 Cdu1's stability (Figures 4A and 4B). Although the C345A (DUB-, Act-) and K268E (Act-) amino
286 acid substitutions in Cdu1 do not destabilize Cdu1 expressed in *E. coli* (Pruneda et al., 2018), it
287 was possible that these substitutions impacted the expression and/or folding of Cdu1 in
288 *Chlamydia*. To determine if these Cdu1 mutants were inherently unstable, we expressed
289 Cdu1^{C345A}-Flag and Cdu1^{K268E}-Flag in WT L2 in the presence of endogenous Cdu1. We found
290 that each Flag-tagged variant was stabilized (Figure 4C), indicating that endogenous Cdu1
291 protected the catalytically-deficient Cdu1 variants *in trans*. In addition, western blot analysis of
292 immunoprecipitated Cdu1-Flag and Cdu1^{C345A}-Flag expressed in a *cdu1::GII* mutant showed
293 that while WT Cdu1-Flag was not modified by Lys48-linked poly-ubiquitination, Cdu1^{C345A}-Flag
294 was robustly modified by Lys48-linked polyUb in the presence of the proteasome inhibitor
295 MG132 (Figure 4D). Moreover, endogenous Cdu1 protected Cdu1^{C345A}-Flag from Lys48-linked
296 polyUb when Cdu1^{C345A}-Flag was expressed in a wild type L2 background (Figure 4D). These
297 results indicate that the loss of Cdu1 activity likely leads to its Lys48-linked poly-ubiquitination
298 and subsequent proteasome-dependent degradation.

299
300 Because Cdu1 autoacetylates itself and its Act activity is directed towards lysines (Pruneda et
301 al., 2018) we postulated that Cdu1 may stabilize proteins from degradation by acetylating lysine
302 residues that are potential targets of ubiquitination. We tested this hypothesis by assessing
303 whether Cdu1, InaC, CTL0480, and IpaM are acetylated at lysines during infection. Fractions
304 enriched for inclusion membranes were isolated by sub-cellular fractionation from HeLa cells

305 infected with wild-type L2 (24 hpi), and proteins acetylated at lysines were immunoprecipitated.
306 Western blot analysis of acetyl-lysine immunoprecipitates indicated that InaC and IpaM, but not
307 the Inc protein IncA, were acetylated (Figure 4E). Western blot analysis of anti-acetyl-lysine
308 immunoprecipitates of inclusion membrane-enriched membrane fractions of HeLa cells infected
309 with L2 expressing Cdu1-Flag (24 hpi), CTL0480-Flag (40 hpi), and IpaM-Flag (40 hpi) also
310 showed that all three Flag tagged effectors were acetylated at lysines (Figure 4F). We also
311 determined that Flag-tagged InaC expressed in an *inaC* null (M407) background was acetylated
312 at lysines as determined by western blot analysis of anti-acetyl-lysine immunoprecipitates
313 (Figure 4G). In addition, we identified acetylated forms of Cdu1 from mass spectrometric
314 analysis of Flag immunoprecipitates derived from extracts of HeLa cells infected with L2
315 expressing Cdu1-Flag, (24 hpi) (Figure 4H).

316

317 **Cdu1's acetylase activity shields inclusions from ubiquitination but is not sufficient to
318 protect against IFN γ mediated antimicrobial activity.**

319 We reasoned that the lysine acetylase activity of Cdu1 is a prominent mechanism by which
320 Cdu1 protects client proteins (at 24 hpi), since loss of Cdu1 or expression of the acetylase
321 deficient variant of Cdu1 (Cdu1^{K268E}-Flag) leads to a marked increase in Ub immunostaining at
322 or near the periphery of *cdu1*::GII inclusions (> 80% of inclusions) compared to HeLa cells
323 infected with *cdu1*::GII strains complemented with wild type or DUB deficient (I225A-Flag) Cdu1
324 strains (Figures 5A, 5B, and Supplemental Figure 6A). Given that Cdu1 appears to localize
325 exclusively at inclusion membranes we predicted that its activity would be spatially restricted to
326 the inclusion periphery. We tested this premise by co-infecting HeLa cells with an *incA* null
327 strain (M923 (IncA^{R197*}), Kokes et al., 2015) and the *cdu1*::GII strain. IncA mediates
328 homotypic fusion of inclusion membranes and loss of IncA results in the accumulation of
329 multiple unfused inclusions in cells infected at high MOIs (Hackstadt et al., 1999; Suchland et

330 al., 2000; Pannekoek et al., 2005) (Figure 5C). As expected, *incA* mutants which retain Cdu1
331 activity did not accumulate Ub at or near the periphery of inclusion membranes. In HeLa cells
332 coinfecting with both *cdu1::GII* and M923 ($\text{IncA}^{\text{R197}^*}$), *cdu1::GII* Cdu1^{C345A} and M923, or
333 *cdu1::GII* Cdu1^{K268E} and M923, only the *incA* null inclusions were protected from ubiquitination
334 (Figures 5C, 5D, and Supplemental Figure 6B). Based on these observations we conclude that
335 the acetylase activity of Cdu1 protects proteins *in cis* and that this activity is constrained to the
336 membrane of the pathogenic vacuole consistent with previous reports (Auer et al., 2020).

337
338 Recently, the Ct inclusion membrane protein GarD was identified as a Ct effector that shields Ct
339 from γ -interferon mediated ubiquitination by the IFN γ -inducible human ubiquitin E3 ligase
340 RNF213 (Walsh et al., 2022). Because Cdu1 also protects the Ct inclusion from ubiquitination,
341 we tested if Cdu1 also plays a role in protecting Ct from IFN γ -induced cell immunity. A549 cells
342 were pretreated with IFN γ (100 U/mL) and infected with WT Ct, *cdu1::GII*, or *garD::GII* strains.
343 Infections with a *garD::GII* strain led to an approximate 90% decrease in the number of
344 inclusions formed relative to infections with its parental WT Ct strain (Figure 5E) while infections
345 with a *cdu1::GII* or its parental WT Ct strain showed a modest reduction in inclusion formation
346 (approximately 26% and 12% respectively) (Figure 5E). These results suggest that Cdu1 likely
347 does not play a role in protecting Ct from IFN γ -mediated cellular immunity.

348
349 We also tested whether RNF213 localizes to inclusions that lack Cdu1, as observed in IFN γ -
350 primed A549 cells infected with *garD::GII* strains (Walsh et al., 2022). RNF213 did not localize
351 to Ct inclusions when cells were infected with either WT Ct or *cdu1::GII* strains, regardless of
352 whether or not the A549 cells were treated with IFN γ (Figures 5F and 5G). In contrast, RNF213
353 localized to approximately 37% of inclusions in cells infected with *garD::GII* mutants of unprimed

354 A549 cells, and 81% in IFN γ treated cells (Figures 5F and 5G). Based on these results, we
355 conclude that Cdu1 does not play a role in protecting Ct from IFN γ -induced antimicrobial activity.

356

357 **Cdu1 is required for F-actin assembly and Golgi ministack repositioning around the Ct**
358 **inclusion, and for MYPT1 recruitment to Ct inclusions**

359 InaC is required for Ct to assemble F-actin scaffolds and to reposition Golgi mini stacks
360 around the periphery of the inclusion membrane (Kokes et al., 2015; Wesolowski et al., 2017;
361 Haines et al., 2021). Because Cdu1 regulates InaC levels, we predicted that *cdu1* mutants
362 would phenocopy *inaC* mutants. We quantified the number of inclusions surrounded by F-actin
363 cages at 40 hpi. In cells infected with WT L2 (parental strain of M407 (*inaC* null), Nguyen and
364 Valdivia., 2012; Kokes et al., 2015), approximately 25% of inclusions were surrounded by F-
365 actin, consistent with previous observations (Chin et al., 2012; Kokes et al., 2015) (Figures 6A
366 and 6B, and Supplemental Figure 7). The number of inclusions surrounded by F-actin
367 decreased to approximately 7% in cells infected with an *inaC* null strain (M407) and increased
368 to approximately 49% in HeLa cells infected with an *inaC* null strain (M407) complemented with
369 wild type InaC (Figures 6A and 6B, and Supplemental Figure 7). Cells infected with *cdu1::GII*
370 mutants transformed with an empty plasmid or expressing Cdu1^{C345A}-Flag (DUB- Act-) and
371 Cdu1^{K268E}-Flag (Act-) resulted in approximately 8%, 13%, and 10% of of F-actin positive
372 inclusions respectively (Figures 6A and 6B, and Supplemental Figure 7). In contrast, cells
373 infected with *cdu1::GII* mutants expressing Cdu1-Flag and Cdu1^{I225A}-Flag (DUB-) led to a
374 marked increase in F-actin inclusions (approximately 52% and 46% respectively) (Figures 6A
375 and 6B, and Supplemental Figure 7). From these observations we conclude that the acetylase
376 activity of Cdu1 is required for Ct to promote assembly of F-actin around the Ct inclusion likely
377 through the stabilization of InaC.

378

379 We next quantified Golgi dispersal in infected HeLa cells at 24 hpi, a process that is also
380 dependent on InaC (Kokes et al., 2015; Wesolowski et al., 2017). In HeLa cells infected with an
381 *inaC* null strain (M407) Golgi dispersal was limited to approximately 26% of the Ct inclusion
382 perimeter. In contrast, cells infected with either its parental WT L2 or with an *inaC* null strain
383 (M407) complemented with wild type InaC, the Golgi is dispersed around 45% of the inclusion
384 perimeter (Figures 6C and 6D, and Supplemental Figure 8). Similarly, Golgi dispersal around
385 inclusions during infection with WT L2 and in *cdu1::GII* mutants expressing wild type Cdu1-Flag
386 or Cdu1^{I225A}-Flag (DUB-) was approximately 43%, 41%, and 43% respectively (Figures 6C and
387 6D, and Supplemental Figure 8). In HeLa cells infected with *cdu1::GII* and *cdu1::GII* strains
388 expressing Cdu1^{C345A}-Flag (DUB- Act-), and Cdu1^{K268E}-Flag (Act-), Golgi repositioning was
389 restricted to approximately 24%, 23%, and 23% of inclusion perimeters respectively (Figures 6C
390 and 6D, and Supplemental Figure 8). These results confirm that both InaC and Cdu1 are
391 required for efficient repositioning of the Golgi around the Ct inclusion as previously reported
392 (Kokes et al., 2015; Wesolowski et al., 2017; Pruneda et al., 2018; Auer et al., 2020) and that
393 this process is independent of Cdu1's DUB activity but requires its acetylase activity. Moreover,
394 our results suggest that Cdu1 promotes Golgi repositioning by protecting InaC-mediated
395 redistribution of the Golgi around the Ct inclusion.

396

397 CTL0480 promotes recruitment of the myosin phosphatase subunit MYPT1 to the inclusion
398 membrane where it regulates the extrusion of intact inclusions from host cells (Lutter et al.,
399 2013; Shaw et al., 2018). Consistent with the gradual loss of CTL0480 from inclusions in cells
400 infected with the *cdu1::GII* strain starting at 36 hpi (Figures 3E and Supplemental Figure 5) we
401 also observed a complete loss of MYPT1 recruitment to inclusions by 48 hpi (Figures 6E and
402 6F).

403

404 **Cdu1, InaC, IpaM, and CTL0480 are required for optimal extrusion of Ct from host cells**

405 In the absence of Cdu1, the levels of InaC, CTL0480, and IpaM decreased late in infection (36

406 hpi and 48 hpi, Figures 3 and 4) suggesting that a prominent role of Cdu1 is to protect these

407 Incs from degradation late in infection. At the end of its developmental cycle, *Chlamydia* exits

408 host cells by promoting cellular lysis or by extrusion of intact inclusions (Hybiske and Stephens.,

409 2007). Ct host cell exit by extrusion is an active process requiring a remodeling of the actin

410 cytoskeleton and the function of Inc proteins (Hybiske and Stephens., 2007; Chin et al., 2012;

411 Lutter et al., 2013; Shaw et al., 2018; Nguyen et al., 2018). CTL0480 recruits MYPT1 (an

412 inhibitor of Myosin II motor complexes) to the inclusion membrane which prevents premature

413 extrusion of Ct inclusions and loss of CTL0480 leads to increased rates of extrusion by Ct from

414 infected HeLa cells (Lutter et al., 2013; Shaw et al., 2018) (Figure 7). Actin polymerization is

415 also required for Ct extrusion (Hybiske and Stephens., 2007; Chin et al., 2012) suggesting that

416 InaC dependent recruitment of F-actin to the inclusion may also contribute to optimal Ct

417 extrusion. IpaM localizes to microdomains in the inclusion membrane that are proposed to

418 function as foci for extrusion (Nguyen et al., 2018). Based on these observations, we postulated

419 that Cdu1-mediated protection of CTL0480, InaC, and IpaM regulates the extrusion of Ct

420 inclusions. We quantified the number of extrusions released from infected HeLa cells at 52 hpi

421 and observed a 60% reduction in the number of extrusions in HeLa cells infected with the

422 *cdu1::GII* strain relative to cells infected with WT L2 (Figures 7A and 7B). Complementation of

423 *cdu1::GII* with either wild type Cdu1-Flag or Cdu1^{I225A}-Flag (DUB-) restored extrusion

424 production to near wild type levels. In contrast, HeLa cells infected with *cdu1::GII* mutants

425 expressing Cdu1^{K268E}-Flag (Act-), or *inaC* (*inaC::GII*, Wesolowski et al., 2017) and *ipaM*

426 (*ipaM::GII*, Meier et al., 2020) null strains led to a 42%, 75%, and 58% reduction in extrusion

427 production respectively (Figures 7A and 7B). The decrease in the number of extruded inclusions

428 by these strains was not attributed to defects in inclusion biogenesis as they produced a

429 comparable number of inclusions at 48 hpi relative to cells infected with WT L2 (Supplemental
430 Figure 9). Consequently, we infer that InaC, IpaM, and Cdu1 collectively contribute to the
431 promotion of optimal extrusion of Ct inclusions from host cells, with Cdu1 playing a central
432 regulatory role by protecting these effectors from degradation.

433

434 In contrast, infection of HeLa cells with a *ct/0480::GII* mutant strain led to an increase in the
435 number of extruded inclusions as previously observed (Shaw et al., 2018) (Figures 7A and 7B).
436 Therefore, even though the Cdu1-mediated protection of InaC and IpaM is important for the
437 extrusion of inclusions and *cdu1* mutants phenocopy the loss of InaC and IpaM, the phenotypic
438 similarities do not extend to the increased number of extruded inclusions observed in cells
439 infected with the *ct/0480::GII* mutant strain (Figures 7A and 7B). We infer from these
440 observations that functions for both InaC and IpaM in the extrusion of inclusions are epistatic to
441 CTL0480. Extruded inclusions produced during infection of HeLa cells also varied in size with
442 an average diameter of 40 μm (Figures 7A and 7C). Interestingly, the loss of IpaM and over
443 expression of Cdu1-Flag and Cdu1^{I225A}-Flag (DUB-) shifted the size distribution of extrusions
444 toward larger extrusions (Figures 7A and 7C) suggesting that Ct regulates the size of extruded
445 inclusions through Cdu1.

446

447 **Discussion**

448 Several *Chlamydia* Inc proteins regulate interactions between the pathogenic vacuole and the
449 host cytoskeleton, organelles, and vesicular trafficking pathways. These Inc proteins also
450 modulate host cell death programs and promote *Chlamydia* exit from host cells (reviewed in
451 Bugalhão and Mota., 2019). Given the central roles that Incs play in promoting *Chlamydia*
452 intracellular infection, it is not surprising that they are targeted for inactivation by host cellular
453 defenses. In response, *Chlamydia* has evolved mechanisms to protect Incs. In this study we

454 show that the acetylase activity of the effector Cdu1 protects itself and three Inc proteins; InaC,
455 IpaM, and CTL0480, from ubiquitination and degradation (Figure 8). Interestingly, all three Inc
456 proteins play prominent roles in regulating the extrusion of inclusions from host cells (Figure 7).
457 Observations that the encapsulation of *Chlamydia* within an extruded inclusion enhances
458 survival of *Chlamydia* within macrophages (Zuck et al., 2017) together with the broad
459 conservation of extrusion as an exit strategy among *Chlamydia* (Zuck et al., 2016) suggests that
460 this mechanism is important for *Chlamydia* pathogenesis. Notably, a *cdu1* mutant strain
461 (*cdu1::Tn*, Fischer et al., 2017) displays reduced bacterial loads in a murine model of upper
462 genital tract infections (Fischer et al., 2017). While neither this strain nor our *cdu1::GII* mutant
463 strain shows evident growth impairments during infection of Hela cells (data not shown), the
464 observed reduction in bacterial load in the absence of Cdu1 in animal models of infection could
465 potentially stem from defects in extrusion production or from perturbations in Cdu1-dependent
466 regulation of extrusion size. Thus, targeting Inc proteins that regulate extrusion for Ub-mediated
467 destruction may be advantageous for the host. For instance, targeting InaC for degradation
468 would limit F-actin dependent extrusions (Hybiske and Stephens., 2013; Chin et al., 2012) and
469 InaC-dependent microtubule scaffolds around the inclusion (Wesolowski et al., 2017; Haines et
470 al., 2021). CTL0480 functions as an inhibitor of extrusions through its role in modulating the
471 activity of myosin light chain 2 (MLC₂) (Lutter et al., 2013; Shaw et al., 2018). IpaM localizes to
472 specialized microdomains in the inclusion membrane which are also sites of enrichment for over
473 9 inclusion membrane proteins including Ctl0480 and MrcA, both of which are required for
474 *Chlamydia* extrusion (Mital et al., 2010; Lutter et al., 2013; Nguyen et al., 2018). We also find
475 that the loss of IpaM shifted the size distribution of extrusions towards larger inclusions (Figure
476 7). We speculate that heterogeneity in the size of extrusions might facilitate uptake of some
477 extrusions by innate immune cells at infected mucosal sites to promote *Chlamydia* LGV
478 dissemination to distal sites in the genital tract and avoid clearance of *Chlamydia* by other
479 immune cells (Zuck et al., 2017).

480

481 Effectors that modulate the activity of other translocated effectors are referred to as
482 “metaeffectors”, a term coined by Kubori and colleagues after observing that the *L. pneumophila*
483 effector LubX which functions as an E3 ligase, ubiquitinates the translocated effector SidH
484 leading to its degradation (Kubori et al., 2010). Several other effector-metoeffector interactions
485 have been described in *L. pneumophila*, *Salmonella enterica*, and *Brucella abortus* which
486 regulate the activity of other effectors either directly or indirectly by modifying the same host
487 target or cellular process (Kubori et al., 2010; Neunuebel et al., 2011; Jeong et al., 2015;
488 Urbanus et al., 2016; Smith et al., 2020; Iyer and Das., 2021). In this context we propose that
489 Cdu1 functions as a metoeffector in Ct to protect multiple effectors. We also observed that Cdu1
490 interactions with InaC, IpaM, and CTL0480 likely occur independently from each other and that
491 the kinetics of degradation in the absence of Cdu1 varies for each Inc (Figure 3).

492

493 Our findings indicate that the DUB activity of Cdu1 was not required to protect InaC, IpaM, and
494 CTL0480 from ubiquitination. Instead we find that Cdu1’s lysine acetylase activity is required to
495 protect these Inc proteins and Cdu1 itself from ubiquitination. Indeed, we found that all three
496 Incs and Cdu1 are acetylated at lysines in infected cells. However, we were unable to determine
497 if lysine acetylation in all four proteins was dependent on Cdu1’s Act activity or if these PTMs
498 are protective. Why the DUB activity of Cdu1 is unable to compensate for loss of its Act activity
499 remains unknown. It is possible that Cdu1, like other DUBs, is regulated by PTMs (Komander et
500 al., 2009a). For instance, phosphorylation of human CYLD inhibits its DUB activity towards
501 TRAF2 while phosphorylation of human USP8 inhibits its DUB activity toward EGFR (Reiley et
502 al., 2005; Mizuno et al., 2007). Mass spectrometry analysis of immunoprecipitated Flag tagged
503 Cdu1 expressed in Ct revealed that Cdu1 is phosphorylated at multiple serine and threonine
504 residues (Figure 4H) as previously suggested (Zadora et al., 2019). We identified three

505 PX(S/T)P MAPK phosphorylation consensus sequence motifs in the proline rich domain (PRD)
506 of Cdu1, suggesting that MAPKs may regulate the DUB activity of Cdu1.
507
508 Cdu1 homologs are found in multiple *Chlamydia* species including *C. trachomatis*, *C.*
509 *muridarum*, *C. suis*, *C. psitacci*, *C. abortus*, *C. caviae*, and *C. felis* but is notably absent in the
510 genomes of *C. pneumoniae* and *C. pecorum*. The acquisition of a second deubiquitinase
511 paralog (Cdu2) has also occurred in *C. trachomatis*, *C. muridarum*, and *C. suis*. In the genomes
512 of all three species, *cdu2* resides directly adjacent to *cdu1*; an arrangement that presumptively
513 arose from a gene duplication event. Cdu2 is a dedicated ULP with deubiquitinating and
514 deneddylating activities (Misaghi et al., 2006; Pruneda et al., 2016). New evidence suggest that
515 both paralogues might not be functionally redundant. The crystal structure of Cdu2 has revealed
516 differences in residues involved in substrate recognition between Cdu1 and Cdu2 and that each
517 paralog might recognize polyUb chains differently (Hausman et al., 2020). The processivity
518 rates for removal of terminal Ub from polyUb chains also differs between both isopeptidases
519 with Cdu2 exhibiting limited trimming of polyUb as compared to Cdu1 (Hausman et al., 2020).
520 Moreover, Cdu2 lacks the proline rich domain found in Cdu1 which might be important for
521 regulation of Cdu1 enzymatic activity. The presence of Cdu2 might also explain the low
522 incidence of human and Ct proteins that were differentially ubiquitinated in the absence of Cdu1
523 (Figure 1). Whereas several *Chlamydia* species have acquired either one or two deubiquitinase
524 paralogs, both *C. pneumoniae* and *C. pecorum* have not. Instead, both species have acquired
525 an unrelated deubiquitinase (*ChlaOTU*) belonging to the OTU family of proteases (Makarova et
526 al., 2000; Furtado et al., 2013). Curiously, *ChlaOTU* is also found in *C. psitacci*, *C. abortus*, *C.*
527 *caviae*, and *C. felis* all of which encode only Cdu1 and is absent in *C. trachomatis*, *C.*
528 *muridarum*, and *C. suis*, all of which encode Cdu1 and Cdu2. It is noteworthy that *Chlamydia*
529 species have independently acquired deubiquitinases multiple times (Cdu1, Cdu2, *ChlaOTU*)

530 and that some of these deubiquitinases have evolved into moonlighting enzymes reflecting the
531 diverse strategies adopted by pathogenic *Chlamydia* as they adapt to their particular niche.

532

533 **Acknowledgements**

534 We thank LifeSensors and the Duke Proteomics and Metabolomics Shared Resource Center for
535 their proteomics services. We thank the Duke Light Microscopy Core Facility for microscopy
536 services. We also thank Marcela Kokes for generating the IncA-Flag constructs used in this
537 study. This work was supported by NIH grants GM142486 to J.N.P, AI103197 to J.C, AI140019
538 to R.J.B and AI134891 to R.H.V.

539

540 **Author contributions**

541 R.J.B and R.H.V designed the study. R.J.B wrote the manuscript with input from all listed
542 authors. L.D generated the *cdu1*::GII strain. M.K verified generation of the *cdu1*::GII mutant
543 strain and showed interaction of Cdu1-GFP variants with InaC, IpaM, and CTL0480 in
544 transfected HEK cells. R.K.D and S.C.W contributed equally to this work and quantified
545 inclusion production and RNF213 localization in unprimed and IFN γ -primed A549 cells. R.J.B
546 performed all other experiments. J.C, B.S.S, and J.N.P shared reagents. R.J.B and R.H.V
547 proofed the manuscript.

548

549 **Declaration of interests**

550 R.H.V is a founder of Bloom Sciences (San Diego, CA), which is a microbiome therapeutics
551 company. Findings reported in this study are unrelated to the work being performed with Bloom
552 Sciences.

553

554 **Material and Methods**

555 **Key Resource Table**

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
See S. Table 9		
Bacterial and virus strains		
<i>Chlamydia trachomatis</i> LGV biovar L2 434 Bu (L2)	Richard Stephens (UC Berkeley)	N/A
L2 pBOMB-MCI (Parent: LGV L2 434 Bu)	This paper	N/A
L2 pBOMB-MCI_CTL0480-3XFlag (Parent: LGV L2 434 Bu)	This paper	N/A
L2 pBOMB-MCI_IpaM-3XFlag (Parent: LGV L2 434 Bu)	This paper	N/A
L2 pBOMB-MCI_Cdu1-3XFlag (Parent: LGV L2 434 Bu)	This paper	N/A
L2 pBOMB-MCI_Cdu1 ^{C345A} -3XFlag (Parent: LGV L2 434 Bu)	This paper	N/A
L2 pBOMB-MCI_Cdu1 ^{K268E} -3XFlag (Parent: LGV L2 434 Bu)	This paper	N/A
L2 <i>cdu1::GII aadA</i> (Parent: LGV L2 434 Bu)	This paper	N/A
L2 <i>cdu1::GII aadA</i> pBOMB-MCI (Parent: L2 <i>cdu1::GII aadA</i>)	This paper	N/A
L2 <i>cdu1::GII aadA</i> pBOMB-MCI_Cdu1-3XFlag (Parent: L2 <i>cdu1::GII aadA</i>)	This paper	N/A
L2 <i>cdu1::GII aadA</i> pBOMB-MCI_Cdu1 ^{C345A} -3XFlag (Parent: L2 <i>cdu1::GII aadA</i>)	This paper	N/A
L2 <i>cdu1::GII aadA</i> pBOMB-MCI_Cdu1 ^{I225A} -3XFlag (Parent: L2 <i>cdu1::GII aadA</i>)	This paper	N/A
L2 <i>cdu1::GII aadA</i> pBOMB-MCI_Cdu1 ^{K268E} -3XFlag (Parent: L2 <i>cdu1::GII aadA</i>)	This paper	N/A
L2 Rif-R (Parent: L2 434 Bu)	Nguyen et al., 2012	N/A
M407 (<i>inaC</i> C307T, <i>InaC</i> Q103*) (Parent: L2 Rif-R)	Kokes et al., 2015	N/A
M407 p2TK2 (Parent: M407)	Kokes et al., 2015	N/A
M407 p2TK2_InaC (Parent: M407)	Kokes et al., 2015	N/A
M407 p2TK2_InaC-3X Flag (Parent: M407)	This paper	N/A
<i>inaC::GII bla</i> (Parent: L2 434 Bu)	Wesolowski et al., 2017	N/A
<i>ipaM::GII cat</i> (Parent: L2 434 Bu)	Meier et al., 2022	N/A
<i>ctl0480::GII aadA</i> (Parent: L2 434 Bu)	Shaw et al., 2018	N/A
M923 (<i>incA</i> C589T, <i>IncA</i> R197*) (Parent: L2 Rif-R)	Kokes et al., 2015	N/A
M923 pBOMB-MCI (Parent: L2 M923)	Sixt et al., 2017	N/A
L2 434 Bu (Parent of L2 <i>garD::GII</i>)	Walsh et al., 2022	N/A

L2 <i>ctl0390::GII aadA (garD::GII)</i>	Walsh et al., 2022	N/A
Biological samples		
N/A		
Chemicals, peptides, and recombinant proteins		
PR-619 (DUB inhibitor)	Sigma-Aldrich	Cat# SML0430
MG132 (proteasome inhibitor)	Sigma-Aldrich	Cat# 474791
TUBE-1 (pUb affinity capture reagent)	LifeSensors	Cat# UM401M
Acti-stain™ 488 (Phalloidin 488)	Cytoskeleton Inc.	Cat# PHDG1
ChromoTek GFP-Trap® Agarose	Proteintech	Cat# gta
Protein A/G PLUS-Agarose	Santa Cruz Biotechnology	Cat# sc-2203
3xFLAG peptide	APExBIO	Cat# A6001
Recombinant human interferon gamma (IFN γ)	Millipore	Cat# IF005
LGV L2 434 Bu Cdu1 recombinant protein	Jonathan Pruneda (Oregon Health and Science University)	N/A
Critical commercial assays		
TargeTron™ gene knockout system	Sigma-Aldrich	Cat# TA0100
Deposited data		
<i>C. trachomatis</i> LGV L2 434 Bu proteome	NCBI	NCBI:txid47472
Homo sapiens (Human) proteome	UniProt	Proteome ID: UP000005640
TUBE-1 affinity capture proteomics data	LifeSensors	Supplemental Table 1
Experimental models: Cell lines		
HeLa cells	ATCC	Cat# CCL-2 RRID:CVCL_0030
Vero cells	ATCC	Cat# CCL-81 RRID:CVCL_0059
HEK 293T cells	ATCC	Cat# CRL-3216 RRID:CVCL_0063
A549 cells	ATCC	Cat# CCL-185 RRID:CVCL_0023
Experimental models: Organisms/strains		
<i>Chlamydia trachomatis</i> LGV L2 434 Bu	Richard Stephens (UC Berkeley)	N/A
Oligonucleotides		
See S. Table 10		
Recombinant DNA		
Plasmid: pDFTT3-aadA_Cdu1 635/636	This paper	N/A
Plasmid: pOPIN-GFP_Cdu1 FL (aa 1-401)	Jonathan Pruneda (Oregon Health and Science University)	N/A
Plasmid: pOPIN-GFP_Cdu1 TMD- (aa 71-401)	Jonathan Pruneda (Oregon Health and Science University)	N/A
Plasmid: pOPIN-GFP_Cdu1 CD- (aa 1-130)	Jonathan Pruneda (Oregon Health and Science University)	N/A

Plasmid: pCDNA-DEST53 (w/o GFP)_InaC (CT813)-3XFLAG	This paper	N/A
Plasmid: pcDNA3.1/nV5-DEST_IpaM	This paper	N/A
Plasmid: pcDNA3.1/nV5-DEST_CTL0480 p	This paper	N/A
Plasmid: pcDNA3.1/nV5-DEST_CpoS	This paper	N/A
Plasmid: pBOMB4-MCI_CTL0480-3X Flag	This paper	N/A
Plasmid: pBOMB4-MCI_IpaM-3X Flag	This paper	N/A
Plasmid: pBOMB4-MCI_Cdu1-3XFlag	This paper	N/A
Plasmid: pBOMB4-MCI_Cdu1 C345A-3XFlag	This paper	N/A
Plasmid: pBOMB4-MCI_Cdu1 I225A-3XFlag	This paper	N/A
Plasmid: pBOMB4-MCI_Cdu1 K263E-3XFlag	This paper	N/A
Plasmid: p2TK2_SW2_InaC-3XFlag	This paper	N/A
Software and algorithms		
Targetronics	Targetronics, LLC	www.targetrons.com
Proteome Discoverer 2.3	Thermo Fisher Scientific	https://www.thermofisher.com/us/en/home/industrial/mass-spectrometry/liquid-chromatography-mass-spectrometry-lc-ms/lc-ms-software/multi-omics-data-analysis/proteome-discoverer-software.html
Mascot software	Matrix Science	https://www.matrixscience.com
MaxQuant 1.6.2.3		https://www.maxquant.org
Scaffold PTM	Proteome Software	https://www.proteomesoftware.com/products/scaffold-ptm
VolcaNoseR	Goedhart, and Luijsterburg., 2020	https://huygens.science.uva.nl/VolcaNoseR/
Metascape	Zhou et al., 2019	https://metascape.org/gp/index.html#/main/step1
DAVID Bioinformatic Resources	Huang et al., 2009a., Huang et al., 2009b	https://david.ncifcrf.gov/tools.jsp
Image J	Schneider et al., 2012	https://imagej.nih.gov/ij/
NEBaseChanger	New England Biolabs	https://nebasechanger.neb.com
Prism 9	GraphPad	https://www.graphpad.com/updates/prism-900-release-notes
HCS Studio Cell Analysis Software	Thermo Fischer Scientific	Cat# CX51110
Other		
N/A		

556

557 **Resource Availability**

558 **Materials availability**

559 • All newly generated materials associated with this study will be freely available upon
560 request.

561

562 **Data and code availability**

563 • Unprocessed (raw) proteomics data received from LifeSensors can be found in
564 Supplemental Table 1.

565

566 • Original data used for microscopy and western blots in this study can be found at
567 Mendeley data repository (data.mendeley.com):

568
569 Bastidas, Robert; Kędzior, Mateusz; Davidson, Robert; Walsh, Stephen; Dolat, Lee; Sixt,
570 Barbara; Pruneda, Jonathan; Coers, Jörn; Valdivia, Raphael (2023), “The acetylase activity
571 of Cdu1 regulates bacterial exit from infected cells by protecting *Chlamydia* effectors from
572 degradation”, Mendeley Data, V1, doi: [10.17632/xt3nmkm375.1](https://doi.org/10.17632/xt3nmkm375.1)

573

574 • Any additional information required to reanalyze the data reported in this paper is
575 available upon request.

576

577 • This paper does not report original code.

578

579 **Experimental Model And Subject Details**

580 **Cell lines**

581 Vero (CCL-81; RRID:CVCL_0030), HeLa (CCL-2; RRID:CVCL_0059), HEK293T (CRL-3216;
582 RRID:CVCL_0063), and A549 (CCL-185; RRID:CVCL_0023) cells were purchased from ATCC
583 and cultured in High Glucose Dulbecco's Modified Eagle's Medium supplemented with L-
584 glutamine, sodium pyruvate (DMEM; Gibco) and 10% fetal bovine serum (FBS; Sigma-Aldrich).
585 Cells were grown at 37°C in a 5% CO₂ humidified incubator. Vero, Hela, and HEK293T cells
586 were derived from females while A549 cells were derived from a male. All four cell lines have
587 been authenticated by the Duke Cell Culture and DNA analysis facility.

588

589 ***Chlamydia* strains and propagation**

590 *Chlamydia* strains used in this study are listed in the Key Resources Table. Ct strains were
591 propagated in Vero cells and harvested by osmotic lysis at 48 hours post infection. Following
592 lysis extracts were sonicated and bacteria pelleted by centrifugation at 21,000 x g. Bacteria
593 were resuspended in SPG storage buffer (75g/L sucrose, 0.5 g/L KH₄HPO₄, 1.2 g/L Na₂HPO₄,
594 0.72 g/L glutamic acid, pH 7.5) and stored as single use aliquots at -80°C.

595

596 **Method Details**

597 ***Chlamydia* infections**

598 *Chlamydia* infections were synchronized by centrifugation (2,500 x g for 30 minutes at 10°C)
599 onto HeLa cell monolayers and incubated for the indicated times. Co-infections were performed
600 by infecting HeLa cell monolayers at a 1:1 ratio using MOIs of 2 for each co-infecting strain.

601

602 **Insertional mutagenesis of CTL0247 (*cdu1*)**

603 Primer sequences for TargeTron™ mediated mutagenesis of the LGV L2 434 Bu *cdu1*
604 (CTL0247) ORF were designed at the TARGETRONICS, LLC web portal
605 (www.targettrons.com). IBS1/2, EBS1/delta, and EBS2 primers (primer sequences are listed in

606 S. Table 10) were used in a PCR reaction to generate homing sequences for TargeTronTM
607 integration between nucleotides 635 and 636 of the *cdu1* ORF using a TargeTronTM gene
608 knockout system (Sigma-Aldrich; TA0100) according to the manufacturer instructions. Homing
609 sequences were gel purified, digested with HindIII and BsrGI, and ligated into HindIII and BsrGI
610 digested pDFTT3-*aadA* (Lowden et al., 2015). Ligations were transformed into *E. coli* DH5 α ,
611 clones isolated, and *cdu1* redirected pDFTT3-*aadA* plasmids identified by restriction digest and
612 verified by Sanger sequencing (Eton Bioscience) using a T7-promoter specific primer. The
613 resulting plasmid was transformed into a *C. trachomatis* LGV L2 434 Bu strain and
614 transformants selected with 150 μ g/mL spectinomycin and plaque purified as previously
615 described (Kędzior and Bastidas., 2019). Insertion of the GII *aadA* intron at the *cdu1* locus was
616 verified by PCR analysis (S. Figure1) using primers that amplify amplicons spanning the
617 *cdu1::GII* 5' (RBP409 and RBP436) and 3' (RBP468 and RBP118) junctions, the *cdu1* CDS
618 (RBP409 and RBP118), and the *aadA* CDS (RBP512 and RBP513). Primer sequences are
619 listed in S. Table 10. Loss of Cdu1 protein was verified by western blot and indirect
620 immunofluorescence analysis (S. Figures 2A and 2B).

621

622 **Analysis of *cdu1* and *cdu2* transcription by RT-PCR**

623 Confluent HeLa cell monolayers (2.9×10^6 cells/infection) were infected with wild type L2 434
624 Bu or L2 *cdu1::GII aadA* strains. At 24 hpi, total RNA was isolated with a Qiagen RNeasy kit
625 (Qiagen; 74004) according to the manufacturer instructions. Total RNA was treated twice with
626 DNase I (NEB; M0303S) and used for cDNA synthesis using a SuperScript IV Reverse
627 Transcriptase kit (Thermo Fisher Scientific; 18090010). cDNAs synthesized with and without
628 reverse transcriptase were used as templates for PCR analysis (S. Figure 2C) using primers
629 that amplify amplicons spanning the *cdu1* (CTL0247_F and CTL0247_R) and *cdu2* ORFs

630 (CTL0246_F and CTL0247_R), and the intergenic junction between the *cdu1* and *cdu2* ORFs
631 (CTL0246-0247_F and CTL0246-0247_R). Primer sequences can be found in the S. Table 10.

632

633 **TUBE1 based global ubiquitin profiling**

634 Confluent HeLa cell monolayers (5.04×10^6 cells/infection) were mock infected or separately
635 infected with WT LGV L2 434 Bu or a L2 *cdu1::GII aadA* strain at MOIs of 3. At 24 hpi cells were
636 collected and spun down ($700 \times g$ for 10 minutes), frozen at -80°C and shipped on dry ice to
637 LifeSensors (Malvern, PA) for quantitative TUBE1-based Mass Spectrometry Analysis. Cell
638 pellets from three independent biological replicates were sent to LifeSensors for analysis. Cell
639 were subsequently lysed in lysis buffer (50 mM Tris-HCL, pH 7.5, 150 mM NaCl, 2 mM EDTA,
640 1% NP-40, 10% glycerol, 1% Sodium Deoxycholate) supplemented with a protease inhibitor
641 cocktail, the DUB inhibitor PR-619 (Sigma-Aldrich; SML0430), and the proteasomal inhibitor
642 MG-132 (Sigma-Aldrich; 474791). Lysates were clarified by high-speed centrifugation ($14,000 \times$
643 g , 10 minutes, 4°C) and supernatants containing 5 mg of protein were equilibrated with
644 magnetic TUBE-1 (LifeSensors; UM401M) and incubated overnight at 4°C under rotation.
645 TUBEs were isolated with a magnetic stand and washed sequentially with PBST and TUBE
646 wash buffer. Poly-ubiquitinated and associated proteins were eluted with TUBE elution buffer.
647 Eluted supernatants were neutralized with neutralization buffer and loaded onto SDS-gels and
648 run until SDS buffer reached 0.5 cm into the gel. Gels were stained with Coomassie Blue and
649 lanes excised, reduced with TCEP, alkylated with iodoacetamide, and digested with Trypsin
650 (Trypsin Gold, Mass Spectrometry Grade) (Promega; V5280). Tryptic digests were analyzed
651 using a 150 min LC run on a Thermo Scientific™ Q Exactive HF Orbitrap™ LC-MS/MS system.
652 MS data was searched against the UniProt human database (UniProt; Proteome ID:
653 UP000005640) and the *Chlamydia trachomatis* L2 434 Bu reference database (NCBI:txid47472)
654 using MaxQuant 1.6.2.3 (<https://www.maxquant.org>). Proteins, peptides, and site identification

655 was set to a false discovery rate of 1%. N-terminal acetylation, Met oxidation, and diGly remnant
656 on lysine residues was also identified. All peptides and proteins identified can be found in S.
657 Table 1. The intensities (sum of all peptide MS peak areas for a protein or ubiquitinated peptide)
658 for each protein and ubiquitinated peptide across all three biological replicates were used to
659 determine mean intensities and to calculate *p*-values based on one-way student t-tests. Volcano
660 plots of mean intensities vs. *p*-values were generated with VolcaNoseR (Goedhart and
661 Lujsterburg., 2020) (<https://huygens.science.uva.nl/VolcaNoseR/>) and used to identify
662 significantly enriched proteins and ubiquitinated peptides. Data used to generate each Volcano
663 plot can be found in S. Table 2. Pathway enrichment analysis was performed with Metascape
664 (Zhou et al., 2019) (<https://metascape.org/gp/index.html#/main/step1>) and DAVID bioinformatic
665 resources (Huang et al., 2009a; Huang et al., 2009b) (<https://david.ncifcrf.gov/tools.jsp>).
666

667 **Inhibitors, antibodies, western blots, and densitometry analysis**

668 MG-132 (25 μ M) (Sigma-Aldrich; 474791) was added to infected cell monolayers 5 hours prior
669 to extract preparations. Recombinant Cdu1 protein (LGV L2 434 Bu, amino acids 71-401) was
670 generated as previously described (Pruneda et al., 2018) and kindly provided by Jonathan
671 Pruneda (Oregon Health and Science University, OR). Recombinant Cdu1 protein was used to
672 generate antibodies in immunized New Zealand White rabbits. Cdu1 antisera was pre-adsorbed
673 with crude cell extracts from HeLa cells infected with a *cdu1::GII aadA* strain. Pre-adsorbed
674 antisera was used for western blot analysis at a 1:500 dilution in a solution containing 5% BSA
675 supplemented with crude extracts from HeLa cells infected with a *cdu1::GII aadA* strain
676 (0.1mg/mL total protein). Antibodies, antibody dilutions, and antibody diluents used in this study
677 are listed in S. Table 9. For western blot analysis, lysates from infected HeLa cell monolayers
678 (2.4×10^6 cells) were prepared by incubating cell monolayers with boiling hot 1% SDS lysis
679 buffer (1% SDS, 100 mM NaCl, 50 mM Tris, pH 7.5). Lysates were collected, briefly sonicated,
680 and total protein concentration measured with a DCTM Protein Assay Kit (BIO-RAD; 5000111). 8

681 μ g (Slc1 and alpha Tubulin blots) and 25 μ g of total protein lysates (all other blots) were loaded
682 onto 4-15% Mini-PROTEAN and TGX Stain FreeTM Protein Gels (BIO-RAD; 4568084),
683 transferred to PVDF membranes (BIO-RAD; 1620177), blocked with 5% Milk/TBSt, and
684 incubated with primary antibodies overnight at 4°C. Protein signals were detected with Goat anti
685 mouse (H+L) IgG (ThermoFisher scientific; 31430) or Goat anti rabbit (H+L) IgG HRP
686 (ThermoFisher scientific; 31460) conjugated secondary antibodies (1:1000 in 5% Milk/TBSt) and
687 SuperSignal West Femto HRP substrate (ThermoFisher scientific; 34096). Antibody bound
688 membranes were imaged with a LI-COR Odyssey Fc Imager (LI-COR, Inc.). Varying amounts of
689 protein extracts were used to determine the linear range of detection for InaC, IpaM, and Slc1
690 antibodies prior to quantification of western blot images (data not shown). Protein bands were
691 quantified using western blot densitometry analysis with LI-COR Image Studio Software (LI-
692 COR, Inc.). InaC and IpaM densitometry measurements were normalized to corresponding Slc1
693 densitometry measurements.

694

695 **Immunofluorescence microscopy**

696 HeLa cells were grown on coverslips to 50% confluence (0.1×10^5 cells) and infected at MOIs of
697 0.6. At indicated times, infected cells were separately fixed with ice cold Methanol or with warm
698 PBS containing 4% formaldehyde for 20 minutes. After fixative removal, cells were washed with
699 PBS and formaldehyde fixed cells were incubated either in 5% BSA/PBS supplemented with
700 0.1% Triton X-100 or in 5% BSA/PBS supplemented with 0.05% Saponin for 30 minutes with
701 gentle rocking. Following washing with PBS, Methanol fixed cells were incubated with primary
702 antibodies diluted in 5% BSA/PBS and formaldehyde fixed cells were incubated with primary
703 antibodies diluted in 5% BSA/PBS supplemented with 0.1% Triton X-100 or 0.05% Saponin for
704 1 hour with gentle rocking. Dilutions for each antibody used can be found in S. Table 9.
705 Methanol fixed cells were washed with PBS and incubated with secondary antibodies diluted in

706 5% BSA/PBS and supplemented with Hoechst 33342 (2 µg/mL) (ThermoFisher Scientific;
707 H3570). Formaldehyde fixed cells were washed and incubated with 5% BSA/PBS supplemented
708 with 0.1% Triton X-100 and Hoechst or 0.05% Saponin and Hoechst for 1 hour protected from
709 light and with gentle rocking. For detection of F-actin, Phalloidin conjugated to Alexa FluorTM
710 488 (1:5000) (Act-Stain 488 Phalloidin; Cytoskeleton Inc.; PHDG1) was added for the last 20
711 minutes of incubation with the secondary antibodies. Coverslips were transferred to glass slides,
712 mounted with 10 µL of Vectashield (Vector Labs; H-1000) and incubated over night at room
713 temperature prior to imaging. Secondary antibodies used were goat anti-mouse (H+L) IgG
714 (ThermoFisher scientific; A-11001 and A-21235) and goat anti-rabbit (H+L) IgG (ThermoFisher
715 scientific; A-11008 and A-21244) conjugated to Alexa FluorTM 488 and Alexa FluorTM 647. All of
716 the antibodies used for indirect immunofluorescence analysis were analyzed under all three
717 staining conditions (Methanol, Formaldehyde/Triton X-100, and Formaldehyde/Saponin).

718

719 Quantitative immunofluorescent microscopy for RNF213 was performed as previously described
720 (Walsh et. al., 2022). Briefly, A549 cells were grown on coverslips in 24-well plates to full
721 confluence (~2 x 10⁵ cells). Cells were infected with indicated *C. trachomatis* strains at an MOI
722 of 2. At 3 hours post-infection, all cells were given fresh DMEM supplemented with L-tryptophan
723 (100 µg/mL) with half of the wells given interferon-gamma (100U/mL; Millipore, IF005). At 24
724 hours post-infection, cells were fixed with cold, 4% PFA in PBS for 20 minutes. Cells were
725 permeabilized with ice-cold methanol for 1 minute and blocked in PBS containing 5% BSA and
726 2.2% glycine for 30 minutes. Antibody incubations and microscope slide mounting was
727 performed as described. Samples were blinded using tape and imaged on a Zeiss Axio
728 Observer.Z1 epifluorescent microscope. For each sample, at least 6 separate fields of view and
729 100 *Chlamydia* inclusions were captured, saved and further blinded using the ImageJ Blind
730 Analysis Tool plugin (<https://imagej.net/plugins/blind-analysis-tools>). Quantification of the

731 number of inclusions with RNF213 targeted to the inclusion membrane was performed using
732 ImageJ (Schneider et al., 2012). Targeted inclusions were scored as having the indicated
733 protein signal colocalize with >50% of the inclusion membrane signal (incA positive antibody
734 staining).

735

736 Representative images were acquired with an inverted confocal laser scanning microscope
737 (Zeiss 880) equipped with an Airyscan detector (Hamamatsu) and with diode (405 nm), argon
738 ion (488 nm), double solid-state (561 nm) and helium-neon (633) lasers. Images were acquired
739 with a 63x C-Apochromatic NA 1.2 oil-objective (Zeiss). Images acquired in Airyscan mode were
740 deconvoluted using automatic Airyscan processing in Zen software (Zeiss). Image acquisition
741 was performed at the Light Microscopy Core Facility at Duke University. Images used for
742 quantification were captured in an inverted microscope (Ti2-Nikon instruments) equipped with
743 an ORCA Flash 4.0 V3 sCMOS camera (Hamamatsu) and a SOLA solid-state white light
744 illuminator (Lumencro). Images were acquired using a 60x Plan Apochromatic NA 1.40 oil
745 objective. All images were opened with ImageJ (Schneider et al., 2012) and only linear
746 adjustments were made to fluorescence intensity for the entire image. Images were exported as
747 TIFFs and compiled with Adobe suite software (Illustrator).

748

749 **Vector construction and *C. trachomatis* transformation**

750 *Constructs used in co-transfection experiments:* Mammalian vectors expressing Cdu1-GFP
751 constructs were kindly provided by Jonathan Pruneda (Oregon Health and Science University,
752 OR). Briefly, geneblocks encoding full length Cdu1 (LGV L2 434 Bu, CTL0247) (amino acids 1-
753 401), Cdu1 lacking its transmembrane domain (amino acids 71-401), and Cdu1 lacking its
754 catalytic domain (amino acids 1-130) were generated and inserted into the pOPIN-GFP vector
755 (Berrow et al., 2007) by In-Fusion™ cloning (Takara Bio; 638947), resulting in Cdu1 constructs
756 with a C-terminal eGFP-His tag preceded by a 3C protease cleavage site. The Flag-InaC

757 mammalian expression vector was derived from a GatewayTM entry clone containing the C.
758 *trachomatis* Serovar D/UW-3/CX CT813 (*inaC*) ORF (amino acids 41-264) obtained from a C.
759 *trachomatis* ORFeome library (Roan et al., 2006). The entry vector was used as a donor
760 plasmid for GatewayTM based transfer into a modified pcDNATM DEST53 (ThermoFisher
761 Scientific; 12288015) vector in which the cycle 3 *GFP* ORF was removed. A NEB Q5[®]-Site
762 Directed Mutagenesis Kit (New England Biolabs; E0554S) was used to introduce a 3X Flag
763 epitope tag at the N-terminus of the CT813 ORF and a stop codon at the end of the CT813
764 ORF. L2 *ipaM* (CTL0476), L2 CTL0480, and L2 *cpoS* (CTL0481) ORFs were PCR amplified
765 from cell lysates derived from Vero cells infected with wild type L2 LGV 434 Bu with primers
766 containing attB sequences (primers *ipaM* forward, *ipaM* reverse, CTL0480 forward, CTL0480
767 reverse, *cpoS* forward, and *cpoS* reverse). Primer sequences can be found in the S. Table 10.
768 PCR amplicons were used as donors for GatewayTM BP ClonaseTM based transfers into the
769 donor vector pDONRTM221 (ThermoFisher Scientific; 12536017) to generate entry plasmids.
770 Entry plasmids were used to transfer *ipaM*, CTL0480, and *cpoS* into the GatewayTM destination
771 vector pcDNATM3.1/nV5-DEST (ThermoFisher Scientific; 12290010) by GatewayTM LR
772 ClonaseTM based reactions. The resulting mammalian expression vectors express IpaM,
773 CTL0480, and CpoS with V5-epitopes fused to their N-terminus.
774
775 *pBOMB4-MCI* based plasmids. CTL0480 and *ipaM* ORFs were amplified by PCR from cell
776 extracts derived from Vero cells infected with wild type LGV L2 434 Bu. The CTL0480 ORF, 149
777 b.p of upstream sequence, and a 3X FLAG epitope was amplified by PCR using primers
778 RBP628 and RBP629. The CTL0476 (*ipaM*) ORF, 400 b.p of upstream sequence, and a 3X
779 FLAG epitope was amplified with primers RBP623 and RBP624. CTL0480 and *ipaM* amplicons
780 were digested with Not1 and Pst1 and cloned into Not1 and Pst1 digested *pBOMB4-MCI*
781 (Bauler and Hackstadt., 2014) to generate *pBOMB4-MCI_CTL0480-3X Flag* and *pBOMB4-*
782 *MCI_IpaM-3X Flag* plasmids respectively. *pBOMB4-MCI_Cdu1-3XFlag* plasmids were

783 generated by PCR amplification of 175 b.p of genomic sequence directly upstream of the L2
784 434 Bu CTL0247 (*cdv1*) ORF and the entire *cdv1* ORF tagged with a C-terminal 3X Flag
785 epitope tag (primers RBP460 and RBP461). PCR amplicons were generated from gradient
786 purified LGV L2 434 Bu EBs and cloned into a pCR™-Blunt II TOPO® vector using a Zero
787 Blunt™ TOPO™ PCR cloning Kit (ThermoFisher Scientific; K2800J10) according to the
788 manufacturer instructions. Cdv1 catalytic variants were generated with a NEB Q5®-Site Directed
789 Mutagenesis Kit (New England Biolabs; E0554S) using the *cdv1p-cdv1-3X* Flag construct
790 cloned into pCR™-Blunt II TOPO® as a template and following the manufacturer instructions.
791 Primers for introducing base pair changes were designed on the NEBaseChanger website
792 (<https://nebasechanger.neb.com>). The Cdv1^{C345A} variant was generated by changing the *TGC*
793 codon located at positions 1033-1035 in the *cdv1* ORF to *GCT* (primers RBP525 and RBP526).
794 The Cdv1^{I225A} variant was generated by substituting the *ATC* codon located at positions 673-
795 675 for *GCT* (primers RBP527 and RBP528). The Cdv1^{K268E} variant was generated by
796 introducing an *A802G* base pair substitution (primers RBP529 and RBP530). Wild type *cdv1p-*
797 *cdv1-3XFLAG* and all three *cdv1* variants were digested with *Not1* and *Pst1* and ligated into
798 *Not1* and *Pst1* digested pBOMB4-MCI (Bauler and Hackstadt., 2014). Primer sequences can be
799 found in the S. Table 10.
800
801 *p2TK2_SW2-inaC-3XFlag*. The CTL0184 (*inaC*) ORF and 250 b.p of upstream sequence was
802 amplified by PCR from cell extracts derived from Vero cells infected with L2 434 Bu and cloned
803 into the p2TK2_SW2 vector (Agaisse and Derré., 2013). A NEB Q5®-Site Directed Mutagenesis
804 Kit (New England Biolabs; E0554S) was used to insert a 3X FLAG epitope sequence at the C-
805 terminus (stop codon removed) of the CTL0184 ORF to generate the p2TK2_SW2-InaC-3XFlag
806 plasmid.
807

808 pBOMB4-MCI based plasmids and p2TK2_SW2-InaC-3X Flag plasmids were transformed into
809 corresponding *Chlamydia* strains, and transformants were selected with 10 U/mL Penicillin G
810 and plaque purified as previously described (Kędzior and Bastidas., 2019). All primer
811 sequences and plasmids generated in this study are listed in S. Table 10 and Key Resources
812 Table.

813

814 **Subcellular fractionation**

815 HeLa cells (2.16×10^7 cells/strain) seeded in six well plates were mock infected or infected with
816 *Chlamydia* L2 434 Bu strains. At indicated time points cells were washed with ice-cold PBS,
817 collected in ice-cold PBS with a cell scraper, and transferred to 15 mL conical tubes. Cell
818 suspensions were centrifuged at 500 x g for 5 minutes at 4°C and cell pellets were resuspended
819 in 400 μ L of ice-cold subcellular fractionation buffer (20 mM HEPES (pH 7.4), 10 mM KCl, 2mM
820 MgCl₂, 1mM EDTA, 1mM EGTA) supplemented with 1mM DTT and a 1x cOmplete Mini-EDTA
821 free protease inhibitor cocktail (Sigma-Aldrich; 11836170001). Cells were incubated on ice for
822 20 minutes and lysed with 30 strokes of a Dounce homogenizer. Cell lysates were sequentially
823 centrifuged twice at 720 x g for 5 minutes at 4°C to remove intact nuclei. Supernatants were
824 centrifuged at 10,000 x g for 5 minutes at 4°C and the heavy membrane (inclusion) fraction was
825 recovered and resuspended in IP lysis buffer (25 mM Tris-HCl, 150 mM NaCl, 1% NP-40, 5%
826 Glycerol) supplemented with 1mM PMSF and a 1x cOmplete Mini-EDTA free protease inhibitor
827 cocktail (Sigma-Aldrich; 11836170001).

828

829 **Immunoprecipitations (IPs)**

830 *Transfections and GFP-immunoprecipitations:* HEK 293T cell monolayers (1.32×10^7
831 cells/transfection) seeded in 10 cm cell culture dishes pre coated with poly-L-Lysine (Sigma-
832 Aldrich; P4707) were grown to 50% confluence and transfected with 10 μ g of each plasmid used

833 per co-transfection in a 1.5 to 1 ratio of jetOPTIMUS® (Polyplus; 101000051) transfection
834 reagent to total plasmid DNA according to the manufacturer instructions. At 24 hpi, transfected
835 cells were lysed in IP lysis buffer (described above) supplemented with 1mM PMSF and 1x
836 cOmplete Mini-EDTA free protease inhibitor cocktail (Sigma-Aldrich; 11836170001). Lysates
837 were transferred to Eppendorf tubes, sonicated, and cleared by centrifugation (21,000 x g, 15
838 minutes, 4°C). Supernatants containing 2 mg of total protein were incubated with magnetic
839 GFP-Trap® agarose (Proteintech; gta) for 1 hour at 4°C with rotation. Beads were washed
840 according to manufacturer instructions and immunoprecipitated proteins eluted with 2X Laemmli
841 sample buffer.

842

843 *Flag immunoprecipitations:* Mock and infected HeLa cell monolayers (1.44×10^7 cells) grown in
844 six well plates were lysed in IP lysis buffer (described above) and transferred to Eppendorf
845 tubes. Lysates were sonicated and cleared by centrifugation (21,000 x g, 15 minutes, 4°C).
846 Supernatants containing 2 mg of total protein were pre-cleared by incubating with Protein A/G
847 PLUS-Agarose (Santa Cruz Biotechnology; sc-2203) for 30 minutes at 4°C followed by
848 sedimentation of agarose resins by centrifugation. Supernatants were incubated with M2-anti
849 Flag mouse mAb (1:400) (Sigma-Aldrich; F1804) overnight at 4°C with rotation followed by
850 incubation with Protein A/G PLUS-Agarose for 3 hours at 4°C with rotation. Agarose resins were
851 sedimented and washed according to manufacturer instructions and immunoprecipitated
852 proteins eluted with 50 µL of 100 µg/mL 3xFLAG peptides (APExBIO; A6001).

853

854 *Acetylated lysine immunoprecipitations.* Heavy membrane (inclusion) subcellular fractions
855 isolated from infected HeLa cells and containing 1 mg of total protein were pre-cleared by
856 incubating with Protein A/G PLUS-Agarose (Santa Cruz Biotechnology; sc-2203) for 30 minutes
857 at 4°C followed by sedimentation of agarose resins by centrifugation. Supernatants were

858 incubated with an anti-acetylated lysine rabbit antibody (Cell signaling; #9441) (1:100) overnight
859 at 4°C with rotation followed by incubation with Protein A/G PLUS-Agarose for 3 hours at 4°C
860 with rotation. Agarose resins were sedimented and washed according to manufacturer
861 instructions and immunoprecipitated proteins eluted with 50 µL of 2X Laemmli sample buffer.

862

863 Input (8 µg of total protein for Slc1 and alpha Tubulin blots, and 25 µg for all other blots) and
864 immunoprecipitates (GFP, Flag, proteins acetylated at lysines) were loaded onto 4-15% Mini-
865 PROTEAN and TGX Stain Free™ Protein Gels (BIO-RAD; 4568084), transferred to
866 PVDF membranes (BIO-RAD; 1620177), blocked with 5% Milk/TBSt, and incubated with
867 primary antibodies overnight at 4°C. Protein signals were detected with Goat anti mouse (H+L)
868 IgG (ThermoFisher scientific; 31430) or Goat anti rabbit (H+L) IgG HRP (ThermoFisher
869 scientific; 31460) conjugated secondary antibodies (1:1000 in 5% Milk/TBSt) and SuperSignal
870 West Femto HRP substrate (ThermoFisher scientific; 34096). Antibody bound membranes were
871 imaged with a LI-COR imaging system (LI-COR, Inc.).

872

873 **Identification Cdu1 lysine acetylation and phosphorylation sites by LC-MS/MS**

874 HeLa cell monolayers (8.64 x10⁷ cells/strain) grown in six well plates were infected with a wild
875 type L2 strain transformed with empty pBOMB4-MCI (Bauler and Hackstadt., 2014) plasmid or
876 with a wild type L2 strain transformed with a pBOMB4-MCI_cdu1-3X Flag plasmid. At 24 hpi
877 infected cells were lysed and Flag tagged Cdu1 was immunoprecipitated as described above.
878 Flag eluates from 3 independent biological replicates were sent to the Proteomics and
879 Metabolomics Shared Resource Facility at Duke University for quantitative LC-MS/MS analysis.
880 Samples were spiked with undigested casein, reduced with 10 mM dithiothreitol, and alkylated
881 with 20 mM iodoacetamide. Eluates were then supplemented with 1.2% phosphoric acid and S-
882 Trap (Protifi) binding buffer (90% Methanol, 100 mM TEAB). Proteins were trapped on the S-

883 Trap, digested with 20 ng/µL Trypsin (Trypsin Gold, Mass Spectrometry Grade) (Promega;
884 V5280), and eluted with 50 mM TEAB, 0.2% FA, and 50% ACN/0.2% FA. Samples were
885 lyophilized and resuspended in 1% TFA/2% acetonitrile containing 12.5 fmol/µL yeast alcohol
886 dehydrogenase. Quantitative LC/MS/MS was performed using a nanoAcquity UPLC system
887 (Waters Corp) coupled to Thermo Scientific™ Orbitrap™ Fusion Lumos high resolution accurate
888 mass tandem mass spectrometer via a nanoelectrospray ionization source. Data was analyzed
889 with Proteome Discoverer 2.3 (Thermo Fisher Scientific™) and MS/MS data searched against
890 the *Chlamydia trachomatis* LGV L2 434 Bu reference database (NCBI:txid47472). Cdu1-Flag
891 MS/MS data was analyzed with Mascot software (Matrix Science) using Trypsin/P specificity for
892 N-terminal acetylation, lysine acetylation, lysine Ub, and S/T/Y phosphorylation identification.
893 Analysis identified multiple acetylated and phosphorylated Cdu1 peptides and no Cdu1
894 ubiquitinated peptides. Data was viewed in Scaffold with Scaffold PTM (Scaffold Software).
895

896 **Interferon gamma sensitivity assays**

897 Ct sensitivities to interferon-gamma was assayed as previously described (Walsh et. al., 2022).
898 Briefly, A549 cells were seeded in black 96-well clear-bottomed plates (Corning). The next day,
899 cells were stimulated with 0 U/mL or 100 U/mL interferon gamma (IFNy; Millipore, IF005) in
900 DMEM supplemented with L-tryptophan (100 µg/mL). After 20 hours, cells were infected in
901 technical duplicate with indicated *Chlamydia* strains at an MOI of 2. At 24 hours post-infection,
902 plates were fixed with cold 4% PFA in PBS for 20 minutes. Samples were nuclear stained with
903 Hoechst in PBS for 10 minutes and sealed using an aluminum adhesive (Thermo). Inclusions
904 and host cell nuclei were imaged and quantified using the CellInsight CX5 High Content
905 Screening platform (Thermo; CX51110). Relative bacterial infectivities were calculated as the
906 number of inclusions divided by the total number of host nuclei for each sample. Interferon

907 sensitivity was calculated by normalizing the infectivities of each strain to it's "untreated" (-IFN γ)
908 control and expressed as a percentage.

909

910 **Isolation and imaging of *Chlamydia* inclusion extrusions**

911 HeLa cell monolayers (1.2×10^6 cells) were infected with Ct strains at MOIs of 0.8. At 48 hpi,
912 infected monolayers were imaged using an EVOS FL Cell Imaging System (ThermoFisher
913 Scientific) equipped with a 20x/0.4 NA objective and a CCD camera. Following imaging, growth
914 media was removed, cell monolayers washed with fresh growth media, and monolayers
915 incubated for an additional 4 hours at 37°C. At 52 hpi growth supernatants were collected and
916 transferred to Eppendorf tubes. Extrusions were enriched by centrifugation (1,500 rpm, 5 min)
917 and pellets (not always visible) containing extrusions were resuspended in 30 μ L of 4%
918 Formaldehyde/PBS supplemented with Hoechst (2 μ g/mL) and 0.2% Trypan Blue Solution
919 (Gibco, 0.4%). Extrusions were analyzed by plating 10 μ L drops on a glass slide (without
920 coverslips) and immediately imaged using an EVOS FL Cell Imaging System (ThermoFisher
921 Scientific) equipped with a 20x/0.4 NA objective and a CCD camera. Intact extrusions were
922 identified based on morphology, lacking nuclei, and being impermeable to trypan blue. Images
923 were opened in ImageJ (Schneider et al., 2012) and enumeration of inclusions and extrusions
924 was performed manually. The sizes of individual extrusions and inclusions were determined by
925 manually tracing a line around the perimeter of each extrusion and inclusion in ImageJ and
926 measuring perimeter length. All measurements were exported to Microsoft Excel. Data plots and
927 statistical analyses were done with Prism 9 (GraphPad) software. Datasets were analyzed for
928 significance using a paired student t-test.

929

930 **Image analysis**

931 Line scan profiles of Cdu1 co-localization with inclusion membrane proteins was performed with
932 ImageJ (Schneider et al., 2012) by tracing a line through regions of interest and plotting
933 fluorescent signal intensities with the Plot Profile function. Localization of CTL0480, recruitment
934 of MYPT1, and association of Ub with Ct inclusions was performed manually from maximum
935 projections in ImageJ. Assessment of F-actin recruitment to Ct inclusions was performed
936 manually in ImageJ by projecting four to five sections in order to capture the entire inclusion.
937 Redistribution of Golgi around the Ct inclusion was measured in ImageJ from maximum
938 projections. The perimeters of individual inclusions were manually traced, and lengths
939 measured. The length of dispersed Golgi was measured by tracing and measuring the length of
940 the GM130 signal directly adjacent to each inclusion. Dispersed Golgi length was divided by
941 inclusion perimeter length. All measurements were exported to Microsoft Excel for
942 quantification. Data plots and statistical analyses were done with Prism 9 (GraphPad).

943

944 **Quantification And Statistical Analysis**

945 Quantifications were generated from three independent experiments and measurements
946 derived from blinded images. Data plots and statistical analyses were done with Prism 9
947 (GraphPad) software. Datasets were analyzed for significance using a paired student t-test,
948 one-way ANOVAs with a Student-Newman-Keuls post hoc test, or two-way ANOVAS with a
949 Turkey post hoc test. Data graphs show means and error bars represent standard error. *p*-
950 values less than 0.05 are defined as statistically significant. The indicated statistical test for
951 each experiment can be found in the figure legends.

952

953 **References**

954 1. Abdelrahman YM, Belland RJ. 2005. The chlamydial developmental cycle. *FEMS Microbiol*
955 *Rev* **29**:949–959. doi:10.1016/j.femsre.2005.03.002

956

957 2. Agaisse H, Derré I. 2013. A *C. trachomatis* cloning vector and the generation of *C.*
958 *trachomatis* strains expressing fluorescent proteins under the control of a *C. trachomatis*
959 promoter. *PLoS ONE* **8**:e57090. doi:10.1371/journal.pone.0057090

960

961 3. Albrecht M, Sharma CM, Reinhardt R, Vogel J, Rudel T. 2010. Deep sequencing-based
962 discovery of the *Chlamydia trachomatis* transcriptome. *Nucleic Acids Res* **38**:868–877.
963 doi:10.1093/nar/gkp1032

964

965 4. Alzhanov DT, Weeks SK, Burnett JR, Rockey DD. 2009. Cytokinesis is blocked in
966 mammalian cells transfected with *Chlamydia trachomatis* gene CT223. *BMC Microbiol* **9**:2.
967 doi:10.1186/1471-2180-9-2

968

969 5. Auer D, Hügelschäffer SD, Fischer AB, Rudel T. 2020. The chlamydial deubiquitinase Cdu1
970 supports recruitment of Golgi vesicles to the inclusion. *Cell Microbiol* **22**:e13136.
971 doi:10.1111/cmi.13136

972

973 6. Bannantine JP, Griffiths RS, Viratyosin W, Brown WJ, Rockey DD. 2000. A secondary
974 structure motif predictive of protein localization to the chlamydial inclusion membrane. *Cell*
975 *Microbiol* **2**:35–47. doi:10.1046/j.1462-5822.2000.00029.x

976

977 7. Bauler LD, Hackstadt T. 2014. Expression and targeting of secreted proteins from
978 *Chlamydia trachomatis*. *J Bacteriol* **196**:1325–1334. doi:10.1128/JB.01290-13

979

980 8. Berrow NS, Alderton D, Sainsbury S, Nettleship J, Assenberg R, Rahman N, Stuart DL,
981 Owens RJ. 2007. A versatile ligation-independent cloning method suitable for high-

982 throughput expression screening applications. *Nucleic Acids Res* **35**:e45.

983 doi:10.1093/nar/gkm047

984

985 9. Bremm A, Freund SMV, Komander D. 2010. Lys11-linked ubiquitin chains adopt compact

986 conformations and are preferentially hydrolyzed by the deubiquitinase Cezanne. *Nat Struct*

987 *Mol Biol* **17**:939–947. doi:10.1038/nsmb.1873

988

989 10. Bugalhão JN, Mota LJ. 2019. The multiple functions of the numerous *Chlamydia trachomatis*

990 secreted proteins: the tip of the iceberg. *Microb Cell* **6**:414–449.

991 doi:10.15698/mic2019.09.691

992

993 11. Catic A, Misaghi S, Korbel GA, Ploegh HL. 2007. ElaD, a Deubiquitinating protease

994 expressed by *E. coli*. *PLoS ONE* **2**:e381. doi:10.1371/journal.pone.0000381

995

996 12. Chen C, Chen D, Sharma J, Cheng W, Zhong Y, Liu K, Jensen J, Shain R, Arulanandam B,

997 Zhong G. 2006. The hypothetical protein CT813 is localized in the *Chlamydia trachomatis*

998 inclusion membrane and is immunogenic in women urogenitally infected with *C.*

999 *trachomatis*. *Infect Immun* **74**:4826–4840. doi:10.1128/IAI.00081-06

1000

1001 13. Chen Y-S, Bastidas RJ, Saka HA, Carpenter VK, Richards KL, Plano GV, Valdivia RH.

1002 2014. The *Chlamydia trachomatis* type III secretion chaperone Slc1 engages multiple early

1003 effectors, including TepP, a tyrosine-phosphorylated protein required for the recruitment of

1004 Crkl-II to nascent inclusions and innate immune signaling. *PLoS Pathog* **10**:e1003954.

1005 doi:10.1371/journal.ppat.1003954

1006

1007 14. Chin E, Kirker K, Zuck M, James G, Hybiske K. 2012. Actin recruitment to the *Chlamydia*
1008 inclusion is spatiotemporally regulated by a mechanism that requires host and bacterial
1009 factors. *PLoS ONE* **7**:e46949. doi:10.1371/journal.pone.0046949

1010

1011 15. Claessen JHL, Witte MD, Yoder NC, Zhu AY, Spooner E, Ploegh HL. 2013. Catch-and-
1012 release probes applied to semi-intact cells reveal ubiquitin-specific protease expression in
1013 *Chlamydia trachomatis* infection. *Chembiochem* **14**:343–352. doi:10.1002/cbic.201200701

1014

1015 16. Datta AB, Hura GL, Wolberger C. 2009. The structure and conformation of Lys63-linked
1016 tetraubiquitin. *J Mol Biol* **392**:1117–1124. doi:10.1016/j.jmb.2009.07.090

1017

1018 17. Dehoux P, Flores R, Dauga C, Zhong G, Subtil A. 2011. Multi-genome identification and
1019 characterization of chlamydiae-specific type III secretion substrates: the Inc proteins. *BMC*
1020 *Genomics* **12**:109. doi:10.1186/1471-2164-12-109

1021

1022 18. Dumoux M, Menny A, Delacour D, Hayward RD. 2015. A *Chlamydia* effector recruits
1023 CEP170 to reprogram host microtubule organization. *J Cell Sci* **128**:3420–3434.
1024 doi:10.1242/jcs.169318

1025

1026 19. Eddins MJ, Varadan R, Fushman D, Pickart CM, Wolberger C. 2007. Crystal structure and
1027 solution NMR studies of Lys48-linked tetraubiquitin at neutral pH. *J Mol Biol* **367**:204–211.
1028 doi:10.1016/j.jmb.2006.12.065

1029

1030 20. Fischer A, Harrison KS, Ramirez Y, Auer D, Chowdhury SR, Prusty BK, Sauer F, Dimond Z,
1031 Kisker C, Hefty PS, Rudel T. 2017. *Chlamydia trachomatis*-containing vacuole serves as

1032 deubiquitination platform to stabilize Mcl-1 and to interfere with host defense. *eLife* **6**.
1033 doi:10.7554/eLife.21465
1034
1035 21. Fiskin E, Bionda T, Dikic I, Behrends C. 2016. Global analysis of host and bacterial
1036 ubiquitinome in response to *Salmonella* Typhimurium infection. *Mol Cell* **62**:967–981.
1037 doi:10.1016/j.molcel.2016.04.015
1038
1039 22. Furtado AR, Essid M, Perrinet S, Balañá ME, Yoder N, Dehoux P, Subtil A. 2013. The
1040 chlamydial OTU domain-containing protein *Chla*OTU is an early type III secretion effector
1041 targeting ubiquitin and NDP52. *Cell Microbiol* **15**:2064–2079. doi:10.1111/cmi.12171
1042
1043 23. Gehre L, Gorgette O, Perrinet S, Prevost M-C, Ducatez M, Giebel AM, Nelson DE, Ball SG,
1044 Subtil A. 2016. Sequestration of host metabolism by an intracellular
1045 pathogen. *eLife* **5**:e12552. doi:10.7554/eLife.12552
1046
1047 24. Goedhart J, Luijsterburg MS. 2020. VolcaNoseR is a web app for creating, exploring,
1048 labeling and sharing volcano plots. *Sci Rep* **10**:20560. doi:10.1038/s41598-020-76603-3
1049
1050 25. Hackstadt T, Scidmore-Carlson MA, Shaw EI, Fischer ER. 1999. The *Chlamydia*
1051 *trachomatis* IncA protein is required for homotypic vesicle fusion. *Cell Microbiol* **1**:119–130.
1052 doi:10.1046/j.1462-5822.1999.00012.x
1053
1054 26. Haggerty CL, Gottlieb SL, Taylor BD, Low N, Xu F, Ness RB. 2010. Risk of sequelae after
1055 *Chlamydia trachomatis* genital infection in women. *J Infect Dis* **201 Suppl 2**:S134-55.
1056 doi:10.1086/652395
1057

1058 27. Haines A, Wesolowski J, Ryan NM, Monteiro-Brás T, Paumet F. 2021. Cross Talk between
1059 ARF1 and RhoA Coordinates the Formation of Cytoskeletal Scaffolds during *Chlamydia*
1060 *Infection*. *MBio* **12**:e0239721. doi:10.1128/mBio.02397-21

1061

1062 28. Hausman JM, Kenny S, Iyer S, Babar A, Qiu J, Fu J, Luo Z-Q, Das C. 2020. The Two
1063 Deubiquitinating Enzymes from *Chlamydia trachomatis* Have Distinct Ubiquitin Recognition
1064 Properties. *Biochemistry* **59**:1604–1617. doi:10.1021/acs.biochem.9b01107

1065

1066 29. Huang DW, Sherman BT, Lempicki RA. 2009a. Bioinformatics enrichment tools: paths
1067 toward the comprehensive functional analysis of large gene lists. *Nucleic Acids Res* **37**:1–
1068 13. doi:10.1093/nar/gkn923

1069

1070 30. Huang DW, Sherman BT, Lempicki RA. 2009b. Systematic and integrative analysis of large
1071 gene lists using DAVID bioinformatics resources. *Nat Protoc* **4**:44–57.
1072 doi:10.1038/nprot.2008.211

1073

1074 31. Hybiske K, Stephens RS. 2007. Mechanisms of host cell exit by the intracellular bacterium
1075 *Chlamydia*. *Proc Natl Acad Sci USA* **104**:11430–11435. doi:10.1073/pnas.0703218104

1076

1077 32. Iyer S, Das C. 2021. The unity of opposites: Strategic interplay between bacterial effectors
1078 to regulate cellular homeostasis. *J Biol Chem* **297**:101340. doi:10.1016/j.jbc.2021.101340

1079

1080 33. Jeong KC, Sexton JA, Vogel JP. 2015. Spatiotemporal regulation of a *Legionella*
1081 *pneumophila* T4SS substrate by the metaeffector SidJ. *PLoS Pathog* **11**:e1004695.
1082 doi:10.1371/journal.ppat.1004695

1083

1084 34. Jones RM, Wu H, Wentworth C, Luo L, Collier-Hyams L, Neish AS. 2008. *Salmonella* avra
1085 coordinates suppression of host immune and apoptotic defenses via JNK pathway
1086 blockade. *Cell Host Microbe* **3**:233–244. doi:10.1016/j.chom.2008.02.016

1087

1088 35. Kędzior M, Bastidas RJ. 2019. Forward and reverse genetic analysis of *Chlamydia*. *Methods*
1089 *Mol Biol* **2042**:185–204. doi:10.1007/978-1-4939-9694-0_13

1090

1091 36. Kokes M, Dunn JD, Granek JA, Nguyen BD, Barker JR, Valdivia RH, Bastidas RJ. 2015.
1092 Integrating chemical mutagenesis and whole-genome sequencing as a platform for forward
1093 and reverse genetic analysis of *Chlamydia*. *Cell Host Microbe* **17**:716–725.
1094 doi:10.1016/j.chom.2015.03.014

1095

1096 37. Komander D, Clague MJ, Urbé S. 2009a. Breaking the chains: structure and function of the
1097 deubiquitinases. *Nat Rev Mol Cell Biol* **10**:550–563. doi:10.1038/nrm2731

1098

1099 38. Komander D, Reyes-Turcu F, Licchesi JDF, Odenwaelder P, Wilkinson KD, Barford D.
1100 2009b. Molecular discrimination of structurally equivalent Lys 63-linked and linear
1101 polyubiquitin chains. *EMBO Rep* **10**:466–473. doi:10.1038/embor.2009.55

1102

1103 39. Komander D, Rape M. 2012. The ubiquitin code. *Annu Rev Biochem* **81**:203–229.
1104 doi:10.1146/annurev-biochem-060310-170328

1105

1106 40. Kubori T, Shinzawa N, Kanuka H, Nagai H. 2010. *Legionella* metaeffector exploits host
1107 proteasome to temporally regulate cognate effector. *PLoS Pathog* **6**:e1001216.
1108 doi:10.1371/journal.ppat.1001216

1109

1110 41. Kubori T, Kitao T, Nagai H. 2019. Emerging insights into bacterial deubiquitinases. *Curr*
1111 *Opin Microbiol* **47**:14–19. doi:10.1016/j.mib.2018.10.001

1112

1113 42. Kumar Y, Valdivia RH. 2008. Actin and intermediate filaments stabilize the *Chlamydia*
1114 *trachomatis* vacuole by forming dynamic structural scaffolds. *Cell Host Microbe* **4**:159–169.
1115 doi:10.1016/j.chom.2008.05.018

1116

1117 43. Kunz TC, Götz R, Sauer M, Rudel T. 2019. Detection of *Chlamydia* developmental forms
1118 and secreted effectors by expansion microscopy. *Front Cell Infect Microbiol* **9**:276.
1119 doi:10.3389/fcimb.2019.00276

1120

1121 44. Lee JK, Enciso GA, Boassa D, Chander CN, Lou TH, Pairawan SS, Guo MC, Wan FYM,
1122 Ellisman MH, Sütterlin C, Tan M. 2018. Replication-dependent size reduction precedes
1123 differentiation in *Chlamydia trachomatis*. *Nat Commun* **9**:45. doi:10.1038/s41467-017-
1124 02432-0

1125

1126 45. Le Negrate G, Krieg A, Faustin B, Loeffler M, Godzik A, Krajewski S, Reed JC. 2008.
1127 ChlaDub1 of *Chlamydia trachomatis* suppresses NF-κB activation and inhibits IκBα
1128 ubiquitination and degradation. *Cell Microbiol* **10**:1879–1892. doi:10.1111/j.1462-
1129 5822.2008.01178.x

1130

1131 46. Li J, Chai Q-Y, Liu CH. 2016. The ubiquitin system: a critical regulator of innate immunity
1132 and pathogen-host interactions. *Cell Mol Immunol* **13**:560–576. doi:10.1038/cmi.2016.40

1133

1134 47. Li Z, Chen C, Chen D, Wu Y, Zhong Y, Zhong G. 2008. Characterization of fifty putative
1135 inclusion membrane proteins encoded in the *Chlamydia trachomatis* genome. *Infect*
1136 *Immun* **76**:2746–2757. doi:10.1128/IAI.00010-08

1137

1138 48. Lowden NM, Yeruva L, Johnson CM, Bowlin AK, Fisher DJ. 2015. Use of aminoglycoside 3'
1139 adenyltransferase as a selection marker for *Chlamydia trachomatis* intron-mutagenesis and
1140 in vivo intron stability. *BMC Res Notes* **8**:570. doi:10.1186/s13104-015-1542-9

1141

1142 49. Lutter EI, Martens C, Hackstadt T. 2012. Evolution and conservation of predicted inclusion
1143 membrane proteins in *Chlamydiae*. *Comp Funct Genomics* **2012**:362104.
1144 doi:10.1155/2012/362104

1145

1146 50. Lutter EI, Barger AC, Nair V, Hackstadt T. 2013. *Chlamydia trachomatis* inclusion
1147 membrane protein CT228 recruits elements of the myosin phosphatase pathway to regulate
1148 release mechanisms. *Cell Rep* **3**:1921–1931. doi:10.1016/j.celrep.2013.04.027

1149

1150 51. Makarova KS, Aravind L, Koonin EV. 2000. A novel superfamily of predicted cysteine
1151 proteases from eukaryotes, viruses and *Chlamydia pneumoniae*. *Trends Biochem
1152 Sci* **25**:50–52. doi:10.1016/s0968-0004(99)01530-3

1153

1154 52. Meier K, Jachmann LH, Türköz G, Babu Sait MR, Pérez L, Kepp O, Valdivia RH, Kroemer
1155 G, Sixt BS. 2023. The *Chlamydia* effector CpoS modulates the inclusion microenvironment
1156 and restricts the interferon response by acting on Rab35. *MBio* **14**:e0319022.
1157 doi:10.1128/mbio.03190-22

1158

1159 53. Meier K, Jachmann LH, Pérez L, Kepp O, Valdivia RH, Kroemer G, Sixt BS. 2022.
1160 The *Chlamydia* protein CpoS modulates the inclusion microenvironment and restricts the
1161 interferon response by acting on Rab35. *BioRxiv*. doi:10.1101/2022.02.18.481055

1162

1163 54. Misaghi S, Balsara ZR, Catic A, Spooner E, Ploegh HL, Starnbach MN. 2006. *Chlamydia*
1164 *trachomatis*-derived deubiquitinating enzymes in mammalian cells during infection. *Mol*
1165 *Microbiol* **61**:142–150. doi:10.1111/j.1365-2958.2006.05199.x

1166

1167 55. Mittal R, Peak-Chew S-Y, McMahon HT. 2006. Acetylation of MEK2 and I κ B kinase (IKK)
1168 activation loop residues by YopJ inhibits signaling. *Proc Natl Acad Sci USA* **103**:18574–
1169 18579. doi:10.1073/pnas.0608995103

1170

1171 56. Mital J, Miller NJ, Fischer ER, Hackstadt T. 2010. Specific chlamydial inclusion membrane
1172 proteins associate with active Src family kinases in microdomains that interact with the host
1173 microtubule network. *Cell Microbiol* **12**:1235–1249. doi:10.1111/j.1462-5822.2010.01465.x

1174

1175 57. Mizuno E, Kitamura N, Komada M. 2007. 14-3-3-dependent inhibition of the deubiquitinating
1176 activity of UBPY and its cancellation in the M phase. *Exp Cell Res* **313**:3624–3634.
1177 doi:10.1016/j.yexcr.2007.07.028

1178

1179 58. Moulder JW. 1991. Interaction of *Chlamydiae* and host cells in vitro. *Microbiol Rev* **55**:143–
1180 190.

1181

1182 59. Mukherjee S, Keitany G, Li Y, Wang Y, Ball HL, Goldsmith EJ, Orth K. 2006. *Yersinia* YopJ
1183 acetylates and inhibits kinase activation by blocking phosphorylation. *Science* **312**:1211–
1184 1214. doi:10.1126/science.1126867

1185

1186 60. Neunuebel MR, Chen Y, Gaspar AH, Backlund PS, Yergey A, Machner MP. 2011. De-
1187 AMPylation of the small GTPase Rab1 by the pathogen *Legionella*
1188 *pneumophila*. *Science* **333**:453–456. doi:10.1126/science.1207193

1189

1190 61. Nguyen BD, Valdivia RH. 2012. Virulence determinants in the obligate intracellular pathogen
1191 *Chlamydia trachomatis* revealed by forward genetic approaches. *Proc Natl Acad Sci*
1192 *USA* **109**:1263–1268. doi:10.1073/pnas.1117884109

1193

1194 62. Nguyen PH, Lutter EI, Hackstadt T. 2018. *Chlamydia trachomatis* inclusion membrane
1195 protein MrcA interacts with the inositol 1,4,5-trisphosphate receptor type 3 (ITPR3) to
1196 regulate extrusion formation. *PLoS Pathog* **14**:e1006911. doi:10.1371/journal.ppat.1006911

1197

1198 63. Ohtake F, Tsuchiya H. 2017. The emerging complexity of ubiquitin architecture. *J*
1199 *Biochem* **161**:125–133. doi:10.1093/jb/mvw088

1200

1201 64. Pannekoek Y, Spaargaren J, Langerak AAJ, Merks J, Morré SA, van der Ende A. 2005.
1202 Interrelationship between polymorphisms of *incA*, fusogenic properties of *Chlamydia*
1203 *trachomatis* strains, and clinical manifestations in patients in The Netherlands. *J Clin*
1204 *Microbiol* **43**:2441–2443. doi:10.1128/JCM.43.5.2441-2443.2005

1205

1206 65. Peng J, Schwartz D, Elias JE, Thoreen CC, Cheng D, Marsischky G, Roelofs J, Finley D,
1207 Gygi SP. 2003. A proteomics approach to understanding protein ubiquitination. *Nat*
1208 *Biotechnol* **21**:921–926. doi:10.1038/nbt849

1209

1210 66. Pruneda JN, Durkin CH, Geurink PP, Ovaa H, Santhanam B, Holden DW, Komander D.
1211 2016. The Molecular Basis for Ubiquitin and Ubiquitin-like Specificities in Bacterial Effector
1212 Proteases. *Mol Cell* **63**:261–276. doi:10.1016/j.molcel.2016.06.015

1213

1214 67. Pruneda JN, Bastidas RJ, Bertsoulaki E, Swatek KN, Santhanam B, Clague MJ, Valdivia
1215 RH, Urbé S, Komander D. 2018. A *Chlamydia* effector combining deubiquitination and
1216 acetylation activities induces Golgi fragmentation. *Nat Microbiol* **3**:1377–1384.
1217 doi:10.1038/s41564-018-0271-y

1218

1219 68. Reiley W, Zhang M, Wu X, Granger E, Sun S-C. 2005. Regulation of the deubiquitinating
1220 enzyme CYLD by IκB kinase gamma-dependent phosphorylation. *Mol Cell Biol* **25**:3886–
1221 3895. doi:10.1128/MCB.25.10.3886-3895.2005

1222

1223 69. Roan NR, Gierahn TM, Higgins DE, Starnbach MN. 2006. Monitoring the T cell response to
1224 genital tract infection. *Proc Natl Acad Sci USA* **103**:12069–12074.
1225 doi:10.1073/pnas.0603866103

1226

1227 70. Rockey DD, Scidmore MA, Bannantine JP, Brown WJ. 2002. Proteins in the chlamydial
1228 inclusion membrane. *Microbes Infect* **4**:333–340. doi:10.1016/s1286-4579(02)01546-0

1229

1230 71. Ronau JA, Beckmann JF, Hochstrasser M. 2016. Substrate specificity of the ubiquitin and
1231 Ubl proteases. *Cell Res* **26**:441–456. doi:10.1038/cr.2016.38

1232

1233 72. Rytkönen A, Poh J, Garmendia J, Boyle C, Thompson A, Liu M, Freemont P, Hinton JCD,
1234 Holden DW. 2007. SseL, a *Salmonella* deubiquitinase required for macrophage killing and
1235 virulence. *Proc Natl Acad Sci USA* **104**:3502–3507. doi:10.1073/pnas.0610095104

1236

1237 73. Saeki Y. 2017. Ubiquitin recognition by the proteasome. *J Biochem* **161**:113–124.
1238 doi:10.1093/jb/mvw091

1239

1240 74. Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image
1241 analysis. *Nat Methods* **9**:671–675. doi:10.1038/nmeth.2089

1242

1243 75. Schubert AF, Nguyen JV, Franklin TG, Geurink PP, Roberts CG, Sanderson DJ, Miller LN,
1244 Ovaa H, Hofmann K, Pruneda JN, Komander D. 2020. Identification and characterization of
1245 diverse OTU deubiquitinases in bacteria. *EMBO J* **39**:e105127.
1246 doi:10.15252/embj.2020105127

1247

1248 76. Shaw JH, Key CE, Snider TA, Sah P, Shaw EI, Fisher DJ, Lutter EI. 2018. Genetic
1249 Inactivation of *Chlamydia trachomatis* Inclusion Membrane Protein CT228 Alters MYPT1
1250 Recruitment, Extrusion Production, and Longevity of Infection. *Front Cell Infect*
1251 *Microbiol* **8**:415. doi:10.3389/fcimb.2018.00415

1252

1253 77. Sheedlo MJ, Qiu J, Tan Y, Paul LN, Luo Z-Q, Das C. 2015. Structural basis of substrate
1254 recognition by a bacterial deubiquitinase important for dynamics of phagosome
1255 ubiquitination. *Proc Natl Acad Sci USA* **112**:15090–15095. doi:10.1073/pnas.1514568112

1256

1257 78. Sixt BS, Bastidas RJ, Finethy R, Baxter RM, Carpenter VK, Kroemer G, Coers J, Valdivia
1258 RH. 2017. The *Chlamydia trachomatis* Inclusion Membrane Protein CpoS Counteracts
1259 STING-Mediated Cellular Surveillance and Suicide Programs. *Cell Host Microbe* **21**:113–
1260 121. doi:10.1016/j.chom.2016.12.002

1261

1262 79. Smith EP, Cotto-Rosario A, Borghesan E, Held K, Miller CN, Celli J. 2020. Epistatic Interplay
1263 between Type IV Secretion Effectors Engages the Small GTPase Rab2 in the *Brucella*
1264 Intracellular Cycle. *MBio* **11**. doi:10.1128/mBio.03350-19

1265

1266 80. Suchland RJ, Rockey DD, Bannantine JP, Stamm WE. 2000. Isolates of *Chlamydia*
1267 *trachomatis* that occupy nonfusogenic inclusions lack IncA, a protein localized to the
1268 inclusion membrane. *Infect Immun* **68**:360–367. doi:10.1128/IAI.68.1.360-367.2000

1269

1270 81. Swatek KN, Komander D. 2016. Ubiquitin modifications. *Cell Res* **26**:399–422.
1271 doi:10.1038/cr.2016.39

1272

1273 82. Tenno T, Fujiwara K, Tochio H, Iwai K, Morita EH, Hayashi H, Murata S, Hiroaki H, Sato M,
1274 Tanaka K, Shirakawa M. 2004. Structural basis for distinct roles of Lys63- and Lys48-linked
1275 polyubiquitin chains. *Genes Cells* **9**:865–875. doi:10.1111/j.1365-2443.2004.00780.x

1276

1277 83. Urbanus ML, Quaile AT, Stogios PJ, Morar M, Rao C, Di Leo R, Evdokimova E, Lam M,
1278 Oatway C, Cuff ME, Osipiuk J, Michalska K, Nocek BP, Taipale M, Savchenko A, Ensminger
1279 AW. 2016. Diverse mechanisms of metaeffector activity in an intracellular bacterial
1280 pathogen, *Legionella pneumophila*. *Mol Syst Biol* **12**:893. doi:10.15252/msb.20167381

1281

1282 84. Varadan R, Walker O, Pickart C, Fushman D. 2002. Structural properties of polyubiquitin
1283 chains in solution. *J Mol Biol* **324**:637–647. doi:10.1016/s0022-2836(02)01198-1

1284

1285 85. Vozandychova V, Stojkova P, Hercik K, Rehulka P, Stulik J. 2021. The Ubiquitination
1286 System within Bacterial Host-Pathogen Interactions. *Microorganisms* **9**.
1287 doi:10.3390/microorganisms9030638

1288

1289 86. Walsh SC, Reitano JR, Dickinson MS, Kutsch M, Hernandez D, Barnes AB, Schott BH,
1290 Wang L, Ko DC, Kim SY, Valdivia RH, Bastidas RJ, Coers J. 2022. The bacterial effector

1291 GarD shields *Chlamydia trachomatis* inclusions from RNF213-mediated ubiquitylation and
1292 destruction. *Cell Host Microbe*. doi:10.1016/j.chom.2022.08.008

1293 87. Wang X, Hybiske K, Stephens RS. 2018. Direct visualization of the expression and
1294 localization of chlamydial effector proteins within infected host cells. *Pathog Dis* **76**.
1295 doi:10.1093/femspd/fty011

1296

1297

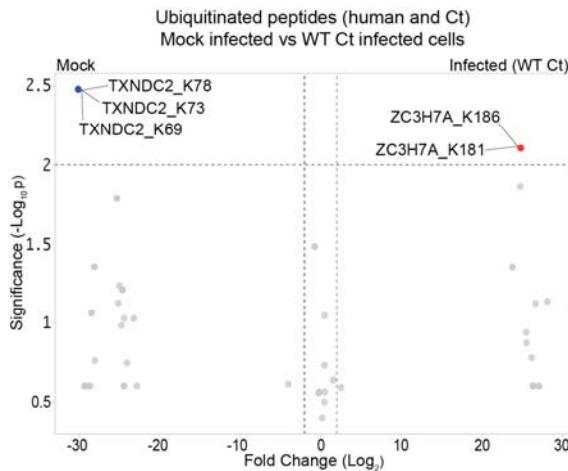
1298 88. Weber MM, Bauler LD, Lam J, Hackstadt T. 2015. Expression and localization of predicted
1299 inclusion membrane proteins in *Chlamydia trachomatis*. *Infect Immun* **83**:4710–4718.
1300 doi:10.1128/IAI.01075-15

1301

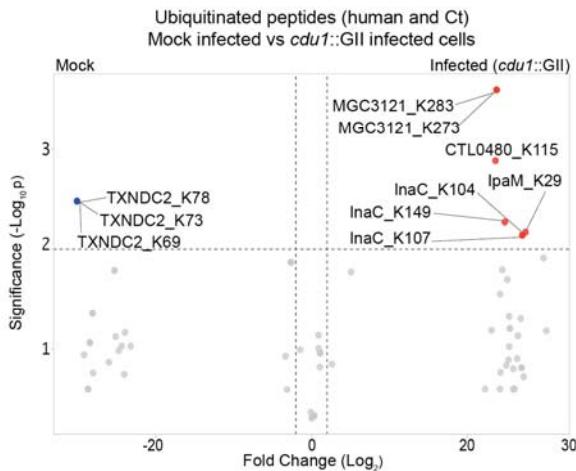
1302 89. Weeks SD, Grasty KC, Hernandez-Cuevas L, Loll PJ. 2009. Crystal structures of Lys-63-
1303 linked tri- and di-ubiquitin reveal a highly extended chain architecture. *Proteins* **77**:753–759.
1304 doi:10.1002/prot.22568

1305

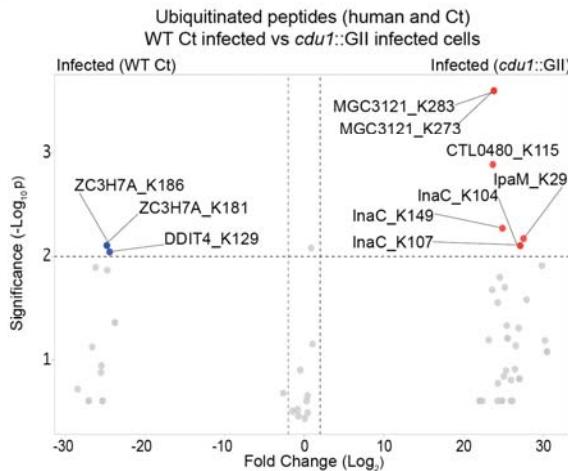
1306 90. Wesolowski J, Weber MM, Nawrotek A, Dooley CA, Calderon M, St Croix CM, Hackstadt T,
1307 Cherfils J, Paumet F. 2017. *Chlamydia* hijacks ARF gtpases to coordinate microtubule
1308 posttranslational modifications and golgi complex positioning. *MBio* **8**.
1309 doi:10.1128/mBio.02280-16

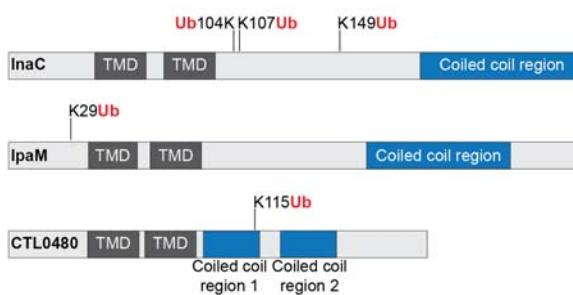

1310

1311 91. Zadora PK, Chumduri C, Imami K, Berger H, Mi Y, Selbach M, Meyer TF, Gurumurthy RK.
1312 2019. Integrated Phosphoproteome and Transcriptome Analysis Reveals *Chlamydia*-
1313 Induced Epithelial-to-Mesenchymal Transition in Host Cells. *Cell Rep* **26**:1286-1302.e8.
1314 doi:10.1016/j.celrep.2019.01.006


1315

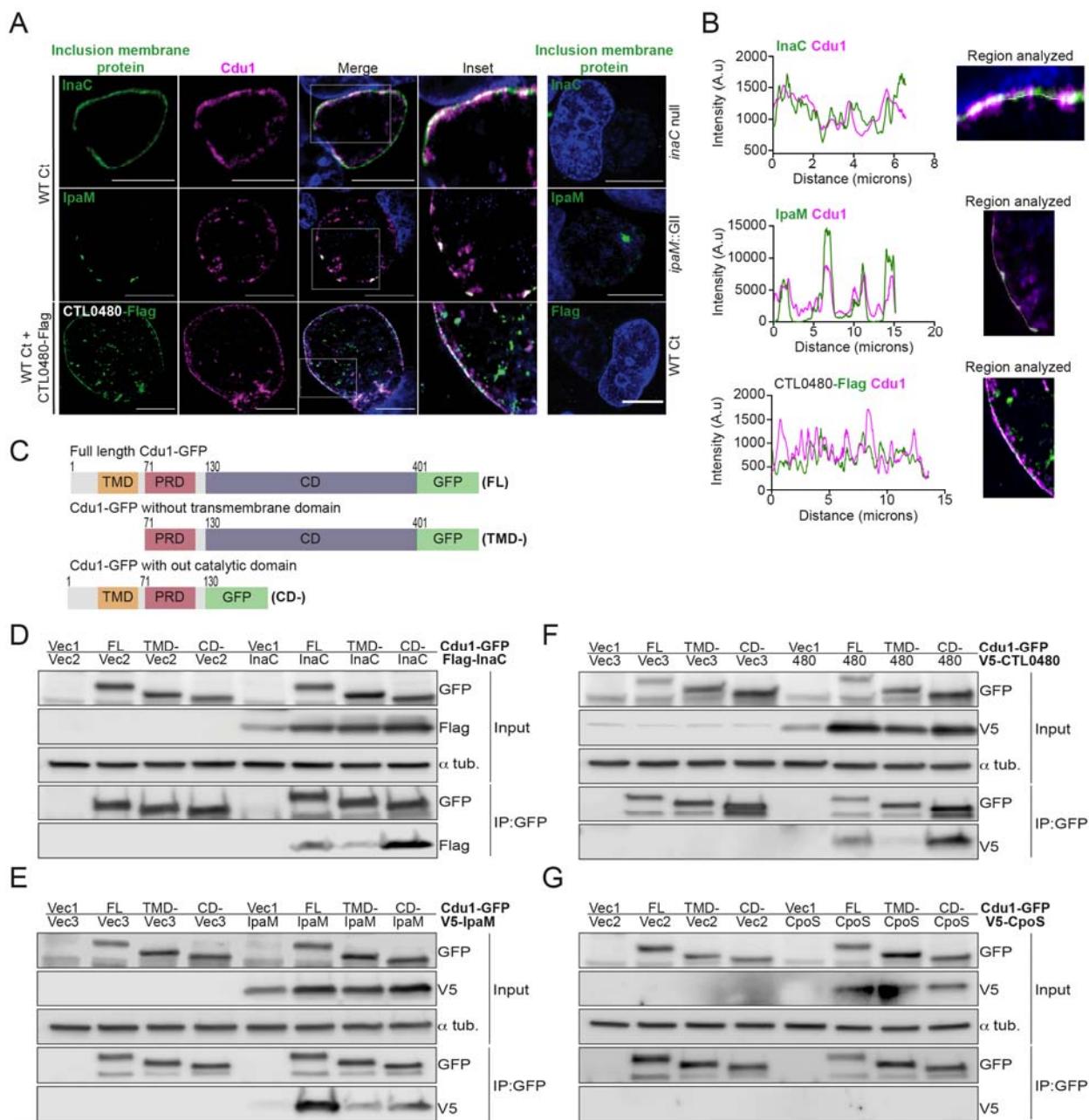
1316 92. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C, Chanda
1317 SK. 2019. Metascape provides a biologist-oriented resource for the analysis of systems-
1318 level datasets. *Nat Commun* **10**:1523. doi:10.1038/s41467-019-09234-6
1319
1320 93. Zuck M, Ellis T, Venida A, Hybiske K. 2017. Extrusions are phagocytosed and promote
1321 *Chlamydia* survival within macrophages. *Cell Microbiol* **19**. doi:10.1111/cmi.12683
1322
1323 94. Zuck M, Sherrid A, Suchland R, Ellis T, Hybiske K. 2016. Conservation of extrusion as an
1324 exit mechanism for *Chlamydia*. *Pathog Dis* **74**. doi:10.1093/femspd/ftw093
1325
1326 **Figures**


A


B

C

D

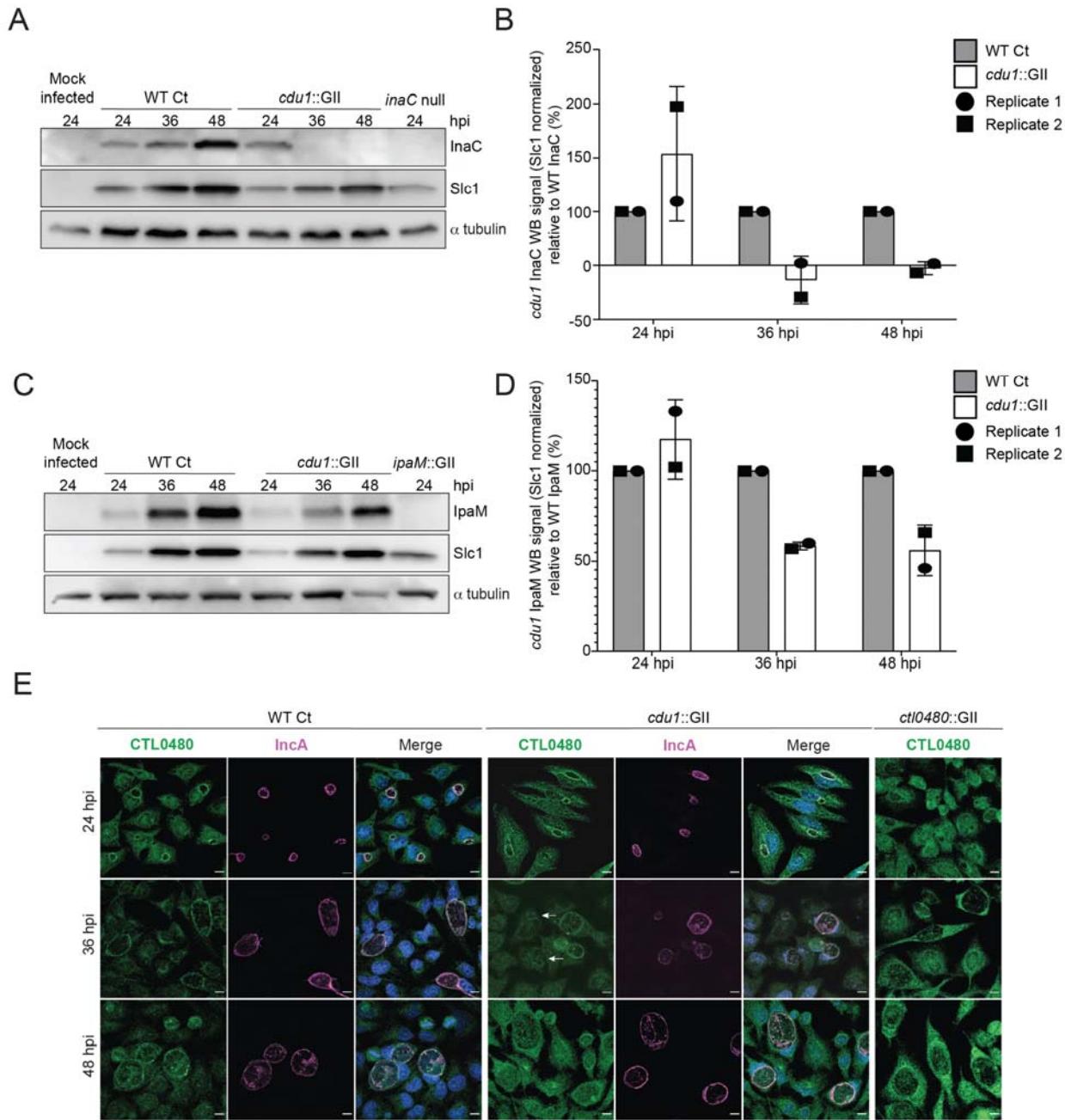


1327
1328

Figure 1

The *C. trachomatis* inclusion membrane proteins InaC, IpaM, and CTL0480 are ubiquitinated in the absence of Cdu1. (A-C) Volcano plots (pairwise comparisons) of the relative abundance of human and Ct ubiquitinated peptides. (A) Mock infected HeLa cells versus HeLa cells infected with WT Ct (L2 434 Bu pBOMB) (24 hpi). (B) Mock infected HeLa cells versus HeLa cells infected with a *cdu1* null strain (*cdu1::GII* pBOMB) (24 hpi). (C) HeLa cells infected with WT Ct (24 hpi) versus HeLa cells infected with a *cdu1* null strain (24 hpi). Significance values were interpolated from 3 independent biological replicates. Ubiquitinated proteins were enriched with magnetic TUBE 1 beads (binds to polyubiquitinated proteins) and peptides identified by quantitative LC MS/MS analysis. Three Ct inclusion membrane proteins, InaC, IpaM, and CTL0480 were differentially ubiquitinated in the absence of Cdu1. (D) InaC was ubiquitinated at K104, K107, and K149, IpaM at K290, and CTL0480 at K115 in the absence of Cdu1. TMD: Transmembrane domain. Numbering corresponds to amino acids in the protein sequence of each respective inclusion membrane protein.

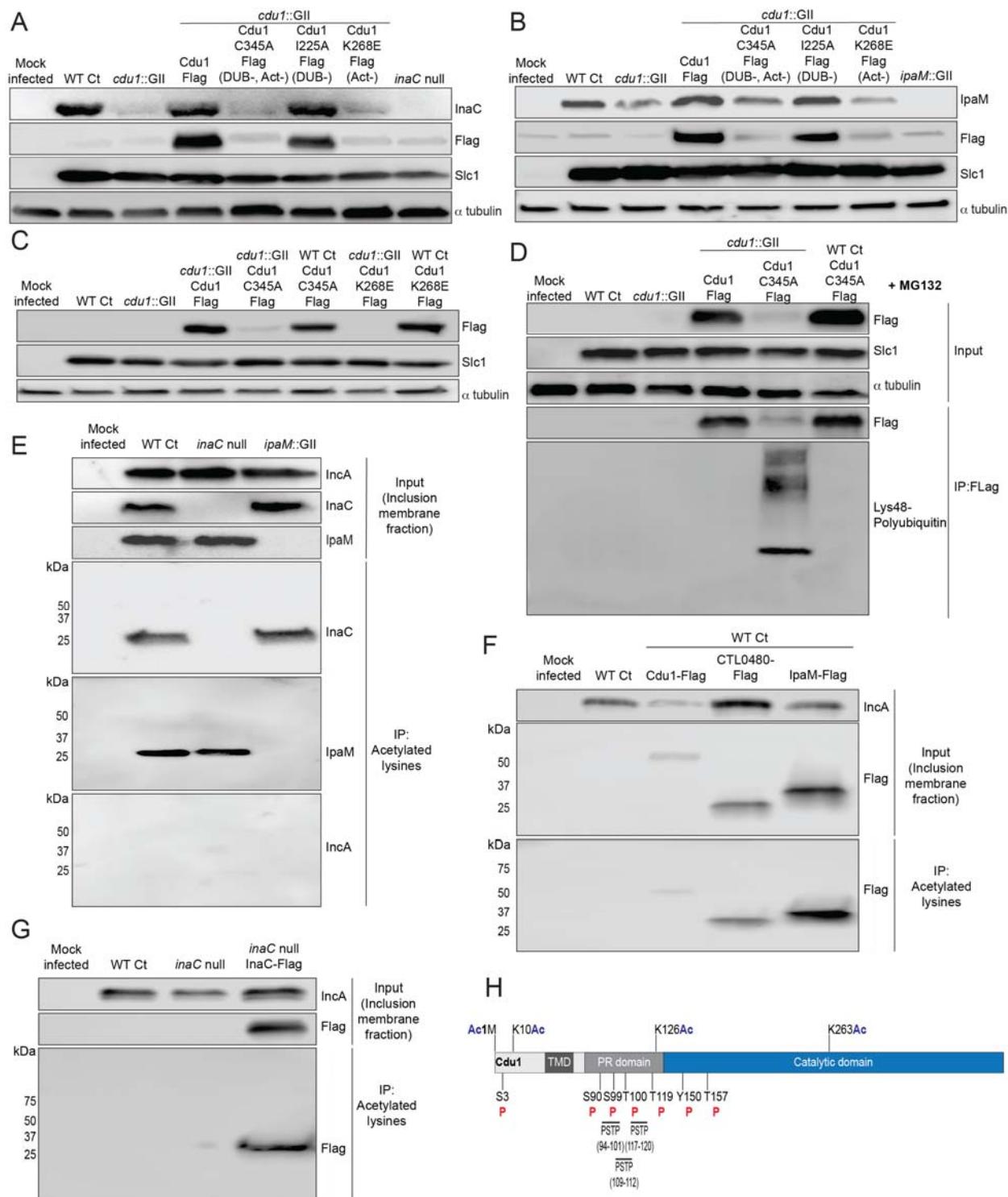
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344


Figure 2

Cdu1 associates with InaC, IpaM, and CTL0480. **(A)** Co-localization of Cdu1(magenta) with endogenous InaC (green), IpaM (green), and ectopically expressed CTL0480-Flag (green) at the Ct (L2) inclusion membrane of HeLa cells infected for 24 h. HeLa cells infected with an *inaC* null strain (M407), an *ipaM* null strain (*ipaM*:GII), and WT Ct (L2 434 Bu pBOMB) were used as controls for antibody specificity. DNA stained with Hoechst is shown in blue. Scale bar: 10 μ m. Images are representative of multiple images captured across three independent replicates. **(B)** Line scan profiles of fluorescent signal intensities displayed in (A) showing co-localization of fluorescence intensities for endogenous Cdu1 with endogenous InaC and IpaM, and with CTL0480-Flag along the L2 inclusion membrane. **(C)** Schematic of Cdu1-GFP(C) (L2) fusion (Cdu1-GFP) and Cdu1-GFP variants used in co-transfections of HEK 293 cells. GFP: Green fluorescent protein. TMD: Transmembrane domain. PRD: Proline rich domain. CD: Catalytic

1345
1346

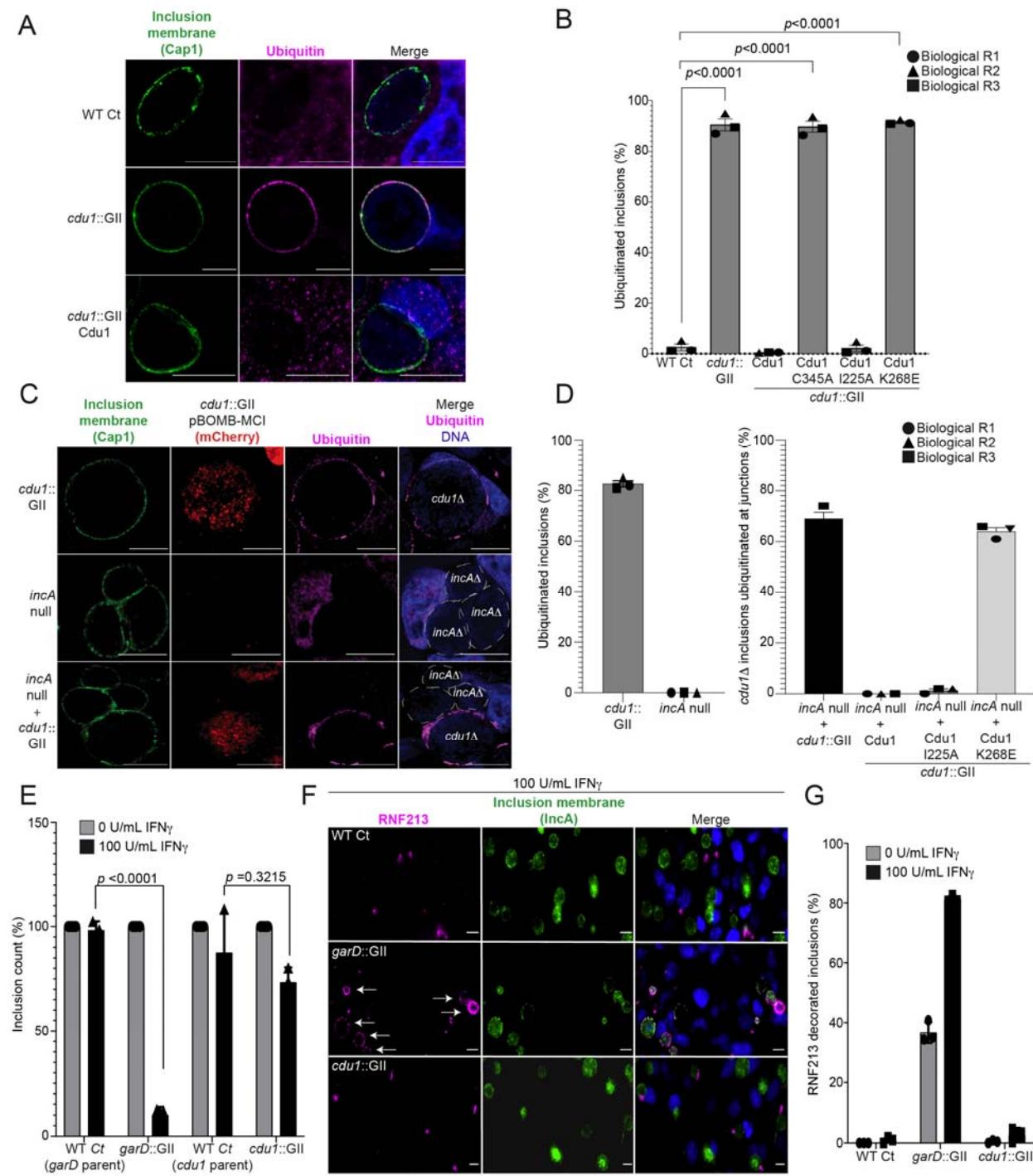
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357


1358 domain. FL: Full length. TMD-: Cdu1-GFP variant lacking TMD domain. CD-: Cdu1-GFP variant
1359 lacking CD domain. **(D-G)** Western blot analysis of GFP immunoprecipitates from HEK 293 cells
1360 co-transfected with mammalian plasmids expressing: Cdu1-GFP variants and **(D)** truncated
1361 3XFlag(N)-InaC (D/UW-3/CX CT813, amino acids 96-264), **(E)** V5(N)-IpaM (L2, full length), **(F)**
1362 V5(N)-CTL0480 (L2, full length), and **(G)** V5(N)-CpoS (L2, full length). Vec1: Empty pOPINN-
1363 GFP vector. Vec2: Empty pDEST53 vector. Vec3: Empty pcDNATM3.1/nV5-DEST vector.
1364 Western blot images are representative from two independent experiments.
1365
1366
1367
1368
1369

1370
1371

Figure 3
Cdu1 stabilizes InaC, IpaM, and CTL0480. **(A)** Western blot analysis of endogenous InaC in HeLa cells infected for 24, 36, and 48 hours with Wt Ct (L2 pBOMB), *cdu1* null (*cdu1*::GII pBOMB), and *inaC* null (M407) strains. Ct Slc1 and human alpha tubulin were used to determine Ct burdens and equal loading of protein extracts respectively. Western blot images are representative of 2 independent experiments. **(B)** Quantification of InaC abundance (InaC western blot signal from (A)) normalized to Slc1 western blot signal (from panel A) in Hela cells infected with a *cdu1* null strain, relative to normalized InaC abundance in Hela cells infected with Wt Ct. **(C)** Western blot analysis of endogenous IpaM in HeLa cells infected for 24, 36, and 48 hours with Wt Ct, *cdu1* null, and *ipam* null (*ipam*::GII) strains. Western blot images are representative of 2 independent experiments. **(D)** Quantification of normalized IpaM abundance

1382 (from (C) in HeLa cells infected with a *cdu1* null strain, relative to normalized IpaM abundance in
1383 HeLa cells infected with Wt Ct. **(E)** Localization of CTL0480 during Ct infection of HeLa cells at
1384 24, 36, and 48 hpi. CTL0480 signal (green) co-localizes with the inclusion membrane protein
1385 IncA (magenta) at the Ct inclusion membrane. Arrowheads highlight *cdu1* null inclusions lacking
1386 CTL0480 at 36 hpi. DNA stained with Hoechst is shown in blue. Scale bar: 10 μ m. Quantification
1387 of MYPT1 localization at inclusion membranes can be found in Supplemental Figure 5
1388
1389
1390

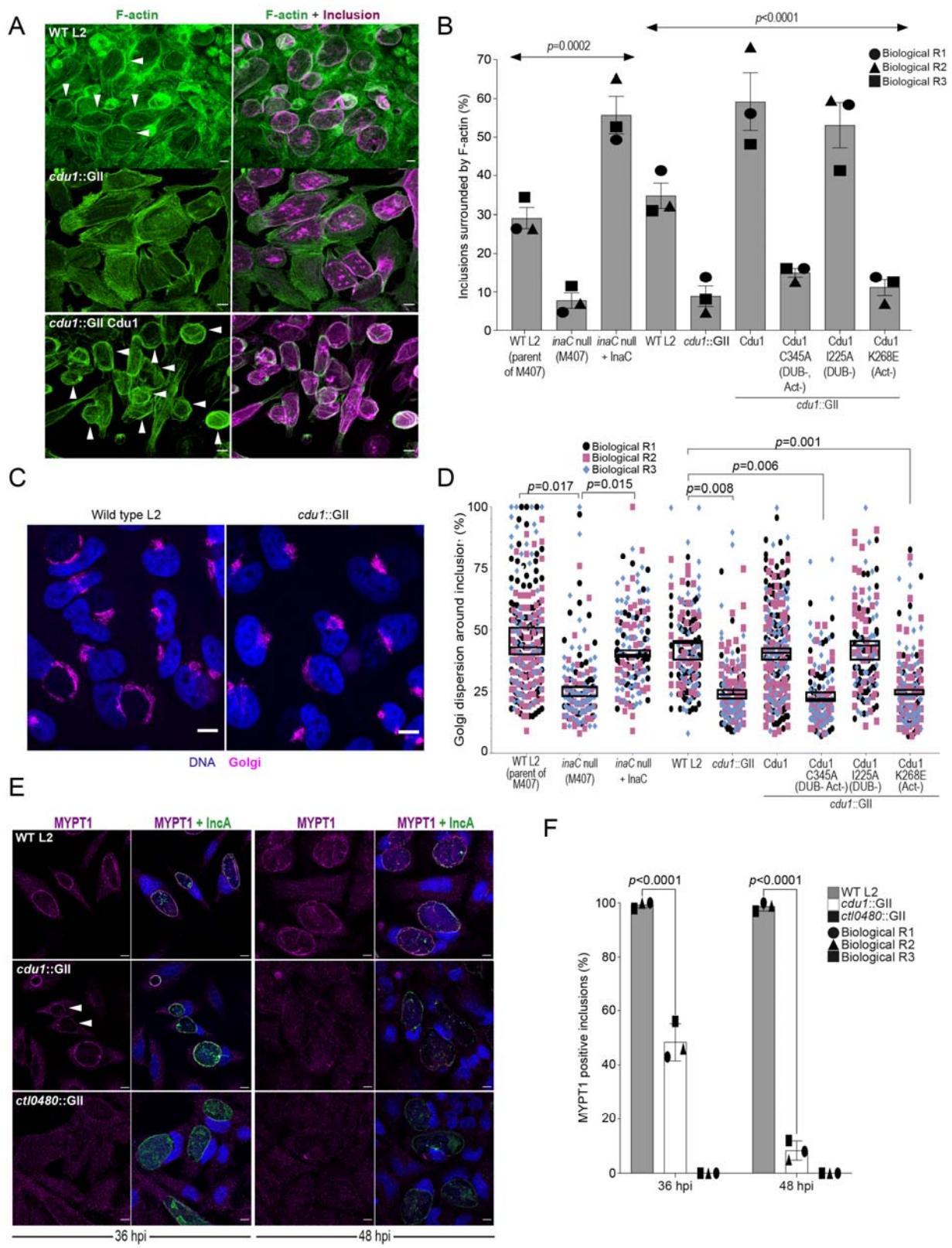


1391
1392

Figure 4

1393 **The acetylase activity of Cdu1 is required to stabilize Cdu1, InaC, and IpaM. (A)** Western
1394 blot analysis of endogenous InaC and Cdu1-Flag catalytic variants expressed from a plasmid
1395 (pBOMB). HeLa cells were infected for 36 hours with WT Ct (L2 434 Bu pBOMB), a *cdu1* null
1396 strain (*cdu1::GII* pBOMB), and *cdu1* null strains expressing wild type Cdu1-Flag and the Cdu1
1397 variants C345A-Flag (catalytic inactive), I225A-Flag (DUB deficient), and K268E-Flag (Act

1398 deficient). Cdu1-Flag variants were expressed from a pBOMB shuttle plasmid. Protein lysates
1399 from HeLa cells infected with an *inaC* null (M407) strain were used to control for the specificity
1400 of anti-InaC antibodies. Western blot images are representative of two independent
1401 experiments. **(B)** Western blot analysis of endogenous IpaM and Cdu1-FLAG variants in crude
1402 extracts of HeLa cells infected for 48 hours with the same strains as described in (A). Infection of
1403 HeLa cells with *ipaM*:GII was used to test for the specificity of the anti-IpaM antibody. Western
1404 blot images are representative of two independent experiments. **(C)** Western blot analysis of
1405 Cdu1^{C345A}-Flag (catalytic inactive) and Cdu1^{K268E}-Flag (Act deficient) expressed in a *cdt1* null
1406 strain or WT Ct (L2 434 Bu) background after infection of HeLa cells for 24 hours. Both Cdu1
1407 variants are stabilized by Cdu1 expressed in WT Ct. **(D)** Western blot analysis of Cdu1-Flag and
1408 Cdu1^{C345A}-Flag expressed in a *cdt1* null strain and Cdu1^{C345A}-Flag expressed in WT Ct (L2
1409 434 Bu) following immunoprecipitation (anti-Flag) from HeLa cell extracts after infection for 24
1410 hours and treatment with MG132 (25 μ M, 5 hours). Western blot image is a representative blot
1411 from at least three independent experiments. **(E)** Western blot analysis of endogenous InaC and
1412 IpaM following immunoprecipitation of inclusion membrane enriched subcellular fractions
1413 (24hpi) with anti acetylated lysine antibodies. Western blot image is representative of two
1414 independent experiments. **(F)** Western blot analysis (Flag WB) of acetylated lysine
1415 immunoprecipitates generated from inclusion membrane enriched subcellular fractions (40 hpi)
1416 derived from HeLa cells infected with WT Ct strains expressing Cdu1-Flag, CTL0480-Flag, or
1417 IpaM-Flag. Western blot image is representative of two independent experiments. **(G)** WB of
1418 acetylated lysine immunoprecipitates of inclusion membrane enriched fractions (24 hpi) of HeLa
1419 cells infected with WT Ct and with an *inaC* null strain (M407) expressing InaC-Flag. Western
1420 blot image is representative of two independent experiments. **(H)** The initiator methionine,
1421 Lys10, Lys126, and Lys263 of Cdu1 are acetylated by 24 hpi. One tyrosine (Y) residue and
1422 multiple serine (S) and threonine (T) residues in Cdu1 are also phosphorylated during Ct
1423 infection of HeLa cells (24 hpi). Three PX(S/T)P MAPK phosphorylation consensus sequence
1424 motifs were identified in the proline rich domain of Cdu1. Modified residues were identified by
1425 quantitative LC MS/MS analysis of immunoprecipitated Cdu1-Flag across 3 independent
1426 biological replicates. TMD: Transmembrane domain. PR: Proline rich. PSTP: PX(S/T)P motifs.
1427 Ac: Acetylation. P: Phosphorylation. Numbering corresponds to amino acids in Cdu1 protein
1428 sequence.
1429
1430

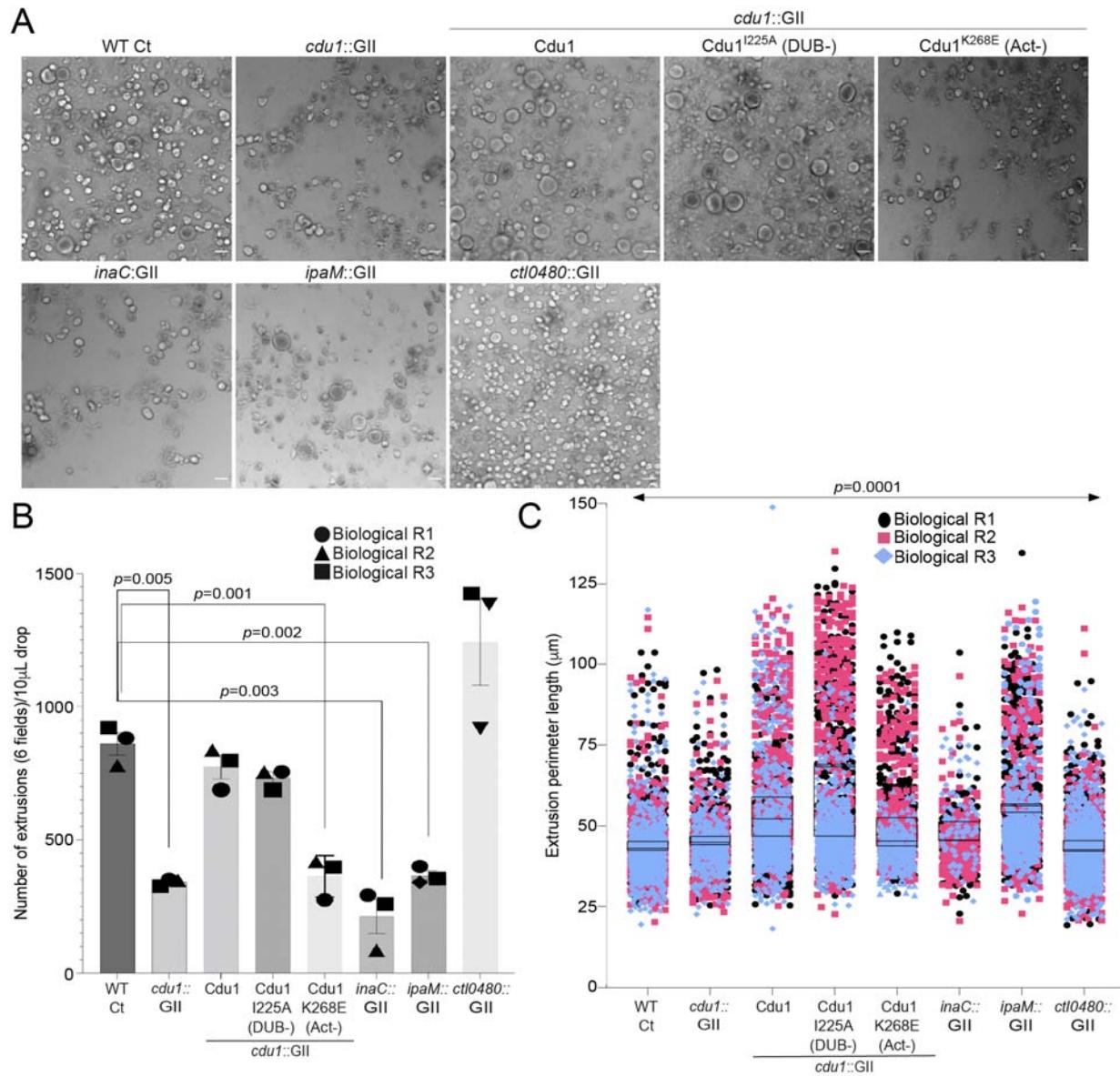


1431
1432

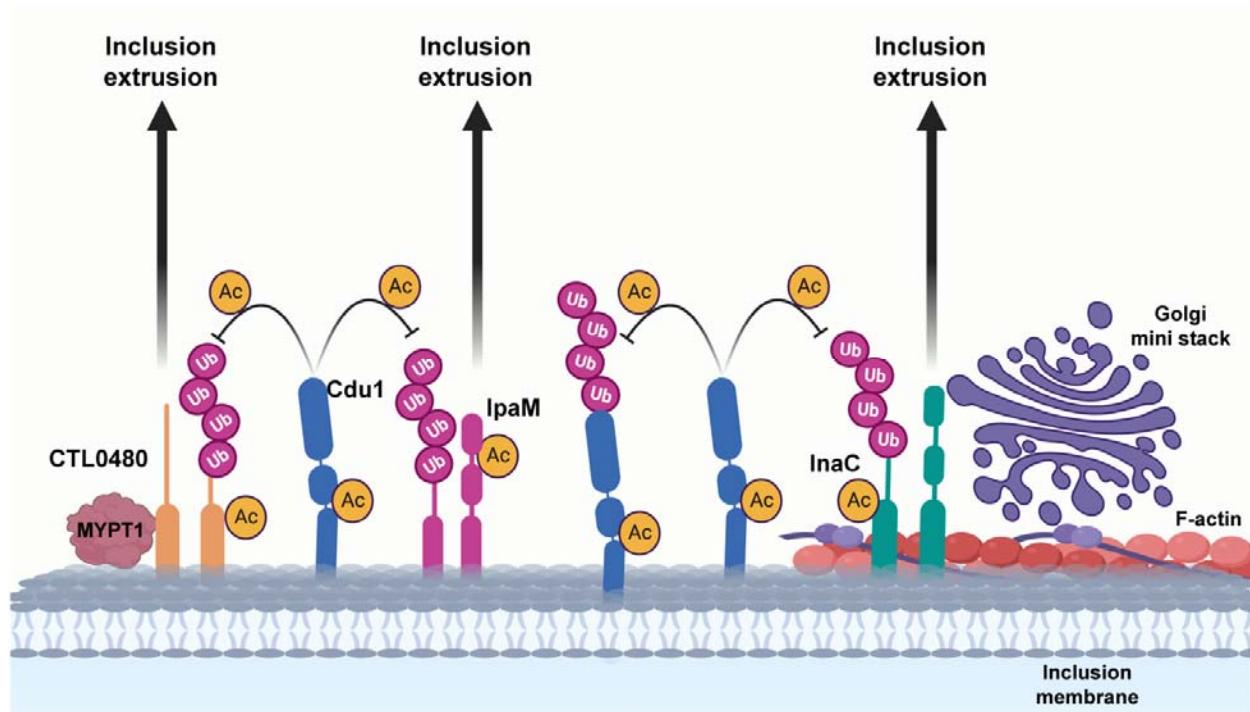
Figure 5

The DUB activity of Cdu1 is not required for blocking the ubiquitination of inclusion membranes and Cdu1 is not required for protection against IFN γ mediated cellular immunity. (A) Representative images of Ct inclusions decorated with ubiquitin during infection of HeLa cells with a cdu1::GII strain for 24 hours. Representative images of infected HeLa cells used for quantification of ubiquitin decorated inclusions in (B) are shown in Supplemental Figure 6A. Antisera against the membrane protein Cap1 (green) was used to mark inclusion

1440 membranes. DNA stained with Hoechst is shown in blue. Scale bar: 10 μ m. **(B)** Quantification of
1441 ubiquitinated inclusions as shown in (A). The Ub fluorescent signal was used to determine the
1442 number of infected cells with Ub decorated inclusions. The total number of ubiquitinated
1443 inclusions was divided by the total number of inclusions analyzed (defined by Cap1 staining).
1444 87%, 86%, and 91% of inclusions were decorated with Ub in HeLa cells infected with a *cdu1*
1445 null strain and *cdu1* null strains expressing *Cdu1*^{C345A} (DUB-, Act-), and *Cdu1*^{K268E} (Act-)
1446 variants respectively. Representative images (panel (A) and Supplemental Figure 6A) and
1447 quantification of ubiquitinated inclusions were obtained from inclusions imaged in 10 fields
1448 across 3 independent biological replicates for each strain. *p* values were determined by a
1449 student paired t-test. **(C)** Representative images of HeLa cells co-infected with *cdu1::GII*
1450 (*cdu1* Δ) and *incA* null (*incA* Δ , M923) strains at 24 hpi. *IncA*-deficient inclusions do not fuse with
1451 other inclusions. In co-infected cells, *Cdu1* present on the inclusion membranes of *incA* Δ strains
1452 did not block ubiquitination events at or near the inclusion membranes of neighboring *cdu1* Δ
1453 strains (mCherry signal from pBOMB4-MCI plasmid). Representative images of Hela cells
1454 infected with strains quantified in (D) are shown in Supplemental Figure 6B. DNA stained with
1455 Hoechst is shown in blue. Scale bar: 10 μ m. **(D)** Quantification of *cdu1* Δ inclusions as shown in
1456 (C) in which ubiquitination events are observed in regions of *cdu1* Δ inclusion membranes that
1457 are in direct apposition to *incA* Δ inclusion membranes (junctions). The total number of *cdu1* Δ
1458 inclusions ubiquitinated at inclusion junctions was divided by the total number of inclusions
1459 analyzed (Cap1 staining). 66% and 61% of *cdu1* Δ inclusions were decorated with Ub at
1460 junctions in HeLa cells co-infected with *incA* Δ and *cdu1* Δ strains or with *incA* Δ and a *cdu1* Δ
1461 strain ectopically expressing *Cdu1*^{K268E} (Act-) respectively. Representative images (panel (C)
1462 and Supplemental Figure 6B) and quantification of *cdu1* Δ inclusions ubiquitinated at junctions
1463 are derived from inclusions imaged in 6 fields across 3 independent biological replicates for
1464 each condition. *p* values were determined by a student paired t-test. **(E)** Quantification of Ct
1465 inclusion production during infection of unprimed and IFN γ -primed (100 U/mL) A549 cells at 24
1466 hours post infection. Inclusions were quantified by high-content imaging analysis. Plot reflects
1467 inclusion counts across 9 fields of view and 3 independent biological replicates. Inclusion counts
1468 by each strain in unprimed A549 cells were set to 100%. Inclusion counts resulting from
1469 *cdu1::GII* and *garD::GII* strains were normalized to corresponding parental Ct inclusion (100%)
1470 counts in unprimed cells. *P*-values were calculated by 2 way ANOVA analysis. **(F)**
1471 Representative images of RNF213 localizing to inclusions of WT Ct, *garD::GII*, and *cdu1::GII*
1472 strains during infection of A549 cells primed with IFN γ (100 U/mL). **(G)** Quantification of RNF213
1473 localizing to Ct inclusions during infection of unprimed and IFN γ -primed (100 U/mL) A549 cells
1474 at 24 hours post infection. Plot reflects inclusion counts across 6 fields and 3 independent
1475 biological replicates.
1476
1477

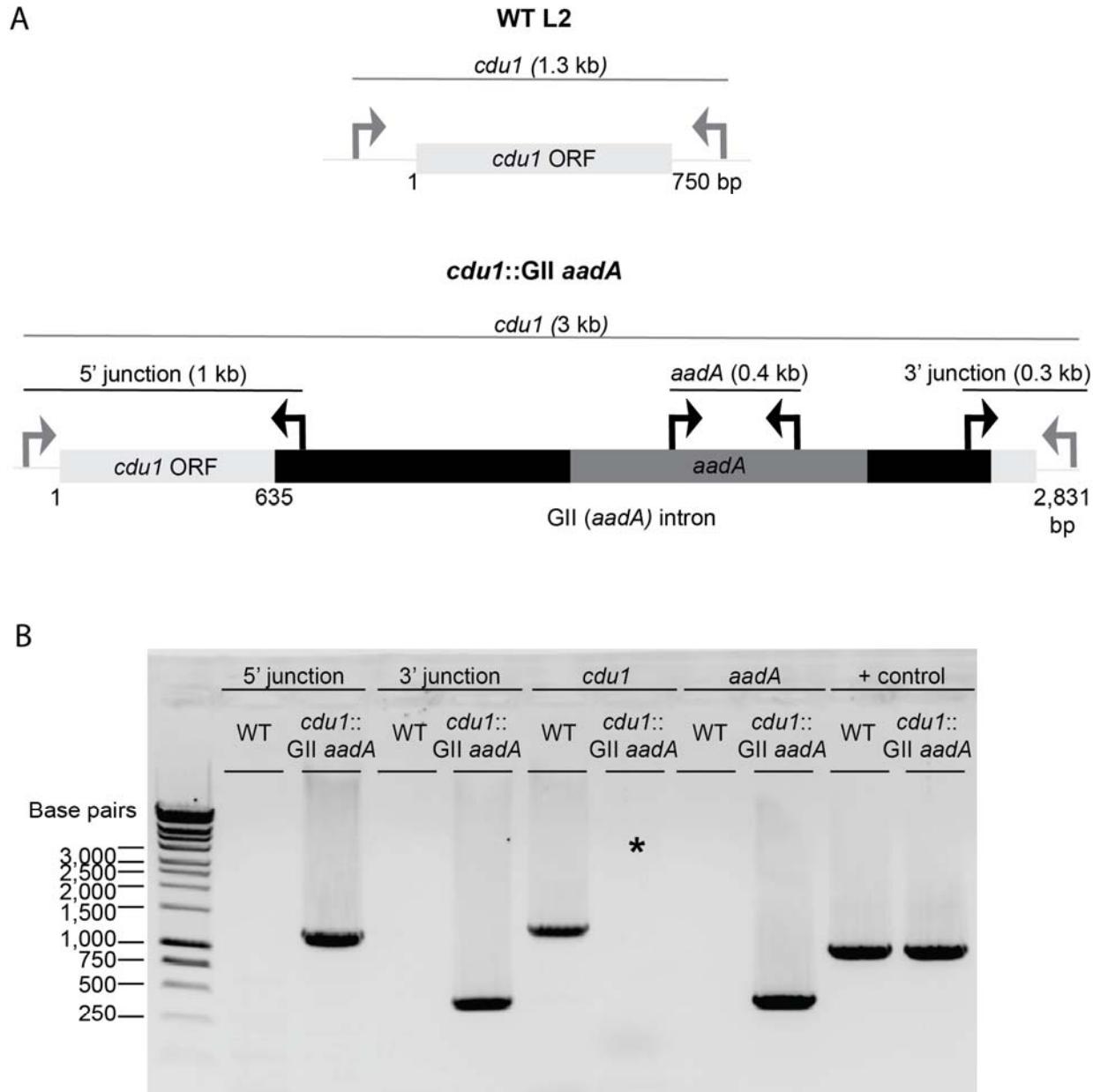

1478
1479
1480
1481

1482 **Figure 6**

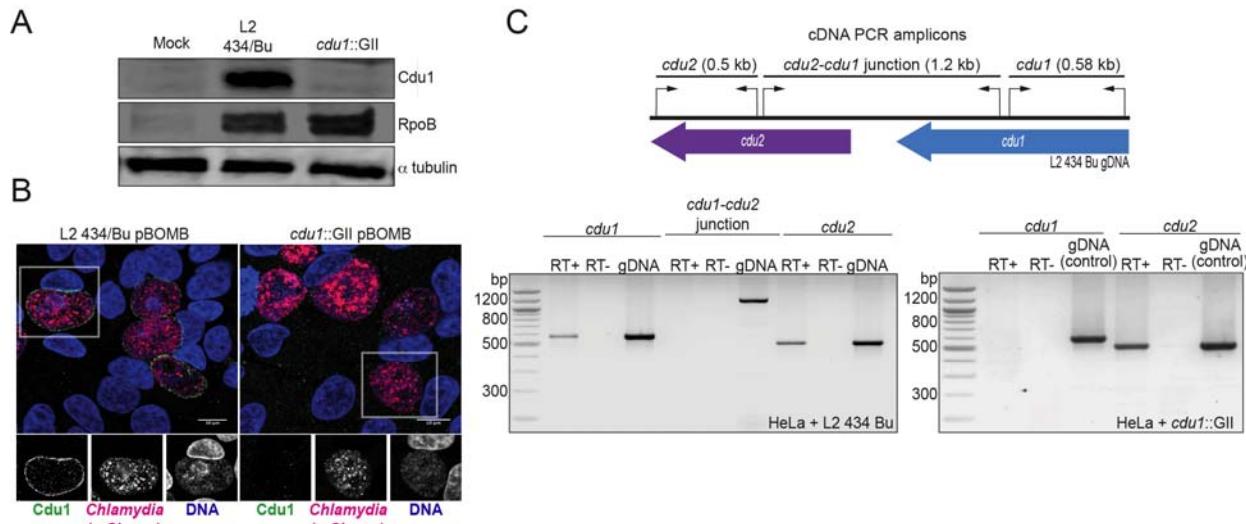

1483 **Cdu1 is required for assembly of F-actin, Golgi ministack repositioning, and MYPT1**
1484 **recruitment to the inclusion.**

1485 **(A)** Examples of representative images of F-actin (arrowheads) (green, Alexa FluorTM
1486 Phalloidin) assembled around the Ct inclusion (magenta, anti Cdu1 and Cap1 staining) in HeLa
1487 cells infected for 40 hours. Representative images for each strain analyzed can be found in
1488 Supplemental Figure 7. **(B)** Quantification of Ct inclusion surrounded by F-actin normalized to
1489 the total number of inclusions analyzed during infection of Hela cells at 40 hpi. Quantification of
1490 surrounding F-actin were obtained from inclusions imaged in 6 fields across 3 independent
1491 biological replicates. *p* values were determined by one-way ANOVAs with a Student-Newman-
1492 Keuls post hoc test. Strains used: WT L2 (Rif-R 434 Bu, parent of M407), M407 (*inaC* null
1493 strain) p2TK2, M407 p2TK2-InaC, WT L2 (434 Bu) pBOMB, *cdu1::GII* pBOMB, *cdu1::GII*
1494 pBOMB-Cdu1 Flag, *cdu1::GII* pBOMB-Cdu1^{C345A} Flag, *cdu1::GII* pBOMB-Cdu1^{I225A} Flag, and
1495 *cdu1::GII* pBOMB-Cdu1^{K268E} Flag. **(C)** Sample representative images of Golgi (anti GM130
1496 staining, magenta) around Ct inclusions in HeLa cells infected for 24 hours. Representative
1497 images for each strain analyzed can be found in Supplemental Figure 8. **(D)** Quantification of
1498 Golgi dispersal around the Ct inclusion during infection of Hela cells for 24 hpi. The length of
1499 Golgi dispersed around each Ct inclusion imaged was measured and normalized to the
1500 perimeter length of each inclusion (% Golgi dispersion around the inclusion). Golgi dispersal
1501 around Ct inclusions was quantified from inclusions imaged in 6 fields across 3 independent
1502 biological replicates. *p* values were determined by a student paired t-test. Strains analyzed were
1503 the same ones as mentioned in (B). **(E)** Representative images of MYPT1 (magenta) at Ct
1504 inclusions (green, anti-IncA staining). Arrowheads represent *cdu1* null inclusions with low
1505 MYPT1 signal. DNA stained with Hoechst is shown in blue in panels C and E. Scale bar: 10 μ m.
1506 **(F)** Quantification of MYPT1 at Ct inclusions as shown in (E). Representative images in (E) and
1507 quantification of MYPT1 recruitment in (F) were obtained from inclusions imaged in 6 fields
1508 across 3 independent replicates. *p* values were determined by a student paired t-test.

1509
1510

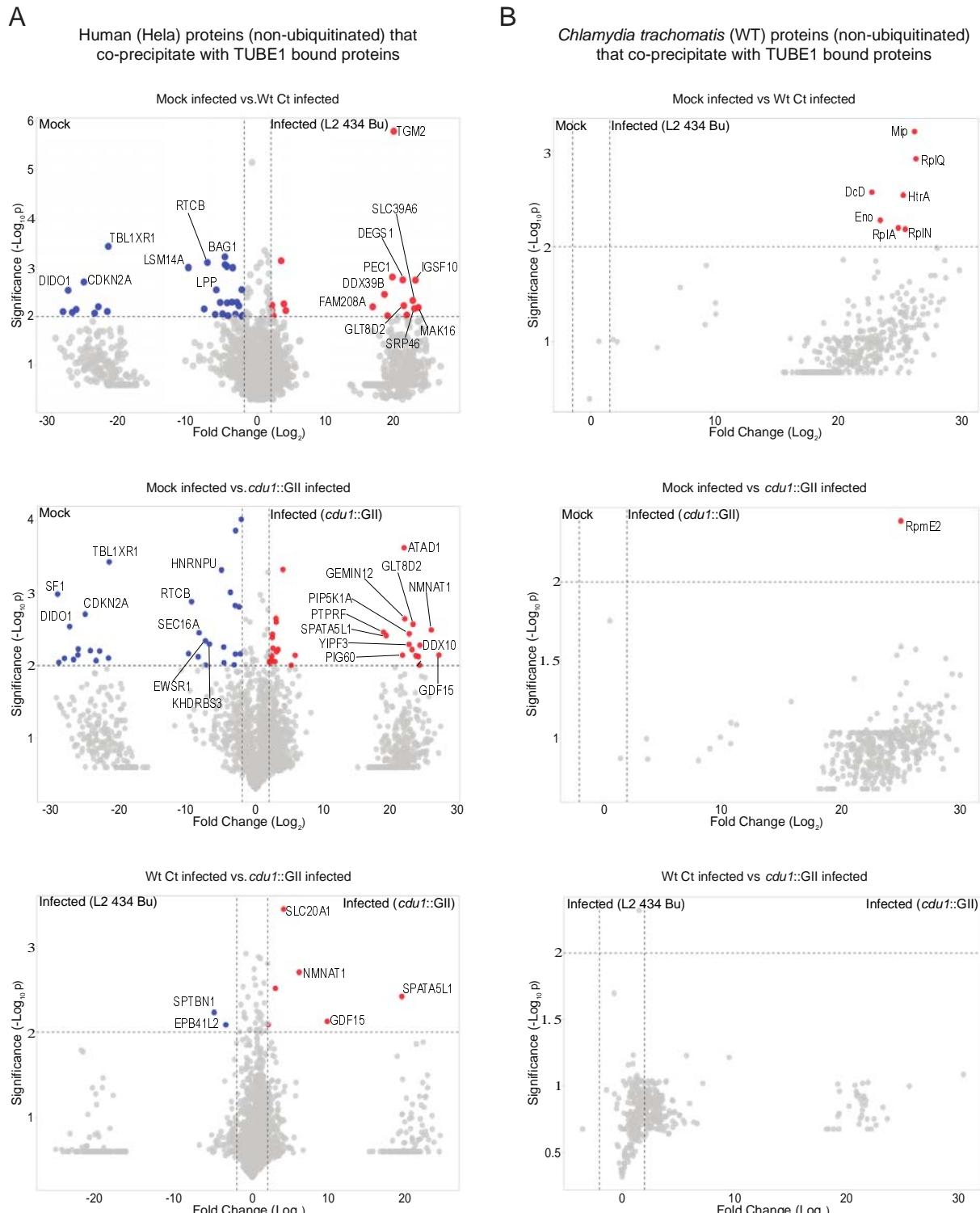

Figure 7
Cdu1, InaC, and IpaM are required for optimal extrusion of Ct inclusions from HeLa cells.
(A) Representative images of extrusions isolated from HeLa cell monolayers infected with Ct strains for 52 hours. Scale bar: 200 μ m **(B)** Quantification of the number of extruded inclusions produced by infected HeLa cell monolayers. p values were determined by a student paired t-test. **(C)** Quantification of the size of extruded inclusions quantified in (B). Extruded inclusions varied in size among cells infected with wild type L2 (average: 43 μ m), *ipaM* mutants (average: 56 μ m) and *cdu1* mutants complemented wild type Cdu1 (average: 52 μ m) and Cdu1 (DUB-) (average: 60 μ m). p values were determined by one-way ANOVAs with a Student-Newman-Keuls post hoc test. Representative images in (A) and quantification of extrusion number in (B) and extrusion size in (C) are based on images obtained from 6 fields across 3 independent biological replicates.

1525
1526


1527 **Figure 8.**
1528 **A model for acetylation mediated protection of the Inc proteins InaC, IpaM, and Ctl0480**
1529 **from degradation.**

1530 The cellular Ub machinery targets *C. trachomatis* effectors, including the Inc proteins InaC,
1531 IpaM, and Ctl0480 for ubiquitination and subsequent protein degradation. *C. trachomatis*
1532 counters such defense mechanisms by translocating Cdu1 which protect itself and all three Inc
1533 proteins from being targeted for ubiquitination and degradation through its acetylase activity.
1534 Cdu1 protects InaC and enables the recruitment of F-actin scaffolds and Golgi ministacks to the
1535 inclusion perimeter and Ctl0480 to recruit the Myosin II regulator MYPT1. All three inclusion
1536 proteins and Cdu1 promote extrusion and dissemination of *C. trachomatis* inclusions late in
1537 infection. Image generated with BioRender.com.
1538
1539

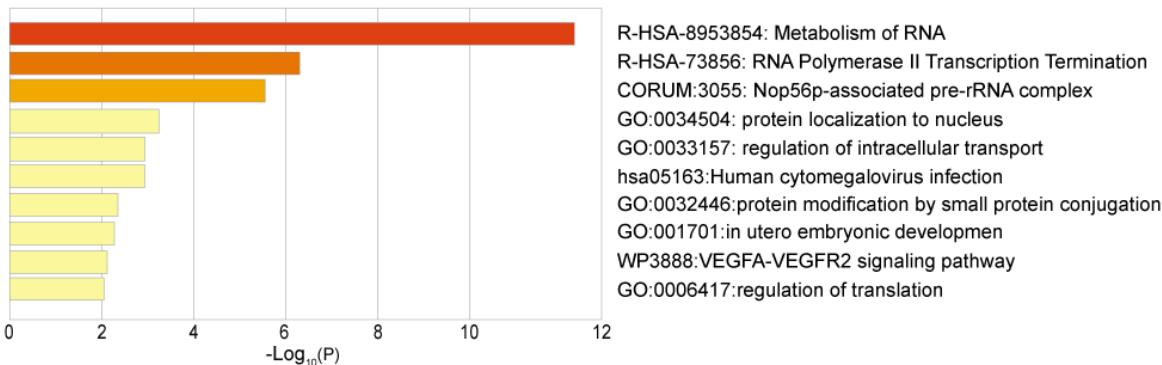
1541 **Supplemental Figure 1**
1542 **TargeTron mediated disruption of the L2 *cdu1* ORF.** (A) Depiction of the *cdu1* ORFs in WT
1543 L2 and *cdu1::GII* strains with corresponding diagnostic PCR amplicons. (B) PCR analysis of the
1544 disrupted *cdu1* ORF in the *cdu1::GII* strain. *Amplification of *cdu1* ORF in *cdu1::GII* strain was
1545 unsuccessful due to size of amplicon. + control: WT *cdu2*.
1546


1547

1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562

Supplemental Figure 2

Generation of a *cdu1* null strain in *C. trachomatis* (L2). (A) Western blot analysis of protein lysates derived from HeLa cells infected with a Ct L2 434 Bu parental strain (L2) and an L2 *cdu1*::GII *aadA* (*cdu1*::GII) strain for 24 hours. Blots were probed with antibodies raised against recombinant Cdu1 (amino acids 71-401), Ct RpoB (bacterial RNA polymerase), and human α tubulin. (B) HeLa cells infected with L2 transformed with pBOMB4-MCI empty vector (L2 pBOMB) and *cdu1*::GII transformed with empty pBOMB4-MCI (*cdu1*::GII pBOMB) were fixed at 24 hpi and stained with Cdu1 antisera. Cdu1 signal is depicted in green, Ct cells expressing mCherry (encoded in pBOMB4-MCI vector) are shown in red, and DNA stained with Hoechst in blue. Scale bar: 10 μ m. (C) Total RNA isolated from HeLa cells infected with L2 and *cdu1*::GII strains for 24 hours was used to synthesize cDNAs which served as templates for PCR analysis of *cdu1*, *cdu2*, and *cdu1-cdu2* bicistronic expression. RT+: Total RNA + reverse transcriptase. RT-: Total RNA without reverse transcriptase. gDNA: Genomic DNA.

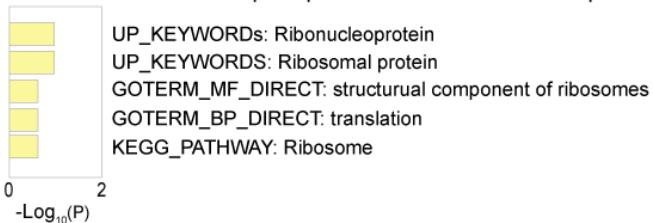

1563
1564
1565
1566
1567
1568

Supplemental Figure 3
Proteins co-precipitating (non ubiquitinated) with human and Ct proteins enriched by TUBE 1 pulldowns. (A) Volcano plots (pairwise comparisons) of human proteins (non-ubiquitinated) that co-precipitate with TUBE1 bound proteins in mock infected HeLa cells and HeLa cells infected with L2 or *cdu1* null strains (24 hpi). **(B)** Volcano plots (pairwise

1569 comparisons) of Ct TUBE1 co-precipitating proteins (non-ubiquitinated) identified in mock
1570 infected HeLa cells and HeLa cells infected with L2 or *cdu1* null strains (24 hpi).
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584

A

Metascape pathway enrichment analysis: Human proteins (non-ubiquitinated) that co-precipitate with TUBE1 bound proteins in mock infected Hela cells


B

Metascape pathway enrichment analysis: Human proteins (non-ubiquitinated) that co-precipitate with TUBE1 bound proteins in *cdu1::GII* infected Hela cells

C

DAVID pathway enrichment analysis: *Chlamydia trachomatis* (L2) proteins (non-ubiquitinated) that co-precipitate with TUBE1 bound proteins in infected Hela cells

1585

Supplemental Figure 4

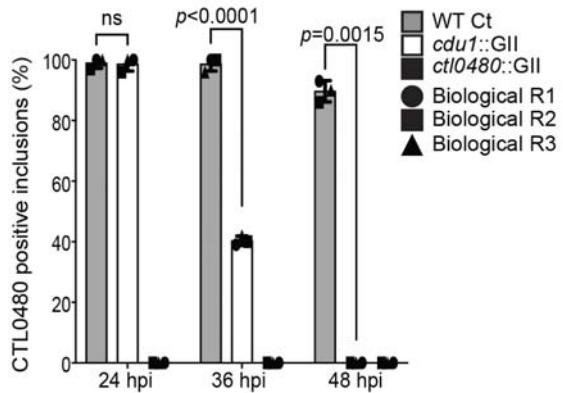
1586 **Pathway enrichment analysis of human and Ct proteins that co-precipitate (non**
1587 **ubiquitinated) with TUBE1 bound proteins. (A)** Metascape functional enrichment analysis of
1588 human co-precipitating proteins in mock infected HeLa cells. **(B)** Metascape functional
1589 enrichment analysis of human co-precipitating proteins in *cdu1* null infected HeLa cells. **(C)**
1590 DAVID pathway enrichment analysis of Ct co-precipitating proteins enriched in infected (L2 and
1591 *cdu1* null) HeLa cells.

1592

1593

1594

1595

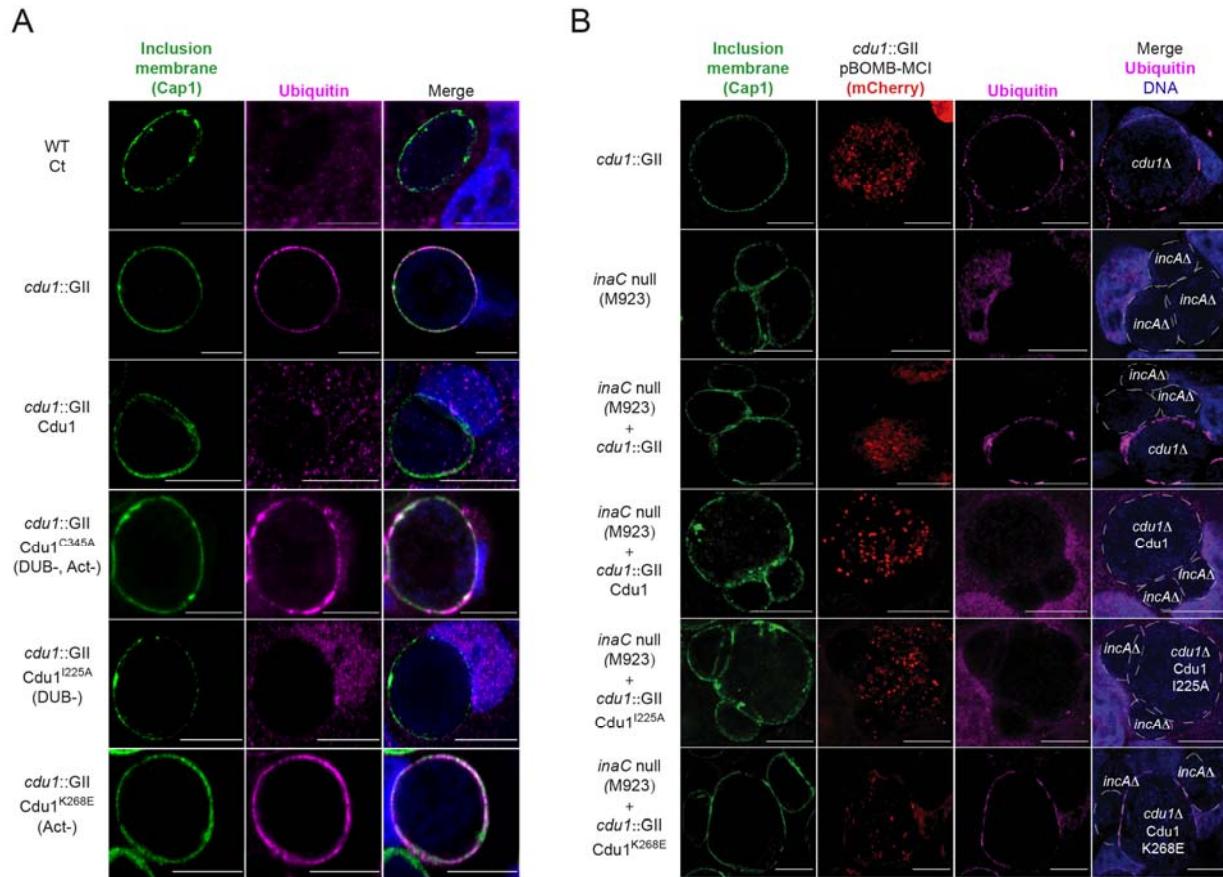

1596

1597

1598

1599

1600



1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612

Supplemental Figure 5

Quantification of CTL0480 at Ct inclusion membranes.

Quantification of CTL0480 localization at Ct inclusion membranes as shown in Figure 3E. CTL0480 fluorescent signal was used to determine the percent of inclusions displaying CTL0480 at the inclusion membranes. Representative images and quantification of CTL0480 positive inclusions are derived from Ct inclusions imaged in 10 fields across 3 independent biological replicates. p values were determined by a student paired t-test.

1613

1614

Supplemental Figure 6.

1615

The Acetylase activity of Cdu1 is the predominant activity of Cdu1 responsible for protecting Ct inclusions from ubiquitination.

1616

1617

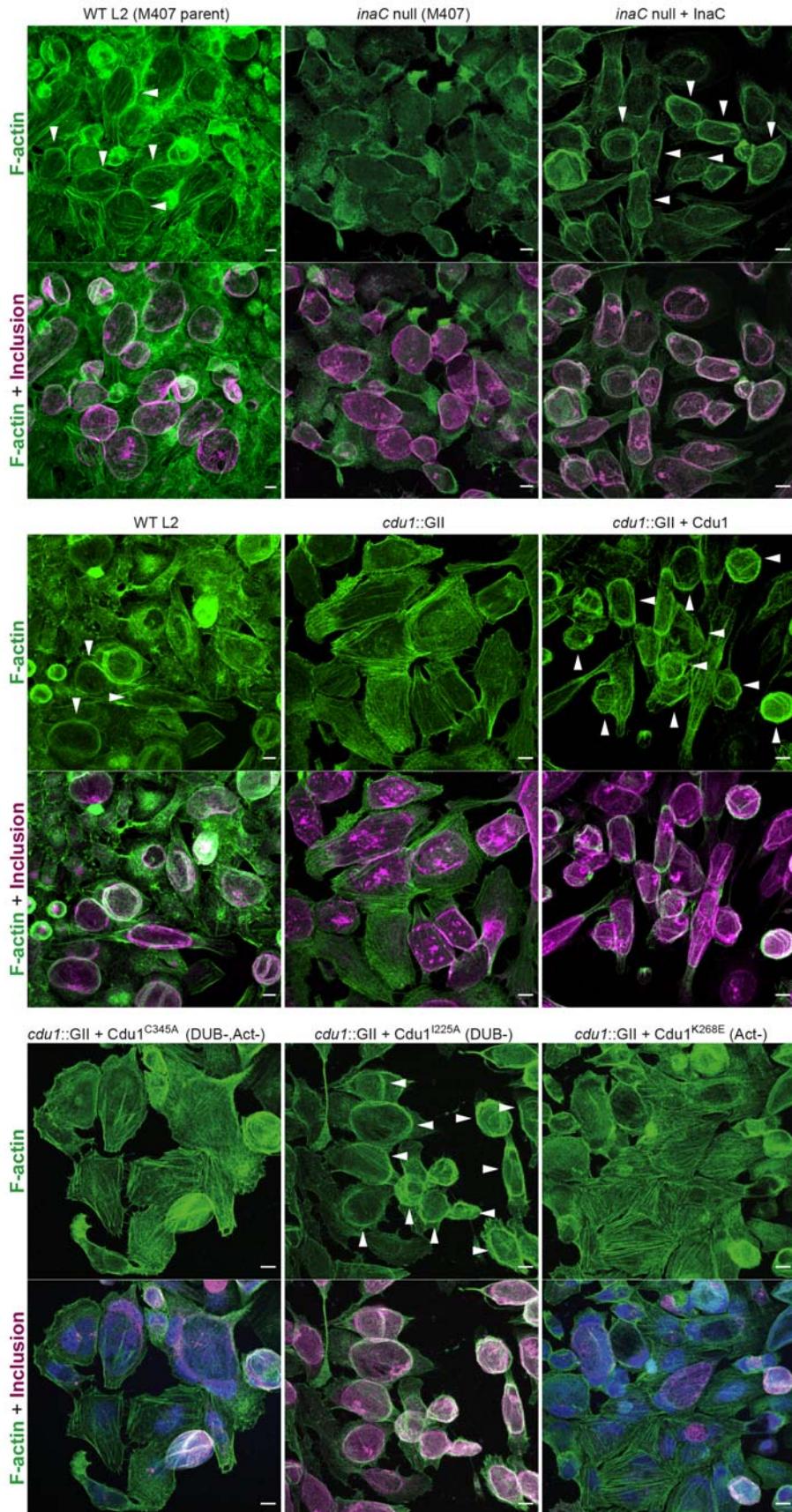
1618

1619

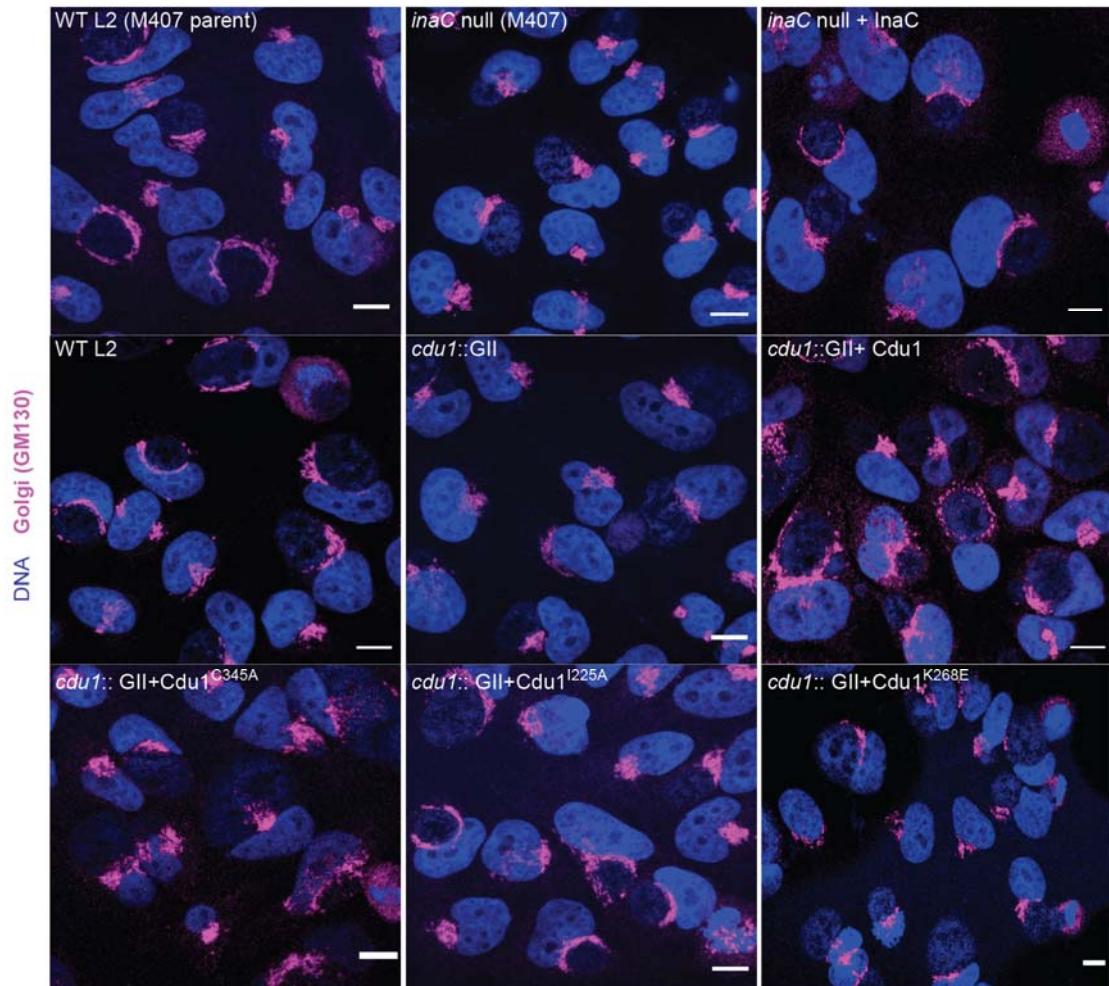
1620

1621

1622

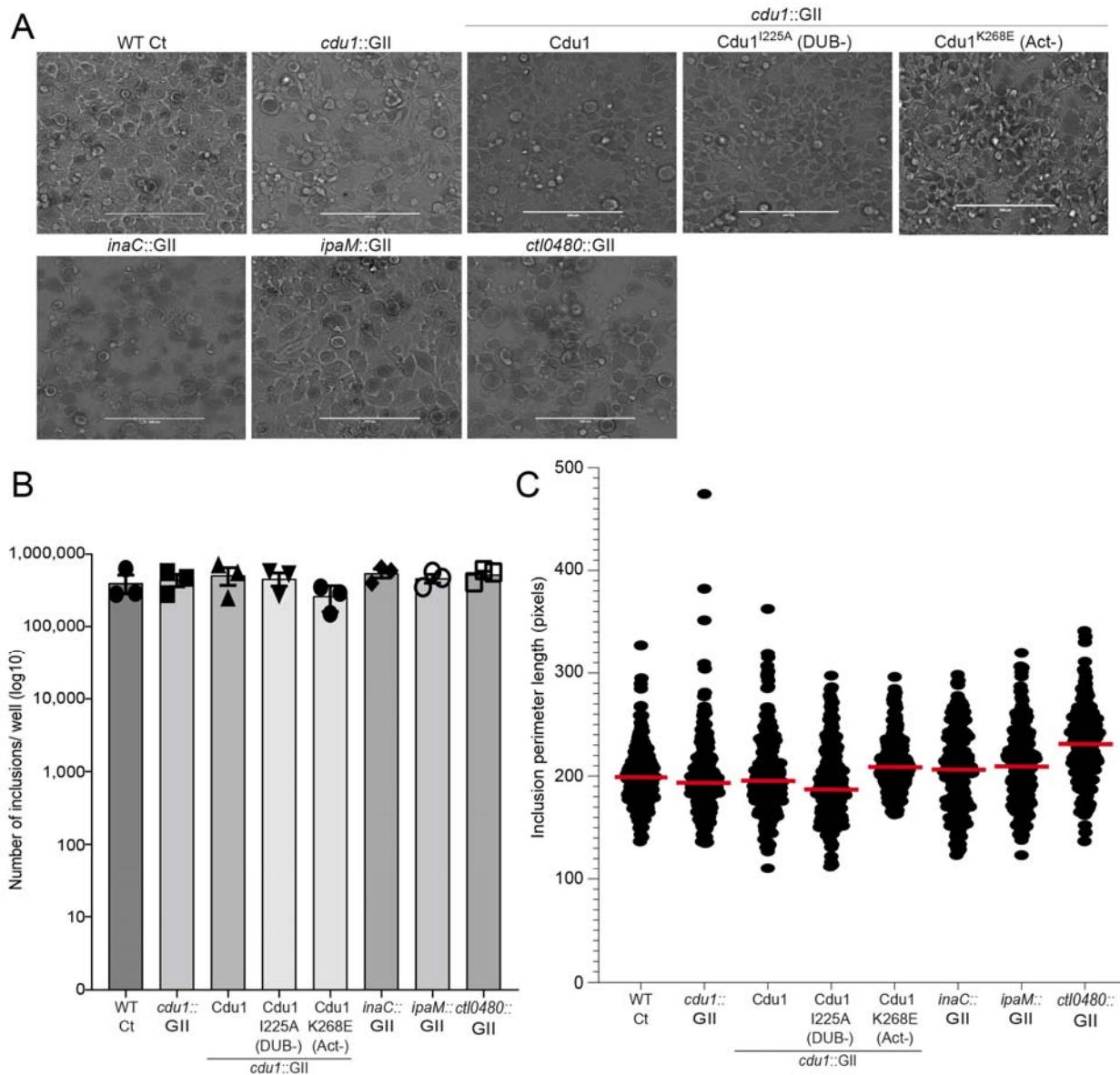

1623

1624


1625

1626

(A) Representative images of Ct inclusions (green, Cap1) decorated with Ubiquitin (magenta, FK2 antibody) in HeLa cells infected for 24 hours. Strains used: WT Ct (L2 434 Bu), cdu1::GII pBOMB MCI, cdu1::GII pBOMB MCI-Cdu1 Flag, cdu1::GII pBOMB MCI-Cdu1^{C345A} Flag, cdu1::GII pBOMB MCI-Cdu1^{I225A} Flag, and cdu1::GII pBOMB MCI-Cdu1^{K268E} Flag. (B) Representative images of HeLa cells co-infected with an *inaC* null strain and *cdu1*::GII strains expressing Cdu1 variants for 24 hours. Strains used: *cdu1*::GII pBOMB MCI, *inaC* null (M923), *cdu1*::GII pBOMB MCI-Cdu1 Flag, *cdu1*::GII pBOMB MCI-Cdu1^{C345A} Flag, *cdu1*::GII pBOMB MCI-Cdu1^{I225A} Flag, and *cdu1*::GII pBOMB MCI-Cdu1^{K268E} Flag. DNA stained with Hoechst is shown in blue. Scale bar: 10μm. MCI= mCherry.


1628 **Supplemental Figure 7**
1629 **The DUB activity of Cdu1 is not required for assembly of F-actin around the Ct inclusion.**
1630 Representative images of F-actin (arrowheads) (green, Alexa Fluor™ Phalloidin) assembled
1631 around the Ct inclusion (magenta, anti Cdu1 and Cap1 staining) in HeLa cells infected for 40
1632 hours. Strains used: WT L2 (Rif-R 434 Bu, parent of M407), M407 (*inaC* null strain) p2TK2,
1633 M407 p2TK2-InaC, WT L2 (434 Bu) pBOMB, *cdu1::GII* pBOMB, *cdu1::GII* pBOMB-Cdu1 Flag,
1634 *cdu1::GII* pBOMB-Cdu1^{C345A} Flag, *cdu1::GII* pBOMB-Cdu1^{I225A} Flag, and *cdu1::GII* pBOMB-
1635 Cdu1^{K268E} Flag. DNA stained with Hoechst is shown in blue. Scale bar: 10 μ m.
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648

1649
1650

1651 **Supplemental Figure 8**
1652 **The DUB activity of Cdu1 is not required for Golgi ministack repositioning around the Ct**
1653 **inclusion.**

1654 Representative images of Golgi (anti GM130 staining, magenta) around Ct inclusions in HeLa
1655 cells infected for 24 hours. Strains used: WT L2 (Rif-R 434 Bu, parent of M407), M407 (inaC null
1656 strain) p2TK2, M407 p2TK2-InaC, WT L2 (434 Bu) pBOMB, *cdu1::GII* pBOMB, *cdu1::GII*
1657 pBOMB-Cdu1 Flag, *cdu1::GII* pBOMB-Cdu1^{C345A} Flag, *cdu1::GII* pBOMB-Cdu1^{I225A} Flag, and
1658 *cdu1::GII* pBOMB-Cdu1^{K268E} Flag. DNA stained with Hoechst is shown in blue. Scale bar: 10μm.
1659

1660
1661
1662
1663
1664
1665
1666
1667

Supplemental Figure 9

The number of inclusions and the size of inclusions in *cdu1* null, *inaC* null, *ipaM* null, and *ct10480* null strains are similar across each strain **(A)** Representative images of inclusions in infected HeLa cell monolayers at 48 hpi. Scale bar: 200 μ m **(B)** Quantification of the number of inclusions in infected HeLa cell monolayers. **(C)** Quantification of inclusion size.