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Abstract 17 

Grapevine (Vitis vinifera) breeding reaches a critical point. New cultivars are released every year with 18 

resistance to powdery and downy mildews. However, the traditional process remains time-consuming, 19 

taking 20 to 25 years, and demands the evaluation of new traits to enhance grapevine adaptation to 20 

climate change. Until now, the selection process has relied on phenotypic data and a limited number 21 

of molecular markers for simple genetic traits such as resistance to pathogens, without a clearly 22 

defined ideotype and was carried out on a large scale.  To accelerate the breeding process and address 23 

these challenges, we investigated the use of genomic prediction, a methodology using molecular 24 

markers to predict genotypic values. In our study, we focused on two existing grapevine breeding 25 

programs: Rosé wine and Cognac production. In these programs, several families were created through 26 

crosses of emblematic and inter-specific resistant varieties to powdery and downy mildews. 30 traits 27 

were evaluated for each program, using two genomic prediction methods: GBLUP (Genomic Best 28 

Linear Unbiased Predictor) and LASSO (Least Absolute Shrinkage Selection Operator). The results 29 
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revealed substantial variability in predictive abilities across traits, ranging from 0 to 0.9. These 30 

discrepancies could be attributed to factors such as trait heritability and trait characteristics. 31 

Moreover, we explored the potential of across-population genomic prediction by leveraging other 32 

grapevine populations as training sets. Integrating genomic prediction allowed us to identify superior 33 

individuals for each program, using multivariate selection index method. The ideotype for each 34 

breeding program was defined collaboratively with representatives from the wine-growing sector. 35 

Introduction 36 

Plant breeding has been a key lever to adapt varieties to human use and the environment. The genetic 37 

gain obtained after one cycle of a breeding program is given through the breeder’s equation (Lush, 38 

1937). It depends on the additive genetic variance of the population, the accuracy and intensity of 39 

selection, and the cycle length. In grapevine, this cycle length is about 20 to 25 years, when accounting 40 

for phenotyping new varieties (Töpfer and Trapp, 2022). Thus, grapevine breeding is critically long and 41 

hereafter the genetic gain is reduced. Because of its perennial nature, grapevine needs to be adapted 42 

to challenging conditions, in a increasingly variable environment, due to climate change (Santos et al., 43 

2020).  44 

In the past years, grapevine breeding in Europe has been focused on disease resistance to powdery 45 

and downy mildews (Eibach et al., 2007; Schneider et al., 2019; Töpfer and Trapp, 2022). The French 46 

INRAE-ResDur program generated a dozen of varieties, all with at least two major resistance genes for 47 

each disease. The whole selection process lasted around 15 to 20 years (Reynolds and TBX, 2015; 48 

Schneider et al., 2019). Thus, there is a critical need for accelerating this selection process, while 49 

accounting for other traits related to climate change. Marker-assisted selection (MAS) was used in the 50 

INRAE-ResDur program to early detect seedlings with all resistance genes. However, most quantitative 51 

traits involved in adaptation to climate change are under a complex genetic determinism, with possibly 52 

thousands of genes involved (Alonso-Blanco and Méndez-Vigo, 2014; Flutre et al., 2022). In that case, 53 

QTL detection results in many small effects often overestimated and that are not transferable through 54 

MAS to breeding (Beavis et al., 1994; Crossa et al., 2017; Meuwissen et al., 2016; Xu, 2003).  55 

Genomic selection (GS) has been proposed to avoid these limitations, thanks to the availability of 56 

genome-wide markers (Bernardo, 1994; Meuwissen et al., 2001). In GS, all markers are analyzed 57 

together and their associated effects on the phenotypes are jointly estimated in a training set 58 

population (TS). Then, these effects are applied in a validation set population (VS), on which only 59 

genotypes are available (Heffner et al., 2009). GS has been widely applied to animal and plant breeding, 60 

with some scarce examples of applications in grapevine (Brault et al., 2021, 2022b; Flutre et al., 2022; 61 

Fodor et al., 2014; Migicovsky et al., 2017; Viana et al., 2016). Especially, GS has only been applied in a 62 
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research context, with varieties not intended for breeding. GS allows to save time in the breeding 63 

programs but it offers other interests (Consortium et al., 2021). Indeed, using GS allows testing of more 64 

crosses and offspring because no phenotyping is needed. Then, the selection intensity is increased, as 65 

more genotypes are tested, increasing the selection gain according to the breeder’s equation. 66 

Concerning the selection accuracy, the impact of GS is balanced. On the one hand, GS implies 67 

concentrating phenotyping on the training population, with possibly more replications that can 68 

increase the heritability and accuracy of the model. On the other hand, using a GS model trained in a 69 

population genetically far from the selection population would reduce the predictive ability (Brault et 70 

al., 2022b). One challenge of GS is then to find a trade-off between the advantages and drawbacks of 71 

GS in terms of prediction accuracy. 72 

Once predicted or observed genotypic values are acquired, the breeder needs to select the best 73 

individuals in the population, by taking into consideration several traits and making compromises. This 74 

can be streamlined with a linear multi-trait selection index. The most famous selection index is the 75 

Smith-Hazel index (Smith, 1936). Since then, other algorithms have been developed to account for the 76 

multicollinearity between the traits (Olivoto and Nardino, 2021; Rocha et al., 2018). In grapevine, the 77 

ideotype (i.e., the criteria to combine all traits to get the best performing variety in each environment) 78 

is complex, because the wine is a transformed product and its quality relies on many variables 79 

(Reynolds and TBX, 2015; Töpfer and Trapp, 2022). Such an ideotype is likely to vary across wine 80 

regions. Specifically, the grapevine ideotype will include traits for which the genetic value must be 81 

maximized or minimized (directional selection) and traits for which an optimum value would be sought 82 

(stabilizing selection). Moreover, quality traits such as acids, sugars, anthocyanins, tannins, and volatile 83 

compounds interact with yield-related variables (Reynolds and TBX, 2015).  84 

This article describes and proposes an application of GS to two breeding programs of grapevine 85 

varieties. These two breeding programs were compared, with a similar design of experiments but 86 

various traits and ideotypes. First, we fitted a mixed linear model for each experiment to extract 87 

genotypic values, then we applied genomic prediction within the training set to estimate predictive 88 

ability. Finally, we used multi-trait selection index to select the most promising individuals from 89 

predicted genotypic values. 90 

Material and methods 91 

Design of experiment 92 

Two breeding programs were compared: the Martell breeding program, funded by Martell company 93 

which produces Cognac and conducted by the conservatory of the Charente vineyards, INRAE and IFV 94 
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in France; and the EDGARR breeding programs, conducted by the Center for Rosé, INRAE, and IFV in 95 

France for producing Rosé wine. Both programs included crosses between varieties emblematic of the 96 

region and varieties with polygenic resistance to powdery and downy mildews (inter-specific hybrids). 97 

In both programs, after MAS, unselected individuals from the crosses were planted in a pot to 98 

constitute the TS, for genotyping and phenotyping while selected individuals were only genotyped and 99 

constitute the VS, except for a few families only present in the VS (Figure S1). 100 

The Martell program included four famous grape varieties (Monbadon, Montils, Rayon d’Or, and Vidal 101 

36), and the EDGARR experiment included two famous grape varieties (Cinsaut and Vermentino). The  102 

 103 

genetic relatedness between the individuals of the TS and the VS could be full-sibs, half-sibs, or no 104 

genetic relationship. A major difference between these programs was the number of genotypes. In the 105 

Martell program, there were 347 and 277 individuals in the TS and VS, respectively. In the EDGARR 106 

program, there were 193 and 132 individuals in the TS and VS, respectively.  107 

 108 

Genomic data analysis 109 

The same genotyping approach was used in both programs. Genotyping was done using the 110 

genotyping-by-sequencing technology, using the ApeKI restriction enzyme (Elshire et al., 2011). 111 

Keygene N.V. owns patents and patent applications protecting its Sequence Based Genotyping 112 

technologies.  113 

Figure 1 Design of experiment for EDGARR and Martell breeding programs 
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For EDGARR and Martell programs, SNP markers with more than 10% missing data and with less than 114 

20 reads were discarded, producing 27,271 and 10,602 remaining SNPs, respectively. These markers 115 

were mapped to the updated version of the reference genome, PN40024.v4.2 (Velt et al., 2023). 116 

Genotypes with more than 50% missing data were also discarded. The remaining SNPs were imputed 117 

using Beagle software version 5.4 (Browning et al., 2018). Markers with a minor allele frequency lower 118 

than 1% were removed, giving a final table for EDGARR of 19,228 SNP markers for 326 individuals and 119 

for Martell of 10,380 SNPs for 624 individuals.  120 

Then, for each cross, outlying individuals were detected using the Mahalanobis distance (Mahalanobis, 121 

1936), with a p-value of 1%. 122 

Phenotypic data analysis 123 

EDGARR 124 

The individuals in the training population (e.g., 193 genotypes) were planted in pots, without 125 

rootstock. The vinestocks were managed to fast fruiting to accelerate the production of grapes. The 126 

experimental trial was located at the Espiguette domain, in Grau-du-Roi, in the South of France 127 

(43°29'48.5"N 4°08'13.2" E). There was one repetition per genotype, except for a small number of 128 

repeated controls (Cinsaut, Vermentino, Grenache and Syrah, with 5 or 6 repetitions). 129 

In this population, 30 traits were phenotyped for two years (2018 and 2019), and 5 additional traits 130 

were phenotyped for one year. Traits were divided into five categories, namely acids with cis- and 131 

trans-coutaric acids, caftaric, ascorbic, hydroxycinnamic, malic, shikimic, tartaric acids, pH, and total 132 

acidity; color traits with blue, yellow and red absorbance, lightness, yellow and red indices, color 133 

intensity, tint and polymeric pigments at 420 and 520 nm; sugar traits with glucose and fructose; 134 

polyphenol traits with total polyphenol index, anthocyanin concentration; and finally agronomic and 135 

technologic traits with berry weight, glutathione, number of clusters and harvest date. A full 136 

description of these traits and summary statistics can be found in table S2 and table S3. Clusters were 137 

sampled when the sugar content reached 22° brix (gram of saccharose / 100 g). Some traits were 138 

measured with two non-redundant units: in concentration (g/l) and in amount in berries (mg/g of 139 

berries). 140 

For the extraction of genotypic values, we first applied a full mixed model for each trait phenotyped 141 

for two years: 142 

yijkl = μ + 𝐺𝐺𝑖𝑖 + 𝐶𝐶𝑗𝑗 + 𝑥𝑥 + 𝑦𝑦 + 𝑌𝑌𝑘𝑘 + ϵ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  (1) , with 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  the phenotypic observation for a given 143 

genotype i, cross j, year k and repetition l (for controls), 𝜇𝜇 the intercept, 𝐺𝐺𝑖𝑖  the random effect of the 144 

genotype j (nested in cross i), 𝐶𝐶𝑖𝑖  the random effect of the cross, 𝑥𝑥  and 𝑦𝑦  the random effects for 145 
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coordinates of the plant in the trial, 𝑌𝑌𝑘𝑘 the fixed effect of the year (two levels), and ϵ𝑖𝑖𝑖𝑖𝑖𝑖  the residuals, 146 

assumed normally distributed. This full model was fitted with maximum likelihood, random effects 147 

were selected by a likelihood ratio test, and fixed effects were selected based on Fisher tests, using 148 

the lmerTest R-package (Bates et al., 2014). Variance components were estimated with restricted 149 

maximum likelihood on the selected model. The broad-sense heritability (H²) was computed as:  150 

𝐻𝐻2 =
σ𝐺𝐺2 + σ𝐶𝐶2

𝜎𝜎𝐺𝐺2 + 𝜎𝜎𝐶𝐶2 +
 σ𝑥𝑥2 + σ𝑦𝑦2 +  σϵ2

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛𝑛𝑛 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 (2) 151 

With 𝜎𝜎𝐺𝐺2,𝜎𝜎𝐶𝐶2,𝜎𝜎𝑥𝑥2,𝜎𝜎𝑦𝑦2,σϵ2 variances associated to genotype, cross, plot coordinates and residuals. Fitting 152 

information for all traits is available in table S4. If the genotype effect was not selected in the model, 153 

we re-fitted a simpler model with only the genotype effect as a random effect and we applied model 154 

selection only for fixed effects. 155 

Best Linear Unbiased Predictors (BLUPs) were computed as the sum of the genotypic and cross effects 156 

(when cross effect was selected). We deregressed the BLUPs with the following formula:  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =157 
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

1−�𝑃𝑃𝑃𝑃𝑃𝑃
𝜎𝜎𝐺𝐺
2 �

 (3) (Andrade et al., 2019; Garrick et al., 2009), with PEV the prediction error variance, i.e., the 158 

error associated with each BLUP value (for genotype and cross effects). This was estimated by the 159 

“postVar” parameter in ranef function from the lme4 R-package. For traits measured for one year, 160 

averaged phenotypic data per genotype was used. 161 

Martell 162 

For the Martell program, individuals were also planted in pots for the training population, without 163 

rootstocks, in Cognac region (45°44'22.9"N 0°21'58.2" E). The training set included 358 genotypes, 164 

among them, 349 came from progenies and 9 were grafted field controls (repeated 5 times). The 165 

phenotyping was done in 2021 and 2022 on potted plants for the training population. We studied 30 166 

traits, which can be classified into 6 categories: vigor, disease, phenology, agronomic, technologic, and 167 

vinification. A full description of these traits and summary statistics can be found in table S2 and table 168 

S3. Traits related to harvest were sampled at around 10 alcohol content for the referent genotype 169 

(Ugni blanc). 170 

The mixed model equation for phenotypic data analysis included effects described in (1) and some 171 

other effects: yijk = μ + 𝐺𝐺𝑖𝑖 + 𝐶𝐶𝑗𝑗 + 𝑥𝑥 + 𝑦𝑦 + 𝑌𝑌𝑘𝑘 + 𝑅𝑅𝑅𝑅𝑅𝑅3𝑖𝑖 + 𝑅𝑅𝑅𝑅𝑅𝑅3𝑖𝑖 + 𝑅𝑅𝑅𝑅𝑅𝑅1_𝑅𝑅𝑅𝑅𝑅𝑅1𝑖𝑖 + 𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖 + ϵ𝑖𝑖𝑖𝑖𝑖𝑖, with 172 

as supplementary effects, the resistance genes Rpv3, Ren3 and Run1_Rpv1, and M a factor indicating 173 

the presence of available vine spur (if one spur and one cane were present, the pruning was simple 174 

guyot). We used the same equation (2) for computing the heritability for Martell population. 175 
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Genomic prediction 176 

The same pipeline of analysis was applied to both programs. First, genomic prediction (GP) was applied 177 

to the training population for all traits available with K-fold cross-validation, repeated R=10 times, with 178 

K=5. We implemented two genomic prediction methods: GBLUP with rrBLUP R package (Endelman, 179 

2011) and the LASSO (Tibshirani, 1996), with glmnet R package (Friedman et al., 2010). GBLUP is more 180 

adapted to a complex genetic architecture (many QTLs), while LASSO is more adapted to a simpler 181 

genetic architecture. Predictive ability (PA) was estimated as Pearson’s correlation between observed 182 

and the predicted genotypic values. PA values were averaged across folds and cross-validation 183 

repetitions and standard errors were calculated. 184 

The best method among the two was chosen for each population and trait and used to predict the 185 

genotypic values for the VS. The model was refit on the whole TS (without cross-validation) for 186 

predicting genotypic values for the VS. These values were deregressed using equation (3). For the 187 

LASSO, the deregressed values were obtained by fitting the Ordinary Least Square estimator for all 188 

selected markers in the training set. 189 

For the EDGARR experiment, we predicted the berry color (red or white) using a logistic generalized 190 

linear model (GLM), adapted to binomial data with the LASSO method, using the glmnet R package, 191 

with as options family=’binomial’ and alpha=1 (Friedman et al., 2010). 192 

Selection index 193 

The selection index was designed by representatives of the wine growers for each of the two studied 194 

wine regions. It included traits for which the value needs to be maximized or minimized and traits for 195 

which an optimal value is required. The first selection criterion was the presence of the resistance 196 

genes for powdery and downy mildews, and the flower sex, handled with MAS. 197 

The resulting multivariate selection index was computed using the MGIDI method (multi-trait 198 

genotype-ideotype distance index), described in (Olivoto and Nardino, 2021). Briefly, it rescales the 199 

phenotype on a 0-100 scale, in which 100 represents the maximum or the minimum value, depending 200 

on the direction of the selection. Then it performs a factor analysis, to summarize the multi-trait 201 

phenotypes and to avoid collinearity. Finally, the MGIDI is given by the sum of the distance between 202 

the actual phenotype and the ideotype for each factor. When an optimal value was sought by 203 

professionals, we computed the difference between the optimal value and the phenotype.  204 

The selection index was applied for both programs, on predicted and deregressed genotypic values for 205 

the validation set individuals. The output of the MGIDI method included a strength and weakness view 206 

of selected individuals, with the contribution of each factor to the distance to the ideotype, and the 207 

rank of individuals, ordered by increasing MGIDI value. 208 
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Other phenotypic and genomic data 209 

We used genomic and phenotypic data from two other grapevine populations. A half-diallel population 210 

composed of 628 individuals from 10 bi-parental crosses where 5 parents were involved (Tello et al., 211 

2019), phenotyped between 2013 and 2017. The second population is a diversity panel population of 212 

277 genotypes, chosen to represent the genetic diversity of Vitis vinifera (Nicolas et al., 2016), and 213 

phenotyped between 2011 and 2012. Phenotypic and genomic data from these populations were 214 

already analyzed for genomic prediction and QTL detection in previous studies (Brault et al., 2022b, 215 

2022a; Flutre et al., 2022).  216 

There were 6 and 5 common traits with EDGARR and Martell programs, respectively. For genomic data, 217 

we performed a BLAST (Basic Local Alignment Research Tool) analysis on flanking sequences to find 218 

out the marker positions corresponding to the last version (PN40024.v4) of the Vitis vinifera reference 219 

genome (Velt et al., 2023). Then, we kept the common markers between each population and the 220 

target one (number of left SNPs displayed in Table S5). We fitted a GP model using GBLUP and LASSO 221 

for half-diallel, diversity panel, or both populations and kept the best method to predict genotypic 222 

values of EDGARR and Martell populations. We measured the predictive ability and compared it to the 223 

values from within-population GP.  224 

Results 225 

Genetic structure 226 

For the EDGARR program, 325 individuals have been genotyped for 19,228 SNP markers after filters. 227 

For the Martell program, there were 624 individuals genotyped for 10,380 SNPs. A principal 228 

component analysis (PCA) was conducted to explore the genetic structure of the population. We found 229 

that families were well separated, located between their parents. Individuals in training and validation 230 

sets displayed a clear overlap, except for some families only in the validation set (Figure S1). The PCA 231 

analysis showed some outlier individuals, spotted with the Mahalanobis distance. For the EDGARR 232 

population, we excluded 3 individuals, all from Cinsaut x 3421-F02-PL5 cross; for the Martell 233 

population, we excluded 4 individuals from 4 crosses. 234 

Overall, for both populations, the relative position of families seems to be driven by the inter-specific 235 

resistant parents. This is likely because they show more genetic diversity compared to V. vinifera 236 

varieties. 237 

 238 

 239 

 240 
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 241 

  242 

Phenotypic structure 243 

For both populations, we included environmental cofactors, despite a small number of repetitions. We 244 

were able to estimate the effects of plot position, year, and resistance gene, depending on the trait 245 

(Table S4). Broad-sense heritability values displayed a wide range across all traits. They ranged from 0 246 

to 0.76 (average of 0.39) and from 0.002 to 0.99 (average of 0.43) for EDGARR and Martell populations, 247 

respectively. From the BLUPs of genotypic values, we applied a deregression to retrieve the original 248 

scale of the data in terms of mean and variance. We checked visually the quality of deregression. The 249 

correlation between raw averaged phenotypic data and deregressed BLUPs was between 0.73 and 250 

0.98 for the EDGARR population, and between 0.60 and 0.99 for the Martell population. The matrix of 251 

pairwise genotypic correlations between the traits showed for EDGARR, that traits related to color 252 

were correlated to each other. Overall, for the other traits, genotypic correlations were mostly low 253 

(data not shown). 254 

Figure 2 PCA of genetic markers for EDGARR (A) and Martell (B) populations.  

Parents are labelled. The point shape corresponds to the type of individual, triangle: training set, square: validation set, 
points: parents of crosses. Cross names were abbreviated as follow: Vermentino (VO), Cinsaut (CST), Monbadon (MBD), 
Rayon d’Or (RO), Montils (MT) and Vidal (VD). 
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The PCA analysis showed a mild phenotypic structure (Figure S6). For EDGARR, the structure was driven 255 

by the inter-specific parents (F02-PL5 and F10-PL2) and by traits related to color, while for Martell, the 256 

crosses were more separated from each other, and the differentiation was driven by acid and yield 257 

traits. 258 

 259 

Genomic prediction results 260 

 261 

Predictive abilities were comparable for both populations and covered a wide range of values between 262 

0.04 to 0.87 (Figure 3). To avoid the effect of the genetic architecture on the predictive ability, we 263 

chose the best method between GBLUP and LASSO. Overall, GBLUP provided a better PA than LASSO 264 

for both populations, with an average of 0.41 and 0.34 for EDGARR and 0.44 and 0.39 for Martell, for 265 

GBLUP and LASSO, respectively. For EDGARR, GBLUP yielded a higher PA than LASSO for 26 traits out 266 

of 35, and 28 out of 30 for Martell. PA and heritability values were correlated for both populations, 267 

with a correlation value of 0.60 for EDGARR, and 0.42 for Martell. The different trait categories were 268 

quite evenly represented across the range of PA for both populations (Figure 3). However, traits for 269 

which the cross effect was not kept in the mixed model (1), displayed a lower PA with an average 270 

difference of 0.55 and 0.37 for EDGARR and Martell populations, respectively (Figure S7). We found 271 

Figure 3 Predictive ability for all traits for EDGARR (A) and Martell (B) populations. Error bars correspond to standard errors 
calculated across cross-validation repetitions. For each trait, the best method among GBLUP and LASSO was selected. 
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that the 4 traits measured on a semi-quantitative scale for Martell populations had a slightly lower PA 272 

(difference of 0.26, a p-value of 0.044 using a Wilcoxon test). For EDGARR data, we could not fit a 273 

mixed model for 6 traits, because they were phenotyped in a single year. For these traits, averaged 274 

phenotypic data per genotype were used for GP. We found an average PA of 0.17 for these traits, up 275 

to 0.51 for trans-coutaric acid and the GBLUP method.  276 

The predicted genotypic values were deregressed a second time in order to retrieve the initial mean 277 

and variance for each trait for applying our selection index. We computed the correlation between the 278 

genotypic values and the predicted values and visually checked that the scales were comparable. The 279 

correlations ranged from 0.42 to 1 (average of 0.82) for the EDGARR population, and from 0.24 (for 280 

vigor trait) to 1 (average of 0.87) for the Martell population. 281 

We used a GLM with the LASSO method to predict categorical color for EDGARR population. The 282 

accuracies ranged between 0.943 to 0.963, with an average of 0.952 in cross-validation. 283 

Selection index 284 

For both programs, the selection index was established by the professional committee in charge of 285 

local grapevine breeding. The first criterion was the presence of two resistance genes both to powdery 286 

and downy mildews. Then, a specific index was determined, based on the traits available. 287 

EDGARR selection index 288 

For EDGARR population, the center of Rosé established a selection index to get varieties with more 289 

acidity, less color, higher productivity, and adaptation to climate change. Finally, the corresponding 290 

ideotype included 11 traits, 5 traits to be optimized (must tartaric, malic, total acidity, pH, alcohol 291 

content), 2 traits to be minimized (color intensity and total polyphenol index) and 4 traits to be 292 

maximized (berry tint, number of clusters, berry weight and harvest date) (Table S8). We used PA 293 

values as weights associated with each trait. The MGIDI algorithm selected 3 factors, represented by 4 294 

(tartaric acid, berry lightness, berry color, color intensity, harvest date), 3 (malic acid, total acidity, pH), 295 

and 4 traits (alcohol content, total polyphenol index, number of cluster and berry weight), respectively 296 

(Table S9). Vermentino was a parent of 12 out of 15 selected genotypes, and 8 individuals from the 297 

same cross Vermentino x F10-PL2 were selected. Surprisingly, the resistant genotype F02-PL5 was not 298 

selected as a parent of the first 15 genotypes. From the PCA analysis (Figure 4), it is clear that selected 299 

individuals are phenotypically close to each other. The predicted berry color was white for 4 genotypes, 300 

and the genotype with the lowest MGIDI was predicted white. Factors 1 and 2 contributed the most 301 

to the MGIDI score for the selected genotypes, which means that they performed quite similarly for 302 

factor 3. Some genotypes performed better for some factors, such as P869-F04 for factor 1, or P596-303 
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A09 for factor 2, while others had a more balanced performance across factors, such as P249-F10 304 

(Figure S12, Table S9). 305 

Martell selection index 306 

The ideotype for Martell included 11 traits, 7 traits to be maximized (global and primary fertility, yield, 307 

tartaric acid, total must acidity, cluster weight and berry weight), 1 to be minimized (must pH), and 2 308 

with an optimum value (must malic acid and ease of detachment of pedicel, OIV 240) (Table S8). We 309 

excluded beforehand traits with a PA value lower than 0.5. The MGIDI algorithm selected 3 factors, 310 

represented by 5 (total acidity, pH, yield, primary and global fertility), 4 (cluster weight, tartaric acid, 311 

berry weight, malic acid) and 2 traits (ease of detachment of pedicel and potassium), respectively 312 

(Table S9). Among the selected traits, some of them displayed high genetic correlations (positive or 313 

negative). The average of the 15 genotypes selected followed the expected trend (increase or decrease 314 

compared to the average of the population), for all the traits, except for single berry and cluster 315 

weights (Table S9). Distributions of predicted genotypic values and the position of some parents and 316 

selected genotypes are displayed in Figure S10. For 13 out of 15 genotypes selected, Monbadon and 317 

C03-PL5 were one of the two parents (Table S11). As for EDGARR, factor 3 contributed less to the 318 

MGIDI score and genotypes displayed various strengths or weaknesses for the factors. In particular, 319 

the superior performance of E12-32G10 (ranked 1st) was due to factor 1 and 3, and E10-29D10 (ranked 320 

7th) was only due to factors 2 and 3 (Figure S12, Table S9). 321 
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Figure 4. PCA of the genotypic values for the selection candidates for the traits in the selection index for the first two 322 
principal components. Variables are displayed in red, and genotypes are colored according to their cross. Selected 323 
individuals are labelled. A: EDGARR population, B: Martell population. 324 

Across-population genomic prediction 325 

For EDGARR and Martell, within-population GP was better for 4 traits out of 6, and for 5 traits out of 326 

5, respectively. PA values for across-population GP were variable, mostly depending on the trait, on 327 

the validation population, and to a lesser extent on the training population (Figure 5). Overall, across-328 

population PA values were much higher in EDGARR than in the Martell population. For EDGARR and 329 
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two traits (shikimic acid concentration and number of clusters), using data from the diversity panel 330 

and the half-diallel led to a higher PA than using data from the same population. 331 

For EDGARR, using both data from the diversity panel and the half-diallel led to higher PA, except for 332 

the harvest date, for which a strong decrease was observed. For Martell, the diversity panel was the 333 

best training population consistently for all traits. 334 

We used for each trait and training set, the best method among GBLUP and LASSO. The results show 335 

that GBLUP was the only method selected for within-population, while LASSO was the best method for 336 

at least one trait for both populations. 337 

Discussion 338 

Our study comprised the analysis of 30 traits for two grapevine populations. Some of the individuals 339 

were only genotyped, which allowed us to perform genomic predictions. We first tested the ability of 340 

GP models to accurately predict the genotypic values in a within-population scenario. Then, we 341 

proposed a selection index and selected the most relevant individuals according to it. The ideotype 342 

was built in partnership with professional wine growers and was specific to each of the two wine 343 

regions studied. To our knowledge, this is the first time a precise ideotype is described for grapevine. 344 

Finally, some of the phenotyped traits were also available for other grapevine populations. We tested 345 

Figure 5 Comparison of the predictive ability for various training sets. A: EDGARR population, B: Martell 
population 
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to train the GP model with these less related individuals for the common traits and the results were 346 

encouraging in one of the two populations. 347 

Comparison of the populations 348 

The two populations studied were similar in the sense that they were composed of bi-parental crosses 349 

with a resistant and emblematic grapevine variety as parents (Figure 1). In both designs, the number 350 

of individuals per cross was highly unbalanced, especially in the validation set (Figure S1). We observed 351 

that number of remaining SNP markers was higher in EDGARR than in Martell population (27,271 and 352 

10,602, respectively), despite a higher number of reads per genotype for Martell (4.6 M) compared to 353 

EDGARR (4 M). This might be explained by the broader genetic diversity and less genetic relatedness 354 

of the resistant parents in the Martell population.  355 

The size of the entire population for Martell was about twice the size of EDGARR. Nevertheless, PA 356 

observed were similar for both populations, with a comparable range and average. There were only 357 

two common traits between these populations: berry weight (SBER_W_g) and number of clusters 358 

(NB_CLUST_PLANT). Other traits were close, such as malic and tartaric acids, or total acidity, but they 359 

were not measured on the same entity (berry for EDGARR and must for Martell). Then, they were 360 

considered as different traits. PA for the number of clusters was extremely different in the two 361 

populations, with low PA for EDGARR (0.09), and high PA for Martell (0.78) (Figure 3). This might be 362 

explained by the fact that for EDGARR, the number and length of shoots were not controlled. Then, 363 

the number of clusters is relative to the number of shoots and the fertility. This result is consistent 364 

with the difference in heritability values between these populations (Figure S4). For EDGARR, traits for 365 

sugar concentrations displayed low heritability and PA, probably because the sampling date was 366 

determined by a sugar threshold, thus the genetic variability for these traits was minimized. These 367 

results illustrate the effect of vineyard management and measurement methodology on heritability 368 

values. 369 

Factors affecting the predictive ability 370 

A major factor impacting PA was the presence of the cross effect in the final BLUP model (Figure S7). 371 

We found that traits with the cross effect had more differentiated genetic values per cross. Then, PA 372 

was automatically increased because we predicted both the average of a cross and the Mendelian 373 

sampling part (within a cross) (Werner et al., 2020; Würschum et al., 2017). This effect was highlighted 374 

by Werner et al., (2020), who measured PA per cross and for several crosses. However, we could not 375 

use a single cross as training or validation population, because we did not have enough genotypes and 376 

cross sizes were unbalanced. Brault et al. (2022b), compiled predicted genotypic values per cross and 377 
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calculated the PA of GP for each cross and PA for predicting the cross means. But again, we had too 378 

few individuals to accurately measure PA for each cross. 379 

As expected, the heritability values were overall correlated with PA values for both populations.  380 

Across-population GP was competitive with within-population GP for the EDGARR population (Figure 381 

5). This was unexpected since the TS used in across-population scenario was phenotyped in the field 382 

and during different years compared to EDGARR population, phenotyped in pots. In the Martell 383 

population, PA values were higher in the within-population scenario, and differences between within 384 

and across-population GP was higher compared to EDGARR population. However, we observed that 385 

PA values in across-population were higher for EDGARR than for Martell for SBER_W_g (Figure 5), while 386 

TS sizes were constant. Then, this difference in PA in the across-population scenario could be due to 387 

the differences in genetic relatedness between TS and VS, or by the phenotyping environment. The 388 

diversity panel and the half-diallel were planted about 20 km apart from the EDGARR population, and 389 

about 400 km apart from the Martell population. Our results suggest that the geographic proximity of 390 

TS and VS could have more impact on PA than genetic relatedness or TS size. 391 

In the Martell population, we studied semi-quantitative traits, which displayed slightly smaller PA than 392 

other traits (Figure S7). We considered such traits as normal traits, even if the assumption of normality 393 

was strongly violated. Recently, (Azevedo et al., 2023) showed that using a linear mixed model for GP 394 

of ordinal traits was robust but sub-optimal. They advised using Bayesian Ordinal Regression Models, 395 

even though it is computationally demanding. 396 

Future breeding programs 397 

These breeding programs aimed to save time and maximize the genetic relatedness between training 398 

and validation sets. First, individuals were filtered by MAS for disease resistance and hermaphroditism 399 

(Figure 1). The discarded individuals were quickly planted in pots to be phenotyped and serve as the 400 

TS, while genotypic values could be predicted for the VS, using GP. Such a breeding program relies on 401 

two strong hypotheses: i) phenotypes do not display a high genotype-by-environment (GxE) 402 

interaction between pots and the field, and ii) genetic relatedness is a major parameter of PA. Indeed, 403 

if we observe a strong GxE interaction, the ranking of individuals between pots and field will likely vary, 404 

hampering an accurate selection of the best individuals. To some extent, this was tested in the across-405 

population scenario and PA values were nearly as high as they were in the within-population scenario 406 

for some traits for EDGARR population. This hypothesis should be further investigated for more traits 407 

and scenarios. For the second hypothesis, if genetic relatedness was already known to affect PA, its 408 

magnitude remains unknown. Especially in this study where the VS was composed of inter-specific 409 

varieties, while phenotypic data were only available for Vitis vinifera varieties. This is the first time that 410 
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GP has been applied with such different genetic backgrounds between the training and the validation 411 

sets. We tested using completely different populations to train the model, and results were 412 

encouraging for most traits for EDGARR population, while PA values were smaller in across-population 413 

for Martell population.  414 

For across-population GP, we showed that LASSO was more often better than GBLUP, compared to the 415 

within-population scenario. This observation was also done in another study on grapevine (Brault et 416 

al., 2022b).  417 

Phenotyping environment 418 

In our design of experiment, there was no repetition of a given genotype for a given year. Despite this, 419 

we could have medium to high heritability values depending on the trait. These values must be taken 420 

with caution, as variance components are likely not well estimated with this design. 421 

Potted own-rooted grapevine phenotypes are likely to differ compared to field phenotypes. However, 422 

we have not found studies that compared both different varieties and traits related to the harvest. 423 

Most studies on pots or greenhouses were focused on disease resistance or drought tolerance. If this 424 

kind of breeding is chosen for the future, one should measure the GxE interactions beforehand. 425 

 426 

Grapevine ideotype 427 

For EDGARR, a variety for Rosé wine was sought, with a little color, while for Martell, a variety for 428 

Cognac production was sought, with a white berry color, and high yield. Beyond those criteria, both 429 

projects were aiming to counter-balanced the effects of climate change on berry composition, namely 430 

higher alcohol degree, lower acidity, and shorter growth period (Bécart et al., 2022; Cortázar-Atauri et 431 

al., 2017; Parker et al., 2020; Rienth et al., 2021, 2016). These traits interact with each other’s. Selecting 432 

varieties that are ripening later (i.e., at the beginning of autumn in the Northern hemisphere) will 433 

experience lower temperatures during ripening, which would slow the degradation of malic acid and 434 

the accumulation of sugar (van Leeuwen et al., 2019). Ideotypes are now integrating traits related to 435 

the wine product, climate change, disease resistance, and more generally to production (yield, ability 436 

to produce wine). Other traits not directly in the ideotype would also be important, such as the 437 

resistance to black-rot Guignardia bidwellii, to millerandage and to coulure (poor fruit set). Besides, 438 

one may want to select individuals with medium performance across the traits or to correct the default 439 

of current grape varieties. The last solution is possible only if musts are blended.  440 

As many other traits could not be included in the ideotype because of the difficulty of phenotyping, 441 

one must ensure that the selection intensity is not too high. Thus, enough individuals with genetic 442 
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diversity must be kept to be phenotyped for costly traits such as wine aromas later in the breeding 443 

program.  444 

Another solution for grapevine breeding would be to predict the best crosses to realize, based on the 445 

cross mean and variance prediction. The proof-of-concept for cross mean was already done in 446 

grapevine (Brault et al., 2022b) but it was not applied in a breeding context. Predicting cross variance 447 

would allow to select crosses that would result in extreme offspring phenotypes (Neyhart and Smith, 448 

2019; Wolfe et al., 2021). 449 

In contrast to other crops, the grapevine ideotype is likely to include traits for which an optimum value 450 

is sought. That is why we used deregressed genetic values so that the range of values for these traits 451 

remains meaningful to breeders. However, such double deregression as we did here could hamper the 452 

prediction quality. For the mixed model, we could have used BLUEs instead of BLUPs, but the design 453 

of experiment was too unbalanced, especially for the number of individuals per cross. 454 

Conclusion 455 

This study provided the first insights on how genomic prediction could be integrated into grapevine 456 

breeding programs. The comparison of two breeding programs helped us identify factors affecting the 457 

prediction accuracy and determining the best conditions for applying genomic prediction, notably the 458 

training population environment and phenotypic reliability. For the first time in grapevine, a multi-trait 459 

selection index was used based on predicted genotypic values to help select the best cultivars. 460 
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