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Abstract 

The rapid growth of large-scale spatial gene expression data demands efficient and reliable 
computational tools to extract major trends of gene expression in their native spatial context. Here, 
we used stability-driven unsupervised learning (i.e. staNMF) to identify principal patterns (PPs) of 3D 
gene expression profiles and understand spatial gene distribution and anatomical localization at the 
whole mouse brain level. Our subsequent spatial correlation analysis systematically compared the 
PPs to known anatomical regions and ontology from the Allen Mouse Brain Atlas using spatial 
neighborhoods. We demonstrate that our stable and spatially coherent PPs, whose linear 
combinations accurately approximate the spatial gene data, are highly correlated with combinations 
of expert-annotated brain regions. These PPs yield a new brain ontology based purely on spatial 
gene expression. Our PP identification approach outperforms principal component analysis (PCA) 
and typical clustering algorithms on the same task. Moreover, we show that the stable PPs reveal 
marked regional imbalance of brainwide genetic architecture, leading to region-specific marker 
genes and gene co-expression networks. Our findings highlight the advantages of stability-driven 
machine learning for plausible biological discovery from dense spatial gene expression data that are 
infeasible by conventional manual approaches. 

 
Introduction 
In the past decade, unsupervised explorations of large-scale single-cell transcriptomics datasets 
enabled by machine learning tools led to an unbiased definition of cell types––groups of cells with 
similar gene expression patterns1–5. Traditionally, genetic profiling requires cell isolation that discards 
the spatial information of cells within tissues or organs. Spatially resolved techniques preserve the 
spatial information which are crucial for understanding cell function and tissue organization6–8. 
Spatial patterns may correlate with specific cell types or cell type combinations and reflect local 
tissue characteristics in structure and function. To accommodate their growing popularity and data 
throughput, computational pipelines also need to incorporate spatial information in interpreting the 
outcome. Spatially-aware analytical tools apply to both healthy and diseased tissues and may help 
elucidate gene and organ function and generate viable hypotheses for disease mechanisms9–13 in the 
spatial domain. 
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A core element of biospatial information is the anatomical atlas of an organ, which is defined by 
expert annotation based on accumulated historical data. Brain atlases14,15 are comparable across 
individuals and species, facilitating cross-referencing and analysis of neural data in a consistent 
manner. For the adult mouse brain, the Allen Common Coordinate Framework (CCF 3.0) is a widely 
used atlas and ontology (hierarchical relations between parts of the atlas) built on the Allen Mouse 
Brain Atlas (ABA)16. Yet its construction is time-intensive, hard-to-scale, and potentially affected by 
human judgment. Data-driven approaches can mitigate human error, streamline the process, and 
uncover information hard to perceive by the human eye17. 

Currently, segmentation and clustering are the two main categories of machine learning approaches 
in the analysis of spatial gene expression data17–31. While these methods yield a set of spatially non-
overlapping or in some cases overlapping regions, the problem formulation focuses on local 
information and does not explicitly model the global structure of the entire gene expression data. By 
contrast, matrix decomposition techniques such as non-negative matrix factorization (NMF)32–34 
provide a model-based representation of an entire dataset as a combination of a set of dictionary 
elements or principal patterns (PPs)18,35–40. These models could reduce complex spatial patterns into 
a combination of PPs, which provide a more interpretable representation of each data point 
compared to segmentation or clustering. However, the simplest matrix decomposition model, 
principal component analysis (PCA), despite its frequent usage41–43, is not a sensible choice because 
biologically realistic assumptions, such as non-negativity, are unmet. NMF and its variants include 
non-negativity as an explicit constraint in the problem formulation, leading to a more biologically 
plausible outcome36, with relevant applications in the analysis of gene expression18,35,37,44, neural 
recordings38,39, etc. 

More importantly, we used stability-driven NMF (staNMF) algorithm18 to incorporate stability as the 
central criterion in model selection to analyze spatial gene expression datasets of the adult mouse 
brain. Stability is a measure of scientific reproducibility and statistical robustness45. It asks whether 
each step of the pipeline produces consistent results with slight perturbations in the model or 
data46,47. It is a minimum requirement for interpretability45,47 and, in the current context, essential for 
identifying biologically meaningful and coherent spatial patterns in the mouse brain48. Previous work 
has demonstrated the promise of staNMF in interpreting 2D spatial gene expression images from 
Drosophila embryos18. Here, we extend the analysis to 3D and, by spatial correlation analysis with an 
existing brain atlas16, discover that the PPs are clearly localized in single or combinations of 
anatomical regions, which suggests a gene expression-defined ontology beyond the one from 
neuroanatomy. Moreover, our analysis reveals the marked regional imbalance of gene expression, 
with the hippocampus having the most diverse gene expression than others, followed by the 
isocortex and the cerebellar regions. We recover the spatial genetic architecture using the spatial 
organization and correlation structure of the gene expression, which reveal region-specific marker 
genes as well as putative spatial gene co-expression networks (sGCNs) spanning the entire mouse 
brain. 

 

Results 

Identifying stable PPs in the Allen Mouse Brain Atlas 

Our computational pipeline is designed to extract PPs in the spatial gene expression data with 
additional pre- and post-processing steps for data preparation, quality assessment, and to derive 
biological insights (Fig. 1A). PPs or the latent factors that optimally capture data variability are 
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extracted using staNMF13,30, which involves stability analysis to ensure the reproducibility of the PPs 
(referred to as stable PPs). The analysis evaluates an instability score, here defined as the average 
dissimilarity of all learned dictionary pairs using their cross-correlation matrix. We use the Hungarian 
matching method49 (Fig. 1B) or an Amari-type error function50 (Fig. S1) to account for the invariances 
(see Methods). Overall, staNMF yields two outputs: (1) 𝐾 PPs for the whole imaging data and (2) the 
coefficients or PP weights for each gene expression image. The model reconstructs each 3D gene 
expression profile by a non-negative linear combination of the PPs. Each PP is calculated after 
model training as one of 𝐾 dictionary elements learned via staNMF. The weights of a PP or 
dictionary element for each gene are determined by the coefficients of staNMF. Our end-to-end 
pipeline is computationally efficient and can handle large datasets generated in modern spatially 
resolved sequencing techniques8,48.  

We used the pipeline to determine the PPs for 4,345 3D spatial gene expression profiles in the adult 
mouse brain (56 days old) from the ABA dataset48, where each gene was examined by whole-brain 
serial sectioning and RNA in situ hybridization (ISH) at 200 µm isotropic resolution. The 
preprocessing step uses a kNN-based voxel imputation to fill in approximately 10% missing voxel 
data in ABA. On a hold-out test set of 1,000 random voxels for each of the 4,345 genes from the 
ABA dataset (for 4,435,000 total hold-out data points), the mean error was smaller than 0.01. The 
Pearson correlation coefficient (PCC) between the measured and imputed gene expression data was 
0.52, with a p-value < 0.01. To determine stable PPs, we calculated the instability score with 100 
runs of the same algorithm across a range of 8 to 30 possible numbers of PPs. The lowest instability 
(and thus highest stability) was found when 𝐾=11, with an instability score of 0.020 ± 0.002 (1 is the 
maximum instability) for the Hungarian matching method49. The settings when 𝐾=13 and 𝐾=12 have 
the next two lowest instability scores (0.03 and 0.04, respectively, with standard deviations < 0.01). 

To assess the performance of our approach, we first compared the outcome of staNMF with PCA 
(Fig. 1B). Our results show that staNMF PPs have higher stability and lower standard deviation vs. 
PCA PPs (0.25 ± 0.01) at every value of 𝐾 tested. In terms of computational runtime, staNMF takes 
longer to run than PCA, though both are fast-running models. On a 2021 MacBook Pro M1 laptop 
CPU, where the computation was tested, it takes 26 seconds to run staNMF to create one set of 
PPs on the ABA dataset vs. 4 seconds for PCA. 

Another important aspect to evaluate is the spatial coherence of PPs, which is important for their 
biological interpretability. To this end, we used Moran’s I42,51–53, which ranges in value from –1 to 1, 
as a global summary statistic (Fig. 1C). A value close to -1 indicates little spatial organization, 
whereas a value close to 1 indicates a clear spatially distinct pattern. The average Moran’s I for 
staNMF PPs is 0.58 ± 0.12, which is considerably higher than that of PCA at 0.47 ± 0.15 (p-
value<0.001) across 20 bootstrapped simulations for each of the 11 PPs (Fig. 1D and Fig. S2). This 
suggests a stronger spatial separation and coherence of PPs obtained from staNMF than those from 
PCA (See Fig. S3A for visualization of PCA PPs). We want to point out that although staNMF PPs 
are spatially coherent, a large number of PPs tend to be present in most gene expression profiles 
(58% of all genes are represented in 9 or more PPs), suggesting the spatial heterogeneity of gene 
expression in the adult mouse brain (Fig. 1E). Only two genes are represented in a single PP (<0.1% 
of all 4,345 genes), while 438 genes are represented in all 11 PPs (10.1% of all genes).  
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Figure 1: staNMF-based computational pipeline for spatial gene expression data. A. Illustration of the 
computational pipeline with essential steps and outcomes. B. Stability analysis for staNMF PPs and PCA PPs across 
100 runs for each 𝐾	value, from 8 to 30 for ABA dataset, using the Hungarian matching method. Error bars are the 
standard deviation. C. 11 PPs generated by staNMF from the ABA dataset in 3D and projected on the coronal plane. D. 
Boxplot of Moran’s I calculated for staNMF vs. PCA PPs across 220 bootstrapped simulations (p-value<0.001). The data 
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from each individual point is shown in a vertical column to the right of the boxplot. E. The number of PPs represented by 
each staNMF gene reconstruction of the 4,345 ABA genes. F. Comparison of the reconstruction accuracy between 
staNMF and PCA. Each dot represents one gene. The  coordinates of each dot are the Pearson correlation coefficients 
between the measured gene expression in the ABA dataset and the reconstructed gene expression by staNMF or PCA. 

 

Additionally, we compared the staNMF and PCA reconstruction accuracy in a scatterplot (Fig. 1F), 
where each point represents one of the 4,345 genes in the dataset. We defined the reconstruction 
accuracy as the PCC between the reconstructed and the original gene expression image. Fig. 1F 
shows that staNMF considerably outperforms PCA in the reconstruction performance (0.62 ± 0.22 
for staNMF compared to 0.37 ± 0.37 for PCA; 24% higher accuracy for staNMF). We also found that 
our kNN imputation of missing values improves staNMF’s reconstruction accuracy of the original 
data set from 0.59 to 0.62. It is worth noting that the reconstruction accuracy will slightly increase 
with a higher value of 𝐾 (e.g. reconstruction accuracy is 0.69 for 𝐾=30). However, the instability 
score tends to decrease significantly for higher values of 𝐾	(e.g. instability score for 𝐾=30 is 0.14 vs. 
0.02 at 𝐾=11, which is roughly 7x higher). These findings indicate that staNMF outperforms PCA in 
automatically generating biologically-relevant patterns from spatial gene expression profiles. 

 

Gene expression-defined ontology from stable PPs 

To draw connections between the PPs of gene expression and the mouse brain atlas, we 
investigated their overlap using spatial correlation analysis. We first calculated the Pearson 
correlation coefficient between all 868 expert-annotated brain regions from the Allen Common 
Coordinate Framework (CCF v3.0)16 to each of the staNMF PPs. We visualize 66 of the 868 regions 
in Fig. 2 to facilitate the comparison. These 66 regions provide a complete medium-level 
representation of the mouse brain CCF. They are selected by including  all “child” regions for the 12 
coarse CCF regions (isocortex, olfactory areas, hippocampal formation, cortical subplate, striatum, 
pallidum, thalamus, hypothalamus, midbrain, pons, medulla, and cerebellar cortex/nuclei). In this 
paper, we define “coarse-level” regions as these 12 CCF regions, “medium-level” regions as their 66 
children, and “fine-level” regions as all regions that are finer than medium-level. 

We found that the gene expression-defined PPs from staNMF have similarities to the CCF ontology, 
but also major differences (Fig. 2). Three PPs (PPs 1-3) are well, yet in many cases, differentially 
correlated with select parts of the isocortex: They all have correlation with the somatosensory areas 
of the isocortex, in addition to differential correlation with other cortical areas (e.g., somatomotor, 
visual, and orbital areas of the isocortex). Interestingly, PPs 1-3 also have varying representations 
outside of the isocortex, including in the olfactory areas, hippocampal formation, and cortical 
subplate, which are each viewed as part of the cerebral cortex16. PP4 is mostly represented within 
the olfactory areas, with an especially high correlation to the main olfactory bulb and orbitofrontal 
areas of the isocortex. PP5 has a strong correlation to hippocampal formation but has some 
correlations to sub-regions within the isocortex, olfactory areas, and cortical subplate. Thus, we see 
that PPs 1-5 correlate with the cerebral cortex, one of the three highest-level CCF regions (in 
addition to the brainstem and cerebellum), but do not fit neatly within the coarse- or medium-level 
CCF regions. 
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Figure 2: Region-dependent correlation between staNMF PPs and the CCF. Bubble plot of the Pearson correlation 
between PPs (y-axis) and expert-annotated regions from the CCF in the adult mouse brain (x-axis). Each bubble 
represents the value of the correlation coefficient between each PP and a CCF region. The CCF regions with labels are 
the complete set of 66 children of the 12 coarse CCF regions and are organized left-to-right based on the CCF ontology 
map. The PPs are organized top-to-bottom based on their Pearson correlation to the CCF coarse regions. 

 

Moving next to PP6, we found a considerably high correlation between that and the striatum with 
minor expression in the cortical subplate. PP7 exhibits a high correlation only to the thalamus, 
showing good agreement with CCF’s thalamus in the overall ontology. Unlike PP7, PP8 shows 
correlations spread across multiple regions, especially the hypothalamus, midbrain, striatum, 
pallidum, and cortical subplate (in descending order of correlation), which suggests that these CCF 
regions share gene expression patterns. Similarly, PP9 is highly correlated with multiple regions in 
the brain stem areas including the medulla, midbrain, and pons, as well as a minor expression in 
cerebellar nuclei. PP10 is highly correlated with the cerebellum, with major expression in cerebellar 
vermal and hemispheric regions but not in the cerebellar nuclei. A comparison between PP9 and 
PP10 suggests that there are significant gene expression differences between the cerebellar nuclei 
and the vernal/hemispheric regions of the cerebellum. Genes that are expressed in cerebellar nuclei 
tend to also be expressed in the brain stem areas while genes that are expressed in cerebellar 
vernal/hemispheric regions tend to be exclusively present in the cerebellum. PP11 is correlated to 
most CCF regions and visual inspection (Fig. 1C) suggests that it corresponds to the noisy gene 
expression profiles throughout the brain. 
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Figure 3: Alignment between staNMF PPs and combinations of CCF regions. A. PPs (in red) and the most similar 
combination of expert-annotated regions (in green) from the adult mouse brain CCF projected on the sagittal and coronal 
planes. The green regions are selected from a single or a combination of 2, or 3 neighboring regions from all 868 CCF 
regions with the highest PCC to each PP. The top 10 PPs are shown in descending order of the correlation coefficient. 
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B. Heatmap of the correlation coefficient between staNMF PPs and each PP’s combination of CCF regions with the 
highest correlation coefficient. C. Comparison of the average maximum correlation coefficient of CCF region 
combinations to each PP for five matrix decomposition and segmentation methods: staNMF, PCA, PCA followed by k-
means, PCA followed by hierarchical clustering, and staNMF followed by hierarchical clustering.  

 

Besides examining one-to-one relation between CCF ontology and PPs, we asked which 
combination of CCF regions is best aligned with each PP. To answer this question, we ran a search 
of all possible neighboring combinations of 2 or 3 CCF regions. From a total of 868 CCF regions, we 
found 22,711 binary combinations and 1,834,540 ternary combinations that are spatially contiguous. 
We did not consider higher-order combinations due to the exponentially growing search space. We 
then identified the maximum PCC between each PP and the superset of all single CCF regions, all 
combinations of 2 CCF regions, and all combinations of 3 CCF regions. We found that the PPs tend 
to align with combinations of the coarse, medium, and/or fine CCF regions, but these combinations 
may exhibit different ontology than CCF (Fig. 3A): 

(i) PPs 1-3 have their highest correlation to combinations of three CCF regions (correlation 
coefficients of 0.73, 0.71, and 0.63, respectively), which includes the isocortex. In addition to 
isocortex, PP1 adds the anterior olfactory nucleus and the olfactory piriform area, PP2 adds two 
finer-level retrohippocampal regions including the subiculum and the fine-level layer 6a of the 
lateral entorhinal area (ENTl6a), and PP3 adds the olfactory piriform area and the entorhinal area 
(ENT) of the retrohippocampal region. 

(ii) PP4 has its highest correlation (correlation coefficient of 0.78) with the combination of 
olfactory bulb and accessory olfactory bulb with a fine-level cortical region (Orbital area, 
ventrolateral part, layer 1, referred to as ORBvl1). 

(iii) PP5 is maximally correlated with a combination of two medium-level regions from 
hippocampal formation (hippocampal region and ENTl), and the high-level cortical subplate 
region. 

(iv) PP6 has its highest correlation (correlation coefficient of 0.89) to a combination of three CCF 
regions: 1) striatum: dorsal region; 2) striatum: nucleus accumbens; 3) striatum: olfactory 
tubercle. PP6 does not include the striatum: amygdalar nuclei. Instead, the combination of 
hypothalamus, amygdalar nuclei, and midbrain is maximally correlated to PP8. Single-cell gene 
expression research has suggested that the amygdalar nucleus, midbrain, and hypothalamus 
contain cell types that are in fact highly related54. 

(v) PP7 and PP10 are the only PPs that are each maximally correlated with only one single CCF 
region: PP7 has a correlation coefficient of 0.88 to the thalamus, while PP10 has a correlation 
coefficient of 0.92 to the cerebellar cortex. 

(vi) PP9 is maximally correlated with the combination of hindbrain, midbrain, and cerebellar nuclei 
(correlation coefficient of 0.84). It organizes the midbrain and hindbrain together, and suggests a 
relatively high similarity of gene expression between the midbrain, medulla, and pons, as 
observed with single-cell transcriptomics and clustering54.  

These observations show that the PPs from gene expression partition the mouse brain differently 
than the CCF, suggesting a distinct ontology. We verify the uniqueness of the partitions by 
examining the correlation matrix between all PPs and their associated CCF combinations (Fig. 3B). 
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Most PPs (except PPs 1-3, and 11) exclusively map to their associated CCF region combinations, 
suggesting low overlap between these PPs. The average maximum correlation coefficient between 
PPs and their respective CCF region combination is 0.74±0.04. By contrast, the average correlation 
coefficient between each PP and the CCF region combinations is 0.10±0.17, except for its highest 
correlation region. PP11 has the lowest maximum correlation coefficient (0.37, vs. 0.60 as the next 
lowest) with comparable correlation coefficients to other CCF regions, further suggesting its role in 
accounting for the noise in gene expression profiles. The findings from the spatial correlation 
analysis facilitates the construction of a gene expression-defined ontology based purely on spatial 
gene expression data (Fig. S4). 

Subsequently, we conducted similar correlation analysis using the outcomes from common 
methodologies used in segmentation and clustering of spatial gene expression data. staNMF PPs 
have a higher average correlation coefficient to their respective CCF regions (0.73±0.05) compared 
to PCA PPs (0.63±0.06). Furthermore, the stronger diagonal pattern in the correlation matrix for 
staNMF (Fig. 3B) compared to PCA (Fig. S3B) suggests that staNMF PPs have a better alignment 
with the annotated brain regions. Additionally, we conducted the same spatial correlation analysis on 
PPs from typical clustering techniques. We clustered the ABA dataset using (1) PCA followed by k-
means clustering (similar to the stLearn framework55), (2) PCA followed by agglomerative hierarchical 
clustering (similar to the AGEA framework17), and (3) staNMF followed by hierarchical clustering as a 
point of comparison (Fig. 3C). staNMF has the most similar PPs to their optimal CCF regions 
(correlation coefficient of 0.73±0.05), whereas PCA, PCA followed by k-means, and PCA followed by 
hierarchical clustering have lower correlation coefficients (0.63±0.06, 0.68±0.06, and 0.70±0.06, 
respectively). Additionally, staNMF PPs have a higher similarity to CCF region combinations 
compared to staNMF followed by hierarchical clustering (0.67±0.05). The comparison demonstrates 
that the PPs from staNMF alone are more similar to the combinations of known brain regions 
compared to PCA or standard clustering approaches. 

 

Substructures of mouse isocortex in PPs 

The mouse isocortex is a layered structure56 with gene expression gradients along the 
anteroposterior and mediolateral axes5. This information, subject to the limit of data resolution, is 
also reflected in the PPs 1-3. We observe that for each of these PPs, the correlation coefficient to 
the isocortex dominates the correlation vs. the other regions that make up the highest correlated 
combination (Fig. 4A). For example, PP2 has a correlation coefficient of 0.70 to the isocortex, while 
it only has a 0.13 and 0.08 correlation coefficient to the other two regions that make up its highest 
correlated combination. Similarly, PPs 2 and 3 have correlation coefficients of 0.70 and 0.54 to the 
isocortex, respectively, while their correlation coefficients to other regions are considerably lower 
(Fig. 4A). Visualization of these three PPs suggests that they represent different spatial regions of 
the isocortex, in addition to minor components of the hippocampus and olfactory areas (Fig. 4B). 
PP1 represents the superficial layers in the frontal areas of the cortex, in addition to a partial 
representation of the anterior olfactory nucleus and the piriform area of the olfactory areas. PP2 
represents the deeper layers of the isocortex in dorsolateral regions, and has a minor correlation to 
the subiculum and entorhinal area (lateral part, layer 6a) within the retrohippocampal region. PP3 
represents the superficial layers of isocortex in dorsal regions as well as the piriform area of the 
olfactory areas and the entorhinal area of the retrohippocampal region. PP1 and PP3 have a gradual 
overlap in superficial layers, as indicated by the cyan color in Fig. 4B. 
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Figure 4. The defining PPs for the mouse isocortex. A. The three CCF regions with the highest correlations with PPs 
1-3, with the isocortex being the most correlated region. B. Merged map of the PPs 1-3 in the isocortex. Each image is a 
2D cross section viewed along the anteroposterior or dorsoventral axis (two columns). The rows represent the cross 
section used in visualization. C. Histograms of AUC values for isocortex for 1,000 runs of a logistic regression randomly 
fitting three PPs to isocortex CCF regions. The magenta vertical dashed line indicates that the AUC for PPs 1-3 are the 
best predictors of the isocortex compared to any other three random PPs. 

 

We investigated how effectively the combination of PPs 1-3 can recreate the isocortex alone by 
training a logistic regression model to predict the isocortex CCF reference map from PPs 1-3. The 
area under the receiver operating characteristic (ROC) curve or AUC measure for the prediction is 
0.99. The regression model is the most accurate model amongst 1,000 other models that uses a 
random selection of three PPs to predict isocortex (Fig. 4C). The median AUC for these 1,000 
models is 0.78 (compared to 0.99 for the model that uses PPs 1-3, as shown in the magenta vertical 
dashed line), demonstrating that they represent the isocortex as a whole. 

 

From PPs to marker genes 

Marker genes for an organ or tissue region are a set of genes with high expression within that region 
and relatively low expression in other regions. These genes are frequently used as starting points for 
understanding functions of cells and their local organization and to design genetic tools for 
experimental access to those cell types and regions for further knockout studies57,58. Given the 
relationship between PPs and brain regions established previously, one can robustly identify region-
specific marker genes using the contributions of genes to the PPs. We visualize in Fig. 5A the gene-
resolved coefficients (𝑎!") for each PP, where the genes are first ordered by the PP with the highest 
coefficient and then by their corresponding importance scores, 𝑟" = 𝑎!"/∑ 𝑎!" 	"   (𝑘 = 1,2, . . . , 𝐾). The  
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Figure 5: Marker gene identification from PPs. A. Heatmap of the gene-resolved coefficients of the 11 PPs, in 
descending order by the maximum correlation coefficient to a combination of CCF regions, as described in Fig. 3. Genes 
are assigned to the PP for which they have the highest coefficients. B. The number of significant genes for each PP, 
which is counted from the highlighted regions (by rectangular boxes) in A. C. The horizontal projection of the respective 
PP (in red) and the corresponding gene expression of the top three marker genes (in copper). The respective CCF region 
combinations are provided as text above. The name of the marker gene is displayed in the top left corner of each 
horizontal view of gene expression. 

 

total number of genes selected by the PPs is not uniform across the board (Fig. 5B). Noticeably, 
PP5 (correlated with the hippocampal region) has by far the most unique genes, with over 1,500 
genes. PP2 (correlated with the isocortex), PP9 (correlated with the hindbrain), and PP10 (correlated 
with cerebellar cortex) also have an especially large number of associated genes (represented by 
darker orange and red in the heatmap). 

Drawing from these observations and the previous work on Drosophila embryos18, we used the 
following procedure to identify the marker genes for each PP: We first extracted the staNMF 
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12 
coefficients, {𝑎!"}	(𝑘 = 1,2, . . . , 𝐾), for the 𝑗th gene. Each gene-resolved coefficient quantifies the 
contribution of the 𝑘th PP in explaining the expression of the 𝑗th gene. We then assigned each gene 
to a specific PP with the highest coefficient. Next, we calculate the importance score 𝑟" for the 𝑗th 
gene and select the three genes with the highest ones for each PP as its associated marker genes. 
Consequently, the brain regions associated with the marker genes are determined, which shows 
convincing visual alignment (Fig. 5C). The regional designation of marker genes in the mouse brain 
has biological relevance. For example, Prox1, the top identified marker gene for PP5 (associated 
with hippocampal formation and cortical subplate), is known to be widely expressed across the brain 
during development, but primarily in the hippocampus and cerebellum in adulthood59. As another 
example, Gabra6, the top identified marker gene for PP10 (associated with the cerebellar cortex) is 
known to be preferentially expressed in the cerebellum as part of a program related to 
differentiation60.  

 

From PPs to spatial gene co-expression networks (sGCNs) 

It is known that the spatial co-expression of genes yields meaningful biological relationships61,62. For 
example, an sGCN has successfully reconstructed the gap gene regulatory network in Drosophila18. 
However, few existing computational tools incorporate spatial information in identifying gene co-
expression networks, and the ones that do only leverage existing expert-defined ontologies63–66. 
Data-driven ontologies from tools like staNMF will allow better identification and exploration of 3D 
spatial gene networks. 

Building on a similar analysis for Drosophila embryos18, we used the following process to construct 
putative sGCNs for the PPs in the adult mouse brain: We first identified the top marker genes for 
each PP by selecting the genes with the top 0.025% importance scores correspondingly. Then, we 
computed the Pearson correlation coefficient between the staNMF coefficients of the two top 
marker genes of each PP. We drew an edge between two genes if their similarity score is among the 
top 5% of all similarity scores for that gene subset.  

Our analysis resulted in the selection of 10 or 11 top marker genes for each PP, which are used to 
construct the putative sGCNs (Fig. 6 for PPs 1-7, and Fig. S5 for the remaining PPs). Interestingly, 
some of the regulatory relationships that are recently found via experimental research are present in 
the sGCNs. For example, in PP6, which is correlated to striatum, seven marker genes show 
especially strong edges (Gprin3, CD4, Gpr6, Ric8b, Rgs9, Serpina9, and Gm261) and seem to form 
a hub of connections. Interestingly, a 2019 experimental study in mice found that Gprin3 controls 
striatal neuronal phenotypes including excitability and morphology, as well as behaviors dependent 
on the striatal indirect pathway and mediates G-protein-coupled receptor (GPCR) signaling67. Gpr6 is 
a GPCR gene, and Rgs9 and Ric8b are regulators of GPCR genes. In addition, Gm261 and Serpina9 
are known to impact synapse development. In addition, Prox1 and PKP2 appear as interactions in 
PP5, which is related to hippocampal formation. Interestingly, a recently published experimental 
study has identified Prox1 as a transcription factor associated with PKP2 expression68. These 
relationships could be used as leads for experimental validation when studying specific genes in 
their tissue context. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 27, 2023. ; https://doi.org/10.1101/2023.03.10.531984doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.10.531984
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

  

Figure 6: Putative spatial gene co-expression network (sGCN) construction. The sGCNs from PPs 1-7 and their 
associated brain regions from the CCF 3.0 are shown. The node color presents the selectivity of the gene to the PP 
associated with the brain region. An edge is drawn between genes if the similarity score is among the top 5% of all 
similarity scores for that gene subset. The edge thickness is proportional to the similarity scores between the staNMF 
representation of the two genes. 
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Discussion 

Unsupervised matrix factorization models are powerful machine learning tools for exploratory data 
analysis in spatial transcriptomics. Combining accurate unsupervised models with stable learning 
improves the interpretability of the resulting spatial patterns (i.e. PPs), as we have shown using 
staNMF in the present work. Our pipeline can automatically find consistent gene expression-defined 
spatial regions in 3D without supervision, eliminating the need for manual annotation. We point out 
here that anatomical atlases such as the ABA16 are constructed by dividing the brain volume into 
spatially contiguous regions without overlap. However, at the tissue or cellular level, this idealization 
is not always satisfied, and the strict division should be regarded as an approximation. Gene 
expression-defined PPs provide an automated way to explore whole-brain data with simplistic, 
spatially coherent regions that retain meaningful connections to the expert-annotated anatomical 
atlas. 

Despite the limited spatial resolution, our analysis of the current dataset encompassing the entire 
adult mouse brain reveals promising marker genes with region specificity for future investigations in 
controlled experiments. As biological processes occur in 3D space and time, analysis of the co-
expression network is inherently more reliable with data from 3D gene expression. The specific sets 
of genes and their spatial co-expression that contribute to PPs are also likely to contribute to the 
unique functions of brain regions they delineate. Those genes or their combinations identified 
through our spatial correlation analysis will be highly informative for designing genetic toolkits to 
experimentally access specific cell types and spatial domains within the organ of interest69,70. When 
combined with developmental data, these biological insights may help understand the longitudinal 
evolution of region-dependent gene expression to uncover signatures and functions hard to 
decipher from traditional transcriptomic methods without spatial information. Although the putative 
sGCNs identified here still need to be validated in controlled experiments, they may be linked to 
regulatory interactions, such as hub genes which are likely to mediate communication between 
networks, and to relationships between genes and gene modules. Our data-driven gene network 
representation might also be useful for studying disease processes such as selective vulnerability of 
certain regions to spread of pathogenic proteins in the brain71. Through integration with new scRNA-
seq datasets, these networks can be used to study the cell-type specificity of spatial interactions 
between genes and find cell-type specific gene networks. The computational pipeline in the present 
work leverages the linear relationship between PPs to identify gene networks. Future work could 
incorporate nonlinear interactions using supervised methods such as iterative random forest72 to 
uncover complex gene interactions at the scale of the mouse brain. 

Moreover, the availability of many different modalities for whole-organ imaging6,7 highlights the need 
for computational method developments along this direction. These methods would not only avoid 
human labor but are also more likely to be informative for investigating the functions of these 
regions. Besides gene expression data, the staNMF is also applicable to a broad range of biological 
data and may be used in multimodal data integration by combining learned representations. 
Potential future work will include integration with other modalities such as MRI and axonal 
projections to precisely characterize finer brain regions56,73. The computational efficiency of staNMF 
can be further improved to accommodate large datasets by exploiting the block structure of the data 
matrix or to use hierarchical updating schemes. The spatial neighborhood query in our 
computational pipeline may be upgraded into a discrete tree search to accommodate the existing 
brain ontology to explore higher-order combinations of brain regions. It is worthwhile to incorporate 
similar stability analysis in existing region-constrained matrix factorization models39,40 to assess the 
changes in the outcome. We are hopeful that the three principles for data science: predictability, 
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computability, and stability (PCS)4 7 for veridical data science, as illustrated here, will be implemented 
in more case studies to improve the reproducibility of data-driven scientific discovery. 

 

Methods 

Data description and preprocessing 

The primary dataset used in our study is the in situ hybridization (ISH) measurements from 4,345 
genes at 200 µm isotropic resolution (a matrix size of 67x41x58 for each gene expression image) 
from the adult mouse brain at 56 days postnatal48. The data was collected at the Allen Institute for 
Brain Science and is publicly available under the Allen Brain Atlas (ABA) (https://mouse.brain-
map.org/), as previously described48. An API enables the download of the data at (http://help.brain-
map.org/display/mousebrain/API). The Allen Mouse Brain Common Coordinate Framework (CCF) 
was used as the 3D reference atlas16. We used CCFv3 which is publicly available at 
(http://help.brain-map.org/display/mousebrain/api), which consists of parcellations of the entire 
mouse brain in 3D and at 10 μm voxel resolution. CCF provides labeling for every voxel with a brain 
structure spanning 43 isocortical areas and their layers, 329 subcortical gray matter structures, 81 
fiber tracts, and 8 ventricular structures. The methods for constructing the CCF dataset are 
previously described in detail16. 

At preprocessing, we imputed missing voxels in the gene expression data using a k-nearest 
neighbors algorithm74 with 6 neighbors. To test the efficacy, we calculated the accuracy on a hold-
out test set of 1,000 random voxels for each of the 4,345 genes from the ABA dataset (for a total of 
4,435,000 data points). Following data imputation, we created a brain mask representing all the 
voxels of the mouse brain using the CCF which results in 55,954 voxels, vs. the total cube array of 
159,326 voxels, reducing the number of voxels used for subsequent analysis by roughly two-thirds. 
Once the analysis was run, we unmasked the analysis outcomes and transformed the data back to 
the original shape (67x41x58). The data processing uses the codebase osNMF 
(https://github.com/abbasilab/osNMF), short for ontology discovery via staNMF. 

The staNMF framework 

Non-negative matrix factorization (NMF)32–34 decomposes the data matrix into 𝐾 dictionary elements 
and associated coefficients, resulting in parts-based representations of the original data. Stability-
driven NMF (staNMF)18 is a model selection method that helps determine 𝐾 through stability 
analysis. To apply staNMF to the 3D gene expression, we first transformed the imputed data into a 
matrix of voxels by genes (of size 55,954 by 4,345). The voxels were masked to leave out only those 
in the brain as previously described. The voxel-by-gene matrix is the input of the NMF algorithm 
which factorizes the gene data matrix into principal patterns (PPs). Formally, let X	= 	 [𝑥1, 𝑥2, . . . , 𝑥#]	, 
be a 𝑣 × 𝑛 data matrix, where v is the number of unique voxels and 𝑛 is the number of genes 
represented. Let D	= 	 [𝑑1, 𝑑2, . . . , 𝑑$], be a 𝑣 × 𝐾 matrix, representing a dictionary with 𝐾 elements or 
atoms (columns of D), and A	= 	 [𝑎1, 𝑎, . . . , 𝑎%], be a 𝐾 × 𝑛 matrix, representing the coefficient matrix. 
Under the current problem setting, NMF aims to minimize the loss function 

   

subjecting to non-negativity conditions D	≥ 0, A	≥ 0.	The subscript F indicates the Frobenius norm. 
We used the scikit-learn75 implementation of NMF with default settings of the tolerance of the 
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stopping condition (tol=0.0001) and the maximum number of iterations (max_iter=200). The staNMF 
is trained using coordinate descent (solver=’cd’), which alternately optimizes the D and A matrices 
and is frequently used for NMF76. 

The stability analysis for NMF selects the parameter 𝐾 computationally using an instability score. In 
our work, we ran the NMF algorithm 𝑁=100 times at each integer value of 𝐾 from 8 to 30. For each 
𝐾, we compute an instability score that is the dissimilarity of learned dictionary pairs (𝐃 and 𝐃′) 
averaged over 𝑁 runs. According to this definition, the optimal choice of 𝐾 would result in highly 
stable dictionaries upon random initialization. The dissimilarity (dsim) is formulated using the cross-
correlation (xcorr) matrix, 𝐂=xcorr(𝐃, 𝐃′), between each dictionary pair and requires accounting for 
the scaling and permutation invariance of the learned dictionary elements33,77. Cross-correlation 
directly accounts for the scaling invariance between dictionaries in its normalization factor. To 
account for permutation invariance, we chose two distinct ways: The first way is to solve an 
assignment problem for the columns of 𝐃 and 𝐃′ beforehand using the Hungarian matching (HM) 
method49, followed by calculation of the dissimilarity score, 

 

where (𝑘, 𝑙) indicates assigned index pairs of 𝐃 and 𝐃′ (𝐾 index pairs in total), the HM superscript 
indicates the cross-correlation matrix 𝐂 calculated after applying the HM method. The second way is 
to account for the permutation invariance directly in the formulation of the dissimilarity metric using 
an Amari-type error function50, 

 

In either definition, the dissimilarity metrics are aggregated into the instability score 𝛾	using a simple 
average over 𝑁(𝑁 − 1)/2 distinct pairs18, 

 

Stability analysis using either construction of the instability score yields the same result (𝐾 = 11) for 
the most stable number of PPs (Fig. 1B and Fig. S1). 

Spatial neighborhood query 

A brain atlas or parcellation B, with dimensions 𝑎 × 𝑏 × 𝑐, is a set of connected volumes, also called 
brain regions or parcels15, {𝐵&}&'1%  such that ⋃&'1

%  𝐵& = B. Numerically, each 𝐵& is represented by a 3D 
segmentation mask, 𝐵& ∈ 𝑅(×*×+, where the voxels within the mask (i.e. the support) have the value 
of 𝑖 and those outside are 0. For the CCF 3.0 used in this work, 𝑛 = 868. The brain atlas is organized 
hierarchically based on biological knowledge of the brain regions, however, their precise spatial 
relationships are not explicitly given. We construct an adjacency list representation of the spatial 
relationship between brain regions for the subsequent analysis. This representation is commonly 
used in the spatial computing78 and image processing79 communities for its convenience. We call 
two brain regions, 𝐵& and 𝐵", are neighboring or spatially contiguous if they contain adjacent voxels. 
Because the support of each 𝐵& has a different shape, we carried out the spatial queries of 
neighboring brain regions using image morphological (i.e. binary dilation) and logical operations to 
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obtain the adjacency list. A pseudocode for generating all pairwise neighbors EF𝐵& , 𝐵"GH of brain 
regions is given in Algorithm 1. The triplewise neighbors EF𝐵& , 𝐵" , 𝐵,GH are generated similarly starting 
from existing pairwise neighbors, while the condition for spatial contiguity is that the third region (𝐵,) 
after dilation is overlapping with at least one member (𝐵& or 𝐵") of a neighboring pair. 

 
Algorithm 1 Spatial neighborhood query (pairwise in 3D) 

 
1:    function  PairwiseNeighbors(atlas) 
2: # Calculate the number of brain regions 
3: n = Unique(atlas) 
4: adjacency_list = [] 
5: all pairs = Combinations(Range(1, n)) 
6: # Check the overlap between each pair 
7: for (i, j) in all pairs do 
8: # Mask normalization (by the index i or j), then dilate the brain regions 
9: DB_i = BinaryDilate(B_i / i) 

10: DB_j = BinaryDilate(B_j / j) 
11: # Test of spatial contiguity 
12: if Sum(DB_i == DB_j) > 0) then 
13: # The ith and jth regions are neighbors (their dilated versions 
14: have non-vanishing overlap) 
15: Append(adjacency_list, (i, j)) 

16: return adjacency_list 
 

Spatial correlation analysis 

The overlap between the PPs and the brain regions are calculated by Pearson correlation (Corr). Let 
𝑋! be the volumes defined by a PP with index 𝑘, our spatial correlation analysis seeks the 
combination of spatially contiguous regions that maximize the Pearson correlation. For the 𝑘th PP, 
the expression for maximal correlation with two F𝜌!,(2)∗ G and three F𝜌!,(3)∗ G regions for are written as, 

 

 
where  denotes the combined region of the pair F𝐵& , 𝐵"G after mask normalization ( ). 
Similarly,  denotes the combined region of the triple F𝐵& , 𝐵" , 𝐵,G after mask normalization. 
The terms  and  may be regarded as random variables indicating 
the random combinations of regions, where 𝑠 denote the spatial coordinates. The maximization is 
conducted by exhaustive search over the respective adjacency list obtained from the spatial 
neighborhood search. 

Moran’s I 

To quantify the spatial coherence of PPs, we used Moran’s I statistic51. It was originally used in 
geostatistics and has more recently been used in spatial gene expression literature42,52,53. Moran’s I 
ranges in value from -1 to 1. A value close to -1 indicates little spatial organization, similar to a chess 
board with black and white squares distributed across the board. A value close to 1 indicates a clear 
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spatially distinct pattern, such as if all the black squares in a chess board were on one side and all 
white squares on the other. We calculated Moran’s I as follows42: 

𝐼	 = 	
𝑁
𝑊
∑ ∑ 𝑤&"(𝑥& 	− 	𝑥)(𝑥" 	− 	𝑥)1

"'2
1
&'1

∑ (𝑥& 	− 	𝑥)31
&'1

. 

Here, xi and xj represent the PP coefficient at voxel locations i and j, respectively. 𝑥 is the mean gene 
expression level of each PP. N is the total number of voxel locations, wij is the spatial adjacency 
relationship (based on the adjacency matrix, w) between voxels i and j. W is the sum of all entries in 
w, which represents the cumulative total adjacencies. We mask the dataset to only include the brain 
region. Then, for each voxel, we select up to 6 voxels for determining adjacency (up, down, left, 
right, forward, background, where available), following the “rook” definition of neighborhood. We 
assign wij=1 if voxel j is adjacent to 𝑖, and wij=0 otherwise. Given the large size of the adjacency 
matrix (159,326 x 159,326), we downsampled the PPs by removing every other row in each of the 
three dimensions to improve computational efficiency. Given certain voxels had multiple PPs with 
small but non-zero coefficients, we assigned each voxel in the brain map to the PP with the highest 
coefficient for that voxel. This ensures that unique voxels are not represented by multiple PPs.  

3D visualizations of PPs 

The 3D gene visualizations were performed using Napari viewer, a multi-dimensional image viewer 
for Python80. Key settings in Napari for PPs included: opacity=1, gamma=1, blending='additive', 
depiction='volume', and rendering=’attenuated MIP’. MIP stands for maximum intensity projection, 
which enhances the 3D representation of objects. We moved the slide bar to 20% from the left side 
for ‘attenuated MIP.’  

Data availability 

The data used in this study is publicly available under the Allen Brain Atlas (ABA) 
(https://mouse.brain-map.org/). The intermediate files are freely available at 
https://github.com/abbasilab/osNMF. 

Code availability 

The software package is freely available at https://github.com/abbasilab/osNMF. 
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Supplementary Figures 

 

 

Figure S1: Stability analysis with Amari-type error function. Instability score of staNMF PPs and PCA PPs 
across 100 runs for each 𝐾	value, from 8 to 30 for ABA dataset. The error bars are the standard deviation. 
This figure uses Amari-type error, while Fig. 1B uses the Hungarian matching method. Both approaches 
identify 𝐾	= 11 for the minimum instability score (and thus most stability) for staNMF PPs. 

 

 

 

Figure S2: Moran’s I per PP from staNMF and PCA. The plot uses data from 20 bootstrapped simulations 
for each PP, for a total of 220 simulations for staNMF PPs and 220 simulations for PCA PPs. The mean 
Moran’s I was 0.58 ± 0.12 for staNMF and 0.47 ± 0.15 for PCA. The p-value between the two samples was 
<0.001. The PPs from staNMF show greater spatial coherence, or higher Moran’s I, than those from PCA for 
all but one case (PP8). 
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Figure S3: Similarity of PCA PPs to the expert-annotated brain regions. A. 11 PPs generated by PCA, 
ordered based on highest coarse region correlation to CCF ontology in 3D and projected on the coronal 
plane. B. Heat map of the correlation coefficient between PCA PPs and the most similar combination of CCF 
regions (with the highest correlation coefficient).  
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Figure S4: Summary of staNMF PPs mapping to the best-fit combination of Allen CCF regions. The 10 
PPs from main text Fig. 3 mapped to their best-fit combinations of CCF regions.  
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Figure S5: Putative spatial gene co-expression network construction, continued. Extension of Fig. 6 of 
the main text, the sGCNs from PPs 8-11 and their associated brain regions from the CCF 3.0 are shown. The 
node color presents the selectivity of the gene to the PP associated with the brain region. An edge is drawn 
between genes if the similarity score is among the top 5% of all similarity scores for that gene subset. The 
edge thickness is proportional to the similarity scores between the staNMF representation of the two genes. 
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