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Abstract 

 
Precise electrode localization is important for maximizing the utility of intracranial EEG data. 
Electrodes are typically localized from post-implantation CT artifacts, but algorithms can fail due to 
low signal-to-noise ratio, unrelated artifacts, or high-density electrode arrays. Minimizing these 
errors usually requires time-consuming visual localization and can still result in inaccurate 
localizations. In addition, surgical implantation of grids and strips typically introduces non-linear 
brain deformations, which result in anatomical registration errors when post-implantation CT 
images are fused with the pre-implantation MRI images. Several projection methods are currently 
available, but they either fail to produce smooth solutions or do not account for brain deformations. 

To address these shortcomings, we propose two novel algorithms for the anatomical registration of 
intracranial electrodes that are almost fully automatic and provide highly accurate results. We first 
present GridFit, an algorithm that simultaneously localizes all contacts in grids, strips, or depth 
arrays by fitting flexible models to the electrodes’ CT artifacts. We observed localization errors of 
less than one millimeter (below 8% relative to the inter-electrode distance) and robust performance 
under the presence of noise, unrelated artifacts, and high-density implants when we ran ~6000 
simulated scenarios. Furthermore, we validated the method with real data from 20 intracranial 
patients. 

As a second registration step, we introduce CEPA, a brain-shift compensation algorithm that 
combines orthogonal-based projections, spring-mesh models, and spatial regularization constraints. 
When tested with real data from 15 patients, anatomical registration errors were smaller than those 
obtained for well-established alternatives. Additionally, CEPA accounted simultaneously for simple 
mechanical deformation principles, which is not possible with other available methods. Inter-
electrode distances of projected coordinates smoothly changed across neighbor electrodes, while 
changes in inter-electrode distances linearly increased with projection distance. Moreover, in an 
additional validation procedure, we found that modeling resting-state high-frequency activity (75-
145 Hz) in five patients further supported our new algorithm. 

Together, GridFit and CEPA constitute a versatile set of tools for the registration of subdural grid, 
strip, and depth electrode coordinates that provide highly accurate results even in the most 
challenging implantation scenarios. The methods presented here are implemented in the iElectrodes 
open-source toolbox, making their use simple, accessible, and straightforward to integrate with 
other popular toolboxes used for analyzing electrophysiological data. 

 

 

Keywords: stereo electroencephalography (SEEG), electrocorticography (ECoG), intracranial EEG 
(iEEG), depth electrodes, subcortical grids, subdural grids, simulations. 
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List of abbreviations 
BIC: Bayesian Information Criteria  
BF: Bayes Factor  
CEPA: Combined Electrode Projection Algorithm  
ECoG: Electrocorticography 
EEG: Electroencephalography 
MRI: magnetic resonance imaging  
fMRI: functional MRI 
HFA: High-Frequency Activity 
HD: High-Density 
IED: Inter-Electrode Distance 
iEEG: Intracranial EEG 
LME: Linear Mixed-Effects  
LRT Likelihood Ratio Tests  
MAD: Mean Absolute Deviation  
PCA: Principal Component Analysis 
SEEG: Stereo EEG 
SCE: Smooth Cortical Envelope 
SNR: Signal-to-Noise Ratio 
 
Equation’s variables and constants   
do jk initial distance between points j and k 
dLoc Max maximum normalized localization error 
dLoc Med median normalized localization error 
djk distance between points j and k 
dProj j normalized projection distance for electrode j 
e0 initial electrode locations  
eAS anchored coordinates from Normal-SCE projection 
eAG anchored coordinates from Normal-Grid projection 
e electrodes location 
eGridFit GridFit localized coordinates 
eVis visually localized coordinates 
kCorr  co-registration weighting constant 
kDef deformation weighting constant 
kTrans translation weighting constant 
kAnch anchoring weighting constant 
kRough roughness weighting constant 
m structural model coordinates 
tk back-projection displacement vector for electrode k 
v voxel coordinates  
w voxel intensities  
 
D inter-electrode distance 
ECorr co-registration cost 
EDef deformation cost 
ETrans translation cost 
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EAnch anchoring cost 
ERough roughness cost 
GH horizontal deformation matrix 
GV vertical deformation matrix 
K nine-point stencil kernel 
LH horizontal Laplacian matrix 
LV vertical Laplacian matrix 
 
 
NVox (N) number of thresholded voxels 
NElec  (P) number of electrodes  
NConn  (Le) number of connections within a model 
NAdj (C) number of adjacent pair of electrodes 
NAnch   number of anchoring methods 

NRows (A) rows 
NCols (B) columns 
NMod (M) number of structural model points 
 
T array thickness   
𝜎 spatial dispersion constant of the co-registration 
 
Notes:  
Lowercase bold indicates vectors.  
Uppercase bold indicates matrices.  
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1. INTRODUCTION 

Most human intracranial electroencephalography (iEEG) studies are conducted in patients with 
drug-resistant epilepsy where subdural grids and depth electrodes are implanted to identify and 
characterize the brain areas involved in the onset and propagation of seizures (Parvizi & Kastner, 
2018). iEEG records the brain’s electrical activity with a higher simultaneous spatial and temporal 
resolution than non-invasive methods such as scalp EEG, functional magnetic resonance imaging 
(fMRI), or near-infrared spectroscopy.  
 
One critical precondition for this superior spatial resolution is the precise localization of the 
intracranial electrodes with respect to the brain’s anatomy. In this way, the precision and accuracy 
of intracranial electrode localization procedures have a crucial impact on the interpretation of iEEG 
in the context of clinical and cognitive neuroscience studies. 
 
Specific patterns of neural activity in the time and frequency domains are used to define the 
epileptogenic zone, and the brain areas to be resected (Lesser et al., 2010; Grinenko et al., 2018; 
Campora et al., 2019; Dellavale et al., 2020). Additionally, motor, sensory, and language areas are 
usually mapped for clinical reasons, i.e., the identification and preservation of eloquent cortex 
(Jayakar et al., 2016; Parvizi & Kastner, 2018). Moreover, iEEG recordings provide a unique 
opportunity to study normal brain function during resting state and cognitive tasks with direct 
access to the cortex and deep structures (Jacobs & Kahana, 2010; Mukamel & Fried, 2012). iEEG 
signals reflect the complex interactions of diverse and distributed populations of neurons in the 
brain. In addition, the method allows the investigation of information flow in neurocognitive 
processes by modeling communication across brain areas or induced electrical stimulation activity 
(Collavini et al., 2021; Johnson et al., 202, Parvizi & Kastner, 2018). 
Remarkably, iEEG can reliably capture high-frequency activity (HFA, 70-200 Hz), which 
corresponds to the average spiking activity of neurons and dendritic potentials within ~5 
millimeters of the recording electrode (Ray & Maunsell, 2011; McCarty, 2021, Leszczynski et al., 
2020). Thus, high-frequency activity is an accurate marker of task-related cortical activity with high 
spatial accuracy (Helfrich & Knight, 2016; Holdgraf et al., 2016; Zheng et al., 2017; Parvizi & 
Kastner, 2018; Blenkmann et al., 2019; Johnson et al., 2020; Hamilton et al., 2021).  
 
Over the past decade, several approaches have been proposed to register the anatomical coordinates 
of intracranial electrodes. Most of them are based on CT and MRI images, with a few approaches 
focusing on post-implantation CT and MRI images (Blenkmann et al., 2015; LaViolette et al., 2011; 
Hinds et al., 2018). However, the vast majority of methods use post-implantation CT and pre-
implantation MRI (Hermes et al., 2010; Dykstra et al., 2012; Brang et al., 2016; Princich et al., 
2013; Branco et al., 2018a; Centraccio et al., 2021; Hamilton et al., 2017, Trotta et al., 2018). In 
these approaches, electrodes are localized within CT images and then transferred to the co-
registered MRI for anatomical description. The localization procedure is usually manual, where the 
coordinates are obtained by visually detecting high-intensity CT artifacts produced by the metallic 
contacts within a lower-intensity background (Hermes et al., 2010; Dykstra et al., 2012; Stolk et al., 
2018). More recently, the localization has been approached by semi-automatic techniques such as 
clustering voxels of high-intensity value (Blenkmann et al., 2017; Brang et al., 2016; Branco et al., 
2018a; Taimouri et al., 2013; Qin et al., 2017), interpolating coordinates given entry and target 
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points in depth electrodes (Li et al., 2020; Arnulfo et al., 2015; Narizzano et al., 2017), using shape 
analysis (Centracchio et al., 2021), or deep learning (Vlasov et al., 2022). 
 
Alternative localization approaches have been proposed based on intraoperative photography and 
X-ray projections (Dalal et al., 2008), intraoperative photography only (Pieters et al., 2013), solely 
MRI images (Yang et al., 2012), clinical neuronavigational data (Gupta et al., 2014), or 
electrophysiological data (Branco et al., 2018b). 
 
Over the last few years, the spatial resolution of grids and depth electrodes has reached inter-
electrode distances (IED) of 2-3 mm, and will likely improve even more (Gupta et al., 2014; Chang, 
2015; Martin et al., 2018; Erhardt et al., 2020). High-density electrode arrays are more informative 
than low-density arrays in cognitive (Gupta et al., 2014; Jiang et al., 2018) and clinical research 
(Stead et al., 2010), but their localization requires enhanced spatial accuracy as well. Their reduced 
size presents an obstacle for the most frequently used localization algorithms because artifacts of 
neighboring electrode contacts cannot be disentangled from each other (Branco et al., 2018a; 
Hamilton et al., 2017; Narizzano et al., 2017).  
 
Overlapping grids, clips, and other metallic objects can also challenge the detection of electrodes’ 
CT artifacts. Artifacts from such objects are usually treated manually (Blenkmann et al., 2017; 
Branco et al., 2018a; LaPlante et al., 2016; Taimouri et al., 2014) or excluded from the analysis 
(Brang et al., 2016).  
 
In summary, although recent techniques have made progress in the automatic or semi-automatic 
localization of electrode CT artifacts, the presence of a low signal-to-noise ratio as in high-density 
arrays, or overlapping electrodes, cables, or artifacts still pose challenges to current methods. 
 
In addition to the challenge of localizing for CT artifacts, other corrections might be necessary 
before obtaining the final anatomical coordinates. In the particular case of grid and strip electrodes, 
the surgical implantation procedure results in brain tissue deformation. Deformations up to 10-20 
mm can occur on the brain surface around the electrodes or in deeper brain structures, precluding 
accurate localization directly from intracranial photographs or post-implantation CT images 
(Studholme et al., 2000; LaViolette et al., 2011; Brang et al., 2016). Therefore, CT localized 
coordinates need to be back-projected from the post-implantation space to the non-deformed pre-
implantation MRI brain surface (more specifically, a smooth cortical envelope, SCE). Since brains 
are compressed during implantation, electrode array coordinates projected to the SCE are expected 
to expand (i.e., to cover more surface) to compensate for this behavior. The shape or IED of the 
arrays is not guaranteed to be preserved in the back transformation.  
Subdural grid and strip electrode locations require compensation, but brain shifts from only 
stereotactic implantation of depth electrodes are less pronounced and frequent, and corrections are 
typically unnecessary (Elias et al., 2007). Nevertheless, less frequent cases of depth electrodes 
simultaneously implanted with grids or strips require corrections (Blenkmann et al., 2017; Lee et 
al., 2022). 
The most popular brain-shift compensation methods can be grouped into two families: i) the 
“Orthogonal projection” family of methods, where electrodes are projected to the SCE surface in 
the direction orthogonal to the local grid surface (Hermes et al., 2010), or orthogonal to the SCE 
surface (Kubanek & Schalk, 2015), or in the electrodes’ principal axis (Brang et al., 2016); and ii) 
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the “Spring mesh” family of methods, where the resulting coordinates are obtained while 
minimizing the overall deformation (Dykstra et al., 2012; Trotta et al., 2018). 
 
Although widely used, both families come with advantages and disadvantages. In the Orthogonal 
projection family, the projections follow deformation principles that compensate for brain 
compressions (typically the expansion of grids when back-projecting). Still, projections are 
computed for each electrode individually and are susceptible to local inaccuracies, producing 
irregularities in their spatial distribution. On the other hand, the Spring mesh family of methods 
provides very regular and smooth results, but these methods do not compensate for the post-
implantation compression of the brain. Deciding which algorithm to use in a particular case is 
difficult. To date, there are no clear research findings informing which method performs better for a 
specific brain deformation, implanted brain area, or time since implantation, to mention just a few 
relevant variables. 
 
In this paper, we present two novel methods to attain high accuracy and precision in the anatomical 
registration of intracranial electrodes. First, we introduce a robust model-based CT artifact electrode 
localization technique named GridFit. It simultaneously localizes all the electrodes in grids, strips, 
or depth arrays using flexible models fitted to the CT artifacts. The algorithm has been conceptually 
developed to address difficult localization scenarios such as low signal-to-noise ratio, overlapping 
electrodes or cables, or high-density electrode arrays. We show how model parameters and 
performance were obtained using: i) a simulation-based approach; and ii) the application of GridFit 
to real patient iEEG data.  
The second method, the Combined Electrode Projection Algorithm (CEPA), addresses the back-
projection to pre-implantation space. It combines orthogonal projection techniques with spring 
mesh models and spatial regularization constraints. We compared the algorithm with well-
established methods via localization error distance and modeling of electrophysiological activity. 
Both methods (GridFit and CEPA) are available in the iElectrodes open-source toolbox 
(https://sourceforge.net/projects/ielectrodes/), ensuring user-friendly access to precise anatomical 
registration. 
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2. MATERIALS and METHODS 

We propose two novel algorithms, GridFit and CEPA. GridFit localizes electrode coordinates 
derived from CT artifacts, and CEPA projects the coordinates to the cortical surface of the pre-
implantation MRI, compensating for brain-shift deformations. Both are integrated into the 
processing pipeline for intracranial electrode localization in the iElectrodes toolbox (Figure 1; 
Blenkmann et al., 2017). Briefly, the pipeline takes the following steps: First, presurgical MRI and 
post-implant CT images are co-registered. Then, to obtain the location of each electrode, CT 
artifacts corresponding to each array of electrodes are processed with GridFit. Subsequently, grid 
and strip electrodes are projected back to the Smoothed Cortical Envelope surface using CEPA. 
Subsequently, electrode coordinates can be visualized in 2D or 3D space and exported in formats 
compatible with popular analysis toolboxes, such as Fieldtrip or EEGLAB (Delorme & Makeig, 
2004; Oostenveld et al., 2011). If comparisons of brain activity patterns across patients are desired, 
coordinates can be projected to volume-based normalized brain spaces (Ashburner & Friston, 2005) 
or the normalized unfolded cortical surface (Fischl et al., 1999). In the following subsections, we 
describe each of these steps in more detail. 
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Figure 1. Overview of the analysis pipeline. 
Overview of the complete processing pipeline for localizing subdural grids, strips, and depth electrode 
arrays. Briefly, voxels corresponding to electrode artifacts (A) are extracted from the co-registered post-
implantation CT image (post-CT) and processed with the GridFit algorithm (B, C, and D) to obtain the 
electrode coordinates. Pial surfaces (E) and anatomical information images (F) are derived from the pre-
implantation MRI (pre-MRI) by using Freesurfer. The SCE surface is computed from the pial surface, and 
grid and strip electrode coordinates are projected to it using CEPA, correcting for brain-shift deformations 
(G). Depth electrode coordinates are also corrected when these arrays are simultaneously implanted with 
grids and strips. Finally, projected coordinates are visualized in relation to the brain anatomy incorporating 
the respective anatomical labels (H), and data are exported in a standardized common format. Readers are 
referred to the methods section for technical details about GridFit, CEPA, and other processing steps. SCE: 
Smooth Cortical Envelope. 
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2.1. Patients 

To evaluate the performance of GridFit and CEPA on real data, we evaluated their application to 
iEEG data from 20 patients (10 female, mean age 33 years) with drug-resistant epilepsy in our 
database who were candidates for resective surgery (Kwan et al., 2010; Jayakar et al., 2016). To 
benchmark the two new proposed algorithms for potential problematic cases, we selected data using 
the following criteria: the presence of arrays with IED less than or equal to 6 mm, low SNR in the 
CT images, or overlapping electrodes, cables, or other artifacts, i.e., all selected patients selected 
meet at least one these criteria. Intracranial electrodes were temporarily implanted, and iEEG and 
video were continuously recorded as part of the presurgical evaluation to localize the epileptogenic 
focus. Patient recordings took place at four hospitals: Albany Medical College (S1-S6, S19), 
University of California, San Francisco (UCSF) Hospital (S7-S9), University of California, Irvine 
Medical Center (UCI, S10-S13), and Oslo University Hospital (OUH, S14-S18, S20). 
 
 

2.2. Implanted electrodes 

Of the 20 patients, 15 (S1-S13, S19, S20) were implanted with traditional clinical grids with 5, 6, 7, 
and 10 mm IED, or high-density (HD) grids with 3 and 4 mm IED (Ad-Tech Medical, USA or PMT 
Corporation, USA). Seven (S5, S6, S8-S10, S12, S20) were simultaneously implanted with 5 mm 
IED depth electrodes (Ad-Tech Medical, USA). The remaining five patients (S13-S18) were only 
implanted with HD, 3.5 mm IED, depth electrodes (DIXI Medical, France). Supp. Table 1 provides 
an overview of the implanted electrodes and their locations per patient. 
 

2.3. Acquisition and preprocessing of CT and MR images 

Pre-implantation MRI and post-implantation CT images were acquired as part of the clinical 
procedure. Patients underwent CT scans with a resolution 0.5 mm (Aquilion one, Toshiba, Japan). 
MRI was acquired in a 1.5 or 3 T scanner with a spatial resolution of 1 mm (Achieva MRI scanner, 
Philips, Eindhoven). We followed a standard procedure to localize intracranial electrodes 
(Blenkmann et al., 2019; Stolk et al., 2018). Pre-implantation MRI images were processed using the 
FreeSurfer standard pipeline (Dale, Fischl, & Sereno, 1999), obtaining individual brain 
segmentation images, pial surfaces (Figure 1E), curvature surfaces, and cortical parcellation images 
(Figure 1F). We automatically segmented the cortical surface into 74 areas per hemisphere, 
providing an accurate anatomical description of the cortex (Destrieux et al., 2010). Post-
implantation CT images were co-registered to the pre-implantation MRI using the normalized 
mutual information algorithm provided by SPM (Studholme, Hill, & Hawkes, 1999). Images and 
surfaces were loaded into the iElectrodes toolbox and resampled to 0.5 mm resolution using fourth-
order polynomial interpolation. Smooth cortical envelope (SCE) surfaces were computed for each 
patient’s left and right hemispheres (Figure 1G). The SCE surfaces were computed by enclosing the 
corresponding pial surface with a sphere of 50 mm radius using a morphological closing operation 
(Brang et al., 2016; Blenkmann et al., 2021). 
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2.4. Voxel masking, thresholding, and selection  

To localize electrode coordinates, a cloud of CT voxels representing the grid, strip, or depth 
electrode array has to be selected. In this operation, a binary mask of the brain (obtained from the 
Freesurfer pipeline) is applied to the CT image and then eroded or dilated multiple times to remove 
the skull. At the same time, threshold values are manually adjusted until clusters of high-intensity 
CT voxels visually represent the electrodes (also known as CT artifacts; for details on adjusting 
threshold see Blenkmann et al., 2017). Finally, the relevant voxels of a whole array are visually 
selected using an incorporated drawing (brush) tool provided within the Graphical User Interface 
(GUI) of the iElectrodes toolbox (Figure 1A).  This procedure has proved robust in localizing 
electrodes in previous studies (Blenkmann et al., 2017). 
 
It is important to note that coarse selections of all the voxels from an array are taken, i.e., not a 
contact-by-contact selection, providing a fast and replicable process. These selections might include 
artifacts from cables, contacts corresponding to overlapping arrays, or blurred, not-well-defined, 
artifacts from the contacts of interest. In low SNR conditions, electrodes cannot be isolated when 
adjusting the threshold and might stay connected with their neighbors.  
 
This procedure results in a set of NVox thresholded voxels representing an electrode array. It consists 
of voxel coordinates vn and voxel intensities wn, where n = 1, ..., NVox. The intensity values within 
the array are normalized between zero and one. This set of voxel coordinates and intensities serves 
as the GridFit algorithm’s input data to localize the electrode coordinates e of an NRows x NCols array 
(NElec electrodes in total) and IED D. As an optional step, after the voxel selection procedure, a set 
of “fixed” electrode coordinates eFix can be visually selected at the center of the CT artifacts. These 
coordinates can be used if the GridFit algorithm does not converge to a feasible solution. 
 
 

2.5. 2D and 3D electrode array models 

Model-based localization (GridFit) and the brain-shift compensation algorithm (CEPA) require 2D 
and 3D models of the arrays. 3D models are exclusively used in the second step of GridFit for grids 
and strips. Therefore, we present the 2D and 3D models before the GridFit and CEPA methods.  
The number of rows and columns (NRows x NCols), the IED D, and the thickness T (3D models only) 
are used to define their geometrical characteristics. Models are built by defining points and their 
connections (Figure 2A). Auxiliary structural model points m are defined to provide additional 
spatial structure. Some of these points are located at the electrode coordinates e; therefore, the NElec 
electrode coordinates are a subset of the NMod structural model points (please see below how subsets 
are defined). We describe e and m points separately to simplify the mathematical notation. 
However, since e is a subset of m, modifying any of the points in common alters both sets 
simultaneously. 
 
Connections are defined between neighboring structural points. Neighbors are defined in three 
ways: first neighbors, if orthogonally adjacent; second neighbors, if separated by one point 
orthogonally; and diagonal neighbors, if diagonally adjacent (Figure 2B). The 2D and 3D models 
used for the GridFit and CEPA algorithm are defined as follows: 
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● 2D models are built for 

○ Grids: by connecting each point mj with its first, second, and diagonal neighbors, 
where electrode coordinates and structural points are the same (NElec = NMod , e = m). 

○ Strips: by extending the array’s narrowest dimension by half of the IED on each side. 
A lattice grid of points m is constructed at D/2 resolution. The first, second, and 
diagonal neighbor model points are connected. Electrode locations e correspond to 
the central subset of coordinates from m. 

○ Depth electrodes: by connecting the first and second neighbor points, and consisting 
of structural points m at each electrode location e (NElec = NMod, e = m). 

● 3D models for grids and strips are built by positioning two 2D structural grid models on top 
of each other, separated by the array thickness. Each model point m is connected to all 1st 
and diagonal neighbors in the 3D grid (no second neighbor connections). The electrode 
coordinates e are assigned to only the subset of m coordinates on the bottom layer (i.e., e = 
m for the bottom layer), while the top is used for structural reasons (i.e., only m points). 

 
 

2.6. GridFit algorithm: Automatic localization of CT artifacts 

GridFit is a model-based algorithm that uses the information from all voxels to reconstruct the 
coordinates of an electrode array (either depth, grid, or strip). Briefly, the approach is implemented 
by fitting a flexible array model to the set of selected CT artifacts (NVox voxels at v with intensities 
w) in a two-step cost-minimization approach. The central idea of the method is to penalize model 
deformations during the fitting processes while rewarding the proximity of candidate coordinates to 
clusters of voxels representing electrodes. 
The first cost-minimization step is constrained to a surface or line describing the main location of 
voxels and provides a coarse approximation to the final electrode location. The second cost-
minimization step is not constrained to any surface and uses more sophisticated models, providing 
better control of the final localization. The diagram in Figure 1 shows the main steps of the 
algorithm, which are described in more detail in the following subsections. 
 
 

2.6.1. PCA rotation and smooth surface (line) approximation of the CT 

artifacts 

 
To simplify coordinate handling in the subsequent steps, we first rotated the coordinate system of 
the selected CT voxels using principal component analysis (PCA). The new x-, y-, and z-axes 
represent PC1, PC2, and PC3, respectively, accounting for high to low data variance. At the end of 
the GridFit algorithm, the localized coordinates are rotated back to the original space. 
 
The procedures described below require an approximation function of the voxels, which is 
computed as follows. For grids, a surface function z = fsurf(x, y) is constructed by fitting a smooth 
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surface to the set of voxel coordinates v (Figures 1B & 1C; Locally Weighted Scatterplot 
Smoothing algorithm; Cleveland, 1979).  
For depth electrodes and strips, instead, a unidimensional function y = flin(x) is built by fitting the 
first two dimensions of the voxel coordinates v with a 3rd-order polynomial function. Due to its 
small variance, the last dimension is ignored.  
 
 

2.6.2. Initial coordinate estimation 

An initial set of electrode coordinates e0 (e.g., Figure 1B) is needed as an input for the first cost-
minimization procedure. These coordinates are obtained following a procedure described in 
Blenkmann et al. (2017). For grid arrays, voxels v are projected onto the first two components of the 
PCA space defined in the previous section. Subsequently, a convex hull is iteratively trimmed until 
the four corners of the grid are isolated. These corners are then back-projected to the 3D space using 
fsurf. Finally, the non-corner coordinates are linearly interpolated. For depth electrode arrays, the 
initial coordinates e0 are estimated by uniformly distributing the electrodes between the extremes of 
the first PCA component of the voxel coordinates v and back-projecting them to the 3D space using 
flin.  
 

2.6.3. GridFit cost function 

GridFit was conceived as a model-based approach to localize CT artifacts in cases where the 
information is noisy or missing. In this way, the algorithm does not localize individual electrodes 
but simultaneously localizes all NElec electrodes within an array. We formulated the localization as 
an optimization problem to achieve our objective, i.e., finding an optimal set of coordinates m that 
minimizes a cost function. In our algorithm, the optimal solution minimizes the displacement and 
deformation of the array while maximizing the correlation between electrode locations (e) and 
thresholded voxels (v, w). GridFit uses a two-step optimization, i.e., the same cost function is 
minimized two times under different sets of constraints for each step (see details in sections 2.6.4 
and 2.6.5). The first minimization gives a coarse and fast set of coordinates that serve as starting 
points for the second minimization, where more precise coordinates are obtained. The respective 
cost function to be minimized is 
 

 ,   (Eq. 1) 
 

 
where ETrans, EDef, and ECorr are the translation, deformation, and co-registration cost functions, 
accompanied by kTrans, kDef, and kCorr, the translation, deformation, and co-registration constants, 
respectively (the procedure to obtain optimal parameter values is discussed in section 2.7). 
The translation cost function ETrans is defined as 
 

 .   (Eq. 2) 
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This function penalizes the translation of the structural points to the actual location m from their 
initial location m0 , and therefore an appropriate initial location m0 (including e0) is needed (Figure 
2C).  
EDef, the deformation cost function, is defined as 
 

,    (Eq. 3) 
 
where NConn is the total number of neighbor connections in the model, 𝛼!"is a parameter which 
equals 0 for non-neighboring points and a weight value (in the 0-1 range) for neighboring points, djk 
is the Euclidean distance between structural points j and k defined as , and  d0 jk 
is the distance between points j and k in the 2D or 3D initial model . The 
deformation cost function EDef considers the total network deformation where the network is built 
with the equivalent of “springs” connecting neighboring points (Figure 2D). When the grid is 
deformed (compressed, stretched, sheared, or bent), the deformation cost added is proportional to 
the square difference between the initial and actual distances in each spring connecting pairs of 
structural points. 
 
Finally, the co-registration cost function ECorr considers the complete array of NElec electrodes in 
relationship with the NVox thresholded voxels and increases its value as their location matches. Note 
that the minus sign preceding the co-registration term in Eq. 1 imposes that the optimization 
algorithm will attempt to maximize ECorr. The co-registration cost function ECorr is defined as 
 

,   (Eq. 4) 
 

where 𝜎 is a regularization parameter of the spatial dispersion, , and uj is the ratio 
of connections associated with electrode j. The co-registration cost function ECorr is composed of 
Gaussian functions that depend on the distance between voxels and electrodes, i.e., ||vn - ej||, 
weighted by the voxel intensity wn. Voxels with a high-intensity value will contribute more, as they 
may contain more reliable information about the electrode locations than those with lower values. 𝜎 
defines the spatial dispersion (standard deviation) of the Gaussian function, i.e., the spatial 
sharpness with which voxels around an electrode are considered. Consequently, when an electrode 
location reaches a cluster of voxels representing an electrode, the value of the function ECorr 
increases (Figure 2E). The variable uj reduces the co-registration effect on the edge electrodes and 
increases the effect on the inner electrodes. This correction is to counterbalance the EDef's larger 
effect on inner electrodes compared to bordering ones, given their presence in more connections.  
 
Altogether, the minimization of the EFit function will fit an array of electrodes to a selection of 
voxels, minimizing the displacement and deformation of the array, and maximizing the correlation 
between electrode locations and thresholded voxels. 
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Figure 2.  Array models and GridFit cost function sub-components. 
A. Variety of 2D and 3D models used in the GridFit algorithm. Note that the electrode coordinates (magenta) 
are a subset of the model node coordinates (green).  
B. Diagram showing the neighboring connections for the 2D and 3D models. 
C, D, and E. Diagrams representing the different components of the cost function minimized in the GridFit 
algorithm. The final model coordinates (green) are depicted on top of the initial model coordinates 
(magenta). For illustrative purposes, only 2D models are shown.  
C.  The translation of model points from the initial to the final location increases ETrans proportionally to the 
square of the distance. 
D. The model deformation, either by contraction, expansion, shearing, or bending, affects the distance 
between model nodes and increases the deformation cost EDef.  
E. An electrode coordinate in the vicinity of voxels corresponding to an electrode artifact increases the 
correlation cost ECorr. Color-coded ellipsoids depict how the Gaussian function decreases with the electrode 
coordinates’ distance.  
For illustrative purposes, only first neighbor connections are shown in A, C, D, and E. 
For a description of the formulas, we refer the reader to subsection 2.6.3.  
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2.6.4. First minimization step 

In the first cost-minimization procedure, 2D models are used to provide a rough estimate of the 
electrode locations. The cost function EFit (Eq.1) is minimized, while the electrode locations are 
constrained to be located on the smooth approximation function of the CT artifacts (fsurf or flin, 
Figure 1C). For grids and strips, the minimization is constrained to 
 

∀ j, zej – fsurf(xej, yej) < ε ,    (Eq. 5) 
 
where ej = [xej, yej, zej] is the location of electrode j, and ε is an arbitrarily small distance. For depth 
electrodes, it is constrained to 
 

∀ j, yej – flin(xej) < ε .     (Eq. 6)  
 
Matlab’s Interior Point algorithm (implemented in Matlab’s “fmincon” function, Waltz et al., 2005) 
is used to solve the cost-minimization problem, where e0 coordinates are used as initial conditions, 
and a set of coordinates eFirst Fit is obtained. 𝜎 = D and ε = 1 mm were used. 
Optimizations were terminated when the change in EFit (Eq. 1) was less than D 1E-2. 
 
 

2.6.5. Second minimization step 

The second cost-minimization procedure results in the final estimation of the electrode coordinates. 
eFirst Fit coordinates, the result of the first fitting step, are used as initial conditions.  
3D models are created from the previously used 2D models for grids and strips. The initial 
coordinates m0 are extrapolated from the 2D solutions eFirst Fit. A new 2D model layer is created on 
top of the previous one, at a distance T (thickness) between the two. Then, these 2D layers are 
connected (Figure 2A). 3D models were adopted for grids and strips because they offer better 
control of the deformations.  
2D models are used again for depth electrode arrays since deformations are not pronounced and 
increasing the model complexity would unnecessarily raise computational demands. 
The final electrode coordinates are localized (Figure 1D) by minimizing the cost function EFit (Eq. 
1), constrained to:  

1.  A maximum deformation between structural points, implemented as  
 

∀ j and ∀ k, ||djk - d0 jk|| < δjk d0 jk ,    (Eq. 7) 
 
where j = 1, ..., NMod , k = 1, ..., NMod , djk is the final distance between mj and mk, do jk is the initial 
distance between the same pair of structural points. δjk is defined for each set of points, being more 
strict for neighboring points (δjk = 10% deformation) and more relaxed for non-neighboring (δjk = 
25% deformation), in this way providing a local and global control on the maximum deformation 
allowed.  

2. A volume change (for 3D models only), defined as 
 

∀ j, VolCuboid 0  j - VolCuboid  j   <  ε ,    (Eq. 8) 
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where j=1, …, NCuboid , VolCuboid j is the volume of a rectangular cuboid j, VolCuboid 0 j is the initial 
volume of the same cuboid, and ε is an arbitrary small number. NCuboid cuboids cover the complete 
3D model and are built connecting the first neighbor nodes (vertices). This constraint guarantees 
that the resulting grid or strip volume will be the same as the initial one after the optimization.  

3. A set of fixed coordinates (optional constraint), defined as  
 
 ∀ j ∈ Ω, ej - eFix j  <  ε , (Eq. 9) 
 
where Ω is the set of electrodes associated with a fixed coordinate (see definition in subsection 2.4). 
It is up to the user's needs whether this last constraint is implemented or not. 
In the following, we will refer to eGridFit as the set of electrode coordinates that minimizes EFit in the 
second cost-minimization step. The Interior Point algorithm is used for this purpose (Waltz et al., 
2005). 𝜎 = D/4 and ε = 0.01 mm parameters were used. Optimizations were terminated when the 
change in EFit (Eq. 1) was less than D 1E-6. 
 
 

2.7. Definition of GridFit parameters and localization performance evaluation using 

simulations 

The GridFit algorithm encompasses several parameters that influence its behavior. Since the 
optimal set of parameters was unknown, we determined them using synthetic data from an open-
source simulation platform (Blenkmann et al., 2022). We used more than 850 depth and 3300 grid 
and strip implantation scenarios. Scenarios were available with different implantation coordinates 
and brain curvatures, and several geometric configurations were simulated, including IEDs of 3, 5, 
and 10 mm, and array sizes ranging from 1 x 4 to 8 x 16 electrodes (grids and strips) or 6 to 15 
aligned contacts (depth arrays).  
CT artifacts were carefully modeled over the cortical surface, aligned parallel to the cortical surface 
(grids and strips), or within the brain parenchyma, following their principal array axes (depth 
arrays). For each scenario, multiple simulations were performed at several noise levels. 
We simulated three levels of CT noise by spatially displacing voxels from their original positions in 
a random direction with Low, Medium, and High intensity (σ = 0.1, 0.2, and 0.4, respectively). 
Moreover, we also simulated overlapping grids or strips, and curved depth electrode arrays.  
To quantify localization accuracy, we computed the normalized median error for each array as  
 

 ,   (Eq. 10) 
 
and the normalized maximum error as  
 

 ,   (Eq. 11) 
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across the set of all electrodes, i.e.,  j=1,.. NElec, where eSim j and eGridFit j are the simulated and 
localized coordinates. We excluded simulations with dLoc Med values larger than five standard 
deviations from the median. Finally, we defined accuracy as 1- median(dLoc Med) across arrays. 
We performed three different rounds where simulated coordinates were localized. In the first round, 
a wide range of parameter values were evaluated within a small set of test scenarios to assess 
roughly their effect on the localization. In this way, we heuristically defined all but one of the 
parameters (KCorr), ensuring good localization results in all simulated test scenarios. 
In the second round, a more detailed mapping of the effect of KCorr was obtained. To characterize 
the performance, between 20 and 30 simulation test scenarios were randomly performed in every 
combination of electrode size, curvature, IED, noise level, and overlap, making a total of ~69000 
simulations. In this round, all the constraints described in the second fitting step (subsection 2.6.6, 
Eq. 7, 8, and 9) were removed to reduce computational time. By measuring the median localization 
error, these simulated scenarios allowed us to define the optimal value of KCorr given the array 
geometry and the presence or absence of overlaps. Moreover, optimal KCorr values for other 
geometries than the simulated ones (e.g., the real cases) are obtained by interpolation, making the 
algorithm application range more general.  
Finally, we evaluated the algorithm’s performance in a third round using optimal parameters in 16 
to 60 newly and randomly generated simulations per implantation scenario (6004 simulations in 
total). Fewer simulations were performed on larger arrays due to computational constraints. N-way 
ANOVA was used to define the effect of IED, noise, overlap, array type, and interactions on the 
normalized median error, and ω2 was used to estimate effect sizes (Lakens, 2013). 
 
The localization of simulated arrays was evaluated using near-optimal parameters (sub-optimal 
KCorr by one order of magnitude above and below optimal) to assess the robustness of GridFit to 
deliberate changes in the parameters. Approximately 12000 simulations were used for this purpose. 
  
 

2.8. Validation of GridFit localization using real data 

To further assess the validity of our method, we evaluated the GridFit localization algorithm with 
real imaging data. To do this, we used the optimal set of parameters obtained from the previous 
simulations to perform the localization in real data obtained from 20 patients.  
First, GridFit results were evaluated by visual inspection. Localized coordinates were visually 
compared with the CT artifacts to detect any convergence error (outliers). Coordinates were 
expected to lie within the CT artifacts (when available) and to be regularly distributed covering the 
array. If a single electrode was mislocalized, i.e., the localized coordinate is outside the visible CT 
artifact, we defined the array as not successfully localized. 
Then, GridFit localized coordinates (eGridFit) were contrasted with a classical manual visual 
localization procedure by two trained users. More precisely, for the manual localization, coordinates 
eVis were visually defined as the center of the clusters of high-intensity voxels after thresholding and 
masking the CT artifacts (as defined in section 2.4). 
The distances between eGridFit and eVis were used to validate our procedure. Additionally, we 
compared the mean absolute deviation (MAD) of the inter-electrode distances for eGridFit and eVis to 
assess unexpected deformations in the geometry of localized arrays.  
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2.9. Combined Electrode Projection Algorithm (CEPA): Brain-shift compensation 

for grid and strip electrode coordinates 

To compensate for the brain-shift deformation, the initial set of coordinates (i.e., the localized CT 
artifacts) needs to be back-projected to the SCE (Figure 1G). We intended that projections expand 
with the projection distance and simultaneously have spatially smooth deformations. Therefore, we 
approached this problem by combining orthogonal projections, spring mesh models, and 
regularizations accounting for the roughness of spatial deformations. The projection was formulated 
as aminimization problem using the previously defined 2D models (section 2.5). The function to be 
minimized is 
 

 (Eq. 12) 
 
constrained to  
 

|| ej - Σ || < ε ,      (Eq. 13) 
 
for j=1, …, NElec, where ε is an arbitrary small number, and Σ is the SCE surface described as a set 
of vertices and faces. Figure 3 shows a schematic representation of the method.  
The first two terms in Eq. 12 are computed as those used in the GridFit algorithm. The cost function 
ETrans (Eq. 2) accounts for the translation of the coordinates from the initial to the final location 
(Figure 3A). The cost function ED (Eq. 3) considers the deformation introduced to a spring mesh 
connecting the electrodes and reflects expansions between the initial and final states (Figure 3B). 
The third term of Eq. 12 describes the cost associated with deviations from anchor points. Anchor 
points eAu are, in general terms, defined as a set of electrode locations over the SCE surface 
obtained by other methods, where u = 1, ..., NAnch, and NAnch is the number of anchor coordinate sets 
(Trotta et al., 2018). The cost function EuAnch associated with each anchor set u is defined as 
 

.   (Eq. 14) 
 
In the current CEPA implementation, we use two sets of anchor coordinates defined by orthogonal 
projection methods (NAnch = 2). Both methods project individual electrodes onto the SCE surface 
given a direction vector (Figure 3C). In the first method, direction vectors are computed as the 
orthogonal vectors to the plane made by each electrode and its closest neighbors, as Hermes et al. 
(2010) proposed, producing anchored coordinates eAG. This method is only available for grids. In 
the second method, orthogonal vectors are computed from the average orthogonal vectors in the 
SCE surface within a certain radius from the electrode, as described in Kubanek and Schalk (2015), 
producing anchored coordinates eAS. The following sections will refer to these orthogonal 
projection methods as “Normal-Grid” and “Normal-SCE”, respectively.  
The general definition of the anchoring cost term allows the expansion of the current method to 
other sources of information. These could include, for example, electrode coordinates obtained via 
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intraoperative neuronavigation tools (Gupta et al., 2014), intraoperative photographs (Trotta et al., 
2018), post-implantation MRI localized coordinates (Yang et al., 2012), or even methods to be 
developed. 
The last term of Eq. 12 accounts for the spatial roughness of the deformations. Our rationale is that 
brain compressions are not established as abrupt changes of the cortical surface, but rather as 
spatially smooth compressions given the structural support provided by the brain tissue and by the 
grids or strips. Therefore, the progression from less to more compressed areas should be smooth, 
and the back-projection of the electrode coordinates to the uncompressed cortical surface should 
also follow a smooth spatial deformation pattern (Hartkens et al., 2003; Skrinjar et al., 2002). 
Accordingly, we define the roughness cost function as 
 

.  (Eq. 15) 
 
The two terms of the equation sum over the elements of 2D matrices obtained by the discrete 
Laplacian operator applied to the vertical and horizontal deformations. These are computed as  

, of dimensions NCols-3 x NRows-2, and , of dimensions NCols-2 x NRows-
3, respectively (Figure 3D). NAdj is the number of adjacent pairs of electrodes. 
For grid cases, the Laplacian operator is implemented as the 2D convolution of a nine-point stencil 
kernel K (3 x 3, Figure 3D, right bottom corner) with deformation matrices GV and GH. The 
deformation matrices are obtained as the difference between the initial and final distance matrices 
along with the vertical or horizontal connections,  i.e.,  with dimensions NCols-1 
x NRows, and  with dimensions NCols x NRows -1, respectively. The 2D 
organization of the elements in the distance matrices follows the connection’s location within the 
grid along the rows and columns. For example DH(1,1) =  || e(1,1) - e(1,2) ||  and  DV(1,1) =  || e(1,1) - e(2,1) 
||, where e(j,k) denotes the coordinate of the electrode located in row j and column k of the grid. 
For strips and 2 or 3 -rows or -columns grid cases, we use a 1D convolution of a three-point stencil 
kernel (i.e., [1 -2 1]) with the deformation matrix associated with the array’s longest dimension.  
 
Matlab’s Interior Point algorithm (Waltz et al., 2005) was used to solve the minimization problem 
(Eq. 12). Optimizations were terminated when the change in EProj cost was less than 1E-6. For the 
CEPA, parameters were set to kTrans = 1, kAnch = kDef = kRough = 100, and  ε = 0.1 mm. For the Springs 
method, kTrans = 1, kDef = 1000, and ε = 0.1 mm (Trotta et al., 2018; Blenkmann et al., 2021). 
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Figure 3. Combined Electrode Projection Algorithm (CEPA) diagram. 
A. The translation of electrode coordinates from the initial to the final location onto the SCE surface (gray 
surface) introduces an increase of ETrans proportional to the square of the distance.  
B. The model’s deformation, either by contraction, expansion, shearing, or bending, affects the distance 
between electrode nodes and increases the deformation cost EDef.  
C. The anchor's cost EAnch increases proportionally to the distance between the anchor coordinates and the 
final location of electrodes. Two anchor coordinates are considered, eAS based on the SCE-orthogonal 
direction vector and eAG based on the grid-orthogonal direction vector. 
E. Deformations along the vertical or horizontal connections increase the roughness cost ERough 

proportionally to the local consistency of these deformations. In the example, a larger but homogeneous 
deformation in the horizontal direction introduces a relatively small roughness cost change compared with a 
small but highly local deformation in the vertical direction. 
For a complete description of the formulas, we refer the reader to section 2.9. 
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2.10. Brain shift compensation of depth electrodes implanted simultaneously with 

subdural grids or strips. 

Depth electrodes simultaneously implanted with subdural grids or strips also require compensation 
for brain shift deformations. We approached this compensation by computing a weighted 
displacement field from the projected grid or strip coordinates (Taimouri et al., 2014; Blenkmann et 
al., 2017; Li et al., 2020). Translations are applied to the depth electrodes depending on their 
distance to the grid or strip electrodes. Weight functions between depth electrode j and grid or strip 
electrode k were defined as  
 

     (Eq. 16) 
 
And 
 

 ,      (Eq. 17) 
 
where σR = 5 mm and σD = 30 mm are regularization parameters (Blenkmann et al., 2017; Li et al., 
2020). Finally, the translation vector applied to each implanted depth electrode j is computed as 
 

 ,    (Eq. 18) 
 
where tk is the translation vector applied to grid or strip electrode k in the back-projection 
procedure, i.e., tk = e0k - ek, and the sum iterates over all K grid and strip electrodes implanted. 
 
 

2.11. Automatic anatomical labeling 

We used a probabilistic approach to assign anatomical labels to each electrode (Figure 1H). The 
percentage of each label is computed within a 3 mm radius volume surrounding the electrode 
coordinate. The anatomical description labels are obtained from FreeSurfer anatomical parcellation 
atlases (Desikan et al., 2006; Destrieux et al., 2010), or normalized atlases (Jenkinson et al., 2012; 
Yeo et al., 2011). These can be loaded by default in the iElectrodes toolbox, while others can be 
easily added. This approach allows labeling contacts with specific cortical denominations, 
subcortical structures, white matter, functional networks, or others. The labeling is relevant for 
describing and comparing activated areas across patients. 
 
 

2.12. Validation of CEPA’s electrode projections on real data 

We validated CEPA with other available electrode projection methods. First, we evaluated the error 
distance, roughness, and deformation of the projected coordinates by the different approaches. 
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Then, we compared the methods regarding how much of the local electrophysiological activity can 
be explained by modeling (given the projection coordinates). The next two subsections expand 
these ideas.  
 
 

2.12.1. Validation through pre-validated methods 

We compared CEPA projected coordinates with those obtained by three previously validated 
methods: i) a spring mesh deformation approach introduced by Dykstra et al. (2012) and modified 
by Trotta et al. (2018), referred to as “Springs” in the following sections, and two orthogonal 
projection algorithms, ii) the “Normal-Grid” (Hermes et al., 2010), and iii) “Normal-SCE” 
(Kubanek & Schalk, 2015) methods.  
Error distances were computed between the projection coordinates and reference coordinates eRef. 
By following the principle of parsimony (Occam’s razor), we defined eRef as the mean of the 
coordinates resulting from the three pre-validated methods, assuming that they are randomly 
distributed around the true anatomical recording site. However, it is difficult to know to what extent 
the eRef represents the ground truth. Consequently, we evaluated the error distances while 
considering each of the other three methods as a reference. 
Given that projection coordinates are expected to deform smoothly (which compensates for smooth 
brain deformations; Hartkens et al., 2003; Skrinjar et al., 2001), we evaluated the roughness of the 
spatial deformation for the different back-projected coordinates using Eq. 15.   
Finally, projected coordinates are expected to expand with the projection distance, i.e., cover larger 
areas when back-projected to compensate for stronger brain compressions during implantation. For 
each electrode, we defined the projection distance as the length between the localized CT artifact 
(e0j) and the back-projected coordinate (ej) normalized by the distance to the brain center of mass 
(dBCM), i.e., 
 

 .    (Eq. 19) 
 
To capture the amount of expansion of grids and strips locally (at each electrode j), we defined the 
local deformation in terms of the IED D as 
 

,   Eq. 20) 
 
where k iterates over the  NNeig 1st neighbors around the electrode under evaluation. 
In other words, local deformations (s) are the average inter-electrode distance change. 
We evaluated how the projection distance affected local deformations in the different algorithms 
using Linear Mixed Effects (LME) models, with fixed effects for distance and random effects for 
intercept and distance grouped by electrode array and patient. 
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2.12.2. Validation using electrophysiological data 

To assess the localization accuracy independently from the CT images, we compared expected 
electrophysiological activity patterns given the location of the back-projected electrodes in five 
patients (9 grids from patients S1, S3, S10, S19, and S20; 526 channels in total). Electrodes located 
over gyri are closer to the cortex than electrodes located over sulci, and therefore higher intensity of 
neuronal activity is expected to be recorded (Bleichner et al., 2011). Accordingly, the distance of 
the electrodes to the cortex can partially explain the magnitude of the neural activity measured by 
the high-frequency activity (HFA, Branco et al., 2018 NI). In this way, we computed Estimated 
HFA patterns for each brain-shift compensation algorithm. Specifically, we computed the negative 
log-transformed distance between the electrodes and the pial surface. Higher values were obtained 
for shorter distances and lower values were obtained for longer distances. In other words, the 
Estimated HFA patterns provide a value per electrode that indicates the intensity of the expected 
HFA given the electrode’s projected coordinates and allow the comparison of different back-
projection algorithms. 
The neuronal activity was quantified by analyzing 2 to 5 minutes of resting-state intracranial EEG 
activity. Patients sat comfortably in their beds and let their thoughts wander while no stimulus was 
presented. Channels showing epileptic activity or artifacts were removed from the analysis by visual 
inspection. Then, we computed the mean envelope of the HFA in the 75-145 Hz range using the 
Hilbert transform (Blenkmann et al., 2019). In this way, we obtained a Measured HFA for each 
electrode. Finally, we evaluated how much of the patient’s Measured HFA could be explained by a 
linear mixed-effects (LME) model with a fixed effect for Estimated HFA pattern and random effects 
for intercept grouped by electrode array and patient. We computed a LME model for each 
algorithm. To assess the quality of the LME models, t-tests were performed to determine the 
significance of fixed effects. Likelihood Ratio Tests (LRT) were used to compare models of 
different complexity (Bono et al., 2021), i.e., with or without random effects, with each other. Once 
optimal modeling was achieved, a Bayesian Information Criterion (BIC) was computed for each 
model (see definition in Supp. section 3.5; Schwarz, 1978). BIC is a model selection criterion that 
accounts for the explained variance and the number of parameters. Models with lower BIC are 
usually preferred.  
CEPA’s model evidence was compared against the evidence of other models using Bayes Factor 
(BF). BF evaluates the ratio of the likelihood of one particular model (i) to the likelihood of another 
(j) and was approximated as BF = exp ((BICi -BICj)/2) (Nagin et al., 1999).  
Finally, we used BF to evaluate the effect of GridFit vs. visually localized CT artifacts on back-
projected coordinates. 
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3. RESULTS 

We present two novel methods to aid the intracranial electrode localization procedure. To address 
the localization of CT artifacts, particularly in difficult scenarios, we propose GridFit, a model-
based approach to automatically localize all coordinates in an electrode array. In the following 
subsections, we first present the use of realistically simulated scenarios to define its optimal 
parameters and assess its performance. Then, we validate GridFit with real data in challenging 
scenarios and compare its performance with visual procedures. 
We also addressed the brain-shift compensation problem. To do this, we developed the CEPA 
method, a novel approach that combines different projection algorithms with spatial constraints. 
The following results compare its performance against previously validated methods in terms of 
error distance and modeling of electrophysiological attenuation patterns, and further expand on 
these results in the following subsections. 
 
 

3.1. GridFit parameters definition and performance on simulated data 

The GridFit algorithm contains many parameters that must be properly defined to obtain high 
localization accuracy. We estimated default parameters for the GridFit algorithm based on synthetic 
data provided by an open-source platform that was created for this purpose (Blenkmann et al., 
2021). The parameter estimation procedure was divided into three rounds of localizing simulated 
CT artifacts. The first two rounds determined the best default parameters for the GridFit algorithm, 
and the third one served as a performance evaluation of the method.  
During the first round, we localized a reduced set of simulated test scenarios to obtain an overview 
of the parameter’s effects. In particular, we noticed that kCorr and kDef had opposing effects. 
Increasing kCorr made the localized coordinates closer to the CT artifacts, or even caused overfitting 
to CT noise, while increasing the array’s deformation. On the other hand, increasing kDef produced 
more rigid arrays that might not follow the bending over the cortex or the curvature of depth 
electrode trajectories. Therefore, a correct balance between kCorr and kDef seemed fundamental for 
achieving precise localization results. We observed a region in the kCorr vs. kDef map space where the 
algorithm produces appropriate and stable results. Therefore, we set kDef to a value within this 
region for further steps. 
During the second round, we screened over a range of kCorr values to obtain a fine-grained 
description of its role. To determine the optimal kCorr, we measured the normalized median error 
from the simulated ground truth (Eq. 10). kCorr optimal values, i.e., the ones showing smaller errors, 
depended on the array’s geometry (i.e., type, size, and IED) and the presence of overlaps. These 
optimal parameters are the ones used by the algorithm in the next sections and in the implemented 
version of iElectrodes (values can be found in Supp. Tables 2, 3, and 4). For more details about the 
results of the first two rounds of localizing simulated CT artifacts, we refer the reader to Supp. 
Section 2.1.  
Finally, in the third round, we assessed the method's performance. Between 16 and 60 new 
simulations per scenario were evaluated. We rejected 3.05% of localizations showing errors larger 
than 5 standard deviations for one or more contacts (183 arrays out of 6004). Overall, the accuracy 
was above 92% for all scenarios, i.e., localization errors below 8% of the IED, including the high 
noise and overlap conditions. Grids showed the best results (accuracy 95 to 99%), followed by 
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depths (93 to 99%) and strips (92 to 99%; Figures 4A). In the most optimal conditions, i.e., low 
noise and no overlap, grids showed >97% accuracy, followed by depths and strips, with >95% and 
>94%, respectively. For practical reasons, accuracy can be easily converted into real distance errors 
((1-Accuracy) * IED). For example, a 92% accuracy for a 3 mm IED grid indicates a mean error of 
0.24 mm = (1-0.92) * 3 mm. 
The N-way ANOVA indicated significant effects for IED, noise, overlap, array type, and 
noise*array type, overlap*array type, and IED * overlap interactions on the normalized median and 
maximum errors (Supp. Tables 5 and 6). As expected, the algorithm mean accuracy decreased with 
smaller IED, lower number of electrodes, lower SNR, and overlaps (Figures 4A, 4B, and 4C). ω2 
indicates a large main effect of IED (0.23), medium effects of array type (0.07) and noise (0.09), 
and a small effect of overlap (0.02). Interaction effects were medium for overlap * array type (0.05), 
and small for noise*array type (0.02) and IED * overlap (0.02) (Lakens, 2013; Field, 2013). 
Visual inspection of the results showed that the algorithm successfully localized the simulated CT 
artifacts in challenging situations, e.g., when an extra pair of electrodes overlap (Figure 5A) or with 
low SNR high-density grids (Figure 5B).  
The evaluation of near-optimal parameters (plus and minus one order of magnitude in kCorr) lowered 
the overall accuracy by 1%. Specifically, grids’ accuracy ranged from 93 to 99%, depths’ from 91 
to 98%, and strips‘ from 90 to 99%.  
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Figure 4 - GridFit performance localizing simulated data. 
The GridFit algorithm performance was evaluated by localizing simulated CT artifacts under multiple realistic 
scenarios. Approximately 6000 simulations were used for this evaluation. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 11, 2023. ; https://doi.org/10.1101/2023.05.08.539503doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.08.539503
http://creativecommons.org/licenses/by/4.0/


A:  Color-coded maps show the localization accuracy for rectangular and square-shaped grids, strips, and 
depth electrodes, with the number of rows and columns, the IED, the levels of noise, and the presence of 
overlaps. The color code denotes accuracy, i.e., 1 - median(dLoc Med) across arrays, where dLoc Med is the 
median localization error within electrodes in an array. 
B Bars show how the median error (dLoc Med, Eq. 10) increases with the noise level for the different types of 
arrays. ANOVA indicates medium effects of noise level and array type on the error, and a small interaction 
effect between them (Supp. Table 5). 
C Bars illustrate that the variation of the maximum error (dLoc Max, Eq. 11) increases in the presence of 
overlaps. ANOVA indicates a medium effect of overlap and a very small interaction effect between overlap 
and array type (Supp. Table 6). Overlaps are not available for depth arrays. 
Error bars denote 95% CI of the median obtained by bootstrapping. IED: Inter-Electrode Distance. Rows: 
Number of rows. Cols: Number of columns. 
 
 

3.2. GridFit results from real patient data 

To assess the performance of GridFit in real situations, we localized the CT artifacts from 20 
patients implanted with grids (N = 41), strips (N = 63), and depth (N = 70) electrode arrays, and a 
total number of 3192 contacts. Overall, 24 arrays were implanted with overlapping electrodes from 
other arrays, 6 with cables or other artifacts overlapping the grids or strips, 8 with HD grids (3-4 
mm IED, 1094 contacts in total), and 52 with HD depth electrodes (3.5 mm IED, 779 contacts in 
total). 
We first examined the results qualitatively by visual inspection. GridFit successfully fitted the CT 
artifacts in all but 9 cases. Successful localizations were observed in 98% of the grids (40/41 cases), 
90% of the strips (57/63 cases), and 97% of the depth electrode arrays (68/70 cases) following our 
criteria of all coordinates in an array lying within their respective CT artifacts.  
In five of the failed automatic localizations, successful results were obtained by constraining the 
algorithm solutions to be aligned to a set of manually fixed coordinates at the corners or tip contacts 
 (i.e., eFix, using one, two, and four contact coordinates for depth, strips, and grid cases, 
respectively, 10 contacts in total). The other four unsuccessful cases were extremely curved strips 
(one of four and three of six contacts) where the algorithm could not converge to the CT artifacts 
locations using the default parameters. The manual interventions (fixed coordinates) increased the 
success rate to 100% of the grids, 94% of the strips, and 100% of the depth electrodes, successfully 
localizing 99% of the total number of electrodes (3160/3192). In the following analysis of the 
GridFit results, we considered only the correctly localized cases without manual intervention. 
GridFit successfully localized CT artifacts in challenging situations, like cases with overlapping 
electrodes from other arrays (Figure 5C), connection cables running over grids (Figure 5D), high-
density grids with poor SNR CT artifacts (Figure 5E), or high-density depth electrode arrays 
(Figure 5F). 
To validate GridFit, we contrasted the algorithm results with the ones obtained through manual 
visual localization. Inferring the coordinates of some individual electrodes was difficult given the 
various noise sources. Overall, there was a clear consistency in the results of both approaches. 
Figure 5G shows the median distances (normalized by IED) between the two methods. The median 
distances are overall below 10% of the IED, and 6.3% for grids, 5.7% for strips, and 9.1% for depth 
electrodes. 
To characterize the localization precision (interpreted as the spatial consistency), we computed the 
mean absolute deviation (MAD) of the distance between the first neighbors for each electrode array. 
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Inter-electrode distance MAD is affected by the localization procedure's precision and the electrode 
arrays' curvature. The GridFit algorithm kept more uniform distances between neighbors, whereas 
higher variations were observed with the visual localization approach (Figure 5H, Wilcoxon signed-
rank test, for grids: z = 5.49, p = 3.85 E-8; for strips: z = 6.56, p = 5.14 E-11; and for depth 
electrodes: z = 6.85, p = 7.09 E-12). 
 

 
 

Figure 5 - GridFit localization of CT artifacts in real and simulated data. 
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A. Simulated example of overlapping electrodes. Localized CT artifacts were not affected by CT artifacts not 
belonging to the grid of interest (4 x 4 grid, 10 mm IED). 
B. Simulated high-density grid example with a high level of noise. The average localization accuracy in these 
situations is approximately 98%, i.e., 0.06 mm error (8 x 16 grid, 3 mm IED). 
C. Localization example of real overlapping grids (10 mm IED and 4 mm IED, S2). The red box shows a 
detail of the overlapping artifacts and the performance of GridFit in localizing the correct electrodes. 
D. Difficult localization scenario of a high-density grid with low SNR (10 x 25 grid, 3 mm IED, S3). Note that 
some electrodes are identifiable, whereas others are not. 
E. Localization of electrodes in a real grid with cables laying over the electrodes (6 x 8 grid, 10 mm IED, S4). 
F. Real high-density depth electrode array  
localized electrodes across arrays. Error bars denote 95% with low SNR (18 contacts, 3.5 mm IED, S18). 
The left side shows the CT artifacts and the localized coordinates (red dots), whereas the right shows the CT 
image. Visual localization of individual contacts in these scenarios is extremely difficult, whereas GridFit can 
easily handle them. 
G. Median distance between GridFit and visually localized electrodes across arrays. Error bars denote 95% 
CI of the median obtained by bootstrapping.  
H. Mean absolute deviation (MAD) of the inter-electrode distance (1st neighbors only) for the GridFit 
(orange) and visually localized (light blue) coordinates. Asterisks indicate significant differences between 
methods (Wilcoxon signed-rank test, p <1E-7). Points (gray) denote data from individual arrays. The center 
lines of each boxplot represent the median, and the edges are the 25th (Q1) and 75th (Q3) percentiles. 
Whiskers are located at Q1 −1.5(Q3 − Q1) and Q3 +1.5(Q3 − Q1), and outliers are plotted outside this 
interval.   
IED: Inter-Electrode Distance. SNR: Signal to Noise Ratio.  
 
 
 

3.3. Validation of CEPA through pre-validated methods 

To compensate for brain-shift deformations, we projected the grids (N = 40) and strips (N = 59) 
electrode coordinates to the SCE surface in the 15 patients implanted with them. Seven of these 
patients were simultaneously implanted with depth electrodes (i.e., hybrid implantations, N = 70), 
and therefore were also compensated for the brain deformations. The CEPA, Springs, Normal-Grid, 
and Normal-SCE methods were compared. The projected coordinates from the different methods 
showed substantial variability, as shown in Figures 6A, B, and C. 
For simplicity, we present the results of back-projected GridFit localized coordinates in this section. 
The analysis of visually localized coordinates reached similar results, which can be found in the 
supplementary material (Supp. Section 3, Supp. Tables 7 and 8; Figures S2, S3, S4, and S5). 
To assess CEPA's and the other methods´ performance, we first evaluated the projection error 
distance, i.e., the projections were contrasted against a reference location eRef. This reference 
location was obtained by averaging the results of the previously validated methods (Springs, 
Normal-Grid, and Normal-SCE). CEPA grid coordinates were positioned on average 0.26 mm from 
the reference location, with 95% of the cases at less than 0.8 mm, and at a significantly smaller 
distance than every other evaluated method (Figure 6D, Wilcoxon signed-rank test, z > 4 and p < 
1E-4 in all cases; see Supp. Table 7 for statistical details). For strips, the distance for CEPA 
projected coordinates was smaller than 0.5 mm from the reference location and at a significantly 
smaller distance than the Springs and Normal-SCE methods ( z > 3 and p < 1E-3; Figure S2; Supp. 
Table 8). 
We also evaluated the error distances while considering each of the other three methods separately 
(Springs, Normal-Grid, or Normal-SCE) as a reference. CEPA showed better performance than the 
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other methods in most cases (see Supp. Section 4.4, Figure S7, and Supp. Tables 12 and 13 for 
more details).  
Moreover, we evaluated the spatial deformation roughness of the back-projected coordinates as 
defined by Eq. 15. Roughness is a global measure indicating how the deformations introduced by 
the brain-shift compensations are inconsistent. Low roughness values indicate that deformations are 
smooth, whereas higher values indicate a lack of spatial consistency. 
Figure 6F shows the results of the pre-validated methods compared with CEPA. The Springs 
method depicts the smoothest results. CEPA showed intermediate roughness values, whereas the 
orthogonal-based projection methods, i.e., Normal-Grid and Normal-SCE, produced the most 
irregular results (see Supp. Tables 9 and 10 for statistical details). 
To assess if back projections compensated for brain compressions, we evaluated the relationship 
between projection distance and local deformations (local IED change). Normal-SCE, Normal-Grid, 
and CEPA showed increased local deformation with projection distance when assessed with LME 
models. On the other hand, a minimal effect of distance on the local deformation was observed for 
the Spring method. Figure 6E shows the linear tendencies for each method. Additional details can 
be found in Supp. Section 3.3 and Supp. Table 10. 
Finally, the back-projected GridFit coordinates were contrasted with visually back-projected ones. 
An overall reduction in the distance to reference and in the roughness was introduced by the use of 
the GridFit algorithm, regardless of the brain-shift compensation method used (Figures S3 and S5, 
Wilcoxon signed-rank test, z  > 3, p < 1E-3 for projection error, and z > 4, p < 1E-5 for roughness, 
see Supp. Tables 7, 8, 9, and 10 for statistical details).  
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Figure 6.  CEPA brain-shift compensation compared to other methods. 
A, B, and C: Plots show the behavior of brain-shift compensation algorithms in three examples (S1, S20, and 
S2, respectively). Grids of different sizes and geometries were back-projected using Normal-Grid (black), 
Normal-SCE (blue), Springs (red), and CEPA (magenta) methods. Results differed substantially, and 
Normal-SCE projections were typically the most expanded, whereas Springs projections were the least 
expanded. In comparison, Normal-Grid and CEPA typically showed moderate levels of expansion. 
D: Boxplots show the projection errors for the different brain-shift compensation algorithms contrasted 
against CEPA. The projection error for CEPA was significantly smaller than for all other methods. Points 
(gray) denote data from individual grids. 
E. Deformation vs. projection distance for different projection methods. Deformation was computed relative 
to the IED, whereas projection distance was computed relative to the distance to the brain's center of mass. 
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Each point represents an electrode color-coded by patient, and the lines depict the tendency obtained via 
linear mixed-effect models. In contrast to the other approaches, the Springs method was not sensitive to 
changes in the projection distance, which is consistent with the almost null roughness observed.  
F: Boxplots show the projection roughness of the different algorithms contrasted against CEPA. Lower 
values indicate smoother or more regular spacing in the projected coordinates. CEPA showed significantly 
smaller roughness than the Normal-Grid and Normal-SCE approaches and higher roughness than the 
Springs method. Points (gray) denote individual grids. For illustrative purposes, a single point for the Normal-
Grid method is not shown. 
The center lines of each boxplot represent the median, and the edges are the 25th (Q1) and 75th (Q3) 
percentiles. Whiskers are located at Q1 −1.5(Q3 − Q1) and Q3 +1.5(Q3 − Q1), and outliers are plotted 
outside this interval. Asterisks indicate significant differences between methods (p < 1E-4, Wilcoxon signed-
rank test).  
IED: Inter-Electrode Distance  
 
 

3.4. Validation of CEPA using electrophysiological data 

To independently quantify the quality of the different back-projection algorithms, we compared the 
explanatory power of their respective Estimated HFA predicting resting-state Measured HFA 
(Figure 7A-C). The Estimated HFA patterns reflect the expected HFA solely based on the distance 
of the projected coordinates to the cortical surface (Figure 7B). The intensity of the recorded 
neuronal activity was expected to be larger for electrodes located over gyri (closer to the cortex) and 
smaller for electrodes located over sulci (further from the cortex). 
Respective Estimated HFA patterns were computed for each brain-shift correction algorithm in nine 
grids from five patients. We used LME models to estimate on a group level to what extent the 
Measured HFA is predicted by the Estimated HFA (Figure 7D). The explained variance ranged 
from 46.67 to 47.55%, as estimated by the adjusted R2. Springs showed the lowest explained 
variance, while the other three methods showed similarly higher values, indicating more 
explanatory power. 
The LME model comparison via BIC analysis indicates similar performance for CEPA, Normal-
SCE, and Normal-Grid (Figure 7E). The Estimated HFA pattern obtained from these methods’ 
coordinates explained a similar amount of information in the recorded resting-state HFA. The 
Springs method showed a larger BIC, indicating an inferior performance compared to the other 
methods and therefore being the least preferred alternative. 
 
The likelihood ratio of two competing hypotheses, given by the Bayes Factor, indicates strong 
positive evidence for the use of CEPA versus the Springs method (BF odds ratio 41.32), whereas 
the evidence for choosing between CEPA versus Normal-Grid or Normal-SCE was insensitive (BF 
odds ratio 0.93 and 0.84 respectively; Kass and Raftery, 1995). Supp. Table 14 shows a summary of 
the LME model results. 
 
Additionally, we incorporated the evidence from all LME models to evaluate the impact of CT 
artifact localization strategies on the back-projection coordinates. BF provided decisive positive 
evidence for using GridFit versus visually localized coordinates (BF odds ratio 9,520; Supp. Table 
15 shows the LME model results for visually localized coordinates). 
 
 

 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 11, 2023. ; https://doi.org/10.1101/2023.05.08.539503doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.08.539503
http://creativecommons.org/licenses/by/4.0/


 
 

Figure 7. HFA resting-state data and HFA estimation.  
A. Measured HFA mean value during resting state from an example 5 x 4 grid (Patient S1). 
B. Estimated HFA pattern computed from back-projected CEPA coordinates of the same grid (Patient S1). 
The larger the distance of an electrode to the cortex, the smaller the Estimated HFA (stronger attenuation).  
C. Correlation between the CEPA’s HFA estimated pattern and the measured HFA as shown in A and B. 
D. Group-level (N = 5 patients) linear relationship between the measured HFA and the estimated HFA for 
CEPA back-projected coordinates. Individual dots represent single electrode data, color-coded by patient. 
E. Bayesian Information Criterion (BIC) compares the different LME models of the respective back-
propagation methods. Lower BIC values indicate that more data variance is explained by the model (better 
fitting). 
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4. DISCUSSION 

Accurate anatomical registration of intracranial electrodes is essential for precisely interpreting 
findings in clinical and cognitive neuroscience iEEG studies. Localization accuracy is affected by: 
i) the procedure used to locate the post-implantation CT artifacts; and ii) the procedure chosen to 
compensate for brain shifts in grid and strip cases. Both impact the accuracy of the final results, and 
errors in the first procedure can propagate to the second. To address these issues, we introduced two 
novel algorithms for the anatomical registration of intracranially implanted electrodes. First, we 
presented the GridFit algorithm to localize CT artifacts and assessed its accuracy with both real and 
realistically simulated data. We demonstrate that the method excelled in challenging scenarios with 
real data and provided more precise electrode locations than visual procedures. Results were highly 
reliable, even in low SNR or high-density array cases.  
Second, we introduced CEPA to back-project implanted grid and strip coordinates to the cortical 
surface to compensate for brain shifts. Our analysis indicates that the novel algorithm provided 
projections to the cortical surface envelope that were accurate, spatially smooth, increased IED with 
the projection distance, and predicted electrophysiological activity patterns. 
In the following, we discuss these results in more detail and compare our methods with other 
available alternatives. Finally, we consider the limitations of our study and remaining challenges. 
 
 
   

4.1. GridFit algorithm for the localization of CT artifacts 

 
Low SNR CT artifacts are especially challenging for localization algorithms. Low SNR occurs in 
the presence of metallic objects in the proximity of the electrodes, overlapping electrodes, or high-
density electrodes (HD arrays). Low spatial image resolution or unrelated artifacts can preclude 
automatic algorithms from detecting individual contacts. Manual interventions are often required to 
identify these lost contacts (Branco et al., 2018a; LaPlante et al., 2016; Taimouri et al., 2014), and 
arrays with overlapping electrodes might need to be excluded from the analysis (Brang et al., 2016). 
Moreover, the presence of electrodes in the proximity of the ones of interest has been associated 
with localization errors (Narizzano et al., 2017), while noise in CT images has been mistakenly 
detected as electrodes (La Plante et al., 2016).  
With the GridFit method, we introduce a novel approach to locate CT artifacts developed to address 
these challenging scenarios. GridFit simultaneously localizes all the electrodes in grids, strips, or 
depth arrays using flexible models fitted to the CT artifacts.  
 
We tested our method with an extensive database of realistically simulated scenarios where the 
exact locations are known. Some of these scenarios presented high levels of noise and overlapping 
artifacts (Figure 5). Nevertheless, the method succeeded in locating the electrode coordinates with 
high accuracy. The accuracy was above 92% in all cases, i.e., errors below 8% of the IED (Figure 
4). 
Overall, we observed a tendency to obtain higher localization accuracy and precision with lower 
noise levels, a higher amount of electrodes that could be localized, a larger IED, and the absence of 
electrode overlaps. In sum, localizing electrodes in simulated scenarios indicates that the higher the 
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quality or the quantity of the data, the better the localization. Notably, the algorithm's accuracy was 
lowered by only 1% when selecting suboptimal parameters, indicating the procedure’s reliability. 
[real data] We further validated GridFit with 174 real electrode arrays obtained from 20 patients 
(3192 contacts), where localization difficulties were a prerequisite for inclusion in this study. 
Patients had either low SNR images, grids underneath cables, overlapping grids, presence of 
artifacts, or HD arrays (IED ≤ 4mm), as shown in Figure 5. These characteristics rendered the 
testing dataset challenging (Centracchio et al., 2021; Branco et al., 2018a). Despite such obstacles, 
the GridFit algorithm automatically localized 95% of the arrays successfully. By manually adding 
fixed coordinates in 5 of the most difficult cases (one to four coordinates per case), we achieved an 
overall 98% successful localization of arrays, and 99% of the contacts. In four highly curved, C-
shaped strips (22 contacts in total), we could not achieve successful localizations, revealing 
limitations of the proposed method. Ad-hoc deformation parameters proved helpful in addressing 
this specific problem but were not further analyzed given the small number of cases observed. 
 
Comparably, Davis et al. (2021) reported a 93% sensitivity in the automatic detection of electrodes, 
and Centraccio et al. (2021) reported between 88 to 99% classification sensitivity using geometrical 
features extracted from CT artifacts of metallic objects. Moreover, an exceptional 99% accuracy 
was obtained in distinguishing between electrodes and other metallic objects. Such automatic 
classification approaches could easily be combined within GridFit to offer even more reliable 
methods. For example, localized coordinates could be integrated as anchors weighted according to 
the reliability of the predictors (Nicora et al., 2022). 
Localization of HD arrays, where the IED is ≤ 4mm, can be of particular challenge. Branco et al. 
(2018a) correctly localized all the 4 mm grid contacts using their automatic algorithm (3 cases), but 
most of the contacts had to be manually localized in the 3 mm cases (2 arrays). Interestingly, the 
localization of HD depth arrays has shown higher detection rates, probably due to their constrained 
geometry and less likely deformations. Davis et al. (2021) reported an 87% sensitivity in the 
automatic detection of HD depth contacts, while Narizzano et al. (2017) reported 87% utilizing the 
planned implantation target and surface entry coordinates, and up to 99% when the tip or entry 
point coordinates were manually provided. In comparison, GridFit successfully localized the CT 
artifacts in all 60 HD arrays tested. Eight of these cases were grids (1094 contacts in total), and the 
other 52 were depth arrays (779 contacts in total). Only two arrays (one grid and one depth) 
required manual intervention by visually localizing corner or tip contacts. Such a procedure was 
embedded in the iElectrodes GUI, making reliable localizations straightforward. 
 
We compared GridFit with typical visually localized coordinates. The distances between the 
approaches were 10% of the IED, similar to the results reported by Blenkmann et al. (2017) for 
grids and depth electrodes with 10 and 5 mm IED. Visually localizing the coordinates without 
technological aids has an intrinsic mean observer error of approximately 0.8 mm in high SNR 
situations (Blenkmann et al., 2017). This error is presumably larger in challenging scenarios where 
the noise in the images or other artifacts make the procedure even harder, impacting the quality of 
the results and increasing the procedure's duration (Narizzano et al., 2017). Therefore, visually 
localized coordinates should be considered a reference, not a gold standard.  
A validation and comparison between GridFit and the visual approach was provided by measuring 
the deformations introduced in the IED, since the IEDs are expected to be minimally affected by the 
bending of the arrays (<0.5%, Blenkmann et al., 2021). Electrode coordinates defined by GridFit 
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were smoother (smaller deviations of the IED) than the ones obtained by visual inspection, 
demonstrating that the GridFit results are more reliable than the visual ones. 
 
Overall, the model-based GridFit algorithm showed highly reliable results with both real and 
simulated data. Notably, performance excelled in challenging scenarios, such as low SNR or high-
density array cases. The excellent performance of GridFit is likely due to the model-based approach 
to localize all contacts simultaneously. The subset of image voxels under analysis might have 
missing or misleading information about individual electrode coordinates, but as a whole, they 
provide sufficient information to accurately and reliably localize all contacts in an array. 
 
 

4.2. CEPA for brain-shift compensation of subdural grids and strips. 

Brain shifts up to 10-20 mm are common after implanting subdural grids or strips (LaViolette et al., 
2011; Studholme et al., 2001). Such brain deformation constitutes a complex problem involving 
multiple variables, such as the size and location of the skull opening, the head orientation during 
surgery, the amount of cerebrospinal fluid lost and reabsorbed, and the swelling of soft tissue 
(Roberts et al., 1998; Studholme et al., 2001). These deformations need to be accurately corrected to 
associate electrophysiological activity with the underlying anatomy with high spatial resolution.  
 
Post-implantation brain-shift deformations preclude accurate localization directly from intracranial 
photographs or post-implantation CT images. Acknowledging the implications of these 
deformations in reconstructing the electrode locations on the pre-implantation brain scans is 
essential. The issue is usually overlooked despite affecting post-implantation CT and photography-
based corrections. Remarkably, using a simple formalization of the electrode back-projection 
problem, Brang and colleagues (2016) revealed that the array shape and IED are not guaranteed to 
be preserved in the back-projected coordinates. For example, in a typical implantation surgery, a 
grid is placed over the surface of a non-linearly deformed brain, but crucially, the grid shape and its 
IED are preserved. Therefore, array coordinates projected to the non-deformed pre-implantation 
MRI brain surface are expected to compensate for this behavior, typically expanding the array´s 
surface. Notoriously, expansions are limited in back-projection approaches that penalize array 
deformations, like the Spring mesh family of methods (Dykstra et al., 2012; Trotta et al., 2018). In 
other words, since IED deformations are penalized, projections only suffer small IED changes 
(Figure 6F) and are unaffected by the projection distance (Figure 6E).  
On the other hand, the Orthogonal projection family of methods (Hermes et al., 2010; Kubanek & 
Schalk, 2015; Brang et al., 2016) computes projections at the individual electrode level. Projections 
tend to increase the IED proportionally to the projection distance (Figure 6E), which is theoretically 
expected to compensate for brain compression. However, these methods produce less smoothly 
deformed solutions, i.e., spatially contiguous changes in the IED are more heterogeneous (Figure 
6F), because orthogonal projection vectors are computed individually for each electrode. 
Considering the spatially continuous brain-shift deformation, a certain degree of smoothness in the 
array’s deformations is anticipated. Given the previously described inaccuracies and limitations, we 
combined both approaches in CEPA to get the best of each family of methods: Back-projections 
following orthogonal orientations, while keeping spatially smooth variations in the IED. 
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To assess CEPA’s performance, we contrasted it with previously validated methods from the Spring 
mesh and Orthogonal projection families (Dykstra et al., 2012; Trotta et al., 2018; Hermes et al., 
2010; Kubanek & Schalk, 2015; Brang et al., 2016). These methods were validated against 
photography-based approaches (2-3 mm error, Dykstra et al., 2012; Hermes et al., 2010; Branco et 
al., 2018a). Results were highly dissimilar between methods, as shown in Figure 6. CEPA 
outperformed the other methods by producing locations significantly closer to the reference (less 
than 0.3 mm error, Figure 6D). As expected, CEPA estimations were also smoother, and the 
projection distance effects on deformation were less prominent than in the orthogonal projection 
methods (Figures 6E and 6F). The opposite effect was observed when compared with the Springs 
method. Therefore, CEPA achieved solutions that retained the benefits of both back-projection 
families.  
 
In this study, we introduced Estimated HFA patterns as a performance marker for localization 
methods. HFA is generated within a few millimeters of the recording electrodes and mirrors the 
average spiking activity of adjacent neurons (Ray & Maunsell, 2011; Mc Carty, 2021, Leszczynski 
et al., 2020), and is significantly attenuated as a function of the distance between the electrodes and 
the underlying cortex. Cerebral veins naturally lie in sulcal folds, and the presence of blood vessels 
underneath electrodes can dampen the recorded signals by 30 to 40% (Bleichner et al., 2011). 
Computing the correlation between Measured HFA, derived from resting-state recordings, and 
Estimated HFA, based on the distance between electrodes and cortex, has been shown as a reliable 
approach to localize HD grids (Branco et al., 2018b). Given the lack of a gold standard for localized 
coordinates, modeling HFA patterns provides an alternative and independent measure that is simple 
to obtain, theoretically sound, and empirically closer to the primary aim of intracranial EEG, which 
is the assessment of electrophysiological activity.  
In our study, we modeled HFA patterns to compare the performance of different back-projection 
methods. Patterns obtained from CEPA, Normal-Grid, and Normal-SCE back-projected coordinates 
explained the Measured HFA variance substantially better than the Springs method. BF model 
comparison provided decisive evidence for using CEPA against Springs, but indecisive evidence 
when compared with orthogonal projection methods. Importantly, these methods also showed 
increased deformations (expansion) associated with the projection distance, in contrast to the 
minimally deforming Springs method (Figure 6E). This association suggests that the expansion of 
arrays is an essential feature for back-projection algorithms compensating for brain compressions. 
 
When the localization and back-projection results are considered together, they indicate that 
combining GridFit and CEPA provides the best outcome. The localization accuracy was higher than 
with any other combination of methods, and the HFA modeling based on GridFit and CEPA was 
among the best-performing alternatives with respect to the explained variance. Interestingly, our 
observations based on localization accuracy and HFA modeling supported the use of GridFit and 
improved the back-projection outcome. This indicates that errors propagate from the CT artifact 
localization step to the brain-shift compensation step. Finally, the back-projection results can differ 
substantially between methods. Projected coordinates can “jump” from one cortical gyrus to the 
next, depending on the algorithm used. For this reason, we recommend that users consider this 
uncertainty when interpreting normal or pathological electrophysiological activity. 
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4.3. Limitations and challenges 

Although CEPA and GridFit proved to be successful tools, some limitations should be noted. 
 
i) We used a predefined and fixed set of parameters in the CEPA implementation. Although the 
high performance obtained with these parameters, it is likely that other (i.e., optimal) values offer 
even better performance. Given the relatively small number of cases, searching for optimal 
parameters was not possible. A promising approach in this direction is the use of simulated data 
(e.g., following Blenkmann et al., 2021). 
 
ii) Our back-projection approach was contrasted with a restricted number of methods. This 
approach is not an extensive evaluation of all possible methods but a comparison with some of the 
most commonly used and representative techniques. Error distance to an average location was used 
to compare CEPA with the other methods. Although the choice of reference rests on a parsimonious 
assumption, it is difficult to argue that the reference location is the best one. Nevertheless, when 
considering the situation that any other method produces the best solution, CEPA was either a 
significantly better alternative or performed equally to the others. 
  
iii) The modeling of HFA has limitations. The correlation between Measured HFA and Estimated 
HFA patterns has been used to quantify the performance of localization methods. However, we 
employed resting-state iEEG data from a small group of patients. We were not able to measure 
differences between CEPA and the Orthogonal projection family methods, probably because of the 
functional brain activity variability of the participants. For example, internally and externally 
directed attention might engage distinct functional neural networks and activity patterns (Kam et al., 
2019), which might be reflected in the Measured HFA patterns, and therefore affect the 
performance evaluation procedure. 
 
Novel reference structures were recently developed to allow post-implantation MRI-based 
localization of microelectrodes, avoiding high doses of ionizing radiation exposure incurred by 
patients during CT scanning (Erhardt et al., 2020). These technologies use MRI-visible patterns that 
might benefit from model-based approaches, like the one used in GridFit, to provide accurate 
localizations in real patient implantations.  
 

4.4. Open-source and GUI availability 

The methods described in this article are publicly available on the iElectrodes site 
(https://sourceforge.net/projects/ielectrodes/), as Matlab® scripts. iElectrodes is a popular open-
source toolbox for intracranial electrode localization, with more than 1700 downloads to date. Its 
graphical user interface (GUI) aids visualization and user interaction, data management, generation 
of reports, and sharing of localization cases. Data import-export functionalities allow simple 
integration with other popular analysis toolboxes (e.g., Fieldtrip, EEGLAB) and brain atlases, 
among other valuable tools. 
 
  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 11, 2023. ; https://doi.org/10.1101/2023.05.08.539503doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.08.539503
http://creativecommons.org/licenses/by/4.0/


5. CONCLUSIONS 

We introduced two new methods for the localization of intracranial grid, strip, and depth electrodes. 
First, we developed the GridFit algorithm to achieve robust localization of electrodes from CT 
images. We tested our algorithm with challenging cases where other commonly used methods have 
documented suboptimal performance or failure. GridFit produced highly accurate results even in 
the case of low SNR CT images, cases with overlapping cables or other artifacts, and high-density 
array cases. It outperformed electrode localization via visual inspection, which is still a common 
practice in this field. Extensive simulations and real data supported these conclusions.  
Second, we developed CEPA to enable smooth and orthogonally expanding back projections during 
the brain-shift compensation of grids and strips. Compared to other available methods, CEPA 
showed the highest spatial precision (i.e., the slightest error distance) and was among the top 
performers in predicting electrophysiological activity. Altogether, GridFit and CEPA showed high-
accuracy anatomical localization of implanted electrodes, even in the most challenging implantation 
scenarios. Moreover, both algorithms are implemented in the iElectrodes open-source toolbox, 
making their use simple, accessible, and easy to integrate with other popular toolboxes used for 
analyzing electrophysiological data. 
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6. DECLARATIONS 
 

6.1. Ethics approval and consent to participate 

Patients were recruited from Albany Medical College; University of California, Irvine; University 
of California, San Francisco; and Oslo University Hospital.   
This study was approved by the Regional Committees for Medical and Health Research Ethics, 
Region North Norway (REK 2015/175), and the Human Subjects Committees at UCSF, UC Irvine, 
UC Berkeley, and Albany Medical College, in accordance with the ethical standards laid down in 
the 1964 Declaration of Helsinki.  
All patients gave their written informed consent for participation in this study and the use of their 
collected information. 
 
 

6.2. Availability of data 
The patients’ datasets analyzed during the current study are not publicly available due to our ethical 
approval conditions that do not permit the public archiving of anonymized study data.  
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