

1 **The bloodstream form of *Trypanosoma brucei* displays non-canonical gluconeogenesis**

2

3 Julie Kovářová^{1,*}, Martin Moos², Michael P. Barrett³, David Horn⁴, Alena Zíková¹

4

5 ¹ Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České
6 Budějovice, Czech Republic

7 ² Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České
8 Budějovice, Czech Republic

9 ³ Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United
10 Kingdom

11 ⁴ Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, United
12 Kingdom

13 * Corresponding author: julie.kovarova@paru.cas.cz

14

15 **Abstract**

16 *Trypanosoma brucei* is a causative agent of the Human and Animal African Trypanosomiases.
17 The mammalian stage parasites infect various tissues and organs including the bloodstream,
18 central nervous system, skin, adipose tissue and lungs. They rely on ATP produced in
19 glycolysis, consuming large amounts of glucose, which is readily available in the mammalian
20 host. In addition to glucose, glycerol can also be used as a source of carbon and ATP and as a
21 substrate for gluconeogenesis. However, the physiological relevance of glycerol-fed
22 gluconeogenesis for the mammalian-infective life cycle forms remains elusive. To demonstrate
23 its (in)dispensability, first we must identify the enzyme(s) of the pathway. Loss of the
24 canonical gluconeogenic enzyme, fructose-1,6-bisphosphatase, does not abolish the process
25 hence at least one other enzyme must participate in gluconeogenesis in trypanosomes. Using a

26 combination of CRISPR/Cas9 gene editing and RNA interference, we generated mutants for
27 four enzymes potentially capable of contributing to gluconeogenesis: fructose-1,6-
28 bisphosphatase, sedoheptulose-1,7-bisphosphatase, phosphofructokinase and transaldolase,
29 alone or in various combinations. Metabolomic analyses revealed that flux through
30 gluconeogenesis was maintained irrespective of which of these genes were lost. Our data render
31 unlikely a previously hypothesised role of a reverse phosphofructokinase reaction in
32 gluconeogenesis and preclude the participation of a novel biochemical pathway involving
33 transaldolase in the process. The sustained metabolic flux in gluconeogenesis in our mutants,
34 including a triple-null strain, indicates the presence of a unique enzyme participating in
35 gluconeogenesis. Additionally, the data provide new insights into gluconeogenesis and the
36 pentose phosphate pathway, and improve the current understanding of carbon metabolism of
37 the mammalian-infective stages of *T. brucei*.

38

39 Author Summary

40 *Trypanosoma brucei* is a unicellular parasite causing sleeping sickness in humans and nagana
41 disease in cattle. The parasite invades the bloodstream and cerebrospinal fluid and only
42 recently, it has been shown to infect additional tissues such as skin, adipose tissue, or lungs.
43 While the glucose-based metabolism of the bloodstream form is well understood, the parasite's
44 metabolism in these secondary tissues has not been sufficiently explored, despite its importance
45 for drug development. One possibility is the use of gluconeogenesis since the mammalian-
46 infective stages can use glycerol as a carbon and ATP source. First, enzymes involved in
47 gluconeogenesis have to be identified, then it can be tested if the pathway is advantageous for
48 the survival of the parasite. We generated mutants in four different enzymes potentially
49 involved in this metabolic pathway. Surprisingly, the flux in gluconeogenesis was maintained

50 in all cell lines tested, implying that another non-canonical enzyme participates in the
51 production of glucose from glycerol in these parasites.

52

53 Introduction

54 *Trypanosoma brucei brucei* is the causative agent of Human African Trypanosomiasis, also
55 termed sleeping sickness [1]. The mammalian-infective stage of the parasite is called the
56 bloodstream form (BSF), and it is transmitted between hosts by blood-feeding tsetse flies. In
57 the first stage of the disease, these extracellular parasites divide in the bloodstream of the
58 mammalian host. If left untreated, the trypanosomes invade the central nervous system,
59 manifesting as the second stage of the disease. BSF parasites can also inhabit skin, adipose
60 tissue, lungs and other tissues [1-5]. Previous dogma stated that BSF trypanosomes are
61 absolutely glucose-dependent. However, we [6], and others [7] have shown that they also
62 employ gluconeogenesis (GNG) and can use glycerol as a carbon source. Glycerol utilisation
63 is expected to be most physiologically relevant to parasites that inhabit adipose tissue or skin,
64 but the significance of glycerol as a carbon source remains elusive. Nevertheless, it is clear that
65 the parasite's metabolism is highly flexible and adaptable, and may differ between the various
66 mammalian forms, which should be considered when developing drugs inhibiting metabolic
67 enzymes. Notably, the adipose tissue forms are less responsive to several trypanocidal drugs
68 [8].

69

70 Under standard culture conditions in medium containing glucose, glycolysis provides the
71 majority of cellular ATP and is indispensable to BSF trypanosomes [9]. However, in culture
72 medium containing glycerol, BSF trypanosomes use GNG to produce sugars from non-sugar
73 carbon sources by converting glycerol to glucose 6-phosphate (G6P) [6, 7]. GNG primarily
74 uses the same enzymes as glycolysis, but operating in the opposite direction. The key difference

75 between the two pathways is the enzymatic step between fructose 6-phosphate (F6P), and
76 fructose 1,6-bisphosphate (F1,6bP) when phosphofructokinase (PFK) phosphorylates F6P to
77 F1,6bP in glycolysis, while fructose-1,6-bisphosphatase (FBPase) dephosphorylates F1,6bP to
78 form F6P in GNG [10] (Fig 1A). In addition, since glycerol is used as the non-sugar substrate,
79 glycerol kinase (GK) becomes a key GNG enzyme [7].

80

81 Previously, we demonstrated the presence of GNG in the BSF parasites by RNA interference
82 (RNAi) silencing of the glucose transporters, where the observed lethal phenotype was rescued
83 by the addition of glycerol to the culture media [6]. As verified by targeted LC-MS
84 metabolomics, glycerol was incorporated into fructose 6-phosphate (F6P) and other
85 metabolites via GNG. The same conclusion was reached by Pineda and colleagues after
86 adapting BSF parasites to glucose-free, glycerol-containing medium [7]. Surprisingly,
87 however, GNG was not abolished after deletion of the *FBPase* gene indicating an involvement
88 of another, so far unknown, enzyme [6, 7].

89

90 The role of FBPase in GNG was also studied in the insect procyclic form (PCF) of *T. brucei*
91 [11]. This stage has a more elaborate mitochondrion in terms of both morphology and
92 metabolism, which can provide additional substrates for GNG. Hence, proline is utilised by
93 PCF as a carbon source, via proline degradation in the mitochondrion, and fed into GNG via
94 phosphoenolpyruvate carboxykinase and pyruvate phosphate dikinase [11]. FBPase knock-out
95 (KO) PCF cells are viable when grown in medium containing proline and they incorporate
96 proline-derived metabolites into G6P by GNG. This suggests that, similarly to BSF cells, the
97 activity of FBPase can be compensated by another unknown enzyme. Interestingly, the FBPase
98 KO PCF cells display a mild growth defect, defects in metacyclogenesis and transmission
99 through the tsetse fly [11].

100

101 The presence of another enzyme catalyzing the F1,6bP to F6P conversion is intriguing, as in
102 the majority of eukaryotic cells studied to date, this metabolic reaction is performed solely by
103 the activity of FBPase. Therefore, the balance between FBPase and PFK activity is strictly and
104 tightly regulated [10]. FBPase is positively regulated by ATP, and negatively by AMP and
105 fructose 2,6-bisphosphate (F2,6bP). PFK is controlled by the same metabolites in a reciprocal
106 manner, i.e. it is positively regulated by AMP, ADP, and F2,6bP. F2,6bP is an activator of most
107 eukaryotic PFK enzymes, normally produced from F1,6bP by the bifunctional enzyme, 6-
108 phosphofructo-2-kinase/fructose-2,6-bisphosphatase [12]. The finely tuned regulatory
109 mechanism between PFK and FBPase ensures mutual exclusivity of these two reactions, and
110 prevents futile cycling (a situation when both reactions would be running in a cycle, only
111 consuming ATP). Interestingly, *T. brucei* PFK is much less sensitive to inhibition by ATP than
112 many eukaryotic PFKs, and its activity is not affected by the presence of F2,6bP [13].
113 Therefore, the well-established PFK regulatory mechanism appears to be missing from *T.*
114 *brucei* [14]. Regulation of *T. brucei* FBPase has not yet been elucidated.

115

116 Although *T. brucei* PFK is an ATP-dependent enzyme, its amino acid sequence is a ‘chimera’
117 between representative pyrophosphate- and ATP-dependent enzymes [15]. PFK isolated from
118 *T. brucei* is regulated by AMP, which serves as the only allosteric activator, although 10-fold
119 less potent than for the leishmania enzyme [13, 15], and by phosphoenolpyruvate acting as an
120 allosteric inhibitor. F1,6bP or F2,6bP did not significantly influence enzyme activity [13]. As
121 predicted by a mathematical model, and experimentally validated, PFK is present in excess in
122 *T. brucei* and therefore, glycolytic flux is reduced only after depletion of PFK beyond 60 % of
123 WT activity. It is unclear, however, whether the effect is direct, or a secondary consequence
124 of decreased activity of other glycolytic enzymes (hexokinase, enolase, pyruvate kinase) [9].

125 Highly specific allosteric inhibitors of *T. brucei* PFK have been developed, and shown to be
126 effective in killing BSF parasites *in vitro* and in infected mice [16]. Fernandes and colleagues
127 [17] reported reversed activity of PFK *in vitro*, but the physiological relevance is unclear as
128 reversed activity of three mammalian PFK isoforms *in vitro* is not thought to occur *in vivo* [18].

129

130 In trypanosomatids, both glycolytic and gluconeogenic enzymes are localised within
131 specialized organelles called glycosomes. Glycosomes are highly adapted peroxisomes, and
132 they share related PEX-dependent protein import machineries [19]. These specialized
133 organelles also harbour parts of the pentose phosphate pathway (PPP), nucleotide metabolism,
134 and other associated pathways. The arrangement and function of the PPP is not fully resolved
135 in *T. brucei* BSF because transketolase is not expressed in this stage, but transaldolase is,
136 resulting in an incomplete non-oxidative branch of the PPP (Fig 1A) [20, 21]. The glycosomal
137 membrane is ‘semi-permeable’, thought to allow free passage of small molecules (up to 340
138 Da based on a mathematical model of trypanosome metabolism) through open channels, but
139 to be impermeable to larger molecules [22, 23]. Hence, cofactors such as ADP/ATP or
140 NAD⁺/NADH are balanced inside glycosomes, and glycosomal localisation of the glycolytic
141 enzymes has important implications for their regulation [24].

142

143 We and others have shown previously that deletion of the *FBPase* gene does not eliminate the
144 enzymatic activity responsible for dephosphorylation of F1,6bP [6, 7], indicating that other
145 enzymes capable of this activity are also present. Notably, a gene encoding sedoheptulose-1,7-
146 bisphosphatase (SBPase), an enzyme typically involved in the Calvin cycle of plants, is present
147 in the genome of *T. brucei*. Due to a relatively high sequence identity (26 %) to FBPase, we
148 considered it a possible candidate for possessing FBPase activity. We also explored two other
149 scenarios in which the reverse PFK activity [17] or a pathway involving transaldolase (TAL)

150 [25] could bypass FBPase in GNG. To our surprise, double knock-out cell lines for FBPase
151 and SBPase (*Δfbp.sbp*), triple knock out cell lines for FBPAs, SBPase and TAL (*Δfbp.sbp.tal*)
152 and PFK RNAi cell lines in a background of *Δfbp.sbp*, retained GNG flux, suggesting an
153 unknown enzyme performing the FBPase reaction. Nevertheless, we present several unique
154 metabolomic datasets that provide new insights into non-canonical GNG and PPP in BSF
155 trypanosomes.

156

157 Materials and Methods

158

159 *T. brucei* cell culture and cell line construction

160 Bloodstream form *Trypanosoma brucei brucei* Lister 427 cells were cultured in HMI-11
161 medium [26] supplemented with 10 % FCS (BioSera) at 37° C and 5 % CO₂. The fructose-1,6-
162 bisphosphatase and sedoheptulose-1,7-bisphosphatase knock-out cell line (*Δfbp.sbp*) was
163 generated by CRISPR/Cas9 gene editing in the 2T1^{T7-Cas9} cell line [27]. In order to delete *Fbp*
164 (Tb927.9.8720), a template for sgRNA transcription was synthesised by end-filling PCR with
165 primers FBPgRNA_F and sgRNA_R, and a repair template for DNA integration was
166 synthesised with primers FBP.NPT50_5 and FBP.NPT50_3. Cas9 expression was induced
167 with tetracycline at 1 µg/ml (InvivoGen) 24 h prior to transfection with an Amaxa nucleofector
168 (Lonza) using programme Z-001. First, the *Δfbp* cell line was generated, and after validation
169 of successful replacement of both *Fbp* alleles with a G418 resistance cassette, a subsequent
170 transfection was performed to replace the *SBP* (Tb927.2.5800) alleles with a puromycin
171 resistance cassette (primer pairs SBPgRNA_F and sgRNA_R for sgRNA, and SBP.PAC50_5
172 and SBP.PAC50_3 for the repair template with puromycin resistance). Likewise, *Δtal* (TAL
173 is encoded by Tb927.8.5600) was generated in the parental and *Δfbp.sbp* cell lines, using primer
174 pairs AZ1550 and sgRNA_R for sgRNA, and AZ1551 and AZ1552 for the repair template with
175 phleomycin resistance. The primers used are listed in Table 1. Hygromycin was used at 5 µg/ml
176 (InvivoGen), blasticidin at 5 µg/ml (InvivoGen), G418 at 2.5 µg/ml (Invivogen), and
177 puromycin at 0.1 µg/ml (InvivoGen).

178

179 For depletion of PFK (Tb927.3.3270), the RNAi plasmid p2T7-177 [28] was used, digested
180 with *Bam*HI and *Hind*III. A *PFK* PCR product was amplified using primer pair AZ1339 and
181 AZ1340, digested with the same restriction enzymes and ligated with the plasmid. The resulting

182 p2T7-177-PFK construct was linearized with *NotI* prior to electroporation of 2T1^{T7-Cas9} and
183 *Δfbp.sbp* cell lines in parallel. Clones obtained after phleomycin selection (at 2.5 µg/ml) were
184 tested for a growth defect after tetracycline induction at 1 µg/ml, and validated by qRT-PCR.
185 The ^{Ty}PFK cell line was also created by Cas9 editing in the 2T1^{T7-Cas9} cell line. Following 24 h
186 of Cas9 induction, electroporation was performed with a sgRNA template (primer pair AZ1388
187 and sgRNA_R), and PURO.^{Ty}PFK cassette (primer pair AZ1281 and AZ1282). Clones were
188 selected with puromycin at 0.1 µg/ml and integration validated by PCR (primer pair AZ1403
189 and AZ1404) and western blot.

190

191 Table 1: Sequences of DNA primers used in the study.

Primer	Sequence	Description
FBPgRNA_F	TAATACGACTCACTATAAGGGAGGGTGTGGTGCT TTTCGTGGGGCGTTTAGAGCTAGAAATAGCAA G	FBP F sgRNA
sgRNA_R	GCACCGACTCGGTGCCACTTTCAAGTTGATAA CGGACTAGCCTTATTTAACTTGCTATTCTAGC TCTAAAAC	R sgRNA universal
FBP.NPT_50_5	ttttgcactgtttcaatttcattaacgacaccacttccagatttATGATT GAACAAGATGGATTGC	FBP.G418 cassette F
FBP.NPT_50_3	TTTTAAAAAAAACCTGTACCCTTCCACACGCAT CGAACGCAACCATTGGCTCAGAAGAACTCGTCAA GAAGG	FBP.G418 cassette R
SBPgRNA_F	TAATACGACTCACTATAAGGG TGTGGTGCTTTCGTGGGGCGTTTAGAGCTAGA AATAGCAAG	SBP F sgRNA
SBP.PAC_50_5	gccccgtacagggttcccttactcaacccctcgtaaggaaaggagaatATG ACCGAGTACAAGCCC	SBP.puro cassette F
SBP.PAC_50_3	gatcgaccatcacctgtcgccacaaaaataaaaacaagaagaaaaaG GTACCGAGCTCGAATTCTC	SBP.puro cassette R
AZ1211	GATGGCGATTCAAACGTCGG	<i>FBP</i> ORF 177 – 981 bp
AZ1212	TTATCCCCGGTAGCAGAA	<i>FBP</i> ORF 177 – 981 bp
AZ1213	ATTGGCTTCTACCGCGCATA	<i>SBP</i> ORF 438 – 1,050 bp
AZ1214	GTTCGTCAACCCCGTTGTTG	<i>SBP</i> ORF 438 – 1,050 bp
AZ1339	ATGGATCCTTCACTCAACCCGACGGAG	PFK RNAi F, <i>PFK</i> 338 – 894 bp
AZ1340	ATAAGCTTCTGTCACGACCCATGAGCTT	PFK RNAi R, <i>PFK</i> 338 – 894 bp
AZ1388	TAATACGACTCACTATAAGGGGTGACGAGCTTGC TCGTAACGGTTTAGAGCTAGAAATAGCAAG	Ty.PFK sgRNA
AZ1281	GTGAACCTGGAGGAATCAACAGGAATCGCGACC GCCTCCACGAGGAACTGGAGGTCCATACTAAC	PURO. ^{Ty} PFK cassette F

	AAGATCCACTTGACGCCAAGCTCTAATCTCCGCT CTTATTTAGTTTGC	
AZ1282	GTGCCCTCCTCATTCTCCCTTCCCAGAACT CCGTTACCAGAGGGTCATTCAATCATGTGCG ACACACCAAG	PURO. ^{Ty} PFK cassette R
AZ1403	GGACGTATTGCATGTGCTGTC	validation of ^{Ty} PFK F
AZ1404	TGAGTCACGCTGTTCAGCAT	validation of ^{Ty} PFK R
AZ1550	TAATACGACTCACTATAAGGGCGCTACACTT TTGTAAGGGAGTTTAGAGCTAGAAATAGC AAG	TAL sgRNA
AZ1551	CTTAGAAGGGGGAAGGCAACAAGACATGG CCAAGTTGACCAAGTG	TAL phleo cassette F
AZ1552	GTTACTTGATGGTGGGTACCCTCCCTCAGTC CTGCTCCTCGG	Tal phleo cassette R
AZ1609	ATGGATCCGTCTCTCGGCTACGTGATGG	validation of Δ tal
AZ1610	ATAAGCTTCGTTACAGCAATGACGCCT	validation of Δ tal

192

193

194 qRT-PCR

195 Total RNA was extracted from 1 – 2 x 10⁸ cells using the RNeasy kit (Qiagen). DNA was
196 removed using Turbo DNase (Applichem) at 37° C for 30 min, which was subsequently treated
197 with DNase inactivation reagent (Ambion) for 5 min at RT. Following ethanol precipitation,
198 cDNA was synthesised from 2 µg of RNA using TaqMan Reverse Transcription Reagent
199 (Applied Biosystems) and random hexamer primers. Real-time PCR amplification was
200 performed using LightCycler 480 SYBR Green I Master (Roche) and LightCycler 480
201 thermocycler (Roche). Primers used for the PFK target and reference genes are listed in
202 Table 2.

203

204 Table 2: Sequences of DNA primers used for qRT-PCR.

Target gene	Primer name	Sequence
PFK F	AZ1489	CCTCACGGAGAAAGTGAAGG
PFK R	AZ1490	GGGTAGCGAGACTTGTGTTGC
18S F	AZ50	GCGAAACGCCAAGCTAATAC
18S R	AZ51	AGCCGCGACATAGAAAAAGA
Tubulin F	AZ52	GCAGAGTCCAACATGAACGA
Tubulin R	AZ53	CGTCCGCGTCTAGTATTGCT

205 Subcellular fractionation and western blotting

206 In order to separate organellar fractions containing glycosomes from the cytosol, cells were
207 subjected to digitonin-based subcellular fractionation and the obtained samples used for
208 western blots. Briefly, 1×10^8 cells were harvested, washed in 1 x PBS and resuspended in 500
209 μl of SoTE buffer (0.6 M sorbitol, 2 mM EDTA, 20 mM Tris-HCl, pH 7.5). A further 500 μl
210 of SoTE buffer containing 0.03 % digitonin (Sigma-Aldrich) was added, samples were
211 incubated on ice for 5 min and subsequently centrifuged at 4,500 g, 4° C for 3 min. The
212 obtained supernatant was used as cytosolic fraction, and pellets resuspended in an equivalent
213 volume of 1 x PBS and used as organellar fractions. 40 μl of samples were loaded for western
214 blots.

215

216 For whole cell lysates, the equivalent of 1×10^7 cells was used. For western blots (WB) 4-12
217 % NuPAGE polyacrylamide gels (Invitrogen) and 1 x SDS running buffer (25 mM Tris, 192
218 mM glycine, 1 % SDS) were used. Subsequently, proteins were transferred to a PVDF
219 membrane (Pierce) in transfer buffer (39 mM glycine, 48 mM Tris, 20 % methanol) at 90 V
220 for 90 min at 4 °C. Following 30 min blocking in 5 % milk (Serva) in PBS-Tween (0.05 %),
221 primary antibody was incubated in milk solution overnight at 4 °C. Following 3 x 10 min wash
222 in PBS-Tween, secondary antibody was incubated in milk solution for 1 h at RT. Following
223 3 x wash in PBS-T, signal was visualised using Western ECL Substrate (BioRad). The
224 following antibodies were used: α -FBP at 1:500, α -SBP at 1:500 (both kind gifts from
225 Frederick Bringaud), anti-Ty 1:1,000 (ThermoFisher), α -APRT at 1:500 was used as a marker
226 for cytosolic fraction, and α -hexokinase at 1:2,000 as an organellar marker. Secondary α -mouse
227 (BioRad) and α -rabbit (BioRad) antibodies conjugated to HRP were used at 1:2,000.

228

229

230 Metabolomics

231 For the experiment with *Δfbp.sbp* in ^{13}C -glycerol, cells were grown in the standard HMI-11
232 medium supplemented with 5 mM ^{13}C -U-glycerol (Cambridge Isotope Laboratories). For the
233 experiment with *Δfbp.sbp*^{RNAi}PFK, *Δtal*, and *Δfbp.sbp.tal*, HMI-11 medium was prepared from
234 components according to the recipe (Hirumi), but glucose was omitted and instead 5 mM $^{13}\text{C}_3$ -
235 U-glycerol (Cambridge Isotope Laboratories) was supplied. Cells were grown in this medium
236 for 24 h (PFK cell lines) or 48 h (TAL cell lines) prior to sample extraction.

237 Samples for the metabolomic experiments were prepared by the same extraction protocol as
238 reported previously [29]. Briefly, 5×10^7 cells were used per 100 μl sample, which were first
239 rapidly cooled to 4° C in a dry ice – ethanol bath. Following a wash with 1 x PBS, cell pellets
240 were resuspended in 100 μl of chloroform:methanol:water (1:3:1) suspension and incubated
241 with shaking at 4° C for 1 h in order to achieve full extraction into the solvent. Subsequently,
242 samples were centrifuged (12,000 g, 10 min, 4° C), supernatants were collected and stored at -
243 80° C until analysis.

244

245 The metabolomic methods used were described in detail elsewhere [30]. Briefly, an Orbitrap Q
246 Exactive Plus mass spectrometer coupled to an LC Dionex Ultimate 3000 (Thermo Fisher
247 Scientific, San Jose, CA, USA) was used for metabolite profiling. LC condition: column
248 SeQuant ZIC-pHILIC 150 mm x 4.6 mm i.d., 5 μm , (Merck KGaA, Darmstadt, Germany);
249 flow rate of 450 $\mu\text{l}/\text{min}$; injection volume of 5 μl ; column temperature of 35° C; mobile phase
250 A = acetonitrile and B = 20 mmol/l aqueous ammonium carbonate (pH = 9.2; adjusted with
251 NH₄OH); gradient: 0 min, 20 % B; 20 min, 80 % B; 20.1 min, 95 % B; 23.3 min, 95 % B; 23.4
252 min, 20 % B; 30.0 min 20 % B. The Q-Exactive settings were: mass range 70-1050 Daltons;
253 70 000 resolution; electrospray ion source operated in the positive and negative modes.

254 The analysis of the $\Delta fbp.sbp$ cell line in HMI-11 medium was performed at Glasgow
255 Polyomics, using separation on 150 x 4.6 mm ZIC-pHILIC (Merck) on a Dionex UltiMate
256 3000 RSLC system (Thermo Scientific) followed by mass detection on Orbitrap QExactive
257 (Thermo Fisher Scientific) mass spectrometer (Thermo Fisher). Analysis was operated in
258 polarity switching mode, using 10 μ l injection volume and a flow rate of 300 μ l/min.

259 The analyses was performed in four replicates, and a set of standards was run in parallel.
260 Metabolite identification was based on matches with standards where possible or otherwise
261 predicted based on mass and retention time. Data were analysed using mzMatch [31] and
262 mzMatch.ISO [32], Xcalibur™ software, version 4.0 (Thermo Fisher Scientific, San Jose, CA,
263 USA), and an in-house developed Metabolite Mapper® platform.

264

265 **FBPase assay**

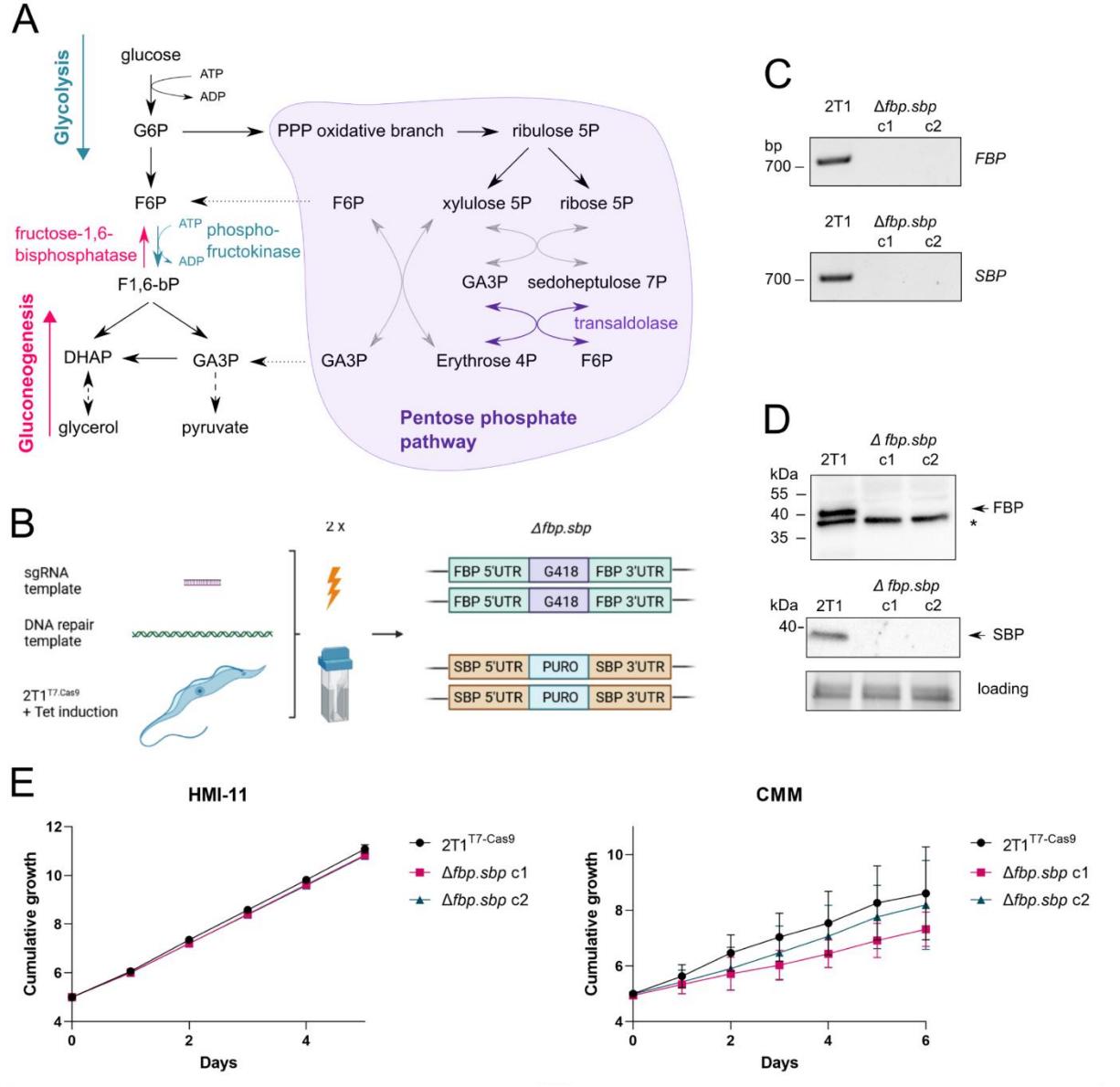
266 2×10^7 cells were used per sample. They were centrifuged (1,300 g, 10 min), washed with 1 x
267 PBS and resuspended in 100 μ l of SoTE buffer (10 mM Tris-HCl pH 8, 1 mM EDTA, 0.15 %
268 Triton X-100, protease inhibitor cocktail (Roche)). After 20 min incubation at RT, samples
269 were centrifuged (14,000 g, 10 min, 16° C) and supernatant collected. The reaction mixture
270 containing 20 mM Tris pH 7.8, 10 mM MgCl₂, 1 mM NADP, 1 U PGI (Sigma-Aldrich), 1 U
271 G6PDH, 100 μ l cell extract was incubated at 30° C for 5 min prior to activity measurement.
272 The reaction was triggered by addition of 5 mM F1,6bP (Sigma-Aldrich) immediately prior to
273 measurement of NADPH production at 340 nm for 5 min at 30° C using a UV-1601
274 spectrophotometer (Shimadzu).

275

276 **Immunofluorescence assay (IFA)**

277 For the immunofluorescence assay, cells were fixed in 7.4 % formaldehyde in 1 x PBS for 15
278 min, and subsequently washed three times with 1 x PBS. For permeabilisation, 0.1 % Triton

279 X-100 (AppliChem) in 1 x PBS was applied for 10 min, and subsequently washed 3 x with 1 x
280 PBS. Following blocking in 5.5 % FBS in 1 x PBS-Tween (0.05 % Tween) and 2 x wash with
281 1 x PBS, the primary antibodies were applied (α -Ty at 1:100 (ThermoFisher) and α -FBP at
282 1:1,000) for 1 h at RT. Following three washes with 1 x PBS-T and two washes with 1 x PBS,
283 the secondary antibodies were applied (Alexa Fluor 647 α -mouse (Life Technologies) at
284 1:2,000 and Alexa Fluor 488 α -rabbit (Life Technologies) at 1:2,000) for 1 h at RT. After an
285 additional three washes with 1 x PBS-T and two washes with PBS, ProLong Gold Antifade
286 mounting solution (Invitrogen) was applied. Imaging was performed using an Axioplan
287 microscope (Zeiss).


288 Results

289

290 Generation of double knock-out *Δfbp.sbp* by two step Cas9 editing

291 We took advantage of CRISPR/Cas9-based gene editing [27] to generate a double knock-out
292 of FBPase and SBPase (*Δfbp.sbp*) in *T. brucei* BSF. First, an sgRNA template and a repair
293 template were simultaneously electroporated in a transient transfection, resulting in
294 replacement of both alleles of the *FBPase* gene with a G418 resistance cassette. Subsequently,
295 applying the same approach, both alleles of *SBPase* were replaced with a puromycin cassette
296 (Fig. 1B). Full replacement of all alleles was validated by PCR and western blotting (Fig 1C,
297 D). Such a straightforward replacement of both target genes indicated that FBPase and SBPase
298 most likely do not play essential roles under the growth conditions used. Accordingly, the
299 *Δfbp.sbp* cell line showed no growth defect in the standard nutrient-rich HMI-11 medium (Fig
300 1E). When Creek's Minimal Medium (CMM), which better approximates the composition of
301 blood serum, was used for cell culture, *Δfbp.sbp* cells suffered a mild growth defect with higher
302 variability, possibly due to different metabolic adaptations required for growth in CMM (Fig
303 1E) [33]. Because these experiments showed a growth defect under nutrient-restrictive
304 conditions, we decided to assess infectivity *in vivo*. Infection of mice showed that *Δfbp.sbp*
305 cells were infectious, although they reached significantly lower parasitaemia on day 2
306 compared to the parental cell line (0.6-fold, p = 0.04 (S1 Fig)).

307

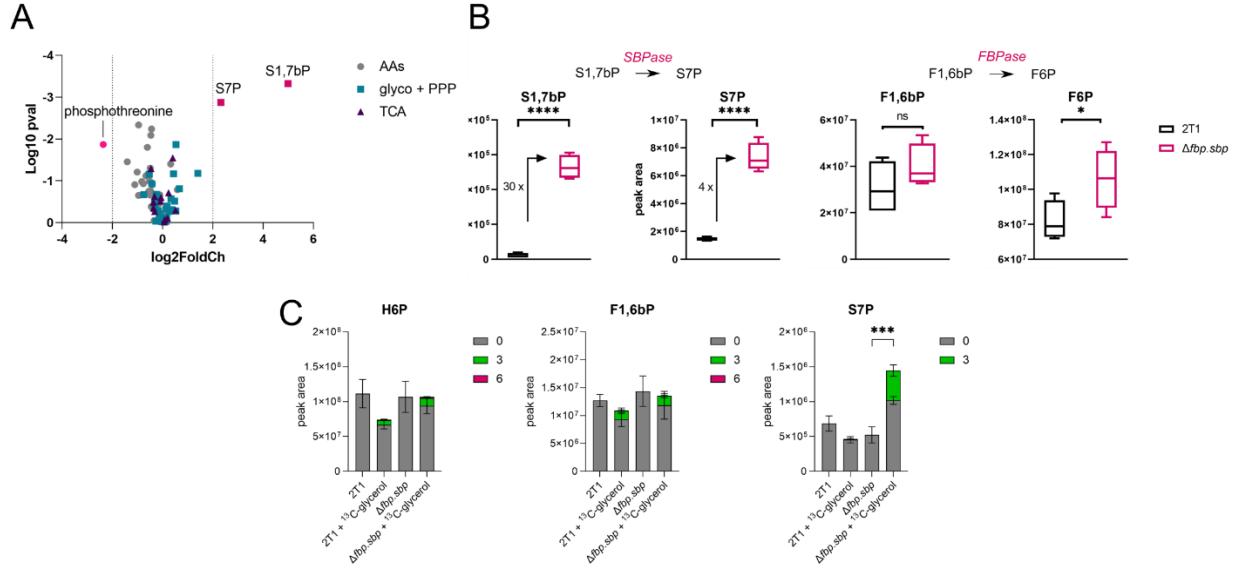
308 **Figure 1. Generation and growth analysis of Δ fbp.sbp strains.**

309
310 A – The scheme shows glycolysis, gluconeogenesis, and the pentose phosphate pathway in
311 BSF *T. brucei* with highlighted FBPase, PFK, and TAL. Missing reactions of transketolase are
312 depicted by grey arrows.

313
314 B – A scheme for the Cas9 editing method by transient transfection. The templates for an
315 sgRNA and for an antibiotic resistance cassette were transfected simultaneously, which
316 resulted in replacement of both alleles for FBPase in the first step, and for SBPase in the
317 second step.

318 C – Validation of the $\Delta fbp.sbp$ cell line by PCR, shows parts of ORFs for *FBPase* and *SBPase*
319 amplified in the parental 2T1^{T7.Cas9} cell line, but absent from $\Delta fbp.sbp$.

320 D - Validation of the $\Delta fbp.sbp$ cell line by western blot. Only the parental cell line shows signal
321 for FBPase (whole cell lysates) and SBPase (organellar fractions), * - cross-reacting protein,
322 gel loading – fluorescent protein detection on a TGX gel.


323 E – Growth curves of two independent clones of $\Delta fbp.sbp$ show no defect in the standard HMI-
324 11 medium. Growth curves in the CMM medium show a mild growth defect of the $\Delta fbp.sbp$
325 clones and higher variability.

326

327 Metabolomic analysis of $\Delta fbp.sbp$ shows sugar phosphate substrate accumulation and
328 maintained gluconeogenesis

329 We next examined the effects of the *fbp* and *sbp* double gene deletion on central carbon
330 metabolism. First, a metabolomic analysis was performed on $\Delta fbp.sbp$ cells cultured in CMM.
331 The most striking change was approx. 30-fold accumulation of S1,7bP ($p = 3 \times 10^{-6}$), the
332 substrate of SBPase (Fig 2A, B), confirming disruption of the SBPase reaction. Sedoheptulose
333 7-phosphate (S7P) was 4-fold increased ($p = 10^{-5}$), probably due to non-enzymatic conversion
334 of highly accumulated S1,7bP. The metabolites of the FBPase reaction were also affected,
335 although to a much lesser extent than for SBPase, with F6P increased 1.3-fold ($p = 0.03$), and
336 F1,6bP not changed significantly (Fig 2B). Since F6P and F1,6bP are also involved in other
337 metabolic pathways, especially glycolysis, absence of FBPase does not have such a substantial
338 impact on their abundance.

339

340

341 **Figure 2. Gluconeogenic activity is maintained in Δ fbp.sbp strains.**

342 A – Changes in Δ fbp.sbp cells grown in CMM and subjected to non-targeted LC-MS
343 metabolomics when compared to the parental cell line. The most changed metabolites are
344 S7P, S1,7bP, and phosphothreonine. The plot includes 87 metabolites from glycolysis, PPP,
345 TCA cycle or amino acid metabolism.

346 B – Sedoheptulose 1,7-bisphosphate (S1,7bP), sedoheptulose 7-phosphate (S7P), fructose
347 1,6-bisphosphate (F1,6bP), and fructose 6-phosphate (F6P) as detected in the parental and
348 Δ fbp.sbp cells grown in CMM and subjected to non-targeted LC-MS metabolomics.

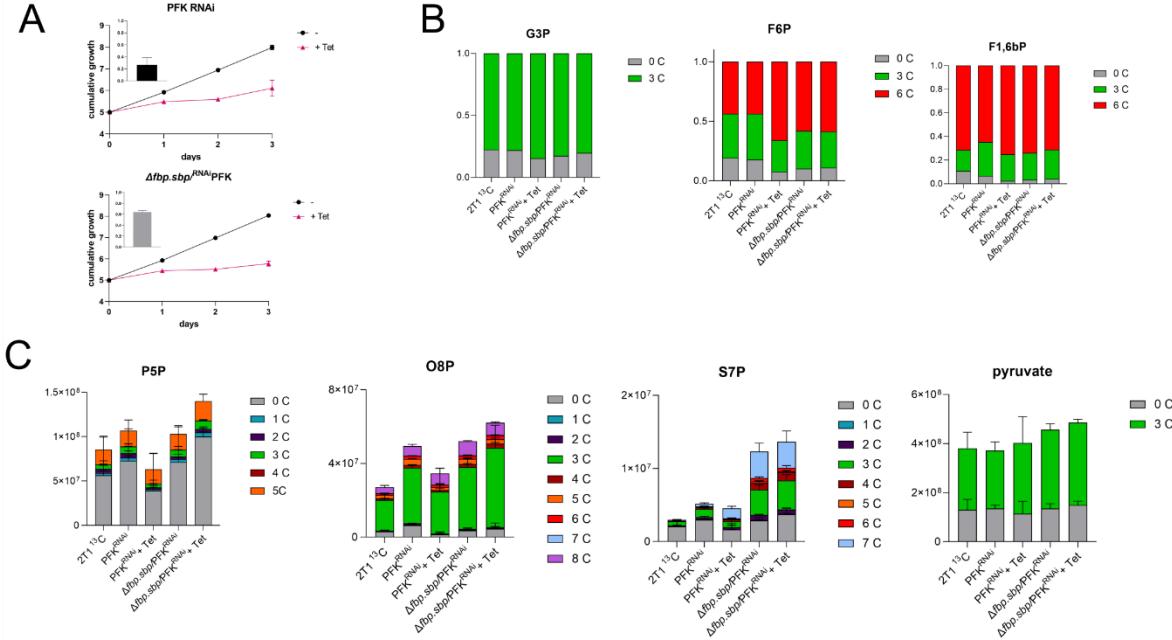
349 C - Δ fbp.sbp cells were grown in HMI-11 supplemented with U-¹³C₃-glycerol and analysed by
350 LC-MS metabolomics, showing that ¹³C from glycerol is incorporated into GNG products.
351 H6P – hexose 6-phosphates.

352

353 To test whether GNG flux is present, we grew the parental and Δ fbp.sbp cells in HMI-11
354 medium supplemented with 5 mM U-¹³C₃-glycerol and subjected the samples to metabolomic
355 analysis. Overall, few changes were observed in the Δ fbp.sbp metabolome compared to the
356 parental cell line, with a 2-fold accumulation of S7P being most evident in Δ fbp.sbp cells grown
357 with glycerol (Fig 2C). Since glucose was also present in the medium, the predominant portion

358 of the hexose phosphate isotopomer pool was unlabelled in both cell lines, however, $^{13}\text{C}_3$
359 labelling represented 10 % of the hexose phosphate pool. 12 % of F1,6bP contained the $^{13}\text{C}_3$
360 label, providing clear evidence that these labelled carbons originate from U- $^{13}\text{C}_3$ -glycerol fed
361 through GNG, in both parental and *Δfbp.sbp* cell lines (Fig 2C).

362


363 Changes in the metabolome of *Δfbp.sbp* cells grown in CMM (Fig 2B) correspond with the
364 growth defect observed in that medium and reflect higher sensitivity of cells to perturbations
365 in nutrient-restricted conditions, in contrast to the HMI-11 medium, where minimal changes in
366 growth and the metabolome of *Δfbp.sbp* cells were observed (Fig 1E, 2C). Overall, the
367 differences detected in sugar phosphates correlate with expectations for FBPase and SBPase
368 deletion, except for maintainance of gluconeogenic flux. This maintained flux was also
369 confirmed by conversion of F1,6bP to F6P in cell extracts; comparable levels of enzymatic
370 activity were measured using a specific enzyme activity assay from the parental cell line (15
371 $\mu\text{mol}/\text{min}/\text{mg}$, $n = 3$) and *Δfbp.sbp* (16 $\mu\text{mol}/\text{min}/\text{mg}$, $n = 3$).

372

373 Depletion of PFK reduces glycolysis but not GNG

374 Since we did not observe changes in GNG flux in *Δfbp.sbp* cell lines, we next determined
375 whether reversed activity of PFK (dephosphorylation of F1,6bP into F6P) can contribute to
376 GNG. PFK was depleted by RNAi in the parental cell line (PFK^{RNAi}) and in the *Δfbp.sbp*
377 background (*Δfbp.sbp*/PFK^{RNAi}). Induction of knockdown using tetracycline caused a severe
378 growth defect in both cell lines, as expected due to the essential role of PFK in glycolysis (Fig
379 3A). RT-PCR confirmed a drop in target gene expression to 20 % in the parental background
380 and 60 % in the *Δfbp.sbp* background (insets, Fig 3A). We performed metabolomic analysis of
381 the PFK^{RNAi} and *Δfbp.sbp*/PFK^{RNAi} cells fed with U- $^{13}\text{C}_3$ -glycerol as the sole carbon source (no
382 glucose was present in the HMI-11 medium, except for ~0.5 mM glucose from 10 % FBS).

383 Samples were harvested 24 h after tetracycline induction in the glycerol medium and subjected
384 to LC-MS metabolomics. The profile of glycerol 3-phosphate (G3P) shows that glycerol was
385 taken up and incorporated, since the $^{13}\text{C}_3$ -labelled part represents around 80 % (78 - 85 %) of
386 the total in all sample groups (Fig 3B). Crucially, RNAi induced cells with decreased PFK
387 expression still utilised glycerol via GNG and incorporated it into hexose phosphate sugars.
388 The profile of F6P shows that the majority (44 – 66 %) is $^{13}\text{C}_6$ -fructose 6-phosphate, made
389 from $^{13}\text{C}_3$ -glycerol, in all samples (Fig 3B). The major difference after PFK depletion is in the
390 unlabelled part that originates from glucose via glycolysis, and relies on the forward reaction
391 of PFK. This fraction decreased from 18 to 8 % of the total amount in PFK^{RNAi} induced
392 samples, confirming a reduction in PFK glycolytic activity. On the other hand, the proportion
393 of the $^{13}\text{C}_6$ -labelled part increased from 44 to 66 %, demonstrating undiminished glycerol
394 incorporation. A substantial part of F6P is $^{13}\text{C}_3$ -labelled (26 – 38 %), indicating that both
395 reactions, phosphorylation of F6P into F1,6P and the reverse dephosphorylation, take place.
396 Analysis of the F1,6bP profile shows an even higher proportion of $^{13}\text{C}_6$ -labelled, representing
397 64 – 74 % across the samples. Smaller changes occur after induction of PFK knockdown, but
398 the same trend as in F6P is observed. The unlabelled part dropped from 6.5 to 2.5 %, $^{13}\text{C}_3$
399 decreased from 29 to 22 %, and $^{13}\text{C}_6$ increased from 65 to 75 % (Fig 3B). In the
400 $\Delta fbp.sbp$ ^{RNAi} PFK cell line, no significant changes were detected after induction of PFK
401 silencing, suggesting that any further perturbation of metabolic flux is lethal for these cells.
402

403

404 **Figure 3. PFK knockdown causes a severe growth defect, but only mild changes in the**
 405 **metabolome.**

406 A – Growth curves of PFK^{RNAi} and in $\Delta\text{fbp.sbp}^{\text{RNAi}}/\text{PFK}$ show a severe growth defect after
 407 RNAi. Levels of PFK mRNA are shown as detected by qRT-PCR, compared to non-induced
 408 cells, and normalised to 18S, 24 h tetracycline induction (insets).

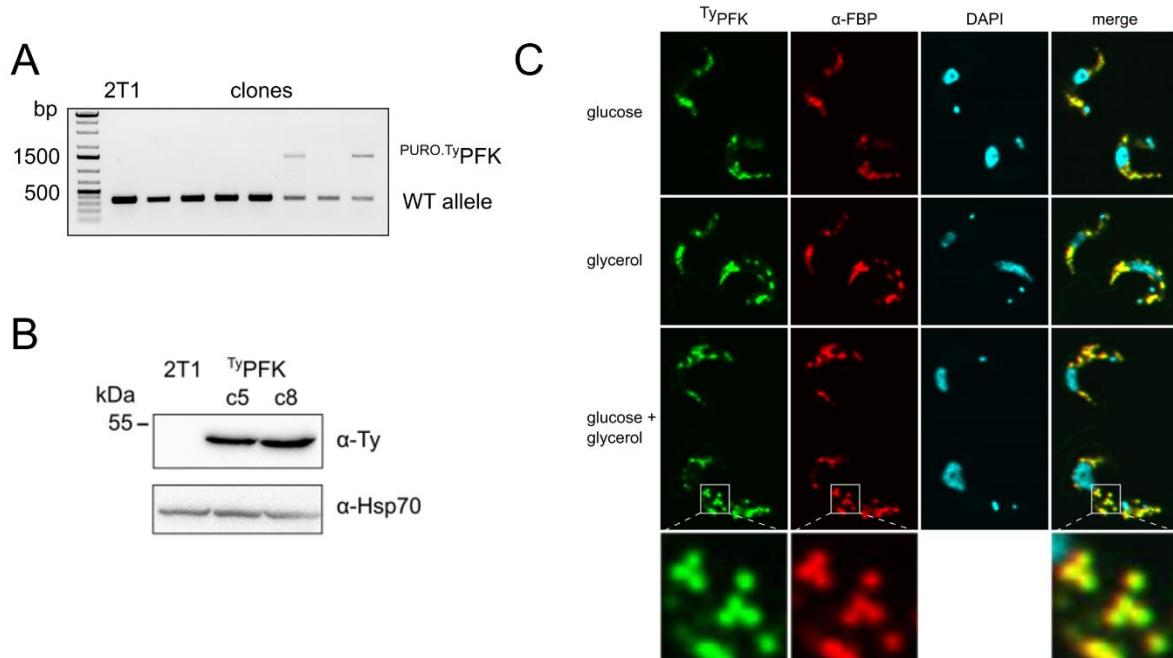
409 B – Targeted LC-MS metabolomics in HMI-11 medium depleted of glucose, and supplemented
 410 with $^{13}\text{C}_3$ -glycerol. The proportion of the C_{13} label incorporation relative to the total amount is
 411 indicated. G3P – glycerol 3-phosphate, F6P – fructose 6-phosphate, F1,6bP – fructose 1,6-
 412 bisphosphate. 2T1 ^{13}C – parental cell line in medium with ^{13}C -glycerol,

413 PFK^{RNAi} – non-induced PFK RNAi cell lines in medium with ^{13}C -glycerol,
 414 $\text{PFK}^{\text{RNAi}} + \text{Tet}$ – PFK RNAi induced for 24 h in medium with ^{13}C -glycerol,
 415 $\Delta\text{fbp.sbp}/\text{PFK}$ – non-induced $\Delta\text{fbp.sbp}^{\text{RNAi}}/\text{PFK}$ cell line in medium with ^{13}C -glycerol,
 416 $\Delta\text{fbp.sbp}/\text{PFK} + \text{Tet}$ – $\Delta\text{fbp.sbp}^{\text{RNAi}}/\text{PFK}$ cell line induced for 24 h in medium with ^{13}C -glycerol
 417 C – Same as in B), but relative changes in the total levels of metabolites are depicted. P5P –
 418 pentose 5-phosphates, O8P – octulose 8-phosphate, S7P – sedoheptulose 7-phosphate.

419

420 Pentose phosphate pathway (PPP) intermediates are labelled to a lesser extent than the hexose
421 phosphates. Around 70 % of the total pentose phosphate pool is unlabelled, while $^{13}\text{C}_5$
422 represents between 11 to 18 %, and $^{13}\text{C}_3$ about 5 % (Fig 3C). Octulose 8-phosphate (O8P) has
423 a similar labelling pattern, suggesting its synthesis from pentose phosphates condensed with a
424 three carbon moiety ($^{13}\text{C}_3$ represents ~ 65 %, Fig 3C). S7P, another intermediate of the non-
425 oxidative PPP, is substantially labelled. The $^{13}\text{C}_3$ part comprised around 20 % of total S7P in
426 the WT control and PFK^{RNAi} , and 28 % in $\Delta fbp.sbp^{\text{RNAi}}$ PFK cells, regardless of whether
427 knockdown was induced or not, suggesting that PFK depletion has little impact on the
428 incorporation of glycerol. However, depletion of FBPase and SBPase caused an increase in
429 $^{13}\text{C}_3$, in addition to the increase in total amount of S7P more than 4-fold (compared to WT)
430 (Fig 3C), consistent with the previous measurement (Fig 2B). Moreover, the $^{13}\text{C}_7$ part
431 represented about 30 % of total S7P in $\Delta fbp.sbp$ cells, confirming glycerol as a substrate for
432 the production of S7P. These larger sugar phosphates have been observed in *T. brucei* before
433 [29], and although their role in metabolism remains unclear, the current targeted metabolomic
434 data offers new insights into their biosynthesis.

435


436 Metabolomic profiles of other metabolites, such as intermediates of glycolysis, the succinate
437 shunt, or mitochondrial carbon metabolism, provide additional valuable information.
438 Substantial $^{13}\text{C}_3$ labelling was observed in phosphoenolpyruvate (PEP), pyruvate, fumarate,
439 malate, aspartate, and alanine (Fig 3C, S2 Fig). 72 – 78 % of PEP is $^{13}\text{C}_3$, demonstrating a high
440 level of utilisation of labelled glycerol in glycolysis. The unlabelled fraction dropped from 22
441 % to 13 % after PFK knockdown, again confirming a drop in glucose utilisation in glycolysis,
442 relative to glycerol. Pyruvate comprised 28 – 36 % of unlabelled, and 60 – 68 % of $^{13}\text{C}_3$ -
443 pyruvate. Malate comprised 43 % to 57 % of unlabelled, 10 – 16 % of $^{13}\text{C}_2$ (synthesized in the
444 mitochondrion via acetyl-CoA), and 28 % - 36 % of $^{13}\text{C}_3$ (synthesized in the glycosomal

445 succinate shunt), without significant differences between the sample groups (S2 Fig). For
446 aspartate, the $^{13}\text{C}_3$ content ranges from 42 % to 50 % in all cell samples. These data indicated
447 that glycerol was used in glycolysis for pyruvate and acetyl-CoA production and further fed
448 into mitochondrial enzyme reactions classically associated with the TCA cycle (S2 Fig). The
449 data are consistent with our previous work, where we observed similar labelling patterns with
450 glycerol, indicating an increase in mitochondrial metabolism when BSF cells rely on GNG [6].
451 Overall, few changes were observed after PFK knockdown, despite the severe growth defect.
452 However, we saw clear evidence for diminished glycolysis, but not GNG. The data
453 demonstrated that glycerol was utilised as the main carbon source under these conditions, since
454 the majority of glycolytic intermediates were labelled from $^{13}\text{C}_3$ -glycerol. In addition to use as
455 a substrate for GNG, glycerol was used for synthesis of S7P, which may reflect a novel
456 variation of the non-oxidative PPP.

457

458 PFK and FBPase co-localise in glycosomes

459 We next sought to establish the localisation of the key glycolytic and GNG enzymes, PFK and
460 FBPase. Both of these enzymes are glycosomal, but their mutual co-localisation has never been
461 reported. For this purpose, one of the endogenous PFK alleles was tagged in the 2T1^{T7-Cas9} cell
462 line with the Ty-tag, generating $^{\text{Ty}}\text{PFK}$, which was used for microscopy in a combination with
463 a specific α -FBPase antibody. We cultured the cells in medium supplemented with glucose or
464 glycerol only, or in a combination of both carbon sources, and then subjected these cells to
465 super-resolution confocal microscopy (Fig 4). PFK and FBPase always co-localised in
466 glycosomes and no differences were observed under the various conditions tested. The two
467 enzymes are not separated by compartmentalisation. Further work will be required to reveal
468 potential regulation, although futile cycling does occur to some extent as seen in the
469 metabolomic data (Fig 3B).

470

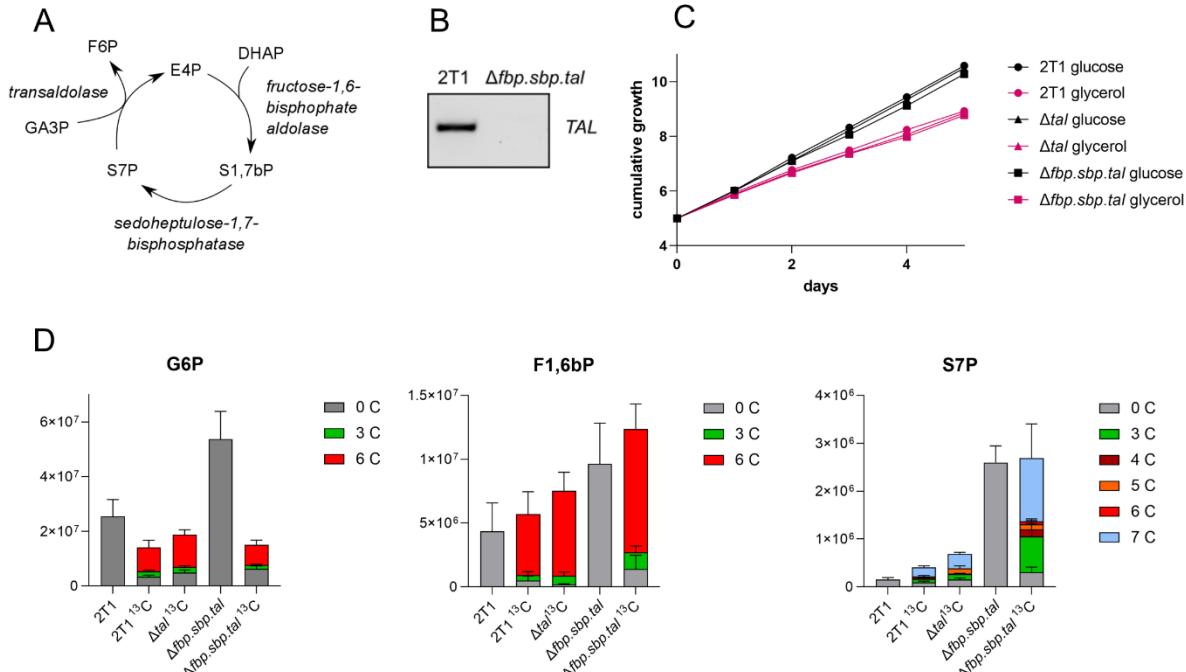
471 **Figure 4. PFK and FBPase co-localise in glycosomes.**

472 A – PCR validation of ^{Ty}PFK clones.

473 B – Western blot validation of the ^{Ty}PFK cell line.

474 C – Immunofluorescence assay with ^{Ty}PFK cell line, α-Ty, and α-FBPase staining. Cells were
475 cultured in CMM with different carbon sources (glucose, glycerol, or both), but it had no effect
476 on co-localisation of PFK and FBPase.

477


478 TAL does not contribute to gluconeogenesis

479 One possible explanation for the observed GNG activity (i.e. generation of F6P from glycerol)
480 may be a novel metabolic pathway involving three enzymes (SBPase, TAL, and fructose-1,6-
481 bisphosphate aldolase) that operate in a cycle, using glycolytic intermediates as substrates to
482 produce F6P (Fig 5A) [25]. Considering the unprecedented presence of SBPase, expression of
483 TAL in the absence of transketolase, and the persistence of GNG flux, such a novel pathway
484 could offer an explanation. Hence, we decided to test the role of TAL in GNG, and generated
485 a knock-out cell line lacking *FBPase*, *SBPase*, and *TAL* (*Δfbp.sbp.tal*). *TAL* was deleted using
486 Cas9 and replaced with a phleomycin resistance cassette in the parental 2T1^{T7-Cas9} and in the

487 *Δfbp.sbp* cell lines (Fig 5B). The *Δfbp.sbp.tal* cells displayed no growth defect in HMI-11
488 medium supplemented either with glucose or glycerol as the main carbon source (Fig 5C). The
489 cells were also still infective to mice at levels comparable to the parental cell line (S3 Fig).

490

491 A targeted LC-MS metabolomic analysis was performed on *Δfbp.sbp.tal* cells grown in CMM
492 supplemented with 5 mM $^{13}\text{C}_3$ -glycerol and no glucose (~0.5 mM glucose was present due to
493 supplementation with 10 % FCS). The results showed substantial uptake of, and reliance upon,
494 glycerol as the major carbon source. The profile of G6P is surprisingly similar between the
495 parental and *Δfbp.sbp.tal* cells when fed with $^{13}\text{C}_3$ -glycerol, with the majority of the G6P
496 metabolite being $^{13}\text{C}_6$ -labelled (62 % in WT and 49 % in *Δfbp.sbp.tal*) (Fig 5D). Even more
497 substantial is the fully labelled part in F1,6bP, representing 84 % of total in WT and 78 % in
498 *Δfbp.sbp.tal*. Additionally, the total amount of the G6P metabolite is 2-fold increased in the
499 triple knock-out (Fig 5D). S7P is a sugar phosphate formed by an unknown mechanism,
500 however, our data show that S7P is synthesized from glycerol. The total amount of S7P is
501 increased 3-fold in WT when fed on glycerol relative to glucose, indicating that glycerol
502 increases S7P synthesis. In addition, S7P is increased 2-fold in *Δtal* and 6-fold in the
503 *Δfbp.sbp.tal* cell line. The majority is $^{13}\text{C}_3$ - and $^{13}\text{C}_7$ -labelled (28 % and 49 % respectively, in
504 *Δfbp.sbp.tal*, Fig 5D). In summary, our metabolomic data show persistence of GNG flux from
505 glycerol even in the *Δfbp.sbp.tal* cell line. We did not observe other major changes in the
506 metabolome associated with deletion of TAL, thus the function of TAL in BSF trypanosomes,
507 where its usual PPP partner enzyme transketolase is absent, remains unknown.

508

509 **Figure 5. Deletion of TAL does not decrease GNG flux.**

510 A - The novel pathway as suggested by Hannaert [25]: Erythrose 4-phosphate (E4P) is
511 condensated with dihydroxyacetone phosphate (DHAP) by fructose-1,6-bisphosphate
512 aldolase into S1,7bP, which is dephosphorylated by SBPase into S7P. That is used as a
513 substrate by transaldolase, together with glyceraldehyde 3-phosphate (GA3P), and converted
514 into F6P and E4P, which can enter another cycle.

515 B – PCR detection of a 500-bp product from the *TAL* ORF, proving deletion of the gene.

516 C – Growth curves of the parental (2T1^{T7-Cas9}), *Δtal*, and *Δfbp.sbp.tal* cell lines in HMI-11
517 medium supplemented with glucose, or glycerol only (and 10 % FBS).

518 D - Targeted LC-MS metabolomics in CMM supplemented with 5 mM ¹³C₃-glycerol. G6P –
519 glucose 6-phosphate, F1,6bP - fructose 1,6-bisphosphate, S7P - sedoheptulose 7-phosphate.
520 2T1 – parental cell line in medium with glucose, 2T1¹³C – parental cell line in medium with
521 ¹³C-glycerol, *Δtal*¹³C – *Δtal* cell line in medium with ¹³C-glycerol, *Δfbp.sbp.tal* - *Δfbp.sbp.tal* cell
522 line in medium with glucose, *Δfbp.sbp.tal*¹³C - *Δfbp.sbp.tal* cell line in medium with ¹³C-
523 glycerol.

524

525 Discussion

526 We took advantage of Cas9-based gene editing to delete multiple genes and in an attempt to
527 abolish GNG in BSF *T. brucei*. However, our data show that the combined deletion of FBPase,
528 SBPase, and TAL had little impact on gluconeogenic activity. To the best of our knowledge,
529 this is the first case of deletion of three diploid gene loci simultaneously in BSF *T. brucei*.
530 Depletion of PFK was possible only to a limited extent, but our data support the view that this
531 enzyme is not involved in GNG, as suggested previously [17]. Current understanding of
532 trypanosome metabolism does not provide an alternative explanation for how GNG operates,
533 and which enzymes contribute to GNG flux.

534

535 In our previous work and that of others, it was demonstrated that deletion of the canonical
536 *FBPase* gene in *T. brucei* does not deplete FBPase activity, i.e. conversion of F1,6bP to F6P
537 [6, 7]. This is in contrast to closely related leishmania parasites, where *FBPase* deletion
538 disrupted GNG and caused a severe phenotype in mammalian infective amastigotes [34]. Since
539 SBPase is not present in the genome of leishmania, this enzyme was a promising candidate for
540 the observed FBPase activity. The enzyme has 26 % sequence identity to FBPase, and its
541 catalytic activity is predicted to be very similar, using a sugar phosphate backbone extended
542 by one carbon. Additionally, SBPase from yeast was demonstrated to posess ‘FBPase’ activity
543 [35]. The most probable origin of SBPase in trypanosomes is acquisition by horizontal gene
544 transfer [36].

545

546 The streamlined protocol for Cas9-based gene editing allowed us to generate a double gene
547 knock-out combined with a knock-down. Knock-out for both *FBPase* and *SBPase* genes were
548 readily obtained by sequential transfections. The *Δfbp.sbp* cell line had no growth defect under
549 nutrient-rich culture conditions. However, there was a mild and variable growth defect in

550 CMM. The high variability in growth rate could be caused by different mechanisms of
551 adaptation to nutrient-restricted conditions. The metabolomic experiments with *Δfbp.sbp*
552 revealed that SBPase bears its canonical enzymatic activity (converting S1,7bP to S7P), since
553 its substrate, S1,7bP was highly accumulated in the knockout cell line. A concomitant increase
554 in S7P is most likely explained by non-enzymatic loss of a single phosphate from the
555 accumulated S1,7bP. Similarly, accumulation of S1P and S1,7bP was observed previously in
556 an SBPase yeast deletion mutant [37]. SBPase was also identified in *Toxoplasma gondii*, and
557 its deletion resulted in a similar phenotype to what we observed here, both in metabolomics
558 and in decreased infectivity [38].

559

560 Fernandes and colleagues [17] showed reverse PFK activity (equal to canonical FBPase) *in*
561 *vitro*. Our data do not support reverse activity of trypanosome PFK *in vivo*, however, since we
562 observed a decrease in glycolytic flux but not GNG flux following PFK knockdown. We
563 detected a severe growth defect when the PFK mRNA was depleted to 20 % in parental and to
564 60 % in the *Δfbp.sbp* background. More efficient PFK knockdown by RNAi is unlikely to be
565 achievable in the *Δfbp.sbp* double knock-out mutant, because metabolic flux is flexible and
566 enzymes can compensate for each other to some extent, which is impossible in the double
567 knock-out background. Metabolomics showed surprisingly few changes in the levels of
568 detected metabolites in the PFK knockdown cell lines. Nevertheless, we noted a decrease in
569 glycolytic flux, but not in GNG flux. The directionality of the PFK activity is dependent on
570 concentrations of substrates and products. Fernandes *et al.* calculated that the reversal should
571 occur if the concentration of substrates is 500-fold higher than the concentration of products
572 [17]. The changes in ADP, ATP, F6P, and F1,6bP in our metabolomic datasets were much less
573 prominent, for instance one of the largest changes is the 2-fold accumulation of F1,6bP in
574 *Δfbp.sbp*^{RNAi}PFK compared with WT (S3 Fig). However, we measured metabolites extracted

575 from whole cells, whereas the ADP/ATP ratio within the glycosomal sub-compartment may be
576 substantially shifted relative to that of the whole cell. Altogether, although it is challenging to
577 test involvement of an essential glycolytic enzyme, our data do not support participation of
578 PFK on GNG.

579

580 The PPP intermediates detected by metabolomics can be separated into two groups. The first
581 represents the oxidative PPP and metabolites derived originally from glucose, where less
582 labelling from glycerol was detected (pentose phosphates, Fig 3C). The second group,
583 representing the non-oxidative PPP, contains S7P or O8P, which have significant proportions
584 labelled (Fig 3C, 5D). Since BSF *T. brucei* does not express transketolase [20, 21], the
585 metabolites cannot be produced in the canonical non-oxidative PPP. This suggests that in a low
586 concentration of glucose, as used here, glucose is used preferentially to feed the oxidative PPP,
587 whereas glycerol is used to feed glycolysis and to synthesize large sugar phosphates such as
588 S7P. Although O8P has previously been shown to be synthesized *in vitro* from F6P and R5P
589 by TAL [29], there appears to be a separate route for synthesis in the parasites, as evidenced
590 by the presence of this metabolite in *TAL*-depleted cell lines. In both WT and *Δfbp.sbp.tal*,
591 much higher quantities of O8P were detected in the presence of glucose than in the same cell
592 lines grown in glycerol-based medium (S4 Fig). Our datasets provide new insights into the role
593 of TAL and the whole PPP in BSF, however, further studies will be required to resolve the
594 arrangement of the pathway in this life stage.

595

596 A novel metabolic pathway that includes the activities of SBPase, TAL, and fructose-1,6-
597 bisphosphate aldolase was proposed [25]. If active, this pathway conforms to the labelling
598 patterns detected in S7P (and O8P), and also with S1,7bP production catalysed by aldolase, as
599 reported previously [37]. Most importantly, this would present an alternative pathway for the

600 production of F6P from glycerol. Nevertheless, our experiments with the Δtal and $\Delta fbp.sbp.tal$
601 mutants show that carbons from glycerol are still incorporated into F1,6bP, F6P, and other
602 metabolites, demonstrating continued flux through GNG, and precluding the existence of the
603 alternative pathway.

604

605 It is also unclear how the flux between glycolysis and GNG, i.e. between PFK and FBPase
606 activity, is regulated. Potentially, the forward or reverse flux could be controlled by upstream
607 kinases, i.e. hexokinase in glycolysis and glycerol kinase in GNG, due to competition for ATP,
608 as reported recently [39]. Another possibility would be an exclusive compartmentalisation of
609 these enzymes, but our immunofluorescence analysis shows that PFK and FBPase co-localise
610 under all conditions tested. These results suggest that some futile cycling does take place, as
611 substantial $^{13}\text{C}_3$ -labelling of hexose phosphates (Fig 3B) occurs. However, since FBPase is not
612 a key GNG enzyme, we suggest that regulation is achieved by a distinct enzyme that possesses
613 FBPase activity but whose identity is yet to be established.

614

615 When glucose is limiting, bloodstream form trypanosomes adapt by activating alternative
616 metabolic pathways. Labelling patterns in succinate and citrate indicate flux in mitochondrial
617 metabolism. Since only a small proportion of labelling in citrate was detected (72 – 89 % of
618 citrate was unlabelled), incorporation of additional substrates, such as glutamine or other amino
619 acids likely occurs, as reported previously [40]. If glycerol is available to trypanosomes, it is
620 used as a carbon source, being incorporated into sugar phosphates under all of conditions tested
621 here. Deletion or depletion of four different enzymes failed to substantially diminish GNG flux
622 in BSF trypanosomes. Taken together, our results indicate that (an)other enzyme(s), currently
623 unrecognized by *in silico* searchers, is/are responsible for the activity. The question as to

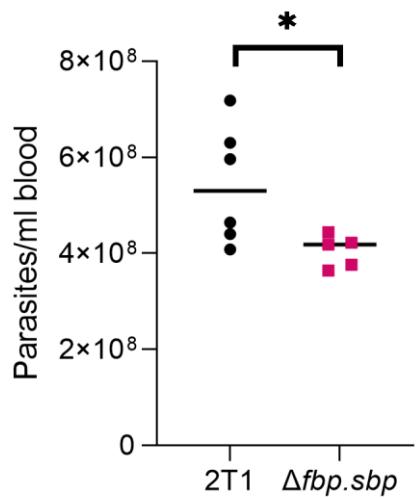
624 whether GNG is essential for BSF *T. brucei* cannot be readily addressed until these key
625 enzyme(s) are identified.

626

627 Acknowledgements

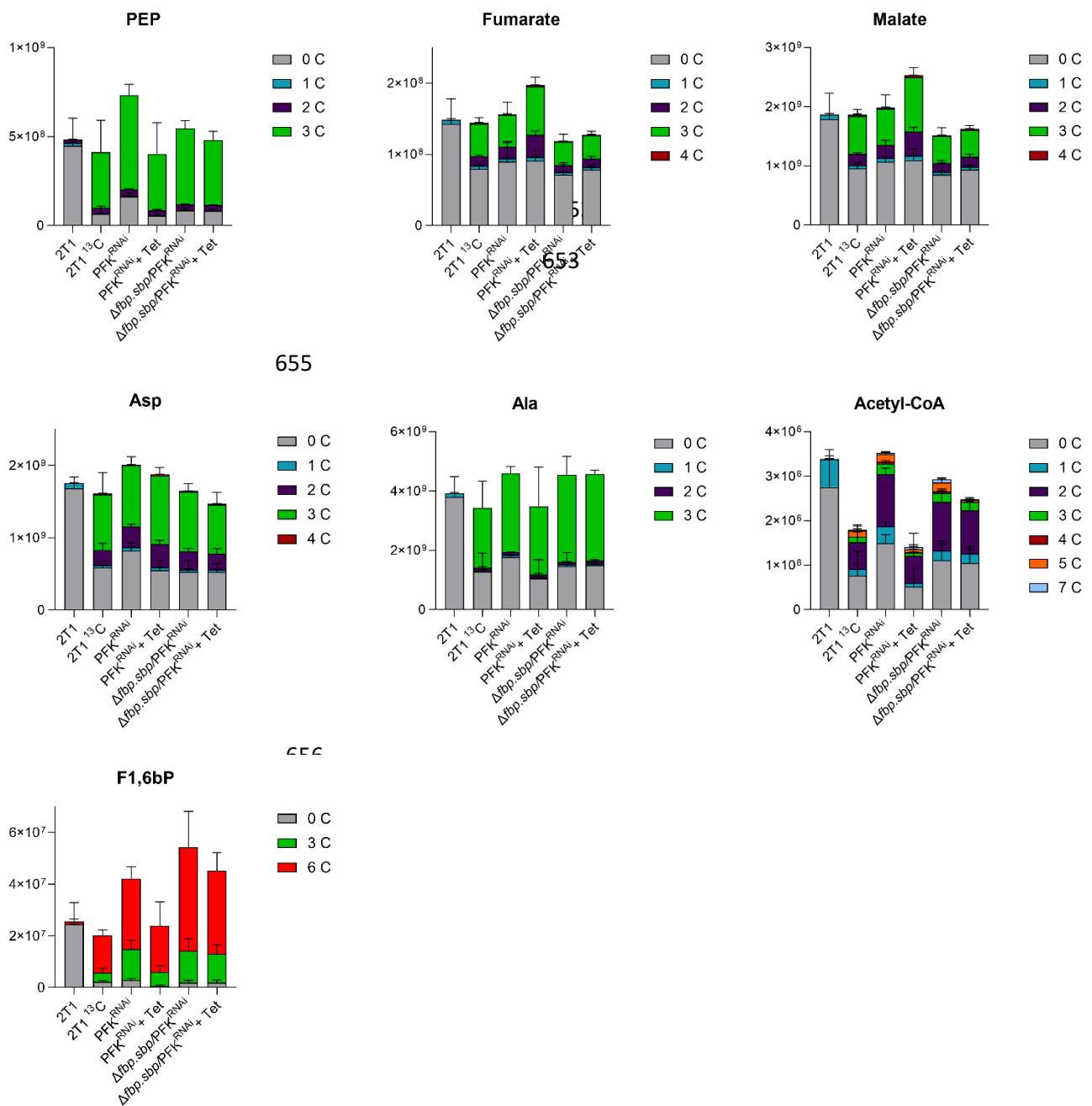
628 We thank Prof. Frederic Bringaud (University of Bordeaux) and Prof. Paul Michels (University
629 of Edinburgh) for the kind gift of antibodies α -FBPase, α -SBPase, and α -PFK. This work was
630 supported by CZ.02.2.69/0.0/0.0/19_074/0016248 LeishWeb to J.K.; by the European
631 Regional Development Fund (ERDF) and Ministry of Education, Youth and Sport (MEYS)
632 project CZ.02.1.01/0.0/0.0/16_019/0000759, by the European Research Council (ERC,
633 MitoSignal, grant agreement no. 101044951), and GACR 20-14409S to A.Z.; D. H. was funded
634 by an Investigator Award from Wellcome [217105/Z/19/Z]. M.P.B was funded by an MRC
635 Newton grant ‘Bridging epigenetics, metabolism and cell cycle in pathogenic
636 trypanosomatids’ MR/S019650/1.

637

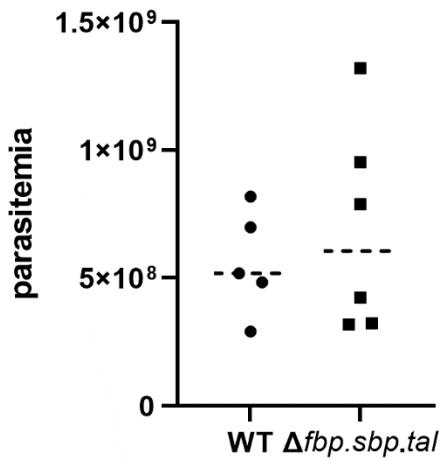

638

639 **Supporting Figures**

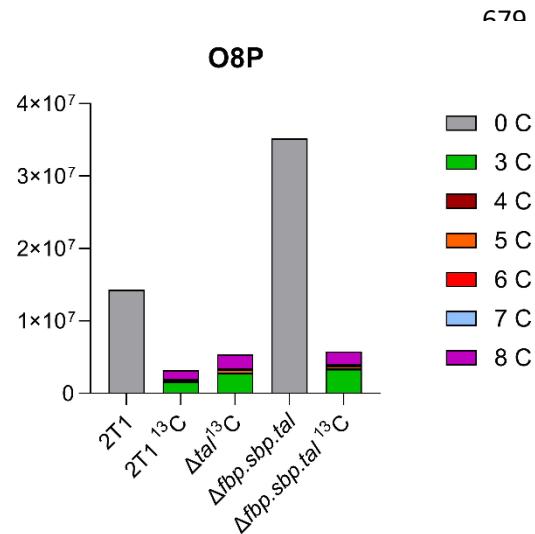
640


641 S1 Figure: Mice infection with $\Delta fbp.sbp$ cell line.

642


643

644 S2 Figure. Targeted LC-MS metabolomics in HMI-11 medium depleted of glucose, but
 645 supplemented with $^{13}\text{C}_3$ -glycerol. 2T1 ^{13}C – parental cell line in medium with ^{13}C -glycerol,
 646 PFK $^{\text{RNAi}}$ – non-induced PFK RNAi cell lines in medium with ^{13}C -glycerol,
 647 PFK $^{\text{RNAi}} + \text{Tet}$ – PFK RNAi induced for 24 h in medium with ^{13}C -glycerol,
 648 $\Delta fbp.sbp/\text{PFK}$ – non-induced $\Delta fbp.sbp/\text{PFK}^{\text{RNAi}}$ cell line in medium with ^{13}C -glycerol,
 649 $\Delta fbp.sbp/\text{PFK} + \text{Tet} - \Delta fbp.sbp/\text{PFK}^{\text{RNAi}}$ cell line induced for 24 h in medium with ^{13}C -glycerol.
 650


664 S3 Figure. Mice infection with $\Delta fbp.sbp.tal$ cell line.

665

675 S4 Figure. Octulose 8-phosphate (O8P) as detected in the *Δtal* cell lines by LC-MS
676 metabolomics. ¹³C indicates medium supplemented with ¹³C-glycerol as the only carbon
677 source.

678

688 References

689 1. Crilly NP, Mugnier MR. Thinking outside the blood: Perspectives on tissue-resident
690 Trypanosoma brucei. PLoS Pathog. 2021;17(9):e1009866. Epub 2021/09/17. doi:
691 10.1371/journal.ppat.1009866. PubMed PMID: 34529724; PubMed Central PMCID:
692 PMCPMC8445408.

693 2. Caljon G, Van Reet N, De Trez C, Vermeersch M, Pérez-Morga D, Van Den Abbeele J. The
694 Dermis as a Delivery Site of Trypanosoma brucei for Tsetse Flies. PLoS Pathog. 2016;12(7):e1005744.
695 Epub 2016/07/22. doi: 10.1371/journal.ppat.1005744. PubMed PMID: 27441553; PubMed Central
696 PMCID: PMCPMC4956260.

697 3. Capewell P, Cren-Travaillé C, Marchesi F, Johnston P, Clucas C, Benson RA, et al. The skin is a
698 significant but overlooked anatomical reservoir for vector-borne African trypanosomes. eLife. 2016;5.
699 Epub 2016/09/23. doi: 10.7554/eLife.17716. PubMed PMID: 27653219; PubMed Central PMCID:
700 PMCPMC5065312.

701 4. Trindade S, Rijo-Ferreira F, Carvalho T, Pinto-Neves D, Guegan F, Aresta-Branco F, et al.
702 Trypanosoma brucei Parasites Occupy and Functionally Adapt to the Adipose Tissue in Mice. Cell Host
703 Microbe. 2016;19(6):837-48. Epub 2016/05/31. doi: 10.1016/j.chom.2016.05.002. PubMed PMID:
704 27237364; PubMed Central PMCID: PMCPMC4906371.

705 5. Mabille D, Dirkx L, Thys S, Vermeersch M, Montenye D, Govaerts M, et al. Impact of pulmonary
706 African trypanosomes on the immunology and function of the lung. Nat Commun. 2022;13(1):7083.
707 Epub 2022/11/19. doi: 10.1038/s41467-022-34757-w. PubMed PMID: 36400767; PubMed Central
708 PMCID: PMCPMC9674601.

709 6. Kovářová J, Nagar R, Faria J, Ferguson MAJ, Barrett MP, Horn D. Gluconeogenesis using
710 glycerol as a substrate in bloodstream-form Trypanosoma brucei. PLoS Pathog.
711 2018;14(12):e1007475. Epub 2018/12/28. doi: 10.1371/journal.ppat.1007475. PubMed PMID:
712 30589893; PubMed Central PMCID: PMCPMC6307712.

713 7. Pineda E, Thonnus M, Mazet M, Mourier A, Cahoreau E, Kulyk H, et al. Glycerol supports
714 growth of the *Trypanosoma brucei* bloodstream forms in the absence of glucose: Analysis of metabolic
715 adaptations on glycerol-rich conditions. *PLoS Pathog.* 2018;14(11):e1007412. Epub 2018/11/02. doi:
716 10.1371/journal.ppat.1007412. PubMed PMID: 30383867; PubMed Central PMCID:
717 PMCPMC6245841.

718 8. Trindade S, De Niz M, Costa-Sequeira M, Bizarra-Rebelo T, Bento F, Dejung M, et al. Slow
719 growing behavior in African trypanosomes during adipose tissue colonization. *Nat Commun.*
720 2022;13(1):7548. Epub 2022/12/09. doi: 10.1038/s41467-022-34622-w. PubMed PMID: 36481558;
721 PubMed Central PMCID: PMCPMC9732351.

722 9. Albert MA, Haanstra JR, Hannaert V, Van Roy J, Opperdoes FR, Bakker BM, et al. Experimental
723 and in silico analyses of glycolytic flux control in bloodstream form *Trypanosoma brucei*. *J Biol Chem.*
724 2005;280(31):28306-15. Epub 2005/06/16. doi: 10.1074/jbc.M502403200. PubMed PMID: 15955817.

725 10. M C Scrutton a, Utter MF. The Regulation of Glycolysis and Gluconeogenesis in Animal Tissues.
726 *Annual Review of Biochemistry.* 1968;37(1):249-302. doi: 10.1146/annurev.bi.37.070168.001341.

727 11. Wargnies M, Bertiaux E, Cahoreau E, Ziebart N, Crouzols A, Morand P, et al. Gluconeogenesis
728 is essential for trypanosome development in the tsetse fly vector. *PLoS Pathog.*
729 2018;14(12):e1007502. Epub 2018/12/18. doi: 10.1371/journal.ppat.1007502. PubMed PMID:
730 30557412; PubMed Central PMCID: PMCPMC6312356.

731 12. Rider MH, Bertrand L, Vertommen D, Michels PA, Rousseau GG, Hue L. 6-phosphofructo-2-
732 kinase/fructose-2,6-bisphosphatase: head-to-head with a bifunctional enzyme that controls
733 glycolysis. *Biochem J.* 2004;381(Pt 3):561-79. Epub 2004/06/02. doi: 10.1042/bj20040752. PubMed
734 PMID: 15170386; PubMed Central PMCID: PMCPMC1133864.

735 13. Cronin CN, Tipton KF. Purification and regulatory properties of phosphofructokinase from
736 *Trypanosoma (Trypanozoon) brucei brucei*. *Biochem J.* 1985;227(1):113-24. Epub 1985/04/01. doi:
737 10.1042/bj2270113. PubMed PMID: 3158309; PubMed Central PMCID: PMCPMC1144815.

738 14. Chevalier N, Bertrand L, Rider MH, Opperdoes FR, Rigden DJ, Michels PA. 6-Phosphofructo-2-
739 kinase and fructose-2,6-bisphosphatase in Trypanosomatidae. Molecular characterization, database
740 searches, modelling studies and evolutionary analysis. *Febs j.* 2005;272(14):3542-60. Epub
741 2005/07/13. doi: 10.1111/j.1742-4658.2005.04774.x. PubMed PMID: 16008555.

742 15. McNae IW, Martinez-Oyanedel J, Keillor JW, Michels PA, Fothergill-Gilmore LA, Walkinshaw
743 MD. The crystal structure of ATP-bound phosphofructokinase from *Trypanosoma brucei* reveals
744 conformational transitions different from those of other phosphofructokinases. *J Mol Biol.*
745 2009;385(5):1519-33. Epub 2008/12/17. doi: 10.1016/j.jmb.2008.11.047. PubMed PMID: 19084537.

746 16. McNae IW, Kinkead J, Malik D, Yen LH, Walker MK, Swain C, et al. Fast acting allosteric
747 phosphofructokinase inhibitors block trypanosome glycolysis and cure acute African trypanosomiasis
748 in mice. *Nat Commun.* 2021;12(1):1052. Epub 2021/02/18. doi: 10.1038/s41467-021-21273-6.
749 PubMed PMID: 33594070; PubMed Central PMCID: PMCPMC7887271.

750 17. Fernandes PM, Kinkead J, McNae IW, Bringaud F, Michels PAM, Walkinshaw MD. The kinetic
751 characteristics of human and trypanosomatid phosphofructokinases for the reverse reaction. *Biochem
752 J.* 2019;476(2):179-91. Epub 2018/11/09. doi: 10.1042/bcj20180635. PubMed PMID: 30404924;
753 PubMed Central PMCID: PMCPMC6340114.

754 18. Hofmann E. The significance of phosphofructokinase to the regulation of carbohydrate
755 metabolism. *Rev Physiol Biochem Pharmacol.* 1976;75:1-68. Epub 1976/01/01. doi:
756 10.1007/BFb0030484. PubMed PMID: 181810.

757 19. Michels PAM, Gualdrón-López M. Biogenesis and metabolic homeostasis of trypanosomatid
758 glycosomes: New insights and new questions. *J Eukaryot Microbiol.* 2022;69(6):e12897. Epub
759 2022/02/18. doi: 10.1111/jeu.12897. PubMed PMID: 35175680.

760 20. Stoffel SA, Alibu VP, Hubert J, Ebikeme C, Portais JC, Bringaud F, et al. Transketolase in
761 *Trypanosoma brucei*. *Mol Biochem Parasitol.* 2011;179(1):1-7. Epub 2011/05/17. doi:
762 10.1016/j.molbiopara.2011.04.006. PubMed PMID: 21570429.

763 21. Cronín CN, Nolan DP, Voorheis HP. The enzymes of the classical pentose phosphate pathway
764 display differential activities in procyclic and bloodstream forms of *Trypanosoma brucei*. *FEBS Lett.*
765 1989;244(1):26-30. Epub 1989/02/13. doi: 10.1016/0014-5793(89)81154-8. PubMed PMID: 2924907.

766 22. Gualdrón-López M, Brennand A, Avilán L, Michels PA. Translocation of solutes and proteins
767 across the glycosomal membrane of trypanosomes; possibilities and limitations for targeting with
768 trypanocidal drugs. *Parasitology*. 2013;140(1):1-20. Epub 2012/08/24. doi:
769 10.1017/s0031182012001278. PubMed PMID: 22914253.

770 23. Achcar F, Barrett MP, Breitling R. Explicit consideration of topological and parameter
771 uncertainty gives new insights into a well-established model of glycolysis. *Febs j.* 2013;280(18):4640-
772 51. Epub 2013/07/20. doi: 10.1111/febs.12436. PubMed PMID: 23865459; PubMed Central PMCID:
773 PMCPMC4768353.

774 24. Bakker BM, Westerhoff HV, Michels PA. Regulation and control of compartmentalized
775 glycolysis in bloodstream form *Trypanosoma brucei*. *J Bioenerg Biomembr.* 1995;27(5):513-25. Epub
776 1995/10/01. doi: 10.1007/bf02110191. PubMed PMID: 8718456.

777 25. Hannaert V, Bringaud F, Opperdoes FR, Michels PA. Evolution of energy metabolism and its
778 compartmentation in Kinetoplastida. *Kinetoplastid Biol Dis.* 2003;2(1):11. Epub 2003/11/14. doi:
779 10.1186/1475-9292-2-11. PubMed PMID: 14613499; PubMed Central PMCID: PMCPMC317351.

780 26. Hirumi H, Doyle JJ, Hirumi K. Cultivation of bloodstream *Trypanosoma brucei*. *Bull World*
781 *Health Organ.* 1977;55(2-3):405-9. Epub 1977/01/01. PubMed PMID: 303956; PubMed Central
782 PMCID: PMCPMC2366732.

783 27. Rico E, Jeacock L, Kovářová J, Horn D. Inducible high-efficiency CRISPR-Cas9-targeted gene
784 editing and precision base editing in African trypanosomes. *Sci Rep.* 2018;8(1):7960. Epub 2018/05/23.
785 doi: 10.1038/s41598-018-26303-w. PubMed PMID: 29785042; PubMed Central PMCID:
786 PMCPMC5962531.

787 28. Wickstead B, Ersfeld K, Gull K. Targeting of a tetracycline-inducible expression system to the
788 transcriptionally silent minichromosomes of *Trypanosoma brucei*. *Mol Biochem Parasitol*. 2002;125(1-
789 2):211-6. Epub 2002/12/07. doi: 10.1016/s0166-6851(02)00238-4. PubMed PMID: 12467990.

790 29. Creek DJ, Mazet M, Achcar F, Anderson J, Kim DH, Kamour R, et al. Probing the metabolic
791 network in bloodstream-form *Trypanosoma brucei* using untargeted metabolomics with stable
792 isotope labelled glucose. *PLoS Pathog*. 2015;11(3):e1004689. Epub 2015/03/17. doi:
793 10.1371/journal.ppat.1004689. PubMed PMID: 25775470; PubMed Central PMCID:
794 PMCPMC4361558.

795 30. Moos M, Korbelová J, Štětina T, Opekar S, Šimek P, Grgac R, et al. Cryoprotective Metabolites
796 Are Sourced from Both External Diet and Internal Macromolecular Reserves during Metabolic
797 Reprogramming for Freeze Tolerance in Drosophilid Fly, *Chymomyza costata*. *Metabolites*. 2022;12(2).
798 Epub 2022/02/26. doi: 10.3390/metabo12020163. PubMed PMID: 35208237; PubMed Central
799 PMCID: PMCPMC8877510.

800 31. Scheltema RA, Jankevics A, Jansen RC, Swertz MA, Breitling R. PeakML/mzMatch: a file format,
801 Java library, R library, and tool-chain for mass spectrometry data analysis. *Anal Chem*.
802 2011;83(7):2786-93. Epub 2011/03/16. doi: 10.1021/ac2000994. PubMed PMID: 21401061.

803 32. Chokkathukalam A, Jankevics A, Creek DJ, Achcar F, Barrett MP, Breitling R. mzMatch-ISO: an
804 R tool for the annotation and relative quantification of isotope-labelled mass spectrometry data.
805 *Bioinformatics*. 2013;29(2):281-3. Epub 2012/11/20. doi: 10.1093/bioinformatics/bts674. PubMed
806 PMID: 23162054; PubMed Central PMCID: PMCPMC3546800.

807 33. Creek DJ, Nijagal B, Kim DH, Rojas F, Matthews KR, Barrett MP. Metabolomics guides rational
808 development of a simplified cell culture medium for drug screening against *Trypanosoma brucei*.
809 *Antimicrob Agents Chemother*. 2013;57(6):2768-79. Epub 2013/04/11. doi: 10.1128/aac.00044-13.
810 PubMed PMID: 23571546; PubMed Central PMCID: PMCPMC3716122.

811 34. Naderer T, Ellis MA, Sernee MF, De Souza DP, Curtis J, Handman E, et al. Virulence of
812 *Leishmania major* in macrophages and mice requires the gluconeogenic enzyme fructose-1,6-

813 bisphosphatase. Proc Natl Acad Sci U S A. 2006;103(14):5502-7. Epub 2006/03/30. doi:
814 10.1073/pnas.0509196103. PubMed PMID: 16569701; PubMed Central PMCID: PMCPMC1459384.

815 35. Kuznetsova E, Xu L, Singer A, Brown G, Dong A, Flick R, et al. Structure and activity of the metal-
816 independent fructose-1,6-bisphosphatase YK23 from *Saccharomyces cerevisiae*. J Biol Chem.
817 2010;285(27):21049-59. Epub 2010/04/30. doi: 10.1074/jbc.M110.118315. PubMed PMID: 20427268;
818 PubMed Central PMCID: PMCPMC2898295.

819 36. Teich R, Zauner S, Baurain D, Brinkmann H, Petersen J. Origin and distribution of Calvin cycle
820 fructose and sedoheptulose bisphosphatases in plantae and complex algae: a single secondary origin
821 of complex red plastids and subsequent propagation via tertiary endosymbioses. Protist.
822 2007;158(3):263-76. Epub 2007/03/21. doi: 10.1016/j.protis.2006.12.004. PubMed PMID: 17368985.

823 37. Clasquin MF, Melamud E, Singer A, Gooding JR, Xu X, Dong A, et al. Riboneogenesis in yeast.
824 Cell. 2011;145(6):969-80. Epub 2011/06/15. doi: 10.1016/j.cell.2011.05.022. PubMed PMID:
825 21663798; PubMed Central PMCID: PMCPMC3163394.

826 38. Olson WJ, Martorelli Di Genova B, Gallego-Lopez G, Dawson AR, Stevenson D, Amador-Noguez
827 D, et al. Dual metabolomic profiling uncovers *Toxoplasma* manipulation of the host metabolome and
828 the discovery of a novel parasite metabolic capability. PLoS Pathog. 2020;16(4):e1008432. Epub
829 2020/04/08. doi: 10.1371/journal.ppat.1008432. PubMed PMID: 32255806; PubMed Central PMCID:
830 PMCPMC7164669.

831 39. Allmann S, Wargnies M, Plazolles N, Cahoreau E, Biran M, Morand P, et al. Glycerol suppresses
832 glucose consumption in trypanosomes through metabolic contest. PLoS Biol. 2021;19(8):e3001359.
833 Epub 2021/08/14. doi: 10.1371/journal.pbio.3001359. PubMed PMID: 34388147; PubMed Central
834 PMCID: PMCPMC8386887.

835 40. Johnston K, Kim DH, Kerkhoven EJ, Burchmore R, Barrett MP, Achcar F. Mapping the
836 metabolism of five amino acids in bloodstream form *Trypanosoma brucei* using U-(13)C-labelled
837 substrates and LC-MS. Biosci Rep. 2019;39(5). Epub 2019/04/28. doi: 10.1042/bsr20181601. PubMed
838 PMID: 31028136; PubMed Central PMCID: PMCPMC6522824.