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Abstract

Quantification of circulating tumor DNA (ctDNA) levels in blood enables non-invasive
surveillance of cancer progression. Fragle is an ultra-fast deep learning-based method for
ctDNA quantification directly from cell-free DNA fragment length profiles. We developed Fragle
using low-pass whole genome sequence (IpWGS) data from multiple cancer types and healthy
control cohorts, demonstrating high accuracy, and improved lower limit of detection in
independent cohorts as compared to existing tumor-naive methods. Uniquely, Fragle is also
compatible with targeted sequencing data, exhibiting high accuracy across both research and
commercial targeted gene panels. We used this method to study longitudinal plasma samples
from colorectal cancer patients, identifying strong concordance of ctDNA dynamics and
treatment response. Furthermore, prediction of minimal residual disease in resected lung
cancer patients demonstrated significant risk stratification beyond a tumor-naive gene panel.
Overall, Fragle is a versatile, fast, and accurate method for ctDNA quantification with potential

for broad clinical utility.
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Introduction

The death of non-malignant cells, primarily of the hematopoietic lineage, releases cell-free
DNA (cfDNA) into the blood circulation *. In cancer patients, the blood plasma also carries
circulating tumor DNA (ctDNA), enabling non-invasive diagnostics and disease surveillance 2.
The ability to monitor tumor growth dynamics based on ctDNA levels in the blood provides a

promising non-invasive approach to track disease progression during therapy and clinical trials

3-5

Ultra-deep targeted cfDNA sequencing assays are often preferred in the clinic due to their
ability to identify actionable mutations. While mutation variant allele frequencies (VAFS) can
be used to approximate ctDNA levels, not all tumors will have mutations covered by a given
targeted sequencing gene panel. Furthermore, the accuracy of this approximation depends
on sample-specific and treatment-dynamic properties such as mutation clonality, copy
number, as well as potential confounding noise from clonal hematopoiesis °. Existing methods
developed for ctDNA quantification are not directly compatible with targeted sequencing
panels. These methods require either low-pass whole genome sequencing (IpWGS) data ’,
DNA methylation profiling & °, or modifications to the targeted sequencing panel 1°. Thus, there
is an unmet need to develop accurate and orthogonal approaches for ctDNA quantification

that can generalize across patients, tumor types, and sequencing modalities.

The fragment length distribution of cfDNA in plasma has a mode of ~166 base pairs (bp) as
nucleosome-bound cfDNA molecules display increased protection from DNA degradation *.
cfDNA fragments from cancer patients tend to be shorter than those from healthy individuals,
typically with a higher proportion of fragments under 150bp 214, Shorter cfDNA fragments
have also been observed in plasma bisulfite sequencing data from cancer patients 1°. The size
profile of these shorter fragments from cancer patients also exhibits increased 10-bp
oscillation amplitude in the range 90-145bp 6. cfDNA from cancer patients may also display
a higher proportion of fragments longer than 180bp 2 16, Other studies have indicated that
variation in fragment lengths in cancer patients could be position-dependent within the
genome ', These observations have motivated studies exploring how cfDNA fragment length
properties can be used to classify cfDNA samples from cancer patients and healthy individuals
12,1523 Here, we developed Fragle, a multi-stage machine learning model that quantifies
ctDNA levels from a cfDNA fragment length density distribution. Using an in-silico data
augmentation approach, we trained and evaluated Fragle on ~4000 IpWGS samples across
distinct cancer types and healthy cohorts. We evaluated the accuracy and the lower limit of
detection (LoD) in independent cohorts and cancer types. Intriguingly, we demonstrate that

Fragle can also be applied to cfDNA fragmentomic profiles obtained from targeted sequencing
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76  panels. Using this feature, we applied Fragle to longitudinal plasma samples to explore the
77  correlation of ctDNA dynamics and treatment response measured through radiographic
78 imaging. Finally, to explore the use of Fragle for detection of minimal residual disease (MRD),
79  we analyzed ctDNA levels in a cohort of 162 resected lung cancer patients with plasma profiled
80 using a commercial targeted sequencing panel at the landmark timepoint (~30 days following
81  surgery).
82
83
84 Results
85  Quantitative prediction of ctDNA levels from fragmentomic data
86  We assembled a discovery cohort comprising IpWGS data from 325 cancer plasma samples
87  from 4 cancer types (colon, breast, liver, and ovarian cancer) and 101 plasma samples from
88 healthy individuals (Fig. 1, Suppl. Data 1). In this dataset, we estimated ground-truth ctDNA
89 levels using multiple methods (see Methods, Suppl. Data 2), and the cancer samples were
90 further selected based on ctDNA levels (23%, N = 164, Suppl. Fig. 1). Using a large-scale
91 data augmentation approach, we performed in-silico dilution of these cancer samples and the
92 101 healthy control samples, generating ~4000 mixture samples with variable ctDNA fractions
93 for model training (Methods, Fig. 1, Suppl. Data 3). To explore how cfDNA fragment length
94  distributions could predict ctDNA levels in a sample, we derived raw fragment length density
95  distributions using paired-end reads in each sample. Raw density distributions were further
96 normalized and transformed, revealing local differences in the fragment length distributions
97  associated with ctDNA levels in the samples (Fig. 1, see Methods). The transformed fragment
98 length distributions, in combination with their labels in the form of ground-truth ctDNA levels,
99 served as input to a multi-stage supervised machine learning approach. We employed two
100 parallel sub-models, each designed for either low- or high-ctDNA fraction samples, followed
101 by a model that selects the final predicted ctDNA fraction from the output of the two sub-
102 models (see Methods). The two sub-models performed well for the intended low- and high-
103 ctDNA samples, respectively (Suppl. Fig. 2), while the final combined model achieved the
104 lowest overall prediction error (MAE = 3.2%) as compared to individual sub-models (MAE:
105 4.0% and 3.3% for low- and high-ctDNA sub-models). Notably, although the improvement in
106  overall MAE is modest compared to the high-ctDNA sub-model, the final combined model
107  significantly improved the prediction accuracy for healthy samples (MAE: 0.5% vs. 1.0%) and
108  specificity at an LoD of 1% (86% vs 68%).
109
110
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113  Fig. 1, Overview of Fragle. Fragle is a multi-stage machine learning-based model that estimates the ctDNA level
114 in a blood sample from the cfDNA fragment length density distribution. Fragle was trained using a large-scale data
115 augmentation and cross-validation approach and was further tested using unseen samples from multiple cancer
116  types and healthy control cohorts.

117

118 The model was trained and evaluated using cross-validation, demonstrating high predictive
119  accuracy on validation samples across all 4 cancer types (Fig. 2a-d, Suppl. Data 4): Colorectal
120 (mean absolute error (MAE) = 3.3%; Pearson r = 0.92), breast (MAE = 3.6%; r = 0.94), liver
121 (MAE = 3.1%; r = 0.81), and ovarian cancer (MAE = 3.9%; r = 0.67). The lower concordance
122  for ovarian cancer could be attributed to samples from one patient; removal of these samples
123  increased the correlation to r = 0.88 (Suppl. Fig. 3).

124

125 We trained the final Fragle model on the full discovery cohort (see Methods) and tested its
126  performance on additional cohorts of unseen plasma IpWGS samples. We observed a strong
127  correlation between Fragle and ichorCNA-based ctDNA fraction estimates across unseen
128 cohorts of colorectal cancer (r = 0.81; P = 6.8e-41; N = 172; Fig. 2e), breast cancer (r = 0.80;
129 P = 3.7e-06; N = 23; Fig. 2f), liver cancer (r = 0.86; P =5.1e-10; N = 34, Fig. 2g), and gastric
130 cancer (r =0.72; P = 3.4e-13; N = 74; Fig. 2h). We also tested Fragle on a mixed cohort of
131 cancer types not included in the discovery set, including lung, nasopharyngeal, as well as
132 head and neck cancers (r = 0.63, 0.75, and 0.23; combined P = 1.3e-4, n = 10 for each cancer
133  type; Suppl. Fig. 4). In the unseen colorectal cancer cohort, we also performed targeted gene
134  sequencing and identified high-confidence somatic mutations in 86 samples (Suppl. Data 5,
135 see Methods). These data demonstrated high concordance between mutation VAFs and
136  Fragle-predicted ctDNA levels (r = 0.88; P = 3.8e-28; Fig. 2i). Expectedly, higher ctDNA
137 fractions were generally observed in the patients with late-stage tumors (Fig. 2j; Suppl. Data

138 6). Furthermore, we observed a significant difference between ctDNA levels estimated for
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139 early-stage cancers (stages 1 and 2; colon, liver, and gastric cancer) and healthy controls (P
140 = 1.3e-9, Wilcoxon rank sum test).

141

142  We trained Fragle using samples each comprising 10 million cfDNA fragments, equivalent to
143  ~1x WGS using 151bp paired-end sequencing. To further evaluate the sequencing coverage
144  requirements for Fragle, we down-sampled WGS samples from the unseen test cohort to
145  render samples with fewer fragments, ranging from 5 million (0.5x) to as low as 10 thousand
146  fragments (0.001x). At 500K fragments (0.05x), Fragle demonstrated excellent concordance
147  (r = 0.97) with the predictions from the original 1x WGS samples (Suppl. Fig. 5). The
148  correlation was maintained when further down-sampling to 250K fragments, but with some
149  discrepancies observed for some low ctDNA fraction samples (Suppl. Fig. 5). These results
150 suggest that whole-genome coverage of ~500K (0.05x) fragments provides a good trade-off
151 between prediction accuracy and sequencing cost. In addition, we tested the computational
152  requirements of Fragle as a software tool. Fragle processed a 1x-coverage WGS sample in
153 ~50 seconds using a single processor and required low memory usage independent of the
154  sample sequencing depth (Suppl. Fig. 6).
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Fig. 2 ctDNA quantification in validation and unseen cohorts. (a-d) Comparison between expected and
predicted ctDNA levels for colorectal (CRC), breast (BRCA), liver (HCC), and ovarian (OV) cancer samples in the
validation sets. (e-h) Comparing ichorCNA and Fragle predicted ctDNA levels in unseen samples from colorectal
(N =172), breast (N = 23), liver (N = 34), and gastric cancer patients (N = 74). i) Colorectal cancer plasma samples
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161 subjected to both IpWGS and targeted sequencing; comparison of Fragle predicted ctDNA levels (IpWGS) and
162 maximum VAFs (N = 86; samples with detectable somatic mutations). j) Predicted ctDNA levels in plasma samples
163 from cancer patients grouped according to tumor stages.

164

165

166  Determination of the lower limit of detection

167 To explore the lower limit of detection (LoD) for the model, we first observed that Fragle
168  predicted very low ctDNA fractions (median = 0.07%) for the healthy samples in the validation
169 sets. In this healthy cohort, Fragle demonstrated 86% specificity at a 1% LoD level, increasing
170 to 95% at 3% LoD (Suppl. Data 7). Furthermore, the model could differentiate between healthy
171  and low-ctDNA level samples at the 1% ctDNA level (Wilcoxon rank sum test P = 2.5e-24, Fig.
172  3a), indicating a ~1% LoD in these samples. Similarly, we examined the performance of Fragle
173  for classification of healthy and cancer samples in the validation sets. Using cancer samples
174  with a ctDNA level 21% in the validation sets, Fragle demonstrated an area under the curve
175 (AUC) of 0.93 (Fig. 3b), higher than ichorCNA (AUC = 0.88) applied to the same samples.
176  Notably, after limiting the analysis to the samples in which the ground-truth ctDNA fraction was
177  estimated from a consensus of multiple methods, Fragle further outperformed ichorCNA in
178 classifying cancer and healthy samples (AUC: 0.98 vs. 0.92; Suppl. Fig. 7). Expectedly, the
179  AUC increased further when filtering out low-ctDNA burden samples (Suppl. Fig. 8). Fragle
180 andichorCNA achieved AUCs of 0.97 and 0.94, respectively, when excluding cancer samples
181  with ctDNA levels below ichorCNA’s LoD of 3% (Suppl. Fig. 9). As an additional comparison,
182  we explored other fragment length features previously used for the classification of cancer and
183  healthy samples ', and trained a random forest model on the discovery cohort using 4 features
184  derived from the fragment length distribution (see Methods). This 4-feature model
185 demonstrated substantially lower classification accuracy (AUC = 0.79) than Fragle in the
186 validation cohort.

187

188  We further evaluated the LoD using unseen test samples. We used cfDNA samples from CRC
189  patients with detectable mutations as positive cancer samples (N = 86, Suppl. Data 8) and all
190 healthy plasma samples from the unseen cohorts as negatives (N = 57, Suppl. Data 9). Fragle
191 demonstrated an AUC of 0.96 using these samples, outperforming the other models on the
192 same set of samples (ichorCNA = 0.85, 4-feature model = 0.81; Fig. 3c; Suppl. Data 10).
193 These results were further confirmed using an in-silico dilution experiment. This experiment
194  involved 13 unseen colon cancer and 7 unseen breast cancer samples with high ctDNA
195  burden (>10%), concordantly estimated by Fragle and ichorCNA (see Methods, Suppl. Data

196  11). In this dilution experiment, Fragle could differentiate healthy from low-ctDNA samples
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197  down to the 0.5-1% ctDNA level (P = 0.003, healthy vs. 0.625% ctDNA fraction samples, Fig.
198  3d; Suppl. Fig. 10).

199

200 To further examine these results using physical samples, we performed similar dilution
201  experiments in vitro. The first experiment comprised serial dilutions of two high-ctDNA level
202 CRC plasma samples, with samples progressively diluted using pooled cfDNA from healthy
203 individuals (see Methods). Across 3 technical replicates, Fragle accurately predicted ctDNA
204  fractions for both patients down to ~1% ctDNA level, with healthy samples consistently
205  predicted <1% ctDNA (Fig. 3e). For low-ctDNA samples with 1-3% diluted ctDNA fraction, the
206  detection rate was 94% at an LoD of 1%, outperforming ichorCNA with a detection rate of 67%
207  (Suppl. Data 12). The second experiment comprised in vitro serial dilutions of 3 high-ctDNA
208 plasma samples from gastric cancer patients (each with 3 technical replicates, see Methods).
209 The results from this experiment mirrored our previous observations, with the method
210 accurately quantifying ctDNA down to the 0.5-1% level and predicting <1% ctDNA for healthy
211  samples (Fig. 3f, Suppl. Data 13). Overall, these results collectively suggest that Fragle can
212  quantify and detect ctDNA with an LoD of ~1%.

213


https://doi.org/10.1101/2023.07.28.550922
http://creativecommons.org/licenses/by-nc-nd/4.0/

214

215
216
217
218
219
220
221
222
223
224

225
226
227
228
229

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.28.550922; this version posted September 14, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

a : b
Wilcoxon rank-sum test 1 _——
20% P=013 4.7e-23 27e-19 27e-14 1.9e-10 1.2e-10 ol //
; - e ' ' x s - // P
X g— /
2 P = 2.5¢-24 ] > %
& 15% / d
= ;2 2 06 2 %
s { 2 I & e
B 10% 2 / A
E » 047/ ’
3 | Yy  ao
% 5% | i /" —— Fragle: 0.93 (0.92-0.94)
8 | ‘ 02 P4 ichorCNA: 0.88 (0.86-0.89)
a . l |:| ) v 4 —— 4-feature model: 0.79 (0.77-0.81)
0 1e-3 1% 2% 3% 4% 5% 1 0.8 0.6 04 0.2 0
Expected fraction Specificity
Wilcoxon rank-sum test
C d P=041 8.3e-4 8.4e-8 7.5e-21 2.4e-48 2.3e-89
1 - wo— - r 1 r 1T r 1r 1 d
2 Se——"" 10%
= P =0.003
08 = 7 o 5% s
Fa =] i—
’ o
Zz 06 /7 S o25% ':| s
S / = ]
] 2 ]
2 S 1.25%
3 0.4 i ‘
. AUC £ 0625% I
0.2 // ——— Fragle: 0.96 (0.94-0.98) 5
: v - ichorCNA: 0.85 (0.80-0.89) g 0.313%
// ——— 4-feature model: 0.81 (0.74-0.86) : 2
: 1
1 0.8 0.6 0.4 0.2 0 0.156% S ——
Specificity 0 0.156% 0.313%  0.625% 1.25% 2.5% 5%
Expected fraction
e f
10% % 10%
. 5%
9 . 8§
3% g o - 2.5% e & *
o
2 1% o 125% . o e
2 0.5% 9 0.625% * & o e
& w 0.313% ° L]
c . . § £ 0.156% | ® . .
S S T
2 0.1% G 0.078%
g g
o ° i
2 Colon cancer 2 Gastric cancer
£ 0.01% ] il £ @ in vitro dilution - A
2 @ in vitro dilution -A 2 e in vitro dilution - B
® in vitro dilution - B in vitro dilution - C
® pooled healthy e pooled healthy
0% 0%
3 oo oo oo ol o oo 3 I S0 S dp dp O° e O°
N N N RN S N S ST S° S SV ST S
i Q Q- L\ e A° D N P A - N
N o 4 SR NV

Expected fraction

Expected fraction

Fig. 3 Lower limit of detection. a) Predicted ctDNA fractions for healthy and low-ctDNA level samples in validation

set samples. Boxplots are represented by median and interquartile range (IQR), with +/-1.5 IQR as whiskers. b)

ROC analyses for classification of healthy control and cancer (21% ctDNA) samples (validation samples). AUC

values with 95% confidence intervals are shown. ¢c) ROC analysis for classification of cancer (N=86) and healthy

(N=57, 3 distinct cohorts) plasma samples in the unseen test cohort. AUC values with 95% confidence intervals

are shown. d) Predicted ctDNA fractions for healthy and low-ctDNA level samples using in silico dilution of 20

cancer samples (unseen cohort). Boxplots are represented by median and interquartile range (IQR), with +/-1.5

IQR as whiskers. e) Expected vs. predicted ctDNA fractions using in vitro ctDNA dilution for 2 colorectal cancer

samples. f) Expected vs. predicted ctDNA fractions using in vitro ctDNA dilution for 3 gastric cancer samples.

Application of Fragle to targeted sequencing data

Targeted gene sequencing of plasma samples is routinely used for tumor genotyping in the

clinic. However, absolute ctDNA quantification based on mutation VAFs remains challenging
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230 using targeted sequencing. For example, samples may not have clonal mutations covered by
231 the panel, and non-cancer variants associated with clonal hematopoiesis could introduce
232  noise ?*. To explore whether Fragle could quantify ctDNA levels using targeted sequencing
233 data, we analyzed four cfDNA cohorts having both IpWGS and targeted sequencing data (Fig.
234  4a, see Methods). Using standard on-target reads obtained from the targeted sequencing
235 data, Fragle tended to overestimate the ctDNA burden as compared to the IpWGS data (Fig.
236  4b). We then evaluated the method on off-target reads, which are often filtered and ignored in
237 a targeted sequencing experiment. Remarkably, we observed strong concordance of
238 predictions based on IpWGS and off-target reads across all four cohorts: breast cancer
239 samples from the discovery cohort (r = 0.86, P = 0.001, N = 10), colon cancer samples from
240  the discovery cohort (r = 0.96, P = 1.64e-30, N = 56), colon cancer samples from the unseen
241  cohort (r = 0.97, P = 3.69e-58, N = 109), and metastatic gastric cancer samples from the
242  unseen cohort (r=0.96, P = 2.9e-27, N = 49) (Fig. 4c). We found that the targeted sequencing
243  samples contained between 100K to 10M off-target fragments (equivalent to ~0.01-1.0X
244  WGS) across the different samples, with >95% of samples having >250K off-target fragments
245  (~0.025X; Suppl. Fig. 11). Expectedly, the off-target coverage levels showed a linear
246  relationship to on-target coverage across samples (Suppl. Fig. 11). To further explore if these
247  results generalize to other targeted sequencing assays, we evaluated a cohort of 116 plasma
248  samples subjected to a liquid biopsy gene panel from a commercial vendor (Foundation
249  Medicine) ?°. Since these samples did not have matched IpWGS data, we approximated
250  ctDNA levels using the maximum VAFs reported by the company after filtering out germline
251  variants (Suppl. Data 14; Methods). In this cohort comprising samples from 5 different cancer
252  types, we observed that ctDNA levels estimated from off-target reads were generally
253  concordant with the reported VAFs (r = 0.62, P = 1.4e-13, N = 116; Fig. 4d). Overall, these
254  results support that Fragle can estimate ctDNA levels using both IpWGS and targeted
255  sequencing data.

256

257
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258
259 Fig. 4. Application of Fragle to targeted sequencing data. a) Application of Fragle to samples having both

260 IpPWGS and targeted gene panel sequencing data. b) ctDNA levels predicted using IpWGS data and on-target
261 reads from targeted sequencing samples. c) ctDNA levels predicted using IpWGS data and off-target reads from
262 targeted sequencing samples. d) Targeted sequencing data generated with commercial liquid biopsy assay
263 (Foundation Medicine, N=116). Correlation of maximum VAFs (reported by the company, germline variants filtered)

264  and Fragle-predicted ctDNA levels using off-target reads.

265

266

267  Tracking ctDNA dynamics and disease progression from targeted sequencing

268 Having demonstrated that Fragle can accurately quantify ctDNA levels with targeted gene
269 panel sequencing, we applied the method to longitudinal targeted sequencing samples from
270 four late-stage colorectal cancer patients. In these samples, we wanted to explore the
271  temporal relationship between Fragle-estimated ctDNA dynamics and disease progression
272  measured by radiographic imaging (RI). Firstly, we observed strong temporal correlations
273  between mutation VAFs and Fragle ctDNA levels across the longitudinal samples from the
274  four patients (Fig 5a-d; Suppl. Data 15). The first patient displayed concordant and increasing
275 VAFs and Fragle ctDNA levels, consistent with the emergence of progressive disease (PD)
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276 via RI at late timepoints (Fig 5a). The second patient developed a partial response to
277  FOLFOXIRI treatment, consistent with both reductions in VAFs and Fragle ctDNA levels (Fig
278  5b). The next two patients showed a similar disease progression trajectory via RI, with initial
279  stable disease evolving into progressive disease following multiple rounds of treatment. ctDNA
280  dynamics inferred by Fragle showed a consistent pattern of disease progression, with ctDNA
281 levels remaining high at all timepoints (>10%; Fig. 5¢-d). While the automated variant calling
282  pipeline failed to detect mutations at late timepoints despite the presence of PD, manual
283  inspection of sequencing reads at these positions confirmed the presence of TP53 and ATR
284  mutations in these samples (4-5% VAF, Suppl. Data 16). We finally considered a metastatic
285  colorectal cancer patient for whom we had collected 21 serial blood plasma samples over a
286  cetuximab/chemotherapy treatment course of 3 years (Fig. 5e; Suppl. Data 15). In this patient,
287  we observed an overall temporal correlation of Fragle-based ctDNA levels, mutation VAFs,
288 and treatment response determined from RI. However, the dynamic range of VAFs varied
289  extensively across different mutations and time points, highlighting the challenge in estimating
290 absolute ctDNA levels from VAFs. For example, the patient had mutations in APC and TP53,
291 two common clonal driver mutations in colorectal cancer. The VAFs for these two mutations
292  differed markedly, with TP53 mutation allele frequencies more than 2-fold higher at many time
293 points (e.g. days 779 and 834). In these samples, Fragle provided an orthogonal and
294  independent measure of ctDNA levels. Overall, these data demonstrate high concordance to
295  Fragle-estimated ctDNA levels and disease progression estimated from radiographic imaging.
296  Secondly, they outline how Fragle could be used to interpret and resolve heterogeneous and
297  variable mutation VAFs profiled with targeted sequencing assays.

298
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301 Fig. 5. Monitoring of ctDNA levels and disease progression from targeted sequencing. a-e) Simultaneous
302 longitudinal profiling of Fragle ctDNA levels and mutation VAFs in metastatic colorectal cancer patients using
303 plasma targeted gene panel sequencing. Disease progression was captured with radiographic imaging. Only
304 mutations detected in at least two timepoints for a given patient were included. Mutation VAFs were estimated
305 using an automated pipeline, with manual pileup performed at highlighted timepoints where mutation detection
306 failed.

307

308

309 Risk stratification for early-stage lung cancer patients

310 Blood-based detection of minimal residual disease (MRD) following treatment has the potential
311 to improve risk stratification and management strategies for cancer patients 2% 7. Given the
312 ~1% LoD for Fragle, we explored if the method could be used for tumor-naive MRD screening,
313  with no requirements for a matching tissue sample. We obtained targeted sequencing data

314  from a published cohort (MEDAL) of 162 early-stage lung cancer patients that had plasma
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315 samples collected at the landmark timepoint (~30 days following curative surgery) 28. In this
316  study, plasma samples were subjected to a commercial tumor-agnostic targeted sequencing
317  assay, and the authors classified samples into ctDNA positive (N = 4) and negative (N = 158)
318 groups based on mutation VAFs (Fig. 6a, Suppl. Data 17). In the ctDNA-negative samples,
319 we used Fragle to further sub-classify the samples into ctDNA-high (>1% ctDNA level, N =
320 101) and low (<1%, N = 57) groups. Intriguingly, despite these samples being classified as
321  ctDNA-negative based on mutation VAFs in the targeted sequencing assay, the Fragle ctDNA-
322  high group demonstrated significantly worse outcomes (P = 0.035, log-rank test) (Fig. 6b).
323  Using a multivariate model, the association between Fragle ctDNA levels and outcomes was
324  preserved (P = 0.055, Cox proportional hazard model) while controlling for known clinical
325  prognostic variables such as tumor type and stage (Fig. 6¢). Overall, these data demonstrate
326 the potential clinical utility of Fragle as a supplement to a standard tumor-agnostic targeted
327  sequencing assay. While Fragle was developed as a ctDNA quantification tool, these results
328 also demonstrate that Fragle could be useful in certain settings where the detection of ctDNA
329 is paramount, such as MRD detection and risk stratification without a matching tissue sample.
330
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333 Fig. 6. Risk-stratification of early-stage lung cancer patients: a) Fragle was used to predict ctDNA levels in
334 158 early-stage lung cancer patients classified as ctDNA-negative with a tumor-agnostic targeted gene panel
335 assay. Plasma samples were obtained at the landmark timepoint (~30 days after surgery) and Fragle was applied
336 to the off-target reads to infer patients with high (>1%) and low ctDNA levels. b) In the 158 ctDNA-negative patients
337 inferred with the targeted gene panel, disease free survival (DFS) was evaluated for patients with high and low
338 Fragle ctDNA levels and compared using a log-rank test. ¢) A multivariate Cox proportional hazards model was

339 used to evaluate the association between Fragle ctDNA levels and DFS while controlling for other clinical variables.

340

341

342 Discussion

343  While previous studies have explored how cfDNA fragment length signatures can be used to
344  classify plasma samples from cancer patients and healthy individuals 2%, it remained
345  unknown whether these fragmentomic signatures could also allow for accurate quantification

346  of ctDNA levels in a blood sample. Here, we developed Fragle, a multi-stage machine learning
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347  model that quantifies ctDNA levels directly from the cfDNA fragment length density distribution,
348 with no requirement for tumor biopsy or matched normal sample. Fragle leveraged
349  fragmentomic features common across multiple cancer types to robustly quantify ctDNA in
350 cancer patients, and its development and validation involved analyzing IpWGS data from 8
351  cancertypes and targeted sequencing data from 6 cancer types. Specifically, using an in-silico
352 data augmentation approach, we trained and evaluated Fragle on around four thousand
353 IpWGS samples spanning multiple cancer types and healthy cohorts. Using both in vitro and
354  in silico dilution data from unseen samples, Fragle demonstrated accurate guantification of
355  plasma ctDNA levels with a lower LoD than the current state-of-the-art approaches for ctDNA
356 quantification using IpWGS data. We note that Fragle has been developed and validated
357  exclusively with whole-genome and targeted cfDNA sequencing data, further studies would
358 be needed to evaluate if Fragle could be applied to other sequencing modalities such as
359  bisulfite sequencing data. Moreover, modeling distinct orthogonal fragmentomic features
360 alongside copy number profiles could unlock new opportunities to further enhance quantitative
361  ctDNA profiling methods.

362

363  Fragle is the first method to report accurate ctDNA quantification directly from a targeted
364  sequencing assay. Existing methods developed for ctDNA quantification are not directly
365 compatible with targeted sequencing data, requiring either low-pass whole genome
366 sequencing (IpPWGS) data /, DNA methylation data & °, or modifications to the targeted
367 sequencing panel 1°. Using colon, breast, and gastric cancer plasma samples sequenced with
368  both IpWGS and targeted gene panels, we demonstrate high concordance of Fragle estimates
369 across assays. Furthermore, we demonstrated increased accuracy when input data was
370 limited to the off-target reads from the targeted assay. Interestingly, while off-target reads are
371  often filtered and ignored in a targeted sequencing experiment, these reads generally spread
372  across the whole genome potentially mimicking ultra-lpWGS data °. We used this feature to
373 analyze longitudinal targeted sequencing samples from colorectal cancer patients,
374  demonstrating strong concordance of Fragle-inferred ctDNA dynamics and tumor progression
375 measured from radiographic imaging. This analysis also highlighted patients where the
376  dynamic range of mutation VAFs varied extensively across different mutations and time points.
377 Under these conditions, ctDNA quantification using Fragle could provide an orthogonal
378 approach to interpret and resolve heterogeneous mutation VAFs profiled with targeted
379  sequencing.

380

381 We also explored the potential for detecting MRD with Fragle. In a cohort of early-stage lung
382  cancer patients with MRD evaluated at the landmark timepoint following surgery, ctDNA levels

383  estimated by Fragle could risk-stratify patients that had otherwise been classified as ctDNA-
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384  negative using a commercial tumor-agnostic targeted sequencing assay. This result highlights
385 the potential clinical utility of Fragle for MRD classification in settings where tumor-informed
386 sequencing assays are not feasible or available. While tumor-informed ctDNA detection
387 approaches offer increased MRD detection sensitivity and accuracy?® *°, these methods
388 impose additional requirements for tissue sample availability, sequencing, computing, and
389 logistics. In contrast, a tumor-naive MRD classification approach could be applied directly to
390 a plasma sample. Our analysis demonstrates how Fragle has potential to enhance the
391 baseline risk stratification provided by a standard tumor-naive targeted sequencing panel.
392

393  Fragle showed robust performance across plasma samples from 10 solid tumor types and
394  distinct healthy cohorts. We observed strong concordance with radiographic imaging and
395 tumor VAFs in longitudinal samples from colorectal cancer patients undergoing targeted and
396 cytotoxic therapy. These results suggest that the machine learning approach was able to learn
397  properties of ctDNA fragmentation that generalize across cancer types and distinct therapeutic
398 challenges. Since Fragle uses off-target reads to quantify ctDNA with targeted sequencing,
399 we expect the method to generalize across distinct targeted sequencing panels. While we
400 evaluated the method using multiple targeted gene panels, future studies are needed to further
401 characterize the performance using additional gene panels, unseen tumor types, and
402 therapeutic exposures. Clonal hematopoiesis of indeterminate potential (CHIP) is a known
403  contributor of cfDNA fragments in some patients, with CHIP mutations reported to occur at ~1-
404 2% VAFs 2. While we demonstrated a ~1% LoD using in vitro and in silico diluted plasma
405 samples, further evaluation in subjects with confirmed high levels of CHIP is needed to
406 determine if Fragle can robustly discriminate between fragmentomic signatures from CHIP
407  and solid tumor cells.

408

409 Fragle is fast and flexible, estimating ctDNA levels in less than a minute using paired-end
410 cfDNA profiling and without the need for a matching tumor or buffy coat sample. By also
411  enabling orthogonal ctDNA quantification from targeted sequencing assays, the method could
412  limit the need for running multiple assays for disease monitoring and interpretation of negative
413  results from plasma genotyping 3. This could enable simultaneous discovery of actionable
414  cancer mutations and accurate estimation of ctDNA levels with a single assay. Overall, Fragle
415 is a versatile and accurate method for profiling of ctDNA dynamics with potential for broad
416  clinical utility.

417
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418 Materials and Methods

419 Plasma sample collection and processing

420  The discovery cohort was composed of WGS plasma samples obtained from internal cohorts
421  as well as from previous studies 112 16:32_ Similarly, the test cohort was composed of internal
422  samples as well as samples from a previous study %, all described in Suppl. Data 1. For new
423  samples generated as part of this study, volunteers were recruited at the National Cancer
424  Centre Singapore, under studies 2018/2709, 2018/2795, 2018/3046, 2019/2401, and
425  2012/733/B approved by the Singhealth Centralised Institutional Review Board, as well as for
426  volunteers recruited from National University Health System (NUHS). Written informed
427  consent was obtained from patients. Clinical data for the patients included in this study has
428  beenlisted in Suppl. Data 18. Plasma was separated from blood within 2 hours of venipuncture
429  via centrifugation at 10 min x 300 g and 10 min x 9730 g, and then stored at —80 °C. DNA was
430 extracted from plasma using the QlAamp Circulating Nucleic Acid Kit following the
431  manufacturer’s instructions. Sequencing libraries were made using the KAPA HyperPrep kit
432  (Kapa Biosystems, now Roche) following the manufacturer’s instructions and sequenced on
433  lllumina NovaSeq6000 system. Low-pass WGS (~4x, 2x151 bp) was performed on cfDNA
434  samples from cancer patients and healthy individuals. We used bwa-mem 3 to align WGS
435 reads to the hgl9 human reference genome.

436

437  Estimation of ctDNA fractions in the discovery cohort

438 We estimated the ctDNA fractions in the plasma samples of 4 cancer types using distinct
439  orthogonal methods. 12 CRC and 10 BRCA plasma samples had ~90x cfDNA and ~30x
440 matched buffy coat WGS data, and their ctDNA fractions were estimated using four tumor
441  tissue-based methods 33" as previously reported °. 53 CRC samples had Ip-WGS and
442  targeted nucleosome-depleted-region sequencing data, and we inferred ctDNA fractions by
443  averaging ichorCNA and NDRquant estimates ° in these samples. The remaining 55 CRC
444  and 57 BRCA samples only had IpWGS data and their ctDNA fractions were inferred using
445  ichorCNA. The liver (HCC) and the ovarian cancer (OV) datasets only had IpWGS data and
446  ichorCNA 7 was used to quantify ctDNA levels in these samples. The details of the estimation
447  of ctDNA fractions are provided in Suppl. Data 2.

448

449  Discovery cohort data augmentation approach

450  After identifying the plasma samples with ctDNA level 23% and with at least 10 million
451  fragments in the discovery cohort, we split the cancer samples (n = 164) into training and
452  validation sets. We repeated this 10 times, creating 10 training-validation set pairs. We then

453  diluted each cancer plasma sample with reads from a random control plasma sample to
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454  generate in silico spike-ins, followed by down-sampling to 10 million cfDNA fragments per
455  sample. We generated in silico samples with variable ctDNA fractions ranging from 10 up to
456  the undiluted fractions (Suppl. Data 3). To minimize information leakage to the validation set,
457  we evenly split the healthy control samples (n = 101) into two sets. These two control sets
458  were then used to dilute cancer samples in the training and validation sets, respectively (see
459  Suppl. Fig. 1).

460

461  Overview of Fragle

462  Fragle quantifies ctDNA levels from a cfDNA fragment length histogram. Using paired-end
463  sequencing data, we computed the length of each sequenced cfDNA fragment, excluding
464  duplicates and supplementary alignments and only keeping paired reads mapping to the same
465 chromosome with a minimal mapping quality of 30. The machine learning model consists of
466  two stages (see Fig. 1 and Suppl. Fig. 12 for details): a quantification and a model-selection
467  stage. The quantification stage employs two sub-models: (i) the low ctDNA burden sub-model,
468 and (ii) the high ctDNA burden sub-model. These sub-models were designed and optimized
469 to quantify accurately in low (<3%) and high ctDNA fraction (=3%) samples, respectively. In
470 theinitial stage, for any given cfDNA sample, we individually input its processed fragment size
471  profile into the two parallel sub-models. These two parallel sub-models, each with distinct loss
472  functions, focus on ctDNA quantification for low- and high-ctDNA samples, respectively. The
473  two parallel sub-models independently output their estimated ctDNA fractions. In the second
474  stage, an SVM model selects the final predicted fraction from these two independent
475  estimates. To train afinal Fragle model based on the discovery cohort, we first trained a Fragle
476  model on the training samples to obtain their ctDNA burden estimates. Among samples with
477  ichorCNA-only ground truth ctDNA estimates, we excluded samples with a large deviation of
478  ctDNA fractions estimated by ichorCNA and Fragle (i.e. relative difference >50% for samples
479  with ctDNA fraction >20% by ichorCNA, >40% for samples with ctDNA fraction of 10-20%, and
480 >30% for samples with ctDNA fraction of 3-10%). The final Fragle model was subsequently
481  trained using all remaining samples in the discovery cohort. Notably, no samples were filtered
482 out or selected from the unseen cohorts used to validate the final Fragle. As a result, Fragle
483  remains entirely independent from these unseen cohorts (Fig. 1).

484

485  Fragle model feature extraction

486  The feature extraction steps have been illustrated in Suppl. Fig 12. We computed the fragment
487  length profile for all fragments sized 51-400 bp using paired-end reads with Pysam . The
488 length profile of each sample was normalized using the highest observed fragment length
489  count, followed by logio scaling of these sample-wise normalized counts. Next, a moving

490 average normalization (z-score of 32-nt window) was performed sample-wise for smoothing.
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491  The transformed length features for a given sample were further standardized relative to the
492  training set. To explore the fragmentomic feature space predictive of cancer, we identified
493  fragment length intervals that differed between cancer samples and healthy individuals in the
494  discovery cohort (Suppl. Fig. 13, Suppl. Data 19). The most predictive length intervals
495  comprised both short and long cfDNA fragments, including 125-140 bp, 170-208 bp, and 246-
496 306 bp (P <102, Wilcoxon rank sum test). 281 out of 350 fragment lengths showed significant
497  differences between cancer and healthy samples (P < 0.01), these were selected as candidate
498 length features for model development.

499

500 High and low ctDNA burden sub-model architecture

501 The model was implemented as a neural network with a feature embedding layer, 16 fully
502 connected layers with batch normalization *° and residual connections %° (Suppl. Fig. 12).
503  Dropout regularization * was used in between intermediate layers with a dropout rate of 30%
504 to minimize model overfitting. A composite loss function was used combining a quantification
505 loss and a binary cross entropy loss. The main differentiating factor between the low and the
506  high-ctDNA burden sub-models was the loss function. Here, the high ctDNA sub-model utilizes
507 mean absolute error (MAE) loss, while the low ctDNA burden model uses relative MAE loss:
508 Relative MAE = (MAE + o) / (true_fraction + o)

509 “Relative MAE” is more sensitive to prediction errors in low-ctDNA samples, because these
510 samples have smaller ‘true_fraction’ values in the denominator. As a result, the relative MAE
511 tends to be larger for such cases. During model optimization, this loss function encourages
512  the model to also focus on the prediction accuracy of low-ctDNA and healthy samples, aiming
513 to minimize the overall relative MAE. Here, ¢ is a hyperparameter tuned based on cross-
514  validation data.

515

516  Selection model

517  The low and high ctDNA sub-models individually predict ctDNA fractions for each sample.
518 These two predictions are used as input features for the selection model. The training sample
519 ground truth is labeled as 0 or 1 when the expected ctDNA fraction is <3% or =3%,
520 respectively. The selection model is a binary support vector machine classifier with radial basis
521  kernel function.

522

523 ichorCNA and 4-feature model benchmarking

524  We utilized ichorCNA according to its usage guidelines, employing the default parameters to
525  compute read count coverage with the HMMcopy Suite, followed by deducing tumor fractions
526  with the ichorCNA R package. For the 4-feature model, we extracted four features from the

527 fragment length profile according to a previously published study °: 10-bp amplitude, and
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528  proportions of fragments sized 160-180 bp, 180-220 bp, and 250-320 bp. We used these four
529 features to develop a random forest regression model for estimating ctDNA fractions.

530

531 Targeted sequencing assay

532  Plasma and patient-matched buffy coat samples were isolated from whole blood within two
533  hours from collection and were stored at -80°C. DNA was extracted with the QlAamp
534  Circulating Nucleic Acid Kit, followed by library preparation using the KAPA HyperPrep kit. All
535 libraries were tagged with custom dual indexes containing a random 8-mer unique molecular
536 identifier. Targeted capture was performed on the plasma samples in the unseen colorectal
537 cancer dataset (N = 109) and in the unseen metastatic gastric cancer (N = 49) dataset, using
538 an xGen custom panel (Integrated DNA Technologies) of 225 cancer driver genes. We also
539 performed targeted sequencing of six plasma samples from healthy individuals to identify and
540 blacklist unreliable variants likely attributed to sub-optimal probe design. Paired-end
541  sequencing (2 x 151 bp) was done on an Illlumina NovaSeq6000 system.

542

543  Variant calling

544  FASTQ files generated from targeted sequencing were pre-processed to append unique
545  molecular identifiers (UMIs) into the fastq headers, followed by read alignment using bwa-
546 mem *. We then performed UMIl-aware deduplication using the fgbio package
547  (https://github.com/fulcrumgenomics/fgbio). We grouped reads with the same UMI, allowing
548  for one base mismatch between UMIs, and generated consensus sequences by discarding
549 groups of reads with single members. To identify single-nucleotide variants and small
550 insertions/deletions in the cfDNA samples, we first performed variant screening using VarDict
551 42 using a minimal VAF threshold of 0.05%, and annotated all variants using Variant Effect
552  Predictor 3. We removed low-impact variants such as synonymous variants, and low-quality
553 variants such as those that fail to fulfill the minimum requirements of variant coverage, signal-
554  to-noise ratio, and number of reads supporting alternative alleles. Finally, we removed
555  population SNPs found in Genome Aggregation Database (gnomAD) and 1000 Genomes. To
556  further minimize false positive variants, we used duplexCaller #* to identify variants with
557  double-strand support and discarded blacklisted variants that were recurrently found in the
558 plasma of two or more healthy individuals. Finally, when available, we identified high-
559  confidence variants by taking advantage of serial plasma samples collected from the same
560 patient, keeping only variants that were detectable in at least two serial samples, with VAF
561 more than 3% in at least one sample.

562

563

564
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565  Application of Fragle to targeted sequencing data
566  Duplicates were removed from the targeted sequencing data using Picard MarkDuplicates
567  function (https://broadinstitute.github.io/picard/), and on-target and off-target reads were

568  extracted from the BAM files using samtools view function. The resulting reads were used to
569 generate the input fragment length histograms as detailed above. We obtained targeted
570 sequencing data of the plasma samples in the unseen colorectal cancer dataset (N = 109) and
571 in the unseen metastatic gastric cancer (N = 49) dataset, based on a panel of 225 cancer
572  driver genes, as described above. The targeted sequencing data for the colorectal and breast
573 cancer datasets in the discovery cohort have been reported in the previous studies % “°, based
574  on a panel of 100 genes of colorectal cancer mutation and a panel of 77 genes of breast
575 cancer mutation, respectively. Summary statistics for all gene panels such as gene count,
576  genomic coverage, target regions, and on-target coverage ratio have been provided in the
577 supplemental material (Suppl. Data 20-22). In an additional analysis, we used targeted
578 sequencing data from 116 patients profiled with the Foundation Medicine Liquid CDx assay.
579  Samples belonged to different cancer types such as lung, colon, breast, pancreas, and uterus
580 cancer (Suppl. Data 14). We filtered known germline variants using gnomAD (v4) and
581 analyzed variant allele frequencies using all remaining variants reported by the company.
582  Since Fragle requires off-target BAM files for prediction, we constructed a targeted sequencing
583  Dbed file using the 311 genes reported to comprise this panel (Suppl. Data 21).

584

585 Lung cancer survival analysis

586 Plasma targeted sequencing data from the MEDAL cohort (Project ID: OEP004204) %6 was
587  retrieved from National Omics Data Encyclopedia (NODE). Alignment to the human genome
588 (hg19) was conducted using bwa-mem 33, Duplicates in the aligned data were marked using
589  Samblaster #’. Putative target regions were identified by calculating the median coverage per
590 base from a subset of randomly selected BAM files (n = 38). Coverage of regions without any
591 reads was reported as zero. Next, the resulting consensus bedgraph file was segmented into
592 100 bp bins. Bins with median coverage exceeding 2x were selected and merged if they were
593  within 100 bp of each other, to form contiguous regions. The resulting BED file was used for
594  obtaining the off-target BAM file for each sample using samtools.

595

596 Unseen in vitro dilution experiments

597  The first in vitro dilution experiment included high ctDNA burden cfDNA samples from 2
598 individual CRC patients which were selected to create a starting point for the dilution series.
599  The ctDNA fraction for each sample was determined by 2 methods (ichorCNA ” and NDRquant
600 19, with high concordance across methods (sample 1: ctDNA content 38% by ichorCNA, 37%
601 by NDRquant; sample 2: 39% and 38%, respectively). Commercial pooled cfDNA from
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602 healthy volunteers (0% ctDNA) was purchased from PlasmalLab (lot humbers 2001011,
603  210302) and was used to set up a 9-point serial dilution of the ctDNA fraction for each sample
604  (Suppl. Data 12), with 3 technical replicates per dilution point. The second in vitro dilution
605 experiment started from 3 plasma samples of gastric cancer, that had concordant ctDNA
606 estimates between methods (sample 1: ctDNA content 7.6% by ichorCNA, 8.7% by Fragle,
607 sample 2: 17.2% and 14.7%, sample 3: 13.4% and 19.1%, respectively). 12 control plasma
608 cfDNA samples were purchased from Ripple Biosolutions and were used to set up a 7-point
609 serial dilution of the ctDNA fraction for each cancer sample (Suppl. Data 13), with 3 technical
610 replicates. We randomly selected 3 control samples and pooled them before diluting the
611 plasma of cancer. Ip-WGS was performed with a depth of ~ 4-5x.

612

613 Unseen in silico dilution experiments

614  Ourunseen in silico dilution experiment included 7 unseen breast and 13 unseen colon cancer
615 samples each containing high and concordant ctDNA fraction estimates based on Fragle and
616 ichorCNA (>10% ctDNA based on both methods with a relative difference < 5%). We prepared
617 20 healthy mixtures, each created by pooling 3 random samples from an unseen control
618 cohort. A 6-point serial dilution for each sample was set up using these healthy mixtures to
619 dilute the 20 cancer samples, with 20 technical replicates. A total of 2400 dilution samples
620 were created ranging from 5% to as low as ~0.1% ctDNA fraction, each dilution point
621  containing 400 samples (Suppl. Data 11).

622

623

624  Data availability

625 Published data used in this study and their access codes are present in Suppl. Data 1. Data
626 generated in this study have been deposited at the European Genome-phenome Archive
627 (EGA; Dataset ID: EGAD50000000167). Data are available under restricted access and will
628 be released subject to a data transfer agreement.

629

630 Code availability

631 The Fragle software is attached as Suppl. Data 23 and will be made publicly available via
632  GitHub. The software can be directly applied to I[pWGS/off-target BAM files aligned to hg19 /
633 GRCh37 / hg38 reference genomes without any preprocessing.

634

635 Supplementary materials

636  Supplementary Fig. 1-13

637  Supplementary Data 1-23
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