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 22 

Abstract 23 

Quantification of circulating tumor DNA (ctDNA) levels in blood enables non-invasive 24 

surveillance of cancer progression. Fragle is an ultra-fast deep learning-based method for 25 

ctDNA quantification directly from cell-free DNA fragment length profiles. We developed Fragle 26 

using low-pass whole genome sequence (lpWGS) data from multiple cancer types and healthy 27 

control cohorts, demonstrating high accuracy, and improved lower limit of detection in 28 

independent cohorts as compared to existing tumor-naïve methods. Uniquely, Fragle is also 29 

compatible with targeted sequencing data, exhibiting high accuracy across both research and 30 

commercial targeted gene panels. We used this method to study longitudinal plasma samples 31 

from colorectal cancer patients, identifying strong concordance of ctDNA dynamics and 32 

treatment response. Furthermore, prediction of minimal residual disease in resected lung 33 

cancer patients demonstrated significant risk stratification beyond a tumor-naïve gene panel. 34 

Overall, Fragle is a versatile, fast, and accurate method for ctDNA quantification with potential 35 

for broad clinical utility. 36 

 37 
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Introduction 39 

The death of non-malignant cells, primarily of the hematopoietic lineage, releases cell-free 40 

DNA (cfDNA) into the blood circulation 1. In cancer patients, the blood plasma also carries 41 

circulating tumor DNA (ctDNA), enabling non-invasive diagnostics and disease surveillance 2. 42 

The ability to monitor tumor growth dynamics based on ctDNA levels in the blood provides a 43 

promising non-invasive approach to track disease progression during therapy and clinical trials 44 

3-5.  45 

 46 

Ultra-deep targeted cfDNA sequencing assays are often preferred in the clinic due to their 47 

ability to identify actionable mutations. While mutation variant allele frequencies (VAFs) can 48 

be used to approximate ctDNA levels, not all tumors will have mutations covered by a given 49 

targeted sequencing gene panel. Furthermore, the accuracy of this approximation depends 50 

on sample-specific and treatment-dynamic properties such as mutation clonality, copy 51 

number, as well as potential confounding noise from clonal hematopoiesis 6. Existing methods 52 

developed for ctDNA quantification are not directly compatible with targeted sequencing 53 

panels. These methods require either low-pass whole genome sequencing (lpWGS) data 7, 54 

DNA methylation profiling 8, 9, or modifications to the targeted sequencing panel 10. Thus, there 55 

is an unmet need to develop accurate and orthogonal approaches for ctDNA quantification 56 

that can generalize across patients, tumor types, and sequencing modalities.  57 

 58 

The fragment length distribution of cfDNA in plasma has a mode of ~166 base pairs (bp) as 59 

nucleosome-bound cfDNA molecules display increased protection from DNA degradation 11. 60 

cfDNA fragments from cancer patients tend to be shorter than those from healthy individuals, 61 

typically with a higher proportion of fragments under 150bp 12-14. Shorter cfDNA fragments 62 

have also been observed in plasma bisulfite sequencing data from cancer patients 15. The size 63 

profile of these shorter fragments from cancer patients also exhibits increased 10-bp 64 

oscillation amplitude in the range 90-145bp 16. cfDNA from cancer patients may also display 65 

a higher proportion of fragments longer than 180bp 12, 16. Other studies have indicated that 66 

variation in fragment lengths in cancer patients could be position-dependent within the 67 

genome 17. These observations have motivated studies exploring how cfDNA fragment length 68 

properties can be used to classify cfDNA samples from cancer patients and healthy individuals 69 

12, 15-23. Here, we developed Fragle, a multi-stage machine learning model that quantifies 70 

ctDNA levels from a cfDNA fragment length density distribution. Using an in-silico data 71 

augmentation approach, we trained and evaluated Fragle on ~4000 lpWGS samples across 72 

distinct cancer types and healthy cohorts. We evaluated the accuracy and the lower limit of 73 

detection (LoD) in independent cohorts and cancer types. Intriguingly, we demonstrate that 74 

Fragle can also be applied to cfDNA fragmentomic profiles obtained from targeted sequencing 75 
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panels. Using this feature, we applied Fragle to longitudinal plasma samples to explore the 76 

correlation of ctDNA dynamics and treatment response measured through radiographic 77 

imaging. Finally, to explore the use of Fragle for detection of minimal residual disease (MRD), 78 

we analyzed ctDNA levels in a cohort of 162 resected lung cancer patients with plasma profiled 79 

using a commercial targeted sequencing panel at the landmark timepoint (~30 days following 80 

surgery). 81 

 82 

 83 

Results 84 

Quantitative prediction of ctDNA levels from fragmentomic data 85 

We assembled a discovery cohort comprising lpWGS data from 325 cancer plasma samples 86 

from 4 cancer types (colon, breast, liver, and ovarian cancer) and 101 plasma samples from 87 

healthy individuals (Fig. 1, Suppl. Data 1). In this dataset, we estimated ground-truth ctDNA 88 

levels using multiple methods (see Methods, Suppl. Data 2), and the cancer samples were 89 

further selected based on ctDNA levels (≥3%, N = 164, Suppl. Fig. 1). Using a large-scale 90 

data augmentation approach, we performed in-silico dilution of these cancer samples and the 91 

101 healthy control samples, generating ~4000 mixture samples with variable ctDNA fractions 92 

for model training (Methods, Fig. 1, Suppl. Data 3). To explore how cfDNA fragment length 93 

distributions could predict ctDNA levels in a sample, we derived raw fragment length density 94 

distributions using paired-end reads in each sample. Raw density distributions were further 95 

normalized and transformed, revealing local differences in the fragment length distributions 96 

associated with ctDNA levels in the samples (Fig. 1, see Methods). The transformed fragment 97 

length distributions, in combination with their labels in the form of ground-truth ctDNA levels, 98 

served as input to a multi-stage supervised machine learning approach. We employed two 99 

parallel sub-models, each designed for either low- or high-ctDNA fraction samples, followed 100 

by a model that selects the final predicted ctDNA fraction from the output of the two sub-101 

models (see Methods). The two sub-models performed well for the intended low- and high-102 

ctDNA samples, respectively (Suppl. Fig. 2), while the final combined model achieved the 103 

lowest overall prediction error (MAE = 3.2%) as compared to individual sub-models (MAE: 104 

4.0% and 3.3% for low- and high-ctDNA sub-models). Notably, although the improvement in 105 

overall MAE is modest compared to the high-ctDNA sub-model, the final combined model 106 

significantly improved the prediction accuracy for healthy samples (MAE: 0.5% vs. 1.0%) and 107 

specificity at an LoD of 1% (86% vs 68%). 108 

 109 

 110 
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 111 

 112 

Fig. 1, Overview of Fragle. Fragle is a multi-stage machine learning-based model that estimates the ctDNA level 113 

in a blood sample from the cfDNA fragment length density distribution. Fragle was trained using a large-scale data 114 

augmentation and cross-validation approach and was further tested using unseen samples from multiple cancer 115 

types and healthy control cohorts. 116 

 117 

The model was trained and evaluated using cross-validation, demonstrating high predictive 118 

accuracy on validation samples across all 4 cancer types (Fig. 2a-d, Suppl. Data 4): Colorectal 119 

(mean absolute error (MAE) = 3.3%; Pearson r = 0.92), breast (MAE = 3.6%; r = 0.94), liver 120 

(MAE = 3.1%; r = 0.81), and ovarian cancer (MAE = 3.9%; r = 0.67). The lower concordance 121 

for ovarian cancer could be attributed to samples from one patient; removal of these samples 122 

increased the correlation to r = 0.88 (Suppl. Fig. 3).  123 

 124 

We trained the final Fragle model on the full discovery cohort (see Methods) and tested its 125 

performance on additional cohorts of unseen plasma lpWGS samples. We observed a strong 126 

correlation between Fragle and ichorCNA-based ctDNA fraction estimates across unseen 127 

cohorts of colorectal cancer (r = 0.81; P = 6.8e-41; N = 172; Fig. 2e), breast cancer (r  = 0.80; 128 

P = 3.7e-06; N = 23; Fig. 2f), liver cancer (r  = 0.86; P = 5.1e-10; N = 34; Fig. 2g), and gastric 129 

cancer (r  = 0.72; P = 3.4e-13; N = 74; Fig. 2h). We also tested Fragle on a mixed cohort of 130 

cancer types not included in the discovery set, including lung, nasopharyngeal, as well as 131 

head and neck cancers (r = 0.63, 0.75, and 0.23; combined P = 1.3e-4, n = 10 for each cancer 132 

type; Suppl. Fig. 4). In the unseen colorectal cancer cohort, we also performed targeted gene 133 

sequencing and identified high-confidence somatic mutations in 86 samples (Suppl. Data 5, 134 

see Methods). These data demonstrated high concordance between mutation VAFs and 135 

Fragle-predicted ctDNA levels (r = 0.88; P = 3.8e-28; Fig. 2i). Expectedly, higher ctDNA 136 

fractions were generally observed in the patients with late-stage tumors (Fig. 2j; Suppl. Data 137 

6). Furthermore, we observed a significant difference between ctDNA levels estimated for 138 
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early-stage cancers (stages 1 and 2; colon, liver, and gastric cancer) and healthy controls (P 139 

= 1.3e-9, Wilcoxon rank sum test). 140 

 141 

We trained Fragle using samples each comprising 10 million cfDNA fragments, equivalent to 142 

~1x WGS using 151bp paired-end sequencing. To further evaluate the sequencing coverage 143 

requirements for Fragle, we down-sampled WGS samples from the unseen test cohort to 144 

render samples with fewer fragments, ranging from 5 million (0.5x) to as low as 10 thousand 145 

fragments (0.001x). At 500K fragments (0.05x), Fragle demonstrated excellent concordance 146 

(r = 0.97) with the predictions from the original 1x WGS samples (Suppl. Fig. 5). The 147 

correlation was maintained when further down-sampling to 250K fragments, but with some 148 

discrepancies observed for some low ctDNA fraction samples (Suppl. Fig. 5). These results 149 

suggest that whole-genome coverage of ~500K (0.05x) fragments provides a good trade-off 150 

between prediction accuracy and sequencing cost. In addition, we tested the computational 151 

requirements of Fragle as a software tool. Fragle processed a 1x-coverage WGS sample in 152 

~50 seconds using a single processor and required low memory usage independent of the 153 

sample sequencing depth (Suppl. Fig. 6).  154 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 14, 2024. ; https://doi.org/10.1101/2023.07.28.550922doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.28.550922
http://creativecommons.org/licenses/by-nc-nd/4.0/


 155 

 156 

Fig. 2 ctDNA quantification in validation and unseen cohorts. (a-d) Comparison between expected and 157 

predicted ctDNA levels for colorectal (CRC), breast (BRCA), liver (HCC), and ovarian (OV) cancer samples in the 158 

validation sets. (e-h) Comparing ichorCNA and Fragle predicted ctDNA levels in unseen samples from colorectal 159 

(N = 172), breast (N = 23), liver (N = 34), and gastric cancer patients (N = 74). i) Colorectal cancer plasma samples 160 
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subjected to both lpWGS and targeted sequencing; comparison of Fragle predicted ctDNA levels (lpWGS) and 161 

maximum VAFs (N = 86; samples with detectable somatic mutations). j) Predicted ctDNA levels in plasma samples 162 

from cancer patients grouped according to tumor stages. 163 

 164 

 165 

Determination of the lower limit of detection 166 

To explore the lower limit of detection (LoD) for the model, we first observed that Fragle 167 

predicted very low ctDNA fractions (median = 0.07%) for the healthy samples in the validation 168 

sets. In this healthy cohort, Fragle demonstrated 86% specificity at a 1% LoD level, increasing 169 

to 95% at 3% LoD (Suppl. Data 7). Furthermore, the model could differentiate between healthy 170 

and low-ctDNA level samples at the 1% ctDNA level (Wilcoxon rank sum test P = 2.5e-24, Fig. 171 

3a), indicating a ~1% LoD in these samples. Similarly, we examined the performance of Fragle 172 

for classification of healthy and cancer samples in the validation sets. Using cancer samples 173 

with a ctDNA level ≥1% in the validation sets, Fragle demonstrated an area under the curve 174 

(AUC) of 0.93 (Fig. 3b), higher than ichorCNA (AUC = 0.88) applied to the same samples. 175 

Notably, after limiting the analysis to the samples in which the ground-truth ctDNA fraction was 176 

estimated from a consensus of multiple methods, Fragle further outperformed ichorCNA in 177 

classifying cancer and healthy samples (AUC: 0.98 vs. 0.92; Suppl. Fig. 7). Expectedly, the 178 

AUC increased further when filtering out low-ctDNA burden samples (Suppl. Fig. 8). Fragle 179 

and ichorCNA achieved AUCs of 0.97 and 0.94, respectively, when excluding cancer samples 180 

with ctDNA levels below ichorCNA’s LoD of 3% (Suppl. Fig. 9).  As an additional comparison, 181 

we explored other fragment length features previously used for the classification of cancer and 182 

healthy samples 16, and trained a random forest model on the discovery cohort using 4 features 183 

derived from the fragment length distribution (see Methods). This 4-feature model 184 

demonstrated substantially lower classification accuracy (AUC = 0.79) than Fragle in the 185 

validation cohort. 186 

 187 

We further evaluated the LoD using unseen test samples. We used cfDNA samples from CRC 188 

patients with detectable mutations as positive cancer samples (N = 86, Suppl. Data 8) and all 189 

healthy plasma samples from the unseen cohorts as negatives (N = 57, Suppl. Data 9). Fragle 190 

demonstrated an AUC of 0.96 using these samples, outperforming the other models on the 191 

same set of samples (ichorCNA = 0.85, 4-feature model = 0.81; Fig. 3c; Suppl. Data 10). 192 

These results were further confirmed using an in-silico dilution experiment. This experiment 193 

involved 13 unseen colon cancer and 7 unseen breast cancer samples with high ctDNA 194 

burden (>10%), concordantly estimated by Fragle and ichorCNA (see Methods, Suppl. Data 195 

11). In this dilution experiment, Fragle could differentiate healthy from low-ctDNA samples 196 
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down to the 0.5-1% ctDNA level (P = 0.003, healthy vs. 0.625% ctDNA fraction samples, Fig. 197 

3d; Suppl. Fig. 10).  198 

 199 

To further examine these results using physical samples, we performed similar dilution 200 

experiments in vitro. The first experiment comprised serial dilutions of two high-ctDNA level 201 

CRC plasma samples, with samples progressively diluted using pooled cfDNA from healthy 202 

individuals (see Methods). Across 3 technical replicates, Fragle accurately predicted ctDNA 203 

fractions for both patients down to ~1% ctDNA level, with healthy samples consistently 204 

predicted <1% ctDNA (Fig. 3e). For low-ctDNA samples with 1-3% diluted ctDNA fraction, the 205 

detection rate was 94% at an LoD of 1%, outperforming ichorCNA with a detection rate of 67% 206 

(Suppl. Data 12). The second experiment comprised in vitro serial dilutions of 3 high-ctDNA 207 

plasma samples from gastric cancer patients (each with 3 technical replicates, see Methods). 208 

The results from this experiment mirrored our previous observations, with the method 209 

accurately quantifying ctDNA down to the 0.5-1% level and predicting <1% ctDNA for healthy 210 

samples (Fig. 3f, Suppl. Data 13). Overall, these results collectively suggest that Fragle can 211 

quantify and detect ctDNA with an LoD of ~1%. 212 

 213 
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 215 

Fig. 3 Lower limit of detection. a) Predicted ctDNA fractions for healthy and low-ctDNA level samples in validation 216 

set samples. Boxplots are represented by median and interquartile range (IQR), with +/–1.5 IQR as whiskers. b) 217 

ROC analyses for classification of healthy control and cancer (≥1% ctDNA) samples (validation samples). AUC 218 

values with 95% confidence intervals are shown. c) ROC analysis for classification of cancer (N=86) and healthy 219 

(N=57, 3 distinct cohorts) plasma samples in the unseen test cohort. AUC values with 95% confidence intervals 220 

are shown. d) Predicted ctDNA fractions for healthy and low-ctDNA level samples using in silico dilution of 20 221 

cancer samples (unseen cohort). Boxplots are represented by median and interquartile range (IQR), with +/–1.5 222 

IQR as whiskers. e) Expected vs. predicted ctDNA fractions using in vitro ctDNA dilution for 2 colorectal cancer 223 

samples. f) Expected vs. predicted ctDNA fractions using in vitro ctDNA dilution for 3 gastric cancer samples. 224 

 225 

 226 

Application of Fragle to targeted sequencing data 227 

Targeted gene sequencing of plasma samples is routinely used for tumor genotyping in the 228 

clinic. However, absolute ctDNA quantification based on mutation VAFs remains challenging 229 
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using targeted sequencing. For example, samples may not have clonal mutations covered by 230 

the panel, and non-cancer variants associated with clonal hematopoiesis could introduce 231 

noise 24. To explore whether Fragle could quantify ctDNA levels using targeted sequencing 232 

data, we analyzed four cfDNA cohorts having both lpWGS and targeted sequencing data (Fig. 233 

4a, see Methods). Using standard on-target reads obtained from the targeted sequencing 234 

data, Fragle tended to overestimate the ctDNA burden as compared to the lpWGS data (Fig. 235 

4b). We then evaluated the method on off-target reads, which are often filtered and ignored in 236 

a targeted sequencing experiment. Remarkably, we observed strong concordance of 237 

predictions based on lpWGS and off-target reads across all four cohorts: breast cancer 238 

samples from the discovery cohort (r = 0.86, P = 0.001, N = 10), colon cancer samples from 239 

the discovery cohort (r = 0.96, P = 1.64e-30, N = 56), colon cancer samples from the unseen 240 

cohort (r = 0.97, P = 3.69e-58, N = 109), and metastatic gastric cancer samples from the 241 

unseen cohort (r = 0.96, P = 2.9e-27, N = 49) (Fig. 4c). We found that the targeted sequencing 242 

samples contained between 100K to 10M off-target fragments (equivalent to ~0.01-1.0X 243 

WGS) across the different samples, with >95% of samples having >250K off-target fragments 244 

(~0.025X; Suppl. Fig. 11). Expectedly, the off-target coverage levels showed a linear 245 

relationship to on-target coverage across samples (Suppl. Fig. 11). To further explore if these 246 

results generalize to other targeted sequencing assays, we evaluated a cohort of 116 plasma 247 

samples subjected to a liquid biopsy gene panel from a commercial vendor (Foundation 248 

Medicine) 25. Since these samples did not have matched lpWGS data, we approximated 249 

ctDNA levels using the maximum VAFs reported by the company after filtering out germline 250 

variants (Suppl. Data 14; Methods). In this cohort comprising samples from 5 different cancer 251 

types, we observed that ctDNA levels estimated from off-target reads were generally 252 

concordant with the reported VAFs (r = 0.62, P = 1.4e-13, N = 116; Fig. 4d). Overall, these 253 

results support that Fragle can estimate ctDNA levels using both lpWGS and targeted 254 

sequencing data. 255 

 256 

 257 
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 258 

Fig. 4. Application of Fragle to targeted sequencing data. a) Application of Fragle to samples having both 259 

lpWGS and targeted gene panel sequencing data. b) ctDNA levels predicted using lpWGS data and on-target 260 

reads from targeted sequencing samples. c) ctDNA levels predicted using lpWGS data and off-target reads from 261 

targeted sequencing samples. d) Targeted sequencing data generated with commercial liquid biopsy assay 262 

(Foundation Medicine, N=116). Correlation of maximum VAFs (reported by the company, germline variants filtered) 263 

and Fragle-predicted ctDNA levels using off-target reads. 264 

 265 

 266 

Tracking ctDNA dynamics and disease progression from targeted sequencing 267 

Having demonstrated that Fragle can accurately quantify ctDNA levels with targeted gene 268 

panel sequencing, we applied the method to longitudinal targeted sequencing samples from 269 

four late-stage colorectal cancer patients. In these samples, we wanted to explore the 270 

temporal relationship between Fragle-estimated ctDNA dynamics and disease progression 271 

measured by radiographic imaging (RI). Firstly, we observed strong temporal correlations 272 

between mutation VAFs and Fragle ctDNA levels across the longitudinal samples from the 273 

four patients (Fig 5a-d; Suppl. Data 15). The first patient displayed concordant and increasing 274 

VAFs and Fragle ctDNA levels, consistent with the emergence of progressive disease (PD) 275 
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via RI at late timepoints (Fig 5a). The second patient developed a partial response to 276 

FOLFOXIRI treatment, consistent with both reductions in VAFs and Fragle ctDNA levels (Fig 277 

5b). The next two patients showed a similar disease progression trajectory via RI, with initial 278 

stable disease evolving into progressive disease following multiple rounds of treatment. ctDNA 279 

dynamics inferred by Fragle showed a consistent pattern of disease progression, with ctDNA 280 

levels remaining high at all timepoints (>10%; Fig. 5c-d). While the automated variant calling 281 

pipeline failed to detect mutations at late timepoints despite the presence of PD, manual 282 

inspection of sequencing reads at these positions confirmed the presence of TP53 and ATR 283 

mutations in these samples (4-5% VAF, Suppl. Data 16). We finally considered a metastatic 284 

colorectal cancer patient for whom we had collected 21 serial blood plasma samples over a 285 

cetuximab/chemotherapy treatment course of 3 years (Fig. 5e; Suppl. Data 15). In this patient, 286 

we observed an overall temporal correlation of Fragle-based ctDNA levels, mutation VAFs, 287 

and treatment response determined from RI. However, the dynamic range of VAFs varied 288 

extensively across different mutations and time points, highlighting the challenge in estimating 289 

absolute ctDNA levels from VAFs. For example, the patient had mutations in APC and TP53, 290 

two common clonal driver mutations in colorectal cancer. The VAFs for these two mutations 291 

differed markedly, with TP53 mutation allele frequencies more than 2-fold higher at many time 292 

points (e.g. days 779 and 834). In these samples, Fragle provided an orthogonal and 293 

independent measure of ctDNA levels. Overall, these data demonstrate high concordance to 294 

Fragle-estimated ctDNA levels and disease progression estimated from radiographic imaging. 295 

Secondly, they outline how Fragle could be used to interpret and resolve heterogeneous and 296 

variable mutation VAFs profiled with targeted sequencing assays. 297 

 298 
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 299 

 300 

Fig. 5. Monitoring of ctDNA levels and disease progression from targeted sequencing. a-e) Simultaneous 301 

longitudinal profiling of Fragle ctDNA levels and mutation VAFs in metastatic colorectal cancer patients using 302 

plasma targeted gene panel sequencing. Disease progression was captured with radiographic imaging. Only 303 

mutations detected in at least two timepoints for a given patient were included. Mutation VAFs were estimated 304 

using an automated pipeline, with manual pileup performed at highlighted timepoints where mutation detection 305 

failed.  306 

 307 

 308 

Risk stratification for early-stage lung cancer patients 309 

Blood-based detection of minimal residual disease (MRD) following treatment has the potential 310 

to improve risk stratification and management strategies for cancer patients 26, 27. Given the 311 

~1% LoD for Fragle, we explored if the method could be used for tumor-naïve MRD screening, 312 

with no requirements for a matching tissue sample. We obtained targeted sequencing data 313 

from a published cohort (MEDAL) of 162 early-stage lung cancer patients that had plasma 314 
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samples collected at the landmark timepoint (~30 days following curative surgery) 28. In this 315 

study, plasma samples were subjected to a commercial tumor-agnostic targeted sequencing 316 

assay, and the authors classified samples into ctDNA positive (N = 4) and negative (N = 158) 317 

groups based on mutation VAFs (Fig. 6a, Suppl. Data 17). In the ctDNA-negative samples, 318 

we used Fragle to further sub-classify the samples into ctDNA-high (>1% ctDNA level, N = 319 

101) and low (<1%, N = 57) groups. Intriguingly, despite these samples being classified as 320 

ctDNA-negative based on mutation VAFs in the targeted sequencing assay, the Fragle ctDNA-321 

high group demonstrated significantly worse outcomes (P = 0.035, log-rank test) (Fig. 6b). 322 

Using a multivariate model, the association between Fragle ctDNA levels and outcomes was 323 

preserved (P = 0.055, Cox proportional hazard model) while controlling for known clinical 324 

prognostic variables such as tumor type and stage (Fig. 6c). Overall, these data demonstrate 325 

the potential clinical utility of Fragle as a supplement to a standard tumor-agnostic targeted 326 

sequencing assay. While Fragle was developed as a ctDNA quantification tool, these results 327 

also demonstrate that Fragle could be useful in certain settings where the detection of ctDNA 328 

is paramount, such as MRD detection and risk stratification without a matching tissue sample. 329 

 330 

 331 

 332 

Fig. 6. Risk-stratification of early-stage lung cancer patients: a) Fragle was used to predict ctDNA levels in 333 

158 early-stage lung cancer patients classified as ctDNA-negative with a tumor-agnostic targeted gene panel 334 

assay. Plasma samples were obtained at the landmark timepoint (~30 days after surgery) and Fragle was applied 335 

to the off-target reads to infer patients with high (>1%) and low ctDNA levels. b) In the 158 ctDNA-negative patients 336 

inferred with the targeted gene panel, disease free survival (DFS) was evaluated for patients with high and low 337 

Fragle ctDNA levels and compared using a log-rank test. c) A multivariate Cox proportional hazards model was 338 

used to evaluate the association between Fragle ctDNA levels and DFS while controlling for other clinical variables.   339 

 340 

 341 

Discussion 342 

While previous studies have explored how cfDNA fragment length signatures can be used to 343 

classify plasma samples from cancer patients and healthy individuals 16-21, it remained 344 

unknown whether these fragmentomic signatures could also allow for accurate quantification 345 

of ctDNA levels in a blood sample. Here, we developed Fragle, a multi-stage machine learning 346 
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model that quantifies ctDNA levels directly from the cfDNA fragment length density distribution, 347 

with no requirement for tumor biopsy or matched normal sample. Fragle leveraged 348 

fragmentomic features common across multiple cancer types to robustly quantify ctDNA in 349 

cancer patients, and its development and validation involved analyzing lpWGS data from 8 350 

cancer types and targeted sequencing data from 6 cancer types. Specifically, using an in-silico 351 

data augmentation approach, we trained and evaluated Fragle on around four thousand 352 

lpWGS samples spanning multiple cancer types and healthy cohorts. Using both in vitro and 353 

in silico dilution data from unseen samples, Fragle demonstrated accurate quantification of 354 

plasma ctDNA levels with a lower LoD than the current state-of-the-art approaches for ctDNA 355 

quantification using lpWGS data. We note that Fragle has been developed and validated 356 

exclusively with whole-genome and targeted cfDNA sequencing data, further studies would 357 

be needed to evaluate if Fragle could be applied to other sequencing modalities such as 358 

bisulfite sequencing data. Moreover, modeling distinct orthogonal fragmentomic features 359 

alongside copy number profiles could unlock new opportunities to further enhance quantitative 360 

ctDNA profiling methods. 361 

 362 

Fragle is the first method to report accurate ctDNA quantification directly from a targeted 363 

sequencing assay. Existing methods developed for ctDNA quantification are not directly 364 

compatible with targeted sequencing data, requiring either low-pass whole genome 365 

sequencing (lpWGS) data 7, DNA methylation data 8, 9, or modifications to the targeted 366 

sequencing panel 10. Using colon, breast, and gastric cancer plasma samples sequenced with 367 

both lpWGS and targeted gene panels, we demonstrate high concordance of Fragle estimates 368 

across assays. Furthermore, we demonstrated increased accuracy when input data was 369 

limited to the off-target reads from the targeted assay. Interestingly, while off-target reads are 370 

often filtered and ignored in a targeted sequencing experiment, these reads generally spread 371 

across the whole genome potentially mimicking ultra-lpWGS data 29. We used this feature to 372 

analyze longitudinal targeted sequencing samples from colorectal cancer patients, 373 

demonstrating strong concordance of Fragle-inferred ctDNA dynamics and tumor progression 374 

measured from radiographic imaging. This analysis also highlighted patients where the 375 

dynamic range of mutation VAFs varied extensively across different mutations and time points. 376 

Under these conditions, ctDNA quantification using Fragle could provide an orthogonal 377 

approach to interpret and resolve heterogeneous mutation VAFs profiled with targeted 378 

sequencing. 379 

 380 

We also explored the potential for detecting MRD with Fragle. In a cohort of early-stage lung 381 

cancer patients with MRD evaluated at the landmark timepoint following surgery, ctDNA levels 382 

estimated by Fragle could risk-stratify patients that had otherwise been classified as ctDNA-383 
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negative using a commercial tumor-agnostic targeted sequencing assay. This result highlights 384 

the potential clinical utility of Fragle for MRD classification in settings where tumor-informed 385 

sequencing assays are not feasible or available. While tumor-informed ctDNA detection 386 

approaches offer increased MRD detection sensitivity and accuracy28, 30, these methods 387 

impose additional requirements for tissue sample availability, sequencing, computing, and 388 

logistics. In contrast, a tumor-naïve MRD classification approach could be applied directly to 389 

a plasma sample. Our analysis demonstrates how Fragle has potential to enhance the 390 

baseline risk stratification provided by a standard tumor-naïve targeted sequencing panel. 391 

 392 

Fragle showed robust performance across plasma samples from 10 solid tumor types and 393 

distinct healthy cohorts. We observed strong concordance with radiographic imaging and 394 

tumor VAFs in longitudinal samples from colorectal cancer patients undergoing targeted and 395 

cytotoxic therapy. These results suggest that the machine learning approach was able to learn 396 

properties of ctDNA fragmentation that generalize across cancer types and distinct therapeutic 397 

challenges. Since Fragle uses off-target reads to quantify ctDNA with targeted sequencing, 398 

we expect the method to generalize across distinct targeted sequencing panels. While we 399 

evaluated the method using multiple targeted gene panels, future studies are needed to further 400 

characterize the performance using additional gene panels, unseen tumor types, and 401 

therapeutic exposures. Clonal hematopoiesis of indeterminate potential (CHIP) is a known 402 

contributor of cfDNA fragments in some patients, with CHIP mutations reported to occur at ~1-403 

2% VAFs 24. While we demonstrated a ~1% LoD using in vitro and in silico diluted plasma 404 

samples, further evaluation in subjects with confirmed high levels of CHIP is needed to 405 

determine if Fragle can robustly discriminate between fragmentomic signatures from CHIP 406 

and solid tumor cells.     407 

 408 

Fragle is fast and flexible, estimating ctDNA levels in less than a minute using paired-end 409 

cfDNA profiling and without the need for a matching tumor or buffy coat sample. By also 410 

enabling orthogonal ctDNA quantification from targeted sequencing assays, the method could 411 

limit the need for running multiple assays for disease monitoring and interpretation of negative 412 

results from plasma genotyping 31. This could enable simultaneous discovery of actionable 413 

cancer mutations and accurate estimation of ctDNA levels with a single assay. Overall, Fragle 414 

is a versatile and accurate method for profiling of ctDNA dynamics with potential for broad 415 

clinical utility. 416 

417 
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Materials and Methods 418 

Plasma sample collection and processing 419 

The discovery cohort was composed of WGS plasma samples obtained from internal cohorts 420 

as well as from previous studies 10, 12, 16, 32. Similarly, the test cohort was composed of internal 421 

samples as well as samples from a previous study 32, all described in Suppl. Data 1. For new 422 

samples generated as part of this study, volunteers were recruited at the National Cancer 423 

Centre Singapore, under studies 2018/2709, 2018/2795, 2018/3046, 2019/2401, and 424 

2012/733/B approved by the Singhealth Centralised Institutional Review Board, as well as for 425 

volunteers recruited from National University Health System (NUHS). Written informed 426 

consent was obtained from patients. Clinical data for the patients included in this study has 427 

been listed in Suppl. Data 18. Plasma was separated from blood within 2 hours of venipuncture 428 

via centrifugation at 10 min × 300 g and 10 min × 9730 g, and then stored at −80 °C. DNA was 429 

extracted from plasma using the QIAamp Circulating Nucleic Acid Kit following the 430 

manufacturer’s instructions. Sequencing libraries were made using the KAPA HyperPrep kit 431 

(Kapa Biosystems, now Roche) following the manufacturer’s instructions and sequenced on 432 

Illumina NovaSeq6000 system. Low-pass WGS (~4x, 2×151 bp) was performed on cfDNA 433 

samples from cancer patients and healthy individuals. We used bwa-mem 33 to align WGS 434 

reads to the hg19 human reference genome. 435 

 436 

Estimation of ctDNA fractions in the discovery cohort 437 

We estimated the ctDNA fractions in the plasma samples of 4 cancer types using distinct 438 

orthogonal methods. 12 CRC and 10 BRCA plasma samples had ~90x cfDNA and ~30x 439 

matched buffy coat WGS data, and their ctDNA fractions were estimated using four tumor 440 

tissue-based methods 34-37 as previously reported 10. 53 CRC samples had lp-WGS and 441 

targeted nucleosome-depleted-region sequencing data, and we inferred ctDNA fractions by 442 

averaging ichorCNA and NDRquant estimates 10 in these samples. The remaining 55 CRC 443 

and 57 BRCA samples only had lpWGS data and their ctDNA fractions were inferred using 444 

ichorCNA. The liver (HCC) and the ovarian cancer (OV) datasets only had lpWGS data and 445 

ichorCNA 7 was used to quantify ctDNA levels in these samples. The details of the estimation 446 

of ctDNA fractions are provided in Suppl. Data 2. 447 

 448 

Discovery cohort data augmentation approach 449 

After identifying the plasma samples with ctDNA level ≥3% and with at least 10 million 450 

fragments in the discovery cohort, we split the cancer samples (n = 164) into training and 451 

validation sets. We repeated this 10 times, creating 10 training-validation set pairs. We then 452 

diluted each cancer plasma sample with reads from a random control plasma sample to 453 
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generate in silico spike-ins, followed by down-sampling to 10 million cfDNA fragments per 454 

sample. We generated in silico samples with variable ctDNA fractions ranging from 10-6 up to 455 

the undiluted fractions (Suppl. Data 3). To minimize information leakage to the validation set, 456 

we evenly split the healthy control samples (n = 101) into two sets. These two control sets 457 

were then used to dilute cancer samples in the training and validation sets, respectively (see 458 

Suppl. Fig. 1). 459 

 460 

Overview of Fragle 461 

Fragle quantifies ctDNA levels from a cfDNA fragment length histogram. Using paired-end 462 

sequencing data, we computed the length of each sequenced cfDNA fragment, excluding 463 

duplicates and supplementary alignments and only keeping paired reads mapping to the same 464 

chromosome with a minimal mapping quality of 30. The machine learning model consists of 465 

two stages (see Fig. 1 and Suppl. Fig. 12 for details): a quantification and a model-selection 466 

stage. The quantification stage employs two sub-models: (i) the low ctDNA burden sub-model, 467 

and (ii) the high ctDNA burden sub-model. These sub-models were designed and optimized 468 

to quantify accurately in low (<3%) and high ctDNA fraction (≥3%) samples, respectively. In 469 

the initial stage, for any given cfDNA sample, we individually input its processed fragment size 470 

profile into the two parallel sub-models. These two parallel sub-models, each with distinct loss 471 

functions, focus on ctDNA quantification for low- and high-ctDNA samples, respectively. The 472 

two parallel sub-models independently output their estimated ctDNA fractions. In the second 473 

stage, an SVM model selects the final predicted fraction from these two independent 474 

estimates. To train a final Fragle model based on the discovery cohort, we first trained a Fragle 475 

model on the training samples to obtain their ctDNA burden estimates. Among samples with 476 

ichorCNA-only ground truth ctDNA estimates, we excluded samples with a large deviation of 477 

ctDNA fractions estimated by ichorCNA and Fragle (i.e. relative difference >50% for samples 478 

with ctDNA fraction >20% by ichorCNA, >40% for samples with ctDNA fraction of 10-20%, and 479 

>30% for samples with ctDNA fraction of 3-10%). The final Fragle model was subsequently 480 

trained using all remaining samples in the discovery cohort. Notably, no samples were filtered 481 

out or selected from the unseen cohorts used to validate the final Fragle. As a result, Fragle 482 

remains entirely independent from these unseen cohorts (Fig. 1). 483 

 484 

Fragle model feature extraction 485 

The feature extraction steps have been illustrated in Suppl. Fig 12. We computed the fragment 486 

length profile for all fragments sized 51-400 bp using paired-end reads with Pysam 38. The 487 

length profile of each sample was normalized using the highest observed fragment length 488 

count, followed by log10 scaling of these sample-wise normalized counts. Next, a moving 489 

average normalization (z-score of 32-nt window) was performed sample-wise for smoothing. 490 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 14, 2024. ; https://doi.org/10.1101/2023.07.28.550922doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.28.550922
http://creativecommons.org/licenses/by-nc-nd/4.0/


The transformed length features for a given sample were further standardized relative to the 491 

training set. To explore the fragmentomic feature space predictive of cancer, we identified 492 

fragment length intervals that differed between cancer samples and healthy individuals in the 493 

discovery cohort (Suppl. Fig. 13, Suppl. Data 19). The most predictive length intervals 494 

comprised both short and long cfDNA fragments, including 125-140 bp, 170-208 bp, and 246-495 

306 bp (P < 10-20, Wilcoxon rank sum test). 281 out of 350 fragment lengths showed significant 496 

differences between cancer and healthy samples (P < 0.01), these were selected as candidate 497 

length features for model development.  498 

 499 

High and low ctDNA burden sub-model architecture 500 

The model was implemented as a neural network with a feature embedding layer, 16 fully 501 

connected layers with batch normalization 39 and residual connections 40 (Suppl. Fig. 12). 502 

Dropout regularization 41 was used in between intermediate layers with a dropout rate of 30% 503 

to minimize model overfitting. A composite loss function was used combining a quantification 504 

loss and a binary cross entropy loss. The main differentiating factor between the low and the 505 

high-ctDNA burden sub-models was the loss function. Here, the high ctDNA sub-model utilizes 506 

mean absolute error (MAE) loss, while the low ctDNA burden model uses relative MAE loss: 507 

Relative MAE = (MAE + σ) / (true_fraction + σ)             508 

“Relative MAE” is more sensitive to prediction errors in low-ctDNA samples, because these 509 

samples have smaller ‘true_fraction’ values in the denominator. As a result, the relative MAE 510 

tends to be larger for such cases. During model optimization, this loss function encourages 511 

the model to also focus on the prediction accuracy of low-ctDNA and healthy samples, aiming 512 

to minimize the overall relative MAE. Here, σ is a hyperparameter tuned based on cross-513 

validation data. 514 

 515 

Selection model  516 

The low and high ctDNA sub-models individually predict ctDNA fractions for each sample. 517 

These two predictions are used as input features for the selection model. The training sample 518 

ground truth is labeled as 0 or 1 when the expected ctDNA fraction is <3% or ≥3%, 519 

respectively. The selection model is a binary support vector machine classifier with radial basis 520 

kernel function. 521 

 522 

ichorCNA and 4-feature model benchmarking 523 

We utilized ichorCNA according to its usage guidelines, employing the default parameters to 524 

compute read count coverage with the HMMcopy Suite, followed by deducing tumor fractions 525 

with the ichorCNA R package. For the 4-feature model, we extracted four features from the 526 

fragment length profile according to a previously published study 16: 10-bp amplitude, and 527 
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proportions of fragments sized 160-180 bp, 180-220 bp, and 250-320 bp. We used these four 528 

features to develop a random forest regression model for estimating ctDNA fractions. 529 

 530 

Targeted sequencing assay 531 

Plasma and patient-matched buffy coat samples were isolated from whole blood within two 532 

hours from collection and were stored at −80 °C. DNA was extracted with the QIAamp 533 

Circulating Nucleic Acid Kit, followed by library preparation using the KAPA HyperPrep kit. All 534 

libraries were tagged with custom dual indexes containing a random 8-mer unique molecular 535 

identifier. Targeted capture was performed on the plasma samples in the unseen colorectal 536 

cancer dataset (N = 109) and in the unseen metastatic gastric cancer (N = 49) dataset, using 537 

an xGen custom panel (Integrated DNA Technologies) of 225 cancer driver genes. We also 538 

performed targeted sequencing of six plasma samples from healthy individuals to identify and 539 

blacklist unreliable variants likely attributed to sub-optimal probe design. Paired-end 540 

sequencing (2 × 151 bp) was done on an Illumina NovaSeq6000 system.  541 

 542 

Variant calling 543 

FASTQ files generated from targeted sequencing were pre-processed to append unique 544 

molecular identifiers (UMIs) into the fastq headers, followed by read alignment using bwa-545 

mem 33. We then performed UMI-aware deduplication using the fgbio package 546 

(https://github.com/fulcrumgenomics/fgbio). We grouped reads with the same UMI, allowing 547 

for one base mismatch between UMIs, and generated consensus sequences by discarding 548 

groups of reads with single members. To identify single-nucleotide variants and small 549 

insertions/deletions in the cfDNA samples, we first performed variant screening using VarDict 550 

42 using a minimal VAF threshold of 0.05%, and annotated all variants using Variant Effect 551 

Predictor 43. We removed low-impact variants such as synonymous variants, and low-quality 552 

variants such as those that fail to fulfill the minimum requirements of variant coverage, signal-553 

to-noise ratio, and number of reads supporting alternative alleles. Finally, we removed 554 

population SNPs found in Genome Aggregation Database (gnomAD) and 1000 Genomes. To 555 

further minimize false positive variants, we used duplexCaller 44 to identify variants with 556 

double-strand support and discarded blacklisted variants that were recurrently found in the 557 

plasma of two or more healthy individuals. Finally, when available, we identified high-558 

confidence variants by taking advantage of serial plasma samples collected from the same 559 

patient, keeping only variants that were detectable in at least two serial samples, with VAF 560 

more than 3% in at least one sample. 561 

 562 

 563 

 564 
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Application of Fragle to targeted sequencing data 565 

Duplicates were removed from the targeted sequencing data using Picard MarkDuplicates 566 

function (https://broadinstitute.github.io/picard/), and on-target and off-target reads were 567 

extracted from the BAM files using samtools view function. The resulting reads were used to 568 

generate the input fragment length histograms as detailed above. We obtained targeted 569 

sequencing data of the plasma samples in the unseen colorectal cancer dataset (N = 109) and 570 

in the unseen metastatic gastric cancer (N = 49) dataset, based on a panel of 225 cancer 571 

driver genes, as described above. The targeted sequencing data for the colorectal and breast 572 

cancer datasets in the discovery cohort have been reported in the previous studies 10, 45, based 573 

on a panel of 100 genes of colorectal cancer mutation and a panel of 77 genes of breast 574 

cancer mutation, respectively. Summary statistics for all gene panels such as gene count, 575 

genomic coverage, target regions, and on-target coverage ratio have been provided in the 576 

supplemental material (Suppl. Data 20-22). In an additional analysis, we used targeted 577 

sequencing data from 116 patients profiled with the Foundation Medicine Liquid CDx assay. 578 

Samples belonged to different cancer types such as lung, colon, breast, pancreas, and uterus 579 

cancer (Suppl. Data 14). We filtered known germline variants using gnomAD (v4) and 580 

analyzed variant allele frequencies using all remaining variants reported by the company. 581 

Since Fragle requires off-target BAM files for prediction, we constructed a targeted sequencing 582 

bed file using the 311 genes reported to comprise this panel (Suppl. Data 21). 583 

 584 

Lung cancer survival analysis 585 

Plasma targeted sequencing data from the MEDAL cohort (Project ID: OEP004204) 46 was 586 

retrieved from National Omics Data Encyclopedia (NODE). Alignment to the human genome 587 

(hg19) was conducted using bwa-mem 33. Duplicates in the aligned data were marked using 588 

Samblaster 47. Putative target regions were identified by calculating the median coverage per 589 

base from a subset of randomly selected BAM files (n = 38). Coverage of regions without any 590 

reads was reported as zero. Next, the resulting consensus bedgraph file was segmented into 591 

100 bp bins. Bins with median coverage exceeding 2x were selected and merged if they were 592 

within 100 bp of each other, to form contiguous regions. The resulting BED file was used for 593 

obtaining the off-target BAM file for each sample using samtools. 594 

 595 

Unseen in vitro dilution experiments 596 

The first in vitro dilution experiment included high ctDNA burden cfDNA samples from 2 597 

individual CRC patients which were selected to create a starting point for the dilution series. 598 

The ctDNA fraction for each sample was determined by 2 methods (ichorCNA 7 and NDRquant 599 

10), with high concordance across methods (sample 1: ctDNA content 38% by ichorCNA, 37% 600 

by NDRquant; sample 2: 39% and  38%, respectively). Commercial pooled cfDNA from 601 
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healthy volunteers (0% ctDNA) was purchased from PlasmaLab (lot numbers 2001011, 602 

210302) and was used to set up a 9-point serial dilution of the ctDNA fraction for each sample 603 

(Suppl. Data 12), with 3 technical replicates per dilution point. The second in vitro dilution 604 

experiment started from 3 plasma samples of gastric cancer, that had concordant ctDNA 605 

estimates between methods (sample 1: ctDNA content 7.6% by ichorCNA, 8.7% by Fragle, 606 

sample 2: 17.2% and 14.7%, sample 3: 13.4% and 19.1%, respectively). 12 control plasma 607 

cfDNA samples were purchased from Ripple Biosolutions and were used to set up a 7-point 608 

serial dilution of the ctDNA fraction for each cancer sample (Suppl. Data 13), with 3 technical 609 

replicates. We randomly selected 3 control samples and pooled them before diluting the 610 

plasma of cancer. lp-WGS was performed with a depth of ~ 4-5x. 611 

 612 

Unseen in silico dilution experiments 613 

Our unseen in silico dilution experiment included 7 unseen breast and 13 unseen colon cancer 614 

samples each containing high and concordant ctDNA fraction estimates based on Fragle and 615 

ichorCNA (>10% ctDNA based on both methods with a relative difference < 5%). We prepared 616 

20 healthy mixtures, each created by pooling 3 random samples from an unseen control 617 

cohort. A 6-point serial dilution for each sample was set up using these healthy mixtures to 618 

dilute the 20 cancer samples, with 20 technical replicates. A total of 2400 dilution samples 619 

were created ranging from 5% to as low as ~0.1% ctDNA fraction, each dilution point 620 

containing 400 samples (Suppl. Data 11).  621 

 622 

 623 

Data availability 624 

Published data used in this study and their access codes are present in Suppl. Data 1. Data 625 

generated in this study have been deposited at the European Genome-phenome Archive 626 

(EGA; Dataset ID: EGAD50000000167). Data are available under restricted access and will 627 

be released subject to a data transfer agreement. 628 

 629 

Code availability 630 

The Fragle software is attached as Suppl. Data 23 and will be made publicly available via 631 

GitHub.  The software can be directly applied to lpWGS/off-target BAM files aligned to hg19 / 632 

GRCh37 / hg38 reference genomes without any preprocessing.  633 

 634 

Supplementary materials 635 

Supplementary Fig. 1-13 636 

Supplementary Data 1-23 637 
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