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2 Pretrainable GearBind for Antibody Affinity Maturation

Abstract
Increasing the binding affinity of an antibody to its target antigen
is a crucial task in antibody therapeutics development. This paper
presents a pretrainable geometric graph neural network, GearBind,
and explores its potential in in silico affinity maturation. Leverag-
ing multi-relational graph construction, multi-level geometric message
passing and contrastive pretraining on mass-scale, unlabeled pro-
tein structural data, GearBind outperforms previous state-of-the-art
approaches on SKEMPI and an independent test set. A powerful ensem-
ble model based on GearBind is then derived and used to successfully
enhance the binding of two antibodies with distinct formats and tar-
get antigens. ELISA ECso values of the designed antibody mutants
are decreased by up to 17 fold, and Kp values by up to 6.1 fold.
These promising results underscore the utility of geometric deep learning
and effective pretraining in macromolecule interaction modeling tasks.

Introduction

Antibody plays a crucial role in the human immune system and serves as
a powerful diagnostic and therapeutic tool, due to its ability to bind selec-
tively and specifically to target antigens with high affinity. In vivo, antibodies
go through affinity maturation, where the target-binding affinity gradually
increases as a result of somatic hypermutation and clonal selection [1]. When a
new antigen surfaces, therapeutic antibody leads repurposed from known anti-
bodies or screened from a natural or de novo designed library often require in
vitro affinity maturation to enhance their binding affinity to a desired, usually
sub-nanomolar, level.

Wet lab experimental methods for in wvitro antibody affinity maturation
usually involve constructing mutant libraries and screening with display tech-
nology [2-5]. These methods, while significantly improved during the past few
years, are still labor-intensive and costly in general, taking 2-3 months or
more to complete the process. Let’s consider the combinatorial search space of
possible mutations. There are usually 50-60 residues on the complementarity-
determining region (CDR) of an antibody, which are hypervariable in vivo
and contribute to the majority of the binding free energy AGhuing [6]. Previ-
ous works show that multiple point mutations are often needed for successful
affinity maturation [7, 8]. Performing experiments on all combinations of over
a thousand possible point mutations in antibody CDR regions (60 residues
x 19 residues per residue) is difficult if not prohibitive. Therefore, a fast and
accurate computational method for narrowing down the search space is much
desired.

Nevertheless, it is nontrivial for computational affinity maturation meth-
ods to balance speed and accuracy. Molecular dynamics methods based on
empirical force fields [9-12] rely on human knowledge and abstractions to
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evaluate binding free energy changes after mutations. However, accurate mod-
els are often too slow to be used for ranking thousands of mutations (let
alone their combinations). In recent years, machine learning, and particu-
larly deep learning, has been demonstrated as a powerful tool capable of
tackling this dilemma. Many machine learning methods [13-18] formulate the
affinity maturation problem as a structure-based binding free energy change
(AAGying = AGping™ — AGbmd(Wt), where wt is short for wild type and
mt denotes mutant) prediction problem. However, despite the importance of
protein side-chain conformation to protein-protein interaction, most existing
methods model atom-level geometric information indirectly or incompletely,
e.g. using hand-crafted features or residue-level features. These approaches
inadequately address the intricate interplay between side-chain atoms. Another
critical problem is the massive amount of paired binding affinity data required
by machine learning models for them to become accurate and reliable. To
the best of our knowledge, the largest publicly available protein-protein bind-
ing free energy change dataset, Structural Kinetic and Energetic database of
Mutant Protein Interactions (SKEMPI) v2.0 [19], contains only 7085 AAGhina
measurements on 348 protein complexes, a tiny amount compared to the
training set sizes of foundational protein models such as AlphaFold2 [20] and
ESM2 [21].

To tackle the aforementioned challenges, we introduce GearBind, a pre-
trainable deep neural network that leverages multi-level geometric message
passing to model the nuanced protein-protein interactions. We utilize con-
trastive pretraining techniques on large-scale protein structural dataset to
incorporate vital structural insights into the model (Fig. 1). In silico exper-
iments on SKEMPI and an independent test set demonstrate the superior
performance of GearBind and the benefit of pretraining. We combine the
GearBind models with previous state-of-the-art methods to create an ensem-
ble model that achieves state-of-the-art performance on all metrics. Ablation
study confirms the importance of key design choices within GearBind and the
key role it played in the ensemble. We then use the GearBind-based ensemble
to perform in silico affinity maturation for two antibodies with distinct for-
mats and target antigens. Binding of the antibody CR3022 against the spike
(S) protein of the Omicron SARS-CoV-2 variant is increased by up to 17 fold
as measured by Enzyme-linked immunosorbent assay (ELISA), and by 6.1 fold
as measured by Bio-layer Interferometry (BLI), after synthesizing and test-
ing only 20 antibody candidates. All designed antibodies have maintained or
increased binding towards the receptor-binding domains (RBDs) of both the
SARS-CoV-2 Delta variant and SARS-CoV. Binding of the fully human single-
domain antibody (UdAb) against the oncofetal antigen 5T4 is increased by up
to 5.6 fold as measured by ELISA, and by up to 2.1 fold as measured by BLI,
after testing 12 candidates. These results underscore the importance of geo-
metric deep learning and effective pretraining on antibody affinity maturation
and, more generally, macromolecule interaction modeling.
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Results

GearBind: a pretrainable AAGy;n.q predictor

The GearBind framework is designed to extract geometric representations
from wild-type and mutant structures via multi-level and multi-relational mes-
sage passing to predict the binding free energy change AAGhing. GearBind
leverages information within a protein complex at three different levels with
complementary insights, namely, atom-level information holding precise spatial
and chemical characteristics, edge-level information capturing angular relation-
ships, and residue-level information highlighting broader context within the
protein complex. Merging these distinct yet interconnected tiers of informa-
tion allows for a more holistic view of protein complexes, potentially enhancing
model capabilities.

More formally, when a protein complex structure is input to GearBind, a
multi-relational interface atom graph is first constructed to model the detailed
interactions within the complex. The relations defined cover both sequential
proximity (for atoms on the same chain) and spatial proximity (which includes
k-nearest-neighbor and within-r-radius relations). Atom-level representations
are obtained by applying a geometric relational graph neural network (Gear-
Net [22]) on the interface graph. On top of that, a line graph is constructed
by treating each edge in the atom graph as a line node, connecting adjacent
line nodes, and encoding the angular information as line edge features. Edge-
level interactions are then captured by performing message passing on the
line graph, similar to a sparse version of AlphaFold’s triangle attention [20].
Finally, after aggregating atom and edge representations for each residue, a
geometric graph attention layer is applied to pass messages between residues.
This multi-level message passing scheme injects multi-granularity structural
information into the learned representations, making it highly useful for the
task of AAGhing prediction.

Although GearBind can be trained from scratch on labeled AAGhing
datasets, it could suffer from overfitting or poor generalization if the training
data size is limited. To address this problem, we propose a self-supervised pre-
training task to exploit large-scale unlabeled protein structures in CATH [22,
23]. In the pretraining stage, the encoder is trained to model the distribution of
the native protein structures via noise contrastive estimation [24]. Specifically,
we maximize the probability (i.e. push down the energy) of native CATH pro-
teins while minimizing the probability of mutant structures (Fig. 1c) generated
by randomly mutating residues and sampling side-chain torsional angles from
a rotamer library [25]. Distinguishing native, stable protein structures from
sampled mutant structures pushes the model towards understanding side-chain
interaction patterns, which are crucial to protein-protein binding. Through this
process, meaningful knowledge from abundant single-chain protein structural
data could be transferred to benefit protein-protein binding modelling.
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Cross Validation on SKEMPI

We validated GearBind performance via a split-by-complex, five-fold cross val-
idation on SKEMPI v2.0. Our splitting strategy dictates that each test set
share no common PDB complex with its corresponding training set, making
it more realistic than the split-by-mutation strategy, where the wild-type pro-
tein complexes and even the mutation sites in the test set could appear during
training. We compared GearBind and GearBind+P (pretrained GearBind
fine-tuned on SKEMPI) to state-of-the-art physics-based tools FoldX [9], Flex-
ddG [10] and the deep learning method Bind-ddG [8]. The results (Table 1)
show that GearBind, with its multi-relational graph construction and multi-
level message passing schemes, outperforms the baselines in terms of mean
absolute error (MAE), root mean squared error (RMSE) and PearsonR, while
seconds FoldX in terms of SpearmanR. Pretraining GearBind brings further
performance improvements, resulting in +5.4% SpearmanR, +2.6% Pear-
sonR, —2.4% MAE and —1.7% RMSE. This highlights the effective knowledge
transfer from mass-scale, unlabelled protein structural data.

To understand the contributions of key architectural design choices in
GearBind, we benchmarked the performance of 5 GearBind variants on
SKEMPI. As shown in 2e, the tested GearBind variants perform worse than
GearBind on all four metrics. The exclusion of edge- and residue-level message
passing from GearBind brings a 13% and 3% SpearmanR drop, highlighting
the benefits of combining multi-level information during feature extraction.
The exclusion of side-chain atoms from the interface graph hurts performance
even more (15% SpearmanR drop), showing the importance of explicitly mod-
eling the full-atom structure. Notably, replacing the multi-relational interface
graph with a KNN graph results in a severe 23% SpearmanR decline, while
training a simple RGCN model on the multi-relational graphs results in per-
formance on par with Bind-ddG (—9% SpearmanR compared to GearBind,
+2% compared to Bind-ddG). This suggests that the multi-relational graph
construction strategy is a key ingredient in GearBind.

A GearBind-based ensemble for in silico affinity
maturation

To understand the behavior of the benchmarked models on SKEMPI, we
binned the SKEMPI dataset by the target difficulty and plotted the Pear-
sonR and SpearmanR of each model on targets with different difficulty levels.
PDB codes in SKEMPT are categorized into “easy” (504 similar data points in
training set), “medium” (1-50), and “hard” (0) targets based on the number of
training data points having a high structural similarity (TM-score [26] > 0.8)
to it. Deep learning models, namely Bind-ddG, GearBind and GearBind+P,
enjoys superior performance compared to physics-based methods such as FoldX
and Flex-ddG on easy targets, but the table turns when we move to the hard
targets (Fig. 2a,b), showing room for improvement in their generalization capa-
bilities. We also studied the performance on mutations that cause low (< 0.5
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6 Pretrainable GearBind for Antibody Affinity Maturation

kcal/mol), medium (0.5 — 2) and high (> 2) absolute changes in binding free
energy. As Fig. S9 shows, all models perform better when the binding level
changes more drastically. GearBind achieves outstanding performance in this
region, with a PearsonR value of 0.707, compared to FoldX’s 0.411, showing
its potential to identify mutations that could significantly enhance or disrupt
binding. When the |[AAGhing| is small, predictions from all methods have very
low correlation with experimental AAGpinq values, hinting either the noises
in data or a deficiency of current tools in modeling weaker, more intricate
interactions.

To combine the advantages of both physics-based and deep learning meth-
ods, we used the ensemble of all benchmarked methods to perform subsequent
in silico affinity maturation. The prediction of the ensemble model is the simple
average of prediction values from FoldX, Flex-ddG, GearBind, GearBind+P
and Bind-ddG. The proposed ensemble model outperforms each individual
model in all four evaluation metrics (Table 1). We evaluated the contribution
of individual models to the ensemble by excluding each of them and eval-
uating performance on SKEMPI. The results (Fig. 2f) show that excluding
GearBind and GearBind+P hurts overall performance the most. Specifically,
for the PearsonR metric, the exclusion of FoldX, Flex-ddG and Bind-ddG indi-
vidually results in a marginal (less than 0.01) decrease, but the removal of
GearBind causes a significant (more than 0.08) decline. We also note that,
while FoldX is not the best-performing model when used in isolation, remov-
ing it from the ensemble results in the biggest SpearmanR drop. This shows
that FoldX plays an important role in complementing the deep learning mod-
els and forging a robust and accurate ensemble model. In fact, combining
GearBind, GearBind+P and FoldX yields comparable performance to the
5-model ensemble (Fig. S26).

Evaluation on the HER?2 binders test set

With the models built and trained (on SKEMPT), we tested their performance
on the HER2 binders test set, which we collected from [27]. This dataset
contains high-quality binding affinity data, measured by surface plasmon res-
onance (SPR) on 419 HER2 binders with de novo designed CDR loops. The
antibodies in the dataset are variants of Trastuzumab that have high edit
distance (7.6 on average), making them potentially challenging for AAGying
predictors trained on low-edit-distance data. Among the benchmarked meth-
ods (Flex-ddG is not benchmarked due to its high time cost), GearBind+P
achieve the best PearsonR and SpearmanR (Fig. 2¢). We then averaged the pre-
dictions of all benchmarked models to form an ensemble model, and excluded
each model from the ensemble to measure the performance change. Similarly,
excluding GearBind(+P) hurts PearsonR the most, and excluding FoldX hurts
SpearmanR the most, with GearBind(+P) closely following (Fig. 2d).
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Affinity Maturation of CR3022 and anti-5T4 UdAb

To validate the efficacy of our methodology, two antibodies, CR3022 and anti-
5T4 UdAb, were selected as subjects for affinity maturation. The CR3022
antibody, originally isolated from a convalescent SARS patient [28], has been
subsequently identified to bind to SARS-CoV-2 [29, 30]. Meanwhile, a UdAb
directed against the oncofetal antigen 5T4, is characterized by its exceptional
stability [31]. Note that the two antibodies are in distinct formats and target
distinct antigens. Both antigens have only one structurally similar protein
chain (TM-score > 0.8) with a different binding site in SKEMPI, making them
challenging targets for our pipeline (Table S9, S10, Fig. S14, S15).

For CR3022, a total of 12 mutants were picked out in the first-round experi-
mental validation according to the ensemble prediction of their binding affinity
changes against the RBDs of the wild-type, BA.1.1, and BA.4 SARS-CoV-2
strains. We note that the wild-type and Delta RBDs share the same amino
acids at the interface to CR3022. In an ELISA pre-experiment, we tested
the binding of these mutants to the RBD of the SARS-CoV-2 Delta strain
with antigen concentration at 100 nM. Nine out of twelve candidates exhibited
improved binding compared the wild-type CR3022 (Fig. S16a). In the further
validation with reduced RBD concentration at 10 nM, the ECsq values for all
9 candidates were lower than the wild-type CR3022 (Fig. 3a, b). Based on
these results, we combined the well-performed CR3022 mutations and synthe-
sized 8 candidates with double or triple mutations as our second-round designs.
Seven of the eight designed multi-point mutants exhibited enhanced binding
against the Delta RBD, with 1.8 to 3.4 fold lower ELISA ECs5y compared to
the wild-type. The triple mutant SH100D+SH103Y-+SL33R has the lowest
ECs at 0.06 nM (Fig. 3c, d). Against the Omicron Spike protein, the above
seven multi-point mutants again displayed 7.6 to 17.0 fold binding increase
with sub-nanomolar EC5¢ values, among which the SH1I00D+SH103Y+SL33R
triple mutant still exhibited the best performance (Fig. 3e, f). We next tested
the binding of the mutants designed in the second-round against the RBD
of SARS-CoV, to examine if binding optimization of CR3022 against SARS-
CoV-2 RBDs caused a drastic change in binding to its original target. Seven
out of eight mutants did not exhibit a significant change in ELISA ECs;q
against SARS-CoV RBD (Fig. 3g, h). In summary, the above results demon-
strate the success of our GearBind-based pipeline in CR3022 antibody affinity
optimization.

To demonstrate the generalizability of our method, we extended our experi-
mental validation to the anti-5T4 UdAb. We developed 12 single-point mutants
using the GearBind-based pipeline and verified their binding to 5T4 with
ELISA. The highest binding UdAb mutant was S57W, with a 5.6 fold decrease
in ECs5g. This highlights the potential of our approach in enhancing antibody
affinity for antibodies of different formats and with different targets, making
it a promising tool for therapeutic antibody development.

We further validated the affinity-matured CR3022 antibodies and anti-
5T4 UdAbs using Bio-layer Interferometry (BLI) to assess their binding
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affinities more accurately (Fig. 4). The 7 tested CR3022 mutants show a
3.1 to 6.1 fold increase in binding affinity against the Omicron Spike pro-
tein, with the best performing mutant being SH100D+SH103Y+IL34W. The
SH100D+SH103Y+SL33R. triple mutant, identified by ELISA as the best-
performing mutant, exhibits a 4.1 fold increase in binding affinity. The two
tested anti-5T4 UdAb mutants, S54Y and S57W, exhibited a 1.8 fold and 2.1
fold improvement in binding affinity, respectively. Overall, the BLI measure-
ments are consistent with the ELISA binding assay results and demonstrate
the increased binding affinity of CR3022 and UdAb variants designed by the
GearBind-based pipeline.

Structural Characteristics of Optimized Antibodies

Understanding the sequence-structure-function relationship of mutations
designed by deep learning not only helps improve our models but also
aids in interpreting their biological significance. To explore the underly-
ing principles governing the increased antibody-antigen binding, we carried
out molecular dynamics simulations and structural analyses on both the
wild-type and mutant antibodies with the lowest ELISA ECsp, namely, the
SH100D+SH103Y+SL33R triple mutant for CR3022, and the S57W mutant
for the anti-5T4 UdAb. We conducted a 1 ps all-atom molecular dynamics
simulation at room temperature for each system, including their respective
wild-type counterparts (see Methods for details).

Based on the simulation results, among the four mutations studied, three
demonstrated an increased number of hydrogen bonds with the target: SH100D
and SL33R from CR3022, and S57W from UdAb (Fig. 5g, h). These four
mutations in CR3022 and UdAb also stabilized the antibodies, as shown by
the reduced fluctuations in Ca atoms in the corresponding antibody chains
(Fig. S20). Although the S103Y mutation in the heavy chain of CR3022
did not increase polar contacts, it potentially enhanced hydrophobic interac-
tions between the antibody and antigen by excluding more solvent due to the
larger size of tyrosine. In summary, the mutations designed by our pipeline
likely achieved higher binding affinity through the formation of new interac-
tions, while we also observed stabilized binding residues and altered structural
properties in the mutated structures.

Interestingly, GearBind-predicted contribution (Fig. S24) provided further
insight into the formation of potential contacts for these designed mutations.
Most contributions were found to be consistent with our deductions based on
the molecular dynamics simulations. The possible hydrophobic interaction in
S103Y was also presented in the contributions, providing further validation to
our findings and aligning well with our deductions based on protein structure
(Fig. S24c).
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Discussion

This study reports an in silico antibody maturation pipeline based on a
pretrainable geometric graph neural network, GearBind, and the successful
application of the pipeline on two distinct antibodies, CR3022 and anti-5T4
UdAb. Substantial in silico experiments were done to evaluate model perfor-
mance and understand their strengths and limitations. The technical strengths
of the proposed GearBind model can be summarized as follows: (1) In the graph
construction phase, a multi-relational graph is built upon all heavy atoms on
the interface. The relations defined cover both sequential proximity and spa-
tial proximity. Replacing the all-atom graph to backbone-atom-only graph, or
replacing the multi-relational graph to a simple kNN graph both cause severe
performance decline. (2) In the feature extraction phase, a multi-level message
passing scheme is employed to obtain a comprehensive view on the intricate
interactions at protein interfaces. (3) A unique pretraining algorithm based
on contrastive learning is proposed, which harnesses the abundant, unlabeled
single-chain protein structures in CATH, distills knowledge about side-chain
torsion angles into the model to further boost its performance.

We challenged our GearBind-based pipeline with two real-world antibody
affinity maturation projects. ELISA binding assays showed that CR3022 muta-
tions proposed by the pipeline have led to successful enhancements in binding
against both the Delta RBD and the Omicron Spike protein. Notably, 7 out of
10 CR3022 single-point mutants and 9 out of 10 multi-point mutants showed
a significant increase in binding, with up to 3.8 fold decrease in ELISA ECsg
for the Delta RBD and 17.0 fold for the Omicron Spike protein. Among
12 single-point anti-5T4 UdAb mutants, our pipeline achieved a maximum
decrease of 5.6 times in ELISA ECsg and 2.1 times in BLI-measured Kp. In
short, GearBind proves to be an efficient and powerful tool for the design of
antibodies with enhanced binding affinities. Based on the molecular dynamics
simulations of the top-performing mutants identified by the GearBind-based
pipeline, we observed that our designs enhanced binding affinity by creat-
ing new interactions or strengthening existing contacts, particularly hydrogen
bonds. This provides insight into how GearBind learns from data and designs
mutations that increase binding affinity.

While we mainly focus on structure-based methods in this work, others
have explored purely sequence-based models for affinity maturation [32]. Our
evaluation of ESM-1b and ESM-1v models on SKEMPI (Table S4 and Fig.
S12) results in negative SpearmanR values, hinting that zero-shot prediction
of large-scale protein language models is not a generally reliable method for
ranking the binding affinity of protein complexes [33]. This result is reasonable
because the “fitness” of a peptide sequence, as modelled by protein language
models, does not necessarily imply strong binding to all other biomolecules.
For example, improved fitness of the Spike protein of SARS-CoV-2 would likely
involve decreased binding affinity towards existing neutralizing antibodies.
Another argument is that structural information plays a key role in building
an accurate and reliable algorithm for protein-protein interactions [34].
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Looking ahead, the potential applications of GearBind reach beyond
protein-protein binding optimization. The model can be readily adapted to
tackle protein-peptide and protein-ligand docking challenges, thereby opening
up possibilities for its use in minibinder and enzyme design.

Despite these positive prospects, we acknowledge certain limitations in
our current methodology and discuss potential directions for future work.
Firstly, the prerequisite for structure-based AAGh,q prediction is an accu-
rate complex structure, which is not easily available for most antibody-antigen
pairs. To address this problem, homology modeling tools [35] can be used
to build the complex structure from a template structure. This is how we
built the complex structure of CR3022 binding to the Omicron RBDs. A
more aggressive approach is to directly predict the complex structure from
the sequence. As multimer structure prediction methods become more and
more accurate [36], they might one day become reliable as the starting point
of structure-based affinity maturation. Secondly, the reliance on external tools
for mutant structure generation increases the time cost, and limits our action
space to substitutions only. Future efforts can focus on training end-to-end
models that directly predict the AAGhping, and models that can account for
amino acid insertion and deletion. We also call for better pretraining strat-
egy and architecture design to improve the generalization capabilities of deep
learning models, making them more robust on proteins they have not seen
before. All in all, we believe our work takes a solid step towards building a
reliable, robust and efficient in silico affinity maturation pipeline that would
bring tremendous opportunities to research and drug discovery applications.
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Methods

Datasets

SKEMPI

We used the SKEMPI v2 [19] dataset for training and validation. The dataset
contains 7,085 AAGynq measurements on 348 complexes. We performed pre-
processing following [13, 18], discarding data with ambiguous AAGhing values
(e.g. the mutant is a non-binder without exact Kp measurements) or high
AAGh,nq variance across multiple measurements (> 1kcal/mol), and arrived
at 5,729 distinct mutations, with their AAGping measurements, on 340 com-
plexes. See Table S6 for a list of discarded, high-variance SKEMPI mutations.
For each mutation, we sampled the mutant structure with FoldX 4 [9] based
on the wild-type crystal structure. We used PDBFixer v1.8 [37] to fix the PDB
structures beforehand if the raw structure could not be processed by FoldX.
These FoldX-derived SKEMPI structures are used to train deep learning mod-
els, including Bind-ddG, GearBind and GearBind+P. The resulting dataset
was split into five subsets with roughly the same size using a split-by-PDB
strategy, in order to perform cross validation.

CATH

For pretraining, we use a non-redundant subset of CATH v4.3.0 domains,
which contains 30,948 experimental protein structures with less than 40%
sequence identity. We also remove proteins that exceed 2,000 AAs in length
for efficiency. During pretraining, we randomly truncate long sequences into
150 AAs for efficiency. It is important to note that, currently, our pretraining
exclusively utilizes single-chain proteins. The information learned by single-
chain pretraining can be transferred to downstream tasks on protein complexes
and we have found that this approach alone is sufficient to yield improvement.

HFER2 binders

The HER2 binders test set was collected from [27]. The raw data include
SPR data for 758 binders and 1097 non-binders. As all benchmarked methods
only support amino acid substitutions, we filter out the binders that have
different lengths compared to the wild-type antibody (Trastuzumab), leaving
419 Trastuzumab mutants. AAGhinq values are calculated by AAGping =

—RTIn (K](Dmt) / Kl()Wt)) based on the SPR-measured binding affinity. Note that

we only use this dataset as a test set to evaluate physics-based models (FoldX,
Flex-ddG) and deep learning models (Bind-ddG, GearBind and GearBind+P)
trained on SKEMPI.

GearBind implementation

Given a pair of wild-type and mutant structures, GearBind predicts the
binding free energy change AAGhying by building a geometric encoder on
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a multi-relational graph, which is further enhanced by self-supervised pre-
training. Note that the key feature that makes the neural network geometric is
that it considers the spatial relationship between entities, i.e., nodes in a graph.
In the following sections, we will discuss the construction of multi-relational
graphs, multi-level message passing and pre-training methods.

Constructing relational graphs for protein complex structures

Given a protein-protein complex, we construct a multi-relational graph for
its interface and discard all other atoms. Here a residue is considered on the
interface if its Euclidean distance to the nearest residue from the binding
partner is no more than 6A. Each atom on the interface is regarded as a node
in the graph. We add three types of edges to represent different interactions
between these atoms. For two atoms with a sequential distance lower than 3, we
add a sequential edge between them, the type of which is determined by their
relative position in the protein sequence. For two atoms with spatial distance
lower than 5A, we add a radial edge between them. Besides, each atom is
also linked to its 10-nearest neighbors to guarantee the connectivity of the
graph. Spatial edges that connect two atoms adjacent in the protein sequence
are not interesting and thus discarded. The relational graph is denoted as
(V,E,R) with V, £, R denoting the sets of nodes, edges and relation types,
respectively. We use the tuple (7, j, ) to denote the edge between atom i and j
with type r. We use one-hot vectors of residues types and atom types as node
features for each atom and further include sequential and spatial distances in
edge features for each edge.

Building geometric encoder by multi-level message passing

On top of the constructed interface graph, we now perform multi-level message
passing to model interactions between connected atoms, edges and residues.

N0 O]
We use a;” and € ir)
at the [-th layer. Specially, we use a
e
(4,3,7)
are updated by the following procedures:

to denote the representations of node i and edge (4,4, )
(

7

% to denote the node feature for atom i and
to denote the edge feature for edge (j,7, 7). Then, the representations

a'’ « AtomMP(a!'" "), (1)
! -1

eéj{im) — EdgeMP(eEj7i72)), (2)

al’ « a’ + AGGR(e(), ), (3)

agL(i) — agl(i) + ResAttn(ag)a(i)). (4)

First, we perform atom-level message passing (AtomMP) on the atom graph.
Then, a line graph is constructed for the message passing between edges
(EdgeMP) so as to learn effective representations between atom pairs. The
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edge representations are used to update atom representations via an aggre-
gation function (AGGR). Finally, we take the representations ag)a(i) of the
alpha carbon as residue representation and perform a residue-level attention
mechanism (ResAttn), which can be seen as a special kind of message passing
on a fully-connected graph. In the following paragraphs, we will discuss these
components in details.

Atom-level message passing

Following GearNet [22], we use a relational graph neural network (RGCN) [38]
to pass messages between atoms. In a message passing step, each node aggre-
gates messages from its neighbors to update its own representation. The
message is computed as the output of a relation (edge type)-specific linear layer
when applied to the neighbor representation. Formally, the message passing
step is defined as:

-1y _ (-1 () (1-1)
AtomMP(a;” ) =a;, ‘4o <BN <ZT€R Wi Z(j,i,r)eé' a; >) ,

where BN() denotes batch norm and o(-) is the ReLU activation function.

Edge-level message passing and aggregation

Modeling sequential proximity or spatial distance alone is not enough for cap-
turing the complex protein-protein interactions (PPI) contributing to binding.
Multiple works have demonstrated the benefits of incorporating angular infor-
mation using edge-level message passing [20, 22, 39]. Here we construct a line
graph [40], i.e. a relational graph among all edges of the above atom-level
graph. Two edges are connected if and only if they share a common end node.
The relations, or edge types, are defined as the angle between the atom-level
edge pair, discretized into 8 bins. We use (V’, &', R’) to denote the constructed
line graph. Then, relational message passing is used on the line graph:

EdgeMP(egil)) -7 (BN <Z 'eER/ WS) ( nee’ eglll)>> ’
T Y, T,T

where x and y denote edge tuples in the original graph for abbreviation.

Once we updated the edge representations, we aggregate them into its end
nodes. These representations are fed into a linear layer and multiplied with
the edge type-specific kernel matrix Wgu) in AtomMP:

o (a) ' @
AGGR(e/,; ) =0 (BN (Z%R WD e Llnear(e(j,i7r))>> :

which will be used to update the representation for atom 4 as in equation 3.
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Residue-level message passing

Constrained by the computational complexity, atom and edge-level message
passing only consider sparse interactions while ignoring global interactions
between all pairs of residues. By modeling a coarse-grained view of the interface
at the residue level, we are able to perform message passing between all pairs
of residues. To do this, we design a geometric graph attention mechanism,
which takes the representations of the alpha carbon of residues as input and
updates their representations with the output as in equation 4. Here we follow
the typical definition of self-attention to calculate attention logits with query
and key vectors and apply the probability on the value vectors to get residue
representations r;:

1
aj; = Softmax; (d -Linearq(ag)a(i)) -Lineark(ag)a(j))) ,

rz(l) — Zj «; - Linear, (a(cl;)a(i))v

where d is the hidden dimension of the representation ag)a(i) and the Softmax
function is taken over all j.

Besides traditional self-attention, we also include geometric information
in the attention mechanism, which should be invariant to roto-translational
transformations on the global complex structure. Therefore, we construct a
local frame for each residue with coordinates of its Nitrogen, Carbon and alpha
Carbon atoms:

Vil = XN(@i) — XCal(i)s

Vi2 = X (i) = XCaf(i)s

u;1, W2 = GramSchmidt(v;1, v42)
;1 u;2 ;1 u;2

X
wa I [wi |l Jwir]] © [luaell]’

R, =

where we use x to denote the coordinate of an atom and GramSchmids(-)
refers to the Gram—Schmidt process for orthogonalization. Then, the geometric
attention is designed to model the relative position of beta carbons of all
residues j in the local frame of residue i:

l
pg ) = Zj Ozin;'r(XCa(i) - XCﬁ(j))7

where pl(-l) is the spatial representations for the residue i. When the complex

structure is rotated, the frame R; and relative position xgqa) — Xcpg(j) are
rotated accordingly and the effects will be counteracted, which guarantees the
rotation invariance of our model.
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0]

The final output is the concatenation of residue representations r;” and

spatial representations pgl):

ResAttn(ag)a(i)) = Concat(rgl), pgl)).

After obtaining representations for each atom, we apply a mean pooling
layer over representations of all alpha carbons ac,(;) to get protein representa-
tions h. An anti-symmetric prediction head is then applied to guarantee that
back mutations would have the exact opposite predicted AAGhing values:

AAGping = MLP(h™) h(™*) — MLP(h(™) h(+), (5)

where h®) and h™* denote the representations for wild type and mutant
complexes and AAGhing is the predicted AAGping from our GearBind model.

Modeling energy landscape of proteins via noise contrastive
estimation

As paired binding free energy change data is of relatively small size, it would
be beneficial to pretrain GearBind with massive protein structural data. The
high-level idea of our pretraining method is to model the distribution of native
protein structures, which helps identify harmful mutations yielding unnatural
structures. Denoting a protein structure as x, its distribution can be modeled
with Boltzmann distribution as:

pioxs 6) = “PEERO) ao) = [e(-Ex O)ix. (6)

where @ denotes learnable parameters in our encoder, E(x; 6) denotes the
energy function for the protein x and A(@) is the partition function to nor-
malize the distribution. The energy function is predicted by applying a linear
layer on the GearBind representations h(x) of protein x:

E(x; 6) = Linear(h(x)). (7)

Given the observed dataset {xi,...,xr} from PDB, our objective is to
maximize the probability of these samples:

o 1
maximize ﬁzt log p(x¢; 0). (8)

However, direct optimization of this objective is intractable, since cal-
culating the partition function requires integration over the whole protein
structure space. To address this issue, we adopt a popular method for learning
energy-based models called noise contrastive estimation [24]. For each observed
structure x;, we sample a negative structure y; and then the problem can be
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transformed to a binary classification task, i.e., whether a sample is observed
in the dataset or not.

minimize > log[o(E(xi; 6) ~ Bly:; 0))], (9)
where o(-) denotes the sigmoid function for calculating the probability for a
sample x; belonging to the positive class. We could see that the above training
objective tries to push down the energy of the positive examples (i.e. the
observed structures) while pushing up the energy of the negative samples (i.e.
the mutant structures.

For negative sampling, we perform random single-point mutations on the
corresponding positive samples and then generate its conformation by keeping
the backbone unchanged and sampling side-chain torsional angles at the muta-
tion site from a backbone-dependent rotamer library [25]. Besides, to further
enhance the model’s capability to distinguish structural noises, we randomly
choose 30% residues to randomly rotate torsional angles when generating
negative samples.

After pretraining on the CATH database, we finetune the GearBind
encoder on downstream tasks for prediction to avoid overfitting.

Cross Validation on SKEMPI

During cross validation, a model is trained and tested five times, each time
using a different subset as the test set and the remaining four subsets as the
training set. Results are calculated for each test set, and their mean and stan-
dard error of mean are reported as the final cross validation performance.
During the process of cross-validation, each individual data point is incorpo-
rated into the test set precisely once. This ensures that a comprehensive “test
result table” is compiled, which includes predictive values for each data point
when it is part of the test set. Subsequent performance analysis are done by
splitting this table by various criteria and evaluate performance on each subset.

After cross validation on SKEMPI, we obtain five sets of model parame-
ters. During inference, we use the mean of the predicted values of these five
checkpoints as the model prediction result.

Baseline implementation details
FoldX.

In this work, we use FoldX 4 [9] for mutant structure generation. First, each
PDB file is processed with the RepairPDB command for structural correc-
tions. Then, the wild-type, mutant structure pair is built using the BuildModel
command. We use the AnalyseComplex command to get the FoldX AAGhing
prediction based on the wild-type and mutant structures.
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Flex-ddG.

We run Flex-ddG with its official implementation at https://github.com/
Kortemme-Lab/flex_ddG_tutorial. Each PDB file is processed with PDBFixer
v1.8 [37]. Using the default parameters, we sample 35 structure models for
each mutation, with the number of backrub trails set to 35000 and the energy
function set to fa_talaris2014. The final AAGyinq values are predicted with a
generalized additive model that reweights the score terms.

GearBind(+P).

We implement GearBind with the TorchDrug library [41]. For message pass-
ing, we employed a 4-layer GearBind model with a hidden dimension of 128.
Regarding edge message passing, the connections between edges are catego-
rized into 8 bins according to the angles between them. To predict the AAGhing
value from graph representations, we utilized a 2-layer MLP.

The model was trained using the Adam optimizer with a learning rate
of le-4 and a batch size of 8. The training process is performed on 1 A100
GPU for 40 epochs. For pretraining, we use the same architecture with 4-
layer GearBind model with a hidden dimension of 128. The pretraining was
conducted using the Adam optimizer with a learning rate of 5e-4 and a batch
size of 8, employing 4 A100 GPUs for 10 epochs.

Bind-ddG.

To ensure a fair comparison, we re-implement and re-train the Bind-ddG model
on our SKEMPI splits. We following the configuration of the original imple-
mentation to set the dimensions of hidden and pair representations at 128 and
64, respectively. Our validation performance indicates that the optimal config-
uration for our setup includes a two-layer geometric attention mechanism and
a four-layer MLP predictor. We trained the model using an Adam optimizer
with a learning rate of le-4 and a batch size of 8, on a single A400 GPU, for
a total of 40 epochs.

In silico affinity maturation of CR3022 and anti-5T4
UdAb

PDB 6XC3 [42], in which chains H and L comprise antibody CR3022 and chain
C is the SARS-CoV-2 RBD, was chosen as the starting complex for CR3022
affinity maturation. To better simulate the CR3022 interaction with Omicron
RBD, we constructed the complex structures for BA.4 and BA.1.1 mutants
with SWISS-MODEL [35]. We then performed saturation mutagenesis on the
CDRs of CR3022 and generated mutant structures using FoldX [9] and Flex-
ddG [10]. Specifically, residues 26-35, 50-66, 99-108 from the heavy chain H
and residues 24-40, 56-62, 95-103 from the light chain L are mutated. This
totals 1400 single-point mutations (if we count the self-mutations). We use our
ensemble model to rank the mutations and select the top-ranked mutants for
synthesis and subsequent experimental validation. Mutations are ranked by
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the modified z-score (where values are subtracted by the median rather than
the mean to be less sensitive to outliers) averaged across multiple AAGhing
prediction methods.

An unpublished complex structure was used to optimize anti-5T4 UdAb.
As the single-domain antibody binding two distinct epiopes on 5T4 (Fig. 5b),
anti-5T4 UdAb has a larger interface region compared to traditional
antibodies. After analyzing its interface with 5T4, we decided to per-
form saturation mutagenesis on residues 1,3,25,27-30,31-33,39-45,52-57,59,91-
93,95,99,100-102,103,105,110,112,115-117. This totals 780 single-point muta-
tions (if we count the self-mutations) that goes through the same ranking and
selection strategies as described above.

Antigen preparation

The gene encoding SARS-CoV RBD was synthesized by Genscript (Nan-
jing, China) and subcloned into pSectag 2B vector with C-terminal human
IgG1 Fc fragment and AviTag. The recombinant vector was transfected to
Expi 293 cells and cultured at 37°C for 5 days, followed by centrifugation at
2,200 x g for 20 minutes. The supernatant was harvested and filtered through
a 0.22 pm vacuum filter. The protein G resin (Genscript) was loaded into the
column, washed by PBS, and flow the supernatant through to fully combine
the resin. Then the targeted protein was eluted with 0.1 M glycine (pH 3.0)
and neutralized with 1M Tris-HCL (pH 9.0), followed by buffer-exchanged
and concentrated with phosphate buffered saline (PBS) using an Amicon
ultra centrifugal concentrator (Millipore) with a molecular weight cut-off of
3kDa. Protein concentration was measured using the NanoDrop 2000 spec-
trophotometer (Thermo Fisher), and protein purity was examined by sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The Delta
RBD protein was purchased from Vazyme (Nanjing, China) and Omicron S
protein was purchased from ACROBiosystems (Beijing, China). The biotiny-
lated human TPBG / 5T4 and human TPBG/5T4-Fc antigen was purchased
from ACROBiosystems (Beijing, China).

Preparation for mutant and wild-type CR3022 antibodies

The heavy chain and light chain genes of different CR3022 antibodies were
synthesized and subcloned into expression vector pcDNA 3.4 in IgG1 format.
These constructed vectors were transfected into CHO cells and purified by Pro-
tein A. All antibodies were produced by Biointron Biological Inc. (Shanghai,
China).

Generation of mutant and wild-type anti-5T4 UdAbs

The pComb3x vector encoding the gene of wild-type anti-5T4 UdAb was con-
structed in previous work and preserved in our laboratory. All anti-5T4 UdAb
mutants with single-point mutation were constructed with QuickMutation™
Site-directed Gene Mutagenesis Kit (Beyotime, Shanghai, China) following
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the manufacturer’s protocol. The expression of different mutant and wild-
type anti-5T4 UdAbs were performed in E. coli HB2151 bacterial culture at
30°C for 16h accompanied by 1mM isopropyl b-D-1-thiogalactopyranoside
(IPTG). The cells were harvested and lysed by polymyxin B at 30°C for
0.5h, followed by centrifugation at 8,800 x g for 10 minutes. The super-
natant was collected, filtered through 0.8 pm polyethersulphone membranes
by sterile syringes and purified by Ni-NTA (Smart Lifesciences) following the
manufacturer’s instructions. Briefly, the filtered supernatant was loaded over
the column with Ni-NTA. The resin was washed by washing buffer (10 mM
Na2HPO4, 10 mM NaH2PO4 [pH 7.4], 500 mM NaCl, and 20 mM imidazole),
and proteins were eluted in elution buffer (10 mM Na2HPO4, 10 mM NaH2PO4
[pH 7.4], 500mM NaCl, and 250 mM imidazole). The collected pure frac-
tions were immediately buffer exchanged into PBS and concentrated with
Amicon ultra centrifugal concentrators (Millipore). Protein concentration was
measured using the NanoDrop 2000 spectrophotometer (Thermo Fisher), and
protein purity was examined by SDS-PAGE.

Enzyme-linked immunosorbent assay (ELISA)

For comparison of different CR3022 mutants, the RBD of Delta (B.1.617.2)
strain and S protein of Omicron (B.1.1.529) strain at 100 ng per well was
coated in 96 wells half area microplates (Corning #3690) overnight at 4 °C.
The antigen coated plate was washed by three times with PBST (PBS with
0.05% Tween-20) and blocked with 3% MPBS (PBS with 3% skim milk) at
37 °C for 1 h. Following three times washing with PBST, 50 pL of three-fold
serially diluted antibody in 1% MPBS was added and incubated at 37 °C for
1.5 h. The HRP-conjugated anti-Fab and anti-Fc (Sigma-Aldrich) secondary
antibodies were used for the detection of different tested antibodies. After
washing with PBST for 5 times, the enzyme activity was measured after the
addition of ABTS substrate (Invitrogen) for 15 min. The data was acquired by
measuring the absorbance at 405 nm using a Microplate Spectrophotometer
(Biotek) and the ECsy (concentration for 50% of maximal effect) was cal-
culated by GraphPad Prism8.0 software. To verify different UdAb mutants,
the same experimental protocol as mentioned above was adopted. Briefly, the
human TPBG/5T4-Fc antigen was coated in 96 wells half area microplates,
then blocked with 3% MPBS and added serial diluted antibodies. The HRP-
conjugated anti-Flag (Sigma-Aldrich) secondary antibody was used, followed
by adding ABTS substrate and detected at 405 nm. The reported EC5q value
is the mean value from three duplicates on a single experiment.

Bio-layer Interferometry (BLI) binding assay

The binding kinetics of different antibodies to SARS-CoV-2 Omicron S and
5T4 antigens were measured by BLI on an Octet-RED96 (ForteBio). Briefly,
the his-tagged Omicron S protein at 8 ng/ml and biotinylated 5T4 protein at
5 pg/ml were separately loaded onto Ni-NTA and streptavidin-coated (SA)
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biosensors. The antigen immobilized sensors were incubated with three-fold
serially diluted CR3022 candidates or two-fold serially diluted anti-5T4 UdAbs
starting at 300 nM in 0.02% PBST for 300 s for association, and then immersed
into 0.02% PBST for another 300 s at 37 °C for dissociation. All the curves
were fitted by 1:1 binding model using the Data Analysis software 11.1. All Kp
values were determined with R? values of greater than 98% confidence level.

Protein structure and AAGy;,q contribution analysis

Protein structure analysis is conducted by python scripts. The antibody-
antigen complex structure after mutation was obtained from Rosetta Flex-ddG
relaxation [10]. The relaxed protein structure can provide more accurate
side-chain conformations, which are critical for accurate contact and confor-
mational analysis. The improved accuracy of such analyses enables a deeper
understanding of the underlying binding mechanisms and can facilitate the
identification of key characteristics involved in protein-protein interactions.
The contribution scores are derived by using Integrated Gradients (IG) [43], a
model-agnostic attribution method, on GearBind to obtain residue-level inter-
pretation following [22]. All protein structure figures are created with PyMOL
v3.0.

Molecular dynamics simulation

For antibody mutation structural analysis, we conducted molecular dynam-
ics simulations of the wild type and mutant antibody-antigen complex. Initial
structures were taken from the Rosetta Flex-ddG relaxed structures used by
GearBind. The LEaP module in the AMBER 22 suite was used for build-
ing starting structures and adding ions and solvent for the simulation [44].
The protonation states of the molecules were kept at the default settings as
assigned by LEaP during the initial structure preparation. All systems were
simulated with the ff19SB protein force field [45] and solvated in boxes of
water with the OPC3 [46] solvent model. Simulated systems were solvated
using a 10 Angstrom solvent box. All bonds involving hydrogen atoms were
constrained with the SHAKE algorithm [47]. The particle mesh Ewald (PME)
algorithm was used to calculate long-range electrostatic interactions [48]. Ini-
tial structures were relaxed with maximum 10,000 steps of minimization before
convergence, then subjected to heating for 20 ps and equilibrating for 10 ps in
the NPT ensemble with PMEMD. The CUDA version of PMEMD was used to
accelerate the simulations [49]. The simulation temperature was set to room
temperature 298K. All systems were simulated for 1 ps production MD with
one replica, and samples in the first 50 ns were not used for analysis. CPP-
TRAJ module in AMBERToo0ls were used to analysis the simulation results,
including calculating root mean square deviation (RMSD), room mean square
fluctuation (RMSF), hydrogen bonding, and dihedral angle [50].
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Data Availability

The raw SKEMPI database can be accessed via https://life.bsc.es/pid/
skempi2. The CATH database can be accessed via https://www.cathdb.
info/. The raw HER2 binders data can be accessed via https://github.com/
AbSciBio/unlocking-de-novo-antibody-design /blob/main /spr-controls.csv.

Code Availability

The GearBind inference code, the trained model checkpoints and
the dataset preprocessing scripts are available via https://github.com/
DeepGraphLearning/GearBind under the Apache 2.0 License. They can also
be accessed via Zenodo [51].
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Table 1: Cross validation performance of different methods on SKEMPI (n =
5729). For each metric, we report the mean and standard error of the mean.
“+P” means “with geometric pretraining on CATH”. MAE: Mean average
error. RMSE: root mean square error. Among individual models, the best and
the second-best performing model for each metric is highlighted in bold and
italic, respectively.

Model MAE| RMSE] PearsonR 1 SpearmanR 7
FoldX [9] 1.364 + 0.134 2.027 £ 0.170 0.491 4+ 0.007  0.526 + 0.011
Flex-ddG [10] 1.236 + 0.101 1.849 + 0.150 0.497 + 0.034 0.484 + 0.020
Bind-ddG [8] 1.255 + 0.096 1.759 + 0.125 0.581 + 0.037 0.443 £+ 0.041
GearBind 1.143 £+ 0.088 1.639 + 0.103 0.659 + 0.030 0.498 + 0.033
GearBind+P 1.115 + 0.072 1.611 + 0.075 0.676 + 0.041 0.525 £ 0.046
Ensemble 1.028 £ 0.080 1.503 + 0.101 0.729 + 0.016 0.643 + 0.030
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Fig. 1: GearBind-based in silico antibody affinity maturation
pipeline. (a) Pipeline Overview: The pipeline features the geometric neu-
ral encoder, GearBind, which undergoes self-supervised pretraining on CATH
and supervised learning on SKEMPIv2. The GearBind-based ensemble model
is employed to perform in silico affinity maturation on a target antibody,
given its bound structure to the native antigen. Guided by the model pre-
dictions, antibodies with improved binding affinity can be found after testing
one or two dozen mutant candidates. NN: neural network. Ab: Antibody.
CDR: Complementarity-determining region. Designed using resources from
Flaticon.com. (b) GearBind Model: GearBind employs a shared graph neu-
ral network to encode both the wild-type and mutant complex structures.
For each structure, a relational interface graph is constructed. A geometric
graph neural network, GearNet, then performs multi-relational and multi-
level message passing on the graph to extract rich interface representations.
The mutational effect AAGynq is predicted by an antisymmetric predictor
given the GearNet-extracted representations of the two complexes. (c) Self-
supervised Pretraining: GearBind+P leverages mass-scale unlabeled protein
structures via self-supervised, contrastive pretraining. The model is trained
to contrast between native structures and randomly mutated structures with
side-chain torsion angles sampled from a rotamer library. Pretraining helps
GearBind+P explore the energy landscape of native protein structures and
results in improved performance in AAGh;,q prediction.
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Fig. 2: In silico evaluation on SKEMPI and the HER2 binders test
set. Comparative analysis of Per-PDB Spearman (a) and Pearson (b) corre-
lations between predictions of various models and experimental data across
SKEMPI subsets with varying difficulty levels. PDB codes in SKEMPI are
categorized into ”easy” (50+ similar data points in training set), ”medium” (1-
50), and "hard” (0) targets based on the number of training data points having
a high structural similarity (TM-score > 0.8) to it. The number of PDB codes
for each difficulty is annotated in the figure legends. The box spans the inter-
quartile range (25th to 75th percentile), with a solid line inside marking the
median. Outliers are determined by 1x inter-quartile range. (¢) Benchmark
results on the HER2 binders test set (n = 419) show Pearson and Spear-
man correlations for various models. The deep learning models are trained
on SKEMPI. (d) Change of performance metrics in HER2 binders test set
when excluding various models from the FoldX + Bind-ddG + GearBind(+P)
ensemble. (e) Change of performance when changing GearBind architecture
design, as quantified by cross validation performance on SKEMPI (n = 5729).
(f) Change of performance on SKEMPI (n = 5729) when excluding different
models from the FoldX + Flex-ddG + Bind-ddG + GearBind(+P) ensemble.
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Fig. 3: ELISA binding assay results for CR3022 and anti-5T4 UdAb
mutants designed with a GearBind-based pipeline. On the left panels
(a, ¢, e, g, i), the concentration-response curves alongside with ECgo values
evaluated from ELISA assays are displayed, with the center denoting the mean
absorbance and error bars indicating the standard deviation from three tech-
nical duplicates. On the right panels (b, d, f, h, j), the fitted ECsy values,
their 95% confidence intervals and the fold changes in binding calculated as
ECéVgt)/ ECég‘t) are displayed. Tested systems include the first-round CR3022
designs binding to Delta RBD (a, b); the second-round CR3022 designs bind-
ing to Delta RBD (c, d), Omicron S protein (e, f) and SARS-RBD (g, h); and
single point mutants of anti-5T4 UdAb (i, j) binding to 5T4.
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Fig. 4: Bio-layer interferometry binding assay for CR3022 and anti-
5T4 UdAbs candidates. (a, d) Illustration of the experiment protocol with
(a) Ni-NTA and (d) SA biosensors. (b, €) The binding kinetics of different
CR3022 (b) and anti-5T4 UdAbs (e) candidates. The starting concentration
for each antibody was 300 nM. The data were determined by fitting curves to a
global 1:1 binding model. The Kp (equilibrium dissociation constant) values,
annotated on each plot, were determined with R? values of greater than 98%
confidence level. (¢, f) The ko, (association rate constant), kog (dissociation
rate constant), and Kp values of mutant and wild-type CR3022 antibodies (c)

and anti-5T4 UdAbs (f).
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Fig. 5: Structural analysis of optimized CR3022 and anti-5T4
UdAbs. (a) Complex structure of antibody CR3022 and the SARS-CoV-2
RBD used for affinity maturation. The target antigen is colored in red, and the
antibody in blue. Mutation sites S100D, S103Y in heavy chain and S33R in
light chain are marked in orange. (b) Complex structure of the single-domain
antibody UdAb and its target oncofetal antigen 5T4. Mutation site SHTW is
marked in orange. (c-e) Three mutation sites in the CR3022 triple-mutant,
namely S100D (c), S103Y (d) in heavy chain and S33R (e) in light chain. (f)
The S57W mutation site in the UdAb single-point mutant. (g) Depicts the
number of hydrogen bonds between the mutation sites and target antigen in
the molecular dynamics simulation of CR3022 and RBD complex. (h) Depicts
the number of hydrogen bonds between mutation sites and target antigen in the
molecular dynamics simulation of UdAb and 5T4 complex. In (g,h), hydrogen
bond distributions from wild types are colored in orange, and from mutants
are colored in green.
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