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Abstract30

Increasing the binding affinity of an antibody to its target antigen31

is a crucial task in antibody therapeutics development. This paper32

presents a pretrainable geometric graph neural network, GearBind,33

and explores its potential in in silico affinity maturation. Leverag-34

ing multi-relational graph construction, multi-level geometric message35

passing and contrastive pretraining on mass-scale, unlabeled pro-36

tein structural data, GearBind outperforms previous state-of-the-art37

approaches on SKEMPI and an independent test set. A powerful ensem-38

ble model based on GearBind is then derived and used to successfully39

enhance the binding of two antibodies with distinct formats and tar-40

get antigens. ELISA EC50 values of the designed antibody mutants41

are decreased by up to 17 fold, and KD values by up to 6.1 fold.42

These promising results underscore the utility of geometric deep learning43

and effective pretraining in macromolecule interaction modeling tasks.44

Introduction45

Antibody plays a crucial role in the human immune system and serves as46

a powerful diagnostic and therapeutic tool, due to its ability to bind selec-47

tively and specifically to target antigens with high affinity. In vivo, antibodies48

go through affinity maturation, where the target-binding affinity gradually49

increases as a result of somatic hypermutation and clonal selection [1]. When a50

new antigen surfaces, therapeutic antibody leads repurposed from known anti-51

bodies or screened from a natural or de novo designed library often require in52

vitro affinity maturation to enhance their binding affinity to a desired, usually53

sub-nanomolar, level.54

Wet lab experimental methods for in vitro antibody affinity maturation55

usually involve constructing mutant libraries and screening with display tech-56

nology [2–5]. These methods, while significantly improved during the past few57

years, are still labor-intensive and costly in general, taking 2-3 months or58

more to complete the process. Let’s consider the combinatorial search space of59

possible mutations. There are usually 50-60 residues on the complementarity-60

determining region (CDR) of an antibody, which are hypervariable in vivo61

and contribute to the majority of the binding free energy ∆Gbind [6]. Previ-62

ous works show that multiple point mutations are often needed for successful63

affinity maturation [7, 8]. Performing experiments on all combinations of over64

a thousand possible point mutations in antibody CDR regions (60 residues65

× 19 residues per residue) is difficult if not prohibitive. Therefore, a fast and66

accurate computational method for narrowing down the search space is much67

desired.68

Nevertheless, it is nontrivial for computational affinity maturation meth-69

ods to balance speed and accuracy. Molecular dynamics methods based on70

empirical force fields [9–12] rely on human knowledge and abstractions to71
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evaluate binding free energy changes after mutations. However, accurate mod-72

els are often too slow to be used for ranking thousands of mutations (let73

alone their combinations). In recent years, machine learning, and particu-74

larly deep learning, has been demonstrated as a powerful tool capable of75

tackling this dilemma. Many machine learning methods [13–18] formulate the76

affinity maturation problem as a structure-based binding free energy change77

(∆∆Gbind := ∆Gbind
(mt) − ∆Gbind

(wt), where wt is short for wild type and78

mt denotes mutant) prediction problem. However, despite the importance of79

protein side-chain conformation to protein-protein interaction, most existing80

methods model atom-level geometric information indirectly or incompletely,81

e.g. using hand-crafted features or residue-level features. These approaches82

inadequately address the intricate interplay between side-chain atoms. Another83

critical problem is the massive amount of paired binding affinity data required84

by machine learning models for them to become accurate and reliable. To85

the best of our knowledge, the largest publicly available protein-protein bind-86

ing free energy change dataset, Structural Kinetic and Energetic database of87

Mutant Protein Interactions (SKEMPI) v2.0 [19], contains only 7085 ∆∆Gbind88

measurements on 348 protein complexes, a tiny amount compared to the89

training set sizes of foundational protein models such as AlphaFold2 [20] and90

ESM2 [21].91

To tackle the aforementioned challenges, we introduce GearBind, a pre-92

trainable deep neural network that leverages multi-level geometric message93

passing to model the nuanced protein-protein interactions. We utilize con-94

trastive pretraining techniques on large-scale protein structural dataset to95

incorporate vital structural insights into the model (Fig. 1). In silico exper-96

iments on SKEMPI and an independent test set demonstrate the superior97

performance of GearBind and the benefit of pretraining. We combine the98

GearBind models with previous state-of-the-art methods to create an ensem-99

ble model that achieves state-of-the-art performance on all metrics. Ablation100

study confirms the importance of key design choices within GearBind and the101

key role it played in the ensemble. We then use the GearBind-based ensemble102

to perform in silico affinity maturation for two antibodies with distinct for-103

mats and target antigens. Binding of the antibody CR3022 against the spike104

(S) protein of the Omicron SARS-CoV-2 variant is increased by up to 17 fold105

as measured by Enzyme-linked immunosorbent assay (ELISA), and by 6.1 fold106

as measured by Bio-layer Interferometry (BLI), after synthesizing and test-107

ing only 20 antibody candidates. All designed antibodies have maintained or108

increased binding towards the receptor-binding domains (RBDs) of both the109

SARS-CoV-2 Delta variant and SARS-CoV. Binding of the fully human single-110

domain antibody (UdAb) against the oncofetal antigen 5T4 is increased by up111

to 5.6 fold as measured by ELISA, and by up to 2.1 fold as measured by BLI,112

after testing 12 candidates. These results underscore the importance of geo-113

metric deep learning and effective pretraining on antibody affinity maturation114

and, more generally, macromolecule interaction modeling.115
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Results116

GearBind: a pretrainable ∆∆Gbind predictor117

The GearBind framework is designed to extract geometric representations118

from wild-type and mutant structures via multi-level and multi-relational mes-119

sage passing to predict the binding free energy change ∆∆Gbind. GearBind120

leverages information within a protein complex at three different levels with121

complementary insights, namely, atom-level information holding precise spatial122

and chemical characteristics, edge-level information capturing angular relation-123

ships, and residue-level information highlighting broader context within the124

protein complex. Merging these distinct yet interconnected tiers of informa-125

tion allows for a more holistic view of protein complexes, potentially enhancing126

model capabilities.127

More formally, when a protein complex structure is input to GearBind, a128

multi-relational interface atom graph is first constructed to model the detailed129

interactions within the complex. The relations defined cover both sequential130

proximity (for atoms on the same chain) and spatial proximity (which includes131

k-nearest-neighbor and within-r-radius relations). Atom-level representations132

are obtained by applying a geometric relational graph neural network (Gear-133

Net [22]) on the interface graph. On top of that, a line graph is constructed134

by treating each edge in the atom graph as a line node, connecting adjacent135

line nodes, and encoding the angular information as line edge features. Edge-136

level interactions are then captured by performing message passing on the137

line graph, similar to a sparse version of AlphaFold’s triangle attention [20].138

Finally, after aggregating atom and edge representations for each residue, a139

geometric graph attention layer is applied to pass messages between residues.140

This multi-level message passing scheme injects multi-granularity structural141

information into the learned representations, making it highly useful for the142

task of ∆∆Gbind prediction.143

Although GearBind can be trained from scratch on labeled ∆∆Gbind144

datasets, it could suffer from overfitting or poor generalization if the training145

data size is limited. To address this problem, we propose a self-supervised pre-146

training task to exploit large-scale unlabeled protein structures in CATH [22,147

23]. In the pretraining stage, the encoder is trained to model the distribution of148

the native protein structures via noise contrastive estimation [24]. Specifically,149

we maximize the probability (i.e. push down the energy) of native CATH pro-150

teins while minimizing the probability of mutant structures (Fig. 1c) generated151

by randomly mutating residues and sampling side-chain torsional angles from152

a rotamer library [25]. Distinguishing native, stable protein structures from153

sampled mutant structures pushes the model towards understanding side-chain154

interaction patterns, which are crucial to protein-protein binding. Through this155

process, meaningful knowledge from abundant single-chain protein structural156

data could be transferred to benefit protein-protein binding modelling.157
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Cross Validation on SKEMPI158

We validated GearBind performance via a split-by-complex, five-fold cross val-159

idation on SKEMPI v2.0. Our splitting strategy dictates that each test set160

share no common PDB complex with its corresponding training set, making161

it more realistic than the split-by-mutation strategy, where the wild-type pro-162

tein complexes and even the mutation sites in the test set could appear during163

training. We compared GearBind and GearBind+P (pretrained GearBind164

fine-tuned on SKEMPI) to state-of-the-art physics-based tools FoldX [9], Flex-165

ddG [10] and the deep learning method Bind-ddG [8]. The results (Table 1)166

show that GearBind, with its multi-relational graph construction and multi-167

level message passing schemes, outperforms the baselines in terms of mean168

absolute error (MAE), root mean squared error (RMSE) and PearsonR, while169

seconds FoldX in terms of SpearmanR. Pretraining GearBind brings further170

performance improvements, resulting in +5.4% SpearmanR, +2.6% Pear-171

sonR, −2.4% MAE and −1.7% RMSE. This highlights the effective knowledge172

transfer from mass-scale, unlabelled protein structural data.173

To understand the contributions of key architectural design choices in174

GearBind, we benchmarked the performance of 5 GearBind variants on175

SKEMPI. As shown in 2e, the tested GearBind variants perform worse than176

GearBind on all four metrics. The exclusion of edge- and residue-level message177

passing from GearBind brings a 13% and 3% SpearmanR drop, highlighting178

the benefits of combining multi-level information during feature extraction.179

The exclusion of side-chain atoms from the interface graph hurts performance180

even more (15% SpearmanR drop), showing the importance of explicitly mod-181

eling the full-atom structure. Notably, replacing the multi-relational interface182

graph with a KNN graph results in a severe 23% SpearmanR decline, while183

training a simple RGCN model on the multi-relational graphs results in per-184

formance on par with Bind-ddG (−9% SpearmanR compared to GearBind,185

+2% compared to Bind-ddG). This suggests that the multi-relational graph186

construction strategy is a key ingredient in GearBind.187

A GearBind-based ensemble for in silico affinity188

maturation189

To understand the behavior of the benchmarked models on SKEMPI, we190

binned the SKEMPI dataset by the target difficulty and plotted the Pear-191

sonR and SpearmanR of each model on targets with different difficulty levels.192

PDB codes in SKEMPI are categorized into “easy” (50+ similar data points in193

training set), “medium” (1-50), and “hard” (0) targets based on the number of194

training data points having a high structural similarity (TM-score [26] > 0.8)195

to it. Deep learning models, namely Bind-ddG, GearBind and GearBind+P,196

enjoys superior performance compared to physics-based methods such as FoldX197

and Flex-ddG on easy targets, but the table turns when we move to the hard198

targets (Fig. 2a,b), showing room for improvement in their generalization capa-199

bilities. We also studied the performance on mutations that cause low (< 0.5200
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kcal/mol), medium (0.5 − 2) and high (> 2) absolute changes in binding free201

energy. As Fig. S9 shows, all models perform better when the binding level202

changes more drastically. GearBind achieves outstanding performance in this203

region, with a PearsonR value of 0.707, compared to FoldX’s 0.411, showing204

its potential to identify mutations that could significantly enhance or disrupt205

binding. When the |∆∆Gbind| is small, predictions from all methods have very206

low correlation with experimental ∆∆Gbind values, hinting either the noises207

in data or a deficiency of current tools in modeling weaker, more intricate208

interactions.209

To combine the advantages of both physics-based and deep learning meth-210

ods, we used the ensemble of all benchmarked methods to perform subsequent211

in silico affinity maturation. The prediction of the ensemble model is the simple212

average of prediction values from FoldX, Flex-ddG, GearBind, GearBind+P213

and Bind-ddG. The proposed ensemble model outperforms each individual214

model in all four evaluation metrics (Table 1). We evaluated the contribution215

of individual models to the ensemble by excluding each of them and eval-216

uating performance on SKEMPI. The results (Fig. 2f) show that excluding217

GearBind and GearBind+P hurts overall performance the most. Specifically,218

for the PearsonR metric, the exclusion of FoldX, Flex-ddG and Bind-ddG indi-219

vidually results in a marginal (less than 0.01) decrease, but the removal of220

GearBind causes a significant (more than 0.08) decline. We also note that,221

while FoldX is not the best-performing model when used in isolation, remov-222

ing it from the ensemble results in the biggest SpearmanR drop. This shows223

that FoldX plays an important role in complementing the deep learning mod-224

els and forging a robust and accurate ensemble model. In fact, combining225

GearBind, GearBind+P and FoldX yields comparable performance to the226

5-model ensemble (Fig. S26).227

Evaluation on the HER2 binders test set228

With the models built and trained (on SKEMPI), we tested their performance229

on the HER2 binders test set, which we collected from [27]. This dataset230

contains high-quality binding affinity data, measured by surface plasmon res-231

onance (SPR) on 419 HER2 binders with de novo designed CDR loops. The232

antibodies in the dataset are variants of Trastuzumab that have high edit233

distance (7.6 on average), making them potentially challenging for ∆∆Gbind234

predictors trained on low-edit-distance data. Among the benchmarked meth-235

ods (Flex-ddG is not benchmarked due to its high time cost), GearBind+P236

achieve the best PearsonR and SpearmanR (Fig. 2c). We then averaged the pre-237

dictions of all benchmarked models to form an ensemble model, and excluded238

each model from the ensemble to measure the performance change. Similarly,239

excluding GearBind(+P) hurts PearsonR the most, and excluding FoldX hurts240

SpearmanR the most, with GearBind(+P) closely following (Fig. 2d).241
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Affinity Maturation of CR3022 and anti-5T4 UdAb242

To validate the efficacy of our methodology, two antibodies, CR3022 and anti-243

5T4 UdAb, were selected as subjects for affinity maturation. The CR3022244

antibody, originally isolated from a convalescent SARS patient [28], has been245

subsequently identified to bind to SARS-CoV-2 [29, 30]. Meanwhile, a UdAb246

directed against the oncofetal antigen 5T4, is characterized by its exceptional247

stability [31]. Note that the two antibodies are in distinct formats and target248

distinct antigens. Both antigens have only one structurally similar protein249

chain (TM-score > 0.8) with a different binding site in SKEMPI, making them250

challenging targets for our pipeline (Table S9, S10, Fig. S14, S15).251

For CR3022, a total of 12 mutants were picked out in the first-round experi-252

mental validation according to the ensemble prediction of their binding affinity253

changes against the RBDs of the wild-type, BA.1.1, and BA.4 SARS-CoV-2254

strains. We note that the wild-type and Delta RBDs share the same amino255

acids at the interface to CR3022. In an ELISA pre-experiment, we tested256

the binding of these mutants to the RBD of the SARS-CoV-2 Delta strain257

with antigen concentration at 100 nM. Nine out of twelve candidates exhibited258

improved binding compared the wild-type CR3022 (Fig. S16a). In the further259

validation with reduced RBD concentration at 10 nM, the EC50 values for all260

9 candidates were lower than the wild-type CR3022 (Fig. 3a, b). Based on261

these results, we combined the well-performed CR3022 mutations and synthe-262

sized 8 candidates with double or triple mutations as our second-round designs.263

Seven of the eight designed multi-point mutants exhibited enhanced binding264

against the Delta RBD, with 1.8 to 3.4 fold lower ELISA EC50 compared to265

the wild-type. The triple mutant SH100D+SH103Y+SL33R has the lowest266

EC50 at 0.06 nM (Fig. 3c, d). Against the Omicron Spike protein, the above267

seven multi-point mutants again displayed 7.6 to 17.0 fold binding increase268

with sub-nanomolar EC50 values, among which the SH100D+SH103Y+SL33R269

triple mutant still exhibited the best performance (Fig. 3e, f). We next tested270

the binding of the mutants designed in the second-round against the RBD271

of SARS-CoV, to examine if binding optimization of CR3022 against SARS-272

CoV-2 RBDs caused a drastic change in binding to its original target. Seven273

out of eight mutants did not exhibit a significant change in ELISA EC50274

against SARS-CoV RBD (Fig. 3g, h). In summary, the above results demon-275

strate the success of our GearBind-based pipeline in CR3022 antibody affinity276

optimization.277

To demonstrate the generalizability of our method, we extended our experi-278

mental validation to the anti-5T4 UdAb. We developed 12 single-point mutants279

using the GearBind-based pipeline and verified their binding to 5T4 with280

ELISA. The highest binding UdAb mutant was S57W, with a 5.6 fold decrease281

in EC50. This highlights the potential of our approach in enhancing antibody282

affinity for antibodies of different formats and with different targets, making283

it a promising tool for therapeutic antibody development.284

We further validated the affinity-matured CR3022 antibodies and anti-285

5T4 UdAbs using Bio-layer Interferometry (BLI) to assess their binding286
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affinities more accurately (Fig. 4). The 7 tested CR3022 mutants show a287

3.1 to 6.1 fold increase in binding affinity against the Omicron Spike pro-288

tein, with the best performing mutant being SH100D+SH103Y+IL34W. The289

SH100D+SH103Y+SL33R triple mutant, identified by ELISA as the best-290

performing mutant, exhibits a 4.1 fold increase in binding affinity. The two291

tested anti-5T4 UdAb mutants, S54Y and S57W, exhibited a 1.8 fold and 2.1292

fold improvement in binding affinity, respectively. Overall, the BLI measure-293

ments are consistent with the ELISA binding assay results and demonstrate294

the increased binding affinity of CR3022 and UdAb variants designed by the295

GearBind-based pipeline.296

Structural Characteristics of Optimized Antibodies297

Understanding the sequence-structure-function relationship of mutations298

designed by deep learning not only helps improve our models but also299

aids in interpreting their biological significance. To explore the underly-300

ing principles governing the increased antibody-antigen binding, we carried301

out molecular dynamics simulations and structural analyses on both the302

wild-type and mutant antibodies with the lowest ELISA EC50, namely, the303

SH100D+SH103Y+SL33R triple mutant for CR3022, and the S57W mutant304

for the anti-5T4 UdAb. We conducted a 1 µs all-atom molecular dynamics305

simulation at room temperature for each system, including their respective306

wild-type counterparts (see Methods for details).307

Based on the simulation results, among the four mutations studied, three308

demonstrated an increased number of hydrogen bonds with the target: SH100D309

and SL33R from CR3022, and S57W from UdAb (Fig. 5g, h). These four310

mutations in CR3022 and UdAb also stabilized the antibodies, as shown by311

the reduced fluctuations in Cα atoms in the corresponding antibody chains312

(Fig. S20). Although the S103Y mutation in the heavy chain of CR3022313

did not increase polar contacts, it potentially enhanced hydrophobic interac-314

tions between the antibody and antigen by excluding more solvent due to the315

larger size of tyrosine. In summary, the mutations designed by our pipeline316

likely achieved higher binding affinity through the formation of new interac-317

tions, while we also observed stabilized binding residues and altered structural318

properties in the mutated structures.319

Interestingly, GearBind-predicted contribution (Fig. S24) provided further320

insight into the formation of potential contacts for these designed mutations.321

Most contributions were found to be consistent with our deductions based on322

the molecular dynamics simulations. The possible hydrophobic interaction in323

S103Y was also presented in the contributions, providing further validation to324

our findings and aligning well with our deductions based on protein structure325

(Fig. S24c).326
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Discussion327

This study reports an in silico antibody maturation pipeline based on a328

pretrainable geometric graph neural network, GearBind, and the successful329

application of the pipeline on two distinct antibodies, CR3022 and anti-5T4330

UdAb. Substantial in silico experiments were done to evaluate model perfor-331

mance and understand their strengths and limitations. The technical strengths332

of the proposed GearBind model can be summarized as follows: (1) In the graph333

construction phase, a multi-relational graph is built upon all heavy atoms on334

the interface. The relations defined cover both sequential proximity and spa-335

tial proximity. Replacing the all-atom graph to backbone-atom-only graph, or336

replacing the multi-relational graph to a simple kNN graph both cause severe337

performance decline. (2) In the feature extraction phase, a multi-level message338

passing scheme is employed to obtain a comprehensive view on the intricate339

interactions at protein interfaces. (3) A unique pretraining algorithm based340

on contrastive learning is proposed, which harnesses the abundant, unlabeled341

single-chain protein structures in CATH, distills knowledge about side-chain342

torsion angles into the model to further boost its performance.343

We challenged our GearBind-based pipeline with two real-world antibody344

affinity maturation projects. ELISA binding assays showed that CR3022 muta-345

tions proposed by the pipeline have led to successful enhancements in binding346

against both the Delta RBD and the Omicron Spike protein. Notably, 7 out of347

10 CR3022 single-point mutants and 9 out of 10 multi-point mutants showed348

a significant increase in binding, with up to 3.8 fold decrease in ELISA EC50349

for the Delta RBD and 17.0 fold for the Omicron Spike protein. Among350

12 single-point anti-5T4 UdAb mutants, our pipeline achieved a maximum351

decrease of 5.6 times in ELISA EC50 and 2.1 times in BLI-measured KD. In352

short, GearBind proves to be an efficient and powerful tool for the design of353

antibodies with enhanced binding affinities. Based on the molecular dynamics354

simulations of the top-performing mutants identified by the GearBind-based355

pipeline, we observed that our designs enhanced binding affinity by creat-356

ing new interactions or strengthening existing contacts, particularly hydrogen357

bonds. This provides insight into how GearBind learns from data and designs358

mutations that increase binding affinity.359

While we mainly focus on structure-based methods in this work, others360

have explored purely sequence-based models for affinity maturation [32]. Our361

evaluation of ESM-1b and ESM-1v models on SKEMPI (Table S4 and Fig.362

S12) results in negative SpearmanR values, hinting that zero-shot prediction363

of large-scale protein language models is not a generally reliable method for364

ranking the binding affinity of protein complexes [33]. This result is reasonable365

because the “fitness” of a peptide sequence, as modelled by protein language366

models, does not necessarily imply strong binding to all other biomolecules.367

For example, improved fitness of the Spike protein of SARS-CoV-2 would likely368

involve decreased binding affinity towards existing neutralizing antibodies.369

Another argument is that structural information plays a key role in building370

an accurate and reliable algorithm for protein-protein interactions [34].371
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Looking ahead, the potential applications of GearBind reach beyond372

protein-protein binding optimization. The model can be readily adapted to373

tackle protein-peptide and protein-ligand docking challenges, thereby opening374

up possibilities for its use in minibinder and enzyme design.375

Despite these positive prospects, we acknowledge certain limitations in376

our current methodology and discuss potential directions for future work.377

Firstly, the prerequisite for structure-based ∆∆Gbind prediction is an accu-378

rate complex structure, which is not easily available for most antibody-antigen379

pairs. To address this problem, homology modeling tools [35] can be used380

to build the complex structure from a template structure. This is how we381

built the complex structure of CR3022 binding to the Omicron RBDs. A382

more aggressive approach is to directly predict the complex structure from383

the sequence. As multimer structure prediction methods become more and384

more accurate [36], they might one day become reliable as the starting point385

of structure-based affinity maturation. Secondly, the reliance on external tools386

for mutant structure generation increases the time cost, and limits our action387

space to substitutions only. Future efforts can focus on training end-to-end388

models that directly predict the ∆∆Gbind, and models that can account for389

amino acid insertion and deletion. We also call for better pretraining strat-390

egy and architecture design to improve the generalization capabilities of deep391

learning models, making them more robust on proteins they have not seen392

before. All in all, we believe our work takes a solid step towards building a393

reliable, robust and efficient in silico affinity maturation pipeline that would394

bring tremendous opportunities to research and drug discovery applications.395
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Methods396

Datasets397

SKEMPI398

We used the SKEMPI v2 [19] dataset for training and validation. The dataset399

contains 7,085 ∆∆Gbind measurements on 348 complexes. We performed pre-400

processing following [13, 18], discarding data with ambiguous ∆∆Gbind values401

(e.g. the mutant is a non-binder without exact KD measurements) or high402

∆∆Gbind variance across multiple measurements (> 1 kcal/mol), and arrived403

at 5,729 distinct mutations, with their ∆∆Gbind measurements, on 340 com-404

plexes. See Table S6 for a list of discarded, high-variance SKEMPI mutations.405

For each mutation, we sampled the mutant structure with FoldX 4 [9] based406

on the wild-type crystal structure. We used PDBFixer v1.8 [37] to fix the PDB407

structures beforehand if the raw structure could not be processed by FoldX.408

These FoldX-derived SKEMPI structures are used to train deep learning mod-409

els, including Bind-ddG, GearBind and GearBind+P. The resulting dataset410

was split into five subsets with roughly the same size using a split-by-PDB411

strategy, in order to perform cross validation.412

CATH413

For pretraining, we use a non-redundant subset of CATH v4.3.0 domains,414

which contains 30,948 experimental protein structures with less than 40%415

sequence identity. We also remove proteins that exceed 2,000 AAs in length416

for efficiency. During pretraining, we randomly truncate long sequences into417

150 AAs for efficiency. It is important to note that, currently, our pretraining418

exclusively utilizes single-chain proteins. The information learned by single-419

chain pretraining can be transferred to downstream tasks on protein complexes420

and we have found that this approach alone is sufficient to yield improvement.421

HER2 binders422

The HER2 binders test set was collected from [27]. The raw data include423

SPR data for 758 binders and 1097 non-binders. As all benchmarked methods424

only support amino acid substitutions, we filter out the binders that have425

different lengths compared to the wild-type antibody (Trastuzumab), leaving426

419 Trastuzumab mutants. ∆∆Gbind values are calculated by ∆∆Gbind =427

−RT ln
(
K

(mt)
D /K

(wt)
D

)
based on the SPR-measured binding affinity. Note that428

we only use this dataset as a test set to evaluate physics-based models (FoldX,429

Flex-ddG) and deep learning models (Bind-ddG, GearBind and GearBind+P)430

trained on SKEMPI.431

GearBind implementation432

Given a pair of wild-type and mutant structures, GearBind predicts the433

binding free energy change ∆∆Gbind by building a geometric encoder on434
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a multi-relational graph, which is further enhanced by self-supervised pre-435

training. Note that the key feature that makes the neural network geometric is436

that it considers the spatial relationship between entities, i.e., nodes in a graph.437

In the following sections, we will discuss the construction of multi-relational438

graphs, multi-level message passing and pre-training methods.439

Constructing relational graphs for protein complex structures440

Given a protein-protein complex, we construct a multi-relational graph for441

its interface and discard all other atoms. Here a residue is considered on the442

interface if its Euclidean distance to the nearest residue from the binding443

partner is no more than 6Å. Each atom on the interface is regarded as a node444

in the graph. We add three types of edges to represent different interactions445

between these atoms. For two atoms with a sequential distance lower than 3, we446

add a sequential edge between them, the type of which is determined by their447

relative position in the protein sequence. For two atoms with spatial distance448

lower than 5Å, we add a radial edge between them. Besides, each atom is449

also linked to its 10-nearest neighbors to guarantee the connectivity of the450

graph. Spatial edges that connect two atoms adjacent in the protein sequence451

are not interesting and thus discarded. The relational graph is denoted as452

(V, E ,R) with V, E , R denoting the sets of nodes, edges and relation types,453

respectively. We use the tuple (i, j, r) to denote the edge between atom i and j454

with type r. We use one-hot vectors of residues types and atom types as node455

features for each atom and further include sequential and spatial distances in456

edge features for each edge.457

Building geometric encoder by multi-level message passing458

On top of the constructed interface graph, we now perform multi-level message
passing to model interactions between connected atoms, edges and residues.

We use a
(l)
i and e

(l)
(j,i,r) to denote the representations of node i and edge (j, i, r)

at the l-th layer. Specially, we use a
(0)
i to denote the node feature for atom i and

e
(0)
(j,i,r) to denote the edge feature for edge (j, i, r). Then, the representations

are updated by the following procedures:

a
(l)
i ← AtomMP(a

(l−1)
i ), (1)

e
(l)
(j,i,r) ← EdgeMP(e

(l−1)
(j,i,r)), (2)

a
(l)
i ← a

(l)
i +AGGR(e

(l)
(j,i,r)), (3)

a
(l)
Cα(i) ← a

(l)
Cα(i) +ResAttn(a

(l)
Cα(i)). (4)

First, we perform atom-level message passing (AtomMP) on the atom graph.459

Then, a line graph is constructed for the message passing between edges460

(EdgeMP) so as to learn effective representations between atom pairs. The461
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edge representations are used to update atom representations via an aggre-462

gation function (AGGR). Finally, we take the representations a
(l)
Cα(i) of the463

alpha carbon as residue representation and perform a residue-level attention464

mechanism (ResAttn), which can be seen as a special kind of message passing465

on a fully-connected graph. In the following paragraphs, we will discuss these466

components in details.467

Atom-level message passing468

Following GearNet [22], we use a relational graph neural network (RGCN) [38]
to pass messages between atoms. In a message passing step, each node aggre-
gates messages from its neighbors to update its own representation. The
message is computed as the output of a relation (edge type)-specific linear layer
when applied to the neighbor representation. Formally, the message passing
step is defined as:

AtomMP(a
(l−1)
i ) = a

(l−1)
i + σ

(
BN

(∑
r∈R

W(a)
r

∑
(j,i,r)∈E

a
(l−1)
j

))
,

where BN(·) denotes batch norm and σ(·) is the ReLU activation function.469

Edge-level message passing and aggregation470

Modeling sequential proximity or spatial distance alone is not enough for cap-
turing the complex protein-protein interactions (PPI) contributing to binding.
Multiple works have demonstrated the benefits of incorporating angular infor-
mation using edge-level message passing [20, 22, 39]. Here we construct a line
graph [40], i.e. a relational graph among all edges of the above atom-level
graph. Two edges are connected if and only if they share a common end node.
The relations, or edge types, are defined as the angle between the atom-level
edge pair, discretized into 8 bins. We use (V ′, E ′,R′) to denote the constructed
line graph. Then, relational message passing is used on the line graph:

EdgeMP(e(l−1)
x ) = σ

(
BN

(∑
r′∈R′

W
(e)
r′

∑
(y,x,r′)∈E′

e(l−1)
y

))
,

where x and y denote edge tuples in the original graph for abbreviation.471

Once we updated the edge representations, we aggregate them into its end
nodes. These representations are fed into a linear layer and multiplied with

the edge type-specific kernel matrix W
(a)
r in AtomMP:

AGGR(e
(l)
(j,i,r)) = σ

(
BN

(∑
r∈R

W(a)
r

∑
(j,i,r)∈E

Linear(e
(l)
(j,i,r))

))
,

which will be used to update the representation for atom i as in equation 3.472
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Residue-level message passing473

Constrained by the computational complexity, atom and edge-level message
passing only consider sparse interactions while ignoring global interactions
between all pairs of residues. By modeling a coarse-grained view of the interface
at the residue level, we are able to perform message passing between all pairs
of residues. To do this, we design a geometric graph attention mechanism,
which takes the representations of the alpha carbon of residues as input and
updates their representations with the output as in equation 4. Here we follow
the typical definition of self-attention to calculate attention logits with query
and key vectors and apply the probability on the value vectors to get residue
representations ri:

αij = Softmaxj

(
1

d
· Linearq(a(l)Cα(i)) · Lineark(a

(l)
Cα(j))

)
,

r
(l)
i =

∑
j
αij · Linearv(a(l)Cα(i)),

where d is the hidden dimension of the representation a
(l)
Cα(i) and the Softmax474

function is taken over all j.475

Besides traditional self-attention, we also include geometric information
in the attention mechanism, which should be invariant to roto-translational
transformations on the global complex structure. Therefore, we construct a
local frame for each residue with coordinates of its Nitrogen, Carbon and alpha
Carbon atoms:

vi1 = xN(i) − xCα(i),

vi2 = xC(i) − xCα(i),

ui1,ui2 = GramSchmidt(vi1,vi2)

Ri =

[
ui1

∥ui1∥
,

ui2

∥ui2∥
,

ui1

∥ui1∥
× ui2

∥ui2∥

]
,

where we use x to denote the coordinate of an atom and GramSchmidt(·)
refers to the Gram–Schmidt process for orthogonalization. Then, the geometric
attention is designed to model the relative position of beta carbons of all
residues j in the local frame of residue i:

p
(l)
i =

∑
j
αijR

⊤
i (xCα(i) − xCβ(j)),

where p
(l)
i is the spatial representations for the residue i. When the complex476

structure is rotated, the frame Ri and relative position xCα(i) − xCβ(j) are477

rotated accordingly and the effects will be counteracted, which guarantees the478

rotation invariance of our model.479
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The final output is the concatenation of residue representations r
(l)
i and

spatial representations p
(l)
i :

ResAttn(a
(l)
Cα(i)) = Concat(r

(l)
i ,p

(l)
i ).

After obtaining representations for each atom, we apply a mean pooling
layer over representations of all alpha carbons aCα(i) to get protein representa-
tions h. An anti-symmetric prediction head is then applied to guarantee that
back mutations would have the exact opposite predicted ∆∆Gbind values:

˜∆∆Gbind = MLP(h(wt),h(mt)−MLP(h(mt),h(wt)), (5)

where h(wt) and h(mt) denote the representations for wild type and mutant480

complexes and ˜∆∆Gbind is the predicted ∆∆Gbind from our GearBind model.481

Modeling energy landscape of proteins via noise contrastive482

estimation483

As paired binding free energy change data is of relatively small size, it would
be beneficial to pretrain GearBind with massive protein structural data. The
high-level idea of our pretraining method is to model the distribution of native
protein structures, which helps identify harmful mutations yielding unnatural
structures. Denoting a protein structure as x, its distribution can be modeled
with Boltzmann distribution as:

p(x; θ) =
exp(−E(x; θ))

A(θ)
, A(θ) =

∫
exp(−E(x; θ))dx, (6)

where θ denotes learnable parameters in our encoder, E(x; θ) denotes the
energy function for the protein x and A(θ) is the partition function to nor-
malize the distribution. The energy function is predicted by applying a linear
layer on the GearBind representations h(x) of protein x:

E(x; θ) = Linear(h(x)). (7)

Given the observed dataset {x1, ...,xT } from PDB, our objective is to
maximize the probability of these samples:

maximize
1

2T

∑
t
log p(xt; θ). (8)

However, direct optimization of this objective is intractable, since cal-
culating the partition function requires integration over the whole protein
structure space. To address this issue, we adopt a popular method for learning
energy-based models called noise contrastive estimation [24]. For each observed
structure xt, we sample a negative structure yt and then the problem can be
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transformed to a binary classification task, i.e., whether a sample is observed
in the dataset or not.

minimize
1

2T

∑
t
log [σ(E(xt; θ)− E(yt; θ))] , (9)

where σ(·) denotes the sigmoid function for calculating the probability for a484

sample xt belonging to the positive class. We could see that the above training485

objective tries to push down the energy of the positive examples (i.e. the486

observed structures) while pushing up the energy of the negative samples (i.e.487

the mutant structures.488

For negative sampling, we perform random single-point mutations on the489

corresponding positive samples and then generate its conformation by keeping490

the backbone unchanged and sampling side-chain torsional angles at the muta-491

tion site from a backbone-dependent rotamer library [25]. Besides, to further492

enhance the model’s capability to distinguish structural noises, we randomly493

choose 30% residues to randomly rotate torsional angles when generating494

negative samples.495

After pretraining on the CATH database, we finetune the GearBind496

encoder on downstream tasks for prediction to avoid overfitting.497

Cross Validation on SKEMPI498

During cross validation, a model is trained and tested five times, each time499

using a different subset as the test set and the remaining four subsets as the500

training set. Results are calculated for each test set, and their mean and stan-501

dard error of mean are reported as the final cross validation performance.502

During the process of cross-validation, each individual data point is incorpo-503

rated into the test set precisely once. This ensures that a comprehensive “test504

result table” is compiled, which includes predictive values for each data point505

when it is part of the test set. Subsequent performance analysis are done by506

splitting this table by various criteria and evaluate performance on each subset.507

After cross validation on SKEMPI, we obtain five sets of model parame-508

ters. During inference, we use the mean of the predicted values of these five509

checkpoints as the model prediction result.510

Baseline implementation details511

FoldX.512

In this work, we use FoldX 4 [9] for mutant structure generation. First, each513

PDB file is processed with the RepairPDB command for structural correc-514

tions. Then, the wild-type, mutant structure pair is built using the BuildModel515

command. We use the AnalyseComplex command to get the FoldX ∆∆Gbind516

prediction based on the wild-type and mutant structures.517
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Flex-ddG.518

We run Flex-ddG with its official implementation at https://github.com/519

Kortemme-Lab/flex ddG tutorial. Each PDB file is processed with PDBFixer520

v1.8 [37]. Using the default parameters, we sample 35 structure models for521

each mutation, with the number of backrub trails set to 35000 and the energy522

function set to fa talaris2014. The final ∆∆Gbind values are predicted with a523

generalized additive model that reweights the score terms.524

GearBind(+P).525

We implement GearBind with the TorchDrug library [41]. For message pass-526

ing, we employed a 4-layer GearBind model with a hidden dimension of 128.527

Regarding edge message passing, the connections between edges are catego-528

rized into 8 bins according to the angles between them. To predict the ∆∆Gbind529

value from graph representations, we utilized a 2-layer MLP.530

The model was trained using the Adam optimizer with a learning rate531

of 1e-4 and a batch size of 8. The training process is performed on 1 A100532

GPU for 40 epochs. For pretraining, we use the same architecture with 4-533

layer GearBind model with a hidden dimension of 128. The pretraining was534

conducted using the Adam optimizer with a learning rate of 5e-4 and a batch535

size of 8, employing 4 A100 GPUs for 10 epochs.536

Bind-ddG.537

To ensure a fair comparison, we re-implement and re-train the Bind-ddG model538

on our SKEMPI splits. We following the configuration of the original imple-539

mentation to set the dimensions of hidden and pair representations at 128 and540

64, respectively. Our validation performance indicates that the optimal config-541

uration for our setup includes a two-layer geometric attention mechanism and542

a four-layer MLP predictor. We trained the model using an Adam optimizer543

with a learning rate of 1e-4 and a batch size of 8, on a single A400 GPU, for544

a total of 40 epochs.545

In silico affinity maturation of CR3022 and anti-5T4546

UdAb547

PDB 6XC3 [42], in which chains H and L comprise antibody CR3022 and chain548

C is the SARS-CoV-2 RBD, was chosen as the starting complex for CR3022549

affinity maturation. To better simulate the CR3022 interaction with Omicron550

RBD, we constructed the complex structures for BA.4 and BA.1.1 mutants551

with SWISS-MODEL [35]. We then performed saturation mutagenesis on the552

CDRs of CR3022 and generated mutant structures using FoldX [9] and Flex-553

ddG [10]. Specifically, residues 26-35, 50-66, 99-108 from the heavy chain H554

and residues 24-40, 56-62, 95-103 from the light chain L are mutated. This555

totals 1400 single-point mutations (if we count the self-mutations). We use our556

ensemble model to rank the mutations and select the top-ranked mutants for557

synthesis and subsequent experimental validation. Mutations are ranked by558

https://github.com/Kortemme-Lab/flex_ddG_tutorial
https://github.com/Kortemme-Lab/flex_ddG_tutorial
https://github.com/Kortemme-Lab/flex_ddG_tutorial
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the modified z-score (where values are subtracted by the median rather than559

the mean to be less sensitive to outliers) averaged across multiple ∆∆Gbind560

prediction methods.561

An unpublished complex structure was used to optimize anti-5T4 UdAb.562

As the single-domain antibody binding two distinct epiopes on 5T4 (Fig. 5b),563

anti-5T4 UdAb has a larger interface region compared to traditional564

antibodies. After analyzing its interface with 5T4, we decided to per-565

form saturation mutagenesis on residues 1,3,25,27-30,31-33,39-45,52-57,59,91-566

93,95,99,100-102,103,105,110,112,115-117. This totals 780 single-point muta-567

tions (if we count the self-mutations) that goes through the same ranking and568

selection strategies as described above.569

Antigen preparation570

The gene encoding SARS-CoV RBD was synthesized by Genscript (Nan-571

jing, China) and subcloned into pSectag 2B vector with C-terminal human572

IgG1 Fc fragment and AviTag. The recombinant vector was transfected to573

Expi 293 cells and cultured at 37◦C for 5 days, followed by centrifugation at574

2, 200× g for 20 minutes. The supernatant was harvested and filtered through575

a 0.22µm vacuum filter. The protein G resin (Genscript) was loaded into the576

column, washed by PBS, and flow the supernatant through to fully combine577

the resin. Then the targeted protein was eluted with 0.1M glycine (pH 3.0)578

and neutralized with 1M Tris-HCL (pH 9.0), followed by buffer-exchanged579

and concentrated with phosphate buffered saline (PBS) using an Amicon580

ultra centrifugal concentrator (Millipore) with a molecular weight cut-off of581

3 kDa. Protein concentration was measured using the NanoDrop 2000 spec-582

trophotometer (Thermo Fisher), and protein purity was examined by sodium583

dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The Delta584

RBD protein was purchased from Vazyme (Nanjing, China) and Omicron S585

protein was purchased from ACROBiosystems (Beijing, China). The biotiny-586

lated human TPBG / 5T4 and human TPBG/5T4-Fc antigen was purchased587

from ACROBiosystems (Beijing, China).588

Preparation for mutant and wild-type CR3022 antibodies589

The heavy chain and light chain genes of different CR3022 antibodies were590

synthesized and subcloned into expression vector pcDNA 3.4 in IgG1 format.591

These constructed vectors were transfected into CHO cells and purified by Pro-592

tein A. All antibodies were produced by Biointron Biological Inc. (Shanghai,593

China).594

Generation of mutant and wild-type anti-5T4 UdAbs595

The pComb3x vector encoding the gene of wild-type anti-5T4 UdAb was con-596

structed in previous work and preserved in our laboratory. All anti-5T4 UdAb597

mutants with single-point mutation were constructed with QuickMutation™598

Site-directed Gene Mutagenesis Kit (Beyotime, Shanghai, China) following599
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the manufacturer’s protocol. The expression of different mutant and wild-600

type anti-5T4 UdAbs were performed in E. coli HB2151 bacterial culture at601

30◦C for 16 h accompanied by 1mM isopropyl b-D-1-thiogalactopyranoside602

(IPTG). The cells were harvested and lysed by polymyxin B at 30◦C for603

0.5 h, followed by centrifugation at 8, 800 × g for 10 minutes. The super-604

natant was collected, filtered through 0.8µm polyethersulphone membranes605

by sterile syringes and purified by Ni-NTA (Smart Lifesciences) following the606

manufacturer’s instructions. Briefly, the filtered supernatant was loaded over607

the column with Ni-NTA. The resin was washed by washing buffer (10mM608

Na2HPO4, 10mM NaH2PO4 [pH 7.4], 500mM NaCl, and 20mM imidazole),609

and proteins were eluted in elution buffer (10mM Na2HPO4, 10mM NaH2PO4610

[pH 7.4], 500mM NaCl, and 250mM imidazole). The collected pure frac-611

tions were immediately buffer exchanged into PBS and concentrated with612

Amicon ultra centrifugal concentrators (Millipore). Protein concentration was613

measured using the NanoDrop 2000 spectrophotometer (Thermo Fisher), and614

protein purity was examined by SDS-PAGE.615

Enzyme-linked immunosorbent assay (ELISA)616

For comparison of different CR3022 mutants, the RBD of Delta (B.1.617.2)617

strain and S protein of Omicron (B.1.1.529) strain at 100 ng per well was618

coated in 96 wells half area microplates (Corning #3690) overnight at 4 ◦C.619

The antigen coated plate was washed by three times with PBST (PBS with620

0.05% Tween-20) and blocked with 3% MPBS (PBS with 3% skim milk) at621

37 ◦C for 1 h. Following three times washing with PBST, 50 µL of three-fold622

serially diluted antibody in 1% MPBS was added and incubated at 37 ◦C for623

1.5 h. The HRP-conjugated anti-Fab and anti-Fc (Sigma-Aldrich) secondary624

antibodies were used for the detection of different tested antibodies. After625

washing with PBST for 5 times, the enzyme activity was measured after the626

addition of ABTS substrate (Invitrogen) for 15 min. The data was acquired by627

measuring the absorbance at 405 nm using a Microplate Spectrophotometer628

(Biotek) and the EC50 (concentration for 50% of maximal effect) was cal-629

culated by GraphPad Prism8.0 software. To verify different UdAb mutants,630

the same experimental protocol as mentioned above was adopted. Briefly, the631

human TPBG/5T4-Fc antigen was coated in 96 wells half area microplates,632

then blocked with 3% MPBS and added serial diluted antibodies. The HRP-633

conjugated anti-Flag (Sigma-Aldrich) secondary antibody was used, followed634

by adding ABTS substrate and detected at 405 nm. The reported EC50 value635

is the mean value from three duplicates on a single experiment.636

Bio-layer Interferometry (BLI) binding assay637

The binding kinetics of different antibodies to SARS-CoV-2 Omicron S and638

5T4 antigens were measured by BLI on an Octet-RED96 (ForteBio). Briefly,639

the his-tagged Omicron S protein at 8 µg/ml and biotinylated 5T4 protein at640

5 µg/ml were separately loaded onto Ni-NTA and streptavidin-coated (SA)641
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biosensors. The antigen immobilized sensors were incubated with three-fold642

serially diluted CR3022 candidates or two-fold serially diluted anti-5T4 UdAbs643

starting at 300 nM in 0.02% PBST for 300 s for association, and then immersed644

into 0.02% PBST for another 300 s at 37 ◦C for dissociation. All the curves645

were fitted by 1:1 binding model using the Data Analysis software 11.1. All KD646

values were determined with R2 values of greater than 98% confidence level.647

Protein structure and ∆∆Gbind contribution analysis648

Protein structure analysis is conducted by python scripts. The antibody-649

antigen complex structure after mutation was obtained from Rosetta Flex-ddG650

relaxation [10]. The relaxed protein structure can provide more accurate651

side-chain conformations, which are critical for accurate contact and confor-652

mational analysis. The improved accuracy of such analyses enables a deeper653

understanding of the underlying binding mechanisms and can facilitate the654

identification of key characteristics involved in protein-protein interactions.655

The contribution scores are derived by using Integrated Gradients (IG) [43], a656

model-agnostic attribution method, on GearBind to obtain residue-level inter-657

pretation following [22]. All protein structure figures are created with PyMOL658

v3.0.659

Molecular dynamics simulation660

For antibody mutation structural analysis, we conducted molecular dynam-661

ics simulations of the wild type and mutant antibody-antigen complex. Initial662

structures were taken from the Rosetta Flex-ddG relaxed structures used by663

GearBind. The LEaP module in the AMBER 22 suite was used for build-664

ing starting structures and adding ions and solvent for the simulation [44].665

The protonation states of the molecules were kept at the default settings as666

assigned by LEaP during the initial structure preparation. All systems were667

simulated with the ff19SB protein force field [45] and solvated in boxes of668

water with the OPC3 [46] solvent model. Simulated systems were solvated669

using a 10 Angstrom solvent box. All bonds involving hydrogen atoms were670

constrained with the SHAKE algorithm [47]. The particle mesh Ewald (PME)671

algorithm was used to calculate long-range electrostatic interactions [48]. Ini-672

tial structures were relaxed with maximum 10,000 steps of minimization before673

convergence, then subjected to heating for 20 ps and equilibrating for 10 ps in674

the NPT ensemble with PMEMD. The CUDA version of PMEMD was used to675

accelerate the simulations [49]. The simulation temperature was set to room676

temperature 298K. All systems were simulated for 1 µs production MD with677

one replica, and samples in the first 50 ns were not used for analysis. CPP-678

TRAJ module in AMBERTools were used to analysis the simulation results,679

including calculating root mean square deviation (RMSD), room mean square680

fluctuation (RMSF), hydrogen bonding, and dihedral angle [50].681
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Data Availability682

The raw SKEMPI database can be accessed via https://life.bsc.es/pid/683

skempi2. The CATH database can be accessed via https://www.cathdb.684

info/. The raw HER2 binders data can be accessed via https://github.com/685

AbSciBio/unlocking-de-novo-antibody-design/blob/main/spr-controls.csv.686

Code Availability687

The GearBind inference code, the trained model checkpoints and688

the dataset preprocessing scripts are available via https://github.com/689

DeepGraphLearning/GearBind under the Apache 2.0 License. They can also690

be accessed via Zenodo [51].691
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Table 1: Cross validation performance of different methods on SKEMPI (n =
5729). For each metric, we report the mean and standard error of the mean.
“+P” means “with geometric pretraining on CATH”. MAE: Mean average
error. RMSE: root mean square error. Among individual models, the best and
the second-best performing model for each metric is highlighted in bold and
italic, respectively.

Model MAE↓ RMSE↓ PearsonR↑ SpearmanR↑

FoldX [9] 1.364 ± 0.134 2.027 ± 0.170 0.491 ± 0.007 0.526 ± 0.011
Flex-ddG [10] 1.236 ± 0.101 1.849 ± 0.150 0.497 ± 0.034 0.484 ± 0.020
Bind-ddG [8] 1.255 ± 0.096 1.759 ± 0.125 0.581 ± 0.037 0.443 ± 0.041
GearBind 1.143 ± 0.088 1.639 ± 0.103 0.659 ± 0.030 0.498 ± 0.033
GearBind+P 1.115 ± 0.072 1.611 ± 0.075 0.676 ± 0.041 0.525 ± 0.046

Ensemble 1.028 ± 0.080 1.503 ± 0.101 0.729 ± 0.016 0.643 ± 0.030
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Fig. 1: GearBind-based in silico antibody affinity maturation
pipeline. (a) Pipeline Overview: The pipeline features the geometric neu-
ral encoder, GearBind, which undergoes self-supervised pretraining on CATH
and supervised learning on SKEMPIv2. The GearBind-based ensemble model
is employed to perform in silico affinity maturation on a target antibody,
given its bound structure to the native antigen. Guided by the model pre-
dictions, antibodies with improved binding affinity can be found after testing
one or two dozen mutant candidates. NN: neural network. Ab: Antibody.
CDR: Complementarity-determining region. Designed using resources from
Flaticon.com. (b) GearBind Model: GearBind employs a shared graph neu-
ral network to encode both the wild-type and mutant complex structures.
For each structure, a relational interface graph is constructed. A geometric
graph neural network, GearNet, then performs multi-relational and multi-
level message passing on the graph to extract rich interface representations.
The mutational effect ∆∆Gbind is predicted by an antisymmetric predictor
given the GearNet-extracted representations of the two complexes. (c) Self-
supervised Pretraining: GearBind+P leverages mass-scale unlabeled protein
structures via self-supervised, contrastive pretraining. The model is trained
to contrast between native structures and randomly mutated structures with
side-chain torsion angles sampled from a rotamer library. Pretraining helps
GearBind+P explore the energy landscape of native protein structures and
results in improved performance in ∆∆Gbind prediction.
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Fig. 2: In silico evaluation on SKEMPI and the HER2 binders test
set. Comparative analysis of Per-PDB Spearman (a) and Pearson (b) corre-
lations between predictions of various models and experimental data across
SKEMPI subsets with varying difficulty levels. PDB codes in SKEMPI are
categorized into ”easy” (50+ similar data points in training set), ”medium” (1-
50), and ”hard” (0) targets based on the number of training data points having
a high structural similarity (TM-score > 0.8) to it. The number of PDB codes
for each difficulty is annotated in the figure legends. The box spans the inter-
quartile range (25th to 75th percentile), with a solid line inside marking the
median. Outliers are determined by 1× inter-quartile range. (c) Benchmark
results on the HER2 binders test set (n = 419) show Pearson and Spear-
man correlations for various models. The deep learning models are trained
on SKEMPI. (d) Change of performance metrics in HER2 binders test set
when excluding various models from the FoldX + Bind-ddG + GearBind(+P)
ensemble. (e) Change of performance when changing GearBind architecture
design, as quantified by cross validation performance on SKEMPI (n = 5729).
(f) Change of performance on SKEMPI (n = 5729) when excluding different
models from the FoldX + Flex-ddG + Bind-ddG + GearBind(+P) ensemble.
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Mutation EC50 (nM) 95% CI (nM) Fold change
SH100D 0.153 0.140~0.168 1.17
SH103W 0.0468 0.0414~0.0522 3.82
SH103Y 0.110 0.0954~0.126 1.63
SL33R 0.104 0.0942~0.114 1.72
IL34W 0.0815 0.0757~0.0876 2.19
NL35Y 0.0886 0.0811~0.0966 2.02
TL59H 0.0851 0.0779~0.0927 2.10

SH103Y+SL33R 0.0700 0.0640~0.0764 2.55
SH103Y+IL34W 0.0725 0.0670~0.0782 2.46
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CR3022-WT 0.209 0.197~0.222 -

Mutation EC50 (nM) 95% CI (nM) Fold change

SH103Y+TL59H 0.453 0.373~0.551 8.52
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SH100D+SL33R 0.442 0.318~0.620 8.74

SH100D+IL34W 0.321 0.290~0.355 12.0

SH100D+SH103Y+SL33R 0.227 0.189~0.269 17.0

SH100D+SH103Y+IL34W 0.508 0.469~0.550 7.60

SH103Y+SL33R+TL59H 12.2 8.00~27.7 0.32

SH103Y+IL34W+TL59H 0.367 0.335~0.401 10.5
CR3022-WT 3.86 2.20~17.7 -

Mutation EC50 (nM) 95% CI (nM) Fold change

SH103Y+TL59H 0.141 0.129~0.153 1.19
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SH100D+SL33R 0.132 0.121~0.144 1.27
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E33Y No binding - -
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P41H 105 101~111 0.65
P41Y 80.9 76.5~85.6 0.85
G42Y 55.6 50.5~61.1 1.23
G44E 145 121~172 0.47
S52Y 373 327~434 0.18
S54Y 16.0 14.1~17.9 4.27
S57W 12.3 11.5~13.1 5.59
I93W 190 176~207 0.36

L115W 151 137~167 0.45
UdAb-WT 68.4 56.8~83.2 -

Fig. 3: ELISA binding assay results for CR3022 and anti-5T4 UdAb
mutants designed with a GearBind-based pipeline. On the left panels
(a, c, e, g, i), the concentration-response curves alongside with EC50 values
evaluated from ELISA assays are displayed, with the center denoting the mean
absorbance and error bars indicating the standard deviation from three tech-
nical duplicates. On the right panels (b, d, f, h, j), the fitted EC50 values,
their 95% confidence intervals and the fold changes in binding calculated as

EC
(wt)
50 /EC

(mt)
50 are displayed. Tested systems include the first-round CR3022

designs binding to Delta RBD (a, b); the second-round CR3022 designs bind-
ing to Delta RBD (c, d), Omicron S protein (e, f) and SARS-RBD (g, h); and
single point mutants of anti-5T4 UdAb (i, j) binding to 5T4.
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Time (s)
Time (s)

b
Baseline Loading Baseline Association Dissociation

Ni-NTA 
biosensor

Tris-NTA

His-tagged 
Omicron S protein

Tested CR3022 
antibodies

Wash

Baseline Loading Baseline Association Dissociation

SA 
biosensor

Streptavidin

biotinylated human 
TPBG / 5T4 protein

Tested anti-5T4
UdAbs

Wash

Mutation KD (nM) kon (M−1s−1) koff (s−1) 
71.4 1.57 × 105 1.12 × 10−2 
61.6 1.29 × 105 7.93 × 10−3 

9. S54Y
10. S57W
UdAb-WT 128.0 1.54 × 105 1.97 × 10−2 

Mutation KD (nM) kon (M−1s−1) koff (s−1) 
3.09 8.16 × 104 2.52 × 10−4 
3.97 9.32 × 104 3.70 × 10−4 
3.55 1.58 × 105 5.58 × 10−4 

1. SH103Y + TL59H
2. SH103Y + NL35Y
3. SH100D + SL33R
4. SH100D + IL34W 4.02 1.32 × 105 5.29 × 10−4 

3.00 1.21 × 105 3.65 × 10−4 5. SH100D + SH103Y + SL33R
6. SH100D + SH103Y + IL34W 2.01 1.26 × 105 2.54 × 10−4 

2.80 1.02 × 105 2.85 × 10−4 8. SH103Y + IL34W + TL59H
CR3022-WT 12.30 9.42 × 104 1.15 × 10−3 

Fig. 4: Bio-layer interferometry binding assay for CR3022 and anti-
5T4 UdAbs candidates. (a, d) Illustration of the experiment protocol with
(a) Ni-NTA and (d) SA biosensors. (b, e) The binding kinetics of different
CR3022 (b) and anti-5T4 UdAbs (e) candidates. The starting concentration
for each antibody was 300 nM. The data were determined by fitting curves to a
global 1:1 binding model. The KD (equilibrium dissociation constant) values,
annotated on each plot, were determined with R2 values of greater than 98%
confidence level. (c, f) The kon (association rate constant), koff (dissociation
rate constant), and KD values of mutant and wild-type CR3022 antibodies (c)
and anti-5T4 UdAbs (f).
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g) h)

d) e) f)
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Fig. 5: Structural analysis of optimized CR3022 and anti-5T4
UdAbs. (a) Complex structure of antibody CR3022 and the SARS-CoV-2
RBD used for affinity maturation. The target antigen is colored in red, and the
antibody in blue. Mutation sites S100D, S103Y in heavy chain and S33R in
light chain are marked in orange. (b) Complex structure of the single-domain
antibody UdAb and its target oncofetal antigen 5T4. Mutation site S57W is
marked in orange. (c-e) Three mutation sites in the CR3022 triple-mutant,
namely S100D (c), S103Y (d) in heavy chain and S33R (e) in light chain. (f)
The S57W mutation site in the UdAb single-point mutant. (g) Depicts the
number of hydrogen bonds between the mutation sites and target antigen in
the molecular dynamics simulation of CR3022 and RBD complex. (h) Depicts
the number of hydrogen bonds between mutation sites and target antigen in the
molecular dynamics simulation of UdAb and 5T4 complex. In (g,h), hydrogen
bond distributions from wild types are colored in orange, and from mutants
are colored in green.
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