

1 Pretrainable Geometric Graph Neural 2 Network for Antibody Affinity Maturation

3 Huiyu Cai^{1,2,3†}, Zuobai Zhang^{2,3†}, Mingkai Wang^{5,6†}, Bozitao
4 Zhong^{2,3†}, Quanxiao Li^{5,6}, Yuxuan Zhong^{5,6}, Yanling
5 Wu^{5,6*}, Tianlei Ying^{5,6*} and Jian Tang^{1,2,4*}

6 ¹BioGeometry, Office 1505, 8 Haidianbeierjie St., Beijing, 100083,
7 China.

8 ²Mila - Québec AI Institute, 6666 St-Urbain, Montréal, H2S 3H1,
9 Québec, Canada.

10 ³Department of Computer Science and Operations Research,
11 Université de Montréal, 2920 chemin de la Tour, Montréal, H3T
12 1J4, Québec, Canada.

13 ⁴Department of Decision Sciences, HEC Montréal, 3000 chemin de
14 la Côte-Sainte-Catherine, Montréal, H3T 2A7, Québec, Canada.

15 ⁵Shanghai Engineering Research Center for Synthetic
16 Immunology, Fudan University, 131 Dong'an Street, Shanghai,
17 200032, China.

18 ⁶MOE/NHC/CAMS Key Laboratory of Medical Molecular
19 Virology, Shanghai Frontiers Science Center of Pathogenic
20 Microorganisms and Infection, Shanghai Institute of Infectious
21 Disease and Biosecurity, School of Basic Medical Sciences, Fudan
22 University, 131 Dong'an Street, Shanghai, 200032, China.

23 *Corresponding author(s). E-mail(s): yanlingwu@fudan.edu.cn;
24 tlying@fudan.edu.cn; tangjian@biogeom.com;

25 Contributing authors: huiyu.cai@mila.quebec;
26 zuobai.zhang@mila.quebec; 20111010061@fudan.edu.cn;
27 bozitao.zhong@mila.quebec; 20111010055@fudan.edu.cn;
28 20301030072@fudan.edu.cn;

29 [†]These authors contributed equally to this work.

2 *Pretrainable GearBind for Antibody Affinity Maturation***Abstract**

Increasing the binding affinity of an antibody to its target antigen is a crucial task in antibody therapeutics development. This paper presents a pretrainable geometric graph neural network, GearBind, and explores its potential in *in silico* affinity maturation. Leveraging multi-relational graph construction, multi-level geometric message passing and contrastive pretraining on mass-scale, unlabeled protein structural data, GearBind outperforms previous state-of-the-art approaches on SKEMPI and an independent test set. A powerful ensemble model based on GearBind is then derived and used to successfully enhance the binding of two antibodies with distinct formats and target antigens. ELISA EC₅₀ values of the designed antibody mutants are decreased by up to 17 fold, and K_D values by up to 6.1 fold. These promising results underscore the utility of geometric deep learning and effective pretraining in macromolecule interaction modeling tasks.

Introduction

Antibody plays a crucial role in the human immune system and serves as a powerful diagnostic and therapeutic tool, due to its ability to bind selectively and specifically to target antigens with high affinity. *In vivo*, antibodies go through affinity maturation, where the target-binding affinity gradually increases as a result of somatic hypermutation and clonal selection [1]. When a new antigen surfaces, therapeutic antibody leads repurposed from known antibodies or screened from a natural or *de novo* designed library often require *in vitro* affinity maturation to enhance their binding affinity to a desired, usually sub-nanomolar, level.

Wet lab experimental methods for *in vitro* antibody affinity maturation usually involve constructing mutant libraries and screening with display technology [2–5]. These methods, while significantly improved during the past few years, are still labor-intensive and costly in general, taking 2–3 months or more to complete the process. Let's consider the combinatorial search space of possible mutations. There are usually 50–60 residues on the complementarity-determining region (CDR) of an antibody, which are hypervariable *in vivo* and contribute to the majority of the binding free energy ΔG_{bind} [6]. Previous works show that multiple point mutations are often needed for successful affinity maturation [7, 8]. Performing experiments on all combinations of over a thousand possible point mutations in antibody CDR regions (60 residues \times 19 residues per residue) is difficult if not prohibitive. Therefore, a fast and accurate computational method for narrowing down the search space is much desired.

Nevertheless, it is nontrivial for computational affinity maturation methods to balance speed and accuracy. Molecular dynamics methods based on empirical force fields [9–12] rely on human knowledge and abstractions to

72 evaluate binding free energy changes after mutations. However, accurate mod-
73 els are often too slow to be used for ranking thousands of mutations (let
74 alone their combinations). In recent years, machine learning, and particu-
75 larly deep learning, has been demonstrated as a powerful tool capable of
76 tackling this dilemma. Many machine learning methods [13–18] formulate the
77 affinity maturation problem as a structure-based binding free energy change
78 ($\Delta\Delta G_{\text{bind}} := \Delta G_{\text{bind}}^{(\text{mt})} - \Delta G_{\text{bind}}^{(\text{wt})}$, where *wt* is short for *wild type* and
79 *mt* denotes *mutant*) prediction problem. However, despite the importance of
80 protein side-chain conformation to protein-protein interaction, most existing
81 methods model atom-level geometric information indirectly or incompletely,
82 e.g. using hand-crafted features or residue-level features. These approaches
83 inadequately address the intricate interplay between side-chain atoms. Another
84 critical problem is the massive amount of paired binding affinity data required
85 by machine learning models for them to become accurate and reliable. To
86 the best of our knowledge, the largest publicly available protein-protein bind-
87 ing free energy change dataset, Structural Kinetic and Energetic database of
88 Mutant Protein Interactions (SKEMPI) v2.0 [19], contains only 7085 $\Delta\Delta G_{\text{bind}}$
89 measurements on 348 protein complexes, a tiny amount compared to the
90 training set sizes of foundational protein models such as AlphaFold2 [20] and
91 ESM2 [21].

92 To tackle the aforementioned challenges, we introduce GearBind, a pre-
93 trainable deep neural network that leverages multi-level geometric message
94 passing to model the nuanced protein-protein interactions. We utilize con-
95 trastive pretraining techniques on large-scale protein structural dataset to
96 incorporate vital structural insights into the model (Fig. 1). *In silico* exper-
97 iments on SKEMPI and an independent test set demonstrate the superior
98 performance of GearBind and the benefit of pretraining. We combine the
99 GearBind models with previous state-of-the-art methods to create an ensem-
100 ble model that achieves state-of-the-art performance on all metrics. Ablation
101 study confirms the importance of key design choices within GearBind and the
102 key role it played in the ensemble. We then use the GearBind-based ensemble
103 to perform *in silico* affinity maturation for two antibodies with distinct for-
104 mats and target antigens. Binding of the antibody CR3022 against the spike
105 (S) protein of the Omicron SARS-CoV-2 variant is increased by up to 17 fold
106 as measured by Enzyme-linked immunosorbent assay (ELISA), and by 6.1 fold
107 as measured by Bio-layer Interferometry (BLI), after synthesizing and test-
108 ing only 20 antibody candidates. All designed antibodies have maintained or
109 increased binding towards the receptor-binding domains (RBDs) of both the
110 SARS-CoV-2 Delta variant and SARS-CoV. Binding of the fully human single-
111 domain antibody (UdAb) against the oncofetal antigen 5T4 is increased by up
112 to 5.6 fold as measured by ELISA, and by up to 2.1 fold as measured by BLI,
113 after testing 12 candidates. These results underscore the importance of geo-
114 metric deep learning and effective pretraining on antibody affinity maturation
115 and, more generally, macromolecule interaction modeling.

116 Results

117 GearBind: a pretrainable $\Delta\Delta G_{\text{bind}}$ predictor

118 The GearBind framework is designed to extract geometric representations
 119 from wild-type and mutant structures via multi-level and multi-relational mes-
 120 sage passing to predict the binding free energy change $\Delta\Delta G_{\text{bind}}$. GearBind
 121 leverages information within a protein complex at three different levels with
 122 complementary insights, namely, atom-level information holding precise spatial
 123 and chemical characteristics, edge-level information capturing angular relation-
 124 ships, and residue-level information highlighting broader context within the
 125 protein complex. Merging these distinct yet interconnected tiers of informa-
 126 tion allows for a more holistic view of protein complexes, potentially enhancing
 127 model capabilities.

128 More formally, when a protein complex structure is input to GearBind, a
 129 multi-relational interface atom graph is first constructed to model the detailed
 130 interactions within the complex. The relations defined cover both sequential
 131 proximity (for atoms on the same chain) and spatial proximity (which includes
 132 k -nearest-neighbor and within- r -radius relations). Atom-level representations
 133 are obtained by applying a geometric relational graph neural network (Gear-
 134 Net [22]) on the interface graph. On top of that, a line graph is constructed
 135 by treating each edge in the atom graph as a line node, connecting adjacent
 136 line nodes, and encoding the angular information as line edge features. Edge-
 137 level interactions are then captured by performing message passing on the
 138 line graph, similar to a sparse version of AlphaFold’s triangle attention [20].
 139 Finally, after aggregating atom and edge representations for each residue, a
 140 geometric graph attention layer is applied to pass messages between residues.
 141 This *multi-level message passing* scheme injects multi-granularity structural
 142 information into the learned representations, making it highly useful for the
 143 task of $\Delta\Delta G_{\text{bind}}$ prediction.

144 Although GearBind can be trained from scratch on labeled $\Delta\Delta G_{\text{bind}}$
 145 datasets, it could suffer from overfitting or poor generalization if the training
 146 data size is limited. To address this problem, we propose a self-supervised pre-
 147 training task to exploit large-scale unlabeled protein structures in CATH [22,
 148 23]. In the pretraining stage, the encoder is trained to model the distribution of
 149 the native protein structures via noise contrastive estimation [24]. Specifically,
 150 we maximize the probability (*i.e.* push down the energy) of native CATH pro-
 151 teins while minimizing the probability of mutant structures (Fig. 1c) generated
 152 by randomly mutating residues and sampling side-chain torsional angles from
 153 a rotamer library [25]. Distinguishing native, stable protein structures from
 154 sampled mutant structures pushes the model towards understanding side-chain
 155 interaction patterns, which are crucial to protein-protein binding. Through this
 156 process, meaningful knowledge from abundant single-chain protein structural
 157 data could be transferred to benefit protein-protein binding modelling.

158 **Cross Validation on SKEMPI**

159 We validated GearBind performance via a split-by-complex, five-fold cross val-
160 idation on SKEMPI v2.0. Our splitting strategy dictates that each test set
161 share no common PDB complex with its corresponding training set, making
162 it more realistic than the split-by-mutation strategy, where the wild-type pro-
163 tein complexes and even the mutation sites in the test set could appear during
164 training. We compared GearBind and GearBind+P (pretrained GearBind
165 fine-tuned on SKEMPI) to state-of-the-art physics-based tools FoldX [9], Flex-
166 ddG [10] and the deep learning method Bind-ddG [8]. The results (Table 1)
167 show that GearBind, with its multi-relational graph construction and multi-
168 level message passing schemes, outperforms the baselines in terms of mean
169 absolute error (MAE), root mean squared error (RMSE) and PearsonR, while
170 seconds FoldX in terms of SpearmanR. Pretraining GearBind brings further
171 performance improvements, resulting in +5.4% SpearmanR, +2.6% Pear-
172 sonR, −2.4% MAE and −1.7% RMSE. This highlights the effective knowledge
173 transfer from mass-scale, unlabelled protein structural data.

174 To understand the contributions of key architectural design choices in
175 GearBind, we benchmarked the performance of 5 GearBind variants on
176 SKEMPI. As shown in 2e, the tested GearBind variants perform worse than
177 GearBind on all four metrics. The exclusion of edge- and residue-level message
178 passing from GearBind brings a 13% and 3% SpearmanR drop, highlighting
179 the benefits of combining multi-level information during feature extraction.
180 The exclusion of side-chain atoms from the interface graph hurts performance
181 even more (15% SpearmanR drop), showing the importance of explicitly mod-
182 eling the full-atom structure. Notably, replacing the multi-relational interface
183 graph with a KNN graph results in a severe 23% SpearmanR decline, while
184 training a simple RGCN model on the multi-relational graphs results in per-
185 formance on par with Bind-ddG (−9% SpearmanR compared to GearBind,
186 +2% compared to Bind-ddG). This suggests that the multi-relational graph
187 construction strategy is a key ingredient in GearBind.

188 **A GearBind-based ensemble for in silico affinity
189 maturation**

190 To understand the behavior of the benchmarked models on SKEMPI, we
191 binned the SKEMPI dataset by the target difficulty and plotted the Pear-
192 sonR and SpearmanR of each model on targets with different difficulty levels.
193 PDB codes in SKEMPI are categorized into “easy” (50+ similar data points in
194 training set), “medium” (1-50), and “hard” (0) targets based on the number of
195 training data points having a high structural similarity (TM-score [26] > 0.8)
196 to it. Deep learning models, namely Bind-ddG, GearBind and GearBind+P,
197 enjoys superior performance compared to physics-based methods such as FoldX
198 and Flex-ddG on easy targets, but the table turns when we move to the hard
199 targets (Fig. 2a,b), showing room for improvement in their generalization cap-
200 abilities. We also studied the performance on mutations that cause low (< 0.5

6 *Pretrainable GearBind for Antibody Affinity Maturation*

201 kcal/mol), medium (0.5 – 2) and high (> 2) absolute changes in binding free
 202 energy. As Fig. S9 shows, all models perform better when the binding level
 203 changes more drastically. GearBind achieves outstanding performance in this
 204 region, with a PearsonR value of 0.707, compared to FoldX’s 0.411, showing
 205 its potential to identify mutations that could significantly enhance or disrupt
 206 binding. When the $|\Delta\Delta G_{\text{bind}}|$ is small, predictions from all methods have very
 207 low correlation with experimental $\Delta\Delta G_{\text{bind}}$ values, hinting either the noises
 208 in data or a deficiency of current tools in modeling weaker, more intricate
 209 interactions.

210 To combine the advantages of both physics-based and deep learning meth-
 211 ods, we used the ensemble of all benchmarked methods to perform subsequent
 212 *in silico* affinity maturation. The prediction of the ensemble model is the simple
 213 average of prediction values from FoldX, Flex-ddG, GearBind, GearBind+P
 214 and Bind-ddG. The proposed ensemble model outperforms each individual
 215 model in all four evaluation metrics (Table 1). We evaluated the contribution
 216 of individual models to the ensemble by excluding each of them and eval-
 217 uating performance on SKEMPI. The results (Fig. 2f) show that excluding
 218 GearBind and GearBind+P hurts overall performance the most. Specifically,
 219 for the PearsonR metric, the exclusion of FoldX, Flex-ddG and Bind-ddG indi-
 220 videntally results in a marginal (less than 0.01) decrease, but the removal of
 221 GearBind causes a significant (more than 0.08) decline. We also note that,
 222 while FoldX is not the best-performing model when used in isolation, remov-
 223 ing it from the ensemble results in the biggest SpearmanR drop. This shows
 224 that FoldX plays an important role in complementing the deep learning mod-
 225 els and forging a robust and accurate ensemble model. In fact, combining
 226 GearBind, GearBind+P and FoldX yields comparable performance to the
 227 5-model ensemble (Fig. S26).

228 **Evaluation on the HER2 binders test set**

229 With the models built and trained (on SKEMPI), we tested their performance
 230 on the HER2 binders test set, which we collected from [27]. This dataset
 231 contains high-quality binding affinity data, measured by surface plasmon res-
 232 onance (SPR) on 419 HER2 binders with *de novo* designed CDR loops. The
 233 antibodies in the dataset are variants of Trastuzumab that have high edit
 234 distance (7.6 on average), making them potentially challenging for $\Delta\Delta G_{\text{bind}}$
 235 predictors trained on low-edit-distance data. Among the benchmarked meth-
 236 ods (Flex-ddG is not benchmarked due to its high time cost), GearBind+P
 237 achieve the best PearsonR and SpearmanR (Fig. 2c). We then averaged the pre-
 238 dictions of all benchmarked models to form an ensemble model, and excluded
 239 each model from the ensemble to measure the performance change. Similarly,
 240 excluding GearBind(+P) hurts PearsonR the most, and excluding FoldX hurts
 241 SpearmanR the most, with GearBind(+P) closely following (Fig. 2d).

Affinity Maturation of CR3022 and anti-5T4 UdAb

To validate the efficacy of our methodology, two antibodies, CR3022 and anti-5T4 UdAb, were selected as subjects for affinity maturation. The CR3022 antibody, originally isolated from a convalescent SARS patient [28], has been subsequently identified to bind to SARS-CoV-2 [29, 30]. Meanwhile, a UdAb directed against the oncofetal antigen 5T4, is characterized by its exceptional stability [31]. Note that the two antibodies are in distinct formats and target distinct antigens. Both antigens have only one structurally similar protein chain (TM-score > 0.8) with a different binding site in SKEMPI, making them challenging targets for our pipeline (Table S9, S10, Fig. S14, S15).

For CR3022, a total of 12 mutants were picked out in the first-round experimental validation according to the ensemble prediction of their binding affinity changes against the RBDs of the wild-type, BA.1.1, and BA.4 SARS-CoV-2 strains. We note that the wild-type and Delta RBDs share the same amino acids at the interface to CR3022. In an ELISA pre-experiment, we tested the binding of these mutants to the RBD of the SARS-CoV-2 Delta strain with antigen concentration at 100 nM. Nine out of twelve candidates exhibited improved binding compared the wild-type CR3022 (Fig. S16a). In the further validation with reduced RBD concentration at 10 nM, the EC₅₀ values for all 9 candidates were lower than the wild-type CR3022 (Fig. 3a, b). Based on these results, we combined the well-performed CR3022 mutations and synthesized 8 candidates with double or triple mutations as our second-round designs. Seven of the eight designed multi-point mutants exhibited enhanced binding against the Delta RBD, with 1.8 to 3.4 fold lower ELISA EC₅₀ compared to the wild-type. The triple mutant SH100D+SH103Y+SL33R has the lowest EC₅₀ at 0.06 nM (Fig. 3c, d). Against the Omicron Spike protein, the above seven multi-point mutants again displayed 7.6 to 17.0 fold binding increase with sub-nanomolar EC₅₀ values, among which the SH100D+SH103Y+SL33R triple mutant still exhibited the best performance (Fig. 3e, f). We next tested the binding of the mutants designed in the second-round against the RBD of SARS-CoV, to examine if binding optimization of CR3022 against SARS-CoV-2 RBDs caused a drastic change in binding to its original target. Seven out of eight mutants did not exhibit a significant change in ELISA EC₅₀ against SARS-CoV RBD (Fig. 3g, h). In summary, the above results demonstrate the success of our GearBind-based pipeline in CR3022 antibody affinity optimization.

To demonstrate the generalizability of our method, we extended our experimental validation to the anti-5T4 UdAb. We developed 12 single-point mutants using the GearBind-based pipeline and verified their binding to 5T4 with ELISA. The highest binding UdAb mutant was S57W, with a 5.6 fold decrease in EC₅₀. This highlights the potential of our approach in enhancing antibody affinity for antibodies of different formats and with different targets, making it a promising tool for therapeutic antibody development.

We further validated the affinity-matured CR3022 antibodies and anti-5T4 UdAbs using Bio-layer Interferometry (BLI) to assess their binding

8 *Pretrainable GearBind for Antibody Affinity Maturation*

287 affinities more accurately (Fig. 4). The 7 tested CR3022 mutants show a
 288 3.1 to 6.1 fold increase in binding affinity against the Omicron Spike protein,
 289 with the best performing mutant being SH100D+SH103Y+IL34W. The
 290 SH100D+SH103Y+SL33R triple mutant, identified by ELISA as the best-
 291 performing mutant, exhibits a 4.1 fold increase in binding affinity. The two
 292 tested anti-5T4 UdAb mutants, S54Y and S57W, exhibited a 1.8 fold and 2.1
 293 fold improvement in binding affinity, respectively. Overall, the BLI measurements
 294 are consistent with the ELISA binding assay results and demonstrate
 295 the increased binding affinity of CR3022 and UdAb variants designed by the
 296 GearBind-based pipeline.

297 **Structural Characteristics of Optimized Antibodies**

298 Understanding the sequence-structure-function relationship of mutations
 299 designed by deep learning not only helps improve our models but also
 300 aids in interpreting their biological significance. To explore the underlying
 301 principles governing the increased antibody-antigen binding, we carried
 302 out molecular dynamics simulations and structural analyses on both the
 303 wild-type and mutant antibodies with the lowest ELISA EC₅₀, namely, the
 304 SH100D+SH103Y+SL33R triple mutant for CR3022, and the S57W mutant
 305 for the anti-5T4 UdAb. We conducted a 1 μ s all-atom molecular dynamics
 306 simulation at room temperature for each system, including their respective
 307 wild-type counterparts (see Methods for details).

308 Based on the simulation results, among the four mutations studied, three
 309 demonstrated an increased number of hydrogen bonds with the target: SH100D
 310 and SL33R from CR3022, and S57W from UdAb (Fig. 5g, h). These four
 311 mutations in CR3022 and UdAb also stabilized the antibodies, as shown by
 312 the reduced fluctuations in C α atoms in the corresponding antibody chains
 313 (Fig. S20). Although the S103Y mutation in the heavy chain of CR3022
 314 did not increase polar contacts, it potentially enhanced hydrophobic interac-
 315 tions between the antibody and antigen by excluding more solvent due to the
 316 larger size of tyrosine. In summary, the mutations designed by our pipeline
 317 likely achieved higher binding affinity through the formation of new interac-
 318 tions, while we also observed stabilized binding residues and altered structural
 319 properties in the mutated structures.

320 Interestingly, GearBind-predicted contribution (Fig. S24) provided further
 321 insight into the formation of potential contacts for these designed mutations.
 322 Most contributions were found to be consistent with our deductions based on
 323 the molecular dynamics simulations. The possible hydrophobic interaction in
 324 S103Y was also presented in the contributions, providing further validation to
 325 our findings and aligning well with our deductions based on protein structure
 326 (Fig. S24c).

327 Discussion

328 This study reports an *in silico* antibody maturation pipeline based on a
329 pretrainable geometric graph neural network, GearBind, and the successful
330 application of the pipeline on two distinct antibodies, CR3022 and anti-5T4
331 UdAb. Substantial *in silico* experiments were done to evaluate model perfor-
332 mance and understand their strengths and limitations. The technical strengths
333 of the proposed GearBind model can be summarized as follows: (1) In the graph
334 construction phase, a multi-relational graph is built upon all heavy atoms on
335 the interface. The relations defined cover both sequential proximity and spa-
336 tial proximity. Replacing the all-atom graph to backbone-atom-only graph, or
337 replacing the multi-relational graph to a simple kNN graph both cause severe
338 performance decline. (2) In the feature extraction phase, a multi-level message
339 passing scheme is employed to obtain a comprehensive view on the intricate
340 interactions at protein interfaces. (3) A unique pretraining algorithm based
341 on contrastive learning is proposed, which harnesses the abundant, unlabeled
342 single-chain protein structures in CATH, distills knowledge about side-chain
343 torsion angles into the model to further boost its performance.

344 We challenged our GearBind-based pipeline with two real-world antibody
345 affinity maturation projects. ELISA binding assays showed that CR3022 muta-
346 tions proposed by the pipeline have led to successful enhancements in binding
347 against both the Delta RBD and the Omicron Spike protein. Notably, 7 out of
348 10 CR3022 single-point mutants and 9 out of 10 multi-point mutants showed
349 a significant increase in binding, with up to 3.8 fold decrease in ELISA EC₅₀
350 for the Delta RBD and 17.0 fold for the Omicron Spike protein. Among
351 12 single-point anti-5T4 UdAb mutants, our pipeline achieved a maximum
352 decrease of 5.6 times in ELISA EC₅₀ and 2.1 times in BLI-measured K_D . In
353 short, GearBind proves to be an efficient and powerful tool for the design of
354 antibodies with enhanced binding affinities. Based on the molecular dynamics
355 simulations of the top-performing mutants identified by the GearBind-based
356 pipeline, we observed that our designs enhanced binding affinity by creat-
357 ing new interactions or strengthening existing contacts, particularly hydrogen
358 bonds. This provides insight into how GearBind learns from data and designs
359 mutations that increase binding affinity.

360 While we mainly focus on structure-based methods in this work, others
361 have explored purely sequence-based models for affinity maturation [32]. Our
362 evaluation of ESM-1b and ESM-1v models on SKEMPI (Table S4 and Fig.
363 S12) results in negative SpearmanR values, hinting that zero-shot prediction
364 of large-scale protein language models is not a generally reliable method for
365 ranking the binding affinity of protein complexes [33]. This result is reasonable
366 because the “fitness” of a peptide sequence, as modelled by protein language
367 models, does not necessarily imply strong binding to all other biomolecules.
368 For example, improved fitness of the Spike protein of SARS-CoV-2 would likely
369 involve decreased binding affinity towards existing neutralizing antibodies.
370 Another argument is that structural information plays a key role in building
371 an accurate and reliable algorithm for protein-protein interactions [34].

10 *Pretrainable GearBind for Antibody Affinity Maturation*

372 Looking ahead, the potential applications of GearBind reach beyond
373 protein-protein binding optimization. The model can be readily adapted to
374 tackle protein-peptide and protein-ligand docking challenges, thereby opening
375 up possibilities for its use in minibinder and enzyme design.

376 Despite these positive prospects, we acknowledge certain limitations in
377 our current methodology and discuss potential directions for future work.
378 Firstly, the prerequisite for structure-based $\Delta\Delta G_{\text{bind}}$ prediction is an accu-
379 rate complex structure, which is not easily available for most antibody-antigen
380 pairs. To address this problem, homology modeling tools [35] can be used
381 to build the complex structure from a template structure. This is how we
382 built the complex structure of CR3022 binding to the Omicron RBDs. A
383 more aggressive approach is to directly predict the complex structure from
384 the sequence. As multimer structure prediction methods become more and
385 more accurate [36], they might one day become reliable as the starting point
386 of structure-based affinity maturation. Secondly, the reliance on external tools
387 for mutant structure generation increases the time cost, and limits our action
388 space to substitutions only. Future efforts can focus on training end-to-end
389 models that directly predict the $\Delta\Delta G_{\text{bind}}$, and models that can account for
390 amino acid insertion and deletion. We also call for better pretraining strat-
391 egy and architecture design to improve the generalization capabilities of deep
392 learning models, making them more robust on proteins they have not seen
393 before. All in all, we believe our work takes a solid step towards building a
394 reliable, robust and efficient *in silico* affinity maturation pipeline that would
395 bring tremendous opportunities to research and drug discovery applications.

396 Methods

397 Datasets

398 *SKEMPI*

399 We used the SKEMPI v2 [19] dataset for training and validation. The dataset
 400 contains 7,085 $\Delta\Delta G_{\text{bind}}$ measurements on 348 complexes. We performed pre-
 401 processing following [13, 18], discarding data with ambiguous $\Delta\Delta G_{\text{bind}}$ values
 402 (e.g. the mutant is a non-binder without exact K_D measurements) or high
 403 $\Delta\Delta G_{\text{bind}}$ variance across multiple measurements ($> 1 \text{ kcal/mol}$), and arrived
 404 at 5,729 distinct mutations, with their $\Delta\Delta G_{\text{bind}}$ measurements, on 340 com-
 405 plexes. See Table S6 for a list of discarded, high-variance SKEMPI mutations.
 406 For each mutation, we sampled the mutant structure with FoldX 4 [9] based
 407 on the wild-type crystal structure. We used PDBFixer v1.8 [37] to fix the PDB
 408 structures beforehand if the raw structure could not be processed by FoldX.
 409 These FoldX-derived SKEMPI structures are used to train deep learning mod-
 410 els, including Bind-ddG, GearBind and GearBind+P. The resulting dataset
 411 was split into five subsets with roughly the same size using a split-by-PDB
 412 strategy, in order to perform cross validation.

413 *CATH*

414 For pretraining, we use a non-redundant subset of CATH v4.3.0 domains,
 415 which contains 30,948 experimental protein structures with less than 40%
 416 sequence identity. We also remove proteins that exceed 2,000 AAs in length
 417 for efficiency. During pretraining, we randomly truncate long sequences into
 418 150 AAs for efficiency. It is important to note that, currently, our pretraining
 419 exclusively utilizes single-chain proteins. The information learned by single-
 420 chain pretraining can be transferred to downstream tasks on protein complexes
 421 and we have found that this approach alone is sufficient to yield improvement.

422 *HER2 binders*

423 The HER2 binders test set was collected from [27]. The raw data include
 424 SPR data for 758 binders and 1097 non-binders. As all benchmarked methods
 425 only support amino acid substitutions, we filter out the binders that have
 426 different lengths compared to the wild-type antibody (Trastuzumab), leaving
 427 419 Trastuzumab mutants. $\Delta\Delta G_{\text{bind}}$ values are calculated by $\Delta\Delta G_{\text{bind}} =$
 428 $-RT \ln \left(K_D^{(\text{mt})} / K_D^{(\text{wt})} \right)$ based on the SPR-measured binding affinity. Note that
 429 we only use this dataset as a test set to evaluate physics-based models (FoldX,
 430 Flex-ddG) and deep learning models (Bind-ddG, GearBind and GearBind+P)
 431 trained on SKEMPI.

432 GearBind implementation

433 Given a pair of wild-type and mutant structures, GearBind predicts the
 434 binding free energy change $\Delta\Delta G_{\text{bind}}$ by building a geometric encoder on

435 a multi-relational graph, which is further enhanced by self-supervised pre-
 436 training. Note that the key feature that makes the neural network *geometric* is
 437 that it considers the spatial relationship between entities, *i.e.*, nodes in a graph.
 438 In the following sections, we will discuss the construction of multi-relational
 439 graphs, multi-level message passing and pre-training methods.

440 **Constructing relational graphs for protein complex structures**

441 Given a protein-protein complex, we construct a multi-relational graph for
 442 its interface and discard all other atoms. Here a residue is considered on the
 443 interface if its Euclidean distance to the nearest residue from the binding
 444 partner is no more than 6Å. Each atom on the interface is regarded as a node
 445 in the graph. We add three types of edges to represent different interactions
 446 between these atoms. For two atoms with a sequential distance lower than 3, we
 447 add a **sequential edge** between them, the type of which is determined by their
 448 relative position in the protein sequence. For two atoms with spatial distance
 449 lower than 5Å, we add a **radial edge** between them. Besides, each atom is
 450 also linked to its **10-nearest neighbors** to guarantee the connectivity of the
 451 graph. Spatial edges that connect two atoms adjacent in the protein sequence
 452 are not interesting and thus discarded. The relational graph is denoted as
 453 $(\mathcal{V}, \mathcal{E}, \mathcal{R})$ with \mathcal{V} , \mathcal{E} , \mathcal{R} denoting the sets of nodes, edges and relation types,
 454 respectively. We use the tuple (i, j, r) to denote the edge between atom i and j
 455 with type r . We use one-hot vectors of residues types and atom types as node
 456 features for each atom and further include sequential and spatial distances in
 457 edge features for each edge.

458 **Building geometric encoder by multi-level message passing**

On top of the constructed interface graph, we now perform multi-level message
 passing to model interactions between connected atoms, edges and residues.
 We use $\mathbf{a}_i^{(l)}$ and $\mathbf{e}_{(j,i,r)}^{(l)}$ to denote the representations of node i and edge (j, i, r)
 at the l -th layer. Specially, we use $\mathbf{a}_i^{(0)}$ to denote the node feature for atom i and
 $\mathbf{e}_{(j,i,r)}^{(0)}$ to denote the edge feature for edge (j, i, r) . Then, the representations
 are updated by the following procedures:

$$\mathbf{a}_i^{(l)} \leftarrow \text{AtomMP}(\mathbf{a}_i^{(l-1)}), \quad (1)$$

$$\mathbf{e}_{(j,i,r)}^{(l)} \leftarrow \text{EdgeMP}(\mathbf{e}_{(j,i,r)}^{(l-1)}), \quad (2)$$

$$\mathbf{a}_i^{(l)} \leftarrow \mathbf{a}_i^{(l)} + \text{AGGR}(\mathbf{e}_{(j,i,r)}^{(l)}), \quad (3)$$

$$\mathbf{a}_{\text{C}\alpha(i)}^{(l)} \leftarrow \mathbf{a}_{\text{C}\alpha(i)}^{(l)} + \text{ResAttn}(\mathbf{a}_{\text{C}\alpha(i)}^{(l)}). \quad (4)$$

459 First, we perform atom-level message passing (AtomMP) on the atom graph.
 460 Then, a line graph is constructed for the message passing between edges
 461 (EdgeMP) so as to learn effective representations between atom pairs. The

462 edge representations are used to update atom representations via an aggre-
 463 gation function (AGGR). Finally, we take the representations $\mathbf{a}_{\text{C}\alpha(i)}^{(l)}$ of the
 464 alpha carbon as residue representation and perform a residue-level attention
 465 mechanism (ResAttn), which can be seen as a special kind of message passing
 466 on a fully-connected graph. In the following paragraphs, we will discuss these
 467 components in details.

468 **Atom-level message passing**

Following GearNet [22], we use a relational graph neural network (RGCN) [38] to pass messages between atoms. In a message passing step, each node aggregates messages from its neighbors to update its own representation. The message is computed as the output of a relation (edge type)-specific linear layer when applied to the neighbor representation. Formally, the message passing step is defined as:

$$\text{AtomMP}(\mathbf{a}_i^{(l-1)}) = \mathbf{a}_i^{(l-1)} + \sigma \left(\text{BN} \left(\sum_{r \in \mathcal{R}} \mathbf{W}_r^{(a)} \sum_{(j,i,r) \in \mathcal{E}} \mathbf{a}_j^{(l-1)} \right) \right),$$

469 where $\text{BN}(\cdot)$ denotes batch norm and $\sigma(\cdot)$ is the ReLU activation function.

470 **Edge-level message passing and aggregation**

Modeling sequential proximity or spatial distance alone is not enough for capturing the complex protein-protein interactions (PPI) contributing to binding. Multiple works have demonstrated the benefits of incorporating angular information using edge-level message passing [20, 22, 39]. Here we construct a line graph [40], *i.e.* a relational graph among all edges of the above atom-level graph. Two edges are connected if and only if they share a common end node. The relations, or edge types, are defined as the angle between the atom-level edge pair, discretized into 8 bins. We use $(\mathcal{V}', \mathcal{E}', \mathcal{R}')$ to denote the constructed line graph. Then, relational message passing is used on the line graph:

$$\text{EdgeMP}(\mathbf{e}_x^{(l-1)}) = \sigma \left(\text{BN} \left(\sum_{r' \in \mathcal{R}'} \mathbf{W}_{r'}^{(e)} \sum_{(y,x,r') \in \mathcal{E}'} \mathbf{e}_y^{(l-1)} \right) \right),$$

471 where x and y denote edge tuples in the original graph for abbreviation.

Once we updated the edge representations, we aggregate them into its end nodes. These representations are fed into a linear layer and multiplied with the edge type-specific kernel matrix $\mathbf{W}_r^{(a)}$ in AtomMP:

$$\text{AGGR}(\mathbf{e}_{(j,i,r)}^{(l)}) = \sigma \left(\text{BN} \left(\sum_{r \in \mathcal{R}} \mathbf{W}_r^{(a)} \sum_{(j,i,r) \in \mathcal{E}} \text{Linear}(\mathbf{e}_{(j,i,r)}^{(l)}) \right) \right),$$

472 which will be used to update the representation for atom i as in equation 3.

473 **Residue-level message passing**

Constrained by the computational complexity, atom and edge-level message passing only consider sparse interactions while ignoring global interactions between all pairs of residues. By modeling a coarse-grained view of the interface at the residue level, we are able to perform message passing between all pairs of residues. To do this, we design a geometric graph attention mechanism, which takes the representations of the alpha carbon of residues as input and updates their representations with the output as in equation 4. Here we follow the typical definition of self-attention to calculate attention logits with query and key vectors and apply the probability on the value vectors to get residue representations \mathbf{r}_i :

$$\alpha_{ij} = \text{Softmax}_j \left(\frac{1}{d} \cdot \text{Linear}_q(\mathbf{a}_{C\alpha(i)}^{(l)}) \cdot \text{Linear}_k(\mathbf{a}_{C\alpha(j)}^{(l)}) \right),$$

$$\mathbf{r}_i^{(l)} = \sum_j \alpha_{ij} \cdot \text{Linear}_v(\mathbf{a}_{C\alpha(i)}^{(l)}),$$

474 where d is the hidden dimension of the representation $\mathbf{a}_{C\alpha(i)}^{(l)}$ and the Softmax
475 function is taken over all j .

Besides traditional self-attention, we also include geometric information in the attention mechanism, which should be invariant to roto-translational transformations on the global complex structure. Therefore, we construct a local frame for each residue with coordinates of its Nitrogen, Carbon and alpha Carbon atoms:

$$\mathbf{v}_{i1} = \mathbf{x}_{N(i)} - \mathbf{x}_{C\alpha(i)},$$

$$\mathbf{v}_{i2} = \mathbf{x}_{C(i)} - \mathbf{x}_{C\alpha(i)},$$

$$\mathbf{u}_{i1}, \mathbf{u}_{i2} = \text{GramSchmidt}(\mathbf{v}_{i1}, \mathbf{v}_{i2})$$

$$\mathbf{R}_i = \left[\frac{\mathbf{u}_{i1}}{\|\mathbf{u}_{i1}\|}, \frac{\mathbf{u}_{i2}}{\|\mathbf{u}_{i2}\|}, \frac{\mathbf{u}_{i1}}{\|\mathbf{u}_{i1}\|} \times \frac{\mathbf{u}_{i2}}{\|\mathbf{u}_{i2}\|} \right],$$

where we use \mathbf{x} to denote the coordinate of an atom and $\text{GramSchmidt}(\cdot)$ refers to the Gram–Schmidt process for orthogonalization. Then, the geometric attention is designed to model the relative position of beta carbons of all residues j in the local frame of residue i :

$$\mathbf{p}_i^{(l)} = \sum_j \alpha_{ij} \mathbf{R}_i^\top (\mathbf{x}_{C\alpha(i)} - \mathbf{x}_{C\beta(j)}),$$

476 where $\mathbf{p}_i^{(l)}$ is the spatial representations for the residue i . When the complex
477 structure is rotated, the frame \mathbf{R}_i and relative position $\mathbf{x}_{C\alpha(i)} - \mathbf{x}_{C\beta(j)}$ are
478 rotated accordingly and the effects will be counteracted, which guarantees the
479 rotation invariance of our model.

The final output is the concatenation of residue representations $\mathbf{r}_i^{(l)}$ and spatial representations $\mathbf{p}_i^{(l)}$:

$$\text{ResAttn}(\mathbf{a}_{\text{C}\alpha(i)}^{(l)}) = \text{Concat}(\mathbf{r}_i^{(l)}, \mathbf{p}_i^{(l)}).$$

After obtaining representations for each atom, we apply a mean pooling layer over representations of all alpha carbons $\mathbf{a}_{\text{C}\alpha(i)}$ to get protein representations \mathbf{h} . An anti-symmetric prediction head is then applied to guarantee that back mutations would have the exact opposite predicted $\Delta\Delta G_{\text{bind}}$ values:

$$\widetilde{\Delta\Delta G_{\text{bind}}} = \text{MLP}(\mathbf{h}^{(\text{wt})}, \mathbf{h}^{(\text{mt})}) - \text{MLP}(\mathbf{h}^{(\text{mt})}, \mathbf{h}^{(\text{wt})}), \quad (5)$$

where $\mathbf{h}^{(\text{wt})}$ and $\mathbf{h}^{(\text{mt})}$ denote the representations for wild type and mutant complexes and $\widetilde{\Delta\Delta G_{\text{bind}}}$ is the predicted $\Delta\Delta G_{\text{bind}}$ from our GearBind model.

482 Modeling energy landscape of proteins via noise contrastive 483 estimation

As paired binding free energy change data is of relatively small size, it would be beneficial to pretrain GearBind with massive protein structural data. The high-level idea of our pretraining method is to model the distribution of native protein structures, which helps identify harmful mutations yielding unnatural structures. Denoting a protein structure as \mathbf{x} , its distribution can be modeled with Boltzmann distribution as:

$$p(\mathbf{x}; \boldsymbol{\theta}) = \frac{\exp(-E(\mathbf{x}; \boldsymbol{\theta}))}{A(\boldsymbol{\theta})}, \quad A(\boldsymbol{\theta}) = \int \exp(-E(\mathbf{x}; \boldsymbol{\theta})) d\mathbf{x}, \quad (6)$$

where $\boldsymbol{\theta}$ denotes learnable parameters in our encoder, $E(\mathbf{x}; \boldsymbol{\theta})$ denotes the energy function for the protein x and $A(\boldsymbol{\theta})$ is the partition function to normalize the distribution. The energy function is predicted by applying a linear layer on the GearBind representations $\mathbf{h}(\mathbf{x})$ of protein \mathbf{x} :

$$E(\mathbf{x}; \boldsymbol{\theta}) = \text{Linear}(\mathbf{h}(\mathbf{x})). \quad (7)$$

Given the observed dataset $\{\mathbf{x}_1, \dots, \mathbf{x}_T\}$ from PDB, our objective is to maximize the probability of these samples:

$$\text{maximize } \frac{1}{2T} \sum_t \log p(\mathbf{x}_t; \boldsymbol{\theta}). \quad (8)$$

However, direct optimization of this objective is intractable, since calculating the partition function requires integration over the whole protein structure space. To address this issue, we adopt a popular method for learning energy-based models called noise contrastive estimation [24]. For each observed structure \mathbf{x}_t , we sample a negative structure \mathbf{y}_t and then the problem can be

transformed to a binary classification task, *i.e.*, whether a sample is observed in the dataset or not.

$$\text{minimize } \frac{1}{2T} \sum_t \log [\sigma(E(\mathbf{x}_t; \boldsymbol{\theta}) - E(\mathbf{y}_t; \boldsymbol{\theta}))], \quad (9)$$

484 where $\sigma(\cdot)$ denotes the sigmoid function for calculating the probability for a
 485 sample \mathbf{x}_t belonging to the positive class. We could see that the above training
 486 objective tries to push down the energy of the positive examples (*i.e.* the
 487 observed structures) while pushing up the energy of the negative samples (*i.e.*
 488 the mutant structures).

489 For negative sampling, we perform random single-point mutations on the
 490 corresponding positive samples and then generate its conformation by keeping
 491 the backbone unchanged and sampling side-chain torsional angles at the muta-
 492 tion site from a backbone-dependent rotamer library [25]. Besides, to further
 493 enhance the model’s capability to distinguish structural noises, we randomly
 494 choose 30% residues to randomly rotate torsional angles when generating
 495 negative samples.

496 After pretraining on the CATH database, we finetune the GearBind
 497 encoder on downstream tasks for prediction to avoid overfitting.

498 Cross Validation on SKEMPI

499 During cross validation, a model is trained and tested five times, each time
 500 using a different subset as the test set and the remaining four subsets as the
 501 training set. Results are calculated for each test set, and their mean and stan-
 502 dard error of mean are reported as the final cross validation performance.
 503 During the process of cross-validation, each individual data point is incorpo-
 504 rated into the test set precisely once. This ensures that a comprehensive “test
 505 result table” is compiled, which includes predictive values for each data point
 506 when it is part of the test set. Subsequent performance analysis are done by
 507 splitting this table by various criteria and evaluate performance on each subset.

508 After cross validation on SKEMPI, we obtain five sets of model parame-
 509 ters. During inference, we use the mean of the predicted values of these five
 510 checkpoints as the model prediction result.

511 Baseline implementation details

512 *FoldX*.

513 In this work, we use FoldX 4 [9] for mutant structure generation. First, each
 514 PDB file is processed with the RepairPDB command for structural correc-
 515 tions. Then, the wild-type, mutant structure pair is built using the BuildModel
 516 command. We use the AnalyseComplex command to get the FoldX $\Delta\Delta G_{\text{bind}}$
 517 prediction based on the wild-type and mutant structures.

518 ***Flex-ddG.***

519 We run Flex-ddG with its official implementation at https://github.com/Kortemme-Lab/flex_ddG_tutorial. Each PDB file is processed with PDBFixer
520 v1.8 [37]. Using the default parameters, we sample 35 structure models for
521 each mutation, with the number of backrub trails set to 35000 and the energy
522 function set to fa_talaris2014. The final $\Delta\Delta G_{\text{bind}}$ values are predicted with a
523 generalized additive model that reweights the score terms.
524

525 ***GearBind(+P).***

526 We implement GearBind with the TorchDrug library [41]. For message pass-
527 ing, we employed a 4-layer GearBind model with a hidden dimension of 128.
528 Regarding edge message passing, the connections between edges are catego-
529 rized into 8 bins according to the angles between them. To predict the $\Delta\Delta G_{\text{bind}}$
530 value from graph representations, we utilized a 2-layer MLP.

531 The model was trained using the Adam optimizer with a learning rate
532 of 1e-4 and a batch size of 8. The training process is performed on 1 A100
533 GPU for 40 epochs. For pretraining, we use the same architecture with 4-
534 layer GearBind model with a hidden dimension of 128. The pretraining was
535 conducted using the Adam optimizer with a learning rate of 5e-4 and a batch
536 size of 8, employing 4 A100 GPUs for 10 epochs.

537 ***Bind-ddG.***

538 To ensure a fair comparison, we re-implement and re-train the Bind-ddG model
539 on our SKEMPI splits. We follow the configuration of the original imple-
540 mentation to set the dimensions of hidden and pair representations at 128 and
541 64, respectively. Our validation performance indicates that the optimal config-
542 uration for our setup includes a two-layer geometric attention mechanism and
543 a four-layer MLP predictor. We trained the model using an Adam optimizer
544 with a learning rate of 1e-4 and a batch size of 8, on a single A400 GPU, for
545 a total of 40 epochs.

546 **In silico affinity maturation of CR3022 and anti-5T4
547 UdAb**

548 PDB 6XC3 [42], in which chains H and L comprise antibody CR3022 and chain
549 C is the SARS-CoV-2 RBD, was chosen as the starting complex for CR3022
550 affinity maturation. To better simulate the CR3022 interaction with Omicron
551 RBD, we constructed the complex structures for BA.4 and BA.1.1 mutants
552 with SWISS-MODEL [35]. We then performed saturation mutagenesis on the
553 CDRs of CR3022 and generated mutant structures using FoldX [9] and Flex-
554 ddG [10]. Specifically, residues 26-35, 50-66, 99-108 from the heavy chain H
555 and residues 24-40, 56-62, 95-103 from the light chain L are mutated. This
556 totals 1400 single-point mutations (if we count the self-mutations). We use our
557 ensemble model to rank the mutations and select the top-ranked mutants for
558 synthesis and subsequent experimental validation. Mutations are ranked by

559 the modified z -score (where values are subtracted by the median rather than
 560 the mean to be less sensitive to outliers) averaged across multiple $\Delta\Delta G_{\text{bind}}$
 561 prediction methods.

562 An unpublished complex structure was used to optimize anti-5T4 UdAb.
 563 As the single-domain antibody binding two distinct epitopes on 5T4 (Fig. 5b),
 564 anti-5T4 UdAb has a larger interface region compared to traditional
 565 antibodies. After analyzing its interface with 5T4, we decided to perform
 566 saturation mutagenesis on residues 1,3,25,27-30,31-33,39-45,52-57,59,91-
 567 93,95,99,100-102,103,105,110,112,115-117. This totals 780 single-point mutations
 568 (if we count the self-mutations) that goes through the same ranking and
 569 selection strategies as described above.

570 Antigen preparation

571 The gene encoding SARS-CoV RBD was synthesized by Genscript (Nan-
 572 jing, China) and subcloned into pSectag 2B vector with C-terminal human
 573 IgG1 Fc fragment and AviTag. The recombinant vector was transfected to
 574 Expi 293 cells and cultured at 37°C for 5 days, followed by centrifugation at
 575 2,200 $\times g$ for 20 minutes. The supernatant was harvested and filtered through
 576 a 0.22 μm vacuum filter. The protein G resin (Genscript) was loaded into the
 577 column, washed by PBS, and flow the supernatant through to fully combine
 578 the resin. Then the targeted protein was eluted with 0.1 M glycine (pH 3.0)
 579 and neutralized with 1 M Tris-HCL (pH 9.0), followed by buffer-exchanged
 580 and concentrated with phosphate buffered saline (PBS) using an Amicon
 581 ultra centrifugal concentrator (Millipore) with a molecular weight cut-off of
 582 3 kDa. Protein concentration was measured using the NanoDrop 2000 spec-
 583 trophotometer (Thermo Fisher), and protein purity was examined by sodium
 584 dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The Delta
 585 RBD protein was purchased from Vazyme (Nanjing, China) and Omicron S
 586 protein was purchased from ACROBiosystems (Beijing, China). The biotiny-
 587 lated human TPBG / 5T4 and human TPBG/5T4-Fc antigen was purchased
 588 from ACROBiosystems (Beijing, China).

589 Preparation for mutant and wild-type CR3022 antibodies

590 The heavy chain and light chain genes of different CR3022 antibodies were
 591 synthesized and subcloned into expression vector pcDNA 3.4 in IgG1 format.
 592 These constructed vectors were transfected into CHO cells and purified by Pro-
 593 tein A. All antibodies were produced by Biointron Biological Inc. (Shanghai,
 594 China).

595 Generation of mutant and wild-type anti-5T4 UdAbs

596 The pComb3x vector encoding the gene of wild-type anti-5T4 UdAb was con-
 597 structed in previous work and preserved in our laboratory. All anti-5T4 UdAb
 598 mutants with single-point mutation were constructed with QuickMutationTM
 599 Site-directed Gene Mutagenesis Kit (Beyotime, Shanghai, China) following

600 the manufacturer's protocol. The expression of different mutant and wild-
601 type anti-5T4 UdAbs were performed in *E. coli* HB2151 bacterial culture at
602 30°C for 16 h accompanied by 1 mM isopropyl b-D-1-thiogalactopyranoside
603 (IPTG). The cells were harvested and lysed by polymyxin B at 30°C for
604 0.5 h, followed by centrifugation at 8,800 × g for 10 minutes. The super-
605 natant was collected, filtered through 0.8 µm polyethersulphone membranes
606 by sterile syringes and purified by Ni-NTA (Smart Lifesciences) following the
607 manufacturer's instructions. Briefly, the filtered supernatant was loaded over
608 the column with Ni-NTA. The resin was washed by washing buffer (10 mM
609 Na₂HPO₄, 10 mM NaH₂PO₄ [pH 7.4], 500 mM NaCl, and 20 mM imidazole),
610 and proteins were eluted in elution buffer (10 mM Na₂HPO₄, 10 mM NaH₂PO₄
611 [pH 7.4], 500 mM NaCl, and 250 mM imidazole). The collected pure frac-
612 tions were immediately buffer exchanged into PBS and concentrated with
613 Amicon ultra centrifugal concentrators (Millipore). Protein concentration was
614 measured using the NanoDrop 2000 spectrophotometer (Thermo Fisher), and
615 protein purity was examined by SDS-PAGE.

616 Enzyme-linked immunosorbent assay (ELISA)

617 For comparison of different CR3022 mutants, the RBD of Delta (B.1.617.2)
618 strain and S protein of Omicron (B.1.1.529) strain at 100 ng per well was
619 coated in 96 wells half area microplates (Corning #3690) overnight at 4 °C.
620 The antigen coated plate was washed by three times with PBST (PBS with
621 0.05% Tween-20) and blocked with 3% MPBS (PBS with 3% skim milk) at
622 37 °C for 1 h. Following three times washing with PBST, 50 µL of three-fold
623 serially diluted antibody in 1% MPBS was added and incubated at 37 °C for
624 1.5 h. The HRP-conjugated anti-Fab and anti-Fc (Sigma-Aldrich) secondary
625 antibodies were used for the detection of different tested antibodies. After
626 washing with PBST for 5 times, the enzyme activity was measured after the
627 addition of ABTS substrate (Invitrogen) for 15 min. The data was acquired by
628 measuring the absorbance at 405 nm using a Microplate Spectrophotometer
629 (Biotek) and the EC₅₀ (concentration for 50% of maximal effect) was cal-
630 culated by GraphPad Prism8.0 software. To verify different UdAb mutants,
631 the same experimental protocol as mentioned above was adopted. Briefly, the
632 human TPBG/5T4-Fc antigen was coated in 96 wells half area microplates,
633 then blocked with 3% MPBS and added serial diluted antibodies. The HRP-
634 conjugated anti-Flag (Sigma-Aldrich) secondary antibody was used, followed
635 by adding ABTS substrate and detected at 405 nm. The reported EC₅₀ value
636 is the mean value from three duplicates on a single experiment.

637 Bio-layer Interferometry (BLI) binding assay

638 The binding kinetics of different antibodies to SARS-CoV-2 Omicron S and
639 5T4 antigens were measured by BLI on an Octet-RED96 (ForteBio). Briefly,
640 the his-tagged Omicron S protein at 8 µg/ml and biotinylated 5T4 protein at
641 5 µg/ml were separately loaded onto Ni-NTA and streptavidin-coated (SA)

642 biosensors. The antigen immobilized sensors were incubated with three-fold
643 serially diluted CR3022 candidates or two-fold serially diluted anti-5T4 UdAbs
644 starting at 300 nM in 0.02% PBST for 300 s for association, and then immersed
645 into 0.02% PBST for another 300 s at 37 °C for dissociation. All the curves
646 were fitted by 1:1 binding model using the Data Analysis software 11.1. All K_D
647 values were determined with R^2 values of greater than 98% confidence level.

648 Protein structure and $\Delta\Delta G_{\text{bind}}$ contribution analysis

649 Protein structure analysis is conducted by python scripts. The antibody-
650 antigen complex structure after mutation was obtained from Rosetta Flex-ddG
651 relaxation [10]. The relaxed protein structure can provide more accurate
652 side-chain conformations, which are critical for accurate contact and confor-
653 mational analysis. The improved accuracy of such analyses enables a deeper
654 understanding of the underlying binding mechanisms and can facilitate the
655 identification of key characteristics involved in protein-protein interactions.
656 The contribution scores are derived by using Integrated Gradients (IG) [43], a
657 model-agnostic attribution method, on GearBind to obtain residue-level inter-
658 pretation following [22]. All protein structure figures are created with PyMOL
659 v3.0.

660 Molecular dynamics simulation

661 For antibody mutation structural analysis, we conducted molecular dynam-
662 ics simulations of the wild type and mutant antibody-antigen complex. Initial
663 structures were taken from the Rosetta Flex-ddG relaxed structures used by
664 GearBind. The LEaP module in the AMBER 22 suite was used for build-
665 ing starting structures and adding ions and solvent for the simulation [44].
666 The protonation states of the molecules were kept at the default settings as
667 assigned by LEaP during the initial structure preparation. All systems were
668 simulated with the ff19SB protein force field [45] and solvated in boxes of
669 water with the OPC3 [46] solvent model. Simulated systems were solvated
670 using a 10 Angstrom solvent box. All bonds involving hydrogen atoms were
671 constrained with the SHAKE algorithm [47]. The particle mesh Ewald (PME)
672 algorithm was used to calculate long-range electrostatic interactions [48]. Initial
673 structures were relaxed with maximum 10,000 steps of minimization before
674 convergence, then subjected to heating for 20 ps and equilibrating for 10 ps in
675 the NPT ensemble with PMEMD. The CUDA version of PMEMD was used to
676 accelerate the simulations [49]. The simulation temperature was set to room
677 temperature 298K. All systems were simulated for 1 μ s production MD with
678 one replica, and samples in the first 50 ns were not used for analysis. CPP-
679 TRAJ module in AMBERTools were used to analysis the simulation results,
680 including calculating root mean square deviation (RMSD), room mean square
681 fluctuation (RMSF), hydrogen bonding, and dihedral angle [50].

682 Data Availability

683 The raw SKEMPI database can be accessed via <https://life.bsc.es/pid/skempi2>. The CATH database can be accessed via <https://www.cathdb.info/>. The raw HER2 binders data can be accessed via <https://github.com/AbSciBio/unlocking-de-novo-antibody-design/blob/main/spr-controls.csv>.

687 Code Availability

688 The GearBind inference code, the trained model checkpoints and
689 the dataset preprocessing scripts are available via <https://github.com/DeepGraphLearning/GearBind> under the Apache 2.0 License. They can also
690 be accessed via Zenodo [51].

692 References

693 [1] Victora, G.D., Nussenzweig, M.C.: Germinal centers. Annual review of
694 immunology **40**, 413–442 (2022)

695 [2] Gram, H., Marconi, L.-A., Barbas 3rd, C., Collet, T.A., Lerner, R.A.,
696 Kang, A.S.: In vitro selection and affinity maturation of antibodies from a
697 naive combinatorial immunoglobulin library. Proceedings of the National
698 Academy of Sciences **89**(8), 3576–3580 (1992)

699 [3] Jackson, J.R., Sathe, G., Rosenberg, M., Sweet, R.: In vitro antibody
700 maturation. improvement of a high affinity, neutralizing antibody against
701 il-1 beta. Journal of immunology (Baltimore, Md.: 1950) **154**(7), 3310–
702 3319 (1995)

703 [4] Li, B., Fouts, A.E., Stengel, K., Luan, P., Dillon, M., Liang, W.-C., Feier-
704 bach, B., Kelley, R.F., Hötzzel, I.: In vitro affinity maturation of a natural
705 human antibody overcomes a barrier to in vivo affinity maturation. In:
706 MAbs, vol. 6, pp. 437–445 (2014). Taylor & Francis

707 [5] Wang, J., An, L., Zhao, Y., Zhang, C., Li, S., Ye, C., Jing, S., Hang,
708 H.: In vitro affinity maturation of antibody against membrane-bound
709 gpcr molecules. Applied microbiology and biotechnology **103**, 7703–7717
710 (2019)

711 [6] Murphy, K., Weaver, C.: Janeway's Immunobiology. Garland science, ???
712 (2016)

713 [7] Sulea, T., Hussack, G., Ryan, S., Tanha, J., Purisima, E.O.: Application
714 of assisted design of antibody and protein therapeutics (adapt) improves
715 efficacy of a clostridium difficile toxin a single-domain antibody. Scientific
716 reports **8**(1), 2260 (2018)

717 [8] Shan, S., Luo, S., Yang, Z., Hong, J., Su, Y., Ding, F., Fu, L., Li, C., Chen,
718 P., Ma, J., *et al.*: Deep learning guided optimization of human antibody
719 against sars-cov-2 variants with broad neutralization. *Proceedings of the*
720 *National Academy of Sciences* **119**(11), 2122954119 (2022)

721 [9] Delgado, J., Radusky, L.G., Cianferoni, D., Serrano, L.: Foldx 5.0: working
722 with rna, small molecules and a new graphical interface. *Bioinformatics*
723 **35**(20), 4168–4169 (2019)

724 [10] Barlow, K.A., Ó Conchúir, S., Thompson, S., Suresh, P., Lucas, J.E.,
725 Heinonen, M., Kortemme, T.: Flex ddg: Rosetta ensemble-based estima-
726 tion of changes in protein–protein binding affinity upon mutation. *The*
727 *Journal of Physical Chemistry B* **122**(21), 5389–5399 (2018)

728 [11] Park, H., Bradley, P., Greisen Jr, P., Liu, Y., Mulligan, V.K., Kim, D.E.,
729 Baker, D., DiMaio, F.: Simultaneous optimization of biomolecular energy
730 functions on features from small molecules and macromolecules. *Journal*
731 *of chemical theory and computation* **12**(12), 6201–6212 (2016)

732 [12] Frenz, B., Lewis, S.M., King, I., DiMaio, F., Park, H., Song, Y.: Prediction
733 of protein mutational free energy: benchmark and sampling improve-
734 ments increase classification accuracy. *Frontiers in bioengineering and*
735 *biotechnology* **8**, 558247 (2020)

736 [13] Rodrigues, C.H., Myung, Y., Pires, D.E., Ascher, D.B.: mcsm-ppi2: pre-
737 dicting the effects of mutations on protein–protein interactions. *Nucleic*
738 *acids research* **47**(W1), 338–344 (2019)

739 [14] Myung, Y., Rodrigues, C.H., Ascher, D.B., Pires, D.E.: mcsm-ab2: guid-
740 ing rational antibody design using graph-based signatures. *Bioinformatics*
741 **36**(5), 1453–1459 (2020)

742 [15] Petukh, M., Dai, L., Alexov, E.: Saambe: webserver to predict the charge
743 of binding free energy caused by amino acids mutations. *International*
744 *journal of molecular sciences* **17**(4), 547 (2016)

745 [16] Huang, X., Zheng, W., Pearce, R., Zhang, Y.: Ssipe: accurately estimating
746 protein–protein binding affinity change upon mutations using evolution-
747 ary profiles in combination with an optimized physical energy function.
748 *Bioinformatics* **36**(8), 2429–2437 (2020)

749 [17] Jiang, Y., Quan, L., Li, K., Li, Y., Zhou, Y., Wu, T., Lyu, Q.: Dgcddg:
750 Deep graph convolution for predicting protein-protein binding affinity
751 changes upon mutations. *IEEE/ACM Transactions on Computational*
752 *Biology and Bioinformatics* (2023)

753 [18] Liu, X., Luo, Y., Li, P., Song, S., Peng, J.: Deep geometric representations

754 for modeling effects of mutations on protein-protein binding affinity. PLoS
755 computational biology **17**(8), 1009284 (2021)

756 [19] Jankauskaitė, J., Jiménez-García, B., Dapkūnas, J., Fernández-
757 Recio, J., Moal, I.H.: SKEMPI 2.0: an updated benchmark
758 of changes in protein–protein binding energy, kinetics
759 and thermodynamics upon mutation. Bioinformatics **35**(3),
760 462–469 (2018) <https://academic.oup.com/bioinformatics/article-pdf/35/3/462/27700009/bty635.pdf>. <https://doi.org/10.1093/bioinformatics/bty635>

761

763 [20] Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger,
764 O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., *et al.*:
765 Highly accurate protein structure prediction with alphafold. Nature
766 **596**(7873), 583–589 (2021)

767

768 [21] Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil,
769 R., Kabeli, O., Shmueli, Y., *et al.*: Evolutionary-scale prediction of atomic-
770 level protein structure with a language model. Science **379**(6637), 1123–
771 1130 (2023)

772

773 [22] Zhang, Z., Xu, M., Jamasb, A., Chenthamarakshan, V., Lozano, A.,
774 Das, P., Tang, J.: Protein representation learning by geometric structure
775 pretraining. arXiv preprint arXiv:2203.06125 (2022)

776

777 [23] Zhang, Z., Xu, M., Lozano, A., Chenthamarakshan, V., Das, P., Tang,
778 J.: Physics-inspired protein encoder pre-training via siamese sequence-
779 structure diffusion trajectory prediction. arXiv preprint arXiv:2301.12068
780 (2023)

781

782 [24] Gutmann, M., Hyvärinen, A.: Noise-contrastive estimation: A new esti-
783 mation principle for unnormalized statistical models. In: Proceedings
784 of the Thirteenth International Conference on Artificial Intelligence
785 and Statistics, pp. 297–304 (2010). JMLR Workshop and Conference
786 Proceedings

787

788 [25] Shapovalov, M.V., Dunbrack, R.L.: A smoothed backbone-dependent
789 rotamer library for proteins derived from adaptive kernel density estimates
790 and regressions. Structure **19**(6), 844–858 (2011)

791

792 [26] Zhang, Y., Skolnick, J.: Scoring function for automated assessment of
793 protein structure template quality. Proteins: Structure, Function, and
794 Bioinformatics **57**(4), 702–710 (2004)

795

796 [27] Shanehsazzadeh, A., Bachas, S., McPartlon, M., Kasun, G., Sutton,
797 J.M., Steiger, A.K., Shuai, R., Kohnert, C., Rakocevic, G., Gutierrez,
798 J.M., *et al.*: Unlocking de novo antibody design with generative artificial

792 intelligence. bioRxiv, 2023–01 (2023)

793 [28] Ter Meulen, J., Van Den Brink, E.N., Poon, L.L.M., Marissen, W.E.,
794 Leung, C.S.W., Cox, F., Cheung, C.Y., Bakker, A.Q., Bogaards, J.A.,
795 Van Deventer, E., *et al.*: Human monoclonal antibody combination
796 against sars coronavirus: synergy and coverage of escape mutants. PLoS
797 medicine **3**(7), 237 (2006)

798 [29] Tian, X., Li, C., Huang, A., Xia, S., Lu, S., Shi, Z., Lu, L., Jiang, S.,
799 Yang, Z., Wu, Y., Ying, T.: Potent binding of 2019 novel coronavirus
800 spike protein by a SARS coronavirus-specific human monoclonal antibody.
801 Emerg Microbes Infect **9**(1), 382–385 (2020)

802 [30] Yuan, M., Wu, N.C., Zhu, X., Lee, C.-C.D., So, R.T.Y., Lv, H., Mok,
803 C.K.P., Wilson, I.A.: A highly conserved cryptic epitope in the recep-
804 tor binding domains of SARS-CoV-2 and SARS-CoV. Science **368**(6491),
805 630–633 (2020)

806 [31] Wu, Y., Li, Q., Kong, Y., Wang, Z., Lei, C., Li, J., Ding, L., Wang,
807 C., Cheng, Y., Wei, Y., *et al.*: A highly stable human single-domain
808 antibody-drug conjugate exhibits superior penetration and treatment of
809 solid tumors. Molecular Therapy **30**(8), 2785–2799 (2022)

810 [32] Hie, B.L., Shanker, V.R., Xu, D., Bruun, T.U., Weidenbacher, P.A., Tang,
811 S., Wu, W., Pak, J.E., Kim, P.S.: Efficient evolution of human antibodies
812 from general protein language models. Nature Biotechnology **42**(2), 275–
813 283 (2024)

814 [33] Shanker, V.R., Bruun, T.U., Hie, B.L., Kim, P.S.: Unsupervised evolution
815 of protein and antibody complexes with a structure-informed language
816 model. Science **385**(6704), 46–53 (2024)

817 [34] Shanker, V.R., Bruun, T.U., Hie, B.L., Kim, P.S.: Inverse folding of
818 protein complexes with a structure-informed language model enables
819 unsupervised antibody evolution. bioRxiv, 2023–12 (2023)

820 [35] Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumi-
821 enny, R., Heer, F.T., de Beer, T.A.P., Rempfer, C., Bordoli, L., *et al.*:
822 Swiss-model: homology modelling of protein structures and complexes.
823 Nucleic acids research **46**(W1), 296–303 (2018)

824 [36] Abramson, J., Adler, J., Dunger, J., Evans, R., Green, T., Pritzel, A.,
825 Ronneberger, O., Willmore, L., Ballard, A.J., Bambrick, J., *et al.*: Accu-
826 rate structure prediction of biomolecular interactions with alphafold 3.
827 Nature, 1–3 (2024)

828 [37] Eastman, P.: PDBFixer. GitHub (2013)

829 [38] Schlichtkrull, M., Kipf, T.N., Bloem, P., Van Den Berg, R., Titov, I.,
830 Welling, M.: Modeling relational data with graph convolutional networks.
831 In: European Semantic Web Conference, pp. 593–607 (2018). Springer

832 [39] Gasteiger, J., Groß, J., Günnemann, S.: Directional message passing for
833 molecular graphs. In: International Conference on Learning Representations
834 (ICLR) (2020)

835 [40] Harary, F., Norman, R.Z.: Some properties of line digraphs. *Rendiconti
836 del Circolo Matematico di Palermo* **9**(2), 161–168 (1960). <https://doi.org/10.1007/BF02854581>

837 [41] Zhu, Z., Shi, C., Zhang, Z., Liu, S., Xu, M., Yuan, X., Zhang, Y., Chen, J.,
838 Cai, H., Lu, J., et al.: Torchdrug: A powerful and flexible machine learning
839 platform for drug discovery. *arXiv preprint arXiv:2202.08320* (2022)

840 [42] Yuan, M., Liu, H., Wu, N.C., Lee, C.-C.D., Zhu, X., Zhao, F., Huang, D.,
841 Yu, W., Hua, Y., Tien, H., et al.: Structural basis of a shared antibody
842 response to sars-cov-2. *Science* **369**(6507), 1119–1123 (2020)

843 [43] Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep net-
844 works. In: International Conference on Machine Learning, pp. 3319–3328
845 (2017). PMLR

846 [44] Case, D.A., Cheatham III, T.E., Darden, T., Gohlke, H., Luo, R., Merz Jr,
847 K.M., Onufriev, A., Simmerling, C., Wang, B., Woods, R.J.: The amber
848 biomolecular simulation programs. *Journal of computational chemistry*
849 **26**(16), 1668–1688 (2005)

850 [45] Tian, C., Kasavajhala, K., Belfon, K.A., Raguette, L., Huang, H., Migues,
851 A.N., Bickel, J., Wang, Y., Pincay, J., Wu, Q., et al.: ff19sb: amino-acid-
852 specific protein backbone parameters trained against quantum mechanics
853 energy surfaces in solution. *Journal of chemical theory and computation*
854 **16**(1), 528–552 (2019)

855 [46] Izadi, S., Anandakrishnan, R., Onufriev, A.V.: Building water models: a
856 different approach. *The journal of physical chemistry letters* **5**(21), 3863–
857 3871 (2014)

858 [47] Ryckaert, J.-P., Ciccotti, G., Berendsen, H.J.: Numerical integration of
859 the cartesian equations of motion of a system with constraints: molecular
860 dynamics of n-alkanes. *Journal of computational physics* **23**(3), 327–341
861 (1977)

862 [48] Darden, T., York, D., Pedersen, L.: Particle mesh ewald: An nlog (n)
863 method for ewald sums in large systems. *The Journal of chemical physics*
864 **98**(12), 10089–10092 (1993)

866 [49] Salomon-Ferrer, R., Gotz, A.W., Poole, D., Le Grand, S., Walker, R.C.:
867 Routine microsecond molecular dynamics simulations with amber on
868 gpus. 2. explicit solvent particle mesh ewald. *Journal of chemical theory*
869 and computation

870 [50] Roe, D.R., Cheatham III, T.E.: Ptraj and cpptraj: software for processing
871 and analysis of molecular dynamics trajectory data. *Journal of chemical*
872 *theory and computation* **9**(7), 3084–3095 (2013)

873 [51] Zhang, Z., Cai, H.: Source Code of GearBind: Pretrainable Geometric
874 Graph Neural Network for Antibody Affinity Maturation. Zenodo
875 (2024). <https://doi.org/10.5281/zenodo.13085795>. <https://doi.org/10.5281/zenodo.13085795>

877 **Author contributions**

878 J.T. conceptualized the study and supervised the project. T.Y. and Y.W.
879 co-supervised the project. H.C. investigated related work, co-led model devel-
880 opment, processed the datasets and *in silico* results, and led manuscript
881 writing. Z.Z. investigated related work, led model development. B.Z. led the
882 analysis of the structures and MD trajectories of the proposed mutants. M.W.
883 was in charge of the *in vitro* experiments and results analysis with the help of
884 Q.L. and Y.Z. All participated in manuscript writing.

885 **Competing interests**

886 The authors declare no competing interests.

Table 1: Cross validation performance of different methods on SKEMPI ($n = 5729$). For each metric, we report the mean and standard error of the mean. “+P” means “with geometric pretraining on CATH”. MAE: Mean average error. RMSE: root mean square error. Among individual models, the best and the second-best performing model for each metric is highlighted in bold and italic, respectively.

Model	MAE \downarrow	RMSE \downarrow	PearsonR \uparrow	SpearmanR \uparrow
FoldX [9]	1.364 ± 0.134	2.027 ± 0.170	0.491 ± 0.007	0.526 ± 0.011
Flex-ddG [10]	1.236 ± 0.101	1.849 ± 0.150	0.497 ± 0.034	0.484 ± 0.020
Bind-ddG [8]	1.255 ± 0.096	1.759 ± 0.125	0.581 ± 0.037	0.443 ± 0.041
GearBind	1.143 ± 0.088	1.639 ± 0.103	0.659 ± 0.030	0.498 ± 0.033
GearBind+P	1.115 ± 0.072	1.611 ± 0.075	0.676 ± 0.041	0.525 ± 0.046
Ensemble	1.028 ± 0.080	1.503 ± 0.101	0.729 ± 0.016	0.643 ± 0.030

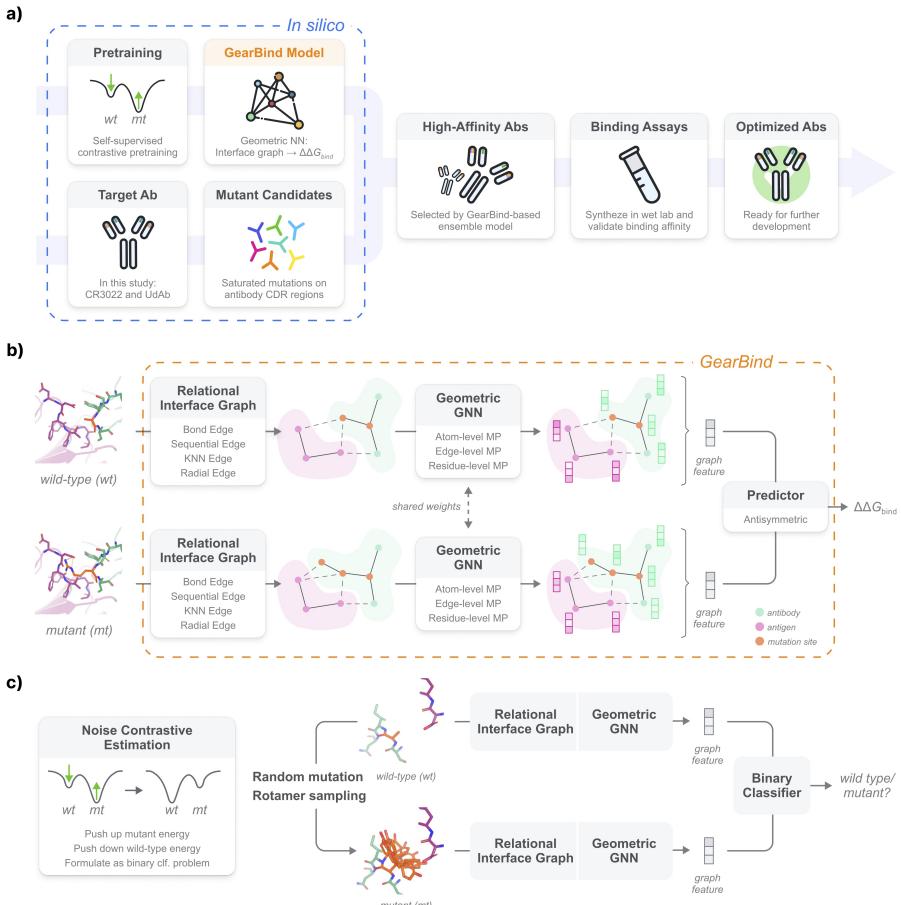


Fig. 1: GearBind-based *in silico* antibody affinity maturation pipeline. (a) Pipeline Overview: The pipeline features the geometric neural encoder, GearBind, which undergoes self-supervised pretraining on CATH and supervised learning on SKEMPIv2. The GearBind-based ensemble model is employed to perform *in silico* affinity maturation on a target antibody, given its bound structure to the native antigen. Guided by the model predictions, antibodies with improved binding affinity can be found after testing one or two dozen mutant candidates. NN: neural network. Ab: Antibody. CDR: Complementarity-determining region. Designed using resources from Flaticon.com. (b) GearBind Model: GearBind employs a shared graph neural network to encode both the wild-type and mutant complex structures. For each structure, a relational interface graph is constructed. A geometric graph neural network, GearNet, then performs multi-relational and multi-level message passing on the graph to extract rich interface representations. The mutational effect $\Delta\Delta G_{\text{bind}}$ is predicted by an antisymmetric predictor given the GearNet-extracted representations of the two complexes. (c) Self-supervised Pretraining: GearBind+P leverages mass-scale unlabeled protein structures via self-supervised, contrastive pretraining. The model is trained to contrast between native structures and randomly mutated structures with side-chain torsion angles sampled from a rotamer library. Pretraining helps GearBind+P explore the energy landscape of native protein structures and results in improved performance in $\Delta\Delta G_{\text{bind}}$ prediction.

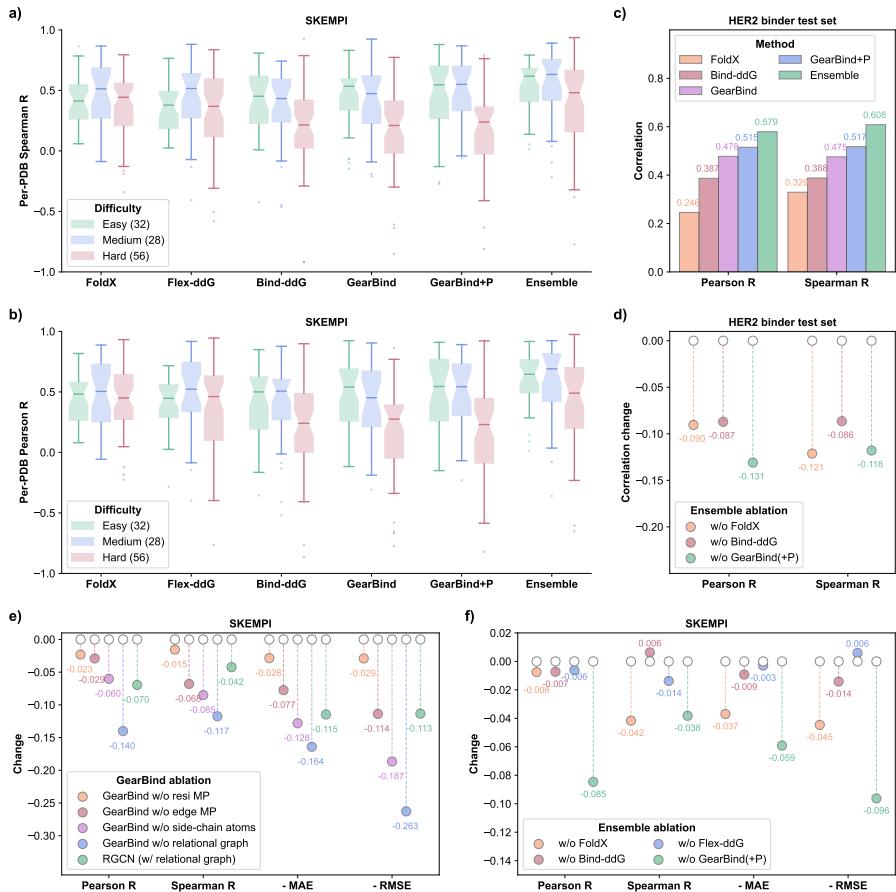


Fig. 2: *In silico* evaluation on SKEMPI and the HER2 binders test set. Comparative analysis of Per-PDB Spearman (a) and Pearson (b) correlations between predictions of various models and experimental data across SKEMPI subsets with varying difficulty levels. PDB codes in SKEMPI are categorized into "easy" (50+ similar data points in training set), "medium" (1–50), and "hard" (0) targets based on the number of training data points having a high structural similarity (TM-score > 0.8) to it. The number of PDB codes for each difficulty is annotated in the figure legends. The box spans the inter-quartile range (25th to 75th percentile), with a solid line inside marking the median. Outliers are determined by 1× inter-quartile range. (c) Benchmark results on the HER2 binders test set ($n = 419$) show Pearson and Spearman correlations for various models. The deep learning models are trained on SKEMPI. (d) Change of performance metrics in HER2 binders test set when excluding various models from the FoldX + Bind-ddG + GearBind(+P) ensemble. (e) Change of performance when changing GearBind architecture design, as quantified by cross validation performance on SKEMPI ($n = 5729$). (f) Change of performance on SKEMPI ($n = 5729$) when excluding different models from the FoldX + Flex-ddG + Bind-ddG + GearBind(+P) ensemble.

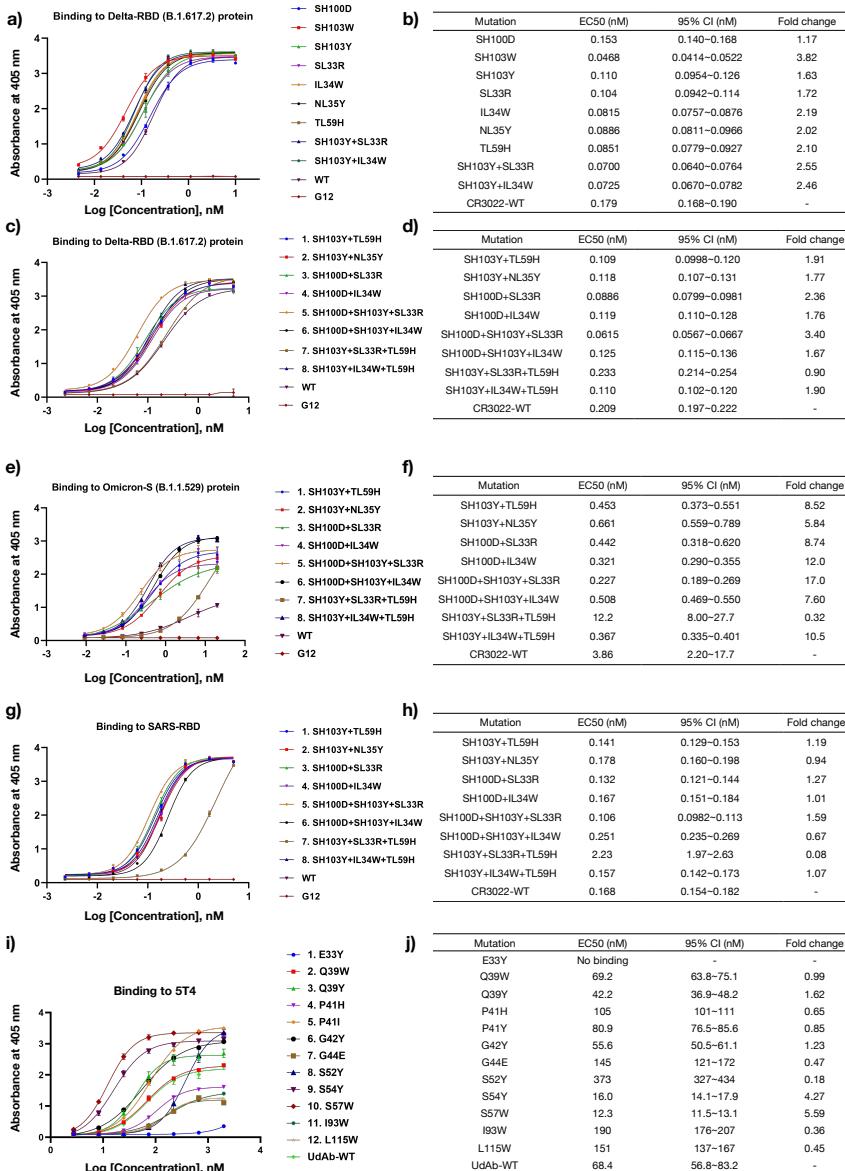


Fig. 3: ELISA binding assay results for CR3022 and anti-5T4 UdAb mutants designed with a GearBind-based pipeline. On the left panels (a, c, e, g, i), the concentration-response curves alongside with EC₅₀ values evaluated from ELISA assays are displayed, with the center denoting the mean absorbance and error bars indicating the standard deviation from three technical duplicates. On the right panels (b, d, f, h, j), the fitted EC₅₀ values, their 95% confidence intervals and the fold changes in binding calculated as EC₅₀^(wt)/EC₅₀^(mt) are displayed. Tested systems include the first-round CR3022 designs binding to Delta RBD (a, b); the second-round CR3022 designs binding to Delta RBD (c, d), Omicron S protein (e, f) and SARS-RBD (g, h); and single point mutants of anti-5T4 UdAb (i, j) binding to 5T4.

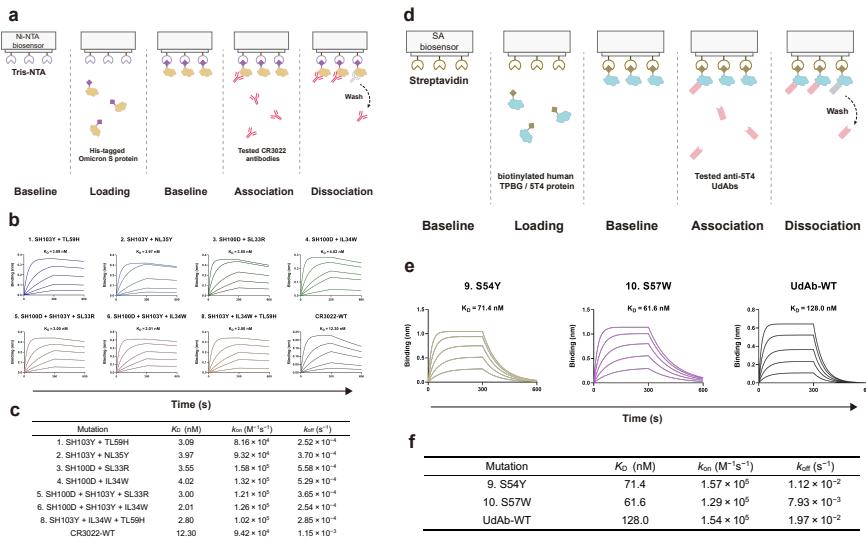


Fig. 4: Bio-layer interferometry binding assay for CR3022 and anti-5T4 UdAbs candidates. (a, d) Illustration of the experiment protocol with (a) Ni-NTA and (d) SA biosensors. (b, e) The binding kinetics of different CR3022 (b) and anti-5T4 UdAbs (e) candidates. The starting concentration for each antibody was 300 nM. The data were determined by fitting curves to a global 1:1 binding model. The K_D (equilibrium dissociation constant) values, annotated on each plot, were determined with R^2 values of greater than 98% confidence level. (c, f) The k_{on} (association rate constant), k_{off} (dissociation rate constant), and K_D values of mutant and wild-type CR3022 antibodies (c) and anti-5T4 UdAbs (f).

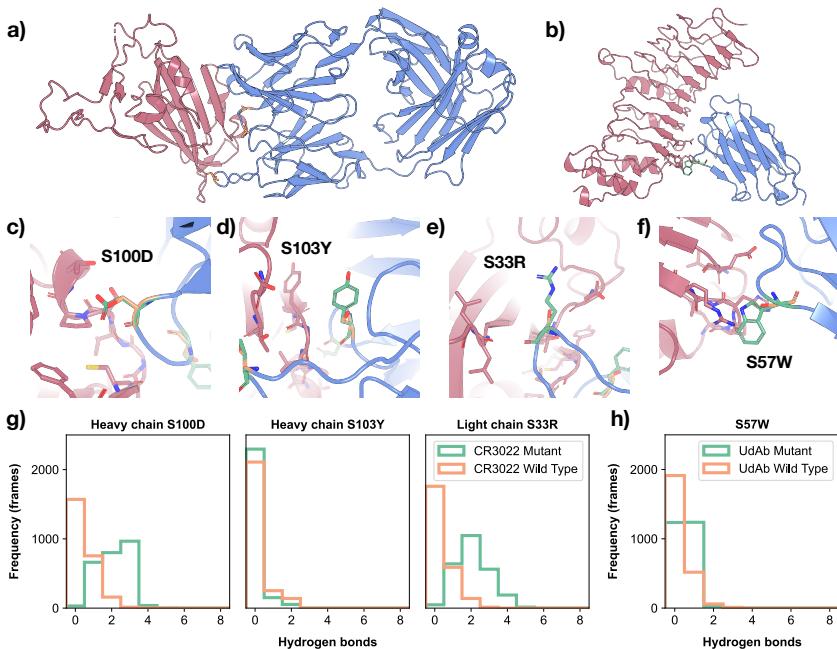


Fig. 5: Structural analysis of optimized CR3022 and anti-5T4 UdAbs. (a) Complex structure of antibody CR3022 and the SARS-CoV-2 RBD used for affinity maturation. The target antigen is colored in red, and the antibody in blue. Mutation sites S100D, S103Y in heavy chain and S33R in light chain are marked in orange. (b) Complex structure of the single-domain antibody UdAb and its target oncofetal antigen 5T4. Mutation site S57W is marked in orange. (c-e) Three mutation sites in the CR3022 triple-mutant, namely S100D (c), S103Y (d) in heavy chain and S33R (e) in light chain. (f) The S57W mutation site in the UdAb single-point mutant. (g) Depicts the number of hydrogen bonds between the mutation sites and target antigen in the molecular dynamics simulation of CR3022 and RBD complex. (h) Depicts the number of hydrogen bonds between mutation sites and target antigen in the molecular dynamics simulation of UdAb and 5T4 complex. In (g,h), hydrogen bond distributions from wild types are colored in orange, and from mutants are colored in green.