

1 **Chemical defences indicate distinct colour patterns with reduced variability**
2 **in aposematic nudibranchs**

3 Cedric P. van den Berg^{1,2}, Matteo Santon², John A. Endler³, Leon Drummond¹, Bethany R.
4 Dawson¹, Carl Santiago¹, Nathalie Weber⁴, Karen L. Cheney¹

5

6 ¹Visual Ecology Laboratory, School of Biological Sciences, The University of Queensland, 4072 Brisbane,
7 Australia

8

9 ²Ecology of Vision Laboratory, School of Biological Sciences, University of Bristol, BS81TQ, United Kingdom
10

11 ³Zoology and Ecology, Tropical Environments Sciences, College of Science & Engineering, James Cook
12 University, Cairns QLD 4878, Australia

13

14 ⁴Faculty of Biology and Medicine, School of Biological Sciences, The University of Lausanne, 1015 Lausanne,
15 Switzerland

16

17 Corresponding author: c.vandenberg@bristol.ac.uk

18

19 ORCID ID:

20 CPvdB 0000-0001-6422-7237

21 MS 0000-0002-9397-4052

22 JAE 0000-0002-7557-7627

23 LD 0000-0003-2090-7876

24 BRD 0000-0001-6677-4453

25 CS 0000-0002-3812-2535

26 NW 0000-0001-6709-9787

27 KLC 0000-0001-5622-9494

28 **Abstract**

29 The selective factors that shape phenotypic diversity in prey communities with
30 aposematic animals are diverse and coincide with similar diversity in the strength of underlying
31 secondary defences. However, quantitative assessments of colour pattern variation and the
32 strength of chemical defences in assemblages of aposematic species are lacking. We quantified
33 colour pattern diversity using Quantitative Colour Pattern Analysis (QCPA) in 13 Dorid
34 nudibranch species (Infraorder: Doridoidei) that varied in the strength of their chemical
35 defences. We accounted for the physiological properties of a potential predator's visual system
36 (a triggerfish, *Rhinecanthus aculeatus*) and modelled the appearance of nudibranchs from
37 multiple viewing distances (2cm and 10cm). We identified distinct colour pattern properties
38 associated with the presence and strength of chemical defences. Colour patterns were also less
39 variable among species with chemical defences when compared to undefended species. This
40 confirms correlations between secondary defences and diverse, bold colouration while showing
41 that chemical defences coincide with decreased colour pattern variability among species. Our
42 study suggests that complex spatiochromatic properties of colour patterns perceived by
43 potential predators can be used to make inferences on the presence and strength of chemical
44 defences.

45

46 **Keywords:** Aposematism, crypsis, predator psychology, purifying selection, defensive animal
47 colouration, signal honesty, escape and radiate, visual signalling

48

49 **1. Introduction**

50 Many animals use aposematic colour patterns to warn potential predators of underlying
51 defences [1], with aposematic species in prey communities exhibiting a remarkable diversity
52 of primary (i.e., colour patterns) and secondary defences (i.e., secondary metabolites) [2–4].
53 However, mechanisms shaping diversity within and among aposematic species in prey
54 communities are complex, and it is poorly understood how the presence and strength of
55 secondary defences correlate with phenotypic diversity in a natural prey community (see [5,6]
56 for discussion). Factors shaping within-species diversity tend to coincide with factors affecting
57 among-species variation in aposematic species (e.g. [7]). This complex mixture of selective

58 mechanisms in natural systems makes it challenging to understand the relationships between
59 primary and secondary defences in prey communities.

60 Stabilising selection is a crucial driver underlying the distinct appearance of a given
61 aposematic species in a species community. Once aposematism has evolved, stabilising
62 selection is expected to constrain colour pattern diversity within species and Mullerian mimicry
63 rings as predators learn to associate a visual signal with unprofitability [8–13]. Specifically, an
64 invariant appearance across aposematic individuals may facilitate and strengthen predator
65 learning and memorisation. In contrast, variation in signal design may cause predators to make
66 errors when attacking prey and decrease rates of predator learning and increase rates of
67 forgetting [10,14–16]. However, colour pattern diversity within and among aposematic species
68 is ubiquitous. It is thought to be driven by countervailing evolutionary and ecological factors
69 such as genetic drift, gene flow, variation in resource abundance, variation in predator species,
70 and environmental biotic and abiotic variability at different spatial and temporal scales
71 [5,10,17,18]. Aposematism in a spatially homogeneous and temporally stable environment
72 coincides with selection towards reduced colour pattern variability within a population (e.g.
73 [19,20]). In contrast, variability of biotic (e.g. predators) and abiotic factors (e.g. temperature)
74 at spatial and temporal scales can favour selection on phenotypic diversity within aposematic
75 species (e.g. [21–24]) as well as among them (e.g. [25,26]).

76 Investing in chemical defences is costly (see [6,27] for review) and, as a result, can
77 favour the evolution of various forms of mimicry among prey species (e.g. [28]). Mimicry leads
78 to specific, general or partial (e.g. [29–33]) resemblance among species, reducing phenotypic
79 diversity among chemically defended species and undefended mimics. However, key
80 innovations such as chemical defences are thought to enable niche expansions and, as a result,
81 facilitate speciation [25,34–36]. Adapting to diverse ecological niches, in turn, may lead to
82 phenotypic diversity among aposematic species, especially if such niche specialisations
83 underly changes in the signalling environment, such as the distinctiveness from background
84 habitats or signalling in differing light environments. Indeed, a distinct appearance not only
85 from the background, but also from conspecifics, may aid predator learning [37] and can
86 provide a mechanism to defend against the parasitic effects of certain types of mimicry, such
87 as Batesian and quasi-Batesian mimicry [38–41]. However, long-standing predictions of the
88 benefit of distinctiveness among aposematic species (e.g. [42,43]) are mainly theoretical, with
89 no known studies investigating correlations between distinctiveness and secondary defences
90 among aposematic species in nature.

91 Attacking well-defended prey is also costly; therefore, predators may generalise more
92 broadly between the colour patterns of previously attacked prey and the prey they subsequently
93 encounter, likely confounded by the cost of making an error (e.g. [44–46]). However, how
94 predator generalisation between and within aposematic species and their mimics influences
95 correlations between secondary defences and colour pattern diversity is complex, highly
96 debated and likely varies among taxa (see [5,6] for discussion). Furthermore, selection for or
97 against colour pattern variability within and among species can act on individual colour pattern
98 elements or perceptual properties rather than the entire animal, depending on which elements
99 of the signal predators learn or pay attention to (e.g. [47]). Therefore, animal colour patterns
100 should be considered complex multicomponent phenotypes [48] under multiple selective
101 pressures (e.g. [48,49]).

102 When interpreting the ecological relevance of phenotypic variation, it is essential to
103 consider how the appearance of an organism's colours and patterns change as a function of
104 observer acuity and viewing distance [50]. For example, colour patterns may be cryptic when
105 viewed from a distance but may become aposematic as a predator approaches [50,51]. Animals
106 detect objects and decide their identity and quality based on varying combinations of
107 spatiochromatic features [52–56]. Consequently, predator learning of associations between
108 primary and secondary prey defences, or the subsequent retrieval of formed associations from
109 memory, might happen at a specific range of viewing distances concerning specific
110 spatiochromatic properties of prey appearance. However, the scarce empirical evidence on the
111 ecological significance of colour pattern variability in aposematic animals remains restricted to
112 investigations of colour alone and do not account for the visual acuity of ecologically relevant
113 observers and viewing distance (e.g. [57,58]).

114 Here, we examined how highly defended aposematic nudibranch species differ from
115 less well-defended species in appearance to a potential predator and if, among species, variation
116 in perceived colour patterning varies with the presence and strength of chemical defences.
117 Specifically, we hypothesised that chemical defences would correlate with increases or
118 decreases in colour pattern distinctiveness between species as perceived by a potential predator.
119 We further hypothesised that colour patterns in chemically defended species were less variable
120 than in species without chemical defences as perceived by a potential predator. To do this, we
121 modelled the visual appearance of 13 sympatric Dorid nudibranch species across multiple
122 viewing distances corresponding to the later stages of an escalating predation sequence [14,59].
123 We quantified the perception of within-species colour pattern variability using the Quantitative

124 Colour Pattern Analysis (QCPA) [60], allowing for the consideration of colour, luminance and
125 spatial vision of triggerfish (*Rhinecanthus aculeatus*). Using exploratory factor analysis, we
126 identified latent variables to compare the colour pattern appearance of individuals belonging to
127 three levels of chemical defence. Chemical defences were defined using previously published
128 assay data [61,62]. We then investigated differences in the perceived appearance and variability
129 of colour patterns for species belonging to each level of chemical defences.

130 **2. Materials and Methods**

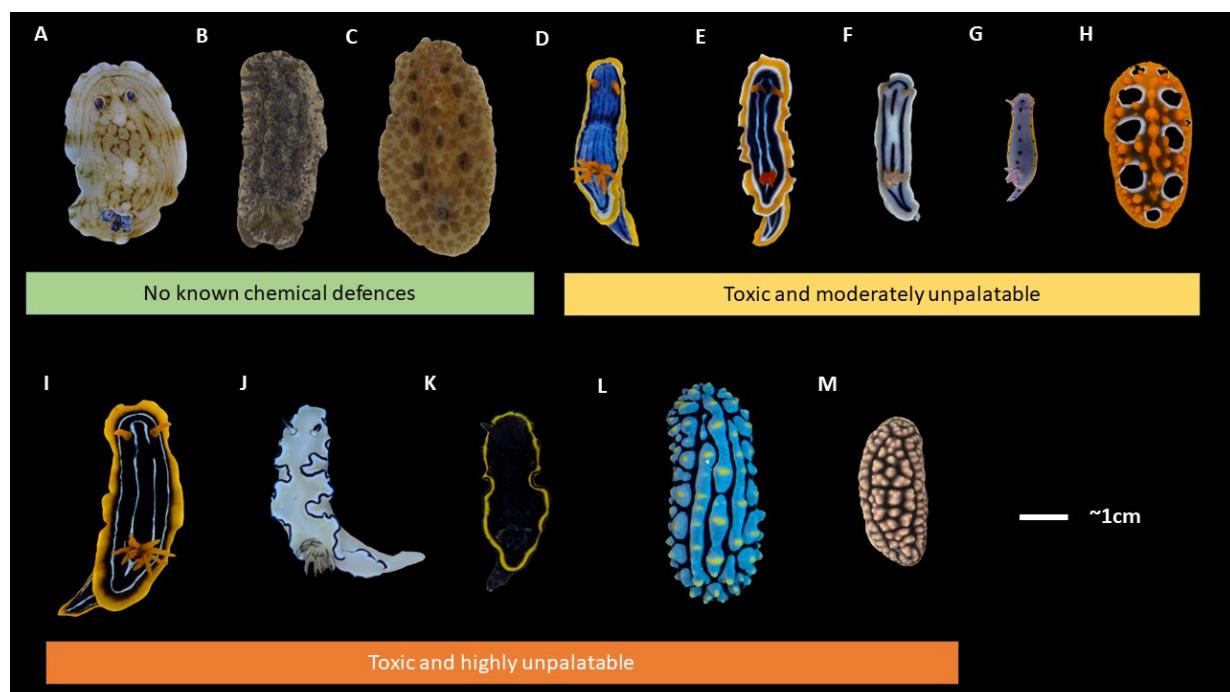
131 (a) Study species

132 We used digital photographs of 311 Dorid nudibranchs using a calibrated Olympus
133 EPL-5 with a 60mm macro lens (see the Supplement for details on camera calibration). These
134 individuals belonged to 13 species: *Aphelodoris varia* (N=31), *Chromodoris elisabethina*
135 (N=31), *Chromodoris kuiteri* (N=49), *Chromodoris lochi* (N=8), *Chromodoris magnifica*
136 (N=14); *Dendrodoris krusensterni* (N=7); *Discodoris* sp. (N=10); *Doriprismatica*
137 *atromarginata* (N=35); *Glossodoris vespa* (N=32); *Hypselodoris bennetti* (N=13); *Phyllidia*
138 *ocellata* (N=32), *Phyllidia varicosa* (N= 9), *Phyllidiella pustulosa* (N=40) (Fig. 1) from five
139 locations on the east coast of Australia: Mackay (QLD), Sunshine Coast (SE Queensland, QLD),
140 Gold Coast (SE QLD), Cook Island (New South Wales, NSW) and Nelson Bay (NSW) between
141 March 2016 and February 2021. Two out of 13 species (*Doriprismatica atromarginata*,
142 *Goniobranchus splendidus*) were sampled across sites in QLD and NSW in high numbers,
143 whereas the other species were only sampled in either NSW or QLD or with highly uneven
144 numbers between sites (Table S1). Two individuals of *Chromodoris magnifica* were provided
145 by an aquarium supplier (Cairns Marine, Pty Ltd, Cairns, QLD). These species were selected
146 as they were relatively abundant at our study sites and covered a broad range of visual
147 appearances and strengths of chemical defences. Furthermore, we have previously provided
148 data on the strength and identity of chemical defences in these species sampled from the same
149 locations as individuals from this study [61,62].

150 Most nudibranchs were photographed underwater against their natural habitat (n = 182)
151 with the camera in an Olympus PT-EP10 underwater housing and using white LED illumination
152 from a combination of VK6r and PV62 Scubalamp video lights. The remaining nudibranchs (n
153 = 129) were collected for separate studies on their chemical defences, taken back to the
154 laboratory, submerged in water in a petri dish and photographed against a white background
155 with the same camera. In the laboratory, nudibranchs were illuminated with 400nm-700nm full-

156 spectrum white LED lights. The Supplementary Information (Table S1) details collection sites
157 and dates, and camera and illumination spectra are provided in [60]. A sub-sample of these
158 images was previously used to investigate distance-dependent signalling regarding colour
159 pattern detectability and boldness [63]. Nudibranchs were collected under the Queensland
160 General Fisheries Permit 183990, 205961 and NSW Scientific Collection Permit P16/0052-1.0.

161 (b) Image analysis


162 We used ImageJ [64] and the MICA toolbox [65] to manually segment the images into
163 regions of interest (ROI). This was done by outlining and selecting the animal from its
164 background and defining a size standard. All nudibranchs were aligned head up in the image
165 before analysis with QCPA [60], with the rotation angle determined by the rotation, causing
166 most of each animal to be aligned vertically. To analyse the nudibranch colour patterns, we
167 used the visual system parameters of a trichromatic triggerfish, *Rhinecanthus aculatus* [66–71],
168 a common shallow reef inhabitant found throughout the Indo-Pacific, which feeds on
169 invertebrates, algae, and detritus [72].

170 We analysed colour patterns for viewing distances of 2cm and 10cm, using the
171 estimated spatial acuity of the triggerfish of three cycles per degree [66,70]. A viewing distance
172 of 2cm represents the spatiochromatic information available to a triggerfish upon immediate
173 contact with a nudibranch. A viewing distance of 10cm more likely represents visual
174 information available to a triggerfish at a short distance where a subjugation attempt has not
175 yet been made. Following acuity modelling, the images were processed with a Receptor Noise
176 Limited (RNL) ranked filter (falloff: 3, radius: 5, repetition: 5) and clustered using RNL
177 clustering with a colour threshold of $2 \Delta S$ [71,73] and a luminance contrast threshold of $4 \Delta S$
178 [74] for all analyses except the local edge intensity analysis (LEIA) which does not require
179 RNL clustering but is recommended to be subjected to RNL ranked filtering [60]. We
180 calculated receptor-specific Weber fractions based on a relative photoreceptor abundance of
181 1:2:2:2 (sw:mw:lw:dbl) and photoreceptor noise of 0.05, resulting in 0.07:0.05:0.05:0.05.

182 QCPA analysis was achieved using a custom batch script [75] running on high-
183 performance computing (HPC) infrastructure. We analysed each animal colour pattern using:
184 1) colour adjacency analysis (CAA), which describes pattern geometry in a segmented image;
185 2) visual contrast analysis (VCA), which describes pattern boldness based on chromatic and
186 spatial pattern element properties in a clustered image; 3) boundary strength analysis (BSA),
187 which describes the colour and luminance contrast of boundaries between pattern elements at

188 the scale of an animal in an unclustered image; and 4) local edge intensity analysis (LEIA)
189 which describes the strength of colour and luminance contrast at the scale of an edge-detecting
190 receptive field in an unclustered image. This resulted in a highly descriptive array of 157 colour
191 pattern statistics for each animal. A detailed description of each pattern statistic can be found
192 in [60]. Here, we use CAA, VCA, BSA, and LEIA as prefixes for each type of analysis.

193 All pattern analyses, except LEIA, used a segmented image and measured transitions
194 between pixels along vertical (along body axis) and horizontal (perpendicular to body axis)
195 sampling transects in a transition matrix. Statistics ending with 'vrt' or 'hrz' are the vertical
196 (i.e., up-down in image) and horizontal version (analysing the respective transition matrix only)
197 of their respective statistic (analysing the full transition matrix) and can represent differential
198 directionality sensitivity in the visual system of an observer and directionality in patterns such
199 as stripes [76–78]. LEIA does not use a transition matrix due to the lack of image segmentation
200 but equally discriminates between horizontal and vertical edge contrast by describing the shape
201 of a histogram drawn from edge contrast measurements in a given image or region of interest
202 [60].

203
204 **Figure 1.** Representative photographs of the 13 species used in this study grouped into categories of
205 chemical defences based on whole-body extract assays with palaemon shrimp to assess unpalatability (1-
206 Effective Dose, ED₅₀) and brine shrimp to assess toxicity (1-Lethal Dose, LD₅₀) values as per [61,62]: A)
207 *Aphelodoris varia*; B) *Dendrodoris krusensterni*; C) *Discodoris sp*; D) *Chromodoris elisabethina*; E)
208 *Chromodoris magnifica*; F) *Chromodoris lochi*; G) *Hypselodoris bennetti*; H) *Phyllidia ocellata*; I)
209 *Chromodoris kuiteri*; J) *Doriprismatica atromarginata*; K) *Glossodoris vespa*; L) *Phyllidia varicosa*; M)
210 *Phyllidiella pustulosa*.

211 (c) Chemical defences

212 To categorise the level of chemical defences for each species, we used previously
213 published data on the deterrent properties from feeding rejection assays with rockpool shrimp
214 (*Palaemon serenus*), which demonstrate similar results to assays performed with triggerfish
215 and toadfish [61] and toxicity assays with brine shrimp [61,62]. Assays were conducted by
216 adding extracted nudibranch compounds to food pellets made from squid mantle at increasing
217 concentrations. Effective dose (ED₅₀) and lethal dose (LD₅₀) values in [61,62] were calculated
218 based on the concentration that elicited a rejection response in, or mortality of, at least 50% of
219 the shrimp. For this study, we averaged ED₅₀ and LD₅₀ values from [61] when multiple extracts
220 from the same species were reported. We considered only whole-body extracts (rather than
221 mantle-only values) to make assay values comparable between species. We then subtracted
222 these values from 1 so that values close to 0 were the most palatable/non-toxic, and values close
223 to 1 were the least palatable/ toxic (Table S2). Although *C. magnifica* was not included in [61],
224 [79] demonstrated that this species also stores latrunculin A as the sole defensive compound in
225 the mantle rim, and this is at concentrations between those found in *C. elisabethina* and *C*
226 *kuiteri* [80]. We, therefore, set unpalatable ED₅₀ values as the average from these two sister
227 species for *C. magnifica*. Lastly, assay data for *G. vespa* is presented in [62].

228 Like Winters et al. [61], we binned the species into categories indicating chemical
229 defence strength to account for our dataset's highly uneven spread in toxicity and palatability
230 values and the difference in sampling levels between colour pattern data and chemistry data.
231 Our categorisation differed from that of Winters et al. [61] in that we based our categories on
232 the assumption of a sigmoidal dose-effect response similar to a psychometric curve. Species
233 were allocated in the following classes (Fig. 1), where we treated NR values from [61] as 0:

234 1.) Not defended ($1 - ED_{50} / LD_{50} = 0$)
235 2.) Toxic and moderately unpalatable ($0.25 < 1 - ED_{50} > 0.74$ and $LD_{50} > 0$),
236 3.) Toxic and highly unpalatable ($0.74 < 1 - ED_{50}$ and $LD_{50} > 0$).

237 The threshold to distinguish between medium and high levels of unpalatability was 0.74 ,
238 representing the median $1 - ED_{50}$ value of chemically defended species while also being very
239 close to the point-of-inflexion in a sigmoidal response curve. Only 3 out of 10 species with
240 chemical defences had $1 - LD_{50}$ values below 0.5, yet 6 out of 10 had values above 0.80.
241 Therefore, we did not distinguish between different toxicity levels in our dataset. Treating
242 toxicity as present/absent and distinguishing between medium and high levels of unpalatability

243 ensured at least three species in each category, allowing the investigation of differences in
244 animal colouration between variable levels of chemical defences.

245 (d) Statistical analysis

246 Our study considers many of the more commonly found Dorid nudibranchs in the study
247 sites (e.g. [22–24]). To analyse the large dataset derived from the QCPA analysis, we only kept
248 images that did not produce any missing value for any pattern metrics. VCA, CAA, and BSA
249 metrics can produce NaN or infinite values if a colour pattern has less than two colour pattern
250 elements following RNL clustering [60]. LEIA metrics do not suffer from this limitation. Nine
251 available images from *Discodoris* sp were rejected from analysis due to this constraint, resulting
252 in the reported sample size.

253 We then applied a Latent variable Exploratory Factor Analysis (EFA) with the R package
254 *psych* using the factoring method of Ordinary Least Squares ‘ols’, and the orthogonal rotation
255 ‘varimax’. To prepare the dataset for the EFA, we first filtered the number of highly correlated
256 QCPA metrics by keeping only those that were less correlated than 0.6 (Pearson correlation),
257 which reduced their number from 157 to 15. We then run the factor analysis based on three
258 factors. The number of factors was selected by comparing the eigenvalues calculated from the
259 original dataset to the median eigenvalues extracted from 10,000 randomly generated datasets
260 with the same number of rows and columns of the original data. We selected factors with
261 eigenvalues greater than the median of the eigenvalues from the simulated data. We also
262 computed bootstrapped confidence intervals of the loadings by iterating the factor analysis 1000
263 times.

264 Looking at the loadings of each factor, we can identify what latent variable they
265 describe. While it would be possible to discuss each factor extensively, we keep their
266 description to loadings of +/- 0.4 (out of 0 -1) to capture their main properties. Due to data
267 filtering for metrics less correlated than 0.6, the QCPA parameter listed for a given loading is
268 likely synonymous with various other parameters in our 157-dimension colour pattern space
269 (Table S5). Therefore, the precise wording to describe each factor can vary depending on which
270 colour pattern metrics are put into focus—for example, *BSA.BMSL.Vrt* is positively associated
271 with factor 1 (Fig. 2) but is simply a placeholder for *BSA.BMSL* (both considering horizontal
272 and cumulative transitions) as it is 92-96% correlated with these metrics and 97% correlated
273 with *BSA.BML* (Table S2). Unlike *BSA.BMSL* (which describes boundary contrast using the
274 mean RNL luminance contrast between colour pattern elements relative to the fraction of the

275 respective pattern border), *VCA.BML* captures boundary contrast calculated by the Weber
276 contrast of cone catches in the luminance channel between colour pattern elements relative to
277 the fraction of a given boundary type. Thus, it would be more appropriate to say that animals
278 with high values of factor 1 are associated with stronger achromatic colour pattern boundary
279 contrast rather than explicitly referring to the randomly retained value only. A complete list of
280 all colour pattern parameters with more than 0.6 Pearson correlation with parameters associated
281 with factors 1-3 shown in Fig. 2 can be found in the Supplement (Table S2).

282 The scores of the factors extracted from the EFA were then used to implement three
283 phylogenetic, distributional linear mixed models to compare the colour patterns of nudibranchs
284 with different levels of chemical defences. Models were run in R v 4.1.2 (<https://www.r-project.org/>) using the *brms* package [81], which fits Bayesian models using Stan (<https://mc-stan.org/>). To account for the phylogenetic dependency of closely related species, all models
285 included the phylogenetic tree of the 13 species of nudibranchs (Fig. S1), with the tree from [82]
286 pruned and missing species added according to their taxonomic classification in the World
287 Register of Marine Species [83]. The phylogenetic model was implemented following the
288 guidelines of the online *brms* vignette
289 (https://cran.r-project.org/web/packages/brms/vignettes/brms_phylogenetics.html) based on de
290 Villemeruil & Nakagawa [84].

293 The first model investigated differences in scores for latent *factor 1* between nudibranchs
294 with different levels of chemical defences (see chemical defences section) using a Student
295 distribution. The model estimated the effect of the main categorial predictors level of *chemical*
296 *defence* (undefended; toxic and moderately unpalatable; toxic and highly unpalatable) and
297 *observer distance* (2 cm and 10 cm) and their interaction on both the mean and the residual
298 standard deviation of the response distribution. To account for repeated measurements of each
299 species, we also included *species ID* as a random intercept to the model. We further included
300 random slopes over distance because their relationship with the value of the response *factor 1*
301 varied among species. The second and third models were identical to the first but used *factor 2*
302 and *factor 3* as response variables.

303 All models were fitted using weakly informative prior distributions (normal with mean
304 = 0 and sd = 5 for intercept and coefficients, exponential (1) for standard deviations). Their
305 performance was evaluated using posterior predictive model checking, which compares model
306 predictions with observed data to assess overall model fit. We ran four Markov-Chain-Monte-

307 Carlo (MCMC) chains for each model and obtained coefficient estimates from 16,000 post-
308 warm-up samples. All model parameters reached reliable conversion indicators [85]: A Monte
309 Carlo standard error smaller than 5% of the posterior standard deviation, an effective posterior
310 sample size greater than 10% of the total sample size, and a \hat{R} statistic value smaller than 1.01.

311 We present the medians of latent factors values and their 95% credible intervals of the
312 posterior distributions of fitted values for the population average, obtained from the joint
313 posterior distributions of the model parameters for the combination of chemical defences and
314 distance [85,86] (Fig. 2). The same posterior distribution of fitted values was used to compute
315 pairwise differences and their 95% credible intervals between all the combinations of the same
316 two categorical predictors using the ‘emmeans’ R package [87]. To compare variances of
317 responses between all predictor groups, we also computed the posterior distribution of all
318 pairwise differences of the residual standard deviation on the original scale (back-transformed
319 from the log scale). The effect size of pairwise differences increases with increasing deviation
320 of such differences from zero, and the robustness of the result increases with decreasing degree
321 of overlap of the 95% Credible Intervals (CIs) with zero.

322 3. Results

323 We identified three latent factors describing overall differences in colour pattern appearance to
324 a triggerfish (*R. aculeatus*). We describe each factor at 2cm and 10cm, respectively.

325 While not intended to identify a maximal amount of variability in colour pattern variation
326 in our dataset, the three factors still explain 38% of the total variation (factor 1: 14%; factor 2:
327 13%; factor 3: 11%) (Fig 2).

328 (a) Factor 1: Colour patterns with high achromatic contrast have low colour contrast

329 Contrasts [difference (+- 95% CI)] between groups of chemical defences indicate that toxic
330 species with high levels of unpalatability differed in appearance from toxic species with
331 moderate levels of unpalatability (Fig. 2b, Table S3). However, undefended species did not
332 differ from chemically defended species for factor 1. At a 2cm viewing distance, undefended
333 species are not different in appearance from toxic and highly unpalatable species (0.99 (-2.31 /
334 0.31)). In contrast, toxic and moderately defended species have a lower score (-1.23 (-1.74 / -
335 0.70)) for factor 1 compared to highly unpalatable toxic species (Fig. 2b). This is true at
336 immediate contact between the triggerfish and prey at 2cm, as well as at 10cm (undefended vs.
337 toxic and highly unpalatable: -0.60 (-2.00 / 0.81); toxic and medium unpalatable vs. toxic and

338 highly unpalatable: -1.01 (-1.67 / -0.33)). Toxic animals with medium levels of unpalatability
339 did not differ from undefended species regarding factor 1 at either 2cm (0.21 (-1.10 / 1.56) or
340 10cm (0.40 (-1.09 / 1.82). We found no indication of differences in colour pattern variability
341 in species of different groups as captured by factor 1 (Table S4).

342 Factor 1 describes 14% of colour pattern variability in our dataset. It is associated with
343 high loadings of luminance contrast between colour patches as a function of their patch size,
344 which VCA describes. We can see high loadings for mean and standard deviation variation
345 measures of pattern contrast measured as cone catches of the luminance channel (e.g. *VCA.CV*)
346 and using the RNL model (e.g. *VCA.MSL*). We also find high luminance pattern contrast
347 captured by factor 1 as an expression of the boundary contrast (BSA), which refers to contrast
348 scaled by the length of boundaries between colour patches rather than their size. Given that
349 larger patches tend to have longer boundaries, it is not surprising that we find similar loadings
350 for measures relative to either. The negative loadings for chromatic colour pattern contrast (e.g.
351 *VCA.MDmax*) indicate that patterns with strong and variable achromatic contrast tend to have
352 a reduced level of average chromaticity contrast. High factor values would indicate the presence
353 of black and white, pale hues or long wavelength colours that appear of low chromaticity to the
354 visual system of a triggerfish. Therefore, our results indicate higher levels of achromatic
355 contrast and lower levels of chromatic contrast present in the colour patterns of highly
356 unpalatable toxic species compared to the other groups, with the increase in achromatic contrast
357 coinciding with more prominent relatively achromatic colour pattern elements.

358 (b) Factor 2: Highly contrasting colour patterns are more regular and vertically elongated

359 Contrasts [difference (+- 95% CI)] between the different groups of chemical defences indicate
360 that chemically defended species do not have higher scores for factor 2 than undefended species
361 (Fig. 2d, Table S5). There was also no difference in factor values between toxic and medium
362 unpalatable animals and toxic and highly unpalatable animals at either 2cm (0.05 (-0.84 / 0.94)
363 or 10cm (0.06 (-0.91 / 0.92)). However, at 2cm viewing distance, undefended species have
364 more variable colour patterns than toxic and moderately unpalatable species (0.40 (0.14 / 0.74)
365 as well as toxic and highly unpalatable species (0.31 (0.06 / 0.67)) (Table S6).

366 Factor 2 explains 13% of colour pattern variability in our dataset. It describes the
367 relationship between decreases in the aspect ratio of colour patterns (*CAA.Asp*) coinciding with
368 decreases in average patch size (*CAA.Pt*) as well as decreases in the average luminance contrast
369 (e.g. *VCA.ML*) and its variability (e.g., *VCA.sL*) between patches in the horizontal axis and

370 increases in various measures of chromatic and achromatic colour pattern contrast variability
371 relative to the mean contrast in a given colour pattern (e.g. *VCA.CVSL*, *VCA.CVS*) as well as
372 increases in colour pattern transition regularity (e.g., *CAA.Qt*).

373 **(c) Factor 3: Colour patterns with variable edge contrast have reduced spatial evenness**

374 Contrasts [estimate (+- 95% CI)] calculated between the different groups of chemical defences
375 indicate no overall differences between groups (Fig. 2, Table S7). This is the case for both 2cm
376 (undefended vs. toxic and medium unpalatable: 0.05 (-1.16 / 1.14); undefended vs. toxic and
377 highly unpalatable: -0.10 (-1.29 / 1.03); toxic and medium unpalatable vs. toxic and highly
378 unpalatable: -0.16 (-0.77 / 0.46)). We found no indication of differences in colour pattern
379 variability in species of different groups captured by factor 3 (Table S8).

380 Factor 3 explains 11% of colour pattern variability in our dataset. It describes positive
381 changes in colour (e.g. *Col.kurtosis*) and luminance (e.g. *Lum.kurtosis*) contrast variability
382 relative to the average contrast in an animal coinciding with reduced colour pattern evenness
383 (e.g. *CAA.Qc*) as well as decreased average luminance contrast of boundaries between colour
384 pattern elements (e.g. *Lum.mean*) and decreased overall colour pattern complexity (*CAA.C*).

Figure 2: Detailed visual representation of the loadings of factor 1 (A), factor 2 (C) and factor 3 (E). Greyed-out factor loadings indicate colour pattern descriptors with minor contributions to each factor. Factor values for each group with different strength of chemical defences are given for factor 1 (B), factor 2 (D) and factor 3 (F). Estimates are given for 2cm viewing distance (left panel half, white) and 10cm (right panel half, grey). Coloured points represent repeated observations for each species ($N = 13$). Black vertical bars represent group predicted medians and 95% compatibility intervals (CIs) derived from the joint posterior distributions of the model

386 **4. Discussion**

387 We identified three latent variables that captured differences in appearance between
388 distinct differences in colour patterns between our three levels of chemically defended groups
389 of nudibranch molluscs (Fig. 2). Our analysis captures a significant proportion of variability in
390 the dataset (38%) and indicates substantial colour pattern variation among sampled species
391 across multiple viewing distances as perceived by a potential predator (Fig. 2). We found
392 differences in appearance both between chemically defended and undefended species and also
393 between toxic/moderately unpalatable species and toxic/highly unpalatable species. These
394 differences in colour patterns between species belonging to different levels of chemical
395 defences are likely visible to a potential predator at close contact (2cm) and from further away
396 (10cm) and might be used by predators to infer the presence and strength of underlying chemical
397 defences based on the general appearance of prey animals.

398 The colour patterns of chemically defended species were less variable than those of
399 undefended species (Fig. 2d, Table S3). Specifically, the variability of colour and luminance
400 contrast and the spatial arrangement of colour pattern elements was reduced in species with
401 chemical defences compared to those without. Furthermore, the colour patterns of toxic species
402 with high levels of unpalatability were different in appearance from toxic species with moderate
403 levels of unpalatability (Fig 2b, Table S3). Specifically, species with high levels of
404 unpalatability showed increased levels of achromatic contrast between colour pattern elements
405 when compared to more palatable toxic species. This increase in achromatic contrast in highly
406 unpalatable species coincides with a decrease in the mean level of chromatic contrast relative
407 to toxic species with lower levels of unpalatability. Overall, the differences in the visual
408 appearance to a potential predator between species of nudibranchs with different levels of
409 chemical defences describe general colour pattern properties (such as pattern regularity and
410 spectral contrast) associated with aposematic signalling (Fig. 2). Therefore, in agreement with
411 existing literature (e.g. [2,88]), we find that Dorid nudibranch colour patterns are highly diverse
412 and that the presence of chemical defences correlates with the presence of boldly contrasting
413 colour patterns.

414 The observed differences in animal colouration between groups of species with varying
415 levels of chemical defences generally agree with and can be interpreted as indicating selective
416 factors driving between-species pattern diversity in conjunction with the presence of secondary
417 defences. Such drivers of phenotypic diversity can favour distinctiveness among chemically

418 defended species, either as a means to defend against Batesian mimicry (e.g. [38]), as well as
419 the potential need to optimise signalling efficacy across a complex, spatially and temporally
420 variable biotic and abiotic environment (e.g. [5,17,21,22,25,89,90]). Thus, our results agree
421 with predictions made by assuming facilitated niche expansion and subsequent speciation and
422 adaptation to visually diverse habitats [25,34–36] as potential drivers of phenotypic diversity
423 in chemically defended species.

424 Our results further suggest the general presence of secondary defences to coincide with
425 reduced colour pattern variability among species when viewed up close by a potential predator
426 (Fig. 2e, Table S3). Reduced variability among chemically defended species may suggest the
427 presence of broadly generalisable, qualitative signalling properties underlying aposematic
428 signalling in the species considered in this study. However, the presence of distinct colour
429 pattern appearance at a quantitative scale (i.e., comparing species with different levels of
430 chemical defences) would align with chemical defences, favouring visual distinctiveness from
431 co-occurring Batesian or quasi-Batesian mimics (e.g. [38]). In other words, considering colour
432 patterns as complex, multicomponent signals, it is possible to think of certain colour pattern
433 properties indicating the qualitative presence of secondary defences ('is the animal defended
434 or not'). In contrast, others indicate the quantitative presence of secondary defences ('how
435 potent are the defences'), thus allowing different parts of simultaneously perceived visual
436 information elicited by animal colouration to be under seemingly opposing selection pressures
437 towards and away from general resemblance. In addition to these perceptual modalities being
438 realised simultaneously, trade-offs between selective pressures for and against multiple,
439 seemingly contractionary signalling properties of colour patterns can be mediated by distance-
440 dependent signalling (e.g. [63,94]). Our results suggest both to be possible, with colour pattern
441 variability only differing between species with and without chemical defences at 2cm viewing
442 distance but not 10cm. In contrast, toxic and highly unpalatable species differ in their
443 appearance from toxic and moderately defended species as well as undefended ones at 2cm and
444 10cm.

445 Phenotypic diversity within (e.g. polymorphism and polyphenism) and among
446 chemically defended species is generally described as a detriment to predator learning, with
447 selection towards resemblance underlying purifying selection at the species level (e.g. [10,14–
448 16]) and Mullerian mimicry at the community level (e.g. [7,32,91,92]). However, phenotypic
449 diversity among chemically defended species might, contrary to general assumptions, benefit
450 predator learning as it can lead to more stable, generalisable associations [93] and, thus, provide

451 mutual benefits among chemically defended species considered in the context of qualitative
452 and quantitative signal honesty and mimicry. Experimental investigations into the importance
453 of signal variability for avoidance learning in non-human animals would be of great interest for
454 future research as it, in turn, would inform our assumptions on the mechanisms underlying the
455 evolution and maintenance of colour pattern diversity within and among chemically defended
456 species.

457 Our methodology is tailored to reflect the fact that colour pattern elements and
458 signalling properties do not exist in isolation, thus warranting an ‘agnostic’ approach to deduce
459 correlations between predictor and dependent variables in the context of a complex trait
460 described by a high-dimensional dataset (i.e., colour pattern space) [55,60,95]. Therefore, even
461 if specific colour pattern features might be under purifying selection among certain species (e.g.,
462 as a result of mimicry), this was not captured by latent variables capturing overarching
463 differences between individuals and species in the data set. Our results indicate that aposematic
464 species’ overall colour pattern phenotype might indeed be selected for less variability when
465 compared to that of undefended species. However, our methodology does not address the
466 possibility that specific colour pattern elements and signalling properties among aposematic
467 species and putative mimics could be under purifying selection. Examples of this have been
468 documented both within and between species of nudibranchs [3,47] and could apply to our
469 dataset with representatives of a putative yellow-rim mimicry ring [96] (Fig. 1). This
470 consideration is of broad relevance across all studies using methodology describing the
471 cumulative colour pattern appearance of an animal, rather than specific colour pattern elements
472 or body areas.

473

474 **Data accessibility**

475 The data can be accessed on UQ’s e-space: <https://doi.org/10.48610/a596710>

476

477 **Authors’ contributions**

478 CPvdB: Conceptualisation, data curation, formal analysis, funding acquisition, investigation,
479 methodology, project administration, resources, software, validation, visualisation, writing –
480 original draft, writing – review & editing. MS: Data analysis, writing - review and editing. JAE:

481 project funding acquisition, writing - review and editing. BRD, CS, NW: investigation. KLC:
482 Funding acquisition, project administration, resources, validation, writing - review & editing.

483

484 **Competing interests**

485 We declare we have no competing interests.

486 **Acknowledgements**

487 We would like to thank various volunteers for assistance with image analysis, the High-
488 Performance Computing (HPC) infrastructure at UQ (Wiener & Awoonga systems) and the
489 infrastructure provided by Simone Blomberg, which contributed to the computing of image
490 statistics.

491

492 **Funding**

493 This work was funded by the Australian Research Council (FT190199313 awarded to KLC and
494 DP180102363 awarded to JAE), Holsworth Wildlife Research Endowment (two grants
495 awarded to CPvdB), the Australasian Society for the Study of Animal Behaviour (research
496 grant awarded to CPvdB), a research grant from the American Society of Conchologist
497 (awarded to CPvdB) and a Swiss National Research Foundation Postdoc.Mobility Fellowship
498 (P500PB_211070) awarded to CPvdB. MS was supported by a MSCA 2021 postdoctoral
499 fellowship (101066328) funded via the Engineering and Physical Sciences Research Council
500 [grant number EP/X020819/1].

501

502 **References**

- 503 1. Poulton EB. 1890 *The Colours of Animals*. Kegan Paul, Trench & Trubner.
- 504 2. Cortesi F, Cheney KL. 2010 Conspicuousness is correlated with toxicity in marine
505 opisthobranchs. *J. Evol. Biol.* **23**, 1509–18. (doi:10.1111/j.1420-9101.2010.02018.x)
- 506 3. Winters AE, Wilson NG, van den Berg CP, How MJ, Endler JA, Marshall NJ, White AM,
507 Garson MJ, Cheney KL. 2018 Toxicity and taste: unequal chemical defences in a mimicry
508 ring. *Proc. R. Soc. B Biol. Sci.* **285**, 20180457. (doi:10.1098/rspb.2018.0457)
- 509 4. Arias M, Mappes J, Théry M, Llaurens V. 2016 Inter-species variation in unpalatability
510 does not explain polymorphism in a mimetic species. *Evol. Ecol.* **30**, 419–433.

511 (doi:10.1007/s10682-015-9815-2)

512 5. Briolat ES, Burdfield-Steel ER, Paul SC, Katja HR, Seymour BM, Stankowich T,
513 Stuckert AMM. 2019 Diversity in warning coloration: selective paradox or the norm? *Biol.
514 Rev.* **94**, 388–414. (doi:10.1111/brv.12460)

515 6. Ruxton GD, Allen WL, Sherratt TN, Speed MP. 2018 *Avoiding Attack*. New York: Oxford
516 University Press. (doi:10.1093/oso/9780199688678.001.0001)

517 7. Franks DW, Ruxton GD, Sherratt TN. 2009 Warning signals evolve to disengage batesian
518 mimics. *Evolution (N. Y.)*. **63**, 256–267. (doi:10.1111/j.1558-5646.2008.00509.x)

519 8. Borer M, Van Noort T, Rahier M, Naisbit RE. 2010 Positive frequency-dependent
520 selection on warning color in alpine leaf beetles. *Evolution (N. Y.)*. **64**, 3629–3633.
521 (doi:10.1111/j.1558-5646.2010.01137.x)

522 9. Endler JA, Greenwood JJD. 1988 Frequency-dependent predation, crypsis and
523 aposematic coloration. *Philos. Trans. R. Soc. London. Ser. B Biol. Sci.* **319**, 505–523.
524 (doi:10.1098/rstb.1988.0062)

525 10. Endler JA, Mappes J. 2004 Predator Mixes and the Conspicuousness of Aposematic
526 Signals. *Am. Nat.* **163**, 532–547. (doi:10.1086/382662)

527 11. Mallet JLB, Barton NH. 1989 Strong Natural Selection in a Warning-Color Hybrid Zone.
528 *Evolution (N. Y.)*. **43**, 421. (doi:10.2307/2409217)

529 12. Sherratt TN, Speed MP, Ruxton GD. 2004 Natural selection on unpalatable species
530 imposed by state-dependent foraging behaviour. *J. Theor. Biol.* **228**, 217–226.
531 (doi:10.1016/j.jtbi.2003.12.009)

532 13. Brower LP, Ryerson WN, Coppinger LL, Glazier SC. 1968 Ecological Chemistry and the
533 Palatability Spectrum. *Science*. **161**, 1349–1350. (doi:10.1126/science.161.3848.1349)

534 14. Endler JA. 1991 Interactions between predators and prey. In *Behavioural Ecology* (eds
535 JR Krebs, NB Davies), pp. 169–196. Oxford: Blackwell Scientific.

536 15. Karpestam E, Merilaita S, Forsman A. 2014 Natural levels of colour polymorphism
537 reduce performance of visual predators searching for camouflaged prey. *Biol. J. Linn. Soc.*
538 **112**, 546–555. (doi:10.1111/bij.12276)

539 16. Mappes J, Marples N, Endler JA. 2005 The complex business of survival by aposematism.
540 *Trends Ecol. Evol.* **20**, 598–603. (doi:10.1016/j.tree.2005.07.011)

541 17. Speed MP, Turner JRG. 1999 Learning and memory in mimicry: II. Do we understand
542 the mimicry spectrum? *Biol. J. Linn. Soc.* **67**, 281–312. (doi:10.1006/bijl.1998.0310)

543 18. Turner JRG. 1981 Adaptation and Evolution in *Heliconius*: A Defense of NeoDarwinism.
544 *Annu. Rev. Ecol. Syst.* **12**, 99–121. (doi:10.1146/annurev.es.12.110181.000531)

545 19. Sherratt TN. 2002 The coevolution of warning signals. *Proc. R. Soc. B Biol. Sci.* **269**,
546 741–746. (doi:10.1098/rspb.2001.1944)

547 20. Summers K, Speed MP, Blount JD, Stuckert AMM. 2015 Are aposematic signals honest?
548 A review. *J. Evol. Biol.* **28**, 1583–1599. (doi:10.1111/jeb.12676)

549 21. Cadena V, Rankin K, Smith KR, Endler JA, Stuart-Fox D. 2018 Temperature-induced
550 colour change varies seasonally in bearded dragon lizards. *Biol. J. Linn. Soc.* **123**, 422–
551 430. (doi:10.1093/biolinnean/blx152)

552 22. Larkin MF, Smith SDA, Willan RC, Davis TR. 2018 Diel and seasonal variation in
553 heterobranch sea slug assemblages within an embayment in temperate eastern Australia.
554 *Mar. Biodivers.* **48**, 1541–1550. (doi:10.1007/s12526-017-0700-9)

555 23. Schubert J, Smith SDA. 2020 Sea slugs—“rare in space and time”—but not always.
556 *Diversity* **12**, 1–14. (doi:10.3390/d12110423)

557 24. Smith SDA, Davis TR. 2019 Slugging it out for science: volunteers provide valuable data
558 on the diversity and distribution of heterobranch sea slugs. *Molluscan Res.* **39**, 214–223.
559 (doi:10.1080/13235818.2019.1594600)

560 25. Ehrlich PR, Raven PH. 1964 Butterflies and Plants: A Study in Coevolution. *Evolution*
561 (N. Y.) **18**, 586. (doi:10.2307/2406212)

562 26. Suchan T, Alvarez N. 2015 Fifty years after Ehrlich and Raven, is there support for plant-
563 insect coevolution as a major driver of species diversification? *Entomol. Exp. Appl.* **157**,
564 98–112. (doi:10.1111/eea.12348)

565 27. Broom M, Higginson AD, Ruxton GD. 2010 Optimal investment across different aspects
566 of anti-predator defences. *J. Theor. Biol.* **263**, 579–586. (doi:10.1016/j.jtbi.2010.01.002)

567 28. Balogh ACV, Gamberale-Stille G, Leimar O. 2008 Learning and the mimicry spectrum:
568 from quasi-Bates to super-Müller. *Anim. Behav.* **76**, 1591–1599.
569 (doi:10.1016/j.anbehav.2008.07.017)

570 29. Arias M, Davey JW, Martin S, Jiggins C, Nadeau N, Joron M, Llaurens V. 2020 How do
571 predators generalise warning signals in simple and complex prey communities? Insights
572 from a videogame. *Proc. R. Soc. B Biol. Sci.* **287**. (doi:10.1098/rspb.2020.0014)

573 30. Howse PE, Allen JA. 1994 Satyric mimicry: the evolution of apparent imperfection. *Proc.*
574 *R. Soc. London. Ser. B Biol. Sci.* **257**, 111–114. (doi:10.1098/rspb.1994.0102)

575 31. Stevens M. 2007 Predator perception and the interrelation between different forms of
576 protective coloration. *Proc. R. Soc. B Biol. Sci.* **274**, 1457–64.
577 (doi:10.1098/rspb.2007.0220)

578 32. Dalziell AH, Welbergen JA. 2016 Mimicry for all modalities. *Ecol. Lett.* **19**, 609–619.

579 (doi:10.1111/ele.12602)

580 33. Mallet J, Gilbert LE. 1995 Why are there so many mimicry rings? Correlations between
581 habitat, behaviour and mimicry in *Heliconius* butterflies. *Biol. J. Linn. Soc.* **55**, 159–180.
582 (doi:10.1111/j.1095-8312.1995.tb01057.x)

583 34. Arbuckle K, Speed MP. 2015 Antipredator defenses predict diversification rates. *Proc.*
584 *Natl. Acad. Sci. U. S. A.* **112**, 13597–13602. (doi:10.1073/pnas.1509811112)

585 35. Arbuckle K, Brockhurst M, Speed MP. 2013 Does chemical defence increase niche space?
586 A phylogenetic comparative analysis of the Musteloidea. *Evol. Ecol.* **27**, 863–881.
587 (doi:10.1007/s10682-013-9629-z)

588 36. Arbuckle K, Harris RJ. 2021 Radiating pain: venom has contributed to the diversification
589 of the largest radiations of vertebrate and invertebrate animals. *BMC Ecol. Evol.* **21**, 1–
590 12. (doi:10.1186/s12862-021-01880-z)

591 37. Zahavi A. 1993 The fallacy of conventional signalling. *Philos. Trans. - R. Soc. London,*
592 *B* **340**, 227–230. (doi:10.1098/rstb.1993.0061)

593 38. Merilaita S, Ruxton GD. 2007 Aposematic signals and the relationship between
594 conspicuousness and distinctiveness. *J. Theor. Biol.* **245**, 268–277.
595 (doi:10.1016/j.jtbi.2006.10.022)

596 39. Polnaszek TJ, Rubi TL, Stephens DW. 2017 When it's good to signal badness: using
597 objective measures of discriminability to test the value of being distinctive. *Anim. Behav.*
598 **129**, 113–125. (doi:10.1016/j.anbehav.2017.05.009)

599 40. Sherratt TN. 2002 The evolution of imperfect mimicry. *Behav. Ecol.* **13**, 821–826.
600 (doi:10.1093/beheco/13.6.821)

601 41. Sherratt TN, Beatty CD. 2003 The evolution of warning signals as reliable indicators of
602 prey defense. *Am. Nat.* **162**, 377–389. (doi:10.1086/378047)

603 42. Turner JRG. 1977 *Butterfly Mimicry: The Genetical Evolution of an Adaptation*. In
604 *Evolutionary Biology*, pp. 163–206. Boston, MA: Springer US. (doi:10.1007/978-1-4615-
605 6953-4_3)

606 43. Fisher RA. 1958 *The genetical theory of natural selection*. 2nd rev. e. New York: Dover
607 Publications.

608 44. Banich MT, Caccamise D. 2010 *Generalisation of knowledge: multidisciplinary*
609 *perspectives*. New York: Psychology Press.

610 45. Gamberale G, Tullberg BS. 1996 Evidence for a peak-shift in predator generalisation
611 among aposematic prey. *Proc. Biol. Sci.* **263**, 1329–1334. (doi:10.1098/rspb.1996.0195)

612 46. Rowe C. 1999 Receiver psychology and the evolution of multicomponent signals. *Anim.*

613 *Behav.* **58**, 921–931. (doi:10.1006/anbe.1999.1242)

614 47. Winters AE, Green NF, Wilson NG, How MJ, Garson MJ, Marshall NJ, Cheney KL. 2017
615 Stabilising selection on individual pattern elements of aposematic signals. *Proc. R. Soc.*
616 *B Sci.* **284**.

617 48. Hebets EA, Papaj DR. 2005 Complex signal function: Developing a framework of testable
618 hypotheses. *Behav. Ecol. Sociobiol.* **57**, 197–214. (doi:10.1007/s00265-004-0865-7)

619 49. Postema EG, Lippey MK, Armstrong-Ingram T. 2022 Color under pressure: how multiple
620 factors shape defensive coloration. *Behav. Ecol.* , 1–13. (doi:10.1093/beheco/arac056)

621 50. Endler JA. 1978 A predator's view of animal color patterns. *Evol. Biol.* **11**, 320–364.
622 (doi:10.1007/978-1-4615-6956-5_5)

623 51. Barnett JB, Scott-Samuel NE, Cuthill IC. 2016 Aposematism: balancing salience and
624 camouflage. *Biol. Lett.* **12**, 20160335. (doi:10.1098/rsbl.2016.0335)

625 52. Endler JA, Houde AE. 1995 Geographic variation in female preferences for male traits in
626 *Poecilia reticulata*. *Evolution (N. Y.)* **49**, 456. (doi:10.2307/2410270)

627 53. Rosselli FB, Alemi A, Ansuini A, Zoccolan D. 2015 Object similarity affects the
628 perceptual strategy underlying invariant visual object recognition in rats. *Front. Neural*
629 *Circuits* **9**, 1–22. (doi:10.3389/fncir.2015.00010)

630 54. Sibeaux A, Cole GL, Endler JA. 2019 The relative importance of local and global visual
631 contrast in mate choice. *Anim. Behav.* **154**, 143–159. (doi:10.1016/j.anbehav.2019.06.020)

632 55. van den Berg CP, Endler JA, Papinczak DEJ, Cheney KL. 2022 Using colour pattern edge
633 contrast statistics to predict detection speed and success in triggerfish (*Rhinecanthus*
634 *aculeatus*). *J. Exp. Biol.* (doi:10.1242/jeb.244677)

635 56. Troscianko J, Osorio D. 2022 A model of colour appearance based on efficient coding of
636 natural images. , 1–16. (doi:10.1371/journal.pcbi.1011117)

637 57. Rönkä K, De Pasqual C, Mappes J, Gordon S, Rojas B. 2018 Colour alone matters: no
638 predator generalisation among morphs of an aposematic moth. *Anim. Behav.* **135**, 153–
639 163. (doi:10.1016/j.anbehav.2017.11.015)

640 58. Nokelainen O, Galarza JA, Kirvesoja J, Suisto K, Mappes J. 2022 Genetic colour variation
641 visible for predators and conspecifics is concealed from humans in a polymorphic moth.
642 *J. Evol. Biol.* **35**, 467–478. (doi:10.1111/jeb.13994)

643 59. Endler JA. 1986 Defense Against Predators. In *Predator-prey relationships, Perspectives*
644 *and Approaches from the Study of Lower Vertebrates*, pp. 109–134. Chicago: University
645 of Chicago Press.

646 60. van den Berg CP, Troscianko J, Endler JA, Marshall NJ, Cheney KL. 2020 Quantitative

647 Colour Pattern Analysis (QCPA): A comprehensive framework for the analysis of colour
648 patterns in nature. *Methods Ecol. Evol.* **11**, 316–332. (doi:10.1111/2041-210X.13328)

649 61. Winters AE, Chan W, White AM, Berg CP, Garson MJ, Cheney KL. 2022 Weapons or
650 deterrents? Nudibranch molluscs use distinct ecological modes of chemical defence
651 against predators. *J. Anim. Ecol.* **91**, 831–844. (doi:10.1111/1365-2656.13643)

652 62. Winters AE, White AM, Dewi AS, Mudianta IW, Wilson NG, Forster LC, Garson MJ,
653 Cheney KL. 2018 Distribution of Defensive Metabolites in Nudibranch Molluscs. *J.*
654 *Chem. Ecol.* **44**, 384–396. (doi:10.1007/s10886-018-0941-5)

655 63. van den Berg CP, Endler JA, Cheney KL. 2023 Signal detectability and boldness are not
656 the same: the function of defensive coloration in nudibranchs is distance-dependent. *Proc.*
657 *R. Soc. B Biol. Sci.* **290**, 2022.12.20.521213. (doi:10.1098/rspb.2023.1160)

658 64. Schneider CA, Rasband WS, Eliceiri KW. 2012 NIH Image to ImageJ: 25 years of image
659 analysis. *Nat. Methods* **9**, 671–675. (doi:10.1038/nmeth.2089)

660 65. Troscianko J, Stevens M. 2015 Image calibration and analysis toolbox – a free software
661 suite for objectively measuring reflectance, colour and pattern. *Methods Ecol. Evol.* **6**,
662 1320–1331. (doi:10.1111/2041-210X.12439)

663 66. Champ CM, Wallis G, Vorobyev M, Siebeck U, Marshall J. 2014 Visual acuity in a
664 species of coral reef fish: *Rhinecanthus aculeatus*. *Brain. Behav. Evol.* **83**, 31–42.
665 (doi:10.1159/000356977)

666 67. Champ CM, Vorobyev M, Marshall NJ. 2016 Colour thresholds in a coral reef fish. *R.*
667 *Soc. Open Sci.* **3**, 160399. (doi:10.1098/rsos.160399)

668 68. Cheney KL, Newport C, McClure EC, Marshall NJ. 2013 Colour vision and response bias
669 in a coral reef fish. *J. Exp. Biol.* **216**, 2967–2973. (doi:10.1242/jeb.087932)

670 69. Pignatelli V, Champ CM, Marshall J, Vorobyev M. 2010 Double cones are used for colour
671 discrimination in the reef fish, *Rhinecanthus aculeatus*. *Biol. Lett.* **6**, 537–539.
672 (doi:10.1098/rsbl.2009.1010)

673 70. Cheney KL, Hudson J, de Busserolles F, Luehrmann M, Shaughnessy A, van den Berg C,
674 Green NF, Marshall NJ, Cortesi F. 2022 Seeing Picasso: an investigation into the visual
675 system of the triggerfish *Rhinecanthus aculeatus*. *J. Exp. Biol.* **225**, jeb243907.
676 (doi:10.1242/jeb.243907)

677 71. Green NF, Guevara E, Osorio DC, Endler JA, Marshall NJ, Vorobyev M, Cheney KL.
678 2022 Colour discrimination thresholds vary throughout colour space in a reef fish
679 (*Rhinecanthus aculeatus*). *J. Exp. Biol.* **225**, jeb243533. (doi:10.1242/jeb.243533)

680 72. Randall JE, Allen GR, Steene RC. 1997 *Fishes of the Great Barrier Reef and Coral Sea*.

715 *Application in Evolutionary Biology: Concepts and Practice* (ed LZ Garamszegi), pp.
716 287–303. Berlin, Heidelberg: Springer Berlin Heidelberg. (doi:10.1007/978-3-662-
717 43550-2_11)

718 85. Korner-Nievergelt F, Roth T, von Felten S, Guélat J, Almasi B, Korner-Nievergelt P. 2015
719 *Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and STAN*.
720 Elsevier. (doi:10.1016/C2013-0-23227-X)

721 86. Santon M, Korner-Nievergelt F, Michiels NK, Anthes N. 2023 A versatile workflow for
722 linear modelling in R. *Front. Ecol. Evol.* **11**, 1–15. (doi:10.3389/fevo.2023.1065273)

723 87. Lenth R V. 2023 emmeans: Estimated Marginal Means, aka Least-Squares Means.

724 88. Rudman WB. 1991 Purpose in pattern - the evolution of color in chromodorid
725 Nudibranchs. *J. Molluskan Stud.* **57**, 5–21.

726 89. Speed M. 2000 Warning signals, receiver psychology and predator memory. *Anim. Behav.*
727 **60**, 269–278. (doi:10.1006/anbe.2000.1430)

728 90. Franks DW, Noble J. 2004 Warning signals and predator–prey coevolution. *Proc. R. Soc.
729 London. Ser. B Biol. Sci.* **271**, 1859–1865. (doi:10.1098/rspb.2004.2795)

730 91. Skelhorn J, Halpin CG, Rowe C. 2016 Learning about aposematic prey. *Behav. Ecol.* **27**,
731 955–964. (doi:10.1093/beheco/arw009)

732 92. Kikuchi DW, Sherratt TN. 2015 Costs of Learning and the Evolution of Mimetic Signals.
733 *Am. Nat.* **186**, 321–332. (doi:10.1086/682371)

734 93. Raviv L, Lupyan G, Green SC. 2022 How variability shapes learning and generalisation.
735 *Trends Cogn. Sci.* **26**, 462–483. (doi:10.1016/j.tics.2022.03.007)

736 94. Barnett JB, Cuthill IC. 2015 Distance-dependent defensive coloration. *Curr. Biol.* **24**,
737 R1157–R1158. (doi:10.1016/j.cub.2014.11.015)

738 95. White TE, Umbers KDL. 2021 Meta-analytic evidence for quantitative honesty in
739 aposematic signals. *Proc. R. Soc. B Biol. Sci.* **288**. (doi:10.1098/rspb.2021.0679)

740 96. Green NF, Urquhart HH, van den Berg CP, Marshall NJ, Cheney KL. 2018 Pattern edges
741 improve predator learning of aposematic signals. *Behav. Ecol.* **29**, 1481–1486.
742 (doi:10.1093/beheco/ary089)

743