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Abstract

The selective factors that shape phenotypic diversity in prey communities with
aposematic animals are diverse and coincide with similar diversity in the strength of underlying
secondary defences. However, quantitative assessments of colour pattern variation and the
strength of chemical defences in assemblages of aposematic species are lacking. We quantified
colour pattern diversity using Quantitative Colour Pattern Analysis (QCPA) in 13 Dorid
nudibranch species (Infraorder: Doridoidei) that varied in the strength of their chemical
defences. We accounted for the physiological properties of a potential predator’s visual system
(a triggerfish, Rhinecanthus aculeatus) and modelled the appearance of nudibranchs from
multiple viewing distances (2cm and 10cm). We identified distinct colour pattern properties
associated with the presence and strength of chemical defences. Colour patterns were also less
variable among species with chemical defences when compared to undefended species. This
confirms correlations between secondary defences and diverse, bold colouration while showing
that chemical defences coincide with decreased colour pattern variability among species. Our
study suggests that complex spatiochromatic properties of colour patterns perceived by
potential predators can be used to make inferences on the presence and strength of chemical

defences.

Keywords: Aposematism, crypsis, predator psychology, purifying selection, defensive animal

colouration, signal honesty, escape and radiate, visual signalling

1. Introduction

Many animals use aposematic colour patterns to warn potential predators of underlying
defences [1], with aposematic species in prey communities exhibiting a remarkable diversity
of primary (i.e., colour patterns) and secondary defences (i.e., secondary metabolites) [2—4].
However, mechanisms shaping diversity within and among aposematic species in prey
communities are complex, and it is poorly understood how the presence and strength of
secondary defences correlate with phenotypic diversity in a natural prey community (see [5,6]
for discussion). Factors shaping within-species diversity tend to coincide with factors affecting

among-species variation in aposematic species (e.g. [7]). This complex mixture of selective
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mechanisms in natural systems makes it challenging to understand the relationships between

primary and secondary defences in prey communities.

Stabilising selection is a crucial driver underlying the distinct appearance of a given
aposematic species in a species community. Once aposematism has evolved, stabilising
selection is expected to constrain colour pattern diversity within species and Mullerian mimicry
rings as predators learn to associate a visual signal with unprofitability [8—13]. Specifically, an
invariant appearance across aposematic individuals may facilitate and strengthen predator
learning and memorisation. In contrast, variation in signal design may cause predators to make
errors when attacking prey and decrease rates of predator learning and increase rates of
forgetting [ 10,14—16]. However, colour pattern diversity within and among aposematic species
is ubiquitous. It is thought to be driven by countervailing evolutionary and ecological factors
such as genetic drift, gene flow, variation in resource abundance, variation in predator species,
and environmental biotic and abiotic variability at different spatial and temporal scales
[5,10,17,18]. Aposematism in a spatially homogeneous and temporally stable environment
coincides with selection towards reduced colour pattern variability within a population (e.g.
[19,20]). In contrast, variability of biotic (e.g. predators) and abiotic factors (e.g. temperature)
at spatial and temporal scales can favour selection on phenotypic diversity within aposematic

species (e.g. [21-24]) as well as among them (e.g. [25,26]).

Investing in chemical defences is costly (see [6,27] for review) and, as a result, can
favour the evolution of various forms of mimicry among prey species (e.g. [28]). Mimicry leads
to specific, general or partial (e.g. [29-33]) resemblance among species, reducing phenotypic
diversity among chemically defended species and undefended mimics. However, key
innovations such as chemical defences are thought to enable niche expansions and, as a result,
facilitate speciation [25,34-36]. Adapting to diverse ecological niches, in turn, may lead to
phenotypic diversity among aposematic species, especially if such niche specialisations
underly changes in the signalling environment, such as the distinctiveness from background
habitats or signalling in differing light environments. Indeed, a distinct appearance not only
from the background, but also from conspecifics, may aid predator learning [37] and can
provide a mechanism to defend against the parasitic effects of certain types of mimicry, such
as Batesian and quasi-Batesian mimicry [38—41]. However, long-standing predictions of the
benefit of distinctiveness among aposematic species (e.g. [42,43]) are mainly theoretical, with
no known studies investigating correlations between distinctiveness and secondary defences

among aposematic species in nature.
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91 Attacking well-defended prey is also costly; therefore, predators may generalise more
92  broadly between the colour patterns of previously attacked prey and the prey they subsequently
93  encounter, likely confounded by the cost of making an error (e.g. [44—46]). However, how
94  predator generalisation between and within aposematic species and their mimics influences
95 correlations between secondary defences and colour pattern diversity is complex, highly
96 debated and likely varies among taxa (see [5,6] for discussion). Furthermore, selection for or
97  against colour pattern variability within and among species can act on individual colour pattern
98 elements or perceptual properties rather than the entire animal, depending on which elements
99  of the signal predators learn or pay attention to (e.g. [47]). Therefore, animal colour patterns
100  should be considered complex multicomponent phenotypes [48] under multiple selective

101  pressures (e.g. [48,49]).

102 When interpreting the ecological relevance of phenotypic variation, it is essential to
103  consider how the appearance of an organism’s colours and patterns change as a function of
104  observer acuity and viewing distance [50]. For example, colour patterns may be cryptic when
105  viewed from a distance but may become aposematic as a predator approaches [50,51]. Animals
106  detect objects and decide their identity and quality based on varying combinations of
107  spatiochromatic features [52-56]. Consequently, predator learning of associations between
108  primary and secondary prey defences, or the subsequent retrieval of formed associations from
109 memory, might happen at a specific range of viewing distances concerning specific
110  spatiochromatic properties of prey appearance. However, the scarce empirical evidence on the
111 ecological significance of colour pattern variability in aposematic animals remains restricted to
112  investigations of colour alone and do not account for the visual acuity of ecologically relevant

113 observers and viewing distance (e.g. [57,58]).

114 Here, we examined how highly defended aposematic nudibranch species differ from
115 less well-defended species in appearance to a potential predator and if, among species, variation
116  in perceived colour patterning varies with the presence and strength of chemical defences.
117  Specifically, we hypothesised that chemical defences would correlate with increases or
118 decreases in colour pattern distinctiveness between species as perceived by a potential predator.
119  We further hypothesised that colour patterns in chemically defended species were less variable
120 than in species without chemical defences as perceived by a potential predator. To do this, we
121 modelled the visual appearance of 13 sympatric Dorid nudibranch species across multiple
122 viewing distances corresponding to the later stages of an escalating predation sequence [14,59].

123 We quantified the perception of within-species colour pattern variability using the Quantitative
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124 Colour Pattern Analysis (QCPA) [60], allowing for the consideration of colour, luminance and
125  spatial vision of triggerfish (Rhinecanthus aculeatus). Using exploratory factor analysis, we
126  identified latent variables to compare the colour pattern appearance of individuals belonging to
127  three levels of chemical defence. Chemical defences were defined using previously published
128  assay data[61,62]. We then investigated differences in the perceived appearance and variability

129  of colour patterns for species belonging to each level of chemical defences.
130 2. Materials and Methods

131  (a) Study species

132 We used digital photographs of 311 Dorid nudibranchs using a calibrated Olympus
133 EPL-5 with a 60mm macro lens (see the Supplement for details on camera calibration). These
134  individuals belonged to 13 species: Aphelodoris varia (N=31), Chromodoris elisabethina
135  (N=31), Chromodoris kuiteri (N=49), Chromodoris lochi (N=8), Chromodoris magnifica
136 (N=14); Dendrodoris krusensterni (N=7); Discodoris sp. (N=10); Doriprismatica
137  atromarginata (N=35); Glossodoris vespa (N=32); Hypselodoris bennetti (N=13); Phyllidia
138  ocellata (N=32), Phyllidia varicosa (N=9), Phyllidiella pustulosa (N=40) (Fig. 1) from five
139  locations on the east coast of Australia: Mackay (QLD), Sunshine Coast (SE Queensland, QLD),
140  Gold Coast (SE QLD), Cook Island (New South Wales, NSW) and Nelson Bay (NSW) between
141  March 2016 and February 2021. Two out of 13 species (Doriprismatica atromarginata,
142 Goniobranchus splendidus) were sampled across sites in QLD and NSW in high numbers,
143 whereas the other species were only sampled in either NSW or QLD or with highly uneven
144  numbers between sites (Table S1). Two individuals of Chromodoris magnifica were provided
145 by an aquarium supplier (Cairns Marine, Pty Ltd, Cairns, QLD). These species were selected
146  as they were relatively abundant at our study sites and covered a broad range of visual
147  appearances and strengths of chemical defences. Furthermore, we have previously provided
148  data on the strength and identity of chemical defences in these species sampled from the same

149  locations as individuals from this study [61,62].

150 Most nudibranchs were photographed underwater against their natural habitat (n = 182)
151  with the camera in an Olympus PT-EP10 underwater housing and using white LED illumination
152  from a combination of VK6r and PV62 Scubalamp video lights. The remaining nudibranchs (n
153 = 129) were collected for separate studies on their chemical defences, taken back to the
154  laboratory, submerged in water in a petri dish and photographed against a white background

155  with the same camera. In the laboratory, nudibranchs were illuminated with 400nm-700nm full-
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156  spectrum white LED lights. The Supplementary Information (Table S1) details collection sites
157  and dates, and camera and illumination spectra are provided in [60]. A sub-sample of these
158  images was previously used to investigate distance-dependent signalling regarding colour
159  pattern detectability and boldness [63]. Nudibranchs were collected under the Queensland
160  General Fisheries Permit 183990, 205961 and NSW Scientific Collection Permit P16/0052-1.0.

161  (b) Image analysis

162 We used Imagel [64] and the MICA toolbox [65] to manually segment the images into
163  regions of interest (ROI). This was done by outlining and selecting the animal from its
164  background and defining a size standard. All nudibranchs were aligned head up in the image
165  before analysis with QCPA [60], with the rotation angle determined by the rotation, causing
166  most of each animal to be aligned vertically. To analyse the nudibranch colour patterns, we
167  used the visual system parameters of a trichromatic triggerfish, Rhinecanthus aculatus [66—71],
168 a common shallow reef inhabitant found throughout the Indo-Pacific, which feeds on

169  invertebrates, algae, and detritus [72].

170 We analysed colour patterns for viewing distances of 2cm and 10cm, using the
171  estimated spatial acuity of the triggerfish of three cycles per degree [66,70]. A viewing distance
172 of 2cm represents the spatiochromatic information available to a triggerfish upon immediate
173  contact with a nudibranch. A viewing distance of 10cm more likely represents visual
174  information available to a triggerfish at a short distance where a subjugation attempt has not
175 yet been made. Following acuity modelling, the images were processed with a Receptor Noise
176  Limited (RNL) ranked filter (falloff: 3, radius: 5, repetition: 5) and clustered using RNL
177  clustering with a colour threshold of 2 AS [71,73] and a luminance contrast threshold of 4 AS
178  [74] for all analyses except the local edge intensity analysis (LEIA) which does not require
179  RNL clustering but is recommended to be subjected to RNL ranked filtering [60]. We
180 calculated receptor-specific Weber fractions based on a relative photoreceptor abundance of

181 1:2:2:2 (sw:mw:lw:dbl) and photoreceptor noise of 0.05, resulting in 0.07:0.05:0.05:0.05.

182 QCPA analysis was achieved using a custom batch script [75] running on high-
183  performance computing (HPC) infrastructure. We analysed each animal colour pattern using:
184 1) colour adjacency analysis (CAA), which describes pattern geometry in a segmented image;
185  2) visual contrast analysis (VCA), which describes pattern boldness based on chromatic and
186  spatial pattern element properties in a clustered image; 3) boundary strength analysis (BSA),

187  which describes the colour and luminance contrast of boundaries between pattern elements at
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188  the scale of an animal in an unclustered image; and 4) local edge intensity analysis (LEIA)
189  which describes the strength of colour and luminance contrast at the scale of an edge-detecting
190  receptive field in an unclustered image. This resulted in a highly descriptive array of 157 colour
191  pattern statistics for each animal. A detailed description of each pattern statistic can be found

192  in [60]. Here, we use CAA, VCA, BSA, and LEIA as prefixes for each type of analysis.

193 All pattern analyses, except LEIA, used a segmented image and measured transitions
194  between pixels along vertical (along body axis) and horizontal (perpendicular to body axis)
195  sampling transects in a transition matrix. Statistics ending with ‘vrt’ or ‘hrz’ are the vertical
196  (i.e., up-down in image) and horizontal version (analysing the respective transition matrix only)
197  of their respective statistic (analysing the full transition matrix) and can represent differential
198  directionality sensitivity in the visual system of an observer and directionality in patterns such
199  as stripes [76—78]. LEIA does not use a transition matrix due to the lack of image segmentation
200  but equally discriminates between horizontal and vertical edge contrast by describing the shape
201 of a histogram drawn from edge contrast measurements in a given image or region of interest

202 [60].
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204  Figure 1. Representative photographs of the 13 species used in this study grouped into categories of
205  chemical defences based on whole-body extract assays with palaemon shrimp to assess unpalatability (1-
206  Effective Dose, EDsp) and brine shrimp to assess toxicity (1-Lethal Dose, LDso) values as per [61,62]: A)
207  Aphelodoris varia; B) Dendrodoris krusensterni; C) Discodoris sp; D) Chromodoris elisabethina; E)
208  Chromodoris magnifica; F) Chromodoris lochi; G) Hypselodoris bennetti; H) Phyllidia ocellata; 1)
209  Chromodoris kuiteri; J) Doriprismatica atromarginata; K) Glossodoris vespa; L) Phyllidia varicosa;, M)
210  Phyllidiella pustulosa.
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211 (c) Chemical defences

212 To categorise the level of chemical defences for each species, we used previously
213 published data on the deterrent properties from feeding rejection assays with rockpool shrimp
214 (Palaemon serenus), which demonstrate similar results to assays performed with triggerfish
215  and toadfish [61] and toxicity assays with brine shrimp [61,62]. Assays were conducted by
216  adding extracted nudibranch compounds to food pellets made from squid mantle at increasing
217  concentrations. Effective dose (EDso) and lethal dose (LDso) values in [61,62] were calculated
218  based on the concentration that elicited a rejection response in, or mortality of, at least 50% of
219  the shrimp. For this study, we averaged EDso and LDso values from [61] when multiple extracts
220 from the same species were reported. We considered only whole-body extracts (rather than
221  mantle-only values) to make assay values comparable between species. We then subtracted
222 these values from 1 so that values close to 0 were the most palatable/non-toxic, and values close
223 to 1 were the least palatable/ toxic (Table S2). Although C. magnifica was not included in [61],
224 [79] demonstrated that this species also stores latrunculin A as the sole defensive compound in
225 the mantle rim, and this is at concentrations between those found in C. elisabethina and C
226 kuiteri [80]. We, therefore, set unpalatable EDso values as the average from these two sister

227  species for C. magnifica. Lastly, assay data for G. vespa is presented in [62].

228 Like Winters et al. [61], we binned the species into categories indicating chemical
229  defence strength to account for our dataset’s highly uneven spread in toxicity and palatability
230 values and the difference in sampling levels between colour pattern data and chemistry data.
231 Our categorisation differed from that of Winters et al. [61] in that we based our categories on
232 the assumption of a sigmoidal dose-effect response similar to a psychometric curve. Species

233 were allocated in the following classes (Fig. 1), where we treated NR values from [61] as O:

234 1.) Not defended (1 - EDso/LDso= 0)

235 2.) Toxic and moderately unpalatable (0.25 < 1 - EDso> 0.74 and LDso > 0),

236 3.) Toxic and highly unpalatable (0.74 <1 - EDsoand LDso > 0).

237 The threshold to distinguish between medium and high levels of unpalatability was 0.74 ,

238  representing the median 1 — EDso value of chemically defended species while also being very
239  close to the point-of-inflexion in a sigmoidal response curve. Only 3 out of 10 species with
240  chemical defences had 1 — LDso values below 0.5, yet 6 out of 10 had values above 0.80.
241  Therefore, we did not distinguish between different toxicity levels in our dataset. Treating

242 toxicity as present/absent and distinguishing between medium and high levels of unpalatability
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243 ensured at least three species in each category, allowing the investigation of differences in

244  animal colouration between variable levels of chemical defences.

245  (d) Statistical analysis

246 Our study considers many of the more commonly found Dorid nudibranchs in the study
247  sites (e.g. [22-24]). To analyse the large dataset derived from the QCPA analysis, we only kept
248  images that did not produce any missing value for any pattern metrics. VCA, CAA, and BSA
249  metrics can produce NaN or infinite values if a colour pattern has less than two colour pattern
250 elements following RNL clustering [60]. LEIA metrics do not suffer from this limitation. Nine
251  available images from Discodoris sp were rejected from analysis due to this constraint, resulting

252 in the reported sample size.

253 We then applied a Latent variable Exploratory Factor Analysis (EFA) with the R package
254  psych using the factoring method of Ordinary Least Squares ‘ols’, and the orthogonal rotation
255  ‘varimax’. To prepare the dataset for the EFA, we first filtered the number of highly correlated
256  QCPA metrics by keeping only those that were less correlated than 0.6 (Pearson correlation),
257  which reduced their number from 157 to 15. We then run the factor analysis based on three
258  factors. The number of factors was selected by comparing the eigenvalues calculated from the
259  original dataset to the median eigenvalues extracted from 10,000 randomly generated datasets
260  with the same number of rows and columns of the original data. We selected factors with
261  eigenvalues greater than the median of the eigenvalues from the simulated data. We also
262  computed bootstrapped confidence intervals of the loadings by iterating the factor analysis 1000
263  times.

264 Looking at the loadings of each factor, we can identify what latent variable they
265  describe. While it would be possible to discuss each factor extensively, we keep their
266  description to loadings of +/- 0.4 (out of 0 -1) to capture their main properties. Due to data
267 filtering for metrics less correlated than 0.6, the QCPA parameter listed for a given loading is
268 likely synonymous with various other parameters in our 157-dimension colour pattern space
269  (Table S5). Therefore, the precise wording to describe each factor can vary depending on which
270  colour pattern metrics are put into focus—for example, BSA.BMSL.Vrt is positively associated
271 with factor 1 (Fig. 2) but is simply a placeholder for BSA.BMSL (both considering horizontal
272 and cumulative transitions) as it is 92-96% correlated with these metrics and 97% correlated
273 with BSA.BML (Table S2). Unlike BSA.BMSL (which describes boundary contrast using the

274  mean RNL luminance contrast between colour pattern elements relative to the fraction of the
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275  respective pattern border), VCA.BML captures boundary contrast calculated by the Weber
276  contrast of cone catches in the luminance channel between colour pattern elements relative to
277  the fraction of a given boundary type. Thus, it would be more appropriate to say that animals
278  with high values of factor 1 are associated with stronger achromatic colour pattern boundary
279  contrast rather than explicitly referring to the randomly retained value only. A complete list of
280  all colour pattern parameters with more than 0.6 Pearson correlation with parameters associated

281  with factors 1-3 shown in Fig. 2 can be found in the Supplement (Table S2).

282 The scores of the factors extracted from the EFA were then used to implement three
283  phylogenetic, distributional linear mixed models to compare the colour patterns of nudibranchs
284  with different levels of chemical defences. Models were run in R v 4.1.2 (https://www.r-
285  project.org/) using the brms package [81], which fits Bayesian models using Stan (https://mc-
286  stan.org/). To account for the phylogenetic dependency of closely related species, all models
287  included the phylogenetic tree of the 13 species of nudibranchs (Fig. S1), with the tree from [82]
288  pruned and missing species added according to their taxonomic classification in the World
289  Register of Marine Species [83]. The phylogenetic model was implemented following the
290  guidelines of the online brms vignette

291  (https://cran.rproject.org/web/packages/brms/vignettes/brms_phylogenetics.html) based on de

292 Villemeruil & Nakagawa [84].

293 The first model investigated differences in scores for latent factor I between nudibranchs
294  with different levels of chemical defences (see chemical defences section) using a Student
295  distribution. The model estimated the effect of the main categorial predictors level of chemical
296  defence (undefended; toxic and moderately unpalatable; toxic and highly unpalatable) and
297  observer distance (2 cm and 10 cm) and their interaction on both the mean and the residual
298  standard deviation of the response distribution. To account for repeated measurements of each
299  species, we also included species ID as a random intercept to the model. We further included
300 random slopes over distance because their relationship with the value of the response factor 1
301  varied among species. The second and third models were identical to the first but used factor 2

302 and factor 3 as response variables.

303 All models were fitted using weakly informative prior distributions (normal with mean
304 =0 and sd = 5 for intercept and coefficients, exponential (1) for standard deviations). Their
305 performance was evaluated using posterior predictive model checking, which compares model

306  predictions with observed data to assess overall model fit. We ran four Markov-Chain-Monte-
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307 Carlo (MCMC) chains for each model and obtained coefficient estimates from 16,000 post-
308  warm-up samples. All model parameters reached reliable conversion indicators [85]: A Monte
309  Carlo standard error smaller than 5% of the posterior standard deviation, an effective posterior

310  sample size greater than 10% of the total sample size, and a R statistic value smaller than 1.01.

311 We present the medians of latent factors values and their 95% credible intervals of the
312 posterior distributions of fitted values for the population average, obtained from the joint
313  posterior distributions of the model parameters for the combination of chemical defences and
314  distance [85,86] (Fig. 2). The same posterior distribution of fitted values was used to compute
315  pairwise differences and their 95% credible intervals between all the combinations of the same
316  two categorical predictors using the ‘emmeans’ R package [87]. To compare variances of
317  responses between all predictor groups, we also computed the posterior distribution of all
318  pairwise differences of the residual standard deviation on the original scale (back-transformed
319 from the log scale). The effect size of pairwise differences increases with increasing deviation
320  of such differences from zero, and the robustness of the result increases with decreasing degree

321 of overlap of the 95% Credible Intervals (CIs) with zero.
322 3. Results

323  We identified three latent factors describing overall differences in colour pattern appearance to

324  atriggerfish (R. aculeatus). We describe each factor at 2cm and 10cm, respectively.

325 While not intended to identify a maximal amount of variability in colour pattern variation
326  in our dataset, the three factors still explain 38% of the total variation (factor 1: 14%; factor 2:

327  13%; factor 3: 11%) (Fig 2).
328 (a) Factor 1: Colour patterns with high achromatic contrast have low colour contrast

329  Contrasts [difference (+- 95% CI)] between groups of chemical defences indicate that toxic
330 species with high levels of unpalatability differed in appearance from toxic species with
331  moderate levels of unpalatability (Fig. 2b, Table S3). However, undefended species did not
332 differ from chemically defended species for factor 1. At a 2cm viewing distance, undefended
333  species are not different in appearance from toxic and highly unpalatable species (0.99 (-2.31/
334  0.31)). In contrast, toxic and moderately defended species have a lower score (-1.23 (-1.74 / -
335 0.70)) for factor 1 compared to highly unpalatable toxic species (Fig. 2b). This is true at
336 immediate contact between the triggerfish and prey at 2cm, as well as at 10cm (undefended vs.

337  toxic and highly unpalatable: -0.60 (-2.00 / 0.81); toxic and medium unpalatable vs. toxic and
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338  highly unpalatable: -1.01 (-1.67 / -0.33)). Toxic animals with medium levels of unpalatability
339  did not differ from undefended species regarding factor 1 at either 2cm (0.21 (-1.10 / 1.56) or
340  10cm (0.40 (-1.09 / 1.82). We found no indication of differences in colour pattern variability

341  in species of different groups as captured by factor 1 (Table S4).

342 Factor 1 describes 14% of colour pattern variability in our dataset. It is associated with
343  high loadings of luminance contrast between colour patches as a function of their patch size,
344  which VCA describes. We can see high loadings for mean and standard deviation variation
345  measures of pattern contrast measured as cone catches of the luminance channel (e.g. VCA.CVL)
346  and using the RNL model (e.g. VCA.MSL). We also find high luminance pattern contrast
347  captured by factor 1 as an expression of the boundary contrast (BSA), which refers to contrast
348  scaled by the length of boundaries between colour patches rather than their size. Given that
349 larger patches tend to have longer boundaries, it is not surprising that we find similar loadings
350 for measures relative to either. The negative loadings for chromatic colour pattern contrast (e.g.
351  VCA.MDmax) indicate that patterns with strong and variable achromatic contrast tend to have
352  areduced level of average chromaticity contrast. High factor values would indicate the presence
353  ofblack and white, pale hues or long wavelength colours that appear of low chromaticity to the
354  visual system of a triggerfish. Therefore, our results indicate higher levels of achromatic
355  contrast and lower levels of chromatic contrast present in the colour patterns of highly
356  unpalatable toxic species compared to the other groups, with the increase in achromatic contrast

357  coinciding with more prominent relatively achromatic colour pattern elements.
358  (b) Factor 2: Highly contrasting colour patterns are more regular and vertically elongated

359  Contrasts [difference (+- 95% CI)] between the different groups of chemical defences indicate
360 that chemically defended species do not have higher scores for factor 2 than undefended species
361  (Fig. 2d, Table S5). There was also no difference in factor values between toxic and medium
362  unpalatable animals and toxic and highly unpalatable animals at either 2cm (0.05 (-0.84 / 0.94)
363 or 10cm (0.06 (-0.91 / 0.92)). However, at 2cm viewing distance, undefended species have
364  more variable colour patterns than toxic and moderately unpalatable species (0.40 (0.14 /0.74)
365 as well as toxic and highly unpalatable species (0.31 (0.06 / 0.67)) (Table S6).

366 Factor 2 explains 13% of colour pattern variability in our dataset. It describes the
367 relationship between decreases in the aspect ratio of colour patterns (CAA. Asp) coinciding with
368  decreases in average patch size (CAA. Pt) as well as decreases in the average luminance contrast

369  (e.g. VCA.ML) and its variability (e.g., VCA.sL) between patches in the horizontal axis and


https://doi.org/10.1101/2023.01.30.525844
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.30.525844; this version posted December 11, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

370 increases in various measures of chromatic and achromatic colour pattern contrast variability
371  relative to the mean contrast in a given colour pattern (e.g. VCA.CVSL, VCA.CVS) as well as

372 increases in colour pattern transition regularity (e.g., CAA.Qt).
373 (c) Factor 3: Colour patterns with variable edge contrast have reduced spatial evenness

374  Contrasts [estimate (+- 95% CI)] calculated between the different groups of chemical defences
375 indicate no overall differences between groups (Fig. 2, Table S7). This is the case for both 2cm
376  (undefended vs. toxic and medium unpalatable: 0.05 (-1.16 / 1.14); undefended vs. toxic and
377  highly unpalatable: -0.10 (-1.29 / 1.03); toxic and medium unpalatable vs. toxic and highly
378 unpalatable: -0.16 (-0.77 / 0.46)). We found no indication of differences in colour pattern

379  variability in species of different groups captured by factor 3 (Table S8).

380 Factor 3 explains 11% of colour pattern variability in our dataset. It describes positive
381 changes in colour (e.g. Col.kurtosis) and luminance (e.g. Lum.kurtosis) contrast variability
382  relative to the average contrast in an animal coinciding with reduced colour pattern evenness
383  (e.g. CAA.Qc) as well as decreased average luminance contrast of boundaries between colour

384  pattern elements (e.g. Lum.mean) and decreased overall colour pattern complexity (CAA4.C).
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386 4. Discussion

387 We identified three latent variables that captured differences in appearance between
388  distinct differences in colour patterns between our three levels of chemically defended groups
389  of nudibranch molluscs (Fig. 2). Our analysis captures a significant proportion of variability in
390 the dataset (38%) and indicates substantial colour pattern variation among sampled species
391  across multiple viewing distances as perceived by a potential predator (Fig. 2). We found
392  differences in appearance both between chemically defended and undefended species and also
393  between toxic/moderately unpalatable species and toxic/highly unpalatable species. These
394  differences in colour patterns between species belonging to different levels of chemical
395 defences are likely visible to a potential predator at close contact (2cm) and from further away
396  (10cm) and might be used by predators to infer the presence and strength of underlying chemical

397 defences based on the general appearance of prey animals.

398 The colour patterns of chemically defended species were less variable than those of
399 undefended species (Fig. 2d, Table S3). Specifically, the variability of colour and luminance
400 contrast and the spatial arrangement of colour pattern elements was reduced in species with
401  chemical defences compared to those without. Furthermore, the colour patterns of toxic species
402  with high levels of unpalatability were different in appearance from toxic species with moderate
403 levels of unpalatability (Fig 2b, Table S3). Specifically, species with high levels of
404  unpalatability showed increased levels of achromatic contrast between colour pattern elements
405  when compared to more palatable toxic species. This increase in achromatic contrast in highly
406  unpalatable species coincides with a decrease in the mean level of chromatic contrast relative
407  to toxic species with lower levels of unpalatability. Overall, the differences in the visual
408  appearance to a potential predator between species of nudibranchs with different levels of
409  chemical defences describe general colour pattern properties (such as pattern regularity and
410  spectral contrast) associated with aposematic signalling (Fig. 2). Therefore, in agreement with
411  existing literature (e.g. [2,88]), we find that Dorid nudibranch colour patterns are highly diverse
412  and that the presence of chemical defences correlates with the presence of boldly contrasting

413 colour patterns.

414 The observed differences in animal colouration between groups of species with varying
415  levels of chemical defences generally agree with and can be interpreted as indicating selective
416  factors driving between-species pattern diversity in conjunction with the presence of secondary

417  defences. Such drivers of phenotypic diversity can favour distinctiveness among chemically
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418  defended species, either as a means to defend against Batesian mimicry (e.g. [38]), as well as
419  the potential need to optimise signalling efficacy across a complex, spatially and temporally
420 variable biotic and abiotic environment (e.g. [5,17,21,22,25,89,90]). Thus, our results agree
421  with predictions made by assuming facilitated niche expansion and subsequent speciation and
422  adaptation to visually diverse habitats [25,34-36] as potential drivers of phenotypic diversity
423 in chemically defended species.

424 Our results further suggest the general presence of secondary defences to coincide with
425  reduced colour pattern variability among species when viewed up close by a potential predator
426  (Fig. 2e, Table S3). Reduced variability among chemically defended species may suggest the
427  presence of broadly generalisable, qualitative signalling properties underlying aposematic
428  signalling in the species considered in this study. However, the presence of distinct colour
429  pattern appearance at a quantitative scale (i.e., comparing species with different levels of
430  chemical defences) would align with chemical defences, favouring visual distinctiveness from
431  co-occurring Batesian or quasi-Batesian mimics (e.g. [38]). In other words, considering colour
432  patterns as complex, multicomponent signals, it is possible to think of certain colour pattern
433  properties indicating the qualitative presence of secondary defences (‘is the animal defended
434 or not’). In contrast, others indicate the quantitative presence of secondary defences (‘how
435  potent are the defences’), thus allowing different parts of simultaneously perceived visual
436  information elicited by animal colouration to be under seemingly opposing selection pressures
437  towards and away from general resemblance. In addition to these perceptual modalities being
438  realised simultaneously, trade-offs between selective pressures for and against multiple,
439  seemingly contractionary signalling properties of colour patterns can be mediated by distance-
440  dependent signalling (e.g. [63,94]). Our results suggest both to be possible, with colour pattern
441  variability only differing between species with and without chemical defences at 2cm viewing
442  distance but not 10cm. In contrast, toxic and highly unpalatable species differ in their
443  appearance from toxic and moderately defended species as well as undefended ones at 2cm and

444 10cm.

445 Phenotypic diversity within (e.g. polymorphism and polyphenism) and among
446  chemically defended species is generally described as a detriment to predator learning, with
447  selection towards resemblance underlying purifying selection at the species level (e.g. [10,14—
448  16]) and Mullerian mimicry at the community level (e.g. [7,32,91,92]). However, phenotypic
449  diversity among chemically defended species might, contrary to general assumptions, benefit

450  predator learning as it can lead to more stable, generalisable associations [93] and, thus, provide
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451  mutual benefits among chemically defended species considered in the context of qualitative
452  and quantitative signal honesty and mimicry. Experimental investigations into the importance
453  of signal variability for avoidance learning in non-human animals would be of great interest for
454  future research as it, in turn, would inform our assumptions on the mechanisms underlying the
455  evolution and maintenance of colour pattern diversity within and among chemically defended

456  species.

457 Our methodology is tailored to reflect the fact that colour pattern elements and
458  signalling properties do not exist in isolation, thus warranting an ‘agnostic’ approach to deduce
459  correlations between predictor and dependent variables in the context of a complex trait
460  described by a high-dimensional dataset (i.e., colour pattern space) [55,60,95]. Therefore, even
461  if specific colour pattern features might be under purifying selection among certain species (e.g.,
462 as a result of mimicry), this was not captured by latent variables capturing overarching
463  differences between individuals and species in the data set. Our results indicate that aposematic
464  species’ overall colour pattern phenotype might indeed be selected for less variability when
465 compared to that of undefended species. However, our methodology does not address the
466  possibility that specific colour pattern elements and signalling properties among aposematic
467  species and putative mimics could be under purifying selection. Examples of this have been
468  documented both within and between species of nudibranchs [3,47] and could apply to our
469  dataset with representatives of a putative yellow-rim mimicry ring [96] (Fig. 1). This
470  consideration is of broad relevance across all studies using methodology describing the
471  cumulative colour pattern appearance of an animal, rather than specific colour pattern elements

472  or body areas.
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