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Abstract 

The human brain is capable of highly complex functions that develops through a tightly organized 

cascade of patterning events, expressed transcription factors and changes in chromatin 

accessibility. While extensive datasets exist describing gene expression across the developing 

brain with single-cell resolution, similar atlases of chromatin accessibility have been primarily 

focused on the forebrain. Here, we focus on the chromatin landscape and paired gene expression 5 

across the developing human brain to provide a comprehensive single cell atlas during the first 

trimester (6 - 13 post-conceptional weeks). We identified 135 clusters across half a million nuclei 

and using the multiomic measurements linked candidate cis-regulatory elements (cCREs) to gene 

expression. We found an increase in the number of accessible regions driven both by age and 

neuronal differentiation. Using a convolutional neural network we identified putative functional 10 

TF-binding sites in enhancers characterizing neuronal subtypes and we applied this model to 

cCREs upstream of ESRRB to elucidate its activation mechanism. Finally, by linking disease-

associated SNPs to cCREs we validated putative pathogenic mechanisms in several diseases and 

identified midbrain-derived GABAergic neurons as being the most vulnerable to major depressive 

disorder related mutations. Together, our findings provide a higher degree of detail to some key 15 

gene regulatory mechanisms underlying the emergence of cell types during the first trimester. We 

anticipate this resource to be a valuable reference for future studies related to human 
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neurodevelopment, such as identifying cell type specific enhancers that can be used for highly 

specific targeting in in vitro models. 

 20 

Introduction 

Through a tightly organized cascade of patterning, specification and differentiation events, 

the human brain develops into a highly complex system capable of unique cognitive abilities 

beyond those of other mammals. The human brain consists of more than a thousand distinct types 

of neurons, glia, and non-neural cell types1. Single-cell RNA-sequencing has enabled parallel 25 

profiling of cell types and states, revealing both regional differences and subtle variation between 

closely related cell types 2–4. Profiling the developing human brain has revealed differentiation 

trajectories leading to diverse neuronal and non-neuronal cell types5. During development, the 

functional architecture of the genome is constantly in flux, with changes in the expression, binding 

and regulation of transcription factors (TF) driving cell fate decisions. The activities of regulatory 30 

elements in development are often both cell type-specific and brief. This dynamism complicates 

the interpretation of Genome Wide Association Studies (GWAS) of complex neurodevelopmental 

disorders, because identified loci — which predominantly fall in the non-coding DNA — are 

equally context specific6,7. Previous work has mapped the regulatory landscapes of the developing 

human brain in organoids and induced pluripotent stem cell-derived model systems8, the second 35 

trimester developing cortex9, and in whole embryos10. Here we focus on the chromatin landscape 

across the whole developing human brain during the first trimester, a pivotal time when the brain 

is patterned and many neural cell types acquire their core transcriptional identities.  

 

Chromatin accessibility in the first trimester 40 

We measured chromatin accessibility in the developing human brain from 6 to 13 post-

conception weeks (p.c.w.; Fig. 1d) using the 10XGenomics single-cell assay of transposase-

accessible chromatin (scATAC-seq11; 18 specimens), a combined scATAC and scRNA-seq assay 

(Multiome; three specimens) or both (five specimens). Each specimen was dissected into the major 

antero-posterior segments (Fig. 1a-c; telencephalon, diencephalon, mesencephalon, 45 

metencephalon and cerebellum). We collected relatively more nuclei from the brain stem region, 

which is highly complex but has been comparatively less studied than the forebrain9,10. After 

removing low-quality nuclei (Methods), we collected chromatin profiles from a total of 526,094 
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nuclei and 76 unique biological samples (116 including technical replicates; Extended fig. 1g). 

166,785 of these nuclei included gene expression profiles from Multiome sequencing.  50 

To identify the feature set of accessible regions, we applied stratified peak calling on a 

rough clustering of the data using 20 kb genomic bins as temporary features. This was followed 

by a more robust clustering based on the accessible regions using Latent Semantic Indexing and 

Louvain clustering. Batch correction was performed using Harmony12. A split-and-pool approach 

was then used to subcluster each cell class (Radial Glia/Glioblast, OPC, Neuron, Fibroblast, 55 

Vascular and Immune), resulting in 135 clusters (Fig. 1e-f). 

About 36% of accessible regions were intergenic, while 64% were located in gene bodies 

or promoter regions with the majority being intronic (51%; Extended fig. 4a). When taking only 

the distance to the transcription start site (TSS) into account, 87% of accessible regions were 

marked as distal (>2 kb from the TSS) and 19,494 accessible regions (4.7%) overlapped with 60 

known TSS sites (Extended fig. 4b). Additionally, 18% of elements overlapped with a transposable 

element (Extended fig. 4i), compared to 22% in similar data from the adult human brain13. 

Access to gene expression data also allowed for better identification of candidate cis-

regulatory elements (cCREs) using a modified version of Cicero14. By leveraging co-occurrence 

of chromatin accessibility and gene expression, 106,991 predicted enhancer-gene interactions were 65 

identified for 16,267 genes and 59,069 accessible regions (henceforth, cCREs).  

The dataset primarily consisted of nuclei from the neural lineage, showing strong regional 

identities, while non-neural clusters including endothelial cells, fibroblasts and microglia showed 

limited spatial identities (Extended fig. 3a). Additionally, the radial glia to glioblast ratio differed 

markedly between regions (Extended fig. 3), with posterior regions being enriched for glioblasts 70 

while the more anterior regions showed primarily radial glia (Extended fig. 3c). This difference in 

abundance is most likely the consequence of a later transition from radial glia to glioblasts5 in the 

anterior brain.  

The Multiome data allowed us to impute gene expression across the dataset, providing a 

direct comparison between gene expression, gene accessibility and the enrichment of transcription 75 

factor binding motifs. We combined conventional motif discovery with gene expression for each 

cell type to limit identified transcription factor motifs to those coinciding with transcription factor 

expression, discarding unexpressed redundant motifs. The identified motifs included early 

neuronal (EBF1) and pan-glial markers (SOX9) as well as TFs with strong lineage-specific 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2023. ; https://doi.org/10.1101/2023.08.18.553878doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.18.553878
http://creativecommons.org/licenses/by-nc-nd/4.0/


Mannens et al., 2023 - Dynamics of chromatin accessibility during human first-trimester neurodevelopment 

 
4 

expression (e.g. LHX6 and DLX2 in MGE- and LGE/CGE-derived interneurons, EMX2 in 80 

telencephalic glutamatergic neurons, OTX2 in Midbrain GABAergic neurons; additional TFs in 

Fig. 1f). 

We observed a significant 10% increase in the number of accessible regions along the 

neuronal differentiation trajectory, but no significant increase in the glioblast lineage (p < 0.05; 

Extended fig. 3g). This is in line with a shift towards heterochromatin that has been observed in 85 

oligodendrocytes where large numbers of neuronal and later OPC genes are silenced during 

differentiation15,16. Interestingly, the number of accessible regions also increased by age across all 

classes except radial glia (p < 0.001; coefficient 3,206; SE 634; t = 5.06; 6 DF; linear regression), 

with the newly acquired accessible regions being strongly enriched for NFI-binding sites (Fig. 2a-

b). Similarly only within the radial glia and glioblast classes did we find that NFI-binding sites 90 

were most associated with more mature cell neighborhoods (Milopy17; Extended fig. 3d-f). 

 

Cis-Regulatory elements predict gene expression and Transcription Factor specificity 

We next asked how cell type specificity compared between chromatin accessibility and gene 

expression. We used the variance between the cluster level Pearson residuals as a measure of 95 

specificity. For most marker genes, gene expression was more specific than the sum of linked 

accessible regions (Extended fig. 6a). In contrast, individual accessible marker regions were 

generally more cell type-specific than marker genes (Fig. 2c). As a consequence, we found 1,361 

marker genes, but 120,183 marker regions (Fig. 2d-e). Thus cCREs discovered here provide a rich 

source of regulatory elements with precise cell type- state- and temporal resolution during brain 100 

development.  

We next assessed the region specificity of accessible regions by comparing them to known 

functional central nervous system enhancers from the VISTA developmental enhancers database18. 

Nearly all of the VISTA enhancers overlapped with accessible regions in our data (96% 

overlapping feature set; 39% intergenic, 53% intronic, 4% promoter). Many VISTA enhancers are 105 

specific to either the forebrain, midbrain or hindbrain, and these showed a similar pattern of 

activity in the scATAC-seq dataset (Extended fig. 4c). In many cases these enhancers were only 

accessible in more specific cellular lineages like hindbrain glutamatergic neurons (HS161; 

Extended fig. 4d), immature interneurons in the ganglionic eminences (HS702) or radial glia and 

GABAergic neurons in the midbrain (HS830). 110 
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To better understand the gene-regulatory programs underlying the dataset we identified 

accessible region topics using pycisTopic19, which uses a Latent Dirichlet Allocation model (LDA) 

to identify groups of accessible regions that covary and are likely to represent biological programs. 

Each cluster was downsampled to 1,000 nuclei and we fitted a model with 175 topics based on the 

point where the log-likelihood estimation and topic coherence scores reached saturation. A t-SNE 115 

embedding of the accessible regions based on the topic scores showed distinct clusters linked to 

individual topics (Fig. 2f), representing distinct regulatory programmes. Interestingly, in contrast 

to distal elements, most TSS regions were not strongly linked to individual topics and clustered 

together on the embedding, indicating that they were less variable and represent constitutively 

open promoters. A subset of promoter proximal regions clustered separately, and represented two 120 

topics of pan-neuronal and glial CTCF-binding sites (Fig. 2i-j). 

We used the Genomic Regions Enrichment for Annotation Tool (GREAT) to link topics to 

known biological processes via the biological annotation of nearby genes (Extended data 3). For 

example, Topic 4 and 25 were enriched for genes relevant to GABAergic interneuron identity and 

oligodendrocyte differentiation respectively. When scoring the associated signatures (accessible 125 

regions in the topic related to the pathway) clear enrichments in the immature interneuron and 

oligodendrocyte precursor populations could be identified (Fig. 2g), respectively. Since individual 

topics reflected region accessibility only and not gene expression, we identified enriched TF motifs 

for each topic and reduced them to a set of archemotifs20. This prevented the prioritization of false 

positive motifs based on the similarity of the binding motif within TF families. Indeed, Topic 4 130 

was enriched for the MEIS (i.a. MEIS2), HD/2 (i.a. DLX2/5), Ebox/CAGATGG (i.a. NEUROD1) 

and NFI (i.a. NFIA/B/X) archemotifs, while Topic 25 was primarily enriched for the SOX/4 (i.a. 

SOX10) archemotif (Fig. 2h). 

 

Enhancer logic in neuronal specification 135 

While topic modeling can be a useful tool to understand the activity of accessible regions, 

it does not offer any explanations as to the underlying logic that drives activity of regions between 

cellular lineages. To better understand the syntax of regulatory elements that differentiate neuronal 

lineages we trained a convolutional neural network (CNN) to predict cell-type identity based on 

sequence composition21,22. We focused on five large, well-sampled clades: GABAergic neurons 140 

from the midbrain, glutamatergic neurons from the hindbrain and telencephalon, and granule and 
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purkinje neurons from the cerebellum. The model consisted of four convolutional layers followed 

by two dense layers and was able to predict the correct class with an average ROC AUC score 

(Receiver Operating Characteristic Area Under Curve) of 0.92 across the classes (Fig. 3a-b). We 

determined the contribution of each nucleotide in the target sequences towards the prediction using 145 

DeepExplainer23, and identified short motifs with high predictive power (seqlets) using TF-

MoDisCo24 . In this way, we discovered on average 6 seqlets accessible region, and 84% of the 

selected regions were associated with at least one seqlet (online data). We identified MEIS1 and 

ATOH1 as key regulators in both hindbrain glutamatergic neurons and cerebellar granule neurons 

(Fig. 3c) even though ATOH1 expression could only be detected in a subset of the nuclei in those 150 

populations (Fig. 3d). Telencephalic glutamatergic neurons on the other hand were quite distinct 

from their posterior counterparts and were characterized by LHX2 and BHLHE22 motifs. For the 

GABAergic neurons the GATA2 motif was only observed in midbrain neurons, while the OTX2 

motif could also be seen in the Purkinje neurons where the gene is not expressed. This most likely 

represents DMBX1, a TF from the same family that is expressed in Purkinje progenitor cells both 155 

in this dataset and a previously published human neurodevelopment scRNA-seq dataset5 

(Extended fig. 7a). Both populations contained the motif for TFAP2B and LHX1/5, with LHX1 

only being minimally expressed in the Midbrain neurons.  

 

Gene regulatory dynamics in Purkinje Neuron development 160 

The CNN did not provide a temporal order of what stages of the cell trajectory these TFs are active 

in. To further investigate the relationship between TF expression and cCRE accessibility we 

focused on the Purkinje lineage, which was well sampled in our dataset. Purkinje neurons are born 

in the ventricular zone of the hindbrain from PTF1A+ progenitors. From there they migrate into 

the developing cerebellum forming a characteristic layer of large, arborated neurons. We fitted a 165 

pseudotime trajectory to the 71,947 nuclei of the Purkinje lineage (Fig. 4a) and identified 

differentially expressed genes across the lineage (Fig. 4d). We next applied DELAY25, a different 

convolutional neural network method that exploits the temporal shift between the expression of 

transcription factors and their targets in single-cell lineages in combination with ChIP-seq derived 

TF binding site information to estimate gene regulatory networks (GRNs). This revealed a network 170 

of 148 TFs co-regulating each other during Purkinje cell differentiation (Fig. 4b; Extended data 

4). 
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We used the inferred GRN to computationally model single cells, recapitulating in silico 

the expression dynamics of transcription factors along the trajectory (Fig. 4c-d). One of the central 

transcription factors in the network dynamics was ESRRB, an estrogen-related nuclear receptor TF 175 

that in the cerebellum is expressed uniquely in Purkinje neurons. Expression of ESRRB was 

preceded by a series of other transcription factors (PTF1A, ASCL1 and NEUROG2 in the 

progenitor phase; NHLH1/2, TFAP2B, LHX5 and PAX2 in the neuroblast phase) and itself 

preceded the expression of later Purkinje markers like PCP4. We identified nine cCREs linked to 

ESRRB, which showed two distinct activation patterns, early and late (Fig. 4e-f). Using the CNN 180 

we had previously trained to distinguish neuronal cell types we then identified the nucleotides 

driving the Purkinje lineage identity in these two groups of cCREs. We found multiple TFAP2B 

binding motifs in the early cCREs, and an increase of LHX5 binding motifs in the late cCREs (Fig. 

4g). Finally, once ESRRB was expressed, we observed increased accessibility at its downstream 

binding sites elsewhere in the genome (Fig. 4f). The activation of ESRRB can thus be seen as a 185 

two step process where the gene is first poised for expression by TFAP2B, after which LHX5 binds 

the late cCREs and ESRRB expression is induced, leading eventually to the activation of ESRRB 

target genes. Our dataset provides rich resources, RNA expression for every TF (online data), 

predicted cCREs and their activities (online data), and predicted seqlets for every accessible region 

included in training the CNN (online data) to explore similar regulatory processes for many other 190 

genes and lineages. 

 

Chromatin accessibility and GWAS polymorphisms predict cellular targets in neuropsychiatric 

disorders 

Mutations in non-coding gene-regulatory regions have been implicated in numerous 195 

psychiatric disorders 26,27. In many instances these non-coding regions are primarily active during 

a limited temporal window in selective cell types, which makes it difficult to identify the affected 

developmental processes28. Chromatin accessibility atlases with single-cell resolution spanning 

across multiple developmental time points can thus be an important tool in the identification of 

cell type-specific vulnerabilities in complex trait disorders by providing increased selectivity9,13. 200 

To identify if any of the cell types in our dataset were selectively vulnerable to mutations 

associated with psychiatric disorders we curated a large set of phenotypes from the UK Biobank29 

as well as GWAS results from 11 psychiatric phenotypes30–40. We used stratified linkage 
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disequilibrium-score regression to identify cell types for which the phenotype was enriched for 

SNPs within the corresponding cell-type specific accessible regions41. As all the accessible regions 205 

within our dataset are of brain tissue during early development, we wanted to ensure that cell-type 

enrichments for a phenotype remained significant when conditioned on other life-stages and 

tissues. We therefore added accessible regions identified throughout development10 and 

adulthood42 to the background dataset to correct for our fetal neural-focused selection of features. 

We found the expected associations for many of the non-neural cell types (Extended fig. 210 

8) and a number of significant enrichments for the psychiatric phenotypes in neuronal subtypes. 

After correcting for multiple testing (Bonferroni or false discovery rate; Fig. 5a), no significant 

enrichments were found for Tourette’s syndrome, obsessive compulsive disorder, bipolar disorder, 

alcohol use disorder or Alzheimer’s disease, although interestingly we did see lower uncorrected 

P-values (Extended fig. 9; 0.003 < P < 0.01; methods) in all immune cells for Alzheimer’s disease 215 

compared to the neural cell types (all p > 0.1; methods) which agrees with previous findings linking 

SNPs to immune genes43. 

Several disorders showed associations that agree with known disease biology. 

Schizophrenia was associated with cortical MGE-derived interneurons and SATB2+ telencephalic 

excitatory neurons supporting a cortical developmental origin of the disease38. ADHD was 220 

associated with immature GABAergic neurons and Purkinje neuroblasts in the cerebellum, which 

might be related to the structural abnormalities in the cerebellum often observed in ADHD 

patients44. Anorexia nervosa was associated with LGE- and CGE-derived interneurons, in 

agreement with known eating-disorder associated SNPs in GABAergic receptors45. Autism 

spectrum disorder (ASD) was associated with neuroblasts from the hindbrain, supporting the 225 

brainstem hypothesis of ASD46. For insomnia, TAL2+ GABAergic neurons in the midbrain were 

implicated, in line with the reported role of such neurons in the reticular formation of the ventral 

midbrain in wakefulness47,48.  

The strongest associations, however, were those observed between midbrain-derived 

GABAergic neurons (multiple groups) and major depressive disorder (MDD), which we validated 230 

in a second cohort49 (Extended data 7). The involvement of GABAergic neurons in MDD is well 

established50, but often attributed to cortical interneurons for which we found no significant 

associations. Midbrain GABAergic neurons however, are also known to be involved in the 

regulation of reward behavior and stress51, two systems known to be disturbed in MDD. Moreover, 
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a subset of these SOX14+ midbrain-derived neurons also migrate to the thalamus and pons1, 235 

suggesting a broader effect from these mutations. The overlap between MDD and insomnia in 

TAL2+ midbrain GABAergic neurons is also notable as the two disorders have high comorbidity52. 

  To better understand the association between MDD and midbrain GABAergic neurons, we 

used cCREs to identify target genes in MDD. We pooled the set of cCREs linked to each individual 

gene and used MAGMA53 to identify genes significantly associated with MDD. This yielded 25 240 

associated genes consisting mostly of known MDD genes like NEGR1, BTN3A2, LRFN5 and 

SCN8A, as well as a number of histone genes located in the same locus as BTN3A2 (Fig. 5b; 

H2AC13, H2AC15, H2BC14, H2BC15 and H4C13). While many of these genes were expressed 

in midbrain GABAergic neurons, none of them were specific to them. Conversely, regions 

significantly associated with MDD were enriched for the MEIS2, OTX2 and GATA2 binding 245 

motifs, indicating a midbrain GABAergic identity (Fig. 5c), with 22 of the 114 significant MDD 

regions also containing CNN-predicted OTX2 binding sites and 36 containing predicted GATA2 

binding sites. We therefore examined individual accessible regions and the predicted nucleotide 

contributions to the midbrain GABAergic fate (DeepExplainer scores). For most MDD-associated 

SNPs we did not find immediately interpretable overlaps, however, rs114155007 directly 250 

overlapped with the OTX2 binding site (Fig. 5d). These findings suggest that some broadly 

expressed genes associated with MDD contribute to disease only when perturbed specifically in 

midbrain GABergic neurons. 

  

Discussion 255 

In this study we provide a high-resolution multiomic atlas of chromatin accessibility and 

gene expression in the first trimester human brain. We identified over a hundred thousand cell 

type- and region-specific developmental accessible chromatin regions, inferred cCREs, and 

predicted their regulatory syntax using convolutional neural network modeling. These resources 

enable analyses that span from developmental lineages to individual nucleotides — linking 260 

transcription factors to putative enhancers, and enhancers to their target genes — as exemplified 

here by our analysis of ESRRB’s regulation in the Purkinje neuron lineage.  

Our dataset further enabled analysis of genetic association to disease. Interestingly, we found that 

most genes linked to MDD were not cell type specific, yet the associated accessible regions showed 

enriched transcription factor motifs consistent with midbrain GABAergic neurons. This suggests 265 
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that dysregulation of those genes contributes to MDD only when the dysregulation affects specific 

midbrain cell types (but may cause other phenotypes when dysregulated in other cell types). The 

observation reinforces the fact that disease-associated alleles are contextual, and yield disease 

phenotypes mainly by their effect in specific cell types. Nonetheless, our GWAS analysis covered 

only a relatively early period of neurodevelopment and more complete datasets will be required to 270 

fully elucidate the genetics of complex diseases relative to brain cell types. 

In conclusion, this study provides a rich resource for the study of early embryonic human 

neurodevelopment in the context of gene regulation and neurodevelopmental disease.  
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Methods 

Data Availability. Raw sequencing data is available through from the European Genome 

Phenome Archive (EGAS00001007472). To facilitate ease of use of the resource the chromatin 

accessibility and gene expression data are browsable through the CATlas webbrowser 

(http://catlas.org/humanbraindev) and the convolutional neural network can be downloaded 425 

through github: https://github.com/linnarsson-lab/fetal_brain_multiomics.  

Code Availability. All code used to reproduce the figures is available through github: 

https://github.com/linnarsson-lab/fetal_brain_multiomics. Code to reanalyze the data is available 

through: https://github.com/linnarsson-lab/chromograph. The DELAY models trained on 

scATAC-seq data are available through https://github.com/calebclayreagor/DELAY. 430 

 

Sample collection. Human fetal samples were collected from routine termination of pregnancies 

at the Karolinska University Hospital, Addenbrooke’s Hospital in Cambridge and the Human 

Developmental Brain Resource (HDBR) following informed consent of the donors. The use of 

fetal samples collected from abortions was approved by the Swedish Ethical Review Authority 435 

and the National Board of Health and Welfare. In the UK, approval from National Research Ethics 

Service Committee East of England – Cambridge Central was obtained (Local Research Ethics 

Committee, 96/085). The samples were dissected by a trained embryologist into the major 

developmental regions (Telencephalon, Diencephalon, Mesencephalon and Metencephalon) along 

the anterior-posterior axis. In addition, the Cerebellum was separated from the Metencephalon and 440 

where possible the Metencephalon was divided into Medulla Oblongata and Pons. Following the 

dissection, the samples were transferred to ice cold Hibernate E media (ThermoFisher, A1247601) 

and either shipped overnight at refrigerated temperature to Sweden or processed the same day 

when collected at the Karolinska University Hospital. Ethical approval for the use of post-mortem 

human fetal tissue was provided in DNR2019-04595 and DNR2020-02074. 445 

However, some important limitations of this study must be considered. First, as these are 

clinical samples the timing was variable and based on expert annotation rather than knowledge of 

the date of conception. In addition, due to damage incurred during collection not all regions could 

be collected from every sample and had to be compensated for by collecting more samples. Finally, 

as the samples were derived from multiple sources the time between collection and dissociation 450 

varied. 
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Nuclei isolation. Tissue was gently minced using a razor blade and incubated with the Papain 

Dissociation System (Worthington) following the manufacturer’s recommendations (including 

200 U/mL DNAse), at 37 °C for 10 minutes. Using glass pipettes, the suspension was then 455 

triturated to dissolve any remaining chunks of tissue, before being filtered through a 30 um filter 

(CellTrics). The cells were then washed with EBSS, concentrated (200g 5 min) and counted using 

a hemocytometer, after which 1x106 cells were pelleted (500g 5 min) in a 2 mL LoBind Eppendorf 

tube and pelleted. The cell pellets were dissociated for 5 minutes on ice using 100 ul of dissociation 

mix (0.001% Digitonin, 0.01% Non-idet P40, 1 mM DTT, 1 U/ul RNAse inhibitor, 0.1% Tween-460 

20, 1% BSA, 10 mM Tris-HCl, 10 mM NaCl, 3 mM MgCl2). When only scATAC-seq was 

performed no RNAse inhibitor or DTT were added to the mix. Dissociation was halted by addition 

of 1 ml of wash buffer, after which nuclei were pelleted again (500g 5 min) and resuspended in 

1X nuclei buffer (10X Genomics) and recounted. 

  465 

Single cell sequencing. Libraries were generated using the 10X Genomics Chromium controller 

and Single Cell ATAC or Single Cell Multiome ATAC + Gene expression kits. Briefly, a targeted 

number of nuclei (5.000-10.000) was treated with a Tn5-transposase for 60 min at 37 °C to 

fragment the DNA and insert adapter sequences into open parts of the chromatin. The suspension 

was then mixed with the provided barcoding PCR mix and a gel-bead emulsion (GEM) was 470 

generated by co-encapsulating the suspension with barcoded beads in in the 10X microfluidic chip 

and RT-PCR was performed in a C1000 Touch Thermal Cycler (Bio-Rad) with one of two 

programs: 1) ATAC: 12 cycles of (5 min 72 °C, 30s 98 °C, 10s 98 °C, 30s 59 °C, 1 min 72 °C) and 

hold at 15 °C or 2) Multiome: 45 min 37 °C, 30 min 25 °C and hold at 4 °C. For multiome samples 

Quenching Agent was added to prevent the RT-PCR from continuing. Following PCR, the DNA 475 

was isolated from the droplets and cleaned up with the Cleanup mix and Silane Dynabeads. Sample 

indexes and P7 primers (Illumina) were ligated during library construction using the following 

PCR protocol: 9 or 10 cycles of (45s 98 °C, 20s 98 °C, 30s 67 °C, 20s 72 °C) and 1 min 72 °C 

before hold at 4 °C. SPRIselect beads were used for size selection of fragments to generate the 

final library. The fragment size distribution was analyzed using the Bioanalyzer high-sensitivity 480 

chip to eliminate libraries that did not show the expected nuclear banding pattern. Libraries were 

then sequenced using the Illumina Nova-seq instrument using the recommended setting for paired-
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end sequencing, with the scATAC-seq and scATAC-seq (multiome) libraries in separate flow cells 

as pooling of them is not recommended with a target of 100.000 read pairs per cell. The multiome 

scRNA-seq libraries were pooled with other 10X Genomics scRNA-seq v3.1 libraries. 485 

  

10X data processing. All samples were demultiplexed and aligned to the human genome 

GRCh38.p13 gencode V35 primary sequence assembly using either Cellranger-atac 2.0.0 or 

Cellranger-arc 2.0.0 for scATAC-seq and single-cell multiome respectively. The RNA libraries 

from multiome samples were aligned as described previously5. 490 

  

Chromograph pipeline. Chromograph is a new analysis pipeline for scATAC-seq data based on 

the key architecture of Cytograph 2 4, which uses loom-files as the underlying data-format and is 

available for use in github (https://github.com/linnarsson-lab/chromograph). The results in this 

paper were generated using commit #9ae1434. Briefly put, chromograph provides tools to pool 495 

and split scATAC-seq data, perform clustering, balanced peak calling based on cluster partitions, 

identify marker peaks and enriched transcription factor motifs and enables imputation of gene 

expression from limited multiome data. This dataset was analyzed by first performing a primary 

analysis, then manually splitting it into subsets based on marker genes. These subsets were then 

reanalyzed, and the results are again pooled together to generate a more fine-grained dataset than 500 

the primary analysis. 

  

scATAC-seq QC. TSS enrichment was calculated using pyCistopic19 (tss window 50bp, flanking 

window 1,000 bp) since we noticed discernible change in some of the samples after updating 

Cellranger-arc. Samples with a score below 5 were discarded. For the other samples cell-by-bin 505 

matrices were generated at both 5kb and 20kb resolution with bins that overlapped with any of the 

ENCODE blacklist54 being removed. The 5kb cell-by-bin matrix was used for doublet detection 

using an adapted version of DoubletFinder. Briefly put, nuclei were co-embedded with 20% 

artificial doublets to determine a threshold to distinguish doublets from singlets based on their 

nearest-neighbor network and a Doublet score was assigned based on each cell’s local 510 

neighborhood. For the multiome samples the RNA-doublet score was used as it proved slightly 

more stable. Additionally, the sex of the sample was determined based on the number of fraction 

of Y-chromosomal reads (>0.05% for male) as well TSS fraction. Nuclei that were not doublets, 
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had more than 5,000 and less than 100.000 fragments, had more than 20% TSS fragments, had 

more than 1.000 RNA UMIs and at least 10% unspliced RNA UMIs were pooled to generate the 515 

main dataset (the final two filters only apply to multiome). 

On average 27,599 high quality fragments per cell were identified with a Fragments in Peaks ratio 

of 54%. High quality nuclei were selected based on the number of fragments and fraction of 

fragments overlapping TSS as well as UMI count and splice ratio in multiome samples.  

 520 

Preclustering and consensus peak calling. The feature set used to generate the cell-by-peak 

matrices is dynamically derived from the data through peak calling. To do so the 20kb matrices 

are first joined and binarized after which the top 20% of autosomal bins are selected with an upper 

threshold of 60% coverage across the dataset and decomposed using Latent Semantic Indexing 

(LSI, more detailed description below). A KNN graph can then be constructed, and the data is 525 

clustered into broad clusters using Louvain clustering. Fragments from the nuclei belonging to 

each cluster are then aggregated and randomly split in two to generate two pseudo-bulk replicates 

per cluster. The pseudobulk aggregates are then down sampled to 25 million fragments and 

MACS255 is used to call peaks using the following parameters: callpeak -f BEDPE -g hs --nomodel 

--shift 100 --ext 200 --qval 5e-2 -B –SPMR. Peaks were then extended to 400 bp using BEDtools 530 

and non-overlapping peaks between the pseudo-replicates were discarded. Next the identified 

peaks for all clusters were pooled and clustered using BEDtools cluster. For each cluster of peaks, 

the center point was extracted and extended to 400 bp to generate the consensus peak set. Peaks 

overlapping with the ENCODE blacklist were removed and the remainder was annotated using 

HOMER56 based on Gencode v32, after which the cell-by-peak matrix is generated. 535 

  

Latent Semantic Indexing. Decomposition was performed in two steps. First the matrix was 

depth normalized and infrequent features were upweighted by performing a Term-Frequency 

Inverse-Document-Frequency (TF-IDF) transformation. The resulting non-binary matrix was then 

used to compute the principal components using an incremental PCA. Initially 40 components are 540 

computed, but components that are not distributed significantly different from their predecessor 

are discarded along with a depth-correlated component if present. Next the components are batch 

corrected using Harmony to mediate chemistry and sample effects12. 
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Clustering, embedding and aggregation. The cell-by-peak matrix is decomposed using an 545 

iterative LSI, meaning that the data is decomposed and clustered in two rounds. First the top 20.000 

features by total coverage from the autosomal chromosomes are used to do a preclustering, after 

which 20.000 autosomal features are selected again based on the variance of their precluster level 

enrichment for a second LSI. Batch effects were again corrected for using Harmony. The second 

LSI is then used to generate nearest neighbor graphs and perform Louvain clustering. A tSNE is 550 

then generated using an adapted version of ‘the art of using tSNE’57 which better preserves global 

structure than native tSNE. Additionally, a UMAP is generated using UMAP-learn58 on default 

setting. For both methods Euclidean distances were used as a metric. Next all clusters were 

aggregated and a normalized Counts per Million (CPM) layer was added. 

The enrichment of individual peaks was calculated as a pearson residual59. Briefly, 555 

fragments are modeled as a negative binomial distribution where the expected accessibility is the 

product of the total number of fragments per cluster and the fraction of fragments per peak. The 

residuals can then be calculated as the difference between the observed (Χ) and expected (𝜇̂) 

accessibility corrected by the negative binomial variation (dispersion parameter fixed at 100 for 

all analysis in this paper). For each cluster the top 2.000 peaks by pearson residual were marked 560 

as marker peaks. The 20.000 peaks with most variance between pearson residuals were used to 

calculate cluster similarities and to generate the cluster dendrogram. 

𝑍𝑐𝑔	 =
𝑋!" −	𝜇̂!"

*𝜇̂!" −
𝜇̂!"#
𝜃

	𝜃 = 100 

 

Gene expression imputation & marker selection. 31% of nuclei in the dataset were processed 565 

using the Single Cell Multiome ATAC + Gene expression kit. This allows for the imputation of 

gene expression measurements in the ATAC only samples. To predict gene expression in the 

scATAC-seq nuclei, first all multiome nuclei were all scaled to 5,000 UMIs and an ‘anchor’ net 

was first generated consisting of a directed graph of each scATAC-seq cell and their 10 nearest 

multiome neighbors. Next the weights were scaled to sum to 1 for each cell and the nearest 570 

neighbor matrix was multiplied with the gene expression profiles of the multiome nuclei to 

generate predicted gene expression profiles for each scATAC-seq cell. 
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Trinarization scores and gene enrichment were calculated as defined previously in2 with marker 

genes being selected based on their enrichment. The trinarization scores were then used for auto-

annotation using a set of punch cards specific to early human development4,5. 575 

  

Subset analysis and pooling. The dataset was split based on cluster level marker expression into 

the following partitions: Fibroblast (DCN+ COL1A1+), Immune (PTPRC+), Vascular (TAGLN+ or 

CLDN5+ FLT1+), OPC (PDGFRA+ OLIG1+), RGL/GBL (HES1+ or BCAN+ TNC+) and Neuronal 

lineage (any of INA+ NHLH1+ GAD2+ SLC17A6+ SLC6A5+). The subsets were reanalyzed using 580 

the same pipeline described above. Clusters that contained less than 10 multiome nuclei or of 

which less than 1% of the total cluster size were multiome nuclei were excluded as well as clear 

clusters of doublets. The Neuronal lineage partition was split for a second round into the 

GABAergic lineage (GAD2+), Glutamatergic lineage (SLC17A6+, SLC17A7+ or SLC17A8+) and 

Peptidergic lineages. All partitions were then pooled again and new summary statistics and 585 

embeddings were generated. 

 

Motif enrichment. For every cluster the 2.000 selected marker peaks were used as input to 

HOMER findMotifsGenome56 using GC-matched genomic sequences as background. The 

Hocomoco v11 Full collection was chosen as the transcription factor binding motifs to be tested. 590 

The naming convention was manually altered to reflect genes names in the gene expression 

analysis. This allowed the filtering of false positives by exclusion of cell-motif combinations for 

which the corresponding transcription factor was unlikely to be expressed (trinarization score < 

.5). Additionally, all transcription factors were assigned to a family based on their archemotif20. 

 595 

Gene accessibility and cCREs. Gene accessibility scores were computed using an adapted version 

of the cicero workflow14 using the python SKGGM package. First, the distance parameter was 

estimated by optimizing the calculation of the regularized covariance matrices for 100 random 500 

kb regions. Next the distance adjusted covariance for each accessible region with each TSS site 

was calculated in 500 kb bins with a 250 kb overlap. Most pairs are sampled twice and pairs with 600 

inconsistent covariances being discarded (~5%). The co-accessibility cut-off was set empirically 

by testing the number of subnetworks over varying cut-off thresholds. Gene activity scores were 

then calculated by multiplying the peak-by-cell and region-to-TSS covariance matrices, 
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normalizing against size factors derived from a linear regression model and pooling across the 25 

nearest neighbors. Similarly to the region-TSS covariance matrix, cCREs were identified by 605 

calculating the region-Gene expression covariance. 

 

Identification of total accessible regions by sample. To identify general trends in 

opening/closing of chromatin, all fragments from individual cell classes and biological samples 

were pooled together and MACS2 was used to call peaks per class per sample. A one-sided fisher 610 

exact test with Benjamini-Hochberg correction was used to identify differential regions. A 

generalized linear model was used to estimate the influence of age on the number of accessible 

regions.  

 

VISTA enhancer overlap. CNS enhancers (from the VISTA database) were downloaded and 615 

lifted over to GRCh38 using UCSC liftOver, excluding any that could not be confidently lifted 

over, resulting in 620 enhancers, of which 596 overlapped with our peak set. The enhancers that 

were specific to the Forebrain, Midbrain and Hindbrain were isolated (total of 159, 75 and 78 

respectively), similarly the corresponding peaks in the dataset were identified and the brain region 

with the highest accessibility was identified, after which the Jaccard similarity was calculated. 620 

 

Topic modelling. The full dataset was downsampled to a maximum of 10,000 nuclei per cluster 

to reduce computational burden and prevent overrepresentation. The number of topics was varied 

from 25 to 500 at intervals of 25, running for 50 iterations with an alpha of 50 divided by the 

number of topics and a beta of 0.1. The most stable model (175 topics) was selected based on 625 

topic-coherence and log-likelihood in the last iteration. The region-topic scores were normalized 

so that they summed to 1 for every cell and a tSNE-embedding was generated for the regions and 

binarized topic lists were generated by assigning each region to the topic that it scored the highest 

on. Next each topic was used as input for Homer2 with the Hocomoco transcription factors and 

the results were reduced to the highest scoring representative of each archemotif group. The 630 

binarized topics were also used as input for GREAT analysis60 to identify GO-terms describing 

each topic. For some selected terms the associated regions (within the topic) were used to calculate 

an enrichment score using pyCistopic’s signature_enrichment function. 
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Enhancer Convolutional Neural Network. Nuclei from all clusters annotated as ‘Purkinje’, 635 

‘Midbrain GABA’, ‘Cerebellum GNP’, ‘Hindbrain Glutamatergic’ or ‘Telencephalic 

Glutamatergic’ were grouped into 5 superclusters and enrichment between the clusters was 

recalculated and peaks were only included for learning if the log-fold change with the second 

highest accessibility was more than 1. Onehot encoded sequences (401 bp) were used as input to 

a Convolutional Neural Network trained as a classification model. The network consists of 4 640 

convolutional layers of 256, 60, 60, 120 nodes and kernel sizes 7, 3, 5, 3 respectively, each layer 

was followed by batch normalization, RELU activation and maximum pooling. There were then 

two dense layers of 256 nodes with batch normalization, RELU activation and a dropout rate of 

0.4. A softmax normalization was applied to the final output layer and cross entropy loss was used 

as the loss function with label smoothing set to 0.1. The model was trained using an Adam 645 

optimizer with a learning rate of 0.01. The model was trained for 26 epochs. 

Contribution scores for each sequence were calculated using DeepLiftShap’s attribute function 

using the mean of the input sequence shuffled 100 times as background. The hypothetical score 

was calculated using for each possible nucleotide in the sequence by multiplying the contribution 

with the background corrected input24. TF-MoDisCo was then applied to all the sequences 650 

enriched in a cluster with a flanking size of 5 bp, a sliding window of 15 bp and a minimum cluster 

size of 30 seqlets. 

 

Pseudotime, GAMs and ChromVAR. For analysis of the Purkinje lineage all clusters labeled 

‘Purkinje’ and the PTF1A+ cluster of Ventricular Zone Progenitors were isolated and a new TSNE 655 

was generated. PySlingshot was then used to calculate the pseudotime. pyGAM was used to fit 

gene and cCRE trends to the Purkinje Neuron lineage with gene expression being modeled using 

a PoissonGAM and cCRE accessibility using a LinearGAM. ChromVAR was applied using the 

JASPAR human PWM (human_pwms_v2) to compute motif variability. 

 660 

Supervised inference and stochastic simulation of Purkinje GRN. We used DELAY25 

(https://github.com/calebclayreagor/DELAY) to infer the Purkinje GRN from gene-accessibility 

dynamics in pseudotime then performed stochastic simulations to verify the putative network’s 

gene-expression dynamics. First, we re-trained DELAY on a large scATAC-seq dataset of plasma 

B-cell differentiation61 with ChIP-seq ground-truth data62 to prepare the neural network to infer 665 
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the Purkinje GRN from tens of thousands of single nuclei. Then, we fine-tuned DELAY on the 

Purkinje developmental trajectory using ground-truth targets of a cerebellar ataxia-related gene, 

ataxin-763. For the final GRN inference, we used the expression-linked, log-normalized gene-

linked peak counts from all TFs that were differentially expressed in at least 1% of Purkinje cells 

across pseudotime. We then used BoolODE64 to simulate the expression of each gene in the 670 

network given its top 8 most-likely regulators. 

 

GWAS enrichment. Accessible region locations were lifted over to GRCh37. Features were 

binarized on the cluster level with a Pearson Residuals threshold of 10. Cluster heritability was 

calculated using LD-score regression41. As a background we used the merger of our feature set 675 

with the features from development10 and adulthood42. Only SNPs from hapmap3 were included 

to reduce imputation errors. In total we tested 325 phenotypes from the UK Biobank29 and 11 

psychiatric phenotypes 30–40. All used UK Biobank phenotypes had non-zero heritability estimates 

(Z-score > 4). Results UK Biobank phenotype enrichments were corrected for the number of cell 

types using FDR or Benjamini-Hochberg. For the psychiatric enrichments FDR and Bonferroni 680 

corrections were applied for the number of cell types and tests (α = 3.37e-5, 135 x 11 tests).  

Two different MAGMA tests were conducted with default settings. First the cCRE linked 

to genes were annotated to genes in a custom MAGMA annotation file. A MAGMA gene analysis 

was used to assess which genes were affected in MDD. Next MAGMA gene analyses were 

conducted for ADHD, anorexia, ASD, MDD and schizophrenia, on a custom annotation filewhere 685 

individual accessible regions were treated like individual genes to identify specific deregulated 

elements. Accessible regions passing Benjamin-Hochberg correction were then used as input for 

Homer with the full vertebrate motif reference.  
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Figures 

 715 
Figure 1: Atlas overview. A) Overview of experimental design. Dissected samples were 

processed using scATAC-seq and single-cell Multiome sequencing to infer gene-regulatory 

relationships throughout early development across the human brain. B) Collected cell counts per 

post-conceptual week (p.c.w.) and region. C) tSNE plot of regional identities. D) Distribution of 

developmental ages across the tSNE-embedding. E) tSNE plot of cell classes. F) From top to 720 

bottom. Per cluster regional distribution of cell types, (legend in C). Distribution of ages (legend 

in D). Assigned cell class (legend in E). Aggregated gene activity by cluster based on region co-
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accessibility. Gene expression of the same genes. Transcription factor motif enrichment in the top 

2,000 most enriched accessible regions per cluster. Dot size represents motif enrichment, while 

color indicates corresponding expression of the transcription factor (trinarization score; a 725 

probabilistic score of whether a gene is expressed). 
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Figure 2: Functional Annotation of Open Chromatin Regions. A) Number of accessible 730 

regions by cell class, split between samples staged before and after 10 p.c.w. B) Transcription 

factor motifs in regions that are differentially accessible early or late in the dataset (p < 0.05; 

Benjamini Hochberg-corrected one-sided Fisher exact test). C) Enrichment comparison between 

the gene expression and chromatin accessibility components of the dataset. A moving threshold 

was used to identify the fraction of features enriched in at least one cluster at different levels of 735 

stringency. D) Selection of marker gene expression. E) Accessible marker regions, limited to top 

2,000 per cluster. F) tSNE plot where individual dots represent accessible regions and are colored 

based on highest scoring region-topic. A strong enrichment TSS and promoter regions in the top 

right of the second plot represent constitutively active elements. G) tSNE plot of nuclei showing 

enrichment of two Gene Ontology signatures that were enriched in topic 4 and 25 (shown in F), 740 

identified using GREAT. H) Arche-motif enrichment for a subset of topics, where dot size 
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represents enrichment. The arche-motifs from top to bottom contain the following transcription 

factors (non-exhaustive): HD/19: OTX1/2, MEIS: MEIS2/3, HD/2: HOXA2/LBX2, TFAP2/1: 

TFAP2A/B, NFI/3: NFIA/C, Ebox/CAGATGG: PTF1A/NEUROD1/2/ATOH1, SOX/4: 

SOX4/10, FOX/4: FOXA1/2/FOXP2, SPI: SPI1/SPIB/C, ETS/1: ELF1/3/5/GABPA, NFY: 745 

NFYA/B/C, RFX/1: RFX1/2/3/4. I) tSNE plots of topic 9 and 18. Each of these was enriched for 

CTCF-binding sites and plotted together on the region tSNE (also shown in F). J) Enriched 

transcription factor motifs in topic 9 and 18. 

 

  750 
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Figure 3: Convolutional Neural Network predicts Neuron Type from Sequences. A) Network 

layout. Enriched sequences for each cell type are one-hot encoded and used to train a CNN network 

with 4 convolutional layers and 2 dense layers. The loadings of the convolutional layers are used 

to calculate the contribution of each of the nucleotides in the original sequence and recurrent 755 

patterns can be clustered to find driving TF motifs. B) ROC curves for each of the classes and 

mean area under curve score (ROC AUC) off all classes. In a random classification model the 

ROC AUC is 0.5 C) t-SNE embedding showing the selected classes. For each of the classes a 

subset of the characteristic motifs is shown. The identity of motifs was determined by the binding 

motif and expression in the corresponding class. D) Dot plot representing expression of each of 760 

the transcription factors in C. The size represents the fraction of non-zero cells and the color the 

expression level. 
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 765 
Figure 4: Gene Regulatory Dynamics in Purkinje Neurons. A) t-SNE embedding of Purkinje 

Neurons showing pseudotime and the differentiation trajectory. B) Transcription factors involved 

in the Gene Regulatory Network as identified using DELAY. The nodes are sized by centrality. 

C) t-SNE of nuclei simulated from the DELAY network using boolODE. Color represents the 

expression of NHLH2, LHX5 and ESRRB. D) Heatmaps of Purkinje marker genes expressed along 770 

the pseudotime trajectory and the corresponding prediction based on the DELAY network. E) 

Chromatin Accessibility landscape around the ESRRB gene. 9 cCRE were identified to regulate 

ESSRB expression. Two are highlighted that occur close to each other but open up at different 

stages in differentiation. F) Trend lines of important factors in ESSRB gene progression. The 

vertical lines mark important events. From top to bottom: Expression of LHX5 and TFAP2B, 775 

Accessibility of cCREs regulating ESRRB, Expression of the ESRRB gene and enrichment of the 

ESRRB binding-site in target peaks. G) The contribution scores of two cCRE regulating ESRRB 

expression (an early and a late cCRE), title colors correspond to the marked peaks in E. The early 

example contains two binding sites for TFAP2B, while the late cCRE contains a LHX5-binding 

site. 780 
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Figure 5: Enrichment of Psychiatric SNPs in first trimester Central Nervous System Cell 

Types. A) -log10 p-values for Neuropsychiatric phenotypes included in the analysis. Asterisks 

indicate significance level (FDR or Bonferroni). Only cell types reaching significance in one of 785 

the phenotypes are plotted. B) MAGMA -log10 p-values for gene-associated cCREs with the 

Benjamini-Hochberg alpha set at 1.2 x 104. C) Enriched TF-binding motifs in the MDD-associated 

SNPs passing Bonferroni correction. MEIS2, OTX2 and GATA2 are transcription factors strongly 

associated with midbrain inhibitory neurons. D) The contribution scores of region 

chr6:28,885,244-28,885,645, which contains rs114155007, one of the SNPs associated with major 790 

depressive disorder. 
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Extended figures 795 

 
Extended figure 1: Quality control. A) Distribution of fragment count (log10) and fraction of 

fragments in TSS for collected barcodes. B) fragment size distribution per sample. Top plot shows 

log scaled density. C) t-SNE embedding generated from Latent Semantic Indexing without 

Harmony sample correction (top) and with sample correction (bottom). D) tSNEs of dataset 800 

without Harmony sample integration and with integration. Nuclei colored by sample ID. E) 

Distribution of TSS enrichment across nuclei per sample. 5 was used as a minimum sample level 
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cut-off. F) Fragment count (log10) across nuclei per sample. G) Number of nuclei collected per 

sample, separated by method. 
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Extended figure 2: Analysis pipeline. Steps taken to analyze single cell data. Following quality 

control the dataset is clustered using genomic bins as features. Peak calling is then performed per 

cluster and a cell-by-peak matrix is generated and nuclei are clustered. The available multiome 810 

nuclei are then used to impute gene expression across the dataset. Downstream analysis is 

performed including motif enrichment analysis and region-to-gene linkage before splitting the 

dataset by cell class. Each subset is reclustered and reanalyzed separately before being pooled 

together again using the subset clusters and a final analysis round is conducted. 
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Extended figure 3: Regionalization of cell types. A) Annotation of region of origin for each cell 

class. While clear effects of regionalization can be seen in the neural lineage, the non-neuronal 

nuclei are more similar across brain regions. B) Expression of canonical markers used to annotate 820 

radial glia, glioblasts, the roof plate and the floor plate. C) Distribution of radial glia and glioblasts 

between brain regions. D) tSNE showing change in abundance of early vs. late nuclei in local 

neighborhoods among radial glia and glioblasts. E) Volcano plot of change in abundance of early 

vs. late nuclei in local neighborhoods among radial glia and glioblasts as identified using milopy. 

F) Enriched transcription factor motifs among the 2,000 most enriched accessible regions between 825 

early and late neighborhoods. G) Boxplot showing the number of accessible regions identified in 

different cell types. Neuroblasts and neurons have significantly more accessible regions than radial 

glia (two-sided independent t-test; neuroblast: t = 3.6; CI = 8,343-30,358; Cohen’s D = 1.13; 38 
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DF; p < 0.005; neurons: t = 2.5; CI: 2,485-22,706; Cohen’s D = 0.77; 43 DF; p < 0.05). H) 

Regression fitted to age to predict number of accessible regions using the cell types as covariates.  830 
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Extended figure 4: Annotation of accessible chromatin regions. A) Distribution of functional 

region annotations in relation to nearby genes. B) Distribution of accessible region distance to 

nearest TSS. C) Jaccard similarity between region-specific enhancers from the VISTA database 

and accessible regions identified in corresponding regions of the dataset. D) Spatially restricted 835 

accessibility of developmental enhancers overlapping with known enhancer sequences from the 

VISTA enhancer-database shown by LacZ staining. From left to right, active in Hindbrain neurons 

and glioblasts, immature interneurons in the Ganglionic Eminence and Midbrain radial glia and 

inhibitory neurons. E) Mean DNA conservation of proximal (<2,000 bp from TSS) and distal 

elements based on the PhastCon 100-way. F) Number of accessible regions that overlap with the 840 

ENCODE cCRE and DNAse hypersensitive site reference datasets. Additionally the number of 

elements that overlap with the human enhancer atlas fetal brain dataset. Red shows regions not in 

the reference dataset, gray are overlapping regions. G) Overlap between the identified accessible 

regions in this study (development) and a comparable study in the adult human brain (Li et al., 
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2022 under revision). H) Overlap with two sets of evolutionarily accelerated regions, with overlap 845 

in blue and regions from the comparison list not in our dataset in gray. Human accelerated regions 

(HARs) are regions with increased rates of nucleotide substitution that are conserved in other 

species, while human ancestor quickly evolved regions (HAQERs) are regions that diverged 

rapidly between humans and chimpanzees that were not previously constrained. I) Overlap with 

annotated transposable elements. J) Comparison of transposable elements in early vs. late nuclei 850 

across the dataset. G) Heatmap of region topics across the 135,00 nuclei included in the topic 

modeling.  
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 855 
Extended figure 5: Cluster annotation. A) Extended motif enrichment plot of all clusters. Dot 

size represents -log p-value of the motif enrichment. The color represents expression level. B) 
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Correlation between cell types based on marker peak accessibility. The colorbar at the top 

represents the assigned cell class.  
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 860 
Extended figure 6: Gene expression imputation. A) Comparison between cell type specificity 

of marker genes in gene expression and gene accessibility space. Top 5 enriched genes were 

selected for each cluster in both modalities and the union was used for plotting. B) Correlation 

between expression and accessibility of each selected marker gene. C) Maximum log fold change 

of marker versus median expression. The genes with RNA enrichment of zero are not expressed. 865 

D) Distribution of scATAC-seq and multiomic nuclei across the tSNE embedding. E) Leave-one-

out validation of imputed expression. Predicted versus true expression of CA8. F) Top 100,000 

gene-cluster expression pairs true vs imputed expression. 
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Extended figure 7: Additional figures related to TF CNN model. A) Expression of DMBX1 in 

this dataset and Braun et al.,5 B) Additional cCREs upstream of ESRRB. 
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Extended figure 8: 875 

Enrichment of 

selected UK 

Biobank traits in 

neurodevelopmental 

cell types. Each trait 880 
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of related traits 

(Immune, blood 

pressure, cognitive, 

hayfever and 885 

psychiatric). Clusters 

are ordered by major 

cell class. Most traits 

show the expected 

enrichment pattern. 890 
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Extended figure 9: Enrichment of selected psychiatric phenotypes in neurodevelopmental 

cell types. Clusters are ordered by major cell class. While not reaching significance after multiple 895 

test correction, an increased association between Alzheimer’s disease and immune cells can be 

observed in opposition to the other traits which primarily are associated with neuronal cells. 
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