

Clarifying the biological and statistical assumptions of cross-sectional biological age predictors

Marije H. Sluiskes¹, Jelle J. Goeman¹, Marian Beekman²,
P. Eline Slagboom^{2,3}, Hein Putter¹, Mar Rodríguez-Girondo^{1,*}

¹Medical Statistics, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands

²Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands

³Max Planck Institute for the Biology of Ageing, Cologne, Germany

*Corresponding author: Mar Rodríguez-Girondo, m.rodriguez_girondo@lumc.nl

Abstract

There is variability in the rate of aging among people of the same chronological age. The concept of biological age is postulated to capture this variability, and hence to better represent an individual's true global physiological state than chronological age.

Biological age predictors are often generated based on cross-sectional data, using biochemical or molecular markers as predictor variables. It is assumed that the difference between chronological and predicted biological age is informative of one's chronological age-independent rate of aging Δ .

We show that the most popular cross-sectional biological age predictors—based on multiple linear regression, the Klemmer-Dougal method or principal component analysis—rely on the same strong underlying assumption, namely that a candidate marker of aging's association with chronological age is directly informative of its association with the aging rate Δ . We call this the identical-association assumption and prove that it is untestable in a cross-sectional setting. Using synthetic data, we illustrate the consequences if the assumption does not hold: in such scenarios, there is no guarantee that the weights that a cross-sectional method assigns to candidate markers are informative of the underlying truth. Using real data we illustrate that the extent to which the identical-association assumption holds is of direct practical relevance for anyone interested in developing or interpreting cross-sectional biological age predictors.

Keywords: Aging, biological age, aging rate, aging clocks, metabolome

27 Introduction

28 Individuals of the same chronological age show considerable variation in the rate at which they age: while some
29 enjoy long and healthy lives, others experience early-onset functional decline, suffer from a range of diseases
30 and die young [Partridge et al. 2018]. This variability gave rise to the idea that, in addition to a chronological
31 age, individuals also possess a biological age [Benjamin 1947, Comfort 1969]. This biological age should be
32 an accurate reflection of one's position on their life-course: when biological age exceeds chronological age this
33 is indicative of accelerated aging (marking a higher physiological vulnerability, lower lifespan expectancy and
34 increased risk to develop (multi)morbidity), the reverse of slow aging.

35 The question why, how and how fast we age is not only of biological interest, but has direct societal relevance.
36 The enormous increase in average human lifespan that has been observed throughout most of the world in the
37 last centuries has not been matched by an equal increase in healthspan (life years spent in health) [Crimmins
38 2015, Partridge et al. 2018]. This has led to a global healthcare burden, which is expected to only increase in
39 the decades to come [He et al. 2016]. Measuring biological age could contribute to identifying individuals most
40 at risk and helping them with targeted interventions. In addition, a better insight in the processes that underlie
41 aging might help in designing interventions to slow down, delay or even reverse aging.

42 Biological age is latent: it cannot be directly measured, which complicates a direct evaluation of predictions.
43 However, there is consensus that biological age contains information on aging above and beyond chronological
44 age [Baker III and Sprott 1988, Jylhävä et al. 2017]. We call this chronological age-independent part of biological
45 age the ‘aging rate’ and denote it by the symbol Δ . Hence, we here mean by aging rate Δ only the biological age
46 acceleration or deceleration (i.e., biological age conditional on chronological age). In line with this consensus,
47 predictions of biological age are generally evaluated by checking if the chronological age-independent part of a
48 prediction, denoted by $\hat{\Delta}$, is associated with time-to-death or other outcomes that are known to be measurable
49 physiological outcomes representing the aging process (e.g., grip strength, frailty or cognitive function), in a
50 model adjusted for chronological age.

51 The aging field is trying to detect (bio)markers indicative of the biological age of individuals, in this pa-
52 per referred to as ‘candidate markers’ (of biological aging). Such candidate markers of biological aging must
53 be informative of biological age beyond chronological age, i.e., they must be associated with one’s aging rate
54 Δ . Candidate markers can consist of molecular, biochemical, clinical or physiological health data. The earliest
55 attempts to capture biological age made use of a limited number of physiological and biochemical markers [Com-
56 fort 1969, Furukawa et al. 1975, Takeda et al. 1982]. More recently, the advent of high throughput bio-molecular
57 technologies has resulted in the development of numerous high-dimensional omics-based age predictors. This
58 renewed interest was initiated by the publication of the Horvath and Hannum DNA methylation (DNAm) age
59 predictors [Horvath 2013, Hannum et al. 2013]. It was soon found that DNAm age predictions are associated
60 with aging above and beyond chronological age [Marioni et al. 2015, Christiansen et al. 2016, Perna et al. 2016].
61 Since then, various other omics-based age predictors have been developed, e.g. based on IgG glycomics [Krstic
62 et al. 2014], metabolomics [Van Den Akker et al. 2020], proteomics [Tanaka et al. 2018] or transcriptomics
63 [Peters et al. 2015].

64 Biological age prediction methods, often referred to as ‘aging clocks’, can be divided in two generations.
65 The first-generation prediction methods are based on the association of candidate markers of biological aging
66 with chronological age. These methods hence require cross-sectional data only, where chronological age and
67 candidate markers are measured at a single point in time. The second-generation prediction methods are based
68 on the association of candidate markers with time-to-age-related-event data (as of yet, only time-to-mortality
69 has been considered as outcome of interest). The three most well-known second-generation predictors are
70 PhenoAge [Levine et al. 2018] and GrimAge [Lu et al. 2019], which both use DNAm marker data as (surrogate)
71 predictor variables, and a mortality predictor named MetaboHealth [Deelen et al. 2019], using metabolome data
72 as predictor variables.

73 Although second-generation epigenetic and metabolomics-based methods outperform first-generation (cross-
74 sectional) methods in terms of their strength of association with time-to-mortality and other aging-related
75 outcomes [Hillary et al. 2020, Maddock et al. 2020, McCrory et al. 2021, Kuiper et al. 2022], cross-sectional
76 methods are still frequently developed, used and debated [Rutledge et al. 2022]. From a practical point of
77 view, the ongoing popularity of cross-sectional methods can easily be explained: cross-sectional data are simply
78 much more abundant than longitudinal (time-to-event) data. Moreover, the predicted aging rates Δ of several

79 recent cross-sectional age predictors were found to be associated with time-to-mortality and the onset of other
80 aging-related outcomes [Marioni et al. 2015, Christiansen et al. 2016, Van Den Akker et al. 2020, Tanaka et al.
81 2020].

82 The general consensus in the field therefore seems to be that even though cross-sectional biological age
83 predictors are suboptimal, they still capture some signal related to biological aging, and can therefore still be
84 of value. Nevertheless, how and under which assumptions they can capture this signal is not clear, neither
85 from a statistical nor from a biological point of view. We believe that the statistical assumptions underlying
86 these cross-sectional methods, and the consequences if they are not met, must be known and well understood
87 for aging researchers to evaluate whether it makes sense use to such an approach. Lack of understanding of
88 the assumptions and limitations of any prediction method can hamper progress in the field of biological age
89 prediction and in the identification of relevant markers of aging. Though certain aspects of various cross-
90 sectional methods have been sporadically criticized before (discussed in more detail in the next section), to the
91 best of our knowledge an in-depth discussion of the key assumption that all cross-sectional approaches—often
92 implicitly—rely on does not yet exist.

93 With this paper we attempt to fill that gap by considering this matter from several angles. We start by
94 providing a comprehensive overview of the most popular cross-sectional biological age prediction methods. We
95 discuss the assumption they all rely on, namely that any marker's association with chronological age is directly
96 informative of its association with the age-independent part of the difference between predicted and chronological
97 age, denoted by Δ . We call this the identical-association assumption and provide a theoretical result why this
98 assumption is untestable. To illustrate the consequences in settings where this assumption does not (fully) hold,
99 we use two synthetic data examples. Finally, we use real data to illustrate that caution must be taken when
100 using cross-sectional data to predict biological age. With this we hope to increase awareness that all cross-
101 sectional methods that either directly or indirectly rely on candidate markers' correlation with chronological
102 age may be superfluous, and in any case should not be used without carefully reflecting beforehand on the
103 assumptions these methods make.

104 Methods

105 Overview of cross-sectional statistical approaches

106 By far the most popular statistical approach to estimate biological age (B) is to perform multiple linear regression
107 (MLR) on cross-sectional data: chronological age (C) is taken as the outcome variable and regressed on a set
108 of candidate markers of biological aging (X) that were measured at the same time as chronological age. Then
109 the model's predicted chronological age is considered to be informative of one's biological age: $\hat{B} = \hat{C} =$
110 $\beta_0 + \sum_{i=1}^m \beta_i x_i$, where m represents the number of candidate markers included in the regression and x represents
111 a single marker. In this method predictions for the aging rate Δ are generally defined as the resulting residuals
112 after regressing predicted biological age (i.e., \hat{C}) on chronological age. Hence, the residuals of the chronological
113 age model are considered to be informative of Δ . This approach is used with both low- and high-dimensional
114 markers.

115 The MLR approach does not follow from an underlying model of biological age. It fully relies on a model
116 that predicts chronological age to be indicative of the aging rate Δ . For this to work it must hold that markers
117 that are correlated with chronological age are also correlated with Δ , and vice versa. In fact, it is implicitly
118 assumed that the higher the correlation with chronological age (in a multivariable model, so adjusting for all
119 other included markers), the stronger it is correlated with Δ . Markers that are insignificant predictors of
120 chronological age are assumed to be insignificant predictors of Δ .

121 Although the MLR approach is the most often-used cross-sectional approach, it has been criticized for various
122 reasons. It suffers from inherent methodological problems, such as regression to the mean (fitted values regress
123 towards the sample's mean age such that biological ages calculated for those younger than the sample mean
124 age tend to be too high and for those older, too low) and the so-called 'biomarker paradox' (a (bio)marker that
125 perfectly correlates with chronological age is useless in estimating biological age) [Ingram 1988, Hochschild 1989].
126 The biomarker paradox is more than a mere theoretical danger: with epigenetic biological age predictors, in
127 principle a near-perfect chronological age predictor can be developed, as long as the sample size is large enough
128 [Zhang et al. 2019]. In such a case all signal related to biological aging would be lost. This paradox therefore

129 illustrates the peculiarities that arise when the residuals of a linear regression are interpreted as meaningful
130 quantities in their own right, while in the model formulation those residuals are per definition nothing but noise.

131 Alternative cross-sectional approaches have been proposed in an attempt to overcome some of these method-
132 ological issues. The most notable alternatives are principal component (PC)-based methods and the Klemera-
133 Doubal (KD) method [Klemara and Doubal 2006]. PC-based methods transform candidate markers to a set
134 of uncorrelated principal components [Nakamura et al. 1988, Jee and Park 2017, Jia et al. 2017, Pyrkov et al.
135 2018]. Most of the times, first a pre-selection of candidate markers is made based on how strongly each individ-
136 ual marker is correlated with chronological age. Often, the first principal component of this subset of variables
137 is found to be correlated with chronological age and is hence interpreted as an ‘unscaled’ or ‘standardized’
138 biological age score BS . This score is sometimes transformed to an age-scale based on the mean and standard
139 deviation of chronological age (μ_C and σ_C) in the training sample: $B = BS * \sigma_C + \mu_C$.

140 The Klemara-Doubal method [Klemara and Doubal 2006] uses a reversed regression approach (regressing
141 each candidate marker on chronological age). In contrast to the above methods, the KD method is based on an
142 explicit underlying model of biological age. It assumes that the relation between biological age and chronological
143 age can be expressed by $B = C + \Delta$. Each marker x is governed by B but is also affected by random fluctuations.
144 Assuming a linear relation between marker x and biological age, x equals $\beta_0 + \beta_1 * B + \epsilon$. This can also be
145 expressed as $x = \beta_0 + \beta_1 * (C + \Delta) + \epsilon$. That the coefficient β_1 is the same for C and Δ is a key assumption of the
146 Klemara-Doubal method: in their model, a marker’s strength of association with chronological age is directly
147 informative of its association with Δ . A biological age prediction is obtained by taking a linear combination of
148 all included markers, each of them weighted in terms of the estimated slopes and residual variances resulting
149 from the reversed regressions.

150 Though in certain settings the Klemara-Doubal method has been found to outperform MLR- and PC-
151 based methods [Levine 2013], extending the method to high-dimensional settings is not straightforward, since
152 it assumes that all included markers are functionally uncorrelated. Therefore the KD method is primarily used
153 in low-dimensional settings [Cho et al. 2010, Jee and Park 2017, Mitnitski et al. 2017], or prior to applying the
154 KD method principal component analysis is used to obtain a set of lower-dimensional markers [Levine 2013,
155 Earls et al. 2019]. The limitations of the alternative cross-sectional approaches might explain the continued
156 popularity of the MLR approach in high-dimensional settings. In a recent review of omics-based biological age
157 predictors the Klemara-Doubal method is not mentioned and PC-based methods play a minor role [Rutledge
158 et al. 2022].

159 Reflection on the assumption underpinning cross-sectional biological age predictors

160 The cross-sectional methods described above share a common assumption, namely that a candidate marker’s
161 strength of association with chronological age is identical to its strength of association with one’s aging rate (the
162 difference between biological and chronological age) Δ . So by using one of the above cross-sectional methods
163 for biological age prediction it is assumed that the traits most strongly associated with chronological age are
164 the ones most informative of Δ . If a marker changes with chronological age irrespective of relevant changes in
165 Δ , or vice versa, the assumption is not met.

166 For ease of reference, we henceforth refer to this assumption as the *identical-association assumption*. The KD
167 method explicitly makes this assumption. The MLR approach implicitly relies on it (here it concerns ‘adjusted’
168 association in a multivariable setting). Markers with high absolute coefficient values will have a strong effect
169 on the resulting chronological age prediction \hat{C} , which is considered equal to biological age prediction \hat{B} . For
170 the PC-based approaches this assumption is used when making a pre-selection of markers prior to finding the
171 principal components, since only variables significantly correlated with chronological age are selected. It is
172 therefore not surprising that the first principal component is often found to be correlated with chronological
173 age: the variables were selected to share this common source of variance.

174 There are different degrees to which the identical-association assumption might hold in real data. For any
175 set of candidate markers of biological aging, one can roughly distinguish four possible scenarios. The first
176 scenario is that the identical-association assumption holds. If one would then plot the true association of
177 markers with chronological age against their true association with aging rate Δ , one would end up with a plot
178 as given in the top left panel (A) of Figure 1. (There are of course many ways to define ‘association’ – since
179 we do not want to assume a specific model, we deliberately keep this term vague. The plots are therefore

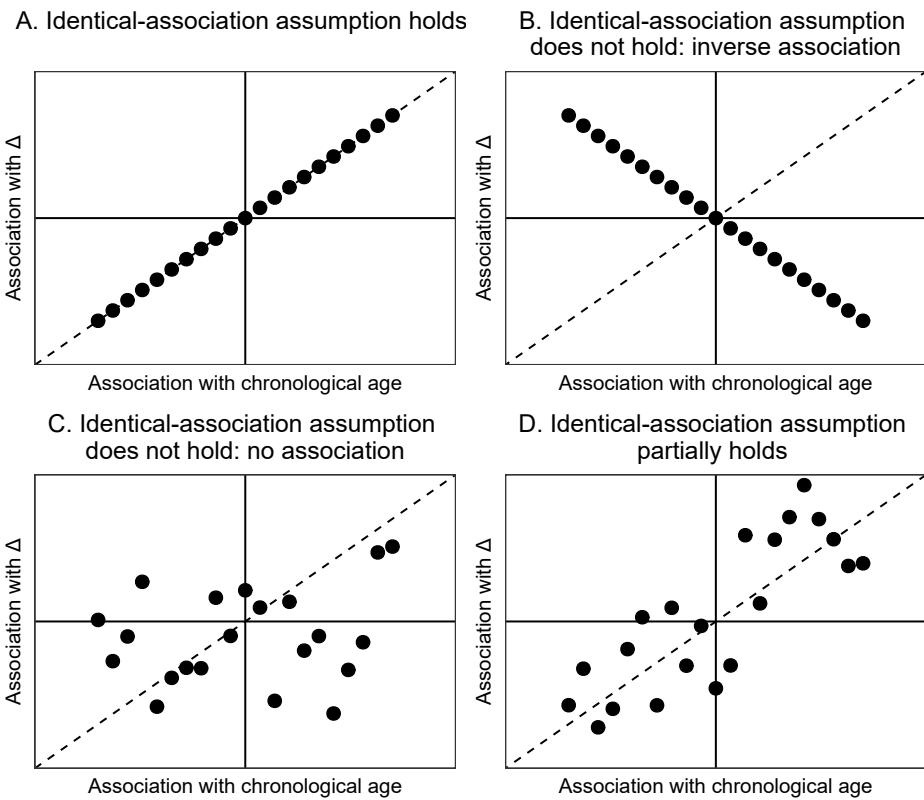


Figure 1: Conceptual visualization of a scenario in which the identical-association assumption holds (A), a scenario in which the inverse relation holds (B), a scenario in which there is no association (C) and a scenario in which the identical-association assumption partially holds (D).

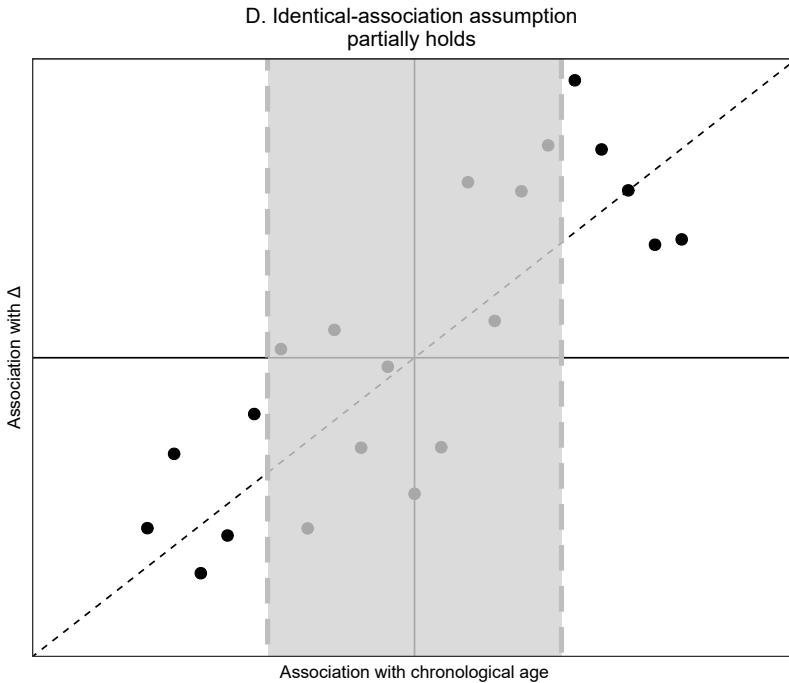


Figure 2: Zoomed-in version of the bottom right panel of Figure 1. If markers are (pre-)selected based on their strength of correlation with chronological age, those in the grey area (i.e., those most weakly associated with chronological age) are not selected.

conceptual representations of the four scenarios.) As mentioned, the Klemara-Doubal method explicitly makes this assumption, as it assumes an identical regression coefficient (effect size) for chronological age and aging rate Δ and no other sources of shared variance. In this first scenario it would make perfect sense to use a cross-sectional prediction method. The second scenario (shown in panel B of Figure 1) is one in which the opposite of the identical-association assumption holds: the stronger a marker is positively associated with chronological age, the stronger it is negatively associated with aging rate Δ . This is an unlikely possibility, which is only included such that the four scenarios discussed here are collectively exhaustive. The third scenario (shown in panel C of Figure 1) is that the markers' strength of association with chronological age is not informative of their association with aging rate Δ at all. In such a scenario, using a cross-sectional prediction method would be useless: the weights that cross-sectional methods give to markers will be based on their association (both strength and direction) with chronological age, but these weights will be completely uninformative of the markers' association with Δ . The fourth and final possibility (shown in panel D of Figure 1) is that the markers' strength of association with chronological age is somewhat, but not exactly, informative of their association with aging rate Δ . Of the four scenarios this appears to be the most realistic one.

For this fourth scenario it is important to remember that many of the high-dimensional cross-sectional biological age predictors perform some kind of marker selection, either before including them in the model or during the model fitting itself. If one would then only include the variables most strongly correlated with chronological age (i.e., only the edges of Figure 1D would be included, as illustrated in Figure 2), there no longer is a relation between strength of association with chronological age and with aging rate Δ . However, in Figure 2 there still is a relation between the *direction* of the association of the selected markers with chronological age and with Δ . This suggests that in a scenario where the fourth scenario holds and candidate markers of biological aging have been pre-selected, the size of a candidate marker's association with chronological age will not be informative of its association with Δ , but the sign (positive/negative) of this association will be.

Which scenario holds in a given data set determines whether or not it makes sense to use a cross-sectional method to predict biological age. Unfortunately, in cross-sectional data the identical-association assumption cannot be proven or disproven, because it is untestable: it is impossible to tell to what extent a marker is associated with aging rate Δ based on its association with chronological age alone. For a formal theorem and proof of the untestability of the identical-association assumption we refer to the Supplementary Materials (Appendix A). An intuitive visualization of the proof is given in Figure 3. It shows correlation Venn diagrams [Ip 2001] for two candidate markers of biological age, X and X' . The two candidate markers have the same association with chronological age C , but where marker X shares association with biological age B , candidate marker X' has no such association. Since B is unobserved, we only have information on the joint distribution of X and C , or X' and C , respectively. With respect to this observable variation, the diagrams for X and X' are identical. It follows that we cannot distinguish between the true marker X of biological age and the false marker X' . Hence, if the identical-association assumption does not hold, it is impossible to distinguish true markers of Δ from false ones. Using cross-sectional biological age prediction methods, thereby (implicitly) believing in the identical-association assumption, is therefore based on biological hope or knowledge alone, not on a statistical property of the cross-sectional methods.

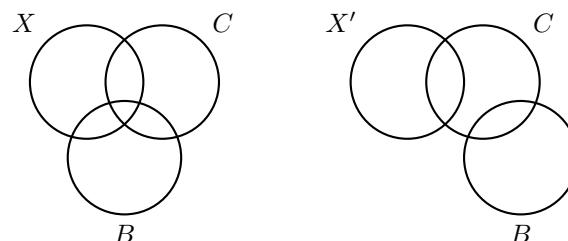


Figure 3: Venn diagrams illustrating the variance shared between biological age (B), chronological age (C) and the candidate markers of biological aging X (true, left diagram) and X' (false, right diagram). Black indicates observed variance; grey unobserved.

218 Results

219 Two illustrative examples

220 This section contains two synthetic data examples that illustrate two aspects of the identical-association as-
221 sumption.

222 Example 1: untestability of the identical-association assumption

223 We created a synthetic data set with four variables: chronological age C , biological age B , true marker of
224 biological age X and false marker of biological age X' . X and X' follow the same distribution and have the
225 same strength of correlation with C . We based our data generation approach on the type of additive model
226 proposed by Klemara and Doubal [Klemara and Doubal 2006]. We generated n observations as follows:

227 1. Independently generate the following elements:

- 228 • $C \sim N(\mu, \sigma_C^2)$;
- 229 • $\Delta \sim N(0, \sigma_\Delta^2)$;
- 230 • $\Lambda \sim N(0, \sigma_\Lambda^2)$;
- 231 • $\epsilon \sim N(0, \sigma^2)$;
- 232 • $\epsilon' \sim N(0, \sigma^2)$.

233 2. From these elements, construct:

- 234 • $B = C + \Delta$;
- 235 • $X = \alpha + \beta \times (C + \Delta) + \epsilon$;
- 236 • $X' = \alpha + \beta \times (C + \Lambda) + \epsilon'$.

237 We used the following parameter values: $n = 1000$, $\mu = 50$, $\sigma_C^2 = 10$, $\sigma^2 = 2$, $\sigma_\Delta^2 = \sigma_\Lambda^2 = 3$, $\alpha = 1$, $\beta = 1$.
238 X and X' have the same distribution and the same relation with chronological age, as seen in Figure 4.
239 However, X correlates with the individual aging rate Δ while X' does not, as seen in Figure 5. This implies
240 that X has useful information on biological age that is not already in chronological age while X' does not.
241 However, in real cross-sectional data Δ is not observed: with respect to their association with the observable
242 variable chronological age these two candidate markers are identical, as can be seen in Figure 4.

243 Since the observable data (X, C) and (X', C) are indistinguishable from each other, any method we would
244 apply on either (X, C) or (X', C) would assign the same weight to either X or X' . This holds for the linear
245 regression method, as is clear from Figure 5. It also holds for the Klemara-Doubal method, since that method
246 would assign the same weights to both X' and X . Principal components-based methods would not be able to
247 distinguish an informative source of variance (i.e., Δ) from an uninformative source of variance (here denoted
248 by Λ). In fact, no cross-sectional method can distinguish between X and X' based on their association with the observable
249 variable chronological age C , because the identical-association assumption is untestable. Therefore, no cross-sectional
250 method can provide evidence that a candidate marker is a truly informative X rather than a completely
251 uninformative X' .

252 Example 2: consequences of believing in the identical-association assumption under the four 253 different scenarios

254 The first example illustrated that cross-sectional methods cannot be relied upon to select true markers of the
255 rate of aging Δ . Nevertheless, predicted Δ -values of several cross-sectional age predictors have been found
256 to be associated with time-to-mortality and several other age-related outcomes [Rutledge et al. 2022], albeit
257 often weakly. This can only be the case if a marker's strength of correlation with chronological age is at least
258 somewhat indicative of its strength of association with true aging rate Δ .

259 To illustrate this, we generated a possible realization of each of the four conceptual scenarios depicted in
260 Figure 1. We obtained predictions for aging rate Δ using multiple linear regression (MLR) and the KD-method.

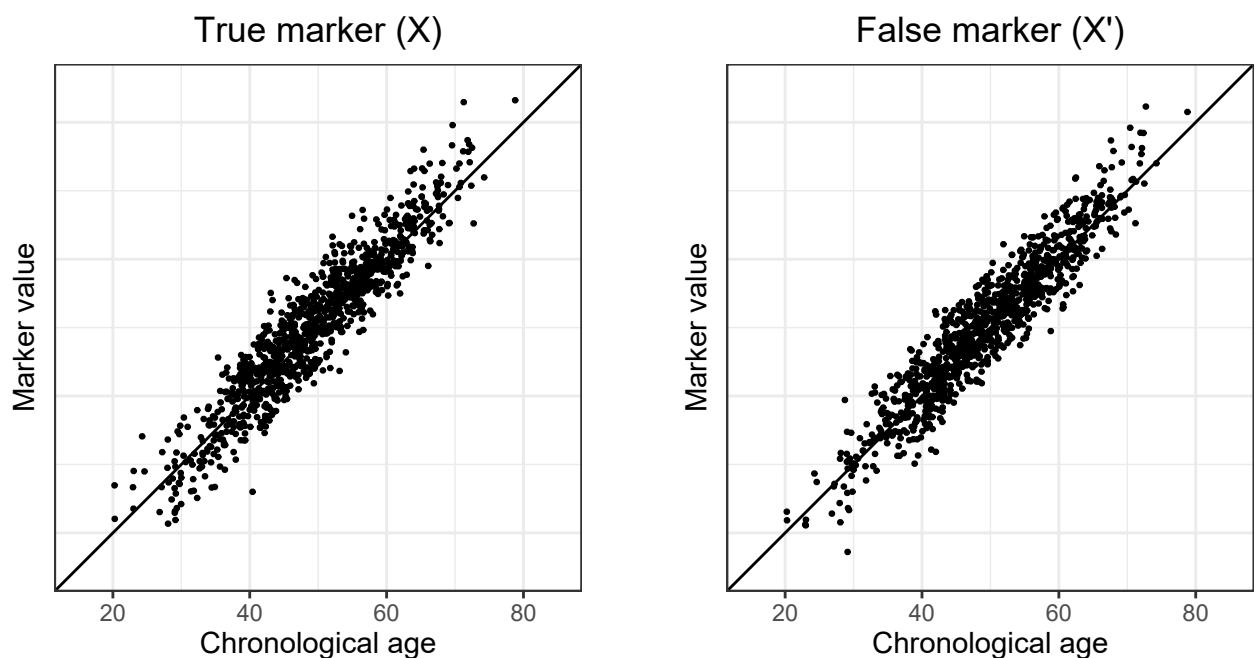


Figure 4: Chronological age plotted against the marker value for true marker X and false marker X' .



Figure 5: Rate of aging Δ (the difference between true biological and chronological age) plotted against predicted Δ (the resulting residuals after regressing predicted age on chronological age) for true marker X and false marker X' . The biological age predictions were obtained using linear regression.

Table 1: The coefficients used to construct the markers X_1 , X_2 and X_3 for the four different scenarios.

	X_1		X_2		X_3	
	β_C	β_Δ	β_C	β_Δ	β_C	β_Δ
Scenario A	10	10	3	3	5	5
Scenario B	10	-10	3	-3	5	-5
Scenario C	10	0	3	10	5	-1
Scenario D	10	9	3	5	5	5

261 We know that if the identical-association assumption does not hold, the weights found by MLR and the KD-
 262 method are uninformative of a marker's strength of association with Δ . If the identical-association assumption
 263 partially holds, the size of the weights that cross-sectional methods assign to markers will not informative but
 264 the signs (positive/negative direction) of these weights still are (Figure 2). We illustrate this by also including
 265 a third, 'naive' prediction method in this second example, where similar to the MLR approach we took a linear
 266 combination of markers. In this third prediction method each marker was assigned the same weight, namely
 267 the mean of the MLR coefficients. The sign of each coefficient was kept unchanged, because we generally
 268 expected the sign to be correct. We included this third approach to illustrate that if the identical-association
 269 assumption does not hold, weights obtained using the MLR or Klemara-Dougal method might result in less
 270 accurate predictions than naively assigning each marker the same weight.

271 For this second example we generated four data sets, DF_A , DF_B , DF_C and DF_D , corresponding to the
 272 scenarios in Figure 1. To keep it simple, each data set has only three markers(X_1 , X_2 and X_3), which are
 273 associated with chronological age C and with aging rate Δ to varying degrees in each of the four scenarios.

274 We generated n observations as follows:

275 1. Independently generate:

- 276 • $C \sim N(\mu, \sigma_C^2)$;
- 277 • $\Delta \sim N(0, \sigma_\Delta^2)$;
- 278 • $\epsilon_i \sim N(0, \sigma_i^2)$.

279 2. Construct biological age:

- 280 • $B = C + \Delta$.

281 3. Construct markers:

- 282 • $X_1 = \beta_{C,1} \times C + \beta_{\Delta,1} \times \Delta + \epsilon_1$;
- 283 • $X_2 = \beta_{C,2} \times C + \beta_{\Delta,2} \times \Delta + \epsilon_2$;
- 284 • $X_3 = \beta_{C,3} \times C + \beta_{\Delta,3} \times \Delta + \epsilon_3$.

285 Per scenario, the values chosen for $\beta_{C,1}$ and $\beta_{\Delta,1}$ can be found in Table 1. The following parameter values
 286 were used in all four scenarios: $n = 1000$, $\mu = 50$, $\sigma_C^2 = 10$ and $\sigma_\Delta^2 = 5$. The standard deviation of the errors ϵ
 287 were chosen such that the relation between the (scaled and centered) three markers and chronological age is the
 288 same in all four data sets (Supplementary Materials, Appendix B). Hence, based on the observable variables
 289 alone (X_1 , X_2 , X_3 and C) the four data sets are indistinguishable.

290 If the identical-association assumption holds (scenario A), the MLR approach and the Klemara-Dougal
 291 approach outperform the equal weights approach (Figure 6: the closer the points are to the diagonal line $\Delta =$
 292 predicted Δ , the better the performance of the method). In this case a marker's association with chronological
 293 age is directly informative of its association with rate of aging Δ , so any method that weighs markers according to
 294 their strength of correlation with chronological age will do well. In the unrealistic case that a marker's association
 295 with chronological age is inversely related to its association with aging rate Δ (scenario B), all methods will
 296 perform badly, as is to be expected (Figure 7). If there is no relation between a marker's association with
 297 chronological age and its association with aging rate Δ (scenario C), the equal weights approach outperforms
 298 the two cross-sectional approaches, which appear to capture only noise (Figure 8). In our realization of scenario

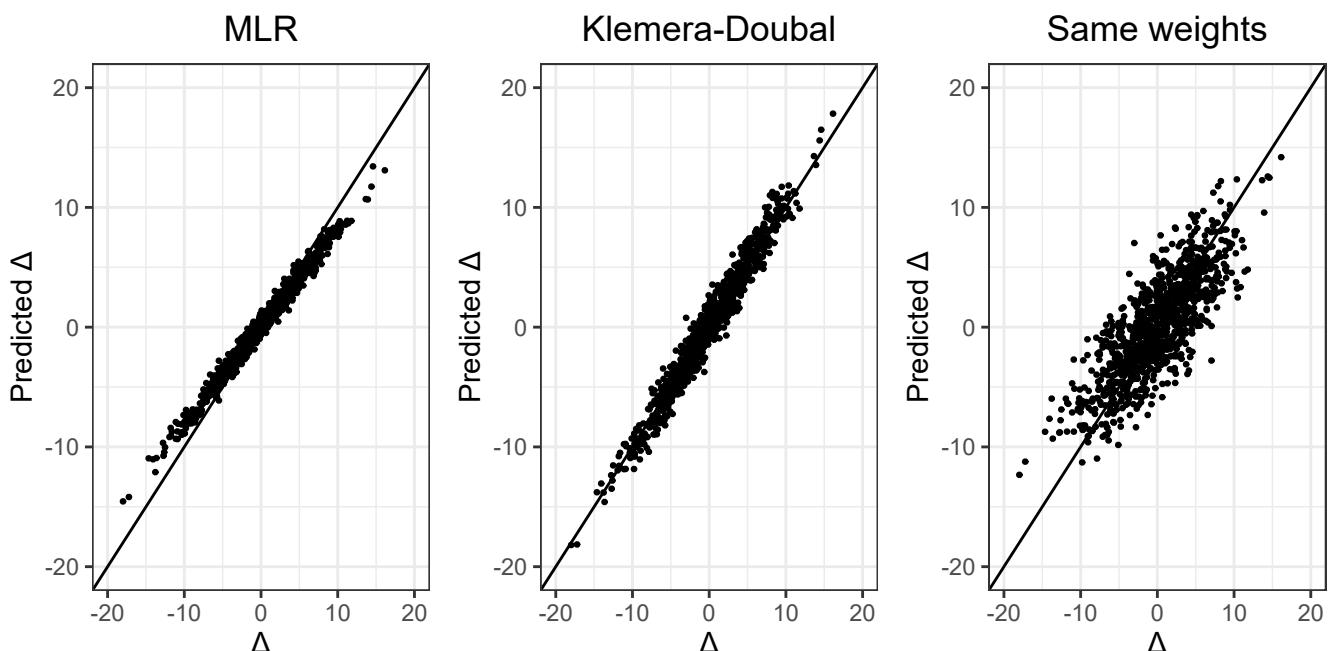


Figure 6: Rate of aging Δ plotted against predicted Δ for the MLR method, the Klemara-Doubal method and the MLR method where each marker is assigned the same weight. Here the identical-association assumption holds (scenario A).

299 D, it can be seen that all methods capture some signal (Figure 9). The Klemara-Doubal method does best, but
 300 that might not be surprising given the data generation approach, which was based on the type of additive model
 301 Klemara and Doubal assume. Interesting is that the same weights approach outperforms the MLR-approach.
 302 Naturally, this is just one possible realization: with different values for β_C and β_Δ the coin could flip in favor
 303 of the MLR-method over the equal weights method (and with a different data generation mechanism, possibly
 304 also over the KD-method).

305 Real data illustration

306 The insights gained from the synthetic data scenarios are of immediate practical relevance. We illustrate this
 307 with a real data illustration.

308 We used data from the the Leiden Longevity Study (LLS) [Westendorp et al. 2009]. The LLS follows long-
 309 lived siblings of Caucasian descent, their offspring and the partners of their offspring. We used data on the
 310 offspring and partners ($N = 2312$). Participants who were lost to follow-up ($N = 10$) or who had at least one
 311 missing metabolite value ($N = 37$) were excluded. In total 1593 offspring and 674 partners were included, of
 312 which 998 men and 1269 women (mean age at inclusion 59.15 years, sd 6.72). Participants were included between
 313 March 2002 and May 2006. Registry-based follow-up until November 2021 was available. Median follow-up time
 314 was 16.26 years (IQR: 15.31–17.08). 309 deaths were observed. The Medical Ethics Committee of the Leiden
 315 University Medical Center approved the study and informed consent was obtained from all participants.

316 As candidate markers of biological aging we used blood-based metabolic variables. The metabolic variables
 317 were quantified using a well-standardized high-throughput nuclear magnetic resonance ($^1\text{H-NMR}$) metabolomics
 318 platform [Soininen et al. 2015, Würtz et al. 2017] of Nightingale Health Ltd. (Helsinki, Finland). Of the more
 319 than 200 metabolic variables available, a subset of 59 was selected, previously found to be most reliable and
 320 independent [Deelen et al. 2019] and used in various subsequent publications [Van Den Akker et al. 2020,
 321 Bizzarri et al. 2022]. Prior to analysis, a small constant was added to all metabolic variables after which they
 322 were log-transformed and scaled.

323 The complete two-generation Leiden Longevity Study has previously been used in two major analyses by
 324 our group, constructing biological age predictors (on cross-sectional as well as time-to-event basis) based on
 325 the same metabolic variables in much larger data sets. From these studies we observed that the constructed
 326 predictors as well as many of the 59 metabolic variables separately were predictive of prospective mortality

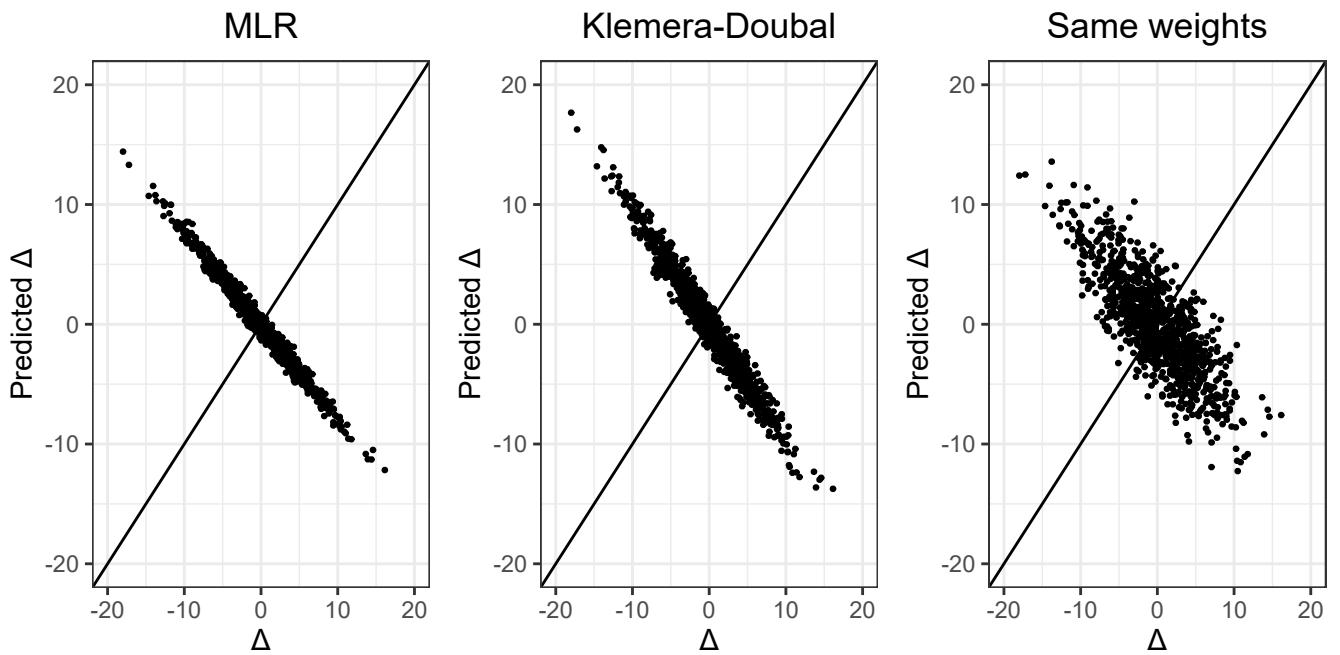


Figure 7: Rate of aging Δ plotted against predicted Δ for the MLR method, the Klemara-Doubal method and the MLR method where each marker is assigned the same weight. Here the identical-association assumption does not hold, but an inverse relation exists (scenario B).

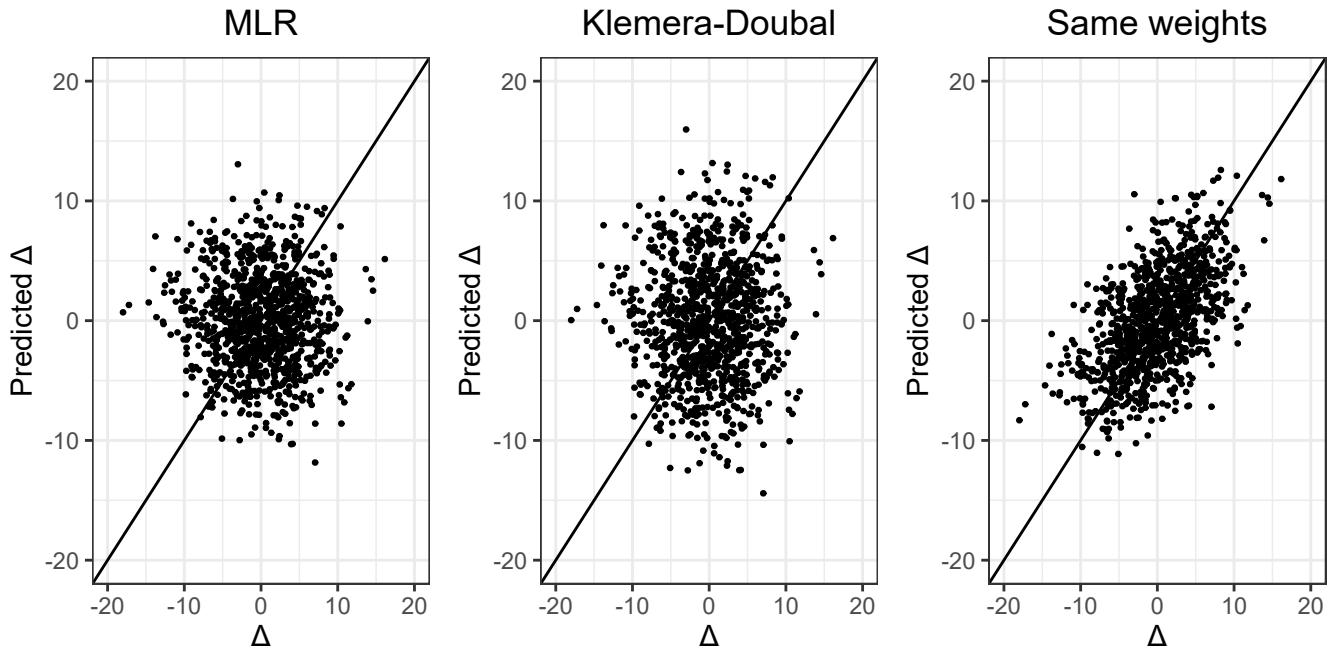


Figure 8: Rate of aging Δ plotted against predicted Δ for the MLR method, the Klemara-Doubal method and the MLR method where each marker is assigned the same weight. Here the identical-association assumption does not hold: there is no association (scenario C).

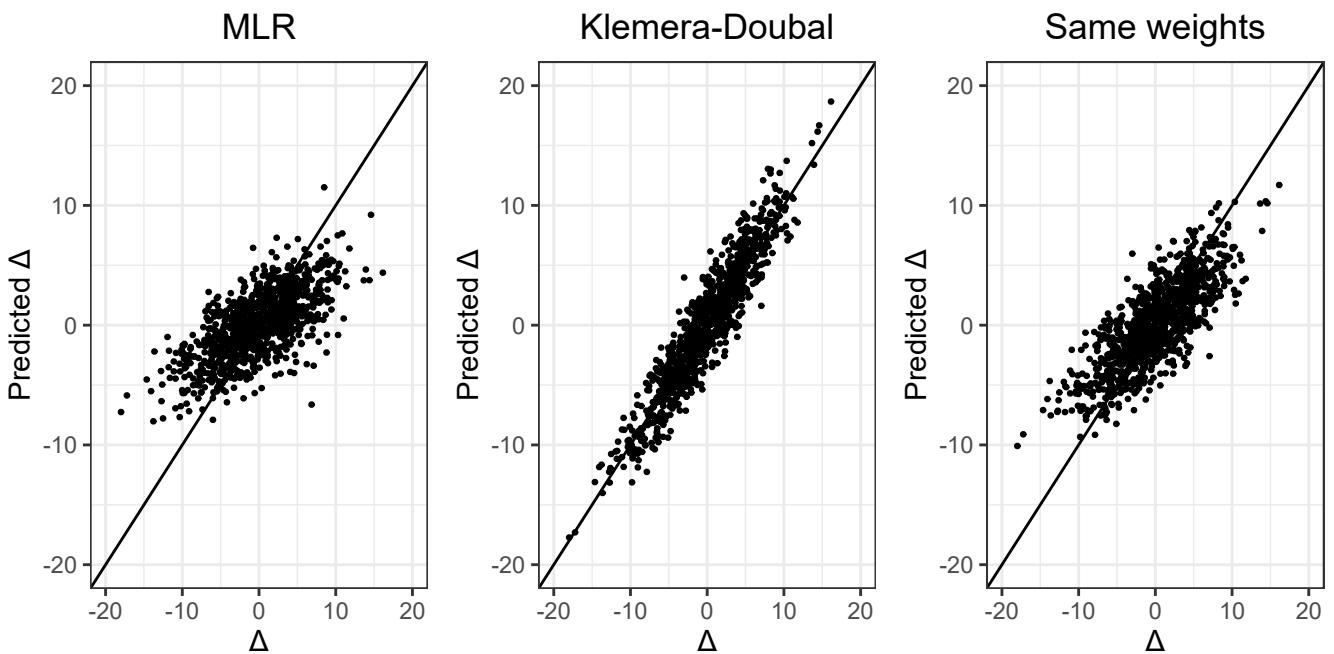


Figure 9: Rate of aging Δ plotted against predicted Δ for the MLR method, the Klemara-Doubal method and the MLR method where each marker is assigned the same weight. Here the identical-association assumption partially holds (scenario D).

[327] [Deelen et al. 2019, Van Den Akker et al. 2020].

[328] To illustrate the problems that can arise when using cross-sectional methods to predict biological age, we
[329] took a similar approach as in synthetic data example 2: we contrasted an often-used cross-sectional approach to
[330] obtain predictions for rate of aging Δ —in this case penalized regression, hereafter denoted by method 1—with
[331] naive methods to obtain predictions for Δ —in this case first selecting metabolites univariately associated with
[332] chronological age and then using (unpenalized) multiple linear regression (method 2), a linear combination with
[333] either equal weights (method 3) or randomly drawn weights (method 4).

[334] For each of the four methods, predictions for aging rate Δ were obtained as follows. For method 1 we
[335] first obtained an age prediction using penalized MLR with a ridge penalty. Using 10-fold cross-validation, the
[336] penalization parameter λ was chosen such that the mean cross-validated error was minimized. Chronological
[337] age was taken as the outcome variable and all 59 metabolic variables were included as predictor variables.
[338] In method 2 we performed (unpenalized) multiple linear regression on a subset of variables correlated with
[339] chronological age. 26 of the 59 metabolic variables were significantly correlated with chronological age, using
[340] a Bonferroni-corrected significance threshold of $0.05/59 = 8.47 \times 10^{-4}$. For method 3 we again took a linear
[341] combination of the 26 metabolic variables significantly correlated with chronological age. Here we assigned each
[342] variable same weight, namely the mean of the absolute value of the MLR-coefficients from method 2 (excluding
[343] the intercept). Although the coefficients were averaged, the *sign* of each variable's coefficient was kept, for the
[344] same reason as illustrated by Figure 2: it is unlikely that a variable is positively correlated with chronological
[345] age but negatively with Δ . Method 4 is a variation on method 3: 1,000 different linear combinations of the
[346] same 26 variables were taken, where each variable was assigned a coefficient randomly drawn from a uniform
[347] distribution. Similar to method 3, the weights were drawn at random but the signs were kept. For each of the
[348] four methods, predictions for Δ were obtained by regressing the linear combination of metabolic variables
[349] (the fitted values) on chronological age and obtaining the residuals.

[350] We then compared the performance of the four methods by scaling the predictions for aging rate Δ obtained
[351] using each of the four methods and including them in a Cox proportional hazards (PH) model with time-to-
[352] mortality as outcome. This is a common approach to check the validity of Δ -predictions if data on time-to-death
[353] is available [Marioni et al. 2015, Zheng et al. 2016, Christiansen et al. 2016, Van Den Akker et al. 2020, Tanaka
[354] et al. 2020, Hillary et al. 2020, McCrory et al. 2021]. We used chronological age as the timescale of the Cox PH
[355] model and adjusted for sex. Since all predicted Δ -values were scaled prior to inclusion, the higher the coefficient

356 for Δ , the stronger the association with time-to-mortality.

357 The Cox PH coefficients of the different Δ -predictions (i.e., the effect sizes of the association with prospective
358 mortality) obtained with these four methods are compared in Figure 10. It can be seen that the coefficient for
359 aging rate Δ obtained with method 1 is lower than those of methods 2 and 3: hence, association with time-
360 to-death is weaker. The blue and green lines of methods 2 and 3 are very close to each other: using multiple
361 linear regression (method 2) works just as well as assigning each marker the same coefficient (method 3). The
362 histogram represents the distribution of the 1,000 coefficients obtained by assigning each metabolic variable a
363 randomly drawn weight (method 4), repeated 1,000 times. More than half of the histogram area is to the right
364 of the yellow line of the ridge-based coefficient (method 1), and a substantial part is even to the right of the
365 blue and green lines of methods 2 and 3. These results imply that in this particular setting, the naive methods
366 capture more signal related to prospective mortality than the ‘proper’ cross-sectional method 1.

367 Although Figure 10 shows that predictions for rate of aging Δ obtained via ridge regression on 59 metabolic
368 variables (method 1) are less strongly associated with mortality than predictions for Δ obtained using standard
369 multiple linear regression on 26 metabolic variables (method 2), the *chronological* age predictions obtained with
370 method 1 are more accurate than the ones obtained with method 2 (root-mean-square error method 1: 6.01,
371 root-mean-square error method 2: 6.18). This exemplifies the biomarker paradox: improved chronological age
372 predictions do not imply improved biological age predictions. In fact, after a certain point the association will
373 weaken. We see that the better chronological age prediction performance of method 1 already results in a weaker
374 association of Δ with prospective mortality.

375 Note that all coefficients in Figure 10 are positive. Since we kept the coefficient signs of method 2 for
376 methods 3 and 4, it confirms our earlier assertion that if a marker is positively associated with chronological
377 age, it is unlikely to be negatively associated with aging rate Δ (and vice versa). This explains why despite
378 the suboptimality of cross-sectional methods, cross-sectional Δ -predictions have repeatedly been found to be
379 associated with prospective mortality and other age-related outcomes [Marioni et al. 2015, Christiansen et al.
380 2016, Van Den Akker et al. 2020, Tanaka et al. 2020]—albeit (much) weaker than second-generation biological
381 age predictors [Hillary et al. 2020, Maddock et al. 2020, McCrory et al. 2021, Kuiper et al. 2022]. The direction
382 of the coefficients contains information regarding the signal. However, one must realize that unless the identical-
383 association assumption (almost fully) holds, no more signal will be captured with cross-sectional methods than
384 if markers would have been assigned weights at random.

385 Discussion

386 We have shown that the most popular cross-sectional biological age predictors, where candidate markers of
387 biological aging and chronological age are measured at a single point in time, all rely on the same underlying
388 assumption: a candidate marker’s strength of association with chronological age should be directly indicative
389 of its strength of association with the difference between biological and chronological age, also known as one’s
390 aging rate Δ . We have called this assumption the identical-association assumption. We noted that there is
391 no inherent statistical reason why a candidate marker’s association with chronological age C is indicative of
392 its association with Δ : this depends on the biological context. Importantly, as we have proven, whether the
393 identical-association assumption holds is untestable in a cross-sectional setting. As a consequence, one cannot
394 distinguish true markers of biological age from false ones in such settings. A candidate marker can be correlated
395 with chronological age but be completely uninformative of Δ . The opposite holds as well: a candidate marker
396 may not be associated with chronological age, while being a true marker for Δ . We illustrated that unless
397 chronological age and Δ are equally strongly associated with each marker, there is no guarantee that the size of
398 the weights that a cross-sectional method assigns to candidate markers are informative of the underlying truth.

399 The identical-association assumption did not hold in the empirical data we considered. It should however
400 be noted that we worked with a single real data set which is limited in size and scope. Our real data section
401 is therefore primarily meant as an illustration of the potential practical consequences of constructing a cross-
402 sectional biological age predictor if the identical-association assumption does not hold. It does not provide
403 evidence for or against the extent to which this assumption holds in larger data sets or data sets with other
404 types of candidate markers. Still, there is evidence that the identical-association assumption also does not hold
405 in DNA methylation data: Levine et al. [2018] regressed a phenotypic age measure that captured differences in lifespan

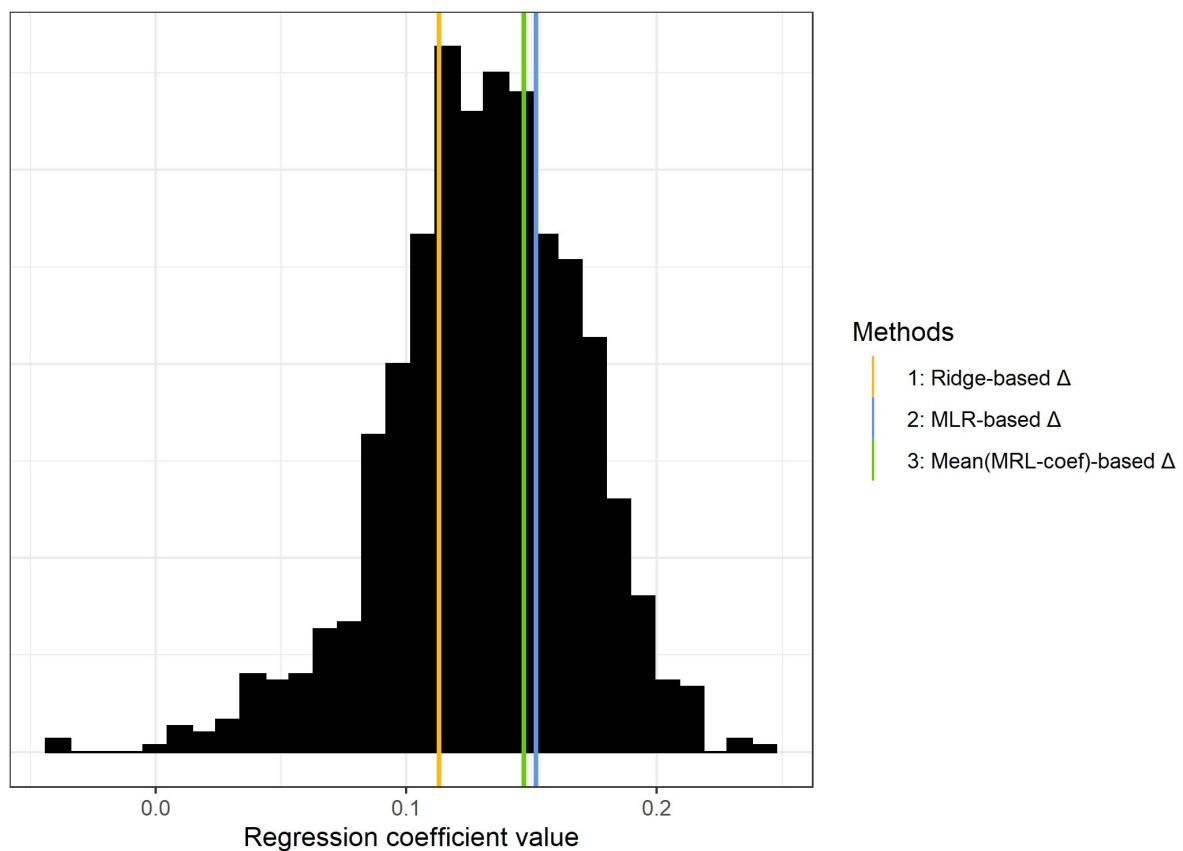


Figure 10: Regression coefficients (effect sizes) of the predicted Δ -values in a Cox PH model with time-to-mortality as the outcome, using the LLS data and 59 metabolic variables as predictor variables. The predicted Δ -values were calculated using 4 methods: using ridge regression (method 1), using multiple linear regression on a subset of metabolites (method 2), taking a linear combination where each metabolic variable was assigned the same weight (method 3), and taking a linear combination where each metabolic variable was assigned a weight randomly drawn from a standard uniform distribution, repeated 1,000 times (grey histogram, method 4).

406 and healthspan on CpG-sites and found that the CpG-sites with the highest resulting weights did not correlate
407 with chronological age at all.

408 Recently Nelson et al. [2020] addressed another important concern related to identification of aging markers
409 based on cross-sectional data: mortality selection can bias the identification of markers, up to a point where
410 cross-sectional analyses are less likely to identify true markers than if markers had been selected at random.
411 While Nelson et al. [2020] state that this issue can be circumvented by only including markers that are known to
412 be truly associated with mortality, in our second synthetic data example we illustrated that even in cases where
413 all candidate markers are truly associated with biological age given chronological age, cross-sectional methods
414 might not contribute either to selecting markers or to proving their validity.

415 We would like to stress that we do not claim that cross-sectional predictors of biological age cannot capture
416 any signal. Although the identical-association assumption might not be realistic, for some (perhaps most)
417 candidate markers the direction of a marker's association with chronological age can still be informative. This
418 also explains why many cross-sectional clocks were indeed found to be (weakly) correlated with various age-
419 related outcomes [Marioni et al. 2015, Christiansen et al. 2016, Van Den Akker et al. 2020, Tanaka et al. 2020]:
420 the sign of a candidate marker's association with chronological age can be informative or uninformative of its
421 association with rate of aging Δ , but it is unlikely to be counter-informative. Hence, most cross-sectional
422 methods can be expected to still capture some signal—but potentially not better than any other approach that
423 in some naive or random way assigns weights to markers associated with chronological age. We do not reject
424 the possibility that markers exist for which the identical-association assumption does hold. This assumption
425 may or may not hold for different types of markers, but in a cross-sectional setting there is no way to tell.

426 Since there is no way in which the quality of a biological age predictor can be assessed using cross-sectional
427 data alone, it follows that there is no way to optimize the quality of biological age predictions using cross-
428 sectional data. Therefore, it is likely that biological age predictors based on cross-sectional data are highly
429 suboptimal—they primarily capture signals related to chronological age, as also remarked by [Rutledge et al.
430 2022]—and that much better predictors could be constructed if researchers could work directly with longitudinal
431 data.

432 This raises the question whether cross-sectional methods still have a place in the biological aging prediction
433 landscape, or whether they should be abandoned completely in favor of methods that use longitudinal (time-to-
434 mortality) data [Levine et al. 2018, Lu et al. 2019, Deelen et al. 2019]. By making the reasonable assumption that
435 a higher biological age corresponds to a higher mortality risk, these time-to-mortality-based methods overcome
436 the testability issue inherent to cross-sectional methods. The track record of these prospective mortality-trained
437 methods in predicting various aging-related outcomes is indeed better than that of cross-sectional ones [Hillary
438 et al. 2020, Maddock et al. 2020, McCrory et al. 2021, Kuiper et al. 2022]. Nevertheless, due to the relative
439 abundance of cross-sectional data over longitudinal (time-to-event) data, cross-sectional predictors of biological
440 age remain popular [Rutledge et al. 2022]. We think cross-sectional data can still play a role if the number of
441 candidate markers is too high for the limited sample size of the longitudinal data that is available and/or if
442 there is little prior knowledge on the association between the candidate markers under consideration and aging
443 rate Δ —which in this new era of high-dimensional omics-based aging clocks is quite a likely scenario. In such
444 a case, cross-sectional data could be used to make a pre-selection of markers most strongly correlated with
445 chronological age, as one might reasonably expect that at least part of these candidate markers will also be
446 strongly correlated with Δ . Such a pre-selection does not have to be conducted in a multivariate way, but can
447 be done per marker, as we did in our real data illustration.

448 Our view is that if longitudinal (aging-related outcome) data is available, methods using this information
449 are to be preferred above cross-sectional ones to develop a biological age predictor. Depending on the extent
450 to which the identical-association assumption holds in the data set under consideration, longitudinal methods
451 might be preferred even if the sample size of the available longitudinal data is much smaller. Furthermore,
452 we believe that the sizes of the coefficients of candidate markers obtained with cross-sectional methods should
453 neither be used nor interpreted. If researchers do decide to develop a biological age predictor based on cross-
454 sectional data only, they should be explicit about the underlying assumptions of the method they used and to
455 what extent these assumptions are expected to hold.

456 Competing interests

457 The authors have no competing interests to declare.

458 Data availability

459 All R-code used for the analyses in this paper is available in a public GitHub repository (<https://github.com/marijelsluiskes/cross-sectional-bioage>). Access to the individual-level data from the Leiden Longevity Study is restricted
460 based on privacy regulations and informed consent of the participants. These data hence cannot be made pub-
461 licly available. Data of the Leiden Longevity Study may be made available to researchers upon reasonable
462 request to Eline Slagboom (p.slagboom@lumc.nl) or Marian Beekman (m.beekman@lumc.nl).
463

464 Funding

465 The Leiden Longevity Study has received funding from the European Union's Seventh Framework Programme
466 (FP7/2007-2011) under grant agreement number 259679. The LLS was further supported by a grant from the
467 Innovation-Oriented Research Program on Genomics (SenterNovem IGE05007), the Centre for Medical Systems
468 Biology, and the Netherlands Consortium for Healthy Ageing (grant 050-060-810), all in the framework of the
469 Netherlands Genomics Initiative, Netherlands Organization for Scientific Research (NWO), by BBMRI-NL, a
470 Research Infrastructure financed by the Dutch government (NWO 184.021.007 and 184.033.111) and the VOILA
471 Consortium (ZonMw 457001001).

472 Author contributions

473 MRG, HP, JJG and MHS developed the concept of this study. MB and PES collected the data used in this
474 study. MHS and MRG performed the analyses. The first draft of the manuscript was written by MHS and
475 revised by MRG, HP, JJG, PES and MB. All authors contributed significantly to this manuscript and approved
476 the final version to be published.

477 Acknowledgements

478 We thank Niels van den Berg, Erik van den Akker, Erik van Zwet and Bas Heijmans for the insightful discussions
479 and helpful comments.

480 **Supplementary Materials**

481 **Appendix A**

482 This appendix contains the theoretical foundation underpinning our statement that in a cross-sectional setting
 483 the identical-association assumption is untestable.

484 Denote by C chronological age, by B biological age and by X a true marker of biological age given chrono-
 485 logical age ($B|C$).

486 **Theorem.** *For every triplet (X, C, B) of continuous random variables, there exists another continuous random
 487 variable X' such that $(X', C) \stackrel{d}{=} (X, C)$ and X' is independent of B given C .*

488 *Proof.* Denote by $f(x, c, b)$ the joint density of (X, C, B) . Let

$$f'(x, c, b) = \frac{\int_{-\infty}^{\infty} f(x, c, b) dx \int_{-\infty}^{\infty} f(x, c, b) db}{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, c, b) db dx}$$

be the joint density of X', C, B . As the integral of $f'(x, c, b)$ over the entire space equals 1, this also constitutes a proper joint density. Moreover, this density is consistent with f , since

$$\int_{-\infty}^{\infty} f'(x, c, b) dx = \int_{-\infty}^{\infty} f(x, c, b) dx.$$

We have that $(X', C) \stackrel{d}{=} (X, C)$, since

$$\int_{-\infty}^{\infty} f'(x, c, b) db = \int_{-\infty}^{\infty} f(x, c, b) db.$$

Further, we have that X' is independent of B given C since $f'(x, c, b) = g(b, c)h(x, c)$ where

$$g(b, c) = \frac{\int_{-\infty}^{\infty} f(x, c, b) dx}{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, c, b) db dx},$$

489 and $h(x, c) = \int_{-\infty}^{\infty} f(x, c, b) db$. □

490 Here we have considered a scenario with only one marker (X). In practice, researchers have many candidate
 491 markers to choose from, which are typically combined to a single biological age-metric. In that case, X or X'
 492 can be viewed as the resulting biological age metrics. The theorem then asserts that we cannot distinguish
 493 between a good metric X and a bad metric X' .

494 We emphasize that the result of this theorem is independent of the method used to infer on biological age:
 495 such inference is impossible with any cross-sectional method.

496 Appendix B

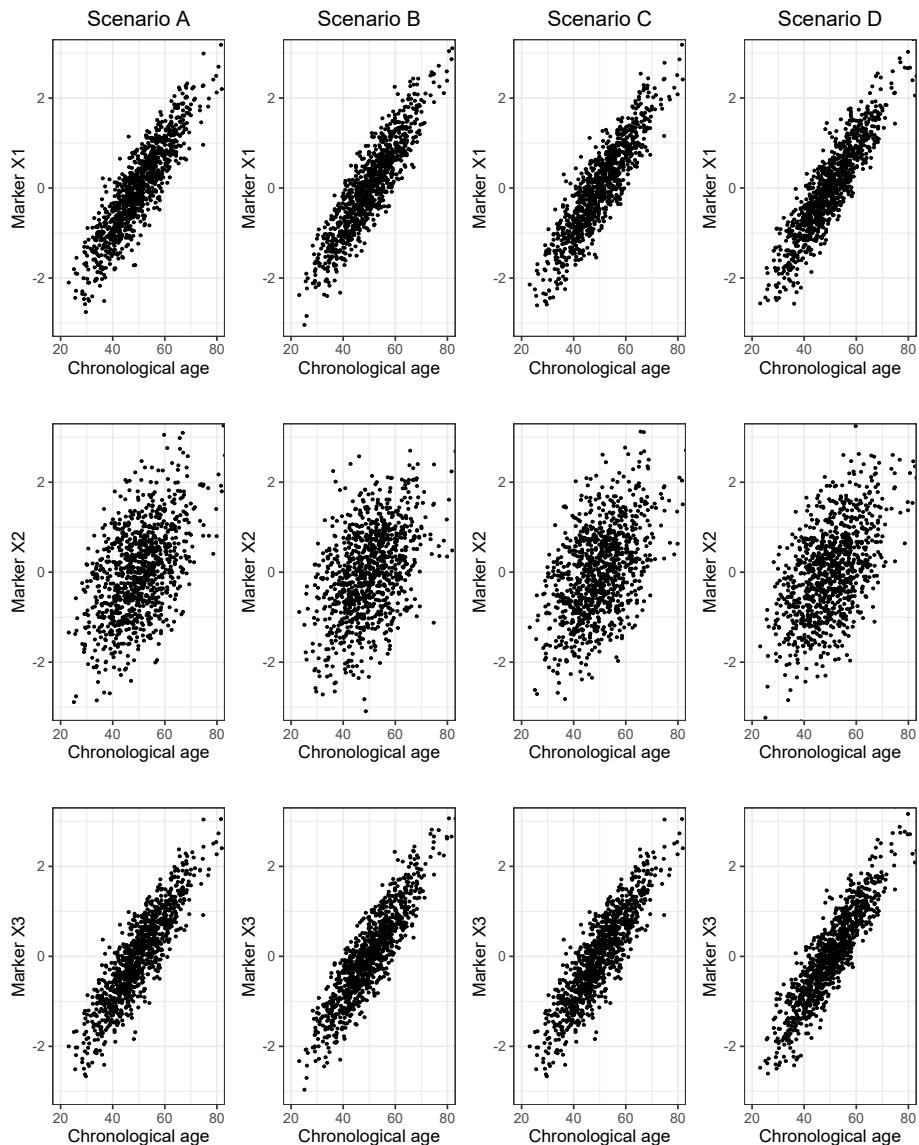


Figure 11: Scaled and centered markers X_1 , X_2 and X_3 plotted against chronological age for scenarios A (identical-association assumption holds), B (inverse association), C (no association) and D (identical-association assumption partially holds).

497 References

498 George T Baker III and Richard L Sprott. Biomarkers of aging. *Experimental gerontology*, 23(4-5):223–239,
499 1988.

500 Harry Benjamin. Biologic versus chronologic age. *Journal of gerontology*, 2(3):217–227, 1947.

501 Daniele Bizzarri, Marcel JT Reinders, Marian Beekman, Pieterella Eline Slagboom, Erik B van den Akker, et al.
502 1h-nmr metabolomics-based surrogates to impute common clinical risk factors and endpoints. *EBioMedicine*,
503 75:103764, 2022.

504 Il Haeng Cho, Kyung S Park, and Chang Joo Lim. An empirical comparative study on biological age estimation
505 algorithms with an application of work ability index (wai). *Mechanisms of ageing and development*, 131(2):
506 69–78, 2010.

507 Lene Christiansen, Adam Lenart, Qihua Tan, James W Vaupel, Abraham Aviv, Matt McGue, and Kaare
508 Christensen. Dna methylation age is associated with mortality in a longitudinal danish twin study. *Aging*
509 *cell*, 15(1):149–154, 2016.

510 Alex Comfort. Test-battery to measure ageing-rate in man. *The Lancet*, 294(7635):1411–1415, 1969.

511 Eileen M Crimmins. Lifespan and healthspan: past, present, and promise. *The Gerontologist*, 55(6):901–911,
512 2015.

513 Joris Deelen, Johannes Kettunen, Krista Fischer, Ashley van der Spek, Stella Trompet, Gabi Kastenmüller,
514 Andy Boyd, Jonas Zierer, Erik B van den Akker, Mika Ala-Korpela, et al. A metabolic profile of all-cause
515 mortality risk identified in an observational study of 44,168 individuals. *Nature communications*, 10(1):1–8,
516 2019.

517 John C Earls, Noa Rappaport, Laura Heath, Tomasz Wilmanski, Andrew T Magis, Nicholas J Schork, Gilbert S
518 Omenn, Jennifer Lovejoy, Leroy Hood, and Nathan D Price. Multi-omic biological age estimation and its
519 correlation with wellness and disease phenotypes: a longitudinal study of 3,558 individuals. *The Journals of*
520 *Gerontology: Series A*, 74(Supplement_1):S52–S60, 2019.

521 Toshiyuki Furukawa, Michitoshi Inoue, Fumihiko Kajiyama, Hiroshi Inada, Seiichi Takasugi, Sugao Fukui, Hiroshi
522 Takeda, and Hiroshi Abe. Assessment of biological age by multiple regression analysis. *Journal of Gerontology*,
523 30(4):422–434, 1975.

524 Gregory Hannum, Justin Guinney, Ling Zhao, LI Zhang, Guy Hughes, Srinivas Sadda, Brandy Klotzle, Marina
525 Bibikova, Jian-Bing Fan, Yuan Gao, et al. Genome-wide methylation profiles reveal quantitative views of
526 human aging rates. *Molecular cell*, 49(2):359–367, 2013.

527 Wan He, Daniel Goodkind, Paul R Kowal, et al. An aging world: 2015, 2016.

528 Robert F Hillary, Anna J Stevenson, Daniel L McCartney, Archie Campbell, Rosie M Walker, David M Howard,
529 Craig W Ritchie, Steve Horvath, Caroline Hayward, Andrew M McIntosh, et al. Epigenetic measures of ageing
530 predict the prevalence and incidence of leading causes of death and disease burden. *Clinical epigenetics*, 12
531 (1):1–12, 2020.

532 Richard Hochschild. Improving the precision of biological age determinations. part 1: a new approach to
533 calculating biological age. *Experimental gerontology*, 24(4):289–300, 1989.

534 Steve Horvath. Dna methylation age of human tissues and cell types. *Genome biology*, 14(10):1–20, 2013.

535 Donald K Ingram. Key questions in developing biomarkers of aging. *Experimental gerontology*, 23(4-5):429–434,
536 1988.

537 Edward HS Ip. Visualizing multiple regression. *Journal of Statistics Education*, 9(1), 2001.

538 Haemi Jee and Jaehyun Park. Selection of an optimal set of biomarkers and comparative analyses of biological
539 age estimation models in korean females. *Archives of gerontology and geriatrics*, 70:84–91, 2017.

540 Linpei Jia, Weiguang Zhang, and Xiangmei Chen. Common methods of biological age estimation. *Clinical*
541 *interventions in aging*, 12:759, 2017.

542 Juulia Jylhävä, Nancy L Pedersen, and Sara Hägg. Biological age predictors. *EBioMedicine*, 21:29–36, 2017.

543 Petr Kleméra and Stanislav Doubal. A new approach to the concept and computation of biological age. *Mech-*
544 *anisms of ageing and development*, 127(3):240–248, 2006.

545 Jasminka Kristic, Frano Vuckovic, Cristina Menni, Lucija Klaric, Toma Keser, Ivona Beceheli, Maja Pucic-
546 Bakovic, Mislav Novokmet, Massimo Mangino, Kujtim Thaqi, et al. Glycans are a novel biomarker of
547 chronological and biological ages. *Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences*,
548 69(7):779–789, 2014.

549 Lieke M Kuiper, Harmke A Polinder-Bos, Daniele Bizzarri, Dina Vojinovic, Costanza L Vallerga, Marian Beek-
550 man, Martijn ET Dollé, Mohsen Ghanbari, Trudy Voortman, Marcel JT Reinders, et al. Evaluation of
551 epigenetic and metabolomic biomarkers indicating biological age. *medRxiv*, 2022.

552 Morgan E Levine. Modeling the rate of senescence: can estimated biological age predict mortality more accu-
553 rately than chronological age? *Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences*,
554 68(6):667–674, 2013.

555 Morgan E Levine, Ake T Lu, Austin Quach, Brian H Chen, Themistocles L Assimes, Stefania Bandinelli, Lifang
556 Hou, Andrea A Baccarelli, James D Stewart, Yun Li, et al. An epigenetic biomarker of aging for lifespan and
557 healthspan. *Aging (Albany NY)*, 10(4):573, 2018.

558 Ake T Lu, Austin Quach, James G Wilson, Alex P Reiner, Abraham Aviv, Kenneth Raj, Lifang Hou, Andrea A
559 Baccarelli, Yun Li, James D Stewart, et al. Dna methylation grimage strongly predicts lifespan and healthspan.
560 *Aging (Albany NY)*, 11(2):303, 2019.

561 Jane Maddock, Juan Castillo-Fernandez, Andrew Wong, Rachel Cooper, Marcus Richards, Ken K Ong,
562 George B Ploubidis, Alissa Goodman, Diana Kuh, Jordana T Bell, et al. Dna methylation age and physical
563 and cognitive aging. *The Journals of Gerontology: Series A*, 75(3):504–511, 2020.

564 Riccardo E Marioni, Sonia Shah, Allan F McRae, Brian H Chen, Elena Colicino, Sarah E Harris, Jude Gibson,
565 Anjali K Henders, Paul Redmond, Simon R Cox, et al. Dna methylation age of blood predicts all-cause
566 mortality in later life. *Genome biology*, 16(1):1–12, 2015.

567 Cathal McCrory, Giovanni Fiorito, Belinda Hernandez, Silvia Polidoro, Aisling M O'Halloran, Ann Hever, Cliona
568 Ni Cheallaigh, Ake T Lu, Steve Horvath, Paolo Vineis, et al. Grimage outperforms other epigenetic clocks in
569 the prediction of age-related clinical phenotypes and all-cause mortality. *The Journals of Gerontology: Series*
570 *A*, 76(5):741–749, 2021.

571 Arnold Mitnitski, Susan E Howlett, and Kenneth Rockwood. Heterogeneity of human aging and its assessment.
572 *Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences*, 72(7):877–884, 2017.

573 E Nakamura, K Miyao, and T Ozeki. Assessment of biological age by principal component analysis. *Mechanisms*
574 *of ageing and development*, 46(1-3):1–18, 1988.

575 Paul G Nelson, Daniel EL Promislow, and Joanna Masel. Biomarkers for aging identified in cross-sectional
576 studies tend to be non-causative. *The Journals of Gerontology: Series A*, 75(3):466–472, 2020.

577 Linda Partridge, Joris Deelen, and P Eline Slagboom. Facing up to the global challenges of ageing. *Nature*, 561
578 (7721):45–56, 2018.

579 Laura Perna, Yan Zhang, Ute Mons, Bernd Holleczek, Kai-Uwe Saum, and Hermann Brenner. Epigenetic
580 age acceleration predicts cancer, cardiovascular, and all-cause mortality in a german case cohort. *Clinical*
581 *epigenetics*, 8(1):1–7, 2016.

582 Marjolein J Peters, Roby Joehanes, Luke C Pilling, Claudia Schurmann, Karen N Conneely, Joseph Powell,
583 Eva Reinmaa, George L Sutphin, Alexandra Zhernakova, Katharina Schramm, et al. The transcriptional
584 landscape of age in human peripheral blood. *Nature communications*, 6(1):1–14, 2015.

585 Timothy V Pyrkov, Evgeny Getmantsev, Boris Zhurov, Konstantin Avchaciov, Mikhail Pyatnitskiy, Leonid
586 Menshikov, Kristina Khodova, Andrei V Gudkov, and Peter O Fedichev. Quantitative characterization of
587 biological age and frailty based on locomotor activity records. *Aging (Albany NY)*, 10(10):2973, 2018.

588 Jarod Rutledge, Hamilton Oh, and Tony Wyss-Coray. Measuring biological age using omics data. *Nature
589 Reviews Genetics*, pages 1–13, 2022.

590 Pasi Soininen, Antti J Kangas, Peter Würtz, Teemu Suna, and Mika Ala-Korpela. Quantitative serum nuclear
591 magnetic resonance metabolomics in cardiovascular epidemiology and genetics. *Circulation: cardiovascular
592 genetics*, 8(1):192–206, 2015.

593 Hiroshi Takeda, Hiroshi Inada, Michitoshi Inoue, Hiromichi Yoshikawa, and Hiroshi Abe. Evaluation of biological
594 age and physical age by multiple regression analysis. *Medical Informatics*, 7(3):221–227, 1982.

595 Toshiko Tanaka, Angelique Biancotto, Ruin Moaddel, Ann Zenobia Moore, Marta Gonzalez-Freire, Miguel A
596 Aon, Julián Candia, Pingbo Zhang, Foo Cheung, Giovanna Fantoni, et al. Plasma proteomic signature of age
597 in healthy humans. *Aging cell*, 17(5):e12799, 2018.

598 Toshiko Tanaka, Nathan Basisty, Giovanna Fantoni, Julián Candia, Ann Z Moore, Angelique Biancotto, Birgit
599 Schilling, Stefania Bandinelli, and Luigi Ferrucci. Plasma proteomic biomarker signature of age predicts
600 health and life span. *Elife*, 9:e61073, 2020.

601 Erik B Van Den Akker, Stella Trompet, Jurriaan JH Barkey Wolf, Marian Beekman, H Eka D Suchiman, Joris
602 Deelen, Folkert W Asselbergs, Eric Boersma, Davy Cats, Petra M Elders, et al. Metabolic age based on the
603 bbmri-nl 1h-nmr metabolomics repository as biomarker of age-related disease. *Circulation: Genomic and
604 Precision Medicine*, 13(5):541–547, 2020.

605 Rudi GJ Westendorp, Diana Van Heemst, Maarten P Rozing, Marijke Frölich, Simon P Mooijaart, Gerard-Jan
606 Blauw, Marian Beekman, Bastiaan T Heijmans, Anton JM De Craen, P Eline Slagboom, et al. Nonagenarian
607 siblings and their offspring display lower risk of mortality and morbidity than sporadic nonagenarians: The
608 leiden longevity study. *Journal of the American Geriatrics Society*, 57(9):1634–1637, 2009.

609 Peter Würtz, Antti J Kangas, Pasi Soininen, Debbie A Lawlor, George Davey Smith, and Mika Ala-Korpela.
610 Quantitative serum nuclear magnetic resonance metabolomics in large-scale epidemiology: a primer on-omic
611 technologies. *American journal of epidemiology*, 186(9):1084–1096, 2017.

612 Qian Zhang, Costanza L Vallerga, Rosie M Walker, Tian Lin, Anjali K Henders, Grant W Montgomery, Ji He,
613 Dongsheng Fan, Javed Fowdar, Martin Kennedy, et al. Improved precision of epigenetic clock estimates across
614 tissues and its implication for biological ageing. *Genome medicine*, 11(1):1–11, 2019.

615 Yinan Zheng, Brian T Joyce, Elena Colicino, Lei Liu, Wei Zhang, Qi Dai, Martha J Shrubsole, Warren A Kibbe,
616 Tao Gao, Zhou Zhang, et al. Blood epigenetic age may predict cancer incidence and mortality. *EBioMedicine*,
617 5:68–73, 2016.