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Abstract10

There is variability in the rate of aging among people of the same chronological age. The concept of biological age11

is postulated to capture this variability, and hence to better represent an individual’s true global physiological12

state than chronological age.13

Biological age predictors are often generated based on cross-sectional data, using biochemical or molecular14

markers as predictor variables. It is assumed that the difference between chronological and predicted biological15

age is informative of one’s chronological age-independent rate of aging ∆.16

We show that the most popular cross-sectional biological age predictors—based on multiple linear regression,17

the Klemera-Doubal method or principal component analysis—rely on the same strong underlying assumption,18

namely that a candidate marker of aging’s association with chronological age is directly informative of its19

association with the aging rate ∆. We call this the identical-association assumption and prove that it is20

untestable in a cross-sectional setting. Using synthetic data, we illustrate the consequences if the assumption21

does not hold: in such scenarios, there is no guarantee that the weights that a cross-sectional method assigns to22

candidate markers are informative of the underlying truth. Using real data we illustrate that the extent to which23

the identical-association assumption holds is of direct practical relevance for anyone interested in developing or24

interpreting cross-sectional biological age predictors.25
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Introduction27

Individuals of the same chronological age show considerable variation in the rate at which they age: while some28

enjoy long and healthy lives, others experience early-onset functional decline, suffer from a range of diseases29

and die young [Partridge et al. 2018]. This variability gave rise to the idea that, in addition to a chronological30

age, individuals also possess a biological age [Benjamin 1947, Comfort 1969]. This biological age should be31

an accurate reflection of one’s position on their life-course: when biological age exceeds chronological age this32

is indicative of accelerated aging (marking a higher physiological vulnerability, lower lifespan expectancy and33

increased risk to develop (multi)morbidity), the reverse of slow aging.34

The question why, how and how fast we age is not only of biological interest, but has direct societal relevance.35

The enormous increase in average human lifespan that has been observed throughout most of the world in the36

last centuries has not been matched by an equal increase in healthspan (life years spent in health) [Crimmins37

2015, Partridge et al. 2018]. This has led to a global healthcare burden, which is expected to only increase in38

the decades to come [He et al. 2016]. Measuring biological age could contribute to identifying individuals most39

at risk and helping them with targeted interventions. In addition, a better insight in the processes that underlie40

aging might help in designing interventions to slow down, delay or even reverse aging.41

Biological age is latent: it cannot be directly measured, which complicates a direct evaluation of predictions.42

However, there is consensus that biological age contains information on aging above and beyond chronological43

age [Baker III and Sprott 1988, Jylhävä et al. 2017]. We call this chronological age-independent part of biological44

age the ‘aging rate’ and denote it by the symbol ∆. Hence, we here mean by aging rate ∆ only the biological age45

acceleration or deceleration (i.e., biological age conditional on chronological age). In line with this consensus,46

predictions of biological age are generally evaluated by checking if the chronological age-independent part of a47

prediction, denoted by ∆̂, is associated with time-to-death or other outcomes that are known to be measurable48

physiological outcomes representing the aging process (e.g., grip strength, frailty or cognitive function), in a49

model adjusted for chronological age.50

The aging field is trying to detect (bio)markers indicative of the biological age of individuals, in this pa-51

per referred to as ‘candidate markers’ (of biological aging). Such candidate markers of biological aging must52

be informative of biological age beyond chronological age, i.e., they must be associated with one’s aging rate53

∆. Candidate markers can consist of molecular, biochemical, clinical or physiological health data. The earliest54

attempts to capture biological age made use of a limited number of physiological and biochemical markers [Com-55

fort 1969, Furukawa et al. 1975, Takeda et al. 1982]. More recently, the advent of high throughput bio-molecular56

technologies has resulted in the development of numerous high-dimensional omics-based age predictors. This57

renewed interest was initiated by the publication of the Horvath and Hannum DNA methylation (DNAm) age58

predictors [Horvath 2013, Hannum et al. 2013]. It was soon found that DNAm age predictions are associated59

with aging above and beyond chronological age [Marioni et al. 2015, Christiansen et al. 2016, Perna et al. 2016].60

Since then, various other omics-based age predictors have been developed, e.g. based on IgG glycomics [Kristic61

et al. 2014], metabolomics [Van Den Akker et al. 2020], proteomics [Tanaka et al. 2018] or transcriptomics62

[Peters et al. 2015].63

Biological age prediction methods, often referred to as ‘aging clocks’, can be divided in two generations.64

The first-generation prediction methods are based on the association of candidate markers of biological aging65

with chronological age. These methods hence require cross-sectional data only, where chronological age and66

candidate markers are measured at a single point in time. The second-generation prediction methods are based67

on the association of candidate markers with time-to-age-related-event data (as of yet, only time-to-mortality68

has been considered as outcome of interest). The three most well-known second-generation predictors are69

PhenoAge [Levine et al. 2018] and GrimAge [Lu et al. 2019], which both use DNAm marker data as (surrogate)70

predictor variables, and a mortality predictor named MetaboHealth [Deelen et al. 2019], using metabolome data71

as predictor variables.72

Although second-generation epigenetic and metabolomics-based methods outperform first-generation (cross-73

sectional) methods in terms of their strength of association with time-to-mortality and other aging-related74

outcomes [Hillary et al. 2020, Maddock et al. 2020, McCrory et al. 2021, Kuiper et al. 2022], cross-sectional75

methods are still frequently developed, used and debated [Rutledge et al. 2022]. From a practical point of76

view, the ongoing popularity of cross-sectional methods can easily be explained: cross-sectional data are simply77

much more abundant than longitudinal (time-to-event) data. Moreover, the predicted aging rates ∆ of several78
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recent cross-sectional age predictors were found to be associated with time-to-mortality and the onset of other79

aging-related outcomes [Marioni et al. 2015, Christiansen et al. 2016, Van Den Akker et al. 2020, Tanaka et al.80

2020].81

The general consensus in the field therefore seems to be that even though cross-sectional biological age82

predictors are suboptimal, they still capture some signal related to biological aging, and can therefore still be83

of value. Nevertheless, how and under which assumptions they can capture this signal is not clear, neither84

from a statistical nor from a biological point of view. We believe that the statistical assumptions underlying85

these cross-sectional methods, and the consequences if they are not met, must be known and well understood86

for aging researchers to evaluate whether it makes sense use to such an approach. Lack of understanding of87

the assumptions and limitations of any prediction method can hamper progress in the field of biological age88

prediction and in the identification of relevant markers of aging. Though certain aspects of various cross-89

sectional methods have been sporadically criticized before (discussed in more detail in the next section), to the90

best of our knowledge an in-depth discussion of the key assumption that all cross-sectional approaches—often91

implicitly—rely on does not yet exist.92

With this paper we attempt to fill that gap by considering this matter from several angles. We start by93

providing a comprehensive overview of the most popular cross-sectional biological age prediction methods. We94

discuss the assumption they all rely on, namely that any marker’s association with chronological age is directly95

informative of its association with the age-independent part of the difference between predicted and chronological96

age, denoted by ∆. We call this the identical-association assumption and provide a theoretical result why this97

assumption is untestable. To illustrate the consequences in settings where this assumption does not (fully) hold,98

we use two synthetic data examples. Finally, we use real data to illustrate that caution must be taken when99

using cross-sectional data to predict biological age. With this we hope to increase awareness that all cross-100

sectional methods that either directly or indirectly rely on candidate markers’ correlation with chronological101

age may be superfluous, and in any case should not be be used without carefully reflecting beforehand on the102

assumptions these methods make.103

Methods104

Overview of cross-sectional statistical approaches105

By far the most popular statistical approach to estimate biological age (B) is to perform multiple linear regression106

(MLR) on cross-sectional data: chronological age (C) is taken as the outcome variable and regressed on a set107

of candidate markers of biological aging (X) that were measured at the same time as chronological age. Then108

the model’s predicted chronological age is considered to be informative of one’s biological age: B̂ = Ĉ =109

β0+Σm
i=1βixi, where m represents the number of candidate markers included in the regression and x represents110

a single marker. In this method predictions for the aging rate ∆ are generally defined as the resulting residuals111

after regressing predicted biological age (i.e., Ĉ) on chronological age. Hence, the residuals of the chronological112

age model are considered to be informative of ∆. This approach is used with both low- and high-dimensional113

markers.114

The MLR approach does not follow from an underlying model of biological age. It fully relies on a model115

that predicts chronological age to be indicative of the aging rate ∆. For this to work it must hold that markers116

that are correlated with chronological age are also correlated with ∆, and vice versa. In fact, it is implicitly117

assumed that the higher the correlation with chronological age (in a multivariable model, so adjusting for all118

other included markers), the stronger it is correlated with ∆. Markers that are insignificant predictors of119

chronological age are assumed to be insignificant predictors of ∆.120

Although the MLR approach is the most often-used cross-sectional approach, it has been criticized for various121

reasons. It suffers from inherent methodological problems, such as regression to the mean (fitted values regress122

towards the sample’s mean age such that biological ages calculated for those younger than the sample mean123

age tend to be too high and for those older, too low) and the so-called ‘biomarker paradox’ (a (bio)marker that124

perfectly correlates with chronological age is useless in estimating biological age) [Ingram 1988, Hochschild 1989].125

The biomarker paradox is more than a mere theoretical danger: with epigenetic biological age predictors, in126

principle a near-perfect chronological age predictor can be developed, as long as the sample size is large enough127

[Zhang et al. 2019]. In such a case all signal related to biological aging would be lost. This paradox therefore128
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illustrates the peculiarities that arise when the residuals of a linear regression are interpreted as meaningful129

quantities in their own right, while in the model formulation those residuals are per definition nothing but noise.130

Alternative cross-sectional approaches have been proposed in an attempt to overcome some of these method-131

ological issues. The most notable alternatives are principal component (PC)-based methods and the Klemera-132

Doubal (KD) method [Klemera and Doubal 2006]. PC-based methods transform candidate markers to a set133

of uncorrelated principal components [Nakamura et al. 1988, Jee and Park 2017, Jia et al. 2017, Pyrkov et al.134

2018]. Most of the times, first a pre-selection of candidate markers is made based on how strongly each individ-135

ual marker is correlated with chronological age. Often, the first principal component of this subset of variables136

is found to be correlated with chronological age and is hence interpreted as an ‘unscaled’ or ‘standardized’137

biological age score BS. This score is sometimes transformed to an age-scale based on the mean and standard138

deviation of chronological age (µC and σC) in the training sample: B = BS ∗ σC + µC .139

The Klemera-Doubal method [Klemera and Doubal 2006] uses a reversed regression approach (regressing140

each candidate marker on chronological age). In contrast to the above methods, the KD method is based on an141

explicit underlying model of biological age. It assumes that the relation between biological age and chronological142

age can be expressed by B = C+∆. Each marker x is governed by B but is also affected by random fluctuations.143

Assuming a linear relation between marker x and biological age, x equals β0 + β1 ∗ B + ϵ. This can also be144

expressed as x = β0+β1∗(C+∆)+ϵ. That the coefficient β1 is the same for C and ∆ is a key assumption of the145

Klemera-Doubal method: in their model, a marker’s strength of association with chronological age is directly146

informative of its association with ∆. A biological age prediction is obtained by taking a linear combination of147

all included markers, each of them weighted in terms of the estimated slopes and residual variances resulting148

from the reversed regressions.149

Though in certain settings the Klemera-Doubal method has been found to outperform MLR- and PC-150

based methods [Levine 2013], extending the method to high-dimensional settings is not straightforward, since151

it assumes that all included markers are functionally uncorrelated. Therefore the KD method is primarily used152

in low-dimensional settings [Cho et al. 2010, Jee and Park 2017, Mitnitski et al. 2017], or prior to applying the153

KD method principal component analysis is used to obtain a set of lower-dimensional markers [Levine 2013,154

Earls et al. 2019]. The limitations of the alternative cross-sectional approaches might explain the continued155

popularity of the MLR approach in high-dimensional settings. In a recent review of omics-based biological age156

predictors the Klemera-Doubal method is not mentioned and PC-based methods play a minor role [Rutledge157

et al. 2022].158

Reflection on the assumption underpinning cross-sectional biological age predictors159

The cross-sectional methods described above share a common assumption, namely that a candidate marker’s160

strength of association with chronological age is identical to its strength of association with one’s aging rate (the161

difference between biological and chronological age) ∆. So by using one of the above cross-sectional methods162

for biological age prediction it is assumed that the traits most strongly associated with chronological age are163

the ones most informative of ∆. If a marker changes with chronological age irrespective of relevant changes in164

∆, or vice versa, the assumption is not met.165

For ease of reference, we henceforth refer to this assumption as the identical-association assumption. The KD166

method explicitly makes this assumption. The MLR approach implicitly relies on it (here it concerns ‘adjusted’167

association in a multivariable setting). Markers with high absolute coefficient values will have a strong effect168

on the resulting chronological age prediction Ĉ, which is considered equal to biological age prediction B̂. For169

the PC-based approaches this assumption is used when making a pre-selection of markers prior to finding the170

principal components, since only variables significantly correlated with chronological age are selected. It is171

therefore not surprising that the first principal component is often found to be correlated with chronological172

age: the variables were selected to share this common source of variance.173

There are different degrees to which the identical-association assumption might hold in real data. For any174

set of candidate markers of biological aging, one can roughly distinguish four possible scenarios. The first175

scenario is that the identical-association assumption holds. If one would then plot the true association of176

markers with chronological age against their true association with aging rate ∆, one would end up with a plot177

as given in the top left panel (A) of Figure 1. (There are of course many ways to define ‘association’ – since178

we do not want to assume a specific model, we deliberately keep this term vague. The plots are therefore179
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Figure 1: Conceptual visualization of a scenario in which the identical-association assumption holds (A), a

scenario in which the inverse relation holds (B), a scenario in which there is no association (C) and a scenario

in which the identical-association assumption partially holds (D).
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Figure 2: Zoomed-in version of the bottom right panel of Figure 1. If markers are (pre-)selected based on their

strength of correlation with chronological age, those in the grey area (i.e., those most weakly associated with

chronological age) are not selected.

5

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 21, 2023. ; https://doi.org/10.1101/2023.01.01.522413doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.01.522413
http://creativecommons.org/licenses/by-nc-nd/4.0/


conceptual representations of the four scenarios.) As mentioned, the Klemera-Doubal method explicitly makes180

this assumption, as it assumes an identical regression coefficient (effect size) for chronological age and aging181

rate ∆ and no other sources of shared variance. In this first scenario it would make perfect sense to use a cross-182

sectional prediction method. The second scenario (shown in panel B of Figure 1) is one in which the opposite183

of the identical-association assumption holds: the stronger a marker is positively associated with chronological184

age, the stronger it is negatively associated with aging rate ∆. This is an unlikely possibility, which is only185

included such that the four scenarios discussed here are collectively exhaustive. The third scenario (shown186

in panel C of Figure 1) is that the markers’ strength of association with chronological age is not informative187

of their association with aging rate ∆ at all. In such a scenario, using a cross-sectional prediction method188

would be useless: the weights that cross-sectional methods give to markers will be based on their association189

(both strength and direction) with chronological age, but these weights will be completely uninformative of the190

markers’ association with ∆. The fourth and final possibility (shown in panel D of Figure 1) is that the markers’191

strength of association with chronological age is somewhat, but not exactly, informative of their association with192

aging rate ∆. Of the four scenarios this appears to be the most realistic one.193

For this fourth scenario it is important to remember that many of the high-dimensional cross-sectional194

biological age predictors perform some kind of marker selection, either before including them in the model195

or during the model fitting itself. If one would then only include the variables most strongly correlated with196

chronological age (i.e., only the edges of Figure 1D would be included, as illustrated in Figure 2), there no longer197

is a relation between strength of association with chronological age and with aging rate ∆. However, in Figure198

2 there still is a relation between the direction of the association of the selected markers with chronological199

age and with ∆. This suggests that in a scenario where the fourth scenario holds and candidate markers of200

biological aging have been pre-selected, the size of a candidate marker’s association with chronological age will201

not be informative of its association with ∆, but the sign (positive/negative) of this association will be.202

Which scenario holds in a given data set determines whether or not it makes sense to use a cross-sectional203

method to predict biological age. Unfortunately, in cross-sectional data the identical-association assumption204

cannot be proven or disproven, because it is untestable: it is impossible to tell to what extent a marker is205

associated with aging rate ∆ based on its association with chronological age alone. For a formal theorem206

and proof of the untestability of the identical-association assumption we refer to the Supplementary Materials207

(Appendix A). An intuitive visualization of the proof is given in Figure 3. It shows correlation Venn diagrams208

[Ip 2001] for two candidate markers of biological age, X and X ′. The two candidate markers have the same209

association with chronological age C, but where marker X shares association with biological age B, candidate210

marker X ′ has no such association. Since B is unobserved, we only have information on the joint distribution211

of X and C, or X ′ and C, respectively. With respect to this observable variation, the diagrams for X and212

X ′ are identical. It follows that we cannot distinguish between the true marker X of biological age and the213

false marker X ′. Hence, if the identical-association assumption does not hold, it is impossible to distinguish214

true markers of ∆ from false ones. Using cross-sectional biological age prediction methods, thereby (implicitly)215

believing in the identical-association assumption, is therefore based on biological hope or knowledge alone, not216

on a statistical property of the cross-sectional methods.217

X C

B

X ′ C

B

Figure 3: Venn diagrams illustrating the variance shared between biological age (B), chronological age (C) and

the candidate markers of biological aging X (true, left diagram) and X ′ (false, right diagram). Black indicates

observed variance; grey unobserved.

6

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 21, 2023. ; https://doi.org/10.1101/2023.01.01.522413doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.01.522413
http://creativecommons.org/licenses/by-nc-nd/4.0/


Results218

Two illustrative examples219

This section contains two synthetic data examples that illustrate two aspects of the identical-association as-220

sumption.221

Example 1: untestability of the identical-association assumption222

We created a synthetic data set with four variables: chronological age C, biological age B, true marker of223

biological age X and false marker of biological age X ′. X and X ′ follow the same distribution and have the224

same strength of correlation with C. We based our data generation approach on the type of additive model225

proposed by Klemera and Doubal [Klemera and Doubal 2006]. We generated n observations as follows:226

1. Independently generate the following elements:227

• C ∼ N(µ, σ2
C);228

• ∆ ∼ N(0, σ2
∆);229

• Λ ∼ N(0, σ2
Λ);230

• ϵ ∼ N(0, σ2);231

• ϵ′ ∼ N(0, σ2).232

2. From these elements, construct:233

• B = C +∆;234

• X = α+ β × (C +∆) + ϵ;235

• X ′ = α+ β × (C + Λ) + ϵ′.236

We used the following parameter values: n = 1000, µ = 50, σ2
C = 10, σ2 = 2, σ2

∆ = σ2
Λ = 3, α = 1, β = 1.237

X and X ′ have the same distribution and the same relation with chronological age, as seen in Figure 4.238

However, X correlates with the individual aging rate ∆ while X ′ does not, as seen in Figure 5. This implies239

that X has useful information on biological age that is not already in chronological age while X ′ does not.240

However, in real cross-sectional data ∆ is not observed: with respect to their association with the observable241

variable chronological age these two candidate markers are identical, as can be seen in Figure 4.242

Since the observable data (X,C) and (X ′, C) are indistinguishable from each other, any method we would243

apply on either (X,C) or (X ′, C) would assign the same weight to either X or X ′. This holds for the linear244

regression method, as is clear from Figure 5. It also holds for the Klemera-Doubal method, since that method245

would assign the same weights to both X ′ and X. Principal components-based methods would not be able to246

distinguish an informative source of variance (i.e., ∆) from an uninformative source of variance (here denoted247

by Λ). In fact, no cross-sectional method can distinguish between X and X ′ based on their association with248

chronological age C, because the identical-association assumption is untestable. Therefore, no cross-sectional249

method can provide evidence that a candidate marker is a truly informative X rather than a completely250

uninformative X ′.251

Example 2: consequences of believing in the identical-association assumption under the four252

different scenarios253

The first example illustrated that cross-sectional methods cannot be relied upon to select true markers of the254

rate of aging ∆. Nevertheless, predicted ∆-values of several cross-sectional age predictors have been found255

to be associated with time-to-mortality and several other age-related outcomes [Rutledge et al. 2022], albeit256

often weakly. This can only be the case if a marker’s strength of correlation with chronological age is at least257

somewhat indicative of its strength of association with true aging rate ∆.258

To illustrate this, we generated a possible realization of each of the four conceptual scenarios depicted in259

Figure 1. We obtained predictions for aging rate ∆ using multiple linear regression (MLR) and the KD-method.260
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Figure 4: Chronological age plotted against the marker value for true marker X and false marker X ′.
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Figure 5: Rate of aging ∆ (the difference between true biological and chronological age) plotted against predicted

∆ (the resulting residuals after regressing predicted age on chronological age) for true markerX and false marker

X ′. The biological age predictions were obtained using linear regression.
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Table 1: The coefficients used to construct the markers X1, X2 and X3 for the four different scenarios.

X1 X2 X3

βC β∆ βC β∆ βC β∆

Scenario A 10 10 3 3 5 5

Scenario B 10 -10 3 -3 5 -5

Scenario C 10 0 3 10 5 -1

Scenario D 10 9 3 5 5 5

We know that if the identical-association assumption does not hold, the weights found by MLR and the KD-261

method are uninformative of a marker’s strength of association with ∆. If the identical-association assumption262

partially holds, the size of the weights that cross-sectional methods assign to markers will not informative but263

the signs (positive/negative direction) of these weights still are (Figure 2). We illustrate this by also including264

a third, ‘naive’ prediction method in this second example, where similar to the MLR approach we took a linear265

combination of markers. In this third prediction method each marker was assigned the same weight, namely266

the mean of the MLR coefficients. The sign of each coefficient was kept unchanged, because we generally267

expected the sign to be correct. We included this third approach to illustrate that if the identical-association268

assumption does not hold, weights obtained using the MLR or Klemera-Doubal method might result in less269

accurate predictions than naively assigning each marker the same weight.270

For this second example we generated four data sets, DFA, DFB , DFC and DFD, corresponding to the271

scenarios in Figure 1. To keep it simple, each data set has only three markers(X1, X2 and X3), which are272

associated with chronological age C and with aging rate ∆ to varying degrees in each of the four scenarios.273

We generated n observations as follows:274

1. Independently generate:275

• C ∼ N(µ, σ2
C);276

• ∆ ∼ N(0, σ2
∆);277

• ϵi ∼ N(0, σ2
i ).278

2. Construct biological age:279

• B = C +∆.280

3. Construct markers:281

• X1 = βC,1 × C + β∆,1 ×∆+ ϵ1;282

• X2 = βC,2 × C + β∆,2 ×∆+ ϵ2;283

• X3 = βC,3 × C + β∆,3 ×∆+ ϵ3.284

Per scenario, the values chosen for βC,1 and β∆,1 can be found in Table 1. The following parameter values285

were used in all four scenarios: n = 1000, µ = 50, σ2
C = 10 and σ2

∆ = 5. The standard deviation of the errors ϵ286

were chosen such that the relation between the (scaled and centered) three markers and chronological age is the287

same in in all four data sets (Supplementary Materials, Appendix B). Hence, based on the observable variables288

alone (X1, X2, X3 and C) the four data sets are indistinguishable.289

If the identical-association assumption holds (scenario A), the MLR approach and the Klemera-Doubal290

approach outperform the equal weights approach (Figure 6: the closer the points are to the diagonal line ∆ =291

predicted ∆, the better the performance of the method). In this case a marker’s association with chronological292

age is directly informative of its association with rate of aging ∆, so any method that weighs markers according to293

their strength of correlation with chronological age will do well. In the unrealistic case that a marker’s association294

with chronological age is inversely related to its association with aging rate ∆ (scenario B), all methods will295

perform badly, as is to be expected (Figure 7). If there is no relation between a marker’s association with296

chronological age and its association with aging rate ∆ (scenario C), the equal weights approach outperforms297

the two cross-sectional approaches, which appear to capture only noise (Figure 8). In our realization of scenario298
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Figure 6: Rate of aging ∆ plotted against predicted ∆ for the MLR method, the Klemera-Doubal method and

the MLR method where each marker is assigned the same weight. Here the identical-association assumption

holds (scenario A).

D, it can be seen that all methods capture some signal (Figure 9). The Klemera-Doubal method does best, but299

that might not be surprising given the data generation approach, which was based on the type of additive model300

Klemera and Doubal assume. Interesting is that the same weights approach outperforms the MLR-approach.301

Naturally, this is just one possible realization: with different values for βC and β∆ the coin could flip in favor302

of the MLR-method over the equal weights method (and with a different data generation mechanism, possibly303

also over the KD-method).304

Real data illustration305

The insights gained from the synthetic data scenarios are of immediate practical relevance. We illustrate this306

with a real data illustration.307

We used data from the the Leiden Longevity Study (LLS) [Westendorp et al. 2009]. The LLS follows long-308

lived siblings of Caucasian descent, their offspring and the partners of their offspring. We used data on the309

offspring and partners (N = 2312). Participants who were lost to follow-up (N = 10) or who had at least one310

missing metabolite value (N = 37) were excluded. In total 1593 offspring and 674 partners were included, of311

which 998 men and 1269 women (mean age at inclusion 59.15 years, sd 6.72). Participants were included between312

March 2002 and May 2006. Registry-based follow-up until November 2021 was available. Median follow-up time313

was 16.26 years (IQR: 15.31–17.08). 309 deaths were observed. The Medical Ethics Committee of the Leiden314

University Medical Center approved the study and informed consent was obtained from all participants.315

As candidate markers of biological aging we used blood-based metabolic variables. The metabolic variables316

were quantified using a well-standardized high-throughput nuclear magnetic resonance (1H-NMR) metabolomics317

platform [Soininen et al. 2015, Würtz et al. 2017] of Nightingale Health Ltd. (Helsinki, Finland). Of the more318

than 200 metabolic variables available, a subset of 59 was selected, previously found to be most reliable and319

independent [Deelen et al. 2019] and used in various subsequent publications [Van Den Akker et al. 2020,320

Bizzarri et al. 2022]. Prior to analysis, a small constant was added to all metabolic variables after which they321

were log-transformed and scaled.322

The complete two-generation Leiden Longevity Study has previously been used in two major analyses by323

our group, constructing biological age predictors (on cross-sectional as well as time-to-event basis) based on324

the same metabolic variables in much larger data sets. From these studies we observed that the constructed325

predictors as well as many of the 59 metabolic variables separately were predictive of prospective mortality326
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Figure 7: Rate of aging ∆ plotted against predicted ∆ for the MLR method, the Klemera-Doubal method and

the MLR method where each marker is assigned the same weight. Here the identical-association assumption

does not hold, but an inverse relation exists (scenario B).
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Figure 8: Rate of aging ∆ plotted against predicted ∆ for the MLR method, the Klemera-Doubal method and

the MLR method where each marker is assigned the same weight. Here the identical-association assumption

does not hold: there is no association (scenario C).
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Figure 9: Rate of aging ∆ plotted against predicted ∆ for the MLR method, the Klemera-Doubal method and

the MLR method where each marker is assigned the same weight. Here the identical-association assumption

partially holds (scenario D).

[Deelen et al. 2019, Van Den Akker et al. 2020].327

To illustrate the problems that can arise when using cross-sectional methods to predict biological age, we328

took a similar approach as in synthetic data example 2: we contrasted an often-used cross-sectional approach to329

obtain predictions for rate of aging ∆—in this case penalized regression, hereafter denoted by method 1 —with330

naive methods to obtain predictions for ∆—in this case first selecting metabolites univariately associated with331

chronological age and then using (unpenalized) multiple linear regression (method 2), a linear combination with332

either equal weights (method 3) or randomly drawn weights (method 4).333

For each of the four methods, predictions for aging rate ∆ were obtained as follows. For method 1 we334

first obtained an age prediction using penalized MLR with a ridge penalty. Using 10-fold cross-validation, the335

penalization parameter λ was chosen such that the mean cross-validated error was minimized. Chronological336

age was taken as the outcome variable and all 59 metabolic variables were included as predictor variables.337

In method 2 we performed (unpenalized) multiple linear regression on a subset of variables correlated with338

chronological age. 26 of the 59 metabolic variables were significantly correlated with chronological age, using339

a Bonferroni-corrected significance threshold of 0.05/59 = 8.47 × 10−4. For method 3 we again took a linear340

combination of the 26 metabolic variables significantly correlated with chronological age. Here we assigned each341

variable same weight, namely the mean of the absolute value of the MLR-coefficients from method 2 (excluding342

the intercept). Although the coefficients were averaged, the sign of each variable’s coefficient was kept, for the343

same reason as illustrated by Figure 2: it is unlikely that a variable is positively correlated with chronological344

age but negatively with ∆. Method 4 is a variation on method 3: 1,000 different linear combinations of the345

same 26 variables were taken, where each variable was assigned a coefficient randomly drawn from a uniform346

distribution. Similar to method 3, the weights were drawn at random but the signs were kept. For each of the347

four methods, predictions for ∆ were obtained by regressing the the linear combination of metabolic variables348

(the fitted values) on chronological age and obtaining the residuals.349

We then compared the performance of the four methods by scaling the predictions for aging rate ∆ obtained350

using each of the four methods and including them in a Cox proportional hazards (PH) model with time-to-351

mortality as outcome. This is a common approach to check the validity of ∆-predictions if data on time-to-death352

is available [Marioni et al. 2015, Zheng et al. 2016, Christiansen et al. 2016, Van Den Akker et al. 2020, Tanaka353

et al. 2020, Hillary et al. 2020, McCrory et al. 2021]. We used chronological age as the timescale of the Cox PH354

model and adjusted for sex. Since all predicted ∆-values were scaled prior to inclusion, the higher the coefficient355
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for ∆, the stronger the association with time-to-mortality.356

The Cox PH coefficients of the different ∆-predictions (i.e., the effect sizes of the association with prospective357

mortality) obtained with these four methods are compared in Figure 10. It can be seen that the coefficient for358

aging rate ∆ obtained with method 1 is lower than those of methods 2 and 3: hence, association with time-359

to-death is weaker. The blue and green lines of methods 2 and 3 are very close to each other: using multiple360

linear regression (method 2) works just as well as assigning each marker the same coefficient (method 3). The361

histogram represents the distribution of the 1,000 coefficients obtained by assigning each metabolic variable a362

randomly drawn weight (method 4), repeated 1,000 times. More than half of the histogram area is to the right363

of the yellow line of the ridge-based coefficient (method 1), and a substantial part is even to the right of the364

blue and green lines of methods 2 and 3. These results imply that in this particular setting, the naive methods365

capture more signal related to prospective mortality than the ‘proper’ cross-sectional method 1.366

Although Figure 10 shows that predictions for rate of aging ∆ obtained via ridge regression on 59 metabolic367

variables (method 1) are less strongly associated with mortality than predictions for ∆ obtained using standard368

multiple linear regression on 26 metabolic variables (method 2), the chronological age predictions obtained with369

method 1 are more accurate than the ones obtained with method 2 (root-mean-square error method 1: 6.01,370

root-mean-square error method 2: 6.18). This exemplifies the biomarker paradox: improved chronological age371

predictions do not imply improved biological age predictions. In fact, after a certain point the association will372

weaken. We see that the better chronological age prediction performance of method 1 already results in a weaker373

association of ∆ with prospective mortality.374

Note that all coefficients in Figure 10 are positive. Since we kept the coefficient signs of method 2 for375

methods 3 and 4, it confirms our earlier assertion that if a marker is positively associated with chronological376

age, it is unlikely to be negatively associated with aging rate ∆ (and vice versa). This explains why despite377

the suboptimality of cross-sectional methods, cross-sectional ∆-predictions have repeatedly been found to be378

associated with prospective mortality and other age-related outcomes [Marioni et al. 2015, Christiansen et al.379

2016, Van Den Akker et al. 2020, Tanaka et al. 2020]—albeit (much) weaker than second-generation biological380

age predictors [Hillary et al. 2020, Maddock et al. 2020, McCrory et al. 2021, Kuiper et al. 2022]. The direction381

of the coefficients contains information regarding the signal. However, one must realize that unless the identical-382

association assumption (almost fully) holds, no more signal will be captured with cross-sectional methods than383

if markers would have been assigned weights at random.384

Discussion385

We have shown that the most popular cross-sectional biological age predictors, where candidate markers of386

biological aging and chronological age are measured at a single point in time, all rely on the same underlying387

assumption: a candidate marker’s strength of association with chronological age should be directly indicative388

of its strength of association with the difference between biological and chronological age, also known as one’s389

aging rate ∆. We have called this assumption the identical-association assumption. We noted that there is390

no inherent statistical reason why a candidate marker’s association with chronological age C is indicative of391

its association with ∆: this depends on the biological context. Importantly, as we have proven, whether the392

identical-association assumption holds is untestable in a cross-sectional setting. As a consequence, one cannot393

distinguish true markers of biological age from false ones in such settings. A candidate marker can be correlated394

with chronological age but be completely uninformative of ∆. The opposite holds as well: a candidate marker395

may not be associated with chronological age, while being a true marker for ∆. We illustrated that unless396

chronological age and ∆ are equally strongly associated with each marker, there is no guarantee that the size of397

the weights that a cross-sectional method assigns to candidate markers are informative of the underlying truth.398

The identical-association assumption did not hold in the empirical data we considered. It should however399

be noted that we worked with a single real data set which is limited in size and scope. Our real data section400

is therefore primarily meant as an illustration of the potential practical consequences of constructing a cross-401

sectional biological age predictor if the identical-association assumption does not hold. It does not provide402

evidence for or against the extent to which this assumption holds in larger data sets or data sets with other403

types of candidate markers. Still, there is evidence that the identical-association assumption also does not hold404

in DNAm data: Levine et al. [2018] regressed a phenotypic age measure that captured differences in lifespan405
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Figure 10: Regression coefficients (effect sizes) of the predicted ∆-values in a Cox PH model with time-to-

mortality as the outcome, using the LLS data and 59 metabolic variables as predictor variables. The predicted

∆-values were calculated using 4 methods: using ridge regression (method 1), using multiple linear regression

on a subset of metabolites (method 2), taking a linear combination where each metabolic variable was assigned

the same weight (method 3), and taking a linear combination where each metabolic variable was assigned a

weight randomly drawn from a standard uniform distribution, repeated 1,000 times (grey histogram, method

4).
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and healthspan on CpG-sites and found that the CpG-sites with the highest resulting weights did not correlate406

with chronological age at all.407

Recently Nelson et al. [2020] addressed another important concern related to identification of aging markers408

based on cross-sectional data: mortality selection can bias the identification of markers, up to a point where409

cross-sectional analyses are less likely to identify true markers than if markers had been selected at random.410

While Nelson et al. [2020] state that this issue can be circumvented by only including markers that are known to411

be truly associated with mortality, in our second synthetic data example we illustrated that even in cases where412

all candidate markers are truly associated with biological age given chronological age, cross-sectional methods413

might not contribute either to selecting markers or to proving their validity.414

We would like to stress that we do not claim that cross-sectional predictors of biological age cannot capture415

any signal. Although the identical-association assumption might not be realistic, for some (perhaps most)416

candidate markers the direction of a marker’s association with chronological age can still be informative. This417

also explains why many cross-sectional clocks were indeed found to be (weakly) correlated with various age-418

related outcomes [Marioni et al. 2015, Christiansen et al. 2016, Van Den Akker et al. 2020, Tanaka et al. 2020]:419

the sign of a candidate marker’s association with chronological age can be informative or uninformative of its420

association with rate of aging ∆, but it is unlikely to be be counter-informative. Hence, most cross-sectional421

methods can be expected to still capture some signal—but potentially not better than any other approach that422

in some naive or random way assigns weights to markers associated with chronological age. We do not reject423

the possibility that markers exist for which the identical-association assumption does hold. This assumption424

may or may not hold for different types of markers, but in a cross-sectional setting there is no way to tell.425

Since there is no way in which the quality of a biological age predictor can be assessed using cross-sectional426

data alone, it follows that there is no way to optimize the quality of biological age predictions using cross-427

sectional data. Therefore, it is likely that biological age predictors based on cross-sectional data are highly428

suboptimal—they primarily capture signals related to chronological age, as also remarked by [Rutledge et al.429

2022]—and that much better predictors could be constructed if researchers could work directly with longitudinal430

data.431

This raises the question whether cross-sectional methods still have a place in the biological aging prediction432

landscape, or whether they should be abandoned completely in favor of methods that use longitudinal (time-to-433

mortality) data [Levine et al. 2018, Lu et al. 2019, Deelen et al. 2019]. By making the reasonable assumption that434

a higher biological age corresponds to a higher mortality risk, these time-to-mortality-based methods overcome435

the testability issue inherent to cross-sectional methods. The track record of these prospective mortality-trained436

methods in predicting various aging-related outcomes is indeed better than that of cross-sectional ones [Hillary437

et al. 2020, Maddock et al. 2020, McCrory et al. 2021, Kuiper et al. 2022]. Nevertheless, due to the relative438

abundance of cross-sectional data over longitudinal (time-to-event) data, cross-sectional predictors of biological439

age remain popular [Rutledge et al. 2022]. We think cross-sectional data can still play a role if the number of440

candidate markers is too high for to the limited sample size of the longitudinal data that is available and/or if441

there is little prior knowledge on the association between the candidate markers under consideration and aging442

rate ∆—which in this new era of high-dimensional omics-based aging clocks is quite a likely scenario. In such443

a case, cross-sectional data could be used to make a pre-selection of markers most strongly correlated with444

chronological age, as one might reasonably expect that at least part of these candidate markers will also be445

strongly correlated with ∆. Such a pre-selection does not have to be conducted in a multivariate way, but can446

be done per marker, as we did in our real data illustration.447

Our view is that if longitudinal (aging-related outcome) data is available, methods using this information448

are to be preferred above cross-sectional ones to develop a biological age predictor. Depending on the extent449

to which the identical-association assumption holds in the data set under consideration, longitudinal methods450

might be preferred even if the sample size of the available longitudinal data is much smaller. Furthermore,451

we believe that the sizes of the coefficients of candidate markers obtained with cross-sectional methods should452

neither be used nor interpreted. If researchers do decide to develop an biological age predictor based on cross-453

sectional data only, they should be explicit about the underlying assumptions of the method they used and to454

what extent these assumptions are expected to hold.455

15

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 21, 2023. ; https://doi.org/10.1101/2023.01.01.522413doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.01.522413
http://creativecommons.org/licenses/by-nc-nd/4.0/


Competing interests456

The authors have no competing interests to declare.457

Data availability458

All R-code used for the analyses in this paper is available in a public GitHub repository (https://github.com/marije-459

sluiskes/cross-sectional-bioage). Access to the individual-level data from the Leiden Longevity Study is restricted460

based on privacy regulations and informed consent of the participants. These data hence cannot be made pub-461

licly available. Data of the Leiden Longevity Study may be made available to researchers upon reasonable462

request to Eline Slagboom (p.slagboom@lumc.nl) or Marian Beekman (m.beekman@lumc.nl).463

Funding464

The Leiden Longevity Study has received funding from the European Union’s Seventh Framework Programme465

(FP7/2007-2011) under grant agreement number 259679. The LLS was further supported by a grant from the466

Innovation-Oriented Research Program on Genomics (SenterNovem IGE05007), the Centre for Medical Systems467

Biology, and the Netherlands Consortium for Healthy Ageing (grant 050-060-810), all in the framework of the468

Netherlands Genomics Initiative, Netherlands Organization for Scientific Research (NWO), by BBMRI-NL, a469

Research Infrastructure financed by the Dutch government (NWO 184.021.007 and 184.033.111) and the VOILA470

Consortium (ZonMw 457001001).471

Author contributions472

MRG, HP, JJG and MHS developed the concept of this study. MB and PES collected the data used in this473

study. MHS and MRG performed the analyses. The first draft of the manuscript was written by MHS and474

revised by MRG, HP, JJG, PES and MB. All authors contributed significantly to this manuscript and approved475

the final version to be published.476

Acknowledgements477

We thank Niels van den Berg, Erik van den Akker, Erik van Zwet and Bas Heijmans for the insightful discussions478

and helpful comments.479

16

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 21, 2023. ; https://doi.org/10.1101/2023.01.01.522413doi: bioRxiv preprint 

https://github.com/marije-sluiskes/cross-sectional-bioage
https://github.com/marije-sluiskes/cross-sectional-bioage
https://github.com/marije-sluiskes/cross-sectional-bioage
mailto:p.slagboom@lumc.nl
mailto:m.beekman@lumc.nl
https://doi.org/10.1101/2023.01.01.522413
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Materials480

Appendix A481

This appendix contains the theoretical foundation underpinning our statement that in a cross-sectional setting482

the identical-association assumption is untestable.483

Denote by C chronological age, by B biological age and by X a true marker of biological age given chrono-484

logical age (B|C).485

Theorem. For every triplet (X,C,B) of continuous random variables, there exists another continuous random486

variable X ′ such that (X ′, C)
d
= (X,C) and X ′ is independent of B given C.487

Proof. Denote by f(x, c, b) the joint density of (X,C,B). Let488

f ′(x, c, b) =

∫∞
−∞ f(x, c, b)dx

∫∞
−∞ f(x, c, b)db∫∞

−∞
∫∞
−∞ f(x, c, b)dbdx

be the joint density of X ′, C,B. As the integral of f ′(x, c, b) over the entire space equals 1, this also constitutes

a proper joint density. Moreover, this density is consistent with f , since∫ ∞

−∞
f ′(x, c, b)dx =

∫ ∞

−∞
f(x, c, b)dx.

We have that (X ′, C)
d
= (X,C), since∫ ∞

−∞
f ′(x, c, b)db =

∫ ∞

−∞
f(x, c, b)db.

Further, we have that X ′ is independent of B given C since f ′(x, c, b) = g(b, c)h(x, c) where

g(b, c) =

∫∞
−∞ f(x, c, b)dx∫∞

−∞
∫∞
−∞ f(x, c, b)dbdx

,

and h(x, c) =
∫∞
−∞ f(x, c, b)db.489

Here we have considered a scenario with only one marker (X). In practice, researchers have many candidate490

markers to choose from, which are typically combined to a single biological age-metric. In that case, X or X ′
491

can be viewed as the resulting biological age metrics. The theorem then asserts that we cannot distinguish492

between a good metric X and a bad metric X ′.493

We emphasize that the result of this theorem is independent of the method used to infer on biological age:494

such inference is impossible with any cross-sectional method.495
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Appendix B496
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Figure 11: Scaled and centered markers X1, X2 and X3 plotted against chronological age for scenarios A

(identical-association assumption holds), B (inverse association), C (no association) and D (identical-association

assumption partially holds).
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