

ORIGINAL ARTICLE

Repeat turnover meets stable chromosomes: repetitive DNA sequences mark speciation and gene pool boundaries in sugar beet and wild beets

Nicola Schmidt¹, Katharina Sielemann^{2,3}, Sarah Breitenbach¹, Jörg Fuchs⁴, Boas Pucker⁵, Bernd Weisshaar², Daniela Holtgräwe^{*2}, and Tony Heitkam^{*1}

¹Faculty of Biology, Technische Universität Dresden, 01069 Dresden, Germany

²Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec) & Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany

³Graduate School DILS, Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Bielefeld University, 33615 Bielefeld, Germany

⁴Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Stadt Seeland, Germany

⁵Plant Biotechnology and Bioinformatics, Institute of Plant Biology & Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, 38106 Braunschweig, Germany

*Manuscript corresponding authors:

Tony Heitkam
Faculty of Biology
Technische Universität Dresden
01069 Dresden
Germany
Phone: (+49) 351 463 39593
E-Mail: tony.heitkam@tu-dresden.de

Daniela Holtgräwe
CeBiTec & Faculty of Biology
Bielefeld University
33615 Bielefeld
Germany
(+49) 521 106 8724
dholtgra@cebitec.uni-bielefeld.de

Running title: Repeats in Beets

2 ABSTRACT

3 • *Background*

4 Sugar beet (*Beta vulgaris* subsp. *vulgaris*) and its crop wild relatives share a base
5 chromosome number of nine and similar chromosome morphologies. Yet, interspecific
6 breeding is impeded by chromosome and sequence divergence that is still not fully
7 understood. Since repetitive DNA sequences represent the fastest evolving parts of the
8 genome, they likely impact genomic variability and contribute to the separation of beet
9 gene pools. Hence, we investigated if innovations and losses in the repeatome can be
10 linked to chromosomal differentiation and speciation.

11 • *Results*

12 We traced genome- and chromosome-wide evolution across sugar beet and twelve wild
13 beets comprising all sections of the beet genera *Beta* and *Patellifolia*. For this, we
14 combined data from short and long read sequencing, flow cytometry, and cytogenetics
15 to build a comprehensive data framework for our beet panel that spans the complete
16 scale from DNA sequence to chromosome up to the genome.

17 Genome sizes and repeat profiles reflect the separation of the beet species into three
18 gene pools. These gene pools harbor repeats with contrasting evolutionary patterns: We
19 identified section- and species-specific repeat emergences and losses, e.g. of the
20 retrotransposons causal for genome expansions in the section *Corollinae/Nanae*. Since
21 most genomic variability was found in the satellite DNAs, we focused on tracing the 19
22 beetSat families across the three beet sections/genera. These taxa harbor evidence for
23 contrasting strategies in repeat evolution, leading to contrasting satellite DNA profiles
24 and fundamentally different centromere architectures, ranging from chromosomal
25 uniformity in *Beta* and *Patellifolia* species to the formation of patchwork chromosomes
26 in *Corollinae/Nanae* species.

27 • *Conclusions*

28 We show that repetitive DNA sequences are causal for genome size expansion and
29 contraction across the beet genera, providing insights into the genomic underpinnings of
30 beet speciation. Satellite DNAs in particular vary considerably among beet taxa, leading
31 to the evolution of distinct chromosomal setups. These differences likely contribute to
32 the barriers in beet breeding between the three gene pools. Thus, with their

33 isokaryotypic chromosome sets, beet genomes present an ideal system for studying the
34 link between repeats, genome variability, and chromosomal differentiation/evolution
35 and provide a theoretical basis for understanding barriers in crop breeding.

36

37 **KEY WORDS**

38 genome divergence; chromosomes; speciation; repetitive DNA; transposable elements;
39 satellite DNAs; crop wild relatives; sugar beet; *Beta*; *Patellifolia*

40

41 **Background**

42 *Interplay between chromosomal stability and genome evolution*

43 Large evolutionary leaps in terms of speciation and genome divergence are occasionally
44 accompanied by chromosome number changes caused by polyploidisation events and/or
45 structural rearrangements (*Arabidopsis*: Yogeeswaran *et al.*, 2005; *Carex*: Escudero *et*
46 *al.*, 2012 & 2015; *Cylicomorpha*: Rockinger *et al.*, 2016). In contrast, some genera
47 display genomic divergence despite harboring karyotypes with stable base chromosome
48 numbers across all known species (McCann *et al.*, 2020; Vitales *et al.*, 2020a; Pellicer
49 *et al.*, 2021). That even extends to large intraspecific differences in genome size despite
50 a consistent chromosome number (*Euphrasia*: Becher *et al.*, 2021). Therefore, the
51 question arises how inter- and intraspecific genomic divergence accumulates while the
52 chromosomal setup is maintained.

53 One of the links between the genome and its partitioning into chromosomes are
54 repetitive DNA sequences, which provide structure to eukaryotic karyotypes. Despite
55 their fast evolution, repetitive DNA sequences have a conserved function by providing
56 sequence material to the main structural regions, such as centromeres and telomeres.
57 Nevertheless, how the evolution of the repeatome itself relates to the global
58 chromosome and genome evolution is still a matter of debate (e.g. centromere paradox;
59 Henikoff *et al.*, 2001; Presting, 2018).

60

61 *Species of the Beta and Patellifolia genera are marked by dynamic genomes, but stable*
62 *chromosome numbers*

63 We wondered how genomic diversity despite stability of chromosomal number is
64 reflected in the repeat composition. To test this, we used species of the beet genera *Beta*
65 and *Patellifolia* as examples – plant taxa that have been used to study repetitive DNA
66 evolution for over thirty years (Schmidt *et al.*, 1990; and later publications from the lab
67 of late Thomas Schmidt). The members of these two genera belong to chromosomally
68 stable taxa, all marked by a base chromosome number of $x=9$ (despite some higher
69 ploidies) and containing roughly equally-sized, metacentric chromosomes.

70 The genera *Beta* and *Patellifolia* comprise at least eleven species that are separated by
71 up to 38.4 million years of evolution (Hohmann *et al.*, 2006). Species from the genus
72 *Beta* are divided into two or three different sections (*Beta*, *Corollinae/Nanae*)
73 depending on whether the endemic species *B. nana* is considered a separate section

74 (Kadereit *et al.*, 2006; Frese and Ford-Lloyd, 2020; Sielemann *et al.*, 2022). Cultivated
75 beets such as sugar beet are varieties of *B. vulgaris* subsp. *vulgaris* within the section
76 *Beta*. The presumed progenitor of all cultivated beets, *B. vulgaris* subsp. *maritima*, also
77 belongs to this section (Frese and Ford-Lloyd, 2020). For better readability, *B. vulgaris*
78 subsp. *vulgaris*, *B. vulgaris* subsp. *adanensis*, and *B. vulgaris* subsp. *maritima* will be
79 hereafter referred to as *B. vulgaris*, *B. adanensis*, and *B. maritima*, respectively.
80 Sugar beet is a relatively young crop that went through an exceptionally narrow
81 bottleneck during its 200 years of domestication (Fischer, 1989). This has led to very
82 low genetic diversity and a loss of several valuable traits such as pathogen resistances
83 and tolerance to adverse environmental conditions (e.g. drought, salinated soil; Panella
84 *et al.*, 2020). Therefore, it is necessary to harvest genetic variation in the beet
85 germplasm to improve cultivated beet varieties. However, crossing experiments of
86 sugar beet with many of its crop wild relatives (CWRs) resulted in reproduction-
87 defective offspring such as sterile and semi-fertile, as well as aneuploid and
88 anorthoploid plants indicating that postzygotic isolation mechanisms, e.g. the lack of
89 chromosome homology due to larger genomic differences, are causal for the limited
90 gain of genetically improved seeds rather than prezygotic isolation mechanisms (Frese
91 and Ford-Lloyd, 2020).
92 Based on the crossability with *B. vulgaris*, the wild beets are grouped into three
93 different gene pools. These correspond to the three beet main taxa with section *Beta*
94 species representing the primary gene pool, *Corollinae/Nanae* species representing the
95 secondary gene pool, and *Patellifolia* species representing the tertiary gene pool. Given
96 the fact that di- and polyploid species are present in all of these gene pools (Frese and
97 Ford-Lloyd, 2020) and due to the chromosome uniformity across all beet clades,
98 polyploidisation and restructuring of chromosomes seem to play a rather subordinate
99 role in the emergence of genomic variety in *Beta* and *Patellifolia* species. Instead,
100 differences at the DNA sequence level (Sielemann *et al.*, 2023a) may be the cause of
101 flawed chromosome pairing, thus resulting in the observed crossing barriers.
102 The rapid evolution of repetitive elements can be a major factor in reduced pairing
103 between homologous and homoeologous chromosomes (Dvorak, 1983) as it leads to
104 varying repeat compositions in the genomes of even closely related species. Repetitive
105 DNA sequences include transposable elements (TEs) and tandem repeats (TRs) that

106 differ in their origin, amplification mode, and sequence characteristics (Bennetzen,
107 2005; Bennetzen and Wang, 2014).

108 There are two classes of TEs: class I or retrotransposons with a ‘copy-and-paste’
109 transposition mechanism and an RNA intermediate, and class II or DNA transposons
110 with a ‘cut-and-paste’ mechanism, thus DNA being the intermediate in replication.
111 Class I is divided into two subclasses, those flanked by long terminal repeats (LTR
112 retrotransposons) and those without (non-LTR retrotransposons; Finnegan, 1989; Wells
113 and Feschotte, 2020). The classes and subclasses are further divided hierarchically into
114 order, superfamily, family, subfamily, and lineage (as reviewed in Wicker *et al.*, 2007;
115 Piégu *et al.*, 2015; Neumann *et al.*, 2019).

116 TRs on the other hand include ribosomal genes, telomeres and satellite DNAs. Satellite
117 DNAs (satDNAs) are highly repetitive non-coding sequences that are arranged in large
118 tandem arrays and contribute to structurally important chromosomal regions such as the
119 centromeres (Lower *et al.*, 2018; Garrido-Ramos, 2021).

120 Beet genomes, in particular the sugar beet genome, are well characterized regarding
121 retrotransposons (Wollrab *et al.*, 2012; Weber *et al.*, 2013; Heitkam *et al.*, 2014;
122 Schwichtenberg *et al.*, 2016; Maiwald *et al.*, 2021), DNA transposons (Menzel *et al.*,
123 2006; Menzel *et al.*, 2012), and even related viral relics (Schmidt *et al.*, 2021).

124 Additionally, at least 13 satDNA families are characterized (e.g. Dechyeva and
125 Schmidt, 2006; Zakrzewski *et al.*, 2010). In beets, the most iconic repeat identified so
126 far is the centromeric satDNA pBV (Schmidt and Metzlaff, 1991), which differs from
127 the centromeric satDNA in more distant wild beets (pTS5, pTS4.1; Schmidt and
128 Heslop-Harrison, 1996; Gindullis *et al.*, 2001). However, there is not yet a full picture
129 of the repeat landscape across beet genomes that is needed to identify the evolutionary
130 relationships across time and across species. Expanding the knowledge about the repeat
131 landscapes may help to explain the different crossabilities between the beet gene pools.

132 To understand the impact of repeats on crossing barriers, beet genomic resources are
133 needed. So far there are three published reference genome sequence assemblies for
134 sugar beet at our disposal (consecutive RefBeet versions: Dohm *et al.*, 2014;
135 consecutive EL10 versions: Funk *et al.*, 2018 and McGrath *et al.*, 2020;
136 KWS2320ONT_v1.0: Sielemann *et al.*, 2023b) and the number of studies comparing
137 the wild beet germplasm to cultivated varieties is continuously increasing (Sielemann *et
138 al.*, 2022, 2023a; Wascher *et al.*, 2022). Hence, sugar beet and its CWRs are well-suited

139 to serve as a reference for maintaining stable karyotypes despite global changes across
140 the repetitive genome.

141 To illuminate how the karyotypically stable wild beet genomes differ from another, we
142 focused on repetitive DNA sequences as one of the most impactful contributors to
143 genomic variability. We asked how repeat evolution across wild beets can be linked to
144 speciation and, hence, to crossing barriers. We further investigated if the wild beet
145 germplasm's splits into species, sections, and genera (i.e. primary, secondary, and
146 tertiary gene pools) are mirrored by broad genomic innovations in the repeatome. For
147 this, we chose 17 beet accessions, including all major beet taxa, measured their genome
148 sizes, and determined their chromosome numbers and karyotypes. To add a (pan-
149)genomic layer, we generated low-pass whole genome shotgun data for all accessions as
150 well as long reads for selected beet genomes. After assessing the phylogenetic
151 placements of these accessions (Sielemann *et al.*, 2022, 2023a), we estimated their
152 repetitive DNA content and finely classified their repetitive DNA sequences in the
153 respective TE and TR hierarchies. This not only allows following repetitive DNA
154 evolution comprehensively across the beet genera, determining repeat gains, losses and
155 replacements, but also linking it back to chromosomal location and karyotypic stability.

156

157 RESULTS

158 *Corollinae* species have the largest monoploid genome sizes among sugar beet and wild
159 beets

160 To provide the foundation for later analyses of genome and chromosome evolution, we
161 first determined the chromosome configuration and ploidy levels of all 17 cultivated
162 and wild beet accessions, and then estimated their genome sizes by flow cytometry
163 (Additional file 1: Fig. S1; Table 1). Building onto the plastome-based phylogenetics
164 framework (Sielemann *et al.*, 2022), our 17-beet-species-panel allows comprehensive
165 investigation of the *Beta* and *Patellifolia* germplasm.

166 The beet genome sizes are in accordance with the respective ploidy level (Table 1;
167 Additional file 1: Fig. S1). Diploid members of the section *Beta* have 1C genome sizes
168 of approx. 700 Mbp, whereas the genome of the sole tetraploid species within this
169 section, *B. macrocarpa*, is nearly twice as large. In contrast, diploid members of the
170 section *Corollinae* achieve considerably higher values with an average 1C genome size
171 of almost 940 Mbp. Also, the polyploid species *B. corolliflora* and *B. intermedia* have

172 genome sizes slightly larger than mathematically expected (2027 Mbp instead of
173 1880 Mbp, and approx. 2470 Mbp instead of 2350 Mbp). With a value of approx.
174 760 Mbp, the genome size of the diploid *B. nana* is more similar to that of the diploids
175 from the section *Beta* than from the section *Corollinae*. Regarding the sister genus,
176 diploid *Patellifolia* species have genome sizes similar to that of the diploids from the
177 section *Beta*, whereas the genome of the tetraploid *P. patellaris* is again slightly larger
178 than mathematically expected (1502 Mbp instead of 1435 Mbp).

179

180 *Repeat abundance and genome size correlate positively for all major repeat types,*
181 *except for tandem repeats*

182 We estimated repeat proportions in the genomes of all species through individual as
183 well as comparative clustering using the RepeatExplorer2 pipeline. Combined, the
184 repeats identified for each species represent between 53% (Bptu) and 68% (Bint) of the
185 total genome (Additional file 1: Table S1). For better comparability and to minimize the
186 dependence of the genome size from the ploidy level, polyploid species were also
187 analyzed with downsampled read sets so that they correspond to a diploid chromosome
188 set ('ploidy corrected genome size'). In general, we observe a high correlation between
189 repeat proportion (absolute values) and genome size, with $r^2 = 0.996$ ($p < 8.94e-17$) for
190 the ploidy corrected genome sizes (Fig. 1A). Further, we observe a clustering of species
191 with larger genome sizes and higher repeat contents (*Corollinae* members) vs. species
192 with smaller genome sizes and lower repeat contents (section *Beta*, *B. nana*, and the
193 genus *Patellifolia*; Fig. 1A).

194 When individual repeat classes (i.e. LTR retrotransposons, DNA transposons, and
195 satDNAs) are considered, the distinct taxonomic groups can be resolved according to
196 their genome sizes and respective repeat contents (absolute values; Fig. 1B-D,
197 shadings). Again, a positive correlation can be observed when the overall proportion of
198 LTR retrotransposons ($r^2 = 0.948$, $p = 7.32e-9$) and DNA transposons ($r^2 = 0.798$, $p =$
199 $1.22e-4$) is plotted against the ploidy corrected genome sizes, respectively (Fig. 1B, C).
200 However, when specifically focusing on the proportion of satDNAs, an extraordinarily
201 high amount (up to roughly 14%, see Additional file 1: Table S1) is found in the beet
202 species with small genome sizes, in particular *B. vulgaris* and *B. adanensis*, whereas the
203 beet species with the largest genome sizes from the section *Corollinae/Nanae* (with the
204 exception of *B. macrorhiza*) show the lowest contents of satDNAs (less than 5%). This

205 results in a negative trend regarding the relation between the satDNA proportion and the
206 genome size ($r^2 = -0.166$, $p > 0.52$; Fig. 1D). The same observations apply for the
207 overall and individual repeat fractions calculated as proportions (Additional file 1:
208 Fig. S2).

209

210 *Genomic TEs differences across sugar beet and wild beets reflect the separation into*
211 *beet sections and genera*

212 The read clustering results based on a $0.1\times$ coverage of the ploidy corrected genome
213 size for each species are analyzed. The repetitive fraction of all analyzed genomes is
214 composed mainly of LTR retrotransposons (14-30% of the genome) with twice the
215 relative content in *B. corolliflora* and *B. intermedia* (*Corollinae* section) compared to
216 species of the section *Beta* (see Additional file 1: Table S1). With the exception of
217 *B. vulgaris*, in which *Ty1-copia* and *Ty3-gypsy* retrotransposons show a rather balanced
218 relation to each other, in most other genomes, the *Ty3-gypsy* elements dominate
219 (Fig. 2A-C, see Additional file 1: Table S1). This observation is most pronounced in
220 *P. webbiana*, where the proportion of *Ty3-gypsy* retrotransposons is four times bigger
221 than that of *Ty1-copia* retrotransposons.

222 As a substantial difference between species from the section *Beta* and the remaining
223 taxa (section *Corollinae/Nanae* and genus *Patellifolia*), their most abundant LTR
224 retrotransposons belong to different superfamilies: In section *Beta*, SIRE/Maximus
225 retrotransposons from the *Ty1-copia* superfamily contribute the highest TE share (3-
226 4%), whereas the genomes of the other species consist largely of Athila
227 retrotransposons from the *Ty3-gypsy* superfamily (4-6% in *Corollinae* species; 8-9% in
228 *Patellifolia* species). However, *B. nana* stands out as the proportion of Athila elements
229 (2%) within its genome is clearly surpassed by the proportion of Ogre (3%) and Tekay
230 elements (5%). In this respect, *B. nana* resembles the species from the section *Beta* in
231 which Tekay elements are the most abundant *Ty3-gypsy* retrotransposons as well (2-4%
232 of the genome, with approximately as many Tekay elements as SIRE/Maximus
233 elements in the tetraploid *B. macrocarpa*).

234 Another notable observation is that beets from the section *Corollinae/Nanae* are
235 characterized by a quite high amount of non-autonomous LTR retrotransposons (3-5%,
236 see Additional file 1: Table S1) compared to the other species. The investigation of the

237 corresponding clusters revealed that this increased share can be traced back to one
238 single, so far uncharacterized element.

239 Taking a look at the DNA transposon fraction, species from the genus *Beta* are
240 dominated by EnSpm/CACTA terminal inverted repeat (TIR) transposons, whereas the
241 most abundant DNA transposons in *Patellifolia* species belong to the hAT superfamily
242 (Fig. 2D). We find a higher genome proportion of DNA transposons in species with
243 larger genome sizes, with *Patellifolia* species generally having fewer DNA transposons
244 compared to beets of the genus *Beta*.

245

246 *TEs are generally conserved across the beet genomes and show section-specific*
247 *abundances*

248 An all-to-all comparison across the beets (accession 1 of every species; see Table 1)
249 revealed that the overall most abundant repeat, a so far unknown LTR retrotransposon
250 of the Athila/Errantivirus lineage, occurs in all analyzed genomes, representing a
251 genome proportion of 0.89% (Bnan1) up to 8.08% (Pweb1; Additional file 1: Fig. S3).
252 However, the high Athila/Errantivirus proportion in *Corollinae* species is caused by
253 another LTR retrotransposon originally described as five distinct dispersed repeats by
254 Gao *et al.* (2000; pBC1054, pBC227, pBC305, pBC507/169, and pBC537). In general,
255 about half of the repeat families are found in all analyzed beet genomes. The other half
256 consists of species-, section-, and genus-specific repeats. There are fewer *Patellifolia*-
257 specific repeats (33 out of 395 clusters) than *Beta*-specific repeats (172 out of 395
258 clusters), resulting in a lower overall repeat diversity in the genus *Patellifolia*. However,
259 the *Patellifolia*-specific repeats are highly abundant, whereas all repeats in the *Beta*
260 genomes (with the exception of some satDNAs, see paragraph below) are rather
261 moderately abundant. Yet, we also find section-specific repeats with regard to the
262 sections *Beta* (8 out of 172 genus *Beta*-specific clusters) and *Corollinae/Nanae* (11 out
263 of 172 genus *Beta*-specific clusters). Several LTR retrotransposons (Athila, Tekay, Tat,
264 and Ale/Retrofit elements) seem to be re-amplified in the beet genomes of the
265 *Corollinae/Nanae* section, whereas an increased abundance of SIRE/Maximus elements
266 was observed in the beet genomes of the *Beta* section. Furthermore, a so far unknown
267 Ogre LTR retrotransposon, as well as the non-autonomous LTR retrotransposon
268 mentioned in the paragraph above, set *Corollinae/Nanae* apart from all other analyzed
269 beets (see Fig. 2C and Additional file 1: Fig. S3).

270

271 *Beet satDNAs break ranks (1): Beta and Patellifolia satDNAs are few, but highly*
272 *amplified, whereas Corollinae/Nanae satDNAs are diverse and lowly abundant*

273 Comparing *Beta* and *Patellifolia* genomes, the greatest repeatome difference is found in
274 the satDNAs (Fig. 3). They contribute roughly 6% to the genomes of *Patellifolia*
275 species and only 4% to the genomes of the *Corollinae/Nanae* species (with the
276 exception of *B. macrorhiza*; see Additional file 1: Table S1). In contrast, in genomes of
277 the section *Beta*, satDNAs contribute up to 14%, which is about as much as the LTR
278 retrotransposon fraction.

279 The reason for this divergence is the extraordinarily high abundance of two iconic sugar
280 beet satDNAs (see Additional file 1: Fig. S3), the centromeric beetSat01-pBV and the
281 intercalary beetSat02-pEV (Schmidt and Metzlaff, 1991; Schmidt *et al.*, 1991).
282 BeetSat01-pBV and beetSat02-pEV are highly abundant in all species of the section
283 *Beta* contributing up to 8% and 5% of the genomes, respectively (Fig. 3; see Additional
284 file 1: Table S2). However, beetSat02-pEV also occurs in beets of the section
285 *Corollinae/Nanae* and within the sister genus *Patellifolia* with low or moderate
286 abundance (Fig. 3). In contrast, canonical beetSat01-pBV satDNA arrays (as described
287 by Schmidt and Metzlaff, 1991; Zakrzewski *et al.*, 2011) are strictly limited to the beets
288 of the section *Beta*.

289 Although genomes of the *Patellifolia* genus contain less satDNAs than those of the
290 section *Beta*, they are also dominated by abundant satDNA families (Fig. 3; see
291 Additional file 1: Table S2): Again, the most prominent satDNAs in the *Patellifolia*
292 species are those that constitute the centromeres: the centromeric beetSat03-pTS5 and
293 the pericentromeric beetSat04-pTS4.1 (Schmidt & Heslop-Harrison, 1996). However, in
294 sequence and monomer length they are substantially different from beetSat01-pBV. In
295 addition, we identified another highly abundant and genus-specific satDNA (beetSat05).
296 The satDNA designated as beetSat06 is the only satDNA that is distributed quite
297 equally among all beet genomes (Fig. 3; Additional file 1: Table S2). This subtelomeric
298 satDNA ubiquitously occurs on all chromosomes and was previously described under
299 different names depending on the respective plant species (e.g. in *B. vulgaris* it is
300 known as pAv34; Dechyeva & Schmidt, 2006). However, Dechyeva and Schmidt
301 (2006) found that, in the wild beet *B. nana*, this satDNA is restricted to one single pair

302 of chromosomes which is consistent with the reduced abundance of beetSat06 that we
303 observed in *B. nana* using the comparative repeat analysis (Fig. 3).

304 Generally, within the *Corollinae/Nanae*, the specific satDNA quantities set *B. nana*
305 slightly apart from the other species within this section (Fig. 3; Additional file 1: Table
306 S2). This applies for other known satDNAs such as beetSat07-pHC8 (Gindullis *et al.*,
307 2001; Fig. 4G, H) or beetSat10-pRN (Kubis *et al.*, 1997; Fig. 4I, J), as well as for the
308 satDNAs newly identified during the comparative repeat analysis (beetSat15–18;
309 Additional file 1: Data S1 and Data S2). These satDNAs are most pronounced in beet
310 genomes of the section *Corollinae/Nanae* without the conspicuously high abundances
311 observed in the section *Beta* and the sister genus *Patellifolia*. Among the satDNAs that
312 define the *Corollinae/Nanae* genomes, only beetSat13 is prominent, especially in
313 *B. macrorhiza* (Fig. 3). This satDNA is also known as pBC1447 in *B. corolliflora* and
314 ChenSat-1a in the related *Chenopodium quinoa* (Gao *et al.*, 2000; Heitkam *et al.*, 2020).
315 Overall, regarding the interplay of satDNA diversity and abundance, we conclude that
316 *Beta* and *Patellifolia* contain relatively few satDNA families that can reach high copy
317 numbers. In contrast, species within the *Corollinae/Nanae* accumulate a wide satDNA
318 variety with only low amplification levels (Fig. 3).

319

320 *Beet satDNAs break ranks (2): Species- and section-specific array expansions lead to*
321 *the emergence of unique satDNA landscapes across the beet genomes*

322 As presented above, individual satDNAs can occur in high abundance in one beet
323 species and in low abundance in another. To understand, if beet satDNA organization is
324 retained across species and abundance patterns, we investigated their tandem
325 arrangement across the three main beet taxa. By using long reads from *B. vulgaris*
326 (section *Beta*), *B. corolliflora* (section *Corollinae*), and *P. procumbens* (genus
327 *Patellifolia*) we showed that nearly all identified satDNAs occur in long tandem arrays
328 in at least one of the three beet taxa (see dotplot visualization in Additional file 1:
329 Fig. S4). Only beetSat18 does not show any long arrays in neither of the three species.
330 This is easily explained as this satDNA is specific for *B. nana*, with head-to-tail
331 arrangements identified on *B. nana* short reads.

332 We noted variation in monomer length and sequence (Additional file 1: Fig. S5), often
333 with section specificity. Sugar beet's main satDNA beetSat01-pBV is especially
334 intriguing: It occurs only scarcely in *Patellifolia* genomes, forming no tandem arrays.

335 However, in *B. corolliflora*, the beetSat01-pBV monomer is part of a different,
336 tandemly arranged repeat, resulting in a much longer monomer size of approx. 1800 bp
337 (Additional file 1: Fig. S4). This larger tandem repeat shows no further sequence
338 similarity to publicly available nucleotide or protein database entries. Indeed, it may
339 serve as a starting point to understand formation of one of the largest satDNA families
340 in any plant genome. Similar potential start points of satDNA emergence were detected
341 for beetSat10, beetSat11, beetSat12, beetSat17, and beetSat18 (Additional file 1:
342 Fig. S4; arrows), suggesting a general pattern.

343 Further, monomer length variations were detected, indicating section specificity, but
344 none as striking as for beetSat1-pBV. For instance, beetSat02-pEV variants diverge
345 slightly in monomer length and sequence among the three beet taxa (Additional file 1:
346 Fig. S5), whereas beetSat06 shows variation in higher order arrangement.

347 Overall, regarding satDNA amplification and array formation, we conclude that
348 different satDNAs amplify in different beet species. Whereas large arrays can form in
349 one wild beet genome, the same satDNA can occur only as a relic in the next. Similarly,
350 emergence of species-/section-specific satDNA variants occurs. We observe that the
351 respective beet satDNA landscapes are characterized by different evolutionary
352 mechanisms: Whereas few *Beta* and *Patellifolia* satDNAs underwent amplification and
353 homogenization, the satDNAs landscape of *Corollinae/Nanae* species is still rather
354 dynamic, mirrored by the emergence of several new satDNAs.

355

356 *Beet satDNAs break ranks (3): Beta and Patellifolia satDNAs constitute major parts of*
357 *all chromosomes, whereas Corollinae/Nanae satDNAs are restricted to*
358 *chromosome subsets*

359 To understand the structural chromosome makeup across the beets, we again focused on
360 the three species *B. vulgaris*, *B. corolliflora* and *P. procumbens* to represent the three
361 main beet taxa. First, we investigated the five main satDNAs: beetSat01-pBV to
362 beetSat05.

363 Our two-color FISH onto sugar beet chromosomes shows that beetSat01-pBV (green)
364 constitutes the centromeres, whereas beetSat02-pEV (red) builds large intercalary
365 blocks along all *B. vulgaris* chromosomes (Fig. 4A, B; Kubis *et al.*, 1998). In contrast,
366 beetSat02-pEV is restricted to only a subset of chromosomes and/or comparatively
367 small intercalary regions along *B. corolliflora* and *P. procumbens* chromosomes

368 (Fig. 4C, D). This indicates that beetSat02-pEV is not only specific in its monomer
369 sequence (see above), but also in its chromosomal localization among the three beet
370 taxa.

371 In *P. procumbens*, beetSat03-pTS5 marks most, but not all centromeres (Fig. 4E, green
372 signals; see also Gindullis *et al.*, 2001). BeetSat05 resides at as many chromosomes (10-
373 14 centromeres; Fig. 4E, blue signals). Thus, each centromere contains either beetSat03-
374 pTS5 or beetSat05, or both. All centromeres are flanked by beetSat04-pTS4.1 that
375 accompanies the centromeric beetSat03-pTS5 and beetSat05 signals, but also occupies
376 some distal locations (Fig. 4E, red signals). All five main satDNAs are restricted to the
377 DAPI-positive heterochromatin in interphase nuclei (Fig. 4B, F). Concluding, we note
378 that chromosomes of *B. vulgaris* and *P. procumbens* – despite their phylogenetic
379 distance – are organized similarly, with main satDNAs building the centromeres and
380 intercalary regions.

381 This is in sharp contrast to the chromosome organization in *B. corolliflora*, a
382 representative of the *Corollinae/Nanae* section: Out of the many satDNAs with varying
383 degrees of amplification and homogenization (see above), we selected six for
384 hybridizations (beetSat07-pHC8, beetsSat08, beetSat10-pRN, beetSat13, beetSat15, and
385 beetSat17; Figure 4G-N). None of them is exclusively localized at the centromeres.
386 Instead, intercalary signals are common as well and (peri-)centromeric signals are
387 restricted to only some chromosomes, often being less prominent than centromeric
388 *Beta/Patellifolia* signals. The comparison of two of these satDNAs at *B. vulgaris* and
389 *B. corolliflora* chromosomes reveals that the signal patterns are more (beetSat07-pHC8)
390 or less (beetSat10-pRN) similar in both genomes (Fig. 4G-J):

391 BeetSat07-pHC8 resides on all *B. vulgaris* chromosomes in intercalary and distal
392 regions, but also close to at least two centromeres (Fig. 4G). In *B. corolliflora*,
393 beetSat07-pHC8 resides in two centromeric and several intercalary regions as well.
394 Major signals are pronounced on six chromosomes (presumably three chromosome
395 pairs; Fig. 4H), including the two centromeric signals.

396 The second satDNA, beetSaat10-pRN, is lowly abundant in *B. vulgaris* (see Fig. 3),
397 thus producing only few, faint and scattered signals (Fig. 4I). In contrast, beetSat10-
398 pRN hybridized strongly to 6-8 chromosomes of *B. corolliflora*, predominantly in the
399 centromeres (Fig. 4J).

400 To better understand how the patchy satDNA emergence/amplification patterns in the
401 *Corollinae/Nanae* affect the chromosomes, we also localized beetSat08, beetSat13,
402 beetSat15, and beetSat17 (Figure 4K-N):
403 BeetSat08 resides on nearly all *B. corolliflora* chromosomes (Fig. 4K). Two major and
404 two minor signals mark the centromeres of four chromosomes, whereas the majority of
405 signals was rather weak and distributed over the intercalary and distal regions.
406 BeetSat13, which is known to be associated with the centromeres of *C. quinoa*
407 chromosomes (ChenSat-1a; Heitkam *et al.*, 2020), can also be found at the centromeres
408 of at least ten *B. corolliflora* chromosomes (Fig. 4L). BeetSat13 signals near the
409 centromere were detected on seven additional chromosomes. The remaining
410 chromosomes did not hybridize with the beetSat13 probe or showed intercalary
411 beetSat13 signals.
412 All six major sites of beetSat15 hybridization are associated with *B. corolliflora*
413 centromeres as well (Fig. 4M).
414 The comparatively low abundance of beetSat17 (see Fig. 3) resulted in only few
415 hybridization signals in *B. corolliflora* (Fig. 4N): Signals were detected on twelve
416 chromosomes with at least two of them showing weak centromeric signals.
417 Overall, regarding the chromosomal impacts of the vastly different satDNA landscapes
418 in *Beta* and *Patellifolia* versus *Corollinae/Nanae*, we note that the different
419 evolutionary patterns affect chromosome structure, especially the centromeres. *Beta* and
420 *Patellifolia* centromeres are made up of few, highly abundant, homogenized satDNAs.
421 Instead, the *Corollinae/Nanae* harbor ‘patchwork centromeres’: We identified at least
422 28 (peri-)centromeric signals with six different satDNAs (beetSat07-pHC8, beetSat08,
423 beetSat10-pRN, beetSat13, beetSat15, beetSat17) on *B. corolliflora* chromosomes.
424 From this, we conclude that *Corollinae/Nanae* centromeres are constituted by a
425 multitude of different satDNAs, whereas *Beta* and *Patellifolia* centromeres are
426 constituted by one or two main satDNAs, respectively.

427

428 DISCUSSION

429 *A beet species panel to understand the evolving genome under karyotypic stability*
430 We leverage a comprehensive repeatome study across 17 accessions of cultivated and
431 wild beet species, spanning two sister genera, *Beta* and *Patellifolia*. We target all major
432 species across all sections, including higher polyploids. Building onto the plastome-

433 based phylogenetics framework (Sielemann *et al.*, 2022, 2023a), our 17-beet-species-
434 panel represents a well-characterized sugar beet and CWR panel with regard to tracing
435 genome evolution, chromosome stability, pangenomics, and taxonomy.

436

437 *Beet and wild beet genome size variation results from repeat content fluctuations*

438 Considering the respective ploidy level, the beet genome sizes show relatively moderate
439 variation: 1.4-fold variation among the diploids, 1.5-fold variation among the
440 tetraploids, and also 1.5-fold variation among the ploidy corrected genome sizes.
441 Meanwhile, intraspecific differences are minimal, with almost no variation. For taxa
442 with high chromosomal variability, e.g. across *Euphrasia* individuals (1.3-fold
443 variation), structural changes such as the loss or gain of chromosome fragments are
444 likely responsible for genome size variations (Becher *et al.*, 2021). In contrast, we
445 hypothesize that genome size variation within plant taxa with stable chromosome
446 setups, such as the analyzed beet species, depends strongly on genomic repeats. This
447 can be demonstrated by a clear correlation between genome size and repeat fraction. For
448 the beet species, we have found such a correlation not only between the overall repeat
449 content, but especially between the LTR retrotransposons and the respective genome
450 size, indicating that the amplification and elimination of LTR retrotransposons in
451 particular is causal for genome size differences between beets of the same ploidy. In
452 comparison to other angiosperms, the determined correlation is at least as high (e.g.
453 compared to *Fabeae* sp.; Macas *et al.*, 2015), if not higher (e.g. compared to *Eleocharis*
454 sp., *Solanum* sp., *Hesperis*-clade sp.; Zedek *et al.*, 2010; Michael, 2014; Gaiero *et al.*,
455 2019; Hloušková *et al.*, 2019; Gantuz *et al.*, 2021), pointing to a particularly strong
456 impact of repeats (i.e. LTR retrotransposons) on beet genome sizes.

457 Specific amplification and elimination of repeats may explain why the genome size of
458 *B. nana* rather resembles those of the section *Beta*, even though this species is
459 repeatedly considered a member of the section *Corollinae* (Kadereit *et al.*, 2006; Frese
460 and Ford-Lloyd, 2020; Sielemann *et al.*, 2022). However, genome sizes of beets from
461 the genus *Patellifolia* are most similar to those of the section *Beta*, suggesting that
462 repeat amplification and/or acquisition caused a genome upsizing in *Corollinae/Nanae*
463 species.

464

465 *Repeat abundances mirror the phylogenies of the beet and wild beet sections*

466 With 53-68%, the repetitive fraction of beet genomes represents typical values
467 compared to other Amaranthaceae (approx. 76% in quinoa: Heitkam *et al.*, 2020;
468 approx. 51% in spinach: Li *et al.*, 2021). Discrepancies in repeat abundances to a
469 previous RepeatExplorer2 analysis in *B. vulgaris* (Kowar *et al.*, 2016) are moderate and
470 result from the exclusion of organellar DNA from our read set as well as the
471 improvement of the repeat annotation by including a more comprehensive, custom
472 repeat database. In general, the repeat content results not only from the number of
473 repetitive sequences, but also from their type: A repeat with a longer element structure
474 accounts for a larger share of the genome than a shorter repeat. Within the beet
475 genomes, the most frequent repeats belong to the LTR retrotransposons, namely the
476 Ty3-gypsy retrotransposons, which include the longest known TEs in plants (i.e. Ogre
477 elements with >23 kb in length; Orozco-Arias *et al.*, 2019). The predominance of Ty3-
478 gypsy retrotransposons within the repeat fraction was observed for other angiosperms as
479 well (Kelly *et al.*, 2015; Macas *et al.*, 2015; Gaiero *et al.*, 2019; Hloušková *et al.*, 2019;
480 Dodsworth *et al.*, 2020). However, the rather balanced share of Ty3-gypsy and Ty1-
481 copia retrotransposons in *B. vulgaris* may reflect different TE dynamics in the
482 domesticated beet cultivars, whereas the independent amplification and/or acquisition of
483 Ty3-gypsy retrotransposons may have increased their abundance within the CWRs.

484 We found that most TE families are distributed across all analyzed beet species,
485 indicating that the present beet repeat set can be traced back to the last common
486 ancestor of both genera *Beta* and *Patellifolia*. After speciation from this ancestor, a few
487 new TE families emerged, though rather sparsely. Instead, specific TE
488 amplification/elimination has led to genus- and section-specific TE abundances. This
489 global trend in beet genomes is mirrored in the ups and downs of individual TE
490 families/lineages (e.g. SIRE/Maximus elements: Weber *et al.*, 2010; chromoviruses:
491 Weber *et al.*, 2013; LINEs: Heitkam *et al.*, 2014; non-autonomous LTR
492 retrotransposons: Maiwald *et al.*, 2021). Differences in the repeat profiles support the
493 relationships of the current beet phylogenies (Frese and Ford-Lloyd, 2020; Sielemann *et*
494 *al.*, 2022) with characteristic repeatomes for species from the sections *Beta*,
495 *Corollinae/Nanae*, and from the genus *Patellifolia*, respectively. However, whereas the
496 amplification of TE families/lineages (in particular Ogre and non-autonomous LTR
497 retrotransposons) has probably led to an increase in genome size of *Corollinae/Nanae*

498 species, accumulation of specific TEs in the genomes of *Patellifolia* or section *Beta*
499 species seem to have taken place at a comparable level, so that no striking differences in
500 genome size are apparent between those beet taxa. To be more precise, there has been a
501 strong amplification of few repeats in *Patellifolia* genomes, while many repeats have
502 been amplified rather moderately in genomes of the section *Beta*.

503 Since the genomic shock of polyploidisation may stimulate rapid and dynamic genomic
504 changes such as the activation of retrotransposons and viral elements (McClintock,
505 1984; Lopez-Gomollon *et al.*, 2021), genome size may subsequently increase. The
506 overall repeat content is indeed greater within the polyploid beet genomes compared to
507 their closest diploid relatives, mainly due to an increased abundance of Ty3-gypsy
508 retrotransposons. For most polyploid beet species, we measured larger genome sizes
509 than mathematically expected, which can thus be attributed to a general accumulation of
510 all kinds of present Ty3-gypsy retrotransposons instead of the targeted amplification of
511 distinct TEs. During the ‘cycle of polyploidy’, polyploid plants usually undergo genome
512 downsizing (Wendel, 2015), which may be the case for *B. macrocarpa* (since its
513 genome size is smaller than mathematically expected) but not for the other polyploid
514 beet species, indicating that these are relatively young polyploids (less than 0.9-1.4
515 million years; Romeiras *et al.*, 2016).

516 It is often observed that genomic repeat profiles contain a phylogenetic signal
517 (Dodsworth *et al.*, 2015; McCann *et al.*, 2020; Vitales *et al.*, 2020b; Herklotz *et al.*,
518 2021). In the case of *Beta* and *Patellifolia* species, this is only partly true: Overall, the
519 repeatomes enable to separate the beet species into genera and sections. However,
520 repeatome differences at the subspecies level do not reflect the currently proposed
521 relationships of the subspecies taxa: As an example, *B. vulgaris* is considered to be
522 more closely related to *B. maritima* accessions, regardless of their origin, than to
523 *B. adanensis* (Wascher *et al.*, 2022). According to kmer-based genomic distance,
524 *B. adanensis* may even be considered a distinct species rather than a subspecies
525 (Wascher *et al.*, 2022). In contradiction with this report, focusing on the three
526 subspecies *B. adanensis*, *B. vulgaris*, and *B. maritima*, the repeat profiles of the first two
527 are most similar to each other. This may be explained by the *B. maritima* accessions
528 used here: both Bmar1 and Bmar2 are from the Atlantic coast and are therefore less
529 closely related to *B. vulgaris* than its presumed progenitor *B. maritima* from the
530 Mediterranean area. From this, we conclude that the repeat profiles are not suited to

531 address still debated phylogenetic questions regarding the (sub-)species level of beets.
532 This also concerns the non-uniform treatment of *P. procumbens* and *P. webbiana* as
533 distinct or as the same species.
534 The abundance of a distinct repeat depends on several factors that either cause an
535 increase, a reduction, or that keep the current copy number stable. Those factors include
536 an enhanced amplification (as mentioned above), the targeted or non-targeted
537 elimination from the genome (e.g. by defense mechanisms and/or the loss of whole
538 chromosomes or chromosome fragments), and selective pressure for the maintenance of
539 specific genomic regions. An example in which some of these factors come into play is
540 the section-specific abundance of endogenous pararetroviruses (EPRVs) found among
541 the beets. There are three to five times more EPRVs within the genomes of wild beets
542 from the section *Corollinae* compared to beets from the sister genus *Patellifolia*, the
543 section *Beta*, and even *B. nana*. Such differences were also found between wild and
544 cultivated potato species (Gaiero *et al.*, 2019) and it was assumed that the EPRVs
545 underwent either an increased amplification in wild potatoes or a selective bias in
546 cultivated potatoes. As for sugar beet, we know that there is a trade-off between the
547 targeted inactivation and a simultaneous preservation of EPRV sequences (Schmidt *et*
548 *al.*, 2021). Therefore, we believe that *Corollinae* species accumulated pararetroviral
549 sequences by the gain of further EPRVs in comparison to the remaining beet species.
550 Similar section-specific emergence and loss occurred also for other TE
551 families/lineages, especially among the LTR retrotransposons.
552

553 *SatDNAs emerge, amplify and vanish without impacting the global genome size*
554 The only repeat type for which no correlation with the beet genome size was found are
555 the satDNAs. Strikingly, of all repeats, the satDNAs show the most pronounced
556 specificity in abundance and distribution among the beet genomes, pointing to the fact
557 that satDNAs are the most dynamic repeats (Garrido-Ramos, 2021). With this study, we
558 present the first all-encompassing account of every present *Beta/Patellifolia* satDNA,
559 involving all known as well as so far unpublished satDNAs. By comparison to publicly
560 available databases, we determined that, with the exception of beetSat02-pEV (also
561 found in quinoa: Schmidt *et al.*, 2014), beetSat06-pAv34 (pRs34; also found in spinach:
562 Dechyeva and Schmidt, 2006), and beetSat13 (ChenSat-1a; also found in quinoa:

563 Heitkam *et al.*, 2020), the satDNAs are specific for and restricted to beet species from
564 the genera *Beta* and *Patellifolia*.

565 Usually, the repeatome of plants is constituted mostly by LTR retrotransposons,
566 accounting for up to 80% of the plant genome size (Orozco-Arias *et al.*, 2019). Only
567 few plants are known in which the proportion of satDNAs is comparable to that of TEs
568 (e.g. olive: Barghini *et al.*, 2014; radish: He *et al.*, 2015; *Fritillaria affinis*: Kelly *et al.*,
569 2015). Here, we present sugar beet (*B. vulgaris*) as another plant species with peculiar
570 high amounts of satDNAs. However, with diminishing phylogenetic relationship to
571 sugar beet, the proportion of satDNAs decreases in its CWRs. In addition, each beet
572 section/genus has its own distinct repeat profile, which sets it apart from the other
573 (Fig. 5). Thus, we observed satDNAs specific for the genus *Patellifolia*, as well as for
574 the sections *Corollinae/Nanae* (three different satDNAs, each) and *Beta* (one satDNA).
575 Even the sole two satDNAs that are present in all analyzed beet species (i.e. beetSat02-
576 pEV, beetSat06-pAV34) show variability in abundance as well as sequence and
577 monomer length, resulting in genus- and section-specific variants that may initiate
578 homogenization processes and sequence shifts in the future.

579 As beetSat02-pEV and beetSat06-pAV34 are distributed among all analyzed beets
580 (Fig. 5) and as variants of them are also present in more distantly related plant species
581 (beetSat02-pEV in quinoa: Schmidt *et al.*, 2014; beetSat06-pAV34 in spinach:
582 Dechyeva and Schmidt, 2006), we assume that these satDNAs were already present in
583 the common ancestor of both genera *Beta* and *Patellifolia*. During the subsequent beet
584 speciation, a great variety of new satDNAs emerged and some of them accumulated
585 section-specifically by remarkable re-amplification. Such a restriction to individual
586 sections or species is sometimes known for TEs, but is particularly pronounced for the
587 fast evolving satDNAs (Orozco-Arias *et al.*, 2019, Garrido-Ramos, 2021). For example,
588 beetSat13's specificity in abundance is visible even at the level of beet accessions
589 (Bmrh1 vs. Bmrh2). Moreover, this satDNA can be found in all *Corollinae/Nanae*
590 species as well as in the more distantly related quinoa (ChenSat-1a: Heitkam *et al.*,
591 2020), but not in beet genomes from the genus *Patellifolia* and the section *Beta* (Fig. 5).
592 The patchy distribution of beetSat13 among Amaranthaceae members may be either
593 explained by its loss in most of the beet genomes except those from the section
594 *Corollinae/Nanae*, or by an independent acquisition into the genome of the
595 *Corollinae/Nanae* ancestor. It was argued that in quinoa this satDNA emerged from a

596 CACTA-like TE (Belyayev *et al.*, 2020). Thus, an independent acquisition/generation
597 of beetSat13 into/within the genome of the *Corollinae/Nanae* ancestor may have
598 occurred similarly by spawning from a TE or even by the transmission of
599 extrachromosomal circular molecules consisting of this satDNA (Navrátilová *et al.*,
600 2008).

601

602 *SatDNAs impact beet chromosome architecture in a gene pool-dependent manner*

603 Apart from their role as intercalary heterochromatin (beetSat02-pEV) and (sub-
604)telomere contributors (beetSat06-pAV34), satDNAs often provide the DNA backbone
605 onto which the centromeres are formed (Melters *et al.*, 2013; Garrido-Ramos, 2021).
606 Strikingly, this iconic location is not occupied by the same satDNA among beets, but by
607 a peculiarly high number of different satDNAs (Fig. 5). It is not unusual for the
608 centromeric satDNAs to differ even in very closely related species (Henikoff *et al.*,
609 2001; Melters *et al.*, 2013). However, whereas the centromeric satDNA in beets from
610 the section *Beta* is well defined and conserved across the whole karyotype (Schmidt and
611 Metzlaff, 1991; Zakrzewski *et al.*, 2011), beets from the section *Corollinae/Nanae* and
612 the genus *Patellifolia* seem to differ in their satDNA composition even from
613 chromosome to chromosome. This phenomenon was previously observed in potatoes
614 (Gong *et al.*, 2012) and especially in legumes (Avila Robledillo *et al.*, 2020), as well as
615 in animal species (chicken: Shang *et al.*, 2010). Usually, the most abundant satDNA of
616 a species is the one constituting the centromeres (Melters *et al.*, 2013). Yet, while this is
617 true for beets from the section *Beta*, there is no clearly predominant satDNA in beets
618 from the section *Corollinae/Nanae* and the genus *Patellifolia*, going along with the
619 observation that the variety of similarly abundant satDNAs is spread over the (peri-
620)centromeric regions of subsets of chromosomes. This is particularly remarkable as
621 these satDNAs (i.e. beetSat07-pHC8 to beetSat11, beetSat13, beetSat15, and beetSat17
622 in *Corollinae/Nanae* species; beetSat03-pTS5 and beetSat05 in *Patellifolia* species)
623 differ considerably in their monomer lengths and/or sequences and yet chromosomes
624 maintain an error-free cell division. Furthermore, centromeric satDNA families of other
625 closely related plant taxa (e.g. *Arabidopsis* species), albeit species-specific, nevertheless
626 derived from a common ancestor (summarized by Garrido-Ramos, 2021), which does
627 not seem to be true for the beets: Monomer sequence and length differences are too
628 large to be explained by high mutation rates, even though some satDNAs (e.g.

629 beetSat01-pBV) indeed evolve towards quite considerable changes in monomer
630 sequence and length (see Additional file 1: Fig. S4). The centromere drive model
631 (Henikoff *et al.*, 2001) does not seem to apply either, as the presence of multiple
632 centromeric satDNAs with different sequences precludes any sequence-dependent
633 coevolution with the kinetochore complex (Avila Robledillo *et al.*, 2020). Considering
634 the evolutionary mode of satDNAs, which are thought to typically evolve in a concerted
635 manner (Šatović-Vukšić and Plohl, 2023), it may be that *Corollinae/Nanae* and
636 *Patellifolia* species are only at an intermediate stage on the way to centromere and
637 satDNA homogenization. This is supported by the fact that beet species from the section
638 *Corollinae/Nanae* in particular belong to a highly variable hybrid complex (Frese and
639 Ford-Lloyd, 2020). Hence, hybridization events between genotypes with different
640 satDNA profiles may frequently disrupt any ongoing satDNA homogenization
641 processes. This may have led to the observed variety of lowly amplified satDNAs,
642 which were then selectively retained to form unique satDNA mixes at each centromere
643 within one nucleus. This would then result in the observed combination of different
644 chromosome sets with different satDNA architectures. To account for their unique
645 chromosome make-up, we refer to the *Corollinae/Nanae* chromosomes as patchwork
646 chromosomes (Fig. 5; middle). Alternatively, keeping a set of different centromeres
647 may hold an advantage for these beets, especially in chromosome recognition during
648 meiotic pairing. For the *Corollinae/Nanae*, we cannot yet determine if there is
649 chromosome-complementarity among individual satDNAs. Nevertheless, multicolor
650 FISH indicates a possible chromosome-complementarity of beetSat03-pTS and
651 beetSat05 in the genus *Patellifolia*. Taking together, we detect vastly different satDNA
652 landscapes that vary in satDNA family number, abundance and location. These provide
653 the DNA backbone for the formation of overall different chromosome architectures
654 within a nucleus, leading from overall similar chromosome/centromere structures
655 (section *Beta*), over conceptually similar chromosomes (*Patellifolia*) towards
656 completely different chromosomal/centromeric setups (*Corollinae/Nanae*).
657

658 *Conclusion*

659 In the use of wild germplasm for breeding, crossing barriers often impede the
660 sustainable introgression of target traits from wild species into crops. This is also the
661 case for cultivated and wild beet species, which are taxa with isokaryotypic

662 chromosomes, but which nevertheless exhibit strong crossing borders between gene
663 pools. We found that global differences between beet genomes can be attributed
664 primarily to their repeatomes, especially to the specific composition of satDNAs,
665 whereas the base number and morphology of chromosomes is rather consistent. After
666 the divergence from the common beet ancestor, genus- and section-specific repeat
667 variants propagated by independent transposition and centromeres evolved distinctly,
668 corresponding to the beet phylogeny and the categorization into gene pools. Based on
669 their repeatome, beet species divide into three different groups (section *Beta* as primary
670 gene pool, section *Corollinae/Nanae* as secondary gene pool, and genus *Patellifolia* as
671 tertiary gene pool), supporting the repeated handling of *B. nana* as a member of the
672 section *Corollinae*. In comparison to the other beet species, this section is characterized
673 by a peculiarly high number of different satDNAs with comparable abundances. We
674 found that these satDNAs contribute to the *Corollinae/Nanae* centromeres in a
675 composite manner, resulting in a highly variable chromosome composition (patchwork
676 chromosomes). These insights are valuable for future beet breeding as they help to face
677 the challenge of overcoming postzygotic crossing barriers and provide unique insights
678 into genome, repeatome, and chromosome evolution in karyotypically stable taxa.
679

680 METHODS

681 *Plant material, genome size measurement, and DNA extraction*

682 The 17 investigated beet accessions cover the whole spectrum of species within the
683 genera *Beta* and *Patellifolia* (see Table 1). Seeds of the *B. vulgaris* subsp. *vulgaris*
684 genotype KWS2320 were obtained from KWS Saat SE, Einbeck, Germany. The seeds
685 of all other accessions were obtained from the Leibniz Institute of Plant Genetics and
686 Crop Plant Research Gatersleben, Germany. The material of the KWS SAAT SE & Co.
687 KGaA, Einbeck and IPK Gatersleben was transferred under the regulations of the
688 standard material transfer agreement (SMTA) of the International Treaty. The plants
689 were grown under long day conditions in a greenhouse.

690 Nuclei extraction and staining were performed using the CyStain PI OxProtect reagent
691 kit from Sysmex. Nuclear DNA was measured by flow cytometry, using *Raphanus*
692 *sativus* ($2C = 1.11$ pg DNA) or *Pisum sativum* ($2C = 9.07$ pg DNA; Doležel *et al.*,
693 1992) as internal standard. Four DNA estimations were carried out for each plant (5000
694 nuclei per analysis) on at least two different days. Nuclear DNA content ($2C$ value in

695 [pg]) was calculated as: sample peak mean/standard peak mean \times 2C DNA content of
696 the standard. DNA amounts in picograms were converted to the number of base pairs
697 using the conversion factor 1 pg DNA = 0.978×10^9 bp (Doležel *et al.*, 2003). The
698 mean nuclear DNA content was then calculated for each plant as 1C value (in [Mbp];
699 Table 1).

700 Genomic DNA was extracted from approximately 100 mg of fresh leaf tissue samples
701 using the NucleoSpin® Plant II protocols from Macherey-Nagel. Libraries were
702 prepared using the TruSeq Nano DNA library preparation kit (Fa. Illumina) and were
703 sequenced on an Illumina HiSeq1500 sequencer at the CeBiTec Sequencing Core
704 Facility, Bielefeld University, Germany (250 bp paired-end reads).

705

706 *Repeat classification and quantification*

707 The Illumina reads were trimmed to a length of 100 bp using Trimmomatic (v0.39;
708 Bolger *et al.*, 2014). High quality of the trimmed reads was ensured by FastQC
709 examination (v0.11.5; Andrews, 2020). Bowtie2 (v2.2.6; Langmead and Salzberg,
710 2012) was applied to identify and subsequently remove reads representing organellar
711 DNA from the sequence data by mapping them to a database containing publicly
712 available chloroplast and mitochondrial DNAs of *Beta* species
713 (<https://ncbi.nlm.nih.gov/nuccore>). The sequence reads were then subsampled to reduce
714 the genome coverage to 0.1 \times for all species, and different numbers of paired-end reads
715 sampled depending on the genome size. To standardize all read pre-treatments, we have
716 used the mentioned tools embedded in the preparation module of the ECCsplorer
717 pipeline (Mann *et al.*, 2022). For the identification and quantification of repetitive
718 sequences, the similarity-based read clustering method was applied as described by
719 Novák *et al.* (2010) and implemented in the RepeatExplorer2 pipeline (Novák *et al.*,
720 2013, 2020). We used the pipeline default settings (90% similarity over 55% of the read
721 length) and included our custom database of Betoideae repeats
722 (<https://zenodo.org/record/8255813>) for individual analyses (each beet accession
723 distinctly) as well as an all-vs-all comparison across all species (accession 1 of every
724 species; see Table 1). When comparing different accessions of the same species
725 (Bmar1/Bmar2, Bmrh1/Bmrh2, Bint1/Bint2, and Bnan1/Bnan2), the RepeatExplorer2
726 pipeline produced highly similar results for the respective repeat compositions (see
727 Additional file 1: Table S1). Any discrepancies resulted from the read sampling as we

728 confirmed by using re-sampled read datasets as input. Hence, only one accession per
729 species was included in the comparative RepeatExplorer2 analysis.

730 For this all-vs-all comparison, each read set was downsampled to represent 4% of the
731 respective genome (coverage of 0.04×) based on ‘ploidy corrected genome sizes’ (1C
732 values [Table 1] divided by 2 [for the tetraploid species *B. macrocarpa*, *B. corolliflora*,
733 and *P. patellaris*] and 2.5 [for the pentaploid species *B. intermedia*], respectively).
734 Nevertheless, the pipeline reached a limit, retrieving 3,985,090 reads. Although
735 automatic annotation of read clusters was improved by the inclusion of our custom
736 Betoideae repeat database, not all clusters were classified. The cluster graph shapes of
737 all unassigned clusters that represented at least 0.001% of the investigated genomes,
738 were examined manually and consensus sequences, if provided, were searched using
739 publicly available databases (<https://blast.ncbi.nlm.nih.gov/Blast.cgi>). Finally, the
740 relative abundance of each repeat was calculated based on the number of reads in the
741 respective cluster, excluding remaining organellar reads.

742

743 *Sequence comparison*

744 Multiple sequence alignments were generated with the MAFFT (v7.017; Katoh and
745 Standley, 2013) and MUSCLE (v3.8.31; Edgar, 2004) local alignment tools. They have
746 been manually refined and used for the calculation of pairwise sequence identities. We
747 explored and visualized sequences with the multipurpose software Geneious 6.1.8
748 (Kearse *et al.*, 2012). Dotplots were generated with FlexiDot (Seibt *et al.*, 2018) with a
749 word size of 20 bp using long reads of *B. vulgaris* (PacBio; accession number
750 SRX3402137; Funk *et al.*, 2018), *B. corolliflora* (ONT; accession number
751 ERS13530775; Sielemann *et al.*, 2023a), and *P. procumbens* (ONT; accession number
752 ERS13530778; Sielemann *et al.*, 2023a).

753

754 *Generation of satDNA probes*

755 The probe for the *Patellifolia*-specific satDNA beetSat05 was ordered as EXTREmer
756 oligonucleotides synthesized by *Eurofins Genomics* based on the RepeatExplorer2
757 consensus sequence (Additional file 1: Data S1).

758 Standard PCR reactions of genomic *B. corolliflora* (BETA 408) and *B. nana*
759 (BETA 546) DNA were performed using primer pairs designed for two further beet-
760 specific satDNAs (beetSat15 and beetSat17; Additional file 1: Table S3). The PCR

761 conditions were 94 °C for 3 min followed by 35 cycles of 94 °C for 30 s, primer-
762 specific annealing temperature for 30 s, 72 °C for 25 sec (beetSat15) and 45 s
763 (beetSat17), respectively, and a final incubation at 72 °C for 5 min. PCR fragments
764 were purified, cloned and commercially sequenced. Sequenced inserts spanning two
765 (beetSat17; 279 bp) and six (beetSat15; 303 bp) monomers of the respective satDNA
766 were used as probes for the following hybridization experiments. Their identity to the
767 respective reference sequence (RepeatExplorer2 consensus sequence) was 96.4%
768 (beetSat15) and 93.7% (beetSat17), respectively.

769

770 *Preparation of chromosome spreads and fluorescent in situ hybridization (FISH)*

771 The meristem of young leaves was used for the preparation of mitotic chromosomes.
772 The plant tissues were treated as described by Schmidt *et al.* (2023). Accumulation of
773 metaphases was achieved by a combination of an incubation with 2 mM 8-
774 hydroxyquinoline for 3 h and nitrous oxide for 30 min. Fixed plant material was
775 digested using the ‘leaf enzyme solution II’ (Schmidt *et al.*, 2023).

776 The probes for the chromosomal localization of several satDNAs using FISH were
777 labeled directly as well as indirectly: The probes ‘pBV I’ (Schmidt and Metzlaff, 1991;
778 Kubis *et al.*, 1998) and ‘beetSat05’ (this manuscript; Additional file 1: Data S1) for
779 specific centromeric satDNA families were directly labeled with DY647-dUTP
780 (Dyomics). The probe ‘pEV I’ (similar to Schmidt *et al.*, 1991; accession number
781 OY726583) marking an intercalary satDNA family (Kubis *et al.*, 1998) was directly
782 labeled with DY415-dUTP (Dyomics). The probe ‘pTS4.1’ for the pericentromeric
783 satDNA in *Patellifolia* species (Schmidt *et al.*, 1990; Schmidt and Heslop-Harrison,
784 1996) was indirectly labeled by PCR in the presence of digoxigenin-11-dUTP detected
785 by antidigoxigenin-fluorescein isothiocyanate (FITC; both from Roche Diagnostics).
786 The remaining satDNAs (‘pTS5’: Schmidt *et al.*, 1990, Schmidt and Heslop-Harrison,
787 1996; ‘pHC8’: Gindullis *et al.*, 2001; ‘pRN1’: Kubis *et al.*, 1997; beetSat08: accession
788 number OY726584 [corresponding to ‘BlSat1’ from Ha, 2018]; beetSat13
789 [corresponding to ‘ChenSat-1a’]: Heitkam *et al.*, 2020; beetSat15 and beetSat17: this
790 manuscript, accession numbers OY726585 and OY726586) were indirectly labeled by
791 PCR in the presence of biotin-16-dUTP (Roche Diagnostics) detected by streptavidin-
792 Cy3 (Sigma–Aldrich). The hybridization procedure was performed as described
793 previously (Schmidt *et al.*, 1994) with a stringency of 82%. Chromosomes were

794 counterstained with DAPI (4',6'-diamidino-2-phenylindole; Böhringer, Mannheim) and
795 mounted in an antifade solution (CitiFluor). Slides were examined with a fluorescence
796 microscope (Zeiss Axioplan 2 imaging) equipped with appropriate filters. Images were
797 acquired directly with the Applied Spectral Imaging v. 3.3 software coupled to the high-
798 resolution CCD camera ASI BV300-20A. After separate capture for each fluorochrome,
799 the individual images were combined computationally and processed using Adobe
800 Photoshop CS5 software (Adobe Systems, San Jose, CA, USA). We used only contrast
801 optimization, Gaussian and channel overlay functions affecting all pixels of the image
802 equally.

803

804 DECLARATIONS

805 *Ethics approval and consent to participate*

806 The material of the KWS SAAT SE & Co. KGaA, Einbeck and IPK Gatersleben was
807 transferred under the regulations of the standard material transfer agreement (SMTA) of
808 the International Treaty. Plants were grown in accordance with German legislation.

809

810 *Consent for publication*

811 Not applicable.

812

813 *Availability of data and materials*

814 Illumina whole genome sequence data are available at EBI under accession numbers as
815 indicated in Table 1. ONT reads for *B. corolliflora* and *P. procumbens* are available at
816 EBI under the accession numbers ERS13530775 and ERS13530778. RepeatExplorer2
817 outputs have been made available at ZENODO (doi: 10.5281/zenodo.7821055;
818 <https://zenodo.org/record/7821055>). Satellite DNA consensus sequences and the
819 sequences used as FISH probes are available in Additional file 1: Data S1 and Data S2.
820 Furthermore, the cloned sequences of the satDNAs beetSat02-pEV and beetSat08, as
821 well as the newly identified satDNAs beetSat15 and beetSat17 were submitted to ENA
822 (accession numbers OY726583-OY726586).

823

824 *Competing interests*

825 The authors declare no competing interests.

826

827 *Funding*

828 This work was supported by the German Federal Ministry of Education and Research
829 (call „Epigenetics: Opportunities for Plant Research“, grant 031B1221A). KS was
830 funded by Bielefeld University.

831

832 *Authors' contributions*

833 NS, BW, DH, and TH designed the study. NS selected and cultivated the plants. NS,
834 KS, and BP performed DNA extraction. NS and JF performed flow cytometry. BP
835 performed sequencing. NS and SB performed FISH. NS implemented the bioinformatic
836 methodology, analyzed the data and prepared the figures and tables. NS, KS, and TH
837 wrote the manuscript. All authors read and approved the final manuscript.

838

839 *Acknowledgements*

840 We acknowledge the KWS SAAT SE & Co. KGaA, Einbeck and the Genbank
841 Gatersleben for providing seeds and data for the investigated accessions. Computational
842 resources for RepeatExplorer2 analysis were provided by the ELIXIR-CZ project
843 (LM2015047), part of the international ELIXIR infrastructure.

844

845 **SUPPLEMENTARY DATA**

846 Additional supporting information may be found in the online version of this article and
847 consists of the following. Fig. S1: DAPI-stained chromosomes of 17 different beet
848 accessions. Fig. S2: Correlation between repeat proportion and genome size in *Beta* and
849 *Patellifolia* species. Fig. S3: Comparative repeat composition among *Beta* and
850 *Patellifolia* species. Fig. S4: Arrangement of beet satDNA monomers on long reads of
851 *B. vulgaris* (Bvul), *B. corolliflora* (Bcor), and *P. procumbens* (Ppro). Fig. S5:
852 Comparative nucleotide alignment of the three section-specific beetSat02-pEV variants.
853 Table S1: Genome proportion [%] of different repeat classes and superfamilies (repeat
854 proportion) in *Beta* and *Patellifolia* species. Table S2: Genome proportion [%] of
855 different satDNAs (and tandem repeats) across *Beta* and *Patellifolia* species. Table S3:
856 Primer sequences for the amplification of beet-specific satellite DNAs. Data S1: beetSat
857 nucleotide sequences derived as RepeatExplorer2 consensuses from the comparative
858 analysis. Data S2: beetSat sequences used as FISH probes.

859

860 **LITERATURE CITED**

861 Andrews S. FastQC: a quality control tool for high throughput sequence data. 2020.
862 <http://www.bioinformatics.babraham.ac.uk/projects/fastqc>.

863 Avila Robledillo L, Neumann P, Koblizkova A, Novak P, Vrbova I, Macas J.
864 Extraordinary sequence diversity and promiscuity of centromeric satellites in the
865 legume tribe *Fabeae*. *Mol Biol Evol*. 2020;37:2341–2356.

866 Barghini E, Natali L, Cossu RM, Giordani T, Pindo M, Cattonaro F, et al. The peculiar
867 landscape of repetitive sequences in the olive (*Olea europaea* L.) genome. *Genome Biol*
868 *Evol*. 2014;6:776–791.

869 Becher H, Powell RF, Brown MR, Metherell C, Pellicer J, Leitch IJ, Twyford AD. The
870 nature of intraspecific and interspecific genome size variation in taxonomically complex
871 eyebrights. *Ann Bot*. 2021;128:639–651.

872 Belyayev A, Josefiová J, Jandová M, Mahelka V, Krak K, Mandák B. Transposons and
873 satellite DNA: on the origin of the major satellite DNA family in the *Chenopodium*
874 genome. *Mob DNA*. 2020;11:20.

875 Bennetzen JL. Mechanisms of recent genome size variation in flowering plants. *Ann*
876 *Bot*. 2005;95:127–132.

877 Bennetzen JL, Wang H. The contributions of transposable elements to the structure,
878 function, and evolution of plant genomes. *Annu Rev Plant Biol*. 2014;65:505–530.

879 Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina
880 sequence data. *Bioinformatics*. 2014;30:2114–2120.

881 Dechyeva D, Gindullis F, Schmidt T. Divergence of satellite DNA and interspersion of
882 dispersed repeats in the genome of the wild beet *Beta procumbens*. *Chromosome Res*.
883 2003;11:3–21.

884 Dechyeva D, Schmidt T. Molecular organization of terminal repetitive DNA in *Beta*
885 species. *Chromosome Res*. 2006;14:881–897.

886 Dodsworth S, Chase MW, Kelly LJ, Leitch IJ, Macas J, Novák P, Piednoël M, Weiss-
887 Schneeweiss H, Leitch AR. Genomic repeat abundances contain phylogenetic signal.
888 *Syst Biol*. 2015;64:112–126.

889 Dodsworth S, Kovarik A, Grandbastien MA, Leitch IJ, Leitch AR. Repetitive DNA
890 dynamics and polyploidization in the genus *Nicotiana* (Solanaceae). In: Ivanov NV,
891 Sierro N, Peitsch MC, editors. *The tobacco plant genome. Compendium of Plant*
892 *Genomes*. Springer, Cham; 2020. p. 85–99.

893 Dohm JC, Minoche AE, Holtgräwe D, Capella-Gutiérrez S, Zakrzewski F, Tafer H, et
894 al. The genome of the recently domesticated crop plant sugar beet (*Beta vulgaris*).
895 *Nature* 2014;505:546–549.

896 Doležel J, Sgorbati S, Lucretti S. Comparison of three DNA fluorochromes for flow
897 cytometric estimation of nuclear DNA content in plants. *Physiol Plant.* 1992;85:625–
898 631.

899 Doležel J, Bartoš J, Voglmayr H, Greilhuber J. Nuclear DNA content and genome size
900 of trout and human. *Cytom Part A.* 2003;51:127–128.

901 Dvorak J. Evidence of genetic suppression of heterogenetic chromosome pairing in
902 polyploid species of *Solanum*, sect. *Petota*. *Can J Genet Cytol.* 1983;25:530–539.

903 Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and
904 space complexity. *BMC Bioinformatics* 2004;5:113.

905 Escudero M, Hipp AL, Waterway MJ, Valente LM. Diversification rates and
906 chromosome evolution in the most diverse angiosperm genus of the temperate zone
907 (*Carex*, Cyperaceae). *Mol Phylogenet Evol.* 2012;63:650–655.

908 Escudero M, Maguilla E, Loureiro J, Castro M, Castro S, Modesto L. Genome size
909 stability despite high chromosome number variation in *Carex* gr. *laevigata*. *Am J Bot.*
910 2015;102:233–238.

911 Finnegan DJ. Eukaryotic transposable elements and genome evolution. *Trends Genet.*
912 1989;5:103–107.

913 Fischer HE. Origin of the ‘Weisse Schlesische Rübe’ (white Silesian beet) and
914 resynthesis of sugar beet. *Euphytica.* 1989;41:75–80.

915 Frese L, Ford-Lloyd B. Taxonomy, phylogeny, and the genepool. In: Biancardi E,
916 Panella L, McGrath J, editors. *Beta maritima*. Springer, Cham; 2020. p. 121–151.

917 Funk A, Galewski P, McGrath JM. Nucleotide-binding resistance gene signatures in
918 sugar beet, insights from a new reference genome. *Plant J.* 2018;95:659–671.

919 Gaiero P, Vaio M, Peters SA, Schranz ME, de Jong H, Speranza PR. Comparative
920 analysis of repetitive sequences among species from the potato and the tomato clades.
921 *Ann Bot.* 2019;123:521–532.

922 Gantuz M, Marfil CF, Masuelli RW. Transposable elements and genome expansion in
923 cultivated and wild potato and tomato species. In: Carputo D, Aversano R, Ercolano
924 MR, editors. *The wild *Solanum*s genomes. Compendium of Plant Genomes*. Springer,
925 Cham, 2021. p. 201–214.

926 Gao D, Schmidt T, Jung C. Molecular characterization and chromosomal distribution of
927 species-specific repetitive DNA sequences from *Beta corolliflora*, a wild relative of
928 sugar beet. *Genome*. 2000;43:1073–1080.

929 Garrido-Ramos MA. The genomics of plant satellite DNA. In: Ugarković Đ, editor.
930 Satellite DNAs in physiology and evolution. Progress in Molecular and Subcellular
931 Biology, vol 60. Springer, Cham. 2021. p. 103–143.

932 Ghaffari R, Cannon EK, Kanizay LB, Lawrence CJ, Dawe RK. Maize chromosomal
933 knobs are located in gene-dense areas and suppress local recombination. *Chromosoma*.
934 2013;122:67–75.

935 Gindullis F, Desel C, Galasso I, Schmidt T. The large-scale organization of the
936 centromeric region in *Beta* species. *Genome Res*. 2001;11:253–265.

937 Gong Z, Wu Y, Koblízková A, Torres GA, Wang K, Iovene M, Neumann P, Zhang W,
938 Novák P, Buell CR, Macas J, Jiang J. Repeatless and repeat-based centromeres in
939 potato: implications for centromere evolution. *Plant Cell*. 2012;24:3559–3574.

940 Ha BH. Structure, organization, and evolution of satellite DNAs in species of the genera
941 *Beta* and *Patellifolia*. Doctoral dissertation, Technische Universität Dresden. 2018.
942 <https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-238083>.

943 He Q, Cai Z, Hu T, Liu H, Bao C, Mao W, Jin W. Repetitive sequence analysis and
944 karyotyping reveals centromere-associated DNA sequences in radish (*Raphanus sativus*
945 L.). *BMC Plant Biol*. 2015;15:105.

946 Heitkam T, Holtgräwe D, Dohm JC, Minoche AE, Himmelbauer H, Weisshaar B,
947 Schmidt T. Profiling of extensively diversified plant LINEs reveals distinct plant-
948 specific subclades. *Plant J*. 2014;79:385–397.

949 Heitkam T, Weber B, Walter I, Liedtke S, Ost C, Schmidt T. Satellite DNA landscapes
950 after allotetraploidization of quinoa (*Chenopodium quinoa*) reveal unique a and B
951 subgenomes. *Plant J*. 2020;103:32–52.

952 Henikoff S, Ahmad K, Malik HS. The centromere paradox: stable inheritance with
953 rapidly evolving DNA. *Science*. 2001;293:1098–1102.

954 Herklotz V, Kovařík A, Wissemann V, Lunerová J, Vozárová R, Buschmann S, et al.
955 Power and weakness of repetition – Evaluating the phylogenetic signal from repeatomes
956 in the family Rosaceae with two case studies from genera prone to polyploidy and
957 hybridization (*Rosa* and *Fragaria*). *Front Plant Sci*. 2021;12:738119.

958 Hloušková P, Mandáková T, Pouch M, Trávníček P, Lysak MA. The large genome size
959 variation in the *Hesperis* clade was shaped by the prevalent proliferation of DNA
960 repeats and rarer genome downsizing. *Ann Bot*. 2019;124:103–120.

961 Hohmann S, Kadereit JW, Kadereit G. Understanding Mediterranean-Californian
962 disjunctions: molecular evidence from Chenopodiaceae-Betoideae. *Taxon*. 2006;55:67–
963 78.

964 Kadereit G, Hohmann S, Kadereit JW. A Synopsis of Chenopodiaceae Subfam.
965 Betoideae and Notes on the Taxonomy of *Beta*. *Willdenowia*. 2006;Bd. 36, H. 1(Special
966 Issue: Festschrift Werner Greuter):9–19.

967 Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7:
968 improvements in performance and usability. *Mol Biol Evol*. 2013;30:772–780.

969 Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious
970 Basic: an integrated and extendable desktop software platform for the organization and
971 analysis of sequence data. *Bioinformatics*. 2012;28:1647–1649.

972 Kelly LJ, Renny-Byfield S, Pellicer J, Macas J, Novák P, Neumann P, et al. Analysis of
973 the giant genomes of *Fritillaria* (Liliaceae) indicates that a lack of DNA removal
974 characterizes extreme expansions in genome size. *New Phytol*. 2015;208:596–607.

975 Kowar T, Zakrzewski F, Macas J, Kobližková A, Viehoever P, Weisshaar B, Schmidt
976 T. Repeat composition of CenH3-chromatin and H3K9me2-marked heterochromatin in
977 sugar beet (*Beta vulgaris*). *BMC Plant Biol*. 2016;16:120.

978 Kubis S, Heslop-Harrison J, Schmidt T. A family of differentially amplified repetitive
979 DNA sequences in the genus *Beta* reveals genetic variation in *Beta vulgaris* subspecies
980 and cultivars. *J Mol Evol*. 1997;44:310–320.

981 Kubis S, Schmidt T, Heslop-Harrison JS. Repetitive DNA elements as a major
982 component of plant genomes. *Ann Bot*. 1998;82:45–55.

983 Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. *Nat Methods*.
984 2012;9:357–359.

985 Li N, Li X, Zhou J, Yu L, Li S, Zhang Y, Qin R, Gao W and Deng C. Genome-wide
986 analysis of transposable elements and satellite DNAs in *Spinacia* species to shed light
987 on their roles in sex chromosome evolution. *Front Plant Sci*. 2021;11:575462.

988 Lopez-Gomollon S, Müller SY, Baulcombe DC. Endogenous virus SRNA regulates
989 gene expression following genome shock in tomato hybrids. *bioRxiv*. 2021.
990 <https://doi.org/10.1101/2021.09.20.461014>.

991 Lower SS, McGurk MP, Clark AG, Barbash DA. Satellite DNA evolution: old ideas,
992 new approaches. *Curr Opin Genet Dev.* 2018;49:70–78.

993 Macas J, Novak P, Pellicer J, Čížková J, Kobližková A, Neumann P. In depth
994 characterization of repetitive DNA in 23 plant genomes reveals sources of genome size
995 variation in the legume tribe Fabeae. *PLoS ONE* 2015;10:1–23.

996 Maiwald S, Weber B, Seibt KM, Schmidt T, Heitkam T. The Cassandra retrotransposon
997 landscape in sugar beet (*Beta vulgaris*) and related Amaranthaceae: recombination and
998 re-shuffling lead to a high structural variability. *Ann Bot.* 2021;127:91–109.

999 Mann L, Seibt KM, Weber B, Heitkam T. ECCsplorer: a pipeline to detect
1000 extrachromosomal circular DNA (eccDNA) from next-generation sequencing data.
1001 *BMC bioinform.* 2022;23:1–15.

1002 McCann J, Macas J, Novák P, Stuessy TF, Villaseñor JL, Weiss-Schneeweiss H.
1003 Differential genome size and repetitive DNA evolution in diploid species of
1004 *Melampodium* sect. *Melampodium* (Asteraceae). *Front Plant Sci.* 2020;11:362.

1005 McClintock B. The significance of responses of the genome to challenge. *Science.*
1006 1984;226:792–801.

1007 McGrath JM, Funk A, Galewski P, Ou S, Townsend B, Davenport K, et al. A
1008 contiguous *de novo* genome assembly of sugar beet EL10 (*Beta vulgaris* L.). *DNA Res.*
1009 2023;30:dsac033.

1010 Melters DP, Bradnam KR, Young HA, Telis N, May MR, Ruby JG, et al. Comparative
1011 analysis of tandem repeats from hundreds of species reveals unique insights into
1012 centromere evolution. *Genome Biol.* 2013;14:1–20.

1013 Menzel G, Dechyeva D, Keller H, Lange C, Himmelbauer H, Schmidt T. Mobilization
1014 and evolutionary history of miniature inverted-repeat transposable elements (MITEs) in
1015 *Beta vulgaris* L.. *Chromosome Res.* 2006;14:831–844.

1016 Menzel G, Krebs C, Diez M, Holtgräwe D, Weisshaar B, Minoche AE. Survey of sugar
1017 beet (*Beta vulgaris* L.) *hAT* transposons and MITE-like *hATpin* derivatives. *Plant Mol*
1018 *Biol.* 2012;78:393–405.

1019 Michael TP. Plant genome size variation: bloating and purging DNA. *Brief Funct*
1020 *Genomics.* 2014;13:308–317.

1021 Navrátilová A, Koblizkova A, Macas J. Survey of extrachromosomal circular DNA
1022 derived from plant satellite repeats. *BMC Plant Biol.* 2008;8:1–13.

1023 Neumann P, Novák P, Hoštákova N, Macas J. Systematic survey of plant LTR-
1024 retrotransposons elucidates phylogenetic relationships of their polyprotein domains and
1025 provides a reference for element classification. *Mob DNA*. 2019;10:1–17.

1026 Novák P, Neumann P, Macas J. Graph-based clustering and characterization of
1027 repetitive sequences in next-generation sequencing data. *BMC Bioinform*. 2010;11:1–
1028 12.

1029 Novák P, Neumann P, Pech J, Steinhaisl J, Macas J. RepeatExplorer: a Galaxy-based
1030 web server for genome-wide characterization of eukaryotic repetitive elements from
1031 next generation sequence reads. *Bioinformatics*. 2013;29:792–793.

1032 Novák P, Neumann P, Macas J. Global analysis of repetitive DNA from unassembled
1033 sequence reads using RepeatExplorer2. *Nat Protoc*. 2020;15:3745–3776.

1034 Orozco-Arias S, Isaza G, Guyot R. Retrotransposons in plant genomes: structure,
1035 identification, and classification through bioinformatics and machine learning. *Int J Mol
1036 Sci*. 2019;20:3837.

1037 Panella LW, Stevanato P, Pavli O, Skaracis G. Source of useful traits. In: Biancardi E,
1038 Panella L, McGrath J, editors. *Beta maritima*. Springer, Cham; 2020. p. 167–218.

1039 Pellicer J, Fernández P, Fay MF, Michálková E, Leitch IJ. Genome size doubling arises
1040 from the differential repetitive DNA dynamics in the genus *Heloniopsis*
1041 (Melanthiaceae). *Front Genet*. 2021;12:726211.

1042 Piégu B, Bire S, Arensburger P, Bigot Y. A survey of transposable element
1043 classification systems - A call for a fundamental update to meet the challenge of their
1044 diversity and complexity. *Mol Phylogenet Evol*. 2015;86:90–109.

1045 Presting GG. Centromeric retrotransposons and centromere function. *Curr Opin Genet
1046 Dev*. 2018;49:79–84.

1047 Rockinger A, Carvalho FA, Renner SS. Chromosome number reduction in the sister
1048 clade of *Carica papaya* with concomitant genome size doubling. *Am J Bot*.
1049 2016;103:1082–1088.

1050 Romeiras MM, Vieira A, Silva DN, Moura M, Santos-Guerra A, Batista D, et al.
1051 Evolutionary and biogeographic insights on the Macaronesian *Beta-Patellifolia* species
1052 (Amaranthaceae) from a time-scaled molecular phylogeny. *PLoS ONE*.
1053 2016;11:e0152456.

1054 Šatović-Vukšić E, Plohl M. Satellite DNAs – From localized to highly dispersed
1055 genome components. *Genes*. 2023;14:742.

1056 Schmidt N, Seibt KM, Weber B, Schwarzacher T, Schmidt T, Heitkam T. Broken,
1057 silent, and in hiding: tamed endogenous pararetroviruses escape elimination from the
1058 genome of sugar beet (*Beta vulgaris*). *Ann Bot*. 2021;128:281–299.

1059 Schmidt N, Weber B, Klekar J, Liedtke S, Breitenbach S, Heitkam T. Preparation of
1060 mitotic chromosomes using the dropping technique. In: Heitkam T, Garcia S, editors.
1061 Walker J, series editor. *Methods in Molecular Biology: Plant Cytogenetics and*
1062 *Cytogenomics*. Humana New York, US. 2023. p. 151–162.

1063 Schmidt M, Hense S, Minoche AE, Dohm JC, Himmelbauer H, Schmidt T, Zakrzewski
1064 F. Cytosine methylation of an ancient satellite family in the wild beet *Beta procumbens*.
1065 *Cytogenet Genome Res*. 2014;143:157–167.

1066 Schmidt T, Junghans H, Metzlaff M. Construction of *Beta procumbens*-specific DNA
1067 probes and their application for the screening of *B. vulgaris* x *B. procumbens* (2n = 19)
1068 addition lines. *Theoret Appl Genetics*. 1990;79:177–181.

1069 Schmidt T, Jung C, Metzlaff M. Distribution and evolution of two satellite DNAs in the
1070 genus *Beta*. *Theoret Appl Genetics*. 1991;82:793–799.

1071 Schmidt T, Metzlaff M. Cloning and characterization of a *Beta vulgaris* satellite DNA
1072 family. *Gene*. 1991;101:247–250.

1073 Schmidt T, Heslop-Harrison JS. Variability and evolution of highly repeated DNA
1074 sequences in the genus *Beta*. *Genome*. 1993;36:1074–1079.

1075 Schmidt T, Schwarzacher T, Heslop-Harrison JS. Physical mapping of rRNA genes by
1076 fluorescent *in-situ* hybridization and structural analysis of 5S rRNA genes and
1077 intergenic spacer sequences in sugar beet (*Beta vulgaris*). *Theoret Appl Genetics*.
1078 1994;88:629–636.

1079 Schmidt T, Heslop-Harrison JS. High-resolution mapping of repetitive DNA by *in situ*
1080 hybridization: molecular and chromosomal features of prominent dispersed and
1081 discretely localized DNA families from the wild beet species *Beta procumbens*. *Plant*
1082 *Mol Biol*. 1996;30:1099–1113.

1083 Schwichtenberg K, Wenke T, Zakrzewski F, Seibt KM, Minoche A, Dohm JC, et al.
1084 Diversification, evolution and methylation of short interspersed nuclear element
1085 families in sugar beet and related Amaranthaceae species. *Plant J*. 2016;85:229–244.

1086 Seibt KM, Schmidt T, Heitkam T. FlexiDot: highly customizable, ambiguity-aware
1087 dotplots for visual sequence analyses. *Bioinformatics*. 2018;34:3575–3577.

1088 Shang WH, Hori T, Toyoda A, Kato J, Popendorf K, Sakakibara Y, et al. Chickens
1089 possess centromeres with both extended tandem repeats and short non-tandem-repetitive
1090 sequences. *Genome Res.* 2010;20:1219–28.

1091 Sielemann K, Pucker B, Schmidt N, Viehöver P, Weisshaar B, Heitkam T, Holtgräwe
1092 D. Complete pan-plastome sequences enable high resolution phylogenetic classification
1093 of sugar beet and closely related crop wild relatives. *BMC Genomics* 2022;23:113.

1094 Sielemann K, Schmidt N, Guzik J, Kalina N, Pucker B, Viehöver P, et al. Pan-genome of
1095 cultivated beet and crop wild relatives reveals parental relationships of a tetraploid wild
1096 beet. *bioRxiv*. 2023a; <https://doi.org/10.1101/2023.06.28.546919>.

1097 Sielemann K, Pucker B, Orsini E, Elashry A, Schulte L, Viehöver P, et al. Genomic
1098 characterization of a nematode tolerance locus in sugar beet. *bioRxiv*. 2023b;
1099 <https://doi.org/10.1101/2023.06.22.546034>.

1100 Vitales D, Álvarez I, Garcia S, Hidalgo O, Feliner GN, Pellicer J, et al. Genome size
1101 variation at constant chromosome number is not correlated with repetitive DNA
1102 dynamism in *Anacyclus* (Asteraceae). *Ann Bot.* 2020a;125:611–623.

1103 Vitales D, Garcia S, Dodsworth S. Reconstructing phylogenetic relationships based on
1104 repeat sequence similarities. *Mol Phylogenet Evol.* 2020b;147:106766.

1105 Wascher FL, Stralis-Pavese N, McGrath JM, Schulz B, Himmelbauer H, Dohm JC.
1106 Genomic distances reveal relationships of wild and cultivated beets. *Nat Commun.*
1107 2022;13:2021.

1108 Weber B, Schmidt T. Nested Ty3-gypsy retrotransposons of a single *Beta procumbens*
1109 centromere contain a putative chromodomain. *Chromosome Res.* 2009;17:379–396.

1110 Weber B, Wenke T, Frömmel U, Schmidt T, Heitkam T. The Ty1-copia families
1111 SALIRE and Cotzilla populating the *Beta vulgaris* genome show remarkable
1112 differences in abundance, chromosomal distribution, and age. *Chromosome Res.*
1113 2010;18:247–263.

1114 Weber B, Heitkam T, Holtgräwe D, Weisshaar B, Minoche AE, Dohm JC, et al. Highly
1115 diverse chromoviruses of *Beta vulgaris* are classified by chromodomains and
1116 chromosomal integration. *Mobile DNA*. 2013;4:1–16.

1117 Wells JN, Feschotte C. A field guide to eukaryotic transposable elements. *Annu Rev*
1118 *Genet.* 2020;54:539–561.

1119 Wendel JF. The wondrous cycles of polyploidy in plants. *Am J Bot.* 2015;102:1753–
1120 1756.

1121 Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, et al. A unified
1122 classification system for eukaryotic transposable elements. *Nat Rev Genet.* 2007;8:973–
1123 982.

1124 Wollrab C, Heitkam T, Holtgräwe D, Weisshaar B, Minoche AE, Dohm JC, et al.
1125 Evolutionary reshuffling in the Errantivirus lineage Elbe within the *Beta vulgaris*
1126 genome. *Plant J.* 2012;72:636–651.

1127 Yogeeswaran K, Frary A, York TL, Amenta A, Lesser AH, Nasrallah JB. Comparative
1128 genome analyses of *Arabidopsis* spp.: inferring chromosomal rearrangement events in
1129 the evolutionary history of *A. thaliana*. *Genome Res.* 2005;15:505–515.

1130 Zakrzewski F, Wenke T, Holtgräwe D, Weisshaar B, Schmidt T. Analysis of a *cot-1*
1131 library enables the targeted identification of minisatellite and satellite families in *Beta*
1132 *vulgaris*. *BMC Plant Biol.* 2010;10:1–14.

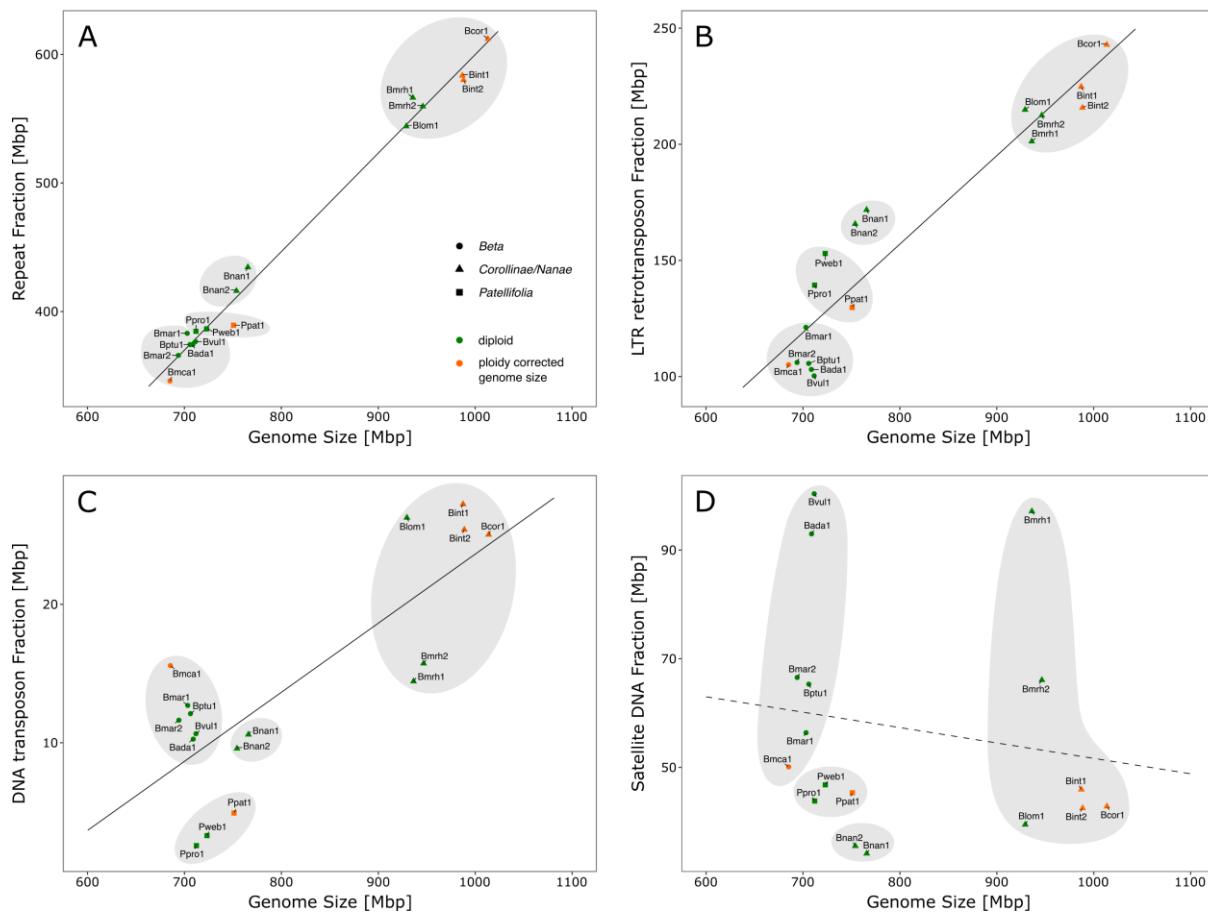
1133 Zakrzewski F, Weisshaar B, Fuchs J, Bannack E, Minoche AE, Dohm JC, et al.
1134 Epigenetic profiling of heterochromatic satellite DNA. *Chromosoma.* 2011;120:409–
1135 422.

1136 Zakrzewski F, Weber B, Schmidt T. A molecular cytogenetic analysis of the structure,
1137 evolution, and epigenetic modifications of major DNA sequences in centromeres of
1138 *Beta* species. In: Jiang J, Birchler JA, editors. *Plant centromere biology*. Oxford: John
1139 Wiley & Sons. 2013. p. 39–55.

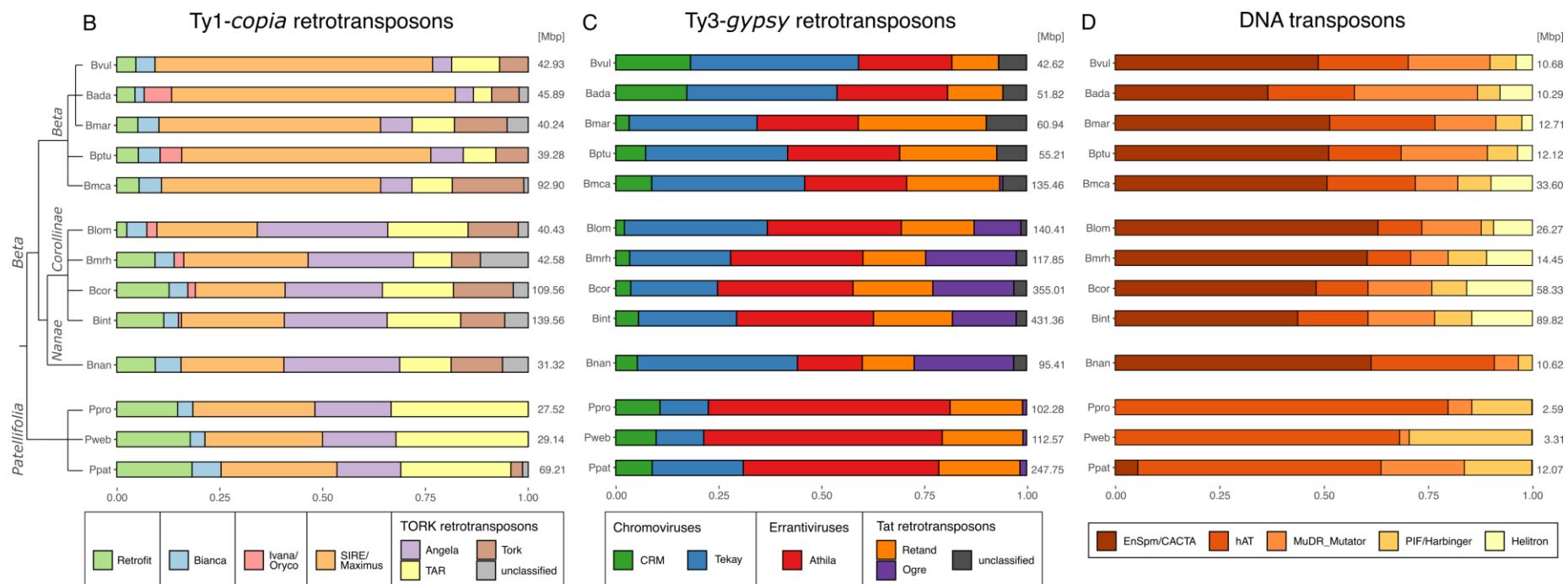
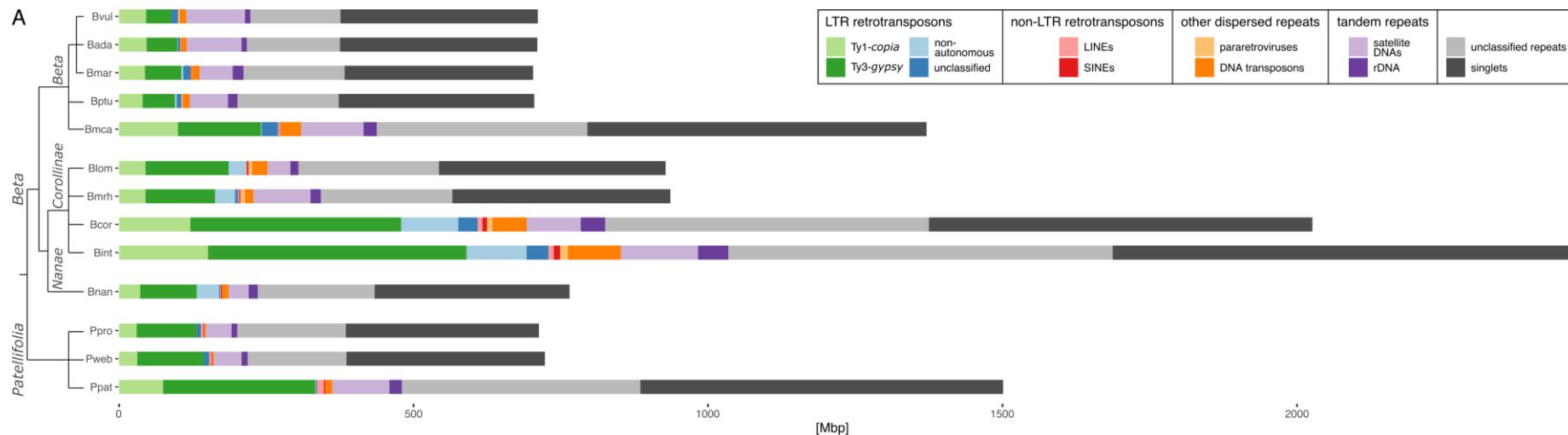
1140 Zakrzewski F, Schubert V, Viehöver P, Minoche AE, Dohm JC, Himmelbauer H, et al.
1141 The CHH motif in sugar beet satellite DNA: a modulator for cytosine methylation. *Plant*
1142 *J.* 2014;78:937–950.

1143 Zedek F, Šmerda J, Šmarda P, Bureš P. Correlated evolution of LTR retrotransposons
1144 and genome size in the genus *Eleocharis*. *BMC Plant Biol.* 2010;10:1–10.

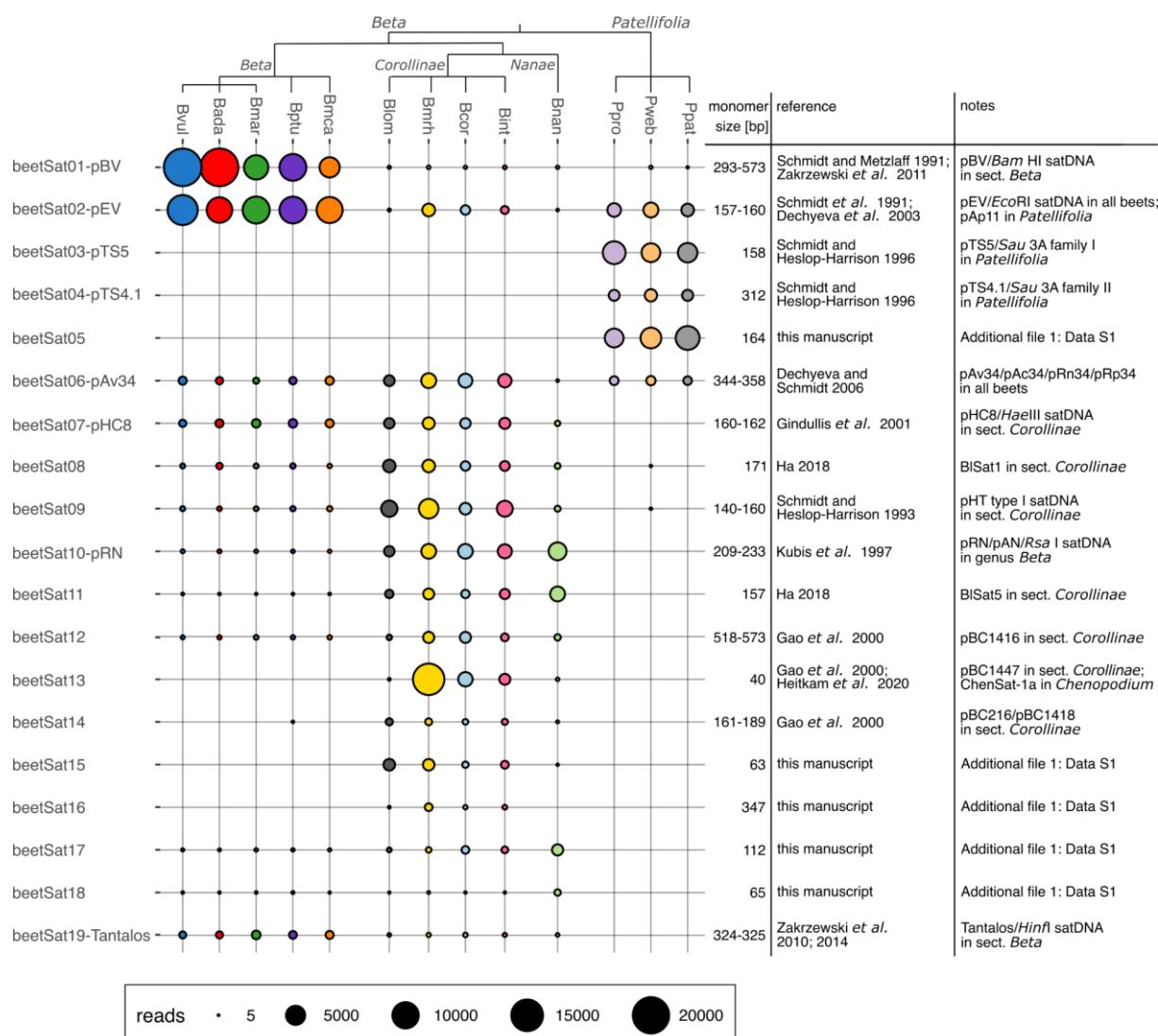
1145


1146

1147 **TABLES**



1148 **Table 1:** Sampled beet and wild beet species, including five-letter code, accession
1149 details, ploidy level / chromosome number, and genome size. Gene pools are marked
1150 according to Frese and Ford-Lloyd, 2020.

beet gene pools	species	code	accession	ENA accession no.	chromosome configuration	genome size 1C [Mbp]
primary	<i>Beta vulgaris</i> subsp. <i>vulgaris</i>	Bvul1	KWS2320	ERR6110425	2n=2x=18	712
	<i>Beta vulgaris</i> subsp. <i>adanensis</i>	Bada1	BETA 1233	ERR6110427	2n=2x=18	709
	<i>Beta vulgaris</i> subsp. <i>maritima</i>	Bmar1	BETA 1101	ERR6110429	2n=2x=18	703
	<i>Beta vulgaris</i> subsp. <i>maritima</i>	Bmar2	BETA 2322	ERR6110431	2n=2x=18	694
	<i>Beta patula</i>	Bptu1	BETA 548	ERR6110433	2n=2x=18	706
	<i>Beta macrocarpa</i>	Bmca1	BETA 881	ERR6110435	2n=4x=36	1370
secondary	<i>Beta lomatogona</i>	Blom1	BETA 674	ERR6110449	2n=2x=18	929
	<i>Beta macrorhiza</i>	Bmrh1	BETA 830	ERR6110451	2n=2x=18	936
	<i>Beta macrorhiza</i>	Bmrh2	BETA 576	ERR6110453	2n=2x=18	946
	<i>Beta corolliflora</i>	Bcor1	BETA 408	ERR6110441	2n=4x=36	2027
	<i>Beta intermedia</i>	Bint1	BETA 431	ERR6110455	2n=5x=45	2468
	<i>Beta intermedia</i>	Bint2	BETA 923	ERR6110457	2n=5x=45	2471
	<i>Beta nana</i>	Bnan1	BETA 546	ERR6110459	2n=2x=18	766
	<i>Beta nana</i>	Bnan2	BETA 570	ERR6110461	2n=2x=18	754
tertiary	<i>Patellifolia procumbens</i>	Ppro1	BETA 951	ERR6110463	2n=2x=18	712
	<i>Patellifolia webbiana</i>	Pweb1	BETA 526	ERR6110465	2n=2x=18	723
	<i>Patellifolia patellaris</i>	Ppat1	BETA 892	ERR6110467	2n=4x=36	1502


1151

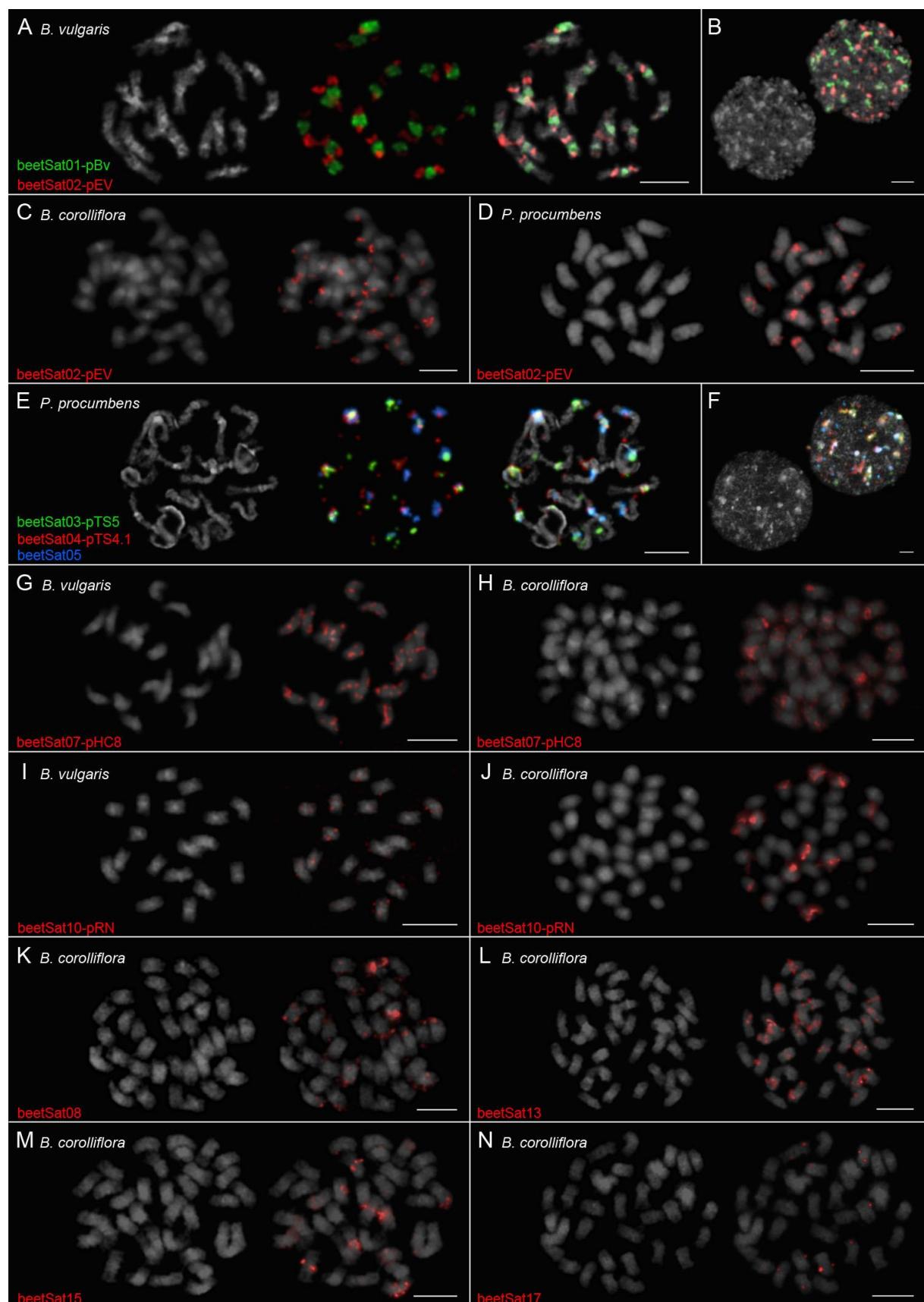

Fig. 1: Correlation between repeat fraction and genome size in *Beta* and *Patellifolia* species. For better comparability with natural diploids (green), polyploid species were downsampled as artificial diploids (orange). Shapes and shades indicate the different beet sections and genera, respectively. Samples are abbreviated according to Table 1. (A) Positive correlation between the total repeat fraction and genome size. (B) Positive correlation between LTR retrotransposon fraction and genome size. (C) Positive correlation between DNA transposon fraction and genome size. (D) The satellite DNA fraction and genome size tend to relate negatively.

Fig. 2: Repeat composition of several *Beta* and *Patellifolia* species. The analyzed samples and abbreviations accord to accession 1 of the respective species (see Table 1) as the repeat compositions of different accessions from the same species are highly similar (see Additional file 1: Table S1). (A) Proportion of major repeat classes shown in relation to the total genome size. (B) Composition of the Ty1-copia LTR retrotransposon fraction. (C) Composition of the Ty3-gypsy LTR retrotransposon fraction. (D) Composition of the DNA transposon fraction.

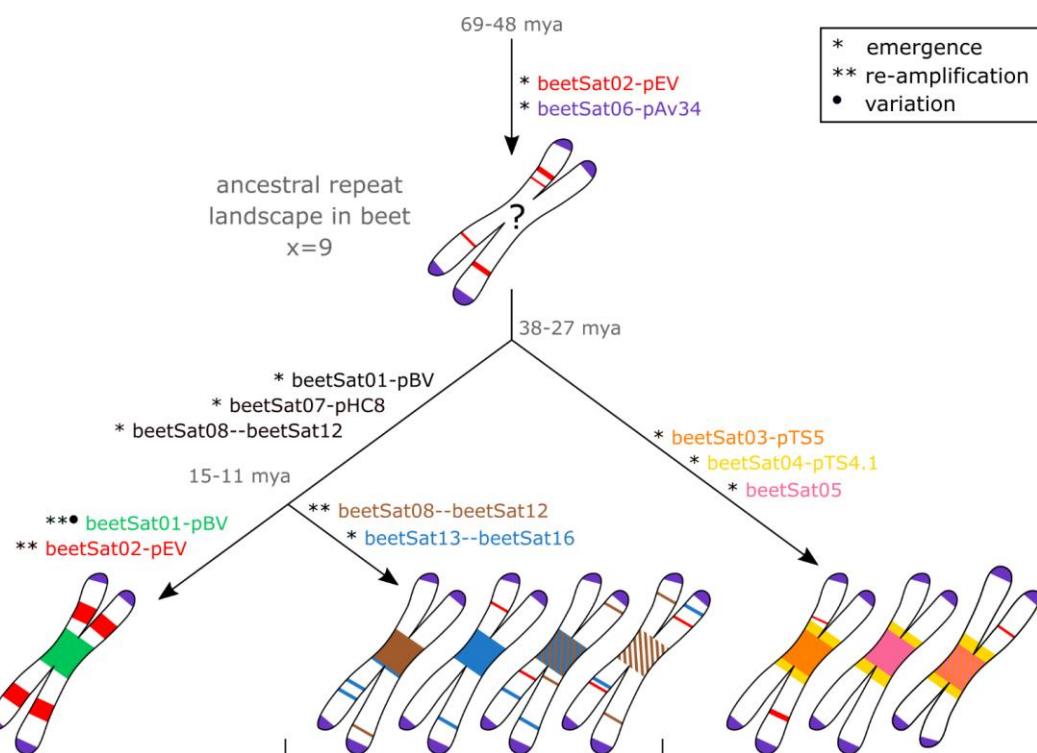


Fig. 3: Quantification of satDNAs within different *Beta* and *Patellifolia* genomes. The relative satDNA abundance is indicated by the size of the circles, which corresponds to the number of short reads within the respective satDNA cluster. The monomer sizes as well as relevant references are provided. Further previously described ‘satDNAs’ and minisatellites (i.e. Dione/*FokI*-satellite and Niobe/*AluI*-satellite: Zakrzewski et al. 2010, 2014; BvMSats: Zakrzewski et al. 2010; BvuSats: Li et al. 2021) were not included as we found that these repeats are not arranged in long arrays and therefore we consider them tandem repeats rather than satDNA. The monomer sequences of newly identified satDNAs can be found in Additional file 1: Data S1.

Fig. 4: Multicolor fluorescent *in situ* hybridization to chromosome spreads of *B. vulgaris*, *B. corolliflora*, and *P. procumbens*. DAPI-stained mitotic chromosomes and interphase nuclei are shown in gray. (A) The centromeric and intercalary localization of the satDNAs beetSat01-pBV (green signals) and beetSat02-pEV (red signals), respectively, become visible on prometaphase chromosomes

of *B. vulgaris*. (B) The interphase nucleus of *B. vulgaris* shows that beetSat01-pBV (green signals) and beetSat02-pEV (red signals) are located in heterochromatic regions. (C, D) The satDNA beetSat02-pEV can also be found on almost all chromosomes of *B. corolliflora* (C) and *P. procumbens* (D) in intercalary as well as distal regions, forming large as well as small arrays. Whereas the signals are mostly restricted on one chromosome arm each in *B. corolliflora* (C), they can be often found on both chromosome arms in *P. procumbens* (D). (E) The centromeric and pericentromeric localization of the satDNAs beetSat03-pTS5 (green signals) and beetSat04-pTS4.1 (red signals), respectively, become visible on prometaphase chromosomes of *P. procumbens*. Most centromeres (14 out of 18) also show large beetSat05 arrays (blue signals); in particular those that are not constituted by beetSat03-pTS5. (F) The interphase nucleus of *P. procumbens* shows that beetSat03-pTS5 (green signals), beetSat04-pTS4.1 (red signals), and beetSat05 (blue signals) are located in heterochromatic regions. (G, H) The satDNA beetSat07-pHC8 was detected on almost all arms of all chromosomes of *B. vulgaris* (G) and *B. corolliflora* (H): Signals were present in intercalary as well as distal regions, forming large as well as small arrays. Moreover, two centromeric beetSat07-pHC8 signals were detected in both species. (I, J) Hybridization sites for beetSat10-pRN are few in *B. vulgaris* (I), whereas large signal clusters were detected on most chromosomes of *B. corolliflora* (J). (I) The low beetSat10-pRN abundance in *B. vulgaris* is revealed by faint signals mostly on both arms of the respective chromosome. (J) The major hybridization sites of the beetSat10-pRN probe on *B. corolliflora* chromosomes are associated with the centromeres. Intercalary hybridization sites can be found mostly on one arm of further chromosomes. (K) The centromere of four *B. corolliflora* chromosomes showed signals (two major, two minor) after hybridization with the beetSat08 probe, whereas almost all other chromosomes showed intercalary and distal signals. (L) BeetSat13 can also be found at the centromeres of at least seventeen *B. corolliflora* chromosomes (ten major and seven minor signals). Eight further chromosomes hybridized in intercalary regions. (M) The beetSat15 hybridization resulted in at least six *B. corolliflora* chromosomes with signals at the centromeres and again eight chromosomes with intercalary signals. (N) BeetSat17 signals were detected on twelve *B. corolliflora* chromosomes with at least two of them being near the centromere. Information on probe labeling and detection can be found in the methods section. Scale bars = 5 μ m.

	Beta	Corollinae/Nanae	Patellifolia
today's satDNA composition	beetSat01-pBV beetSat02-pEV beetSat06-pAv34 beetSat07-pHC8 beetSat08--beetSat12	beetSat01-pBV beetSat02-pEV beetSat06-pAc34 beetSat07-pHC8 beetSat08--beetSat16	beetSat02-pEV beetSat03-pTS5 beetSat04-pTS4.1 beetSat05 beetSat06-pRp34
impact on chromosomes	emergence of similar chromosome structure across all 9 chromosomes	emergence of patchwork chromosomes	emergence of 9 chromosomes with conceptually similar structure but three variants
amplification and homogenization	few satDNAs are strongly amplified and homogenized	many satDNAs emerged that are moderately amplified; homogenization incomplete: no satDNA reaches high amplification and overall satDNA abundance remains low	few satDNAs are strongly amplified and homogenized
biology	the number of species within the genus is low and their distribution is restricted to limited environments (except for the widespread <i>B. maritima</i> , the progenitor of <i>B. vulgaris</i>)	relatively many species within the genus (some probably already extinct) with usually wide distribution areas; frequent hybridization and polyploidy	very few species within the genus, yet the widest distribution among the beets

Fig. 5: Scenario for the evolution of satDNAs during the history of beet speciation. As the satDNAs beetSat02-pEV and beetSat06 are also present in the spinach/quinoa outgroup (Dechyeva and Schmidt, 2006; Schmidt *et al.*, 2014), we assume an emergence of these satDNAs even before the split of the beet crown. All other identified satDNAs seem to have appeared earliest in the direct beet ancestor with the subsequent emergence of genus- and section-specific satDNAs and different amplification and differentiation patterns. The age of the respective beet taxa has been estimated in million years ago (mya) by Hohmann *et al.* (2006).