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Abstract 14
Single-cell CRISPR-based transcriptome screens are potent genetic tools for 15

concomitantly assessing the expression profiles of cells targeted by a set of guides RNA 16

(eRNA), and inferring target gene functions from the observed perturbations. However,

due to various limitations, this approach lacks sensitivity in detecting weak 18
perturbations and is essentially reliable when studying master regulators such as 19
transcription factors. To overcome the challenge of detecting subtle gRNA induced 20

transcriptomic perturbations and classifying the most responsive cells, we developed a =
new supervised autoencoder neural network method. Our Sparse supervised 2
autoencoder (SSAE) neural network provides selection of both relevant features (genes) 2
and actual perturbed cells. We applied this method on an in-house single-cell 24
CRISPR-interference-based (CRISPRI) transcriptome screening (CROP-Seq) focusing 2
on a subset of long non-coding RNAs (IncRNAs) regulated by hypoxia, a condition that 2
promote tumor aggressiveness and drug resistance, in the context of lung 27
adenocarcinoma (LUAD). The CROP-seq library of validated gRNA against a subset of 2
IncRNAs and, as positive controls, HIF1A and HIF2A, the 2 main transcription factors 2

of the hypoxic response, was transduced in A549 LUAD cells cultured in normoxia or 30
exposed to hypoxic conditions during 3, 6 or 24 hours. We first validated the SSAE 3
approach on HIF1A and HIF2 by confirming the specific effect of their knock-down 3

during the temporal switch of the hypoxic response. Next, the SSAE method was able 33
to detect stable short hypoxia-dependent transcriptomic signatures induced by the 3

knock-down of some IncRNAs candidates, outperforming previously published machine
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learning approaches. This proof of concept demonstrates the relevance of the SSAE 3

approach for deciphering weak perturbations in single-cell transcriptomic data readout s

as part of CRISPR-based screening. 38
Introduction »
Cancer cells in solid tumors often suffer from hypoxic stress and adapt to this 40

micro-environment via the activation of Hypoxia inducible factor (HIF), a heterodimeric — «

transcription factor composed of either HIF-1a or HIF-2«v (initially identified as 2
endothelial PAS domain protein (EPAS1)) and HIF-18 /ARNT subunits [153]. In 3
normoxia, HIF« is continuously degraded by an ubiquitin—dependent mechanism "

mediated by interaction with to the von Hippel-Lindau (VHL) protein. Hydroxylation s
of proline residues in HIF« is necessary for VHL binding and is catalyzed by the 46
a-ketoglutarate-dependent dioxygenases prolyl hydroxylases (PHD). During hypoxia, a7
PHDs are inactive, leading to HIF-« stabilization, dimerization with HIF-15 and finally 4

translocation into the nucleus to bind to E-box-like hypoxia response elements (HREs) 4

within the promoter region of a wide range of genes that control cellular oxygen 50
homeostasis, erythrocyte production, angiogenesis and mitochondrial metabolism [4]. 51
These molecular changes are notably crucial for cells to adapt to stress by lowering 52

oxygen consumption by shifting from oxidative metabolism to glycolysis. While HIF-1 s
and HIF-2 bind to the same HRE consensus sequence, they are non-redundant and have s
distinct target genes and mechanisms of regulation. It is generally accepted that the 55
individual HIF's have specific temporal and functional roles during hypoxia, known as 56
the HIF switch, with HIF-1 driving the initial response and HIF-2 directing the chronic s

response [5]. In most solid tumors, including lung adenocarcinoma (LUAD), the degree s

of hypoxia is associated with poor clinical outcome. Induction of HIF activity 50
upregulates genes involved in many hallmarks of cancer, including metabolic 60
reprogramming, epithelial-mesenchymal transition (EMT), invasion and metastasis, 61
apoptosis, genetic instability and resistance to therapies. Emerging evidence have 62

highlighted that hypoxia regulates expression of a wide number of non-coding RNAs 63
classes including microRNAs (miRNAs) and long non-coding RNAs (IncRNAs) that in = e

turn are able to influence the HIF-mediated response to hypoxia [6H8]. LncRNAs 65
constitute a heterogeneous class of transcripts which are more than 200 nt long with low s
or no protein coding potential, such as intergenic and antisense RNAs, transcribed 67
ultraconserved regions (T-UCR) as well as pseudogenes. Recent advances in cancer 68

genomics have highlighted aberrant expression of a wide set of IncRNAs [9], revealing &

their roles in regulating the genome at several levels, including genomic imprinting, 70
chromatin state, transcription activation or repression, splicing and translation n
control [10]. LncRNAs can regulate gene expression through different mechanisms, as 2
guide, decoy, scaffold, miRNA sponges or micropeptides. Of note, recent studies 73

demonstrated the role of several IncRNAs in the direct and indirect regulation of HIF 74

expression and pathway through diverse mechanisms [7]. Moreover, hypoxia-responsive s
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IncRNAs have been shown to play regulatory functions in pathways associated with the

hallmarks of cancer. For instance, the hypoxia-induced Nuclear-Enriched Abundant 7
Transcript 1 (NEAT1) IncRNA has been associated with the formation of nuclear 7
structures called paraspeckles during hypoxia as well as an increased clonogenic survival 7
of breast cancer cells. Another highly studied IncRNA, Metastasis-Associated Lung 80
Adenocarcinoma Transcript 1 (MALAT1, also known as NEAT2) has been found 81
upregulated by hypoxia in LUAD A549 cells and associated with various cellular 8
functions depending on tumor cell types including cell death, proliferation, migration 83

and invasion [11]. Starting from an expression screening in LUAD patients samples and &
cell lines subjected to hypoxia, we have characterized a new nuclear hypoxia-regulated e
transcript from the Lung Cancer Associated Transcript (LUCAT1) locus associated 8
with patient prognosis and involved in redox signaling with implication for drug 87
resistance [12]. Additional promising IncRNAs candidates regulated by hypoxia and/or s
associated with bad prognosis have been identified but deciphering the regulatory 89
functions of these poorly annotated transcripts remains a major challenge. Pooled 90
screening approaches using CRISPR-based technology have offered the possibility to o1
evaluate mammalian gene function, including IncRNAs at genome scale levels [13]. More o
recently, they have been applied to cancer cell lines and have confirmed the oncogenic or o
tumor suppressor roles of some IncRNAs [14]. This strategy is able to test a large o
number of candidates simultaneously but require well identified phenotypes such as cell o
proliferation, cell viability, or cell migration. More subtle screens require techniques 96
based on transcriptomic signatures [15] and approaches have been developed to combine o
CRISPR gene manipulation, including CRISPR. interference and single-cell RNA-seq o8
(scRNA-seq) based on droplet isolation, such as Perturb-seq [16], CROP-seq [17] and %
ECCITE-seq [18]. These methods combine the advantages of screening a large number 100

of genes simultaneously and linking the modifications to the transcriptomic phenotype, 1

all by breaking down the perturbation signal cell by cell [10L/16]. 102

In single cell omics applications, most of the quantified features are weakly detected, 103
resulting in large, sparse and noisy data which required feature selection to extract 104
biologically relevant signals [19]. Moreover, cells are often grouped according to their 105
phenotype and/or their experimental condition in order to compare features 106

quantification between the defined cell classes. However, the intra-classes heterogeneity 10
can mask a signal of interest. This is particularly the case in the context of CRISPRi 108
screens with a single-cell transcriptomic readout where the inhibition level of the target 10
gene varies between each cell and induces a more or less detectable perturbation 110
signature. Classification tools such as Mixscape [20], based on Mixture Discriminant m
Analysis [21], has proven efficacy to identify strong CRISPR-induced effects but was 112
unable to detect subtle weak transcriptomic perturbations. 113

In the present work, we have developed a single-cell CRISPR-interference-based 114
(CRISPRI) transcriptome screening based on the CROP-Seq approach to gain insight on 1
the regulatory functions of hypoxia-regulated IncRNAs. As a proof-of-concept, we 116

generated a CROP-seq library, including validated guide RNAs (gRNA) targeting six w7
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previously identified IncRNAs regulated by hypoxia and/or associated with bad 118
prognosis [12] as well as the two master transcription factors of the hypoxic response 119
(HIF1A and HIF2/EPAS1) and negative control guides. To optimize analysis of 120

fine-tuned regulations in this dataset, we have adapted a Sparse supervised autoencoder 1z
(SSAE) neural network [22], where we relax the parametric distribution assumption of 12
classical VAE. It leverages on the known cell labels, corresponding to the received 123
gRNA, and a classification loss to incite the latent space to fit the true data distribution. 12
We first validated the approach on HIF1 and HIF2/EPAS1 knock-down, showing a good 1

sensitivity to detect the known temporal switch between both regulators. We then 126
applied the SSAE to the cells treated with the different hypoxia-regulated IncRNAs 127
gRNA to identify subtle signatures linked to the knock-down of the IncRNAs. 128
Materials and methods 129
Lentivirus production 130

Lentiviruses were produced using a standard Lipofectamine 2000™transfection protocol, 13

using one million HEK293 cells seeded in a 25 cm2 flask in DMEM medium 132
supplemented with 10% bovine serum. A mixture of four plasmids (3 pg pMDLg/pRRE 13
(addgene 712251”), 1.4 ng pRSV-Rev (addgene ”12253”), 2 ng pVSV-G (addgene 134

712259”) and 2.5 pg of the plasmid containing the expression cassette to package the 135
pooled CROP-seq guides) was transfected. Forty-eight hours later, the medium was 136
collected, centrifuged for 5 minutes at 3000 rpm, and 2.5 mL supernatant containing the 1
viral particles was collected and used to infect cells or aliquoted and stored at -80°C. 138
Large scale preparations of lentivirus were produced at the Vectorology facility, PVM, 13
Biocampus (CNRS UMS3426), Montpellier, France. 140

Generation of dCas9-expressing A549 cell line 11

The lung adenocarcinoma cell line A549 was infected with a lentivirus produced from 1
the plasmid lenti- dCas9-KRAB-MeCP2 (a gift from Andrea Califano, addgene 122205) 1
allowing the expression of a fusion protein MeCP2-KRAB-dCas9 and a gene conferring 1
resistance to blasticidin. Infected cells were then grown in the presence of 10 ng/mL of 1
blasticidin (Sigma). Selection of A549-KRAB-MeCP2 cells was complete within 3 to 5 s
days. Bulk blasticidin positive cells were amplified and cloned for the CRISPRi 147
scRNA-seq experiments. The best clone was selected according to the expression level of s
MeCP2-KRAB-dCas9 mRNA and to the most effective inhibition of NLUCAT1 using s
the NLUCAT1 sg3 RNA. 150

November 20, 2023 4


https://doi.org/10.1101/2023.07.11.548494
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.11.548494; this version posted November 21, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Cloning of individual guides in the CROPseq-Guide-Puro 151

plasmid 152

The plasmid CROPseq-Guide-Puro (Datlinger et al. Nat Methods 2017) (a gift from C 153
Bock, Addgene plasmid 86708) was digested using the restriction enzyme BsmBI (NEB 15
R0580) for 2h at 50°C. The relevant fragments (around 8 kB) were gel-purified using the 15
Qiagen Gel purification kit and stored at —20°C in 20-fmol aliquots. Guides against the s
targeted genes (see Supplemental Table 1 for selected sequences) were cloned using the s
Gibson assembly method (NEBuilder HiFi DNA Assembly Master Mix, NEB E2621). 1

Aliquoted, BsmBI-digested plasmid was mixed with 0.55 ul. guide oligonucleotide 159
(200nM) in 10pl total volume, combined with 10ul 2X NEBuilder HiFi Assembling 160
Master mix and the mixture was incubated at 50°C for 20 minutes. 8uL of NEBuilder 1
Assembling mixture were incubated with 100 pL of Stabl2 competent E coli. The 162
mixture was heat-shocked at 42°C for 45 seconds and transferred to ice for 2 minutes. 163

SOC medium (900 nl) was added to the Stabl2-NEBuilder mixture and the mix was 164
incubated at 37°C for 1 hour. Transformed bacterial cells (350nl) were plated onto LB 165
agarose plates containing ampicillin (100pg/mL) and incubated overnight at 37°C. 166
Individual colonies were picked and grown overnight in 5 mL of Terrific Broth medium 17
containing 150pg/mL ampicillin and low-endotoxin, small scale preparation of plasmid 16

DNA were performed using the ToxOut EndoFree Plasmid Mini Kit from BioVision 160

(K1326-250). All plasmids were verified by Sanger sequencing with the primer 170
5-TTGGGCACTGACAATTCCGT-3'. 71
Selection of the guides 172
A549-KRAB-MeCP2 cells were infected with lentivirus obtained from individual 3

CROPseq-Guide-Puro plasmids, encoding individual guides. Infected cells were then 174
grown in the presence of 1 ng/mL of puromycin (Sigma). A week later, total RNAs 175
were purified from A549-KRAB-MeCP2 cells infected with guide encoding lentiviruses 17
and RT-qPCR (primers sequences presented in Supplemental Table 2) were performed 1
to measure expression of the targeted genes. A validated guide was defined as a guide s
providing at least 75% inhibition of targeted gene expression compared to a control 179

guide. 180

Lentiviral transduction with gRNA libraries and cell preparation

for chromium scRNA-seq 162

A549-KRAB-MeCP2 cells were transduced with different amounts of the viral stock 183
containing the library of pooled, selected gRNA. After six hours, the virus-containing  1ss
medium was replaced by fresh complete culture medium. Puromycin selection (1pg/ml) 1ss
was started at 48 h post-transduction, and two days later, the plate with about 30% 186
surviving cells was selected, corresponding roughly to a MOI=0.3. The cells were then 1

amplified under puromycin selection for 5 days. The cells were then plated and further 1ss
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cultured in normoxia or in hypoxic condition (1% O2) for 3h, 6 h or 24h. Cells were 189
trypsinized counted and assessed for cell viability using the Countess 3 FL (Fisher 190
Scientific). Samples were then stained for multiplexing using cell hashing [23], using the 1
Cell Hashing Total-Seq-ATM protocol (Biolegend) following the protocol provided by 10
the supplier, using 4 distinct Hash Tag Oligonucleotides-conjugated mAbs 103
(TotalSeq™-B0255, B0256, B0257 and B0258). Briefly, for each condition, 1.106 cells 104
were resuspended in 100uL of PBS, 2% BSA, 0.01% Tween and incubated with 10uL Fc 105
Blocking reagent for 10 minutes at 4°C then stained with 0.5ng of cell hashing antibody 1
for 20 minutes at 4°C. After washing with PBS, 2% BSA, 0.01% Tween, samples were 1o
counted and merged at the same proportion, spun 5 minutes 350 x g at 4°C and 108
resuspended in PBS supplemented with 0.04% of bovine serum albumin at final 199

concentration of 500 cells/pL. Samples were then adjusted to the same concentration, 20

mixed in PBS supplemented with 0.04% of bovine serum albumin at a final 201
concentration of 100 cells/ul and pooled sample were immediately loaded onto10X 202
Genomics Chromium device to perform the single cell capture. 203

Generation of CROP-seq librairies and single-cell RNA-seq data

processing 205

After single-cell capture on the 10X Genomics Chromium device (3’ V3), libraries were 206
prepared as recommended, following the Chromium Next GEM Single Cell 3’ Reagent 207
Feature Barcoding V3.1 kit (10X Genomics) and a targeted gRNA amplification [24] 208
with respectively 6, 8 and 10 PCR cycles. Libraries were then quantified, pooled (80% 200
RNA libraries, 10% gRNA libraries and 10% hashing libraries) and sequenced on an 210
Nlumina NextSeq 2000. Alignment of reads from the single cell RNA-seq library and a1
unique molecular identifiers (UMI) counting, as well as oligonucleotides tags (HTOs) 2
counting, were performed with 10X Genomics Cell Ranger tool (v3.0.2). Reads of the 2
gRNA library were counted with CITE-seq-Count (v1.4.2). Cells without gRNA counts 2.
were discared. Counts matrices of total UMI, HTOs, and gRNA were thus integrated on 25

a single object using Seurat R package (v4.1.0), from which the data were processed for s

analysis. On the total of 19663 cells, 817 cells without gRNA counts were discared. 217
HTOs and gRNA were demultiplexed with HTODemux() and 218
MULTTseqDemux(autoThresh = TRUE) functions respectively, in order to assign 210
treatment and received gRNA for each cell. On the remaining 18846 cells, only cells 20

identified as “Singlet” after demultiplexing of HTO counts were conserved (14276 cells). o
The repartition of cells assigned as ”Doublet” (high expression of at list 2 different 2
gRNA), ?Negative” (no detected gRNA) and ”Singlet” (a unique detected gRNA) in all 23
conditions is showed in (Table . Finally, after transforming the data of the subset of 2
"Singlet” cells using SCTransform(), computing PCA, and performing KNN clustering, 2
2 clusters of low UMI content and high mitochondrial content cells (3087 cells) were 26

eliminated for the rest of the analysis. 27
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Method: a new sparse supervised autoencoder neural network 28
(SSAE) 29
State of the art of neural networks methods 230

Deep neural networks have proven their efficiency for classification and feature selection 2
in many domains 25|, and have also been applied to omics data analyses [26}27]. 232
Among the proposed neural networks architectures, autoencoders are able to learn a 233
representation of the data, typically in a latent space of lower dimension than the input 234
space. As such, they are often used for dimensionality reduction [28] and have 235
applications in the medical field as data denoisers or relevant feature selectors [29,30]. 2
A widely used type of autoencoders is the Variational Autoencoder (VAE) [31]. This 237

VAE adds the assumption that the encoded data follows a prior gaussian distribution, 23

and thus combines the reconstruction loss with a distance function (between the 239
gaussian prior and the actual learned distribution). For example, VAEs have been 240
applied to scRNA-seq to predict cell response to biological perturbations [32]. 21

Recently, [33], provided a supervised auto-encoder neural network that jointly predicts 2o
targets and inputs (reconstruction). However, neither VAEs [31] nor SAEs [33] provide 2

a solution to the problem of relevant features and cells selections needed to increase the 2

sensitivity of CRISPR-based perturbation associated with scRNAseq readout. 25
SSAE criterion 26
In this section, we cope with these two issues by providing a sparse supervised 27

autoencoder (SSAE) neural network method for selecting both relevant features (genes) 24
and actual perturbed cells. Figure [1| depicts the main constituent blocks of our 29
proposed approach. Note that we added a ”soft max” block to our SSAE to compute 250
the classification score. Let X be the concatenated raw counts matrix ( n x d) (n is the o
number of cells and d the number of genes) of control cells (targeted with a negative 252
control gRNA) and gRNA-targeted cells for each target gene in a particular condition  2s3
(Normoxia, Hypoxia 3h, 6h or 24h). Let Y be the vector of labels ( n x 1) which 254
component is 0 for control cells and 1 for the perturbed cell. Those labels, either 255
”control” or ”gRNA-targeted”, has been previously assigned for each cell according to 256
the quantification of each gRNA of the CROP-seq library. Let Z be the encoded latent 257
matrix (2 x 2). The matrix X ( n x d) is the reconstructed data. W is the matrix of the s

weights of the the linear fully connected autoencoder neural network. 250

The goal is to compute the network weights W minimizing the total loss which 260
includes both the classification loss and the reconstruction loss. To perform feature 261
selection, as large datasets often present a relatively small number of informative 262
features, we also want to sparsify the network, following the work proposed in [34]. 263
Thus, instead of the classical computationally expensive lagrangian regularization 264
approach [35], we propose to minimize the following constrained approach [36]: 265

Loss(W) =H(Z,Y) + M(X — X) st. |[W]} <n. (1)
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We use the Cross Entropy (CE) Loss for the classification loss H. We use the robust 2

Smooth £; (Huber) Loss [37] more robust than the mean square error (MSE) as the 267
reconstruction loss . 268
Sparsity and gene selection using structured projections 269

A classical approach for structured sparsity is the Group LASSO method [38}/39] which 270

consists of using the ¢3 ; norm for the constraint on W. However, the /5 ; norm does an
not induce an efficient sparse structured sparsity of the network [40], which leads to b1P)
negative effects on performance. 73

In our method we achieve structured sparsity (feature selection) using the bilevel ¢1 1 2
projection [34] of the weights W. We compute this bilevel ¢; ; projection using fast £ 2
algorithms [41,42]. We can also use the new ¢ o, which provides similar sparsity 276
performances [43]. Note that low values of 1 imply high sparsity of the network. We 277
compute feature importance for the sparse supervised autoencoder using the SHAP 218
method, implemented in the captum python package [44]. Those ranked weights give 279
the top discriminating genes between the compared classes, which can be interpreted as 280
the perturbation signature. 281

The main difference with the criterion proposed for VAEs in [31] and the criterion 2

proposed for SAEs in [33] is the introduction of the constraint on the weights W to 263
sparsify the neural network, in order to select relevant genes. 284
Selecting actual perturbed cells using the softmax classifier 285
The goal of this section is to estimate the cells actually perturbed. We propose the 286
following procedure thanks to the softmax formula. A first SSAE run gives a 287

perturbation score thanks to the softmax layer [45] for both non-targeted control cells 2

and for cells targeted for a particular gene. 289

exp(Z;)

softmax(Z) = m
j=1 J

Vi=1,2 (2)

According to this specific score, called perturbation score, cells are separated into 2 200
subsets : targeted cells with a score > 0.5 are classified as ”perturbed” cells, whereas 201
targeted cells with a score < 0.5 are classified as "non-perturbed” cells. A new data 202
matrix and a new label vector is generated, containing only the raw counts and labels of 203
the selected perturbed cells and an equivalent number of randomly sampled 204
non-targeted control cells in order to balance both classes. A second SSAE run provides 20
a new list of the most discriminant features between both classes, ranked by their 296
weight. This procedure is run multiple times with different initialization seeds in order 2o
to compute a mean and a standard deviation of the obtained ranks. The standard 208
deviation ranks are used to evaluate the robustness of the perturbation signature. Again, 20

neither VAEs [31] nor SAEs [33] provide a solution to the actual perturbed cell selection. 300
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Implementation of the SSAE framework 301

Following the work by Frankle and Carbin in [46], and further developed in [47], we 302
follow a double descent algorithm, originally proposed as follows: after training a 303
network, set all weights smaller than a given threshold to zero, rewind the rest of the 304
weights to their initial configuration, and then retrain the network from this starting 305
configuration while keeping the zero weights frozen. We replace the thresholding by our s
£1,1 projection. We implemented our SSAE method using the PyTorch framework for 307
the model, optimizer, schedulers and loss functions. We train the network using the 308
classical Adam optimizer [48]. We used a symmetric linear fully connected network [22], 300
with the encoder comprised of an input layer of d neurons, one hidden layer followed by 310
a ReLU activation function and a latent layer of dimension k = 2 since we have two 311
classes. The accuracy of the model, the mean and variance of the rank of selected genes s
was computed for each SSAE run using 4-fold cross-validation (which means that the a3

train-validation split is random every time) and a mean over 3 seeds. 314

1 Results 215

1.1 Single-cell CRISPRIi screening of hypoxia-regulated IncRNA s

In order to gain new insights into the molecular functions of 6 hypoxia-regulated 317

IncRNAs in LUAD cells we performed a single-cell CRISPRi transcriptome screening 318

based on the CROP-Seq approach. We transduced A549 cells expressing double 310
repressor Krab-MeCP2-dCas9 with a mini-library containing 12 validated gRNA 320
targeting CYTOR (also known as LINC00152), LUCAT1, MALAT1, NEAT1, SNHG12 s
and SNHG21 as well as the two key regulators of the hypoxic response, HIF1A and 32
HIF2/EPAS1. Each guide was individually validated by qPCR in A549 cells, showing a s
75 to 95% inhibition of the target compared with control cells (Table [1)). Two 324

additional guides, with no effect on the genome, were used as negative controls. In order s
to mimic the hypoxic environment in which tumors develop in vivo, we equally divided 32
the transduced dCas9-Krab-MeCP2 A549 cells in 4 samples that we then cultured in 327
normoxia or in hypoxia during 3, 6 or 24 hours Figure [2JA. Cells from each sample 328
were labeled with a specific barcoded antibody (HTOs), pooled, and simultaneously 329
sequenced using droplet based scRNA-seq (10X Genomics Chromium). The received 330
gRNA and the culture condition were subsequently assigned for each cell by 331
demultiplexing both gRNA and HTOs counts respectively. 332

Overall, we found a balanced representation for each treatment and for each gRNA 33
among the sequenced cells, except for the cells targeted by ?SNHG12-sg3” which were 334
depleted in all conditions (Figure 7 Table . Moreover, the expression of this 335
particular gRNA was lowly detected in those cells, confirming previous observations that s
this gRNA induced cell death and that only cells with low expression survive. Inhibition s
of target gene expression in the presence of their corresponding gRNA were validated in 338
all 4 conditions, as well as their progressive increase (CYTOR, LUCAT1, NEAT1, 339
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SNHG12) or decrease (HIF1A and SNHG21) during hypoxia exposure (Figure [2/C). 340

Table 1. gRNA library

gRNA Target Type % Inhibition
HIF1A-sgl HIF1A >95%
HIF1A-sg2 Hypoxic response regulator >95%
HIF2-sgh HIF2/EPAS1 >95%
LINC00152-sg3 CYTOR >75%
LUCAT-sg3 >97%
LUCAT-sgh LUCATI >90%
MALAT-sgl MALAT1 >95%
NEAT1-sg2 Hypoxia-regulated IncRNA >85%
NEAT1-sg6 NEATI >95%
SNHG12-sgl >75%
SNHG12-sg3 SNHGI2 >90%
SNHG21-sgh SNHG21 >85%
Neg-sgl .
Neg-sg? None Negative control None

Table 2. Repartition of Doublet, Singlet, and Negative cells in all conditions
after demulplexing of gRNA counts

Normoxia (%) | Hypoxia-3h (%) | Hypoxia-6h (%) | Hypoxia-24h (%)
Doublet 8378 9.908 7717 8.096
HIF1A-sgl 6,752 5,766 5,681 9,181
HIF1A-sg2 8.346 8.236 8110 8.265
HIF2-sg5 4,720 5,063 3,859 9,157
LINC00152-sg3 4,720 4,918 5,645 5,108
LUCAT1-sg3 9,345 5,911 5,288 6,048
LUCAT1-sgb 8,690 8,842 9,218 10,120
MALAT1-sgl 6,471 6,686 7,181 5,976
NEAT1-sg2 5,220 5.354 1823 5,373
NEATI-5¢6 3501 1288 3.930 3952
SNHG12-sgl 4,189 3,125 3,823 3,759
SNHG12-s¢3 2,094 2.253 1,751 1,639
SNHG21-sgh 6,690 6,492 6,967 7,398
Neg-sgl 6,346 5838 6.717 6.554
Neg-sg2 7,221 6,783 7,503 7,373
Negative 11,316 10,538 11,790 10,000
Total cell number 3199 4128 2799 4150
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1.2 Mathematical and biological validation of the SSAE s

approach 32

In order to validate the SSAE approach, we first evaluated the effect of feature and cell 343
selection on the accuracy of the model, and then the biological relevance of the detected s
transcriptomic perturbations induced by the knock-down of the two main regulators of s
the hypoxic response, HIF1A and HIF2. 346

1.2.1 Feature and cell selection improve the accuracy of the model 37

We compared the performance of SSAE, for different criterion (MSE and Huber), with s

or without gene selection using ¢; ; constraint projection, and with or without cell 340
selection on the dataset of HIF2-targeted cells and negative control cells cultured in 350
hypoxic condition for 24h. Table [3|indicates that the SSAE with ¢; ; constraint 351

projection and Huber criterion is able to discriminate both classes by selecting only a s
fraction of measured genes (19.46%), as it is shown in the matrix of connections 353
between the first and second layer (Figure ) Moreover, the improvement of 5.39%  3s
of the model accuracy by using SSAE with ¢; ; constraint projection compared to SSAE  sss

without projection shows the efficiency of selecting only the most relevant features. 356
Criterion Gene selection (%.). | F1 score (%.) | accuracy (%.)
CE + Huber and No-proj 97 80.54 87.29
CE + Huber + /411 19.46 90.48 92.68
CE + MSE + ¢4, ; 19.46 89.86 92.16

Table 3. Comparison of different criterion on HIF2 datase(CE is the cross entropy)

Figure shows the distribution of perturbation scores computed with the softmax 357
formula [2| for non-targeted and HIF2-targeted cells. Running the SSAE after selecting 358
only perturbed HIF2-targeted cells, without feature selection, improves the accuracy by  sso
4.67% (Table . Combining feature and cell selection improves the accuracy by 10.4%. 360
Thus, we further analyzed the transcriptomic perturbations induced by the different 361
gRNA using SSAE combining both gene and cell selection. The percentage of cells 362
classified as perturbed among targeted cells for each gRNA in each condition are shown 363
in Figure 364

Table 4. SSAE Accuracy without or with feature and cell selection
SSAE (without feature | SSAE (only with feature | SSAE (with feature and
and cell selection) selection) cell selection)
87.29% 92.68% 97.67%

1.2.2 Knock-down of HIF1A and HIF2 differentially modulate the hypoxic s

respomnse 366

Globally, the inhibition of HIF1A induced a strong transcriptomic perturbation which e
affected more than 85% of targeted cells in all conditions (Table [5| and Figure [4). 368
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Even in normoxic condition, the signature amplitude was sufficient to allow a 369
classification accuracy above 93%. Among the genes modulated independently from the s
hypoxic status, we found SNAPC1, IGFL2-AS1, BNIP3L and LDHA, whereas PGK1, s
PDK1, or BNIP3 modulations were specific to hypoxic conditions (Figure ) . We 3
also found gene modulations specific to early (KDM3A, HIPLDA, ZNF292, EGLN3) or s
late (SLC16A3, GPI, PGAM1, TPI1) hypoxic response, which correspond to the 374
progressive establishment of the HIF1A-mediated metabolic switch [49]. In normoxia, s
the knock-down of HIF2 did not produce stable perturbations, except for its own target s
gene EPAS1 (Figure ) The 2 early time points of hypoxia exposure showed an 377
improvement of the associated classification accuracy, which reflected a slight increase of s
the transcriptomic perturbation induced by HIF2 knock-down in these experimental 379
settings. This early signature was mainly driven by genes involved in lipid metabolism 33
ANGPTL4, IGFBP3 and HILPGA. Discrepancies between the results at 3h or 6h were
mainly due to the lower number or targeted cells at 6h (104 instead of 202), which 382
impacted the classification. At 24h of hypoxic exposure, the effect of HIF2 inhibition 383
reached its maximum, with 84% perturbed cells and an accuracy of 97% (Table [5|and  ss
Figure . However, this signature was quite different from that of HIF1A-targeted 385
cells under the same condition. Indeed, some upregulated (ALDH3A1, CPLX2, FTL, 386

PAPPA) or downregulated (ATP1B1, FXYD2, ANXA4, LOXL2) genes in 387
HIF2-targeted cells were not modulated in HIF1A-targeted cells (Figure ) 388
Moreover, several genes showed an opposite perturbation between the two groups of 380
cells. This was the case for BNIP3, PGK1, GPI, FAM162A, SLC16A3, TPI1, or 390

PGAMI1 which were downregulated upon HIF1A inhibition but were found upregulated su
upon HIF2 inhibition after 24h of culture in hypoxia. These results were consistent with  so
the known role of HIF2, which is activated upon prolonged exposure to hypoxia and is s
involved in the regulation of the chronic hypoxic response |5]. They also confirm that in 30
LUAD cells, HIF1A and HIF2-regulated functions are specific, or even antagonistic for o

certain genes, which has been previously demonstrated in other cancers [50]. 396

Table 5. SSAE classification and accuracy for HIF1A and HIF2 gRNA
targeted cells

Treatment Targeted cells | Perturbed cells (%) | Accuracy (%)
HIFIA | Normoxia | 475 86.7 95,33
HIFIA | Hypoxia 3h | 554 875 94,00
HIF1A | Hypoxia 6h | 372 85,8 93,67
HIF1A | Hypoxia 24h | 554 85,7 94,67
HIF2 Normoxia 147 11.6 66,67
HIF2 | Hypoxia 3h | 202 51 86,33
HIF2 Hypoxia 6h 104 38,5 82,33
HIF2 | Hypoxia 24h | 213 84 97,67
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1.3 Knock-down of hypoxia-regulated IncRNA LUCAT1 leads s

to hypoxic condition-dependent transcriptomic modulations s

We then applied the SSAE method to classify cells treated with the 6 gRNA targeting 30
hypoxia-regulated IncRNAs and cultured in the 4 conditions. Globally, the SSAE was 0
able to classify perturbed and control cells with a good overall accuracy around 80%, a01
except for SNHG12 and SNHG21 (Table |§| and Figure E[) However, despite their a02
promising accuracies, we did not detect any other stable perturbations than the target s
gene for both MALAT1 and NEAT1 targeted cells, as indicated by the obtained high 40
means and standard deviations of the computed ranks, while those two IncRNAs were 0
previously associated with various gene regulation functions [51/52] (Figure [6]A-B). 406
The SSAE outcomes were different for the classification of LUCAT1-targeted cells. 207
Indeed, the transcriptomic inhibition of LUCAT1 resulted in a stable upregulation for s
PCOLCE2 and ISCA1 in normoxia, HDHD2 after 3h, and 6h of hypoxia (Figure Ep) 400
ISCA1 and HDHD2 encode for metal ion binding proteins, whereas TFCP2 is a known 10
oncogene. After 24h of hypoxia, a completely different perturbation signature was an
found, with at least 6 stably modulated genes, including the upregulation of KDM5C, a2
TMEM175 and NIT1, as well as the downregulation of ATP6AP1, PEX1 and PHF20. a3
ATP6AP1 and PEX1 are respectively components of the V-ATPase and the peroxisomal 4
ATPase complexes, while TMEM175 is a proton channel also involved in pH regulation. s
KDMC5 and PHF20 are both involved in chromatin remodeling and transcriptomic 216
regulation, while NIT1 is associated to tumor suppressor functions. This particular a7
signature allowed the classification of 90,4% of targeted cells with an accuracy of 85,67% s
(Table |§| and Figure . These results indicate that LUCAT1 inhibition may induce a9
hypoxic condition-dependent transcriptomic modulations that potentially impact tumor a2

survival and gene regulatory processes during prolonged exposure to hypoxic conditions,

completing our previous observations [12]. 422
For LINC00152, the combined inhibition of CYTOR/LINC00152 with MIR4435-2HG
(Figure EA), whose sequences are highly homologous (99% in the 220 bp region o

including the most efficient gRNA), was sufficient to select half of the targeted cells 425
with an accuracy above 85% regardless of the condition (Table [5| and Figure [4]). 226

For the SNHG12 and SNHG21 datasets, the first round of SAE selected only around
10% of perturbed cells (Table |§| and Figure E[) Thus we could not run the SAE for a2
the second round because of a too low number of cells for the 4 fold cross validation. 229
For those 2 genes, we just reported the average accuracies obtained after the first round 430
of the SSAE (Table @ As SNHG21 expression is relatively low in LUAD cells and is s
decreased by hypoxic stress, the extent of its inhibition was therefore weaker and not a2
sufficient to distinguish targeted from control cells. Combined with the lack of 433
transcriptomic effect induced by its knock-down, it explains the poor classification a3
results and the randomness of features selected for cells targeted by this particular gene 43
under all conditions (Figure [7[B). 436
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Table 6. Supervised autoencoder classification and accuracy for hypoxia
regulated IncRNAs gRNA targeted cells (*obtained without cell selection)

Treatment Targeted cells | Perturbed cells (%) | Accuracy (%)

LUCAT1 Normoxia 438 51,8 73,33
LUCAT1 | Hypoxia 3h | 583 T 82,33
LUCAT1 Hypoxia 6h | 391 63,9 79,00
LUCATI | Hypoxia 24h | 666 90,4 85,67
MALAT1 Normoxia 205 37,1 82,67
MALAT1 | Hypoxia 3h | 269 45 82,33
MALATI | Hypoxia 6h | 194 371 78,00
MALATI | Hypoxia 24h | 241 26,1 78,67
NEAT1 Normoxia 274 59,1 86,33
NEAT1 Hypoxia 3h 390 73,3 89,00
NEATT Hypoxia 6h | 237 52.7 85,33
NEAT1 Hypoxia 24h | 566 58,7 87,33
LINC00152 | Normoxia 147 55,1 87,67
LINC00152 | Hypoxia 3h | 200 59 91,67
LINCO00152 | Hypoxia 6h 150 58 86,33
LINCO00152 | Hypoxia 24h | 209 12,6 85,00
SNHG12 Normoxia 196 14,8 65*

SNHG12 Hypoxia 3h | 217 14,7 69*

SNHG12 | Hypoxia 6h | 154 3.9 67 4%
SNHG12 Hypoxia 24h | 213 8,5 T1*

SNHG21 Normoxia 211 5,2 60.7*
SNHG21 | Hypoxia 3h | 256 3,5 61.1%
SNHG21 | Hypoxia 60| 192 6.8 59.1%
SNHG21 Hypoxia 24h | 299 2 63,5%

1.4 SSAE classification revealed an anti-apoptotic signature o

expressed by a subset of SNHG12-targeted cells in response .
to the cytotoxic effect of one of its gRNA w39

Looking at the SSAE classification outcomes for SNHG12-targeted cells, only about 440
15% of them were classified as perturbed in normoxia and after 3h of hypoxia, with a
poor accuracy (Table @ and Figure . The number of selected cells was even worse
for a longer exposure to hypoxia. a3

Nevertheless, the ranked list of top discriminant features between the few perturbed 4

cells and control cells obtained for the first two time points showed a notable s
perturbation signature. In normoxia, it was only composed of BAG1 upregulation, a6
whereas after 3h of hypoxia exposure, this signature was completed by GAS5 a7
(snoRNAs-containing IncRNA gene), ARRB2, ATF5, and ETHE1 upregulations 448

(Figure ) These 5 genes are all known anti-apoptotic factors. We hypothesized that 4
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this anti-apoptotic signature was expressed by a subset of LUAD cells that were actively  aso
escaping the cytotoxic effect we systematically observed for the most efficient of the two s
gRNA selected for targeting SNHG12, SNHG12-sg3 (Table . Indeed, most of the cells s
classified as perturbed were specific to this particular gRNA (Figure . As this 453
signature progressively attenuated over time under hypoxic conditions, we speculate 454
that the activation of this anti-apoptotic response may be inhibited by hypoxic stress, s
or that hypoxia may protect against the cytotoxic effect of this guide. These results 456
demonstrate the precision of the SAE-based approach to detect a short signature, even  asr

restricted to a small subset of cells. 458

1.5 Comparison of SSAE with others machine learning methods

We compared the classification performance and the biological relevance of extracted 460
features between the SSAE, with and without cell selection of the most responsive cells, s
SAE [33] and Random Forests using 400 estimators and the Gini importance (GI) for 4
feature ranking. We performed this comparison for 2 representative datasets, namely 463
HIF2-targeted cells versus control cells and LUCAT1-targeted cells versus control cells s
following 24h of hypoxia exposure. 465

For the first dataset, as HIF2 inhibition induced a strong perturbation signature, the s

10 first selected features between all methods were highly similar, even between a67
SSAE/SAE and Random Forest (Figure [8]A). However, using the SSAE with cell 468
selection outperforms Random Forest with an increase of 25.25% of accuracy. 469

For LUCAT1 dataset, few overlaps were found between the first 10 selected features a7
with each method. The inhibition of the target gene LUCAT1 was the only feature an
commonly detected (Figure ) ATP6AP1 and PEX1 were the only two overlapping
genes between SSAE and SAE obtained signatures, while KDMC5, NIT1, PHF20 and a3
CCDC142 were specific to SSAE regardless of the cell selection step. a7a

While the signature of Random Forests was very specific, note that the author of RF s

proposes two measures for feature ranking, the variable importance (VI) and Gini 476
importance (GI): [53] showed that if predictors are real with multimodal Gaussian ar
distributions, both measures are biased. Moreover, since using the SSAE with cell a18
selection outperforms RF by 31.07 %, SAE by 27% and SSAE without cell selection by 70
1,67%, it is reasonable to claim that the SSAE perturbation signature is the most 480
relevant. 481
Discussion o
Single-cell CRISPR(i)-based transcriptome screenings are powerful tools for 483

simultaneously accessing the expression profiles of cells targeted by different gRNA, in 484
order to infer target genes functions from the observed perturbations. However, these s
approaches are limited by the low molecule capture rate and sequencing depth provided sss

by droplet-based scRNA-seq, which produce sparse and noisy data. Furthermore, the ag7
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outcome of CRISPR-induced modification in each cell is a stochastic event, depending  sss
among other things, on the expression levels of the transcribed gRNA and dCas9, as 489
well as the accessibility of the target gene locus, that may be heterogeneously regulated 490
at the epigenomic levels in the different cells. For these reasons, the induced a01
perturbation signature and its detection are likely heterogeneous between cells, even 192
when dCas9-expressing cells receiving the same gRNA have been cloned. Deciphering 4
this heterogeneity in sparse data is even more complex when the targeted genes are not s
master genes involved in signaling or regulatory pathways, such as transcription factors s
and receptors. In this respect, a previous study [20] has shown that this particular 496
challenge cannot be met using conventional scRNA-seq analysis tools such as differential o
expression, which is clearly limited to the detection of weak and heterogeneous 208
perturbation signals. This challenge seems even more complex for the study of 499
perturbations mediated by knockdown of non-coding RNAs, which have been largely 500
involved in the fine-tuning of gene expression regulation. To increase the sensitivity of  su
single-cell CRISPR(i)-based transcriptome screenings, we propose here a powerful 502

feature selection and classification approach based on a sparse supervised autoencoder  so

(SSAE). It leverages in particular on the known cell labels initially given by gRNA 504
counts demultiplexing to constrain the latent space to fit the original data distribution. sos
Beyond high statistical accuracy, our SSAE offered relevant properties that 506
distinguishes it from classical classification methods : i) a stringent feature selection 507

producing an interpretable readout of ranked top discriminant genes associated to their sos
weights; ii) a classification score which allow the selection of the most perturbed cells s
and the eventual signal to obtain a more robust perturbation signature. We first 510
validated this approach by analyzing the perturbations associated with the knock- down su
of the two master regulators of the hypoxic response, HIF1A and HIF2. We showed that sw
the SSAE was able to learn a latent space and a perturbation signature which can for s
exemple almost perfectly discriminate HIF2-targeted cells from their control in 514
condition of prolonged hypoxia. The SSAE classification accuracy provided a global 515

perturbation score associated with HIF1A and HIF2 at each time point, reflecting the s

biological activity of each factor during the hypoxic response. We were able to 517
recapitulate the known distinct influence and target specificity of HIF1 and HIF2 518
during the hypoxia time course [5], with notably i) a strong perturbation driven by 519
HIF1 at early time points; ii) a progressive influence of HIF2 with a maximum effect 520

observed at 24h of hypoxia,; iii) a specificity regarding their targets, with sometimes an  sx
opposite regulation for some genes. Finally, this unique dataset provides a global and s
dynamic description of the transcriptomic modulations mediated by the two main 523
regulators of the hypoxic response in LUAD A549 cells. Surprisingly, we did not detect s
any relevant and stable perturbation in cells targeted for LINC00152, MALAT1, NEAT1 s
and SNHG21, in the four culture conditions. This result appears quite unexpected for s
MALAT1 and NEAT1, two of the most studied IncRNAs that are associated with 527
various functions in cancer, including proliferation, migration, and invasion [51,/54]. In s
particular, it has been shown that MALAT1 knockout in the same cellular model (A549) s
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modulated a set of metastasis-associated genes [55]. Although CRISPRi-mediated 530
knock-down achieved an efficient knock-down (> 95%), it is however possible that based s
on the very high level of MALAT1, the remaining transcripts are sufficient to mediate s
the cellular function. Another possibility could be due to differences in methodology, 533
notably the need to isolate single clones for the knockout protocol, a long procedure 534
that can profoundly affect the transcriptome, compared with the CROP-seq approach s
performed on a bulk population prior to immediate single-cell isolation. A similar 536
situation may occur for NEAT1, a highly abundant IncRNA acting as a structural 537
scaffold of membraneless paraspeckle nuclear bodies. Moreover, NEAT1 can produces s
two isoforms, with a differential regulation upon stress and distinct functions [56]. 530
Additional work will be thus necessary to further analyze the relative proportion of the s
two isoforms in A549 cells and their potential function during hypoxia. sa1

However, for LUCAT1-targeted cells after 24h of hypoxia exposure, we found a 542
stable signature of 6 modulated genes, which are associated with pH or gene regulation. s
It suggested a potential capacity of LUCAT1 to promote tumor cell survival during 54
prolonged hypoxia and to contribute to an aggressive phenotype in LUAD cells, as we s
previously demonstrated [12]. Finally, we also found a relevant signature in 546
SNHG12-targeted cells, characterized by the upregulation of anti-apoptotic genes. As s
this signature is almost exclusive to cells targeted by the most effective gRNA against s
SNHG-12, which appeared to systematically induce cell death, we hypothesized that it s
is expressed by surviving cells. The potential pro-oncogenic role of the complex 550
SNHG-12 locus, producing a IncRNA and 3 snoRNAs, should be pursued to decipher s

the molecular components associated with this phenotype, as also suggested by previous ss

studies [57]. 553

In this paper, we demonstrate that the SSAE is highly relevant in situations in 554
which low signals in a restricted number of cells need to be detected. However, 555
performances (accuracy, F1 score, AUC ...) of the SSAE (similarly to all statistical 556
method) are highly dependent on the number of samples/cells compared. Low cell 557

number impact classification performance and can produce inconsistent results, such as s
better accuracy and robustness of selected features for HIF2-targeted cells after 3h of  sso
hypoxia compared with 6h exposure. In this context, the relevance of the top selected s
genes list and their superiority over other compared methods can be asserted by 561
evaluating the robustness of the ranks and the classification accuracies. The size of the se
perturbation signatures obtained for LUCAT1 and SNHG12 datasets prevented the 563
utilization of functional enrichment analysis to characterize their modulated functions. ses
Moreover, as these small signatures were found in specific subsets of targeted cells and  ses
dynamically during the hypoxic response, it appears very difficult to validate them 566
using a global experimental approach that will average the signal across all cells. 567
Despite these limitations, we believe that our approach is well suited to the particular  ses
deciphering of single cell CRISPR-based screen with omics readout, or for other similar  seo

assays to assess the effect of perturbation at the single cell level. 570
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Availability of data and materials -

We implemented the SSAE code with python. Associated functions and scripts, as well s
as all input matrices used in the study are available at 573
https://github.com/MichelBarlaud /SAE-Supervised-Autoencoder-Omics. Raw s
sequencing files and counts matrices of total UMI, HTOs, and gRNA will be deposited s

in the Gene Expression Omnibus. The scripts used for data processing and analysis will s

be available on github (https://github.com/marintruchi) by the time of publication. 577
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Fig 5. Knock-down of HIF1A and HIF2 differentially modulate the hypoxic response.
A: Top 20 discriminant features between perturbed and control cells for HIF1A for each
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for each treatment. C: Differentially expressed genes between perturbed and control
cells for HIF1A and HIF2 for each treatment.
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Fig 6. Top 20 discriminant features between perturbed and control cells for LUCAT1
(A), MALAT1 (B) and NEAT1 (C) for each treatment. Upregulated or downregulated
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Fig 7. Top 20 discriminant features between perturbed and control
C) for each treatment. Upregulated or downregulated
genes are written in red or blue respectively.
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Fig 8. Comparison of the 10 first selected features between SSAE (with or without cell

selection), SAE and Random Forests , for HIF2/EPAS1 (A) or LUCAT1 (B) targeted
cells in hypoxia 24h. Associated accuracies are indicated in brackets.
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