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Abstract 14

Single-cell CRISPR-based transcriptome screens are potent genetic tools for 15

concomitantly assessing the expression profiles of cells targeted by a set of guides RNA 16

(gRNA), and inferring target gene functions from the observed perturbations. However, 17

due to various limitations, this approach lacks sensitivity in detecting weak 18

perturbations and is essentially reliable when studying master regulators such as 19

transcription factors. To overcome the challenge of detecting subtle gRNA induced 20

transcriptomic perturbations and classifying the most responsive cells, we developed a 21

new supervised autoencoder neural network method. Our Sparse supervised 22

autoencoder (SSAE) neural network provides selection of both relevant features (genes) 23

and actual perturbed cells. We applied this method on an in-house single-cell 24

CRISPR-interference-based (CRISPRi) transcriptome screening (CROP-Seq) focusing 25

on a subset of long non-coding RNAs (lncRNAs) regulated by hypoxia, a condition that 26

promote tumor aggressiveness and drug resistance, in the context of lung 27

adenocarcinoma (LUAD). The CROP-seq library of validated gRNA against a subset of 28

lncRNAs and, as positive controls, HIF1A and HIF2A, the 2 main transcription factors 29

of the hypoxic response, was transduced in A549 LUAD cells cultured in normoxia or 30

exposed to hypoxic conditions during 3, 6 or 24 hours. We first validated the SSAE 31

approach on HIF1A and HIF2 by confirming the specific effect of their knock-down 32

during the temporal switch of the hypoxic response. Next, the SSAE method was able 33

to detect stable short hypoxia-dependent transcriptomic signatures induced by the 34

knock-down of some lncRNAs candidates, outperforming previously published machine 35
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learning approaches. This proof of concept demonstrates the relevance of the SSAE 36

approach for deciphering weak perturbations in single-cell transcriptomic data readout 37

as part of CRISPR-based screening. 38

Introduction 39

Cancer cells in solid tumors often suffer from hypoxic stress and adapt to this 40

micro-environment via the activation of Hypoxia inducible factor (HIF), a heterodimeric 41

transcription factor composed of either HIF-1α or HIF-2α (initially identified as 42

endothelial PAS domain protein (EPAS1)) and HIF-1β /ARNT subunits [1–3]. In 43

normoxia, HIFα is continuously degraded by an ubiquitin–dependent mechanism 44

mediated by interaction with to the von Hippel–Lindau (VHL) protein. Hydroxylation 45

of proline residues in HIFα is necessary for VHL binding and is catalyzed by the 46

α-ketoglutarate-dependent dioxygenases prolyl hydroxylases (PHD). During hypoxia, 47

PHDs are inactive, leading to HIF-α stabilization, dimerization with HIF-1β and finally 48

translocation into the nucleus to bind to E-box-like hypoxia response elements (HREs) 49

within the promoter region of a wide range of genes that control cellular oxygen 50

homeostasis, erythrocyte production, angiogenesis and mitochondrial metabolism [4]. 51

These molecular changes are notably crucial for cells to adapt to stress by lowering 52

oxygen consumption by shifting from oxidative metabolism to glycolysis. While HIF-1 53

and HIF-2 bind to the same HRE consensus sequence, they are non-redundant and have 54

distinct target genes and mechanisms of regulation. It is generally accepted that the 55

individual HIFs have specific temporal and functional roles during hypoxia, known as 56

the HIF switch, with HIF-1 driving the initial response and HIF-2 directing the chronic 57

response [5]. In most solid tumors, including lung adenocarcinoma (LUAD), the degree 58

of hypoxia is associated with poor clinical outcome. Induction of HIF activity 59

upregulates genes involved in many hallmarks of cancer, including metabolic 60

reprogramming, epithelial-mesenchymal transition (EMT), invasion and metastasis, 61

apoptosis, genetic instability and resistance to therapies. Emerging evidence have 62

highlighted that hypoxia regulates expression of a wide number of non-coding RNAs 63

classes including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) that in 64

turn are able to influence the HIF-mediated response to hypoxia [6–8]. LncRNAs 65

constitute a heterogeneous class of transcripts which are more than 200 nt long with low 66

or no protein coding potential, such as intergenic and antisense RNAs, transcribed 67

ultraconserved regions (T-UCR) as well as pseudogenes. Recent advances in cancer 68

genomics have highlighted aberrant expression of a wide set of lncRNAs [9], revealing 69

their roles in regulating the genome at several levels, including genomic imprinting, 70

chromatin state, transcription activation or repression, splicing and translation 71

control [10]. LncRNAs can regulate gene expression through different mechanisms, as 72

guide, decoy, scaffold, miRNA sponges or micropeptides. Of note, recent studies 73

demonstrated the role of several lncRNAs in the direct and indirect regulation of HIF 74

expression and pathway through diverse mechanisms [7]. Moreover, hypoxia-responsive 75

November 20, 2023 2/30

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2023. ; https://doi.org/10.1101/2023.07.11.548494doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.11.548494
http://creativecommons.org/licenses/by/4.0/


lncRNAs have been shown to play regulatory functions in pathways associated with the 76

hallmarks of cancer. For instance, the hypoxia-induced Nuclear-Enriched Abundant 77

Transcript 1 (NEAT1) lncRNA has been associated with the formation of nuclear 78

structures called paraspeckles during hypoxia as well as an increased clonogenic survival 79

of breast cancer cells. Another highly studied lncRNA, Metastasis-Associated Lung 80

Adenocarcinoma Transcript 1 (MALAT1, also known as NEAT2) has been found 81

upregulated by hypoxia in LUAD A549 cells and associated with various cellular 82

functions depending on tumor cell types including cell death, proliferation, migration 83

and invasion [11]. Starting from an expression screening in LUAD patients samples and 84

cell lines subjected to hypoxia, we have characterized a new nuclear hypoxia-regulated 85

transcript from the Lung Cancer Associated Transcript (LUCAT1) locus associated 86

with patient prognosis and involved in redox signaling with implication for drug 87

resistance [12]. Additional promising lncRNAs candidates regulated by hypoxia and/or 88

associated with bad prognosis have been identified but deciphering the regulatory 89

functions of these poorly annotated transcripts remains a major challenge. Pooled 90

screening approaches using CRISPR-based technology have offered the possibility to 91

evaluate mammalian gene function, including lncRNAs at genome scale levels [13]. More 92

recently, they have been applied to cancer cell lines and have confirmed the oncogenic or 93

tumor suppressor roles of some lncRNAs [14]. This strategy is able to test a large 94

number of candidates simultaneously but require well identified phenotypes such as cell 95

proliferation, cell viability, or cell migration. More subtle screens require techniques 96

based on transcriptomic signatures [15] and approaches have been developed to combine 97

CRISPR gene manipulation, including CRISPR interference and single-cell RNA-seq 98

(scRNA-seq) based on droplet isolation, such as Perturb-seq [16], CROP-seq [17] and 99

ECCITE-seq [18]. These methods combine the advantages of screening a large number 100

of genes simultaneously and linking the modifications to the transcriptomic phenotype, 101

all by breaking down the perturbation signal cell by cell [10, 16]. 102

In single cell omics applications, most of the quantified features are weakly detected, 103

resulting in large, sparse and noisy data which required feature selection to extract 104

biologically relevant signals [19]. Moreover, cells are often grouped according to their 105

phenotype and/or their experimental condition in order to compare features 106

quantification between the defined cell classes. However, the intra-classes heterogeneity 107

can mask a signal of interest. This is particularly the case in the context of CRISPRi 108

screens with a single-cell transcriptomic readout where the inhibition level of the target 109

gene varies between each cell and induces a more or less detectable perturbation 110

signature. Classification tools such as Mixscape [20], based on Mixture Discriminant 111

Analysis [21], has proven efficacy to identify strong CRISPR-induced effects but was 112

unable to detect subtle weak transcriptomic perturbations. 113

In the present work, we have developed a single-cell CRISPR-interference-based 114

(CRISPRi) transcriptome screening based on the CROP-Seq approach to gain insight on 115

the regulatory functions of hypoxia-regulated lncRNAs. As a proof-of-concept, we 116

generated a CROP-seq library, including validated guide RNAs (gRNA) targeting six 117
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previously identified lncRNAs regulated by hypoxia and/or associated with bad 118

prognosis [12] as well as the two master transcription factors of the hypoxic response 119

(HIF1A and HIF2/EPAS1) and negative control guides. To optimize analysis of 120

fine-tuned regulations in this dataset, we have adapted a Sparse supervised autoencoder 121

(SSAE) neural network [22], where we relax the parametric distribution assumption of 122

classical VAE. It leverages on the known cell labels, corresponding to the received 123

gRNA, and a classification loss to incite the latent space to fit the true data distribution. 124

We first validated the approach on HIF1 and HIF2/EPAS1 knock-down, showing a good 125

sensitivity to detect the known temporal switch between both regulators. We then 126

applied the SSAE to the cells treated with the different hypoxia-regulated lncRNAs 127

gRNA to identify subtle signatures linked to the knock-down of the lncRNAs. 128

Materials and methods 129

Lentivirus production 130

Lentiviruses were produced using a standard Lipofectamine 2000™transfection protocol, 131

using one million HEK293 cells seeded in a 25 cm2 flask in DMEM medium 132

supplemented with 10% bovine serum. A mixture of four plasmids (3 µg pMDLg/pRRE 133

(addgene ”12251”), 1.4 µg pRSV-Rev (addgene ”12253”), 2 µg pVSV-G (addgene 134

”12259”) and 2.5 µg of the plasmid containing the expression cassette to package the 135

pooled CROP-seq guides) was transfected. Forty-eight hours later, the medium was 136

collected, centrifuged for 5 minutes at 3000 rpm, and 2.5 mL supernatant containing the 137

viral particles was collected and used to infect cells or aliquoted and stored at -80°C. 138

Large scale preparations of lentivirus were produced at the Vectorology facility, PVM, 139

Biocampus (CNRS UMS3426), Montpellier, France. 140

Generation of dCas9-expressing A549 cell line 141

The lung adenocarcinoma cell line A549 was infected with a lentivirus produced from 142

the plasmid lenti- dCas9-KRAB-MeCP2 (a gift from Andrea Califano, addgene 122205) 143

allowing the expression of a fusion protein MeCP2-KRAB-dCas9 and a gene conferring 144

resistance to blasticidin. Infected cells were then grown in the presence of 10 µg/mL of 145

blasticidin (Sigma). Selection of A549-KRAB-MeCP2 cells was complete within 3 to 5 146

days. Bulk blasticidin positive cells were amplified and cloned for the CRISPRi 147

scRNA-seq experiments. The best clone was selected according to the expression level of 148

MeCP2-KRAB-dCas9 mRNA and to the most effective inhibition of NLUCAT1 using 149

the NLUCAT1 sg3 RNA. 150
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Cloning of individual guides in the CROPseq-Guide-Puro 151

plasmid 152

The plasmid CROPseq-Guide-Puro (Datlinger et al. Nat Methods 2017) (a gift from C 153

Bock, Addgene plasmid 86708) was digested using the restriction enzyme BsmBI (NEB 154

R0580) for 2h at 50°C. The relevant fragments (around 8 kB) were gel-purified using the 155

Qiagen Gel purification kit and stored at –20°C in 20-fmol aliquots. Guides against the 156

targeted genes (see Supplemental Table 1 for selected sequences) were cloned using the 157

Gibson assembly method (NEBuilder HiFi DNA Assembly Master Mix, NEB E2621). 158

Aliquoted, BsmBI-digested plasmid was mixed with 0.55 µL guide oligonucleotide 159

(200nM) in 10µl total volume, combined with 10µl 2X NEBuilder HiFi Assembling 160

Master mix and the mixture was incubated at 50°C for 20 minutes. 8µL of NEBuilder 161

Assembling mixture were incubated with 100 µL of Stabl2 competent E coli. The 162

mixture was heat-shocked at 42°C for 45 seconds and transferred to ice for 2 minutes. 163

SOC medium (900 µl) was added to the Stabl2-NEBuilder mixture and the mix was 164

incubated at 37°C for 1 hour. Transformed bacterial cells (350µl) were plated onto LB 165

agarose plates containing ampicillin (100µg/mL) and incubated overnight at 37°C. 166

Individual colonies were picked and grown overnight in 5 mL of Terrific Broth medium 167

containing 150µg/mL ampicillin and low-endotoxin, small scale preparation of plasmid 168

DNA were performed using the ToxOut EndoFree Plasmid Mini Kit from BioVision 169

(K1326-250). All plasmids were verified by Sanger sequencing with the primer 170

5’-TTGGGCACTGACAATTCCGT-3’. 171

Selection of the guides 172

A549-KRAB-MeCP2 cells were infected with lentivirus obtained from individual 173

CROPseq-Guide-Puro plasmids, encoding individual guides. Infected cells were then 174

grown in the presence of 1 µg/mL of puromycin (Sigma). A week later, total RNAs 175

were purified from A549-KRAB-MeCP2 cells infected with guide encoding lentiviruses 176

and RT-qPCR (primers sequences presented in Supplemental Table 2) were performed 177

to measure expression of the targeted genes. A validated guide was defined as a guide 178

providing at least 75% inhibition of targeted gene expression compared to a control 179

guide. 180

Lentiviral transduction with gRNA libraries and cell preparation 181

for chromium scRNA-seq 182

A549-KRAB-MeCP2 cells were transduced with different amounts of the viral stock 183

containing the library of pooled, selected gRNA. After six hours, the virus-containing 184

medium was replaced by fresh complete culture medium. Puromycin selection (1µg/ml) 185

was started at 48 h post-transduction, and two days later, the plate with about 30% 186

surviving cells was selected, corresponding roughly to a MOI=0.3. The cells were then 187

amplified under puromycin selection for 5 days. The cells were then plated and further 188
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cultured in normoxia or in hypoxic condition (1% O2) for 3h, 6 h or 24h. Cells were 189

trypsinized counted and assessed for cell viability using the Countess 3 FL (Fisher 190

Scientific). Samples were then stained for multiplexing using cell hashing [23], using the 191

Cell Hashing Total-Seq-ATM protocol (Biolegend) following the protocol provided by 192

the supplier, using 4 distinct Hash Tag Oligonucleotides-conjugated mAbs 193

(TotalSeq™-B0255, B0256, B0257 and B0258). Briefly, for each condition, 1.106 cells 194

were resuspended in 100µL of PBS, 2% BSA, 0.01% Tween and incubated with 10µL Fc 195

Blocking reagent for 10 minutes at 4°C then stained with 0.5µg of cell hashing antibody 196

for 20 minutes at 4°C. After washing with PBS, 2% BSA, 0.01% Tween, samples were 197

counted and merged at the same proportion, spun 5 minutes 350 x g at 4°C and 198

resuspended in PBS supplemented with 0.04% of bovine serum albumin at final 199

concentration of 500 cells/µL. Samples were then adjusted to the same concentration, 200

mixed in PBS supplemented with 0.04% of bovine serum albumin at a final 201

concentration of 100 cells/µl and pooled sample were immediately loaded onto10X 202

Genomics Chromium device to perform the single cell capture. 203

Generation of CROP-seq librairies and single-cell RNA-seq data 204

processing 205

After single-cell capture on the 10X Genomics Chromium device (3’ V3), libraries were 206

prepared as recommended, following the Chromium Next GEM Single Cell 3’ Reagent 207

Feature Barcoding V3.1 kit (10X Genomics) and a targeted gRNA amplification [24] 208

with respectively 6, 8 and 10 PCR cycles. Libraries were then quantified, pooled (80% 209

RNA libraries, 10% gRNA libraries and 10% hashing libraries) and sequenced on an 210

Illumina NextSeq 2000. Alignment of reads from the single cell RNA-seq library and 211

unique molecular identifiers (UMI) counting, as well as oligonucleotides tags (HTOs) 212

counting, were performed with 10X Genomics Cell Ranger tool (v3.0.2). Reads of the 213

gRNA library were counted with CITE-seq-Count (v1.4.2). Cells without gRNA counts 214

were discared. Counts matrices of total UMI, HTOs, and gRNA were thus integrated on 215

a single object using Seurat R package (v4.1.0), from which the data were processed for 216

analysis. On the total of 19663 cells, 817 cells without gRNA counts were discared. 217

HTOs and gRNA were demultiplexed with HTODemux() and 218

MULTIseqDemux(autoThresh = TRUE) functions respectively, in order to assign 219

treatment and received gRNA for each cell. On the remaining 18846 cells, only cells 220

identified as “Singlet” after demultiplexing of HTO counts were conserved (14276 cells). 221

The repartition of cells assigned as ”Doublet” (high expression of at list 2 different 222

gRNA), ”Negative” (no detected gRNA) and ”Singlet” (a unique detected gRNA) in all 223

conditions is showed in (Table 2). Finally, after transforming the data of the subset of 224

”Singlet” cells using SCTransform(), computing PCA, and performing KNN clustering, 225

2 clusters of low UMI content and high mitochondrial content cells (3087 cells) were 226

eliminated for the rest of the analysis. 227
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Method: a new sparse supervised autoencoder neural network 228

(SSAE) 229

State of the art of neural networks methods 230

Deep neural networks have proven their efficiency for classification and feature selection 231

in many domains [25], and have also been applied to omics data analyses [26,27]. 232

Among the proposed neural networks architectures, autoencoders are able to learn a 233

representation of the data, typically in a latent space of lower dimension than the input 234

space. As such, they are often used for dimensionality reduction [28] and have 235

applications in the medical field as data denoisers or relevant feature selectors [29,30]. 236

A widely used type of autoencoders is the Variational Autoencoder (VAE) [31]. This 237

VAE adds the assumption that the encoded data follows a prior gaussian distribution, 238

and thus combines the reconstruction loss with a distance function (between the 239

gaussian prior and the actual learned distribution). For example, VAEs have been 240

applied to scRNA-seq to predict cell response to biological perturbations [32]. 241

Recently, [33], provided a supervised auto-encoder neural network that jointly predicts 242

targets and inputs (reconstruction). However, neither VAEs [31] nor SAEs [33] provide 243

a solution to the problem of relevant features and cells selections needed to increase the 244

sensitivity of CRISPR-based perturbation associated with scRNAseq readout. 245

SSAE criterion 246

In this section, we cope with these two issues by providing a sparse supervised 247

autoencoder (SSAE) neural network method for selecting both relevant features (genes) 248

and actual perturbed cells. Figure 1 depicts the main constituent blocks of our 249

proposed approach. Note that we added a ”soft max” block to our SSAE to compute 250

the classification score. Let X be the concatenated raw counts matrix ( n× d) (n is the 251

number of cells and d the number of genes) of control cells (targeted with a negative 252

control gRNA) and gRNA-targeted cells for each target gene in a particular condition 253

(Normoxia, Hypoxia 3h, 6h or 24h). Let Y be the vector of labels ( n× 1) which 254

component is 0 for control cells and 1 for the perturbed cell. Those labels, either 255

”control” or ”gRNA-targeted”, has been previously assigned for each cell according to 256

the quantification of each gRNA of the CROP-seq library. Let Z be the encoded latent 257

matrix (2× 2). The matrix X̂ ( n× d) is the reconstructed data. W is the matrix of the 258

weights of the the linear fully connected autoencoder neural network. 259

The goal is to compute the network weights W minimizing the total loss which 260

includes both the classification loss and the reconstruction loss. To perform feature 261

selection, as large datasets often present a relatively small number of informative 262

features, we also want to sparsify the network, following the work proposed in [34]. 263

Thus, instead of the classical computationally expensive lagrangian regularization 264

approach [35], we propose to minimize the following constrained approach [36]: 265

Loss(W ) = H(Z, Y ) + λψ(X̂ −X) s.t. ∥W∥11 ≤ η. (1)
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We use the Cross Entropy (CE) Loss for the classification loss H. We use the robust 266

Smooth ℓ1 (Huber) Loss [37] more robust than the mean square error (MSE) as the 267

reconstruction loss ψ. 268

Sparsity and gene selection using structured projections 269

A classical approach for structured sparsity is the Group LASSO method [38,39] which 270

consists of using the ℓ2,1 norm for the constraint on W . However, the ℓ2,1 norm does 271

not induce an efficient sparse structured sparsity of the network [40], which leads to 272

negative effects on performance. 273

In our method we achieve structured sparsity (feature selection) using the bilevel ℓ1,1 274

projection [34] of the weights W. We compute this bilevel ℓ1,1 projection using fast ℓ1 275

algorithms [41,42]. We can also use the new ℓ1,∞ which provides similar sparsity 276

performances [43]. Note that low values of η imply high sparsity of the network. We 277

compute feature importance for the sparse supervised autoencoder using the SHAP 278

method, implemented in the captum python package [44]. Those ranked weights give 279

the top discriminating genes between the compared classes, which can be interpreted as 280

the perturbation signature. 281

The main difference with the criterion proposed for VAEs in [31] and the criterion 282

proposed for SAEs in [33] is the introduction of the constraint on the weights W to 283

sparsify the neural network, in order to select relevant genes. 284

Selecting actual perturbed cells using the softmax classifier 285

The goal of this section is to estimate the cells actually perturbed. We propose the 286

following procedure thanks to the softmax formula. A first SSAE run gives a 287

perturbation score thanks to the softmax layer [45] for both non-targeted control cells 288

and for cells targeted for a particular gene. 289

softmax(Z) =
exp(Zi)∑k
j=1 exp(Zj)

∀i = 1, 2 (2)

According to this specific score, called perturbation score, cells are separated into 2 290

subsets : targeted cells with a score > 0.5 are classified as ”perturbed” cells, whereas 291

targeted cells with a score < 0.5 are classified as ”non-perturbed” cells. A new data 292

matrix and a new label vector is generated, containing only the raw counts and labels of 293

the selected perturbed cells and an equivalent number of randomly sampled 294

non-targeted control cells in order to balance both classes. A second SSAE run provides 295

a new list of the most discriminant features between both classes, ranked by their 296

weight. This procedure is run multiple times with different initialization seeds in order 297

to compute a mean and a standard deviation of the obtained ranks. The standard 298

deviation ranks are used to evaluate the robustness of the perturbation signature. Again, 299

neither VAEs [31] nor SAEs [33] provide a solution to the actual perturbed cell selection. 300
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Implementation of the SSAE framework 301

Following the work by Frankle and Carbin in [46], and further developed in [47], we 302

follow a double descent algorithm, originally proposed as follows: after training a 303

network, set all weights smaller than a given threshold to zero, rewind the rest of the 304

weights to their initial configuration, and then retrain the network from this starting 305

configuration while keeping the zero weights frozen. We replace the thresholding by our 306

ℓ1,1 projection. We implemented our SSAE method using the PyTorch framework for 307

the model, optimizer, schedulers and loss functions. We train the network using the 308

classical Adam optimizer [48]. We used a symmetric linear fully connected network [22], 309

with the encoder comprised of an input layer of d neurons, one hidden layer followed by 310

a ReLU activation function and a latent layer of dimension k = 2 since we have two 311

classes. The accuracy of the model, the mean and variance of the rank of selected genes 312

was computed for each SSAE run using 4-fold cross-validation (which means that the 313

train-validation split is random every time) and a mean over 3 seeds. 314

1 Results 315

1.1 Single-cell CRISPRi screening of hypoxia-regulated lncRNA 316

In order to gain new insights into the molecular functions of 6 hypoxia-regulated 317

lncRNAs in LUAD cells we performed a single-cell CRISPRi transcriptome screening 318

based on the CROP-Seq approach. We transduced A549 cells expressing double 319

repressor Krab-MeCP2-dCas9 with a mini-library containing 12 validated gRNA 320

targeting CYTOR (also known as LINC00152), LUCAT1, MALAT1, NEAT1, SNHG12 321

and SNHG21 as well as the two key regulators of the hypoxic response, HIF1A and 322

HIF2/EPAS1. Each guide was individually validated by qPCR in A549 cells, showing a 323

75 to 95% inhibition of the target compared with control cells (Table 1). Two 324

additional guides, with no effect on the genome, were used as negative controls. In order 325

to mimic the hypoxic environment in which tumors develop in vivo, we equally divided 326

the transduced dCas9-Krab-MeCP2 A549 cells in 4 samples that we then cultured in 327

normoxia or in hypoxia during 3, 6 or 24 hours Figure 2A. Cells from each sample 328

were labeled with a specific barcoded antibody (HTOs), pooled, and simultaneously 329

sequenced using droplet based scRNA-seq (10X Genomics Chromium). The received 330

gRNA and the culture condition were subsequently assigned for each cell by 331

demultiplexing both gRNA and HTOs counts respectively. 332

Overall, we found a balanced representation for each treatment and for each gRNA 333

among the sequenced cells, except for the cells targeted by ”SNHG12-sg3” which were 334

depleted in all conditions (Figure 2B, Table 2). Moreover, the expression of this 335

particular gRNA was lowly detected in those cells, confirming previous observations that 336

this gRNA induced cell death and that only cells with low expression survive. Inhibition 337

of target gene expression in the presence of their corresponding gRNA were validated in 338

all 4 conditions, as well as their progressive increase (CYTOR, LUCAT1, NEAT1, 339
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SNHG12) or decrease (HIF1A and SNHG21) during hypoxia exposure (Figure 2C). 340

Table 1. gRNA library

gRNA Target Type % Inhibition
HIF1A-sg1

HIF1A
Hypoxic response regulator

>95%
HIF1A-sg2 >95%
HIF2-sg5 HIF2/EPAS1 >95%

LINC00152-sg3 CYTOR

Hypoxia-regulated lncRNA

>75%
LUCAT-sg3

LUCAT1
>97%

LUCAT-sg5 >90%
MALAT-sg1 MALAT1 >95%
NEAT1-sg2

NEAT1
>85%

NEAT1-sg6 >95%
SNHG12-sg1

SNHG12
>75%

SNHG12-sg3 >90%
SNHG21-sg5 SNHG21 >85%

Neg-sg1
None Negative control None

Neg-sg2

Table 2. Repartition of Doublet, Singlet, and Negative cells in all conditions
after demulplexing of gRNA counts

Normoxia (%) Hypoxia-3h (%) Hypoxia-6h (%) Hypoxia-24h (%)
Doublet 8,378 9,908 7,717 8,096
HIF1A-sg1 6,752 5,766 5,681 5,181
HIF1A-sg2 8,346 8,236 8,110 8,265
HIF2-sg5 4,720 5,063 3,859 5,157
LINC00152-sg3 4,720 4,918 5,645 5,108
LUCAT1-sg3 5,345 5,911 5,288 6,048
LUCAT1-sg5 8,690 8,842 9,218 10,120
MALAT1-sg1 6,471 6,686 7,181 5,976
NEAT1-sg2 5,220 5,354 4,823 5,373
NEAT1-sg6 3,501 4,288 3,930 3,952
SNHG12-sg1 4,189 3,125 3,823 3,759
SNHG12-sg3 2,094 2,253 1,751 1,639
SNHG21-sg5 6,690 6,492 6,967 7,398
Neg-sg1 6,346 5,838 6,717 6,554
Neg-sg2 7,221 6,783 7,503 7,373
Negative 11,316 10,538 11,790 10,000
Total cell number 3199 4128 2799 4150
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1.2 Mathematical and biological validation of the SSAE 341

approach 342

In order to validate the SSAE approach, we first evaluated the effect of feature and cell 343

selection on the accuracy of the model, and then the biological relevance of the detected 344

transcriptomic perturbations induced by the knock-down of the two main regulators of 345

the hypoxic response, HIF1A and HIF2. 346

1.2.1 Feature and cell selection improve the accuracy of the model 347

We compared the performance of SSAE, for different criterion (MSE and Huber), with 348

or without gene selection using ℓ1,1 constraint projection, and with or without cell 349

selection on the dataset of HIF2-targeted cells and negative control cells cultured in 350

hypoxic condition for 24h. Table 3 indicates that the SSAE with ℓ1,1 constraint 351

projection and Huber criterion is able to discriminate both classes by selecting only a 352

fraction of measured genes (19.46%), as it is shown in the matrix of connections 353

between the first and second layer (Figure 3A). Moreover, the improvement of 5.39% 354

of the model accuracy by using SSAE with ℓ1,1 constraint projection compared to SSAE 355

without projection shows the efficiency of selecting only the most relevant features. 356

Criterion Gene selection (%.). F1 score (%.) accuracy (%.)
CE + Huber and No-proj 97 80.54 87.29

CE + Huber + ℓ1,1 19.46 90.48 92.68
CE + MSE + ℓ1,1 19.46 89.86 92.16

Table 3. Comparison of different criterion on HIF2 datase(CE is the cross entropy)

Figure 3B shows the distribution of perturbation scores computed with the softmax 357

formula 2 for non-targeted and HIF2-targeted cells. Running the SSAE after selecting 358

only perturbed HIF2-targeted cells, without feature selection, improves the accuracy by 359

4.67% (Table 4). Combining feature and cell selection improves the accuracy by 10.4%. 360

Thus, we further analyzed the transcriptomic perturbations induced by the different 361

gRNA using SSAE combining both gene and cell selection. The percentage of cells 362

classified as perturbed among targeted cells for each gRNA in each condition are shown 363

in Figure 4. 364

Table 4. SSAE Accuracy without or with feature and cell selection

SSAE (without feature
and cell selection)

SSAE (only with feature
selection)

SSAE (with feature and
cell selection)

87.29% 92.68% 97.67%

1.2.2 Knock-down of HIF1A and HIF2 differentially modulate the hypoxic 365

response 366

Globally, the inhibition of HIF1A induced a strong transcriptomic perturbation which 367

affected more than 85% of targeted cells in all conditions (Table 5 and Figure 4). 368
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Even in normoxic condition, the signature amplitude was sufficient to allow a 369

classification accuracy above 93%. Among the genes modulated independently from the 370

hypoxic status, we found SNAPC1, IGFL2-AS1, BNIP3L and LDHA, whereas PGK1, 371

PDK1, or BNIP3 modulations were specific to hypoxic conditions (Figure 5A) . We 372

also found gene modulations specific to early (KDM3A, HIPLDA, ZNF292, EGLN3) or 373

late (SLC16A3, GPI, PGAM1, TPI1) hypoxic response, which correspond to the 374

progressive establishment of the HIF1A-mediated metabolic switch [49]. In normoxia, 375

the knock-down of HIF2 did not produce stable perturbations, except for its own target 376

gene EPAS1 (Figure 5B). The 2 early time points of hypoxia exposure showed an 377

improvement of the associated classification accuracy, which reflected a slight increase of 378

the transcriptomic perturbation induced by HIF2 knock-down in these experimental 379

settings. This early signature was mainly driven by genes involved in lipid metabolism 380

ANGPTL4, IGFBP3 and HILPGA. Discrepancies between the results at 3h or 6h were 381

mainly due to the lower number or targeted cells at 6h (104 instead of 202), which 382

impacted the classification. At 24h of hypoxic exposure, the effect of HIF2 inhibition 383

reached its maximum, with 84% perturbed cells and an accuracy of 97% (Table 5 and 384

Figure 4). However, this signature was quite different from that of HIF1A-targeted 385

cells under the same condition. Indeed, some upregulated (ALDH3A1, CPLX2, FTL, 386

PAPPA) or downregulated (ATP1B1, FXYD2, ANXA4, LOXL2) genes in 387

HIF2-targeted cells were not modulated in HIF1A-targeted cells (Figure 5C). 388

Moreover, several genes showed an opposite perturbation between the two groups of 389

cells. This was the case for BNIP3, PGK1, GPI, FAM162A, SLC16A3, TPI1, or 390

PGAM1 which were downregulated upon HIF1A inhibition but were found upregulated 391

upon HIF2 inhibition after 24h of culture in hypoxia. These results were consistent with 392

the known role of HIF2, which is activated upon prolonged exposure to hypoxia and is 393

involved in the regulation of the chronic hypoxic response [5]. They also confirm that in 394

LUAD cells, HIF1A and HIF2-regulated functions are specific, or even antagonistic for 395

certain genes, which has been previously demonstrated in other cancers [50]. 396

Table 5. SSAE classification and accuracy for HIF1A and HIF2 gRNA
targeted cells

Treatment Targeted cells Perturbed cells (%) Accuracy (%)
HIF1A Normoxia 475 86,7 95,33
HIF1A Hypoxia 3h 554 87,5 94,00
HIF1A Hypoxia 6h 372 85,8 93,67
HIF1A Hypoxia 24h 554 85,7 94,67

HIF2 Normoxia 147 11,6 66,67
HIF2 Hypoxia 3h 202 51 86,33
HIF2 Hypoxia 6h 104 38,5 82,33
HIF2 Hypoxia 24h 213 84 97,67
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1.3 Knock-down of hypoxia-regulated lncRNA LUCAT1 leads 397

to hypoxic condition-dependent transcriptomic modulations 398

We then applied the SSAE method to classify cells treated with the 6 gRNA targeting 399

hypoxia-regulated lncRNAs and cultured in the 4 conditions. Globally, the SSAE was 400

able to classify perturbed and control cells with a good overall accuracy around 80%, 401

except for SNHG12 and SNHG21 (Table 6 and Figure 4). However, despite their 402

promising accuracies, we did not detect any other stable perturbations than the target 403

gene for both MALAT1 and NEAT1 targeted cells, as indicated by the obtained high 404

means and standard deviations of the computed ranks, while those two lncRNAs were 405

previously associated with various gene regulation functions [51,52] (Figure 6A-B). 406

The SSAE outcomes were different for the classification of LUCAT1-targeted cells. 407

Indeed, the transcriptomic inhibition of LUCAT1 resulted in a stable upregulation for 408

PCOLCE2 and ISCA1 in normoxia, HDHD2 after 3h, and 6h of hypoxia (Figure 6C). 409

ISCA1 and HDHD2 encode for metal ion binding proteins, whereas TFCP2 is a known 410

oncogene. After 24h of hypoxia, a completely different perturbation signature was 411

found, with at least 6 stably modulated genes, including the upregulation of KDM5C, 412

TMEM175 and NIT1, as well as the downregulation of ATP6AP1, PEX1 and PHF20. 413

ATP6AP1 and PEX1 are respectively components of the V-ATPase and the peroxisomal 414

ATPase complexes, while TMEM175 is a proton channel also involved in pH regulation. 415

KDMC5 and PHF20 are both involved in chromatin remodeling and transcriptomic 416

regulation, while NIT1 is associated to tumor suppressor functions. This particular 417

signature allowed the classification of 90,4% of targeted cells with an accuracy of 85,67% 418

(Table 6 and Figure 4). These results indicate that LUCAT1 inhibition may induce 419

hypoxic condition-dependent transcriptomic modulations that potentially impact tumor 420

survival and gene regulatory processes during prolonged exposure to hypoxic conditions, 421

completing our previous observations [12]. 422

For LINC00152, the combined inhibition of CYTOR/LINC00152 with MIR4435-2HG 423

(Figure 7A), whose sequences are highly homologous (99% in the 220 bp region 424

including the most efficient gRNA), was sufficient to select half of the targeted cells 425

with an accuracy above 85% regardless of the condition (Table 5 and Figure 4). 426

For the SNHG12 and SNHG21 datasets, the first round of SAE selected only around 427

10% of perturbed cells (Table 6 and Figure 4). Thus we could not run the SAE for 428

the second round because of a too low number of cells for the 4 fold cross validation. 429

For those 2 genes, we just reported the average accuracies obtained after the first round 430

of the SSAE (Table 6). As SNHG21 expression is relatively low in LUAD cells and is 431

decreased by hypoxic stress, the extent of its inhibition was therefore weaker and not 432

sufficient to distinguish targeted from control cells. Combined with the lack of 433

transcriptomic effect induced by its knock-down, it explains the poor classification 434

results and the randomness of features selected for cells targeted by this particular gene 435

under all conditions (Figure 7B). 436
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Table 6. Supervised autoencoder classification and accuracy for hypoxia
regulated lncRNAs gRNA targeted cells (*obtained without cell selection)

Treatment Targeted cells Perturbed cells (%) Accuracy (%)
LUCAT1 Normoxia 438 51,8 73,33
LUCAT1 Hypoxia 3h 583 77,7 82,33
LUCAT1 Hypoxia 6h 391 63,9 79,00
LUCAT1 Hypoxia 24h 666 90,4 85,67

MALAT1 Normoxia 205 37,1 82,67
MALAT1 Hypoxia 3h 269 45 82,33
MALAT1 Hypoxia 6h 194 37,1 78,00
MALAT1 Hypoxia 24h 241 26,1 78,67

NEAT1 Normoxia 274 59,1 86,33
NEAT1 Hypoxia 3h 390 73,3 89,00
NEAT1 Hypoxia 6h 237 52,7 85,33
NEAT1 Hypoxia 24h 566 58,7 87,33

LINC00152 Normoxia 147 55,1 87,67
LINC00152 Hypoxia 3h 200 59 91,67
LINC00152 Hypoxia 6h 150 58 86,33
LINC00152 Hypoxia 24h 209 42,6 85,00

SNHG12 Normoxia 196 14,8 65*
SNHG12 Hypoxia 3h 217 14,7 69*
SNHG12 Hypoxia 6h 154 3,9 67,4*
SNHG12 Hypoxia 24h 213 8,5 71*

SNHG21 Normoxia 211 5,2 60.7*
SNHG21 Hypoxia 3h 256 3,5 61.1*
SNHG21 Hypoxia 6h 192 6,8 59,1*
SNHG21 Hypoxia 24h 299 2 63,5*

1.4 SSAE classification revealed an anti-apoptotic signature 437

expressed by a subset of SNHG12-targeted cells in response 438

to the cytotoxic effect of one of its gRNA 439

Looking at the SSAE classification outcomes for SNHG12-targeted cells, only about 440

15% of them were classified as perturbed in normoxia and after 3h of hypoxia, with a 441

poor accuracy (Table 6 and Figure 4). The number of selected cells was even worse 442

for a longer exposure to hypoxia. 443

Nevertheless, the ranked list of top discriminant features between the few perturbed 444

cells and control cells obtained for the first two time points showed a notable 445

perturbation signature. In normoxia, it was only composed of BAG1 upregulation, 446

whereas after 3h of hypoxia exposure, this signature was completed by GAS5 447

(snoRNAs-containing lncRNA gene), ARRB2, ATF5, and ETHE1 upregulations 448

(Figure 7C). These 5 genes are all known anti-apoptotic factors. We hypothesized that 449

November 20, 2023 14/30

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2023. ; https://doi.org/10.1101/2023.07.11.548494doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.11.548494
http://creativecommons.org/licenses/by/4.0/


this anti-apoptotic signature was expressed by a subset of LUAD cells that were actively 450

escaping the cytotoxic effect we systematically observed for the most efficient of the two 451

gRNA selected for targeting SNHG12, SNHG12-sg3 (Table 1). Indeed, most of the cells 452

classified as perturbed were specific to this particular gRNA (Figure 4). As this 453

signature progressively attenuated over time under hypoxic conditions, we speculate 454

that the activation of this anti-apoptotic response may be inhibited by hypoxic stress, 455

or that hypoxia may protect against the cytotoxic effect of this guide. These results 456

demonstrate the precision of the SAE-based approach to detect a short signature, even 457

restricted to a small subset of cells. 458

1.5 Comparison of SSAE with others machine learning methods 459

We compared the classification performance and the biological relevance of extracted 460

features between the SSAE, with and without cell selection of the most responsive cells, 461

SAE [33] and Random Forests using 400 estimators and the Gini importance (GI) for 462

feature ranking. We performed this comparison for 2 representative datasets, namely 463

HIF2-targeted cells versus control cells and LUCAT1-targeted cells versus control cells 464

following 24h of hypoxia exposure. 465

For the first dataset, as HIF2 inhibition induced a strong perturbation signature, the 466

10 first selected features between all methods were highly similar, even between 467

SSAE/SAE and Random Forest (Figure 8A). However, using the SSAE with cell 468

selection outperforms Random Forest with an increase of 25.25% of accuracy. 469

For LUCAT1 dataset, few overlaps were found between the first 10 selected features 470

with each method. The inhibition of the target gene LUCAT1 was the only feature 471

commonly detected (Figure 8B). ATP6AP1 and PEX1 were the only two overlapping 472

genes between SSAE and SAE obtained signatures, while KDMC5, NIT1, PHF20 and 473

CCDC142 were specific to SSAE regardless of the cell selection step. 474

While the signature of Random Forests was very specific, note that the author of RF 475

proposes two measures for feature ranking, the variable importance (VI) and Gini 476

importance (GI): [53] showed that if predictors are real with multimodal Gaussian 477

distributions, both measures are biased. Moreover, since using the SSAE with cell 478

selection outperforms RF by 31.07 %, SAE by 27% and SSAE without cell selection by 479

1,67%, it is reasonable to claim that the SSAE perturbation signature is the most 480

relevant. 481

Discussion 482

Single-cell CRISPR(i)-based transcriptome screenings are powerful tools for 483

simultaneously accessing the expression profiles of cells targeted by different gRNA, in 484

order to infer target genes functions from the observed perturbations. However, these 485

approaches are limited by the low molecule capture rate and sequencing depth provided 486

by droplet-based scRNA-seq, which produce sparse and noisy data. Furthermore, the 487
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outcome of CRISPR-induced modification in each cell is a stochastic event, depending 488

among other things, on the expression levels of the transcribed gRNA and dCas9, as 489

well as the accessibility of the target gene locus, that may be heterogeneously regulated 490

at the epigenomic levels in the different cells. For these reasons, the induced 491

perturbation signature and its detection are likely heterogeneous between cells, even 492

when dCas9-expressing cells receiving the same gRNA have been cloned. Deciphering 493

this heterogeneity in sparse data is even more complex when the targeted genes are not 494

master genes involved in signaling or regulatory pathways, such as transcription factors 495

and receptors. In this respect, a previous study [20] has shown that this particular 496

challenge cannot be met using conventional scRNA-seq analysis tools such as differential 497

expression, which is clearly limited to the detection of weak and heterogeneous 498

perturbation signals. This challenge seems even more complex for the study of 499

perturbations mediated by knockdown of non-coding RNAs, which have been largely 500

involved in the fine-tuning of gene expression regulation. To increase the sensitivity of 501

single-cell CRISPR(i)-based transcriptome screenings, we propose here a powerful 502

feature selection and classification approach based on a sparse supervised autoencoder 503

(SSAE). It leverages in particular on the known cell labels initially given by gRNA 504

counts demultiplexing to constrain the latent space to fit the original data distribution. 505

Beyond high statistical accuracy, our SSAE offered relevant properties that 506

distinguishes it from classical classification methods : i) a stringent feature selection 507

producing an interpretable readout of ranked top discriminant genes associated to their 508

weights; ii) a classification score which allow the selection of the most perturbed cells 509

and the eventual signal to obtain a more robust perturbation signature. We first 510

validated this approach by analyzing the perturbations associated with the knock- down 511

of the two master regulators of the hypoxic response, HIF1A and HIF2. We showed that 512

the SSAE was able to learn a latent space and a perturbation signature which can for 513

exemple almost perfectly discriminate HIF2-targeted cells from their control in 514

condition of prolonged hypoxia. The SSAE classification accuracy provided a global 515

perturbation score associated with HIF1A and HIF2 at each time point, reflecting the 516

biological activity of each factor during the hypoxic response. We were able to 517

recapitulate the known distinct influence and target specificity of HIF1 and HIF2 518

during the hypoxia time course [5], with notably i) a strong perturbation driven by 519

HIF1 at early time points; ii) a progressive influence of HIF2 with a maximum effect 520

observed at 24h of hypoxia; iii) a specificity regarding their targets, with sometimes an 521

opposite regulation for some genes. Finally, this unique dataset provides a global and 522

dynamic description of the transcriptomic modulations mediated by the two main 523

regulators of the hypoxic response in LUAD A549 cells. Surprisingly, we did not detect 524

any relevant and stable perturbation in cells targeted for LINC00152, MALAT1, NEAT1 525

and SNHG21, in the four culture conditions. This result appears quite unexpected for 526

MALAT1 and NEAT1, two of the most studied lncRNAs that are associated with 527

various functions in cancer, including proliferation, migration, and invasion [51,54]. In 528

particular, it has been shown that MALAT1 knockout in the same cellular model (A549) 529
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modulated a set of metastasis-associated genes [55]. Although CRISPRi-mediated 530

knock-down achieved an efficient knock-down (> 95%), it is however possible that based 531

on the very high level of MALAT1, the remaining transcripts are sufficient to mediate 532

the cellular function. Another possibility could be due to differences in methodology, 533

notably the need to isolate single clones for the knockout protocol, a long procedure 534

that can profoundly affect the transcriptome, compared with the CROP-seq approach 535

performed on a bulk population prior to immediate single-cell isolation. A similar 536

situation may occur for NEAT1, a highly abundant lncRNA acting as a structural 537

scaffold of membraneless paraspeckle nuclear bodies. Moreover, NEAT1 can produces 538

two isoforms, with a differential regulation upon stress and distinct functions [56]. 539

Additional work will be thus necessary to further analyze the relative proportion of the 540

two isoforms in A549 cells and their potential function during hypoxia. 541

However, for LUCAT1-targeted cells after 24h of hypoxia exposure, we found a 542

stable signature of 6 modulated genes, which are associated with pH or gene regulation. 543

It suggested a potential capacity of LUCAT1 to promote tumor cell survival during 544

prolonged hypoxia and to contribute to an aggressive phenotype in LUAD cells, as we 545

previously demonstrated [12]. Finally, we also found a relevant signature in 546

SNHG12-targeted cells, characterized by the upregulation of anti-apoptotic genes. As 547

this signature is almost exclusive to cells targeted by the most effective gRNA against 548

SNHG-12, which appeared to systematically induce cell death, we hypothesized that it 549

is expressed by surviving cells. The potential pro-oncogenic role of the complex 550

SNHG-12 locus, producing a lncRNA and 3 snoRNAs, should be pursued to decipher 551

the molecular components associated with this phenotype, as also suggested by previous 552

studies [57]. 553

In this paper, we demonstrate that the SSAE is highly relevant in situations in 554

which low signals in a restricted number of cells need to be detected. However, 555

performances (accuracy, F1 score, AUC ...) of the SSAE (similarly to all statistical 556

method) are highly dependent on the number of samples/cells compared. Low cell 557

number impact classification performance and can produce inconsistent results, such as 558

better accuracy and robustness of selected features for HIF2-targeted cells after 3h of 559

hypoxia compared with 6h exposure. In this context, the relevance of the top selected 560

genes list and their superiority over other compared methods can be asserted by 561

evaluating the robustness of the ranks and the classification accuracies. The size of the 562

perturbation signatures obtained for LUCAT1 and SNHG12 datasets prevented the 563

utilization of functional enrichment analysis to characterize their modulated functions. 564

Moreover, as these small signatures were found in specific subsets of targeted cells and 565

dynamically during the hypoxic response, it appears very difficult to validate them 566

using a global experimental approach that will average the signal across all cells. 567

Despite these limitations, we believe that our approach is well suited to the particular 568

deciphering of single cell CRISPR-based screen with omics readout, or for other similar 569

assays to assess the effect of perturbation at the single cell level. 570
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Availability of data and materials 571

We implemented the SSAE code with python. Associated functions and scripts, as well 572

as all input matrices used in the study are available at 573

https://github.com/MichelBarlaud/SAE-Supervised-Autoencoder-Omics. Raw 574

sequencing files and counts matrices of total UMI, HTOs, and gRNA will be deposited 575

in the Gene Expression Omnibus. The scripts used for data processing and analysis will 576

be available on github (https://github.com/marintruchi) by the time of publication. 577
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Fig 1. Sparse Supervised autoencoder (SSAE) framework: A: SSAE framework
overview. B: Two-step SSAE classification of perturbed cells among gRNA-targeted
cells.
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Fig 2. Single-cell CRISPRi screening: A: Design of CROP-seq experiment. B:
Heatmaps of gRNA counts or target gene RNA in each cell, labelled according to
assigned gRNA and condition after demultiplexing. C: Heatmap of target gene RNA in
each cell, labelled according to assigned gRNA and condition after demultiplexing.
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Fig 3. Impact of feature and cell selection on the accuracy of the model comparing
HIF2-targeted cells and negative control cells after 24h of hypoxic exposure. A: Sparsity
of the first layer: Left: using no projection , Right: using our ℓ1,1 projection. B:
Distribution of the perturbation score for non-targeted and HIF2-targeted cells.

Fig 4. Percentages of targeted cells classified as perturbed or non-perturbed for each
gRNA in each condition
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Fig 5. Knock-down of HIF1A and HIF2 differentially modulate the hypoxic response.
A: Top 20 discriminant features between perturbed and control cells for HIF1A for each
treatment. Upregulated or downregulated genes are written in red or blue respectively.
B: Top 20 discriminant features between perturbed and control cells for HIF2/EPAS1
for each treatment. C: Differentially expressed genes between perturbed and control
cells for HIF1A and HIF2 for each treatment.
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Fig 6. Top 20 discriminant features between perturbed and control cells for LUCAT1
(A), MALAT1 (B) and NEAT1 (C) for each treatment. Upregulated or downregulated
genes are written in red or blue respectively.
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Fig 7. Top 20 discriminant features between perturbed and control cells for LINC00152
(A), SNHG21 (B) and SNHG12 (C) for each treatment. Upregulated or downregulated
genes are written in red or blue respectively.
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Fig 8. Comparison of the 10 first selected features between SSAE (with or without cell
selection), SAE and Random Forests , for HIF2/EPAS1 (A) or LUCAT1 (B) targeted
cells in hypoxia 24h. Associated accuracies are indicated in brackets.
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