
 

1 

Sleep-insomnia superposition: opposing brain 

signatures of sleep in task-based and resting-state 

conditions 

 

Mohamed Abdelhack1, Peter Zhukovsky2,3, Milos Milic1, Shreyas Harita1,5, Michael Wainberg1, 

Shreejoy J Tripathy1,4,5,6, John D Griffiths1,2,4,6, Sean L Hill1,2,4,6,7, Daniel Felsky*1,4,6,8,9 

 

1 Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada 

2 Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, 

ON, Canada 

3 Centre for Depression, Anxiety and Stress Research, McLean Hospital, Boston, MA 

4 Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada 

5 Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada 

6 Institute of Medical Science, University of Toronto, Toronto, ON, Canada 

7 Vector Institute for Artificial Intelligence, Toronto, Canada 

8 Department of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, 

Canada 

9 Rotman Research Institute, Baycrest Hospital, Toronto, ON 

 

 

*Corresponding author 
Daniel Felsky PhD 

Independent Scientist, Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health 

Assistant Professor, Department of Psychiatry and Dalla Lana School of Public Health, University of Toronto 

12th Floor, 250 College Street, Toronto ON, M5T 1R8, Canada 

Daniel.felsky@camh.ca; dfelsky@gmail.com 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 25, 2023. ; https://doi.org/10.1101/2023.05.13.540646doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.13.540646
http://creativecommons.org/licenses/by-nc/4.0/


 

2 

www.felskylab.com 

(416) 535 8501 x33587  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 25, 2023. ; https://doi.org/10.1101/2023.05.13.540646doi: bioRxiv preprint 

http://www.felskylab.com/
https://doi.org/10.1101/2023.05.13.540646
http://creativecommons.org/licenses/by-nc/4.0/


 

3 

 

Abstract 

Sleep and depression have a complex, bidirectional relationship, with sleep-associated 

alterations in brain dynamics and structure impacting a range of symptoms and cognitive 

abilities. Previous work describing these relationships has provided an incomplete picture by 

investigating only one or two types of sleep measures, depression, or neuroimaging modalities 

in parallel. We analyzed the correlations between task and resting-state brain-wide signatures of 

sleep, cognition, and depression in over 30,000 individuals. Neural signatures of insomnia and 

depression were negatively correlated with neural signatures of sleep duration in the task 

condition but positively correlated in the resting-state condition, showing that resting-state 

neural signatures of insomnia and depression resemble that of rested wakefulness. This was 

further supported by our finding of hypoconnectivity in task but hyperconnectivity in resting-state 

data in association with insomnia and depression  This information disputes conventional 

assumptions about the neurofunctional manifestations of hyper- and hypo-somnia, and may 

explain inconsistent findings in the literature. 
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Introduction 

The relationships between sleep, neurocognitive processes, and depression are complex and 

fraught with paradoxes. Depressive symptoms are linked to both increases and decreases in 

sleep duration. At the same time, acute sleep deprivation has been shown to act as an effective 

antidepressant1. Neural correlates of sleep are also linked to both hyper- and hypo-activation in 

different task environments2,3, and both undersleeping and oversleeping are associated with 

poorer cognition4. The majority of our current understanding of sleep has come from acute sleep 

deprivation experiments and clinical sleep disorders which cover only fringe conditions in 

comparison with the general population2,3,5,6. This has produced a gap in our understanding of 

the role of sleep in mental and cognitive health and how sleep affects the brain under different 

conditions and cognitive loads. 

 

Observational studies have shown that sleep deprivation is associated with the degradation of 

attention, working memory, reward and dopamine processing, emotion discrimination and 

expression, and hippocampal memory processing3. Neurobiologically, it has been associated 

with aberrant activity observed in the visual cortex7–9, frontoparietal regions10, and ventral and 

dorsal attention networks11. This indicates a possible role of sleep in visual cortical processing 

via top-down attentional circuits during cognitive task performance.  

 

Sleep quantity and quality are also linked to symptoms of mental illness12–14, and the biological 

mechanisms of these links have been explored with neuroimaging. For example, insomnia and 

depression are bidirectionally related5, with lower-quality sleep being associated with negative 

thoughts through decreased connections in the amygdala15. In one study, insomnia, daytime 

dozing, and low sleep quality were associated with aberrant functional connectivity in many 

brain regions, especially the default mode network2; however, most neuroimaging studies have 
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been underpowered and yielded heterogeneous results, leading to inconclusive evidence. One 

challenge to parsing these relationships is that, while depression is typically associated with 

symptoms of insomnia5, atypical depression is associated with hypersomnia16. Insomnia is 

hypothesized to be a result of hyperarousal states that causes cognitive fatigue and anxiety that 

could progress to depression17,18, while the relationship between hypersomnia and depression is 

still an open question.  

 

One prevalent limitation of most published neuroimaging studies of sleep is that they rely on 

data collected during acute sleep deprivation, which does not necessarily have the same effect 

as chronic sleep loss or low sleep quality3. Further, studies that have investigated primary 

insomnia and depression have used a wide variety of methodologies, resulting in 

heterogeneous findings2. Only a few studies also analyze neural representations with subjective 

and objective sleep measures of sleep19–21. In addition, in primary insomnia, objective sleep 

measures using polysomnography do not align with the subjective report of participants22,23.  

 

Some initial attempts toward decoding these complex relationships at the population level have 

been made. Cheng et al. (2018) investigated the neural associations of sleep quality and 

depression using the Human Connectome Project (HCP)24 and a subset of UK Biobank25, 

finding that the link between poor sleep and depressive symptoms was in part mediated by 

patterns of functional connectivity. One limitation of this study was that they used the overall 

Pittsburgh Sleep Quality Index (PSQI) as their measure of sleep26 and only assessed resting 

state data, thus missing the heterogeneity of sleep-related phenotypes manifest under different 

conditions. More recently, Fan et al. (2022) performed a systematic analysis of multiple sleep 

phenotypes in a subset of white-British population of the UK Biobank27. They analyzed resting-

state and task-based fMRI data, diffusion tensor imaging, and cardiac MRI data, testing their 

independent relationships with self-reported sleep data and other environment and mental 
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health variables. They identified resting-state brain activation as a predictor of self-reported 

insomnia and narcolepsy. They also found no significant associations between task-based fMRI 

features and most sleep phenotypes. Crucially, this study was limited to self-reported sleep 

measures, and it did not investigate the relationships between neural signatures of tested 

phenotypes. Another study also investigated the associations of sleep phenotypes in 

association with obesity, cardiometabolic conditions, brain structure, and cognition but did not 

account for brain activity28. 

 

To address these gaps, we perform a multi-step analysis of two independent cohorts and 

examine previously published analyses through a new lens. First, we map the associations of 

sleep quality - measured subjectively by self-report and objectively by accelerometry - with both 

task-based and resting-state measures of brain function in the UK Biobank29,30. We then test the 

correlations between brain-wide patterns of associations with cognitive function and depressive 

symptoms, finding seemingly contradictory patterns of resting-state and task-based activation in 

response to poor sleep. Our analyses provide insights into shared mechanisms of the 

heterogeneity in depression symptoms and how they connect neurobiologically with sleep 

patterns. This could eventually lead to a better comprehension of the symptomology of 

depression in line with sleep patterns with the potential for more targeted therapies.  
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Results 

 

Figure 1: Study Summary. A shows the partial correlation map between the tested phenotypes 

of sleep (duration of longest sleep bout, self-reported insomnia, and self-reported daytime 

dozing), depression symptoms (PHQ-2 score), and cognition (bolded numbers are correlations 

significantly different from zero). B shows the task fMRI experiment, multivariate pattern 

analysis conducted, and the subsequent linear modeling of the classification accuracy with the 

phenotypes to build a cortical map of associations (stimulus images obtained by permission 

from Prof. Deanna Barch). C shows the resting-state data collection protocol, the calculation of 

functional connectivity, and the linear modeling to produce a connectivity association map. D 

shows the process for obtaining cortical thickness and linear modeling with phenotypes to 

generate a brain map similar to B.  
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Self-reported and accelerometer-based measures of sleep are weakly correlated 

Figure 1 summarizes the analyses performed in our study. We first quantified the pairwise 

phenotypic partial correlations between our five behavioral measures: sleep quality measured 

by an accelerometer (duration of longest sleep bout), self-reported sleeplessness/insomnia 

frequency, self-reported daytime dozing frequency, cognitive ability measured by a symbol-digit 

substitution task31, and subclinical depression symptoms measured by the PHQ-232 with age, 

sex, study site, ethnicity, socioeconomic status, the difference between the time of 

accelerometer measurement and assessment center visit, and education as covariates.  

 

Accelerometer-measured sleep quality was weakly correlated with cognitive performance 

(r=0.036; p=5.39×10-3) while depressive symptoms were correlated with self-reported insomnia 

(r=0.15; p=5.64×10-63), both in positive directions (Figure 1A). Self-reported insomnia and 

daytime dozing frequencies were also positively correlated, though the magnitude of this 

correlation was similarly very small, with only 0.7% of variance explained (r=0.081; p=2.25×10-

20). As expected, the accelerometer-measured duration of longest sleep bout had negative 

correlations with both self-reported insomnia (r=-0.072; p=2.21×10-15) and self-reported daytime 

dozing (r=-0.11; p=1.29×10-35), again with very small effect sizes. 

 

Multimodal neural associations with sleep, depression, and cognition 

Having established phenotypic correlations between our measures, we first built a brain map of 

each phenotype using task-based fMRI (Figure 1B). We fit multivariate classification models33,34 

using support vector machines (SVM) to classify face and shape trials regardless of task 

performance. Models from all regions were able to significantly perform above the 50% chance 

level, however, classifiers using voxels from visual areas were the most accurate (Figure S2). 

We carried forward classification accuracies from each region as a proxy for its cortical 
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activation in response to the visual stimuli. We then measured the association of this activation 

proxy with our phenotypes of interest using ordinary least squares (OLS) regression. 

 

Our measure of task-based brain activation showed significant associations with accelerometer-

measured sleep duration, depressive symptoms, and cognitive scores in predominantly visual 

regions as well as higher multimodal regions in the parietal cortex (Figure 2A). Cognition also 

showed significant associations across frontal regions while depressive symptom associations 

were more global and diffuse (Figure 2B). Longer sleep bouts were associated with a higher 

decoding accuracy (stronger multivariate cortical signal), primarily in lateral occipital regions 

(Figure 2B, S4). These are intermediate processing areas that feed into the ventral stream of 

vision. Higher regions along the ventral stream showed no significant associations with 

accelerometer-measured sleep. Depressive symptoms showed significant associations across 

regions spanning the whole cortex, where higher symptom scores were associated with lower 

decoding accuracies (Figure 2B). The strongest associations were observed in the visual 

areas, particularly the high-level face-selective and intermediate visual areas (Figure S4). 

Higher cognitive scores corresponded to higher decoding accuracy which overlapped with 

depressive symptoms score effects in visual cortex and prefrontal cortex (Figure 2B,C). The 

latter three phenotypes all had overlapping significant associations in multimodal superior 

parietal regions (Figure 2C). These areas are responsible for higher level visual processing of 

orientation and location as well as motor planning which is reasonable given the nature of the 

task involving visual recognition and motor action (button pressing). Self-reported insomnia 

frequency showed no significant effect on the neural coding of visual tasks except in one region 

in the prefrontal cortex. Self-reported daytime dozing frequency showed no significant 

associations in any region.  
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Figure 2: Results of the associations from the task-based fMRI data. A) summarizes the 

overall beta values of the models normalized by decoding accuracy. The regions are organized 

and color-coded according to their groupings in the human connectome project35 where the 

region color maps are shown on the right. B) shows the brain region maps with significant 
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associations color-coded by the beta values normalized by decoding accuracy for each of the 

phenotype models. C) shows the overlap between regions that showed significant associations 

with more than one phenotype.  

 

Following task-based analyses, we investigated the associations of resting-state data with our 

target phenotypes. We first analyzed associations of functional connectivity of independent 

components across the brain (Figure 1C), observing many significant associations with 

accelerometer-measured duration of longest sleep bout that spanned many circuits (Figure 3A). 

Daytime dozing showed a similar association pattern with opposite directions of effect due to the 

inverted scale of the two measures. Insomnia, depressive symptoms, and cognition were 

associated with only a few circuits and showed little overlap (Figure S5). From these 

associations, we selected one to probe in more detail using seed-based connectivity analysis. 

Specifically, we investigated the connection between IC5 and IC18 as this could point to the 

reasons for the degraded signal in the task fMRI condition. The functional connectivity pattern 

between these two independent components was positively correlated with duration of longest 

sleep bout and negatively correlated with daytime dozing. We investigated the regions 

belonging to these two components by selecting the regions that mark higher than the 98th 

percentile of the component activation. Seed-based results showed a positive association with 

duration of longest sleep bout and negative association with daytime dozing at the connection 

level between the posterior side of the inferior frontal junction (IFJp) and almost all the occipital 

regions in IC18. This points to a positive association of sleep bout length with the connectivity 

between the frontal attentional areas and the intermediate visual regions. Complete 

associations of seed-based correlations are also shown in Figure 6. 

 

Finally, we investigated the association of each phenotype with cortical thickness (Figure 1D). 

Measured duration of longest sleep bout, depressive symptoms, and cognition all showed 
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significant and diffuse associations but with strongest overlap along the auditory, insular, and 

temporal regions (Figure S7A). Frequency of daytime dozing showed a sparse pattern that 

spanned many of the same regions. The results showed that higher cortical thickness was 

associated with longest continuous sleep (accelerometer-measured), less frequent depressive 

symptoms, higher cognitive score, and lower frequency of daytime dozing in almost all brain 

regions This pattern did not hold for the primary visual cortex (V1) and early visual cortex (V2 

and V4). Self-reported insomnia did not show any significant association with cortical thickness 

values. 

 

 

Figure 3: Resting-state connectivity associations results with the sleep phenotypes. A) shows 

the functional connectivity associations for the accelerometer-measured duration of longest 

sleep bout and self-reported daytime dozing. The different components are grouped and color-

coded based on the Yeo 7 Networks36. B) zooms in on the associations between IC5 and IC18 

showing seed-based correlation associations between different regions belonging to the 

components of interest.  
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Correlations of neural signatures of sleep, depression, and cognition show opposite 

relationships under task-activated vs. resting conditions 

To quantify the similarity in brain-wide patterns of task-based association between phenotypes, 

we performed pairwise Pearson correlations between each set of association statistics in the 

task and resting state conditions. For the task-based condition, in directional agreement with our 

observed phenotypic correlations (Figure 1A), the neural signature of accelerometer-measured 

duration of longest sleep bout was negatively correlated with those for depressive symptoms 

(r=-0.63; p=5.07×10-21), frequency of insomnia (r=-0.14; p=0.04), and frequency of daytime 

dozing (r=-0.64; p=1.00×10-21). The neural signature for depressive symptoms showed positive 

correlations with those for both frequency of insomnia (r=0.17; p=0.03) and daytime dozing 

(r=0.64; p=2.36×10-22), indicating similar effects across the cortex despite the latter two 

phenotypes showing almost no significant independent associations (Figure 4A).  

 

Shifting to neural signatures in the resting state condition, a notable difference emerged. In 

contrast to the results from the task condition and from phenotypic correlations, there were 

nontrivial positive correlations between the neural signature for duration of longest sleep bout 

and those for both self-reported insomnia (r=0.59; p=2.71×10-21) and depressive symptoms 

(r=0.48; p=1.87×10-13; Figure 4B). This indicated a similarity between the functional connectivity 

changes associated with longer continuous sleep, higher frequency of insomnia, and more 

depressive symptoms - which is counterintuitive. This pattern was similar, with the daytime 

dozing functional connectivity also showing negative correlations. To confirm the validity of 

these results, we retrieved independently modeled associations from Fan et al.27 between self-

reported insomnia, daytime dozing, and sleep duration (data retrieved at 

http://www.ig4sleep.org/) and performed the same correlational analyses. Reassuringly, we 

found nearly identical patterns of correlations between effects (Table S4); self-reported 
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insomnia and insomnia had a correlation coefficient of -0.66 (compared to -0.59 in our analysis). 

While they did not test accelerometer-measured duration of longest sleep bout, the results from 

self-reported sleep duration were consistent (correlation with self-reported insomnia=0.58, with 

daytime dozing=-0.86). To further confirm these findings, we performed a similar analysis on the 

independent HCP dataset, which included self-reported sleep measurements using PSQI26, 

sadness (proxy for depression) measured using the NIH toolbox37, and cognition measured by 

the Mini-Mental State Examination (MMSE)38. Results for both task-based and resting-state 

data were largely in agreement, with the exception of neural signatures for cognition measures 

(Figure 4C, D). Correlations between the associations of anatomical models were largely 

consistent with those from the task fMRI experiment (Figure S7C). 
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Figure 4: Task and resting conditions show a discrepancy in neural association correlations of 

sleep, cognition, and depression across two datasets. A) shows the pairwise correlation values 

between coefficients from each phenotype model of task-based activations across all brain 

regions in the UK Biobank. B) shows the pairwise correlation values between coefficients from 

each phenotype model of resting-state activations across all brain regions of the UK Biobank. C) 

task-based pairwise correlation measurement similar to A but for the HCP dataset. D) resting 

state pairwise correlation measurement similar to B but for the HCP dataset. Bolded values are 

statistically significant. 
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Discrepant task-activated and resting fMRI signatures of sleep are partly reconciled by 

varying sleep duration 

In order to investigate the counterintuitive yet durable positive correlation of insomnia and 

depression with longer sleep in resting state, we developed two hypotheses to explain it: 1) a 

subset of individuals reporting higher levels of depressive symptoms drive the discrepancy due 

to the fact that both oversleeping and insomnia are possible symptoms of depression, and 2) 

individuals with insomnia and depression symptoms possess resting-state neural patterns that 

resemble those with long sleep resulting in a hyperattentive state, preventing them from 

sleeping. 

 

To test the first hypothesis, we split the participants by their depression symptoms into those 

who have a score of 3 or more as the depressed group and those who have a score less than 3 

as the not-depressed group 32. We fitted the models for each group again and the same 

correlation patterns between phenotypes persisted in the not-depressed group. In the 

depressed group, the insomnia and duration of longest sleep bout correlation disappeared 

(Figure 5A). This could be a factor resulting from the fact that the depressed group was small, 

with only 944 participants vs. the remaining 29,918. 

 

We then split the participants into approximately equal groups split by the duration of longest 

sleep bout median value (greater or less than 6.8 hours). Individuals with an average of less 

than 6.8 measured hours of continuous sleep were labeled “short sleepers”, and those with an 

average of greater than or equal to 6.8 hours were labeled as “long sleepers” (Figure 5C). The 

positive correlation between sleep duration and both self-reported insomnia and depressive 

symptoms persisted only within the long sleepers (insomnia: r=-0.73; p=4.41×10-36; PHQ-2: r=-

0.59; p=3.34×10-21). In the short sleeper group, we observed no significant correlation between 
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neural signatures of sleep duration and that for PHQ-2 (r=-0.079; p=0.26), and we found a 

significant negative correlation of sleep duration with self-reported insomnia (r=-0.20; p=0.003). 

The positive correlation between signatures of depressive symptoms and self-reported insomnia 

persisted in both short and long sleepers. This result implies that sleep, when measured in “long 

sleepers”, relates to functional connectivity values that change in a pattern similar to increasing 

symptoms of depression and frequency of insomnia. However, significant negative correlations 

with the daytime dozing measure persisted in both groups but the negative correlation between 

duration of longest sleep bout and daytime dozing did not reach statistical significance. 
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Figure 5: Correlation values of the coefficients of the linear models of functional connectivity 

values split by PHQ-2 scores and duration of longest sleep bout. A shows the pairwise 

correlation values for the coefficients of the models split by the PHQ-2 score representing 

depressed and non-depressed groups. B shows a scatter plot with the line of fit between the 

coefficients of the models for two pairs of phenotypes (duration of longest sleep bout and PHQ-

2; duration of longest sleep bout and self-repot insomnia). C shows the pairwise correlation 

values for the coefficients of the models split by the duration of longest sleep bout. Bolded 

values are statistically significant. D shows a scatter plot with the line of fit between the 

coefficients of the models for two pairs of phenotypes (duration of longest sleep bout and PHQ-

2; duration of longest sleep bout and self-repot insomnia).  

 

Brain regions are hyperconnected under the resting condition with depression and 

insomnia but hypoconnected during the task condition 

In the previous section, we showed similar resting state patterns between depression and 

insomnia and duration of longest sleep bout. This was in contrast to the results from the task-

based data. In order to investigate the directionality of associations of the neural connectivity 

patterns giving rise to this discrepancy, we compared global connectivity patterns across resting 

and task conditions. We calculated the representation connectivity patterns for the task 

condition and used seed-based connectivity from the previous analysis. We then modeled 

associations with our five sleep, depression, and cognition phenotypes across all pairs of brain 

regions as well as an aggregate brain-wide average connectivity measure (Figure 6A,C). We 

also modeled the association of the network-specific average connectivity (Figure 6B) in order 

to investigate intra- and inter-network connectivity changes. Results show that, for the task 

condition, there is a predominantly negative association between representational connectivity 

and depressive symptoms and self-reported insomnia (Figure 6A) suggesting hypoconnectivity 
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association with these phenotypes. However, in the resting condition, the associations were 

mostly positive, suggesting hyperconnectivity. Self-reported daytime dozing showed a strongly 

negative association suggesting a strong hypoactivation in the resting condition. These results 

are also consistent with the correlation results (Figure 4). Results from the network-wise 

connectivities show a significant positive association between accelerometer-measured duration 

of longest sleep bout and the default mode network (DMN) inter-connectivity (Figure 6B). This 

significant association was also observed in self-reported insomnia but was accompanied by 

another significant association between the DMN and frontoparietal network (FPN). Similarly, 

depressive symptoms showed a significant positive association with the DMN-FPN connectivity 

but not within the DMN. 

 

 

Figure 6: Brain regions are hyperconnected with PHQ-2 and insomnia in resting condition but 

hypoconnected in task condition. A shows the significant brain representational and functional 
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connectivity associations with the five phenotypes for each connection between HCP180 

regions. B Network-wise representational (upper) and functional (lower) connectivity 

associations (model t-statistic) with the different phenotypes. Bolded associations are 

statistically significant. C Global mean connectivity associations with the five phenotypes. Error 

bars represent 95% confidence intervals after correcting for multiple comparisons over 5 

measures. 

 

 

Discussion 

We observed a striking and consistent contrast between the neural representations of 

objectively-measured and self-reported sleep. Specifically, brain-wide resting state fMRI 

signatures of long accelerometer-measured sleep were the same as those of higher self-

reported frequency of insomnia and depressive symptoms. This seemingly paradoxical result 

was replicated using summary statistics from a previously published study and in independent 

analyses of the HCP dataset.  Under task conditions, these correlations were inverted. This 

discrepancy was partially reconciled by showing that the positive correlations in resting state 

data persisted only for individuals with sleep durations measured on average longer than 6.8 

hours. Additionally, brain-wide mean connectivity increased with insomnia and depression at 

resting state but decreased under the task condition. Our findings may explain heterogeneity in 

existing literature on the neural signatures of sleep and depression, and shed new light on the 

specific circuits responsible for the connections between sleep, depression, and cognition. 

 

Our task-based analyses relied on a measure of signal-based decoding of task trials using 

machine learning. Superior parietal regions showed significant associations with the duration of 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 25, 2023. ; https://doi.org/10.1101/2023.05.13.540646doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.13.540646
http://creativecommons.org/licenses/by-nc/4.0/


 

22 

longest sleep bout, depressive symptoms, and cognition. Insomnia and dozing showed few 

significant associations, in line with previous univariate analyses on the same data27. 

Conversely, objective sleep measure revealed associations with neural data sensitivity to neural 

activity changes in comparison to self-reporting. Duration of longest sleep bout had additional 

associations with intermediate visual areas at the lateral occipital junction, with better sleep 

being associated with higher multivariate activation; these areas are responsible for shape 

detection39.  

 

In addition, resting state results revealed widespread associations similar to Fan et al. 202227, 

especially for daytime dozing. We found that functional connectivity between the frontoparietal 

network and in particular the posterior inferior frontal junction (IFJp) and lateral occipital regions 

was positively associated with duration of longest sleep bout. IFJp is known to be responsible 

for top-down attention40,41. This suggests an effect of sleep on the top-down visual attention 

connections leading to degraded visual processing. It is known that top-down attention can 

modulate visual cortex activation patterns42 and thus any impairment in this connection could 

impair visual function. This effect was reported previously in patients with primary insomnia43,44. 

Previous experiments of sleep deprivation have shown a decreased connectivity between 

frontal and parietal regions with the visual cortex45–47 and a decrease in activation of the visual 

cortex7–9 that was reversible using trans magnetic stimulation48,49. It challenges the results from 

previous sleep deprivation studies that report a decrease in attention signal at the source at the 

dorsolateral prefrontal cortex45–47,50–53 suggesting instead a connectivity impairment. These 

studies relied mostly on acute sleep deprivation that could lead to transient impairment in 

cognition as opposed to sustained low sleep quality where connectivity becomes impaired as a 

result of sustained low attentional signal from the source. 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 25, 2023. ; https://doi.org/10.1101/2023.05.13.540646doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.13.540646
http://creativecommons.org/licenses/by-nc/4.0/


 

23 

Our central finding was that functional connectivity signatures were positively correlated 

between longer bouts of accelerometer-measured sleep and both frequency of self-reported 

insomnia and greater depressive symptoms. This correlation remained in both strata of high and 

low depressive symptoms, but only persisted in long sleepers when the population was stratified 

by longest duration of sleep bout. The positive correlation between long sleep and depressive 

symptoms could in part explain an atypical presentation of depression symptoms: 

hypersomnia16. The positive correlation of long sleep with insomnia could have two 

explanations: one is that the resting-state signal of a person with a higher frequency of insomnia 

resembles that of a rested wakefulness state thus preventing them from falling asleep and 

keeping them in a hyperarousal state5,13,17,18. Results from sleep EEG suggest that during sleep, 

signals resemble a hyperarousal state decreasing the quality of sleep in insomnia54. Another 

possibility is that the objective measure of sleep by accelerometry is not capturing the objective 

sensation of sleep quality which is reported by primary insomnia patients and polysomnography 

measurements22,23. However, we believe that the first explanation is more likely given the 

phenomenon of contradictory subjective and objective sleep measure results was observed in 

polysomnography but not accelerometry measures19–21,55–57 and that our results were 

reproduced in the HCP dataset where sleep duration was self-reported24. This pattern was also 

reproducible through analyzing publicly available coefficients from an independent analysis of 

UK Biobank27.  

 

In our population, the groups of short sleepers (duration of longest sleep bout < 6.8 hours) 

showed an inverted association with insomnia which is reasonable but it signals that insomnia 

neural signature is multimodal resembling both short and long sleep. There was no significant 

association between duration of longest sleep bout and PHQ-2 in that group. The positive 

associations between duration of longest sleep bout remained consistent between depressed 

and not-depressed groups while insomnia association was insignificant for the depressed group. 
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The non-depressed group showed identical associations with the whole cohort which could be 

explained that the non-depressed group represented the majority of the cohort. Brain-wide 

mean connectivity results revealed that insomnia and depression are associated with 

hypoconnectivity in the task condition and hyperconnectivity during the resting condition. 

Previous studies have found similar results of hypoactivation in primary insomnia for task-based 

fMRI58,59 while resting state connectivity results in the literature were mixed44,60. For depression, 

hyperconnectivity was observed in various networks for resting conditions61,62. In addition, sleep 

state is associated with a breakdown of cortical effective connectivity63,64 so insomnia being 

associated with hyperconnectivity in the resting state could signal a reverse effect. 

 

Our study has several limitations. First, we studied a general population sample with only a 

small minority of participants diagnosed with depression, insomnia, dementia, or narcolepsy. 

Therefore, our findings may not extend to clinical populations with severe impairments and 

symptoms. Second, while the results of our analyses in UK Biobank and HCP were largely 

consistent, task signatures of cognition with those for other phenotypes were not entirely 

consistent. This may have been due to differences in cognitive measures in these two cohorts. 

The measure of cognition used in the UK Biobank analysis was a word-symbol matching task 

where changes in performance could indicate cognitive decline. In HCP analyses, we utilized 

the available test for cognitive decline, the MMSE, but these two measures might not capture 

the heterogeneity of brain functions that show dysfunction with cognitive decline. This is 

especially evident in our UK Biobank analysis where the cognitive measure was derived from a 

single task. Similarly, the results we obtained from our task-based fMRI study might not 

necessarily generalize to tasks other than face-shape matching which could limit the 

conclusions of this analysis.  
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Our results show that longer uninterrupted sleep is related to the strength of sensory and 

cognitive processing in vision areas, possibly due to the increased top-down attention 

recruitment. Additionally, we counterintuitively found similarities in resting state activity among 

people with insomnia, long sleep, and depression symptoms which could signal hyperarousal in 

resting state activity. This hyperarousal could increase the possibility of cognitive fatigue that 

may end up causing a reduction in task-based activation. This persistent fatigue could give rise 

to depressive symptoms with daytime dozing acting as a compensatory mechanism, and may 

partly explain the success of sleep deprivation as a therapy for depression1. It also highlights the 

heterogeneity of sleep quality factors where previous studies showed hyperconnectivity to be 

associated with poor sleep with dorsolateral prefrontal cortex, cuneus, and orbitofrontal cortex 

mediating the relationship with depression 25. That previous work, however, used the overall 

PSQI sleep score as a marker for poor sleep. We showed here that within the same HCP cohort 

that they used, different components of the PSQI score have different neural signatures.  

 

Our study highlights the importance of investigating the multimodal signature of phenotypes to 

understand their diverse manifestations that could give rise to similar symptoms. Our results are 

supported by a large sample size of over 30,000 participants from the UK Biobank and over 800 

from HCP study. The sheer size of these datasets also allows for studying more brain-wide 

associations with reproducible quality and relatively accurate effect sizes65. We uncover a 

phenomenon of brain-wide similarities between sleep quality, insomnia, and depressive 

symptoms that could guide advancing clinical practice to investigate more fine-grained details of 

sleep habits to guide the optimal care plans all while concurrently tracking the cognitive load of 

patients.   
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Methods 

Software 

We utilized FreeSurfer and FSL tools for brain region parcellation and label transformation as 

well as for cortical thickness measurements and seed-based correlation analysis and higher-

level modeling of its results. We used python 3.6 for subsequent analyses with Brain Decoder 

Toolbox 2 for brain region data extraction, scikit-learn for SVM classifier construction, 

statsmodels for OLS model creation. For plotting and visualization, we used the libraries 

seaborn66 and mne-connectivity. 

Dataset 

Data was obtained from UK Biobank29,30 application #61530. We collected data for the 

functional magnetic resonance imaging for the resting state and task-based paradigms as well 

as the anatomical data. We also utilized the task data from E-Prime software (software data) to 

characterize the task-based runs. For sleep data, we obtained both data from the self-report 

sleep quality measures collected at the same imaging instance and from wrist-based 

accelerometers, which were worn over a 7-day period and used for extracting quantitative 

measurements of sleep quality14. Other psychiatric (PHQ-2) and cognitive measures (symbol 

digit substitution task) were collected from the self-reported mental health questionnaires and 

cognitive test results31 conducted at the same imaging instance. Table S1 indicates the variable 

codes from UK Biobank and the number of valid subjects extracted for each data modality. 

Covariates were extracted from the demographics data in UK Biobank (sex, age, socioeconomic 

status, ethnicity, and education level) and the measurement-specific factors (difference in time 

between accelerometry measurement and brain image acquisition, head motion, face-shape 

task performance, and measurement site). To maximize the number of participants and 

strengthen statistical power in each association analysis, we included all participants with an 
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available measurement for each phenotype independently rather than investigating only the 

participants with all valid measures (Figure S1). This led to different numbers of participants for 

each phenotype measurement (Table S2). 

Phenotypic correlation analysis 

We measured the pairwise phenotypic partial correlations between five output parameters: 

sleep quality measured by an accelerometer (duration of longest sleep bout), self-reported 

sleeplessness/insomnia frequency, self-reported daytime dozing frequency, cognitive ability 

measured by number of correct matches in a symbol-digit substitution task31, and subclinical 

depression score measured by the PHQ-2 scale32 with age, sex, study site, ethnicity, 

socioeconomic status, difference between time of accelerometer measurement and assessment 

center visit (only for the accelerometer output parameter), and education level as covariates. 

We calculated confidence intervals and significance by the 99% confidence intervals to correct 

for multiple comparisons (0.05 significance level over five outputs). 

ROI-based analysis 

Regions of interest for the multivariate pattern analyses were constructed using the predefined 

cortical parcellations from the Human Connectome Project35. We combined the bilateral regions 

of interest resulting in 180 parcellations. The labels from the HCP parcellation were transformed 

using FreeSurfer software67 from the fsaverage subject cortical surface to each subject’s 

surface in the dataset. Labels were then transformed into the volume space of the fMRI data for 

each of the resting state and task-based paradigms. 
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Task fMRI analysis 

The task fMRI experiment in UK Biobank data comprised a modified version of the face-shape 

matching task68,69. In this task subjects viewed a central cue stimulus accompanied by two 

stimuli on the right and the left with one of them matching the central cue. Subjects were tasked 

to press a button identifying which of the two stimuli is the one matching the central cue. The 

trials contained either human faces or 2D shapes (circle, horizontal ellipse, and vertical ellipse). 

In order to perform brain-wide association analysis with the task-based fMRI data, we built 

multivariate classification models33,34 using support vector machines (SVM) to classify the face 

and shape trials regardless of subject’s performance. Models were created for each region of 

interest where regions were delineated according to the human connectome project (HCP) 

parcellation69. We carried forward the classification accuracies from each region as a proxy for 

its cortical activation in response to the visual stimuli. We then measured the association of 

classification accuracy with our phenotypes of interest using ordinary least squares (OLS) 

regression models. We created ordinary least square models relating the classification accuracy 

of each region and sleep efficiency. We also added the relevant covariates to the model (sex, 

age, imaging site, head motion, socioeconomic status, education level, ethnicity, task 

performance accuracy mean, task response time mean, task response time standard deviation, 

sex and age interaction, and accelerometry time relative to brain acquisition). To correct for 

multiple comparisons, we adjusted the p-values for the false discovery rate using the 

Benjamini/Hochberg method. We then divided the resulting model coefficients by the 

classification error to up-weight regions with voxels most responsive to the stimuli. 

 

Multivariate pattern analysis 

We utilized the readily preprocessed task-based fMRI data from UK Biobank to create 

classifiers between faces and shapes for each brain region. Time series from each region was 
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extracted using Brain Decoder Toolbox 2 for Python (https://github.com/KamitaniLab/bdpy). We 

then applied further preprocessing to the data where the data volumes were shifted by 5 

volumes (3.675 seconds) to compensate for the hemodynamic delay. Data was then filtered to 

remove the slow signal shift along the run, and then samples were normalized by the mean 

value to extract the percent signal change. We then averaged the samples belonging to the 

same classification category within each block to improve the signal-to-noise ratio. Finally, the 

data points without stimulus were removed and the samples were then randomized. We ended 

up with 60 data points for the classifier which were then randomized and divided into training 

and test datasets in a 6-fold cross-validation scheme. For each fold, we trained a binary support 

vector machine classifier with a linear kernel to classify the faces and shapes. The mean 

classification accuracy from each region was then calculated and utilized as a proxy for the 

strength of encoding of stimuli in this brain region. 

Representational connectivity analysis 

We extracted and preprocessed the task fMRI data in a similar fashion as in the MVPA analysis. 

We then divided the stimuli into 7 different categories based on the content of stimuli with three 

categories representing shapes (circle, horizontal ellipse, and vertical ellipse) and four 

representing faces (male, female, angry, and fearful faces). The voxel data for each of these 

conditions were then averaged creating a vector of voxel data for each region. We then 

computed the representational dissimilarity matrix (RDM)70 for each region. To calculate 

representational connectivity, we conducted a second-order similarity analysis between region 

pairs by calculating the Pearson correlation coefficient between the lower triangles of their 

RDMs. 
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Cortical thickness measurement 

Cortical thickness was measured for each brain region using Freesurfer software anatomical 

statistics measurement tools using the FreeSurfer reconstructed brain anatomy images 

provided by UK Biobank. We then created ordinary least squares models relating cortical 

thickness data to sleep efficiency and relevant covariates (sex, age, socioeconomic status, 

education level, ethnicity, imaging site, sex and age interaction, accelerometry time relative to 

brain acquisition). To correct for multiple comparison, we adjusted the p-values for false 

discovery rate using the Benjamini/Hochberg method. 

Functional connectivity analysis 

We extracted the readily-processed functional connectivity data based on full correlation from 

UK Biobank repository (variable code: 25750) and created ordinary least square models relating 

functional connectivity between each node (independent component) and sleep efficiency. We 

also added the relevant covariates to the model (sex, age, imaging site, head motion, 

socioeconomic status, education level, ethnicity, sex and age interaction, and accelerometry 

time relative to brain acquisition). To correct for multiple comparisons, we adjusted the p-values 

for multiple comparison using Bonferroni’s correction for five phenotypes and 21 independent 

components. 

Seed-based correlation analysis 

In order to create more fine-grained connectivity patterns that also map to the same regions as 

the task-based fMRI, we ran a seed-based correlation analysis on each region using FSL dual 

regression tool71. We then divided the resulting correlation map into the HCP region space 

computing the mean over each region resulting in a 180 x 180 matrix of connectivity. We then 

normalized the rows of the matrix by the self-correlation values (diagonal of the matrix). Results 

were used to construct a higher-level model with sleep efficiency as the independent variable 
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and the resting state covariates similar to the OLS models previously described in the functional 

connectivity analysis. 

 

Brain-wide mean connectivity analysis 

We calculated brain-wide mean connectivity by averaging the seed-based connectivity across 

all node pairs from the HCP regions for the resting state data. For the task-based data we 

averaged the representational connectivity measures across all the regions. We then built OLS 

models for each mean connectivity value for each phenotype and calculated the model 

coefficients and confidence intervals based on a p-value of 0.01 based on Bonferroni correction 

for five phenotypes. 

Human connectome project data analysis 

We extracted the HCP data from the young adult project24,72. We extracted the data for the 

emotion task and the resting-state. For the emotion task, there were two runs for each subject 

with an identical task as that of the UK Biobank. We concatenated the data for these two runs 

and constructed the SVM models similar to the protocol used for UK Biobank. For the resting-

state data, we utilized the already processed functional connectivity based on the full correlation 

between nodes defined by the group-ICA analysis. 

For the phenotypes equivalent to those we analysed in the UK Biobank, we used the sleep 

parameters based on the PSQI sleep score26 as there was no objective sleep measures. We 

utilized the self-reported sleep duration as a proxy for the accelerometer-measured duration of 

longest sleep bout, the PSQI second component that relies on difficulty of falling asleep as a 

proxy for insomnia, and the answer to the question on trouble staying awake during daytime 

activities as a proxy for daytime dozing. For depression measure, we used the reported sadness 

score from the assessment of self-reported negative affect measure from the NIH toolbox37. For 
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cognition, despite the HCP data containing cognitive test, the test score we utilized for the UK 

Biobank was not done for the HCP cohort. We utilized the Mini-Mental State Examination 

results as generic test for cognition38. The complete set of subjects with all imaging and 

behavioral phenotypes available was 807. 
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