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Abstract

Sleep and depression have a complex, bidirectional relationship, with sleep-associated
alterations in brain dynamics and structure impacting a range of symptoms and cognitive
abilities. Previous work describing these relationships has provided an incomplete picture by
investigating only one or two types of sleep measures, depression, or neurocimaging modalities
in parallel. We analyzed the correlations between task and resting-state brain-wide signatures of
sleep, cognition, and depression in over 30,000 individuals. Neural signatures of insomnia and
depression were negatively correlated with neural signatures of sleep duration in the task
condition but positively correlated in the resting-state condition, showing that resting-state
neural signatures of insomnia and depression resemble that of rested wakefulness. This was
further supported by our finding of hypoconnectivity in task but hyperconnectivity in resting-state
data in association with insomnia and depression This information disputes conventional
assumptions about the neurofunctional manifestations of hyper- and hypo-somnia, and may

explain inconsistent findings in the literature.
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Introduction

The relationships between sleep, neurocognitive processes, and depression are complex and
fraught with paradoxes. Depressive symptoms are linked to both increases and decreases in
sleep duration. At the same time, acute sleep deprivation has been shown to act as an effective
antidepressant!. Neural correlates of sleep are also linked to both hyper- and hypo-activation in
different task environments?3, and both undersleeping and oversleeping are associated with
poorer cognition®. The majority of our current understanding of sleep has come from acute sleep
deprivation experiments and clinical sleep disorders which cover only fringe conditions in
comparison with the general population3%€, This has produced a gap in our understanding of
the role of sleep in mental and cognitive health and how sleep affects the brain under different

conditions and cognitive loads.

Observational studies have shown that sleep deprivation is associated with the degradation of
attention, working memory, reward and dopamine processing, emotion discrimination and
expression, and hippocampal memory processing®. Neurobiologically, it has been associated
with aberrant activity observed in the visual cortex’®, frontoparietal regions'®, and ventral and
dorsal attention networks™. This indicates a possible role of sleep in visual cortical processing

via top-down attentional circuits during cognitive task performance.

Sleep quantity and quality are also linked to symptoms of mental illness'?14, and the biological
mechanisms of these links have been explored with neuroimaging. For example, insomnia and
depression are bidirectionally related®, with lower-quality sleep being associated with negative
thoughts through decreased connections in the amygdala®®. In one study, insomnia, daytime
dozing, and low sleep quality were associated with aberrant functional connectivity in many

brain regions, especially the default mode network?; however, most neuroimaging studies have
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been underpowered and yielded heterogeneous results, leading to inconclusive evidence. One
challenge to parsing these relationships is that, while depression is typically associated with
symptoms of insomnia®, atypical depression is associated with hypersomnia!®. Insomnia is
hypothesized to be a result of hyperarousal states that causes cognitive fatigue and anxiety that
could progress to depression’8, while the relationship between hypersomnia and depression is

still an open question.

One prevalent limitation of most published neuroimaging studies of sleep is that they rely on
data collected during acute sleep deprivation, which does not necessarily have the same effect
as chronic sleep loss or low sleep quality®. Further, studies that have investigated primary
insomnia and depression have used a wide variety of methodologies, resulting in
heterogeneous findings?. Only a few studies also analyze neural representations with subjective
and objective sleep measures of sleep?®21. In addition, in primary insomnia, objective sleep

measures using polysomnography do not align with the subjective report of participants?>23,

Some initial attempts toward decoding these complex relationships at the population level have
been made. Cheng et al. (2018) investigated the neural associations of sleep quality and
depression using the Human Connectome Project (HCP)?* and a subset of UK Biobank?®,
finding that the link between poor sleep and depressive symptoms was in part mediated by
patterns of functional connectivity. One limitation of this study was that they used the overall
Pittsburgh Sleep Quality Index (PSQI) as their measure of sleep?® and only assessed resting
state data, thus missing the heterogeneity of sleep-related phenotypes manifest under different
conditions. More recently, Fan et al. (2022) performed a systematic analysis of multiple sleep
phenotypes in a subset of white-British population of the UK Biobank?’. They analyzed resting-
state and task-based fMRI data, diffusion tensor imaging, and cardiac MRI data, testing their

independent relationships with self-reported sleep data and other environment and mental
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health variables. They identified resting-state brain activation as a predictor of self-reported
insomnia and narcolepsy. They also found no significant associations between task-based fMRI
features and most sleep phenotypes. Crucially, this study was limited to self-reported sleep
measures, and it did not investigate the relationships between neural signatures of tested
phenotypes. Another study also investigated the associations of sleep phenotypes in
association with obesity, cardiometabolic conditions, brain structure, and cognition but did not

account for brain activity?8.

To address these gaps, we perform a multi-step analysis of two independent cohorts and
examine previously published analyses through a new lens. First, we map the associations of
sleep quality - measured subjectively by self-report and objectively by accelerometry - with both
task-based and resting-state measures of brain function in the UK Biobank?®3. We then test the
correlations between brain-wide patterns of associations with cognitive function and depressive
symptoms, finding seemingly contradictory patterns of resting-state and task-based activation in
response to poor sleep. Our analyses provide insights into shared mechanisms of the
heterogeneity in depression symptoms and how they connect neurobiologically with sleep
patterns. This could eventually lead to a better comprehension of the symptomology of

depression in line with sleep patterns with the potential for more targeted therapies.
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Figure 1: Study Summary. A shows the partial correlation map between the tested phenotypes
of sleep (duration of longest sleep bout, self-reported insomnia, and self-reported daytime
dozing), depression symptoms (PHQ-2 score), and cognition (bolded numbers are correlations
significantly different from zero). B shows the task fMRI experiment, multivariate pattern
analysis conducted, and the subsequent linear modeling of the classification accuracy with the
phenotypes to build a cortical map of associations (stimulus images obtained by permission
from Prof. Deanna Barch). C shows the resting-state data collection protocol, the calculation of
functional connectivity, and the linear modeling to produce a connectivity association map. D
shows the process for obtaining cortical thickness and linear modeling with phenotypes to

generate a brain map similar to B.
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Self-reported and accelerometer-based measures of sleep are weakly correlated

Figure 1 summarizes the analyses performed in our study. We first quantified the pairwise
phenotypic partial correlations between our five behavioral measures: sleep quality measured
by an accelerometer (duration of longest sleep bout), self-reported sleeplessness/insomnia
frequency, self-reported daytime dozing frequency, cognitive ability measured by a symbol-digit
substitution task®!, and subclinical depression symptoms measured by the PHQ-232 with age,
sex, study site, ethnicity, socioeconomic status, the difference between the time of

accelerometer measurement and assessment center visit, and education as covariates.

Accelerometer-measured sleep quality was weakly correlated with cognitive performance
(r=0.036; p=5.39x10®) while depressive symptoms were correlated with self-reported insomnia
(r=0.15; p=5.64x10%3), both in positive directions (Figure 1A). Self-reported insomnia and
daytime dozing frequencies were also positively correlated, though the magnitude of this
correlation was similarly very small, with only 0.7% of variance explained (r=0.081; p=2.25%10"
20y As expected, the accelerometer-measured duration of longest sleep bout had negative
correlations with both self-reported insomnia (r=-0.072; p=2.21x107"°) and self-reported daytime

dozing (r=-0.11; p=1.29x10%%), again with very small effect sizes.

Multimodal neural associations with sleep, depression, and cognition

Having established phenotypic correlations between our measures, we first built a brain map of
each phenotype using task-based fMRI (Figure 1B). We fit multivariate classification models3334
using support vector machines (SVM) to classify face and shape trials regardless of task
performance. Models from all regions were able to significantly perform above the 50% chance
level, however, classifiers using voxels from visual areas were the most accurate (Figure S2).

We carried forward classification accuracies from each region as a proxy for its cortical
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activation in response to the visual stimuli. We then measured the association of this activation

proxy with our phenotypes of interest using ordinary least squares (OLS) regression.

Our measure of task-based brain activation showed significant associations with accelerometer-
measured sleep duration, depressive symptoms, and cognitive scores in predominantly visual
regions as well as higher multimodal regions in the parietal cortex (Figure 2A). Cognition also
showed significant associations across frontal regions while depressive symptom associations
were more global and diffuse (Figure 2B). Longer sleep bouts were associated with a higher
decoding accuracy (stronger multivariate cortical signal), primarily in lateral occipital regions
(Figure 2B, S4). These are intermediate processing areas that feed into the ventral stream of
vision. Higher regions along the ventral stream showed no significant associations with
accelerometer-measured sleep. Depressive symptoms showed significant associations across
regions spanning the whole cortex, where higher symptom scores were associated with lower
decoding accuracies (Figure 2B). The strongest associations were observed in the visual
areas, particularly the high-level face-selective and intermediate visual areas (Figure S4).
Higher cognitive scores corresponded to higher decoding accuracy which overlapped with
depressive symptoms score effects in visual cortex and prefrontal cortex (Figure 2B,C). The
latter three phenotypes all had overlapping significant associations in multimodal superior
parietal regions (Figure 2C). These areas are responsible for higher level visual processing of
orientation and location as well as motor planning which is reasonable given the nature of the
task involving visual recognition and motor action (button pressing). Self-reported insomnia
frequency showed no significant effect on the neural coding of visual tasks except in one region
in the prefrontal cortex. Self-reported daytime dozing frequency showed no significant

associations in any region.
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Figure 2: Results of the associations from the task-based fMRI data. A) summarizes the
overall beta values of the models normalized by decoding accuracy. The regions are organized
and color-coded according to their groupings in the human connectome project®® where the

region color maps are shown on the right. B) shows the brain region maps with significant
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associations color-coded by the beta values normalized by decoding accuracy for each of the
phenotype models. C) shows the overlap between regions that showed significant associations

with more than one phenotype.

Following task-based analyses, we investigated the associations of resting-state data with our
target phenotypes. We first analyzed associations of functional connectivity of independent
components across the brain (Figure 1C), observing many significant associations with
accelerometer-measured duration of longest sleep bout that spanned many circuits (Figure 3A).
Daytime dozing showed a similar association pattern with opposite directions of effect due to the
inverted scale of the two measures. Insomnia, depressive symptoms, and cognition were
associated with only a few circuits and showed little overlap (Figure S5). From these
associations, we selected one to probe in more detail using seed-based connectivity analysis.
Specifically, we investigated the connection between IC5 and IC18 as this could point to the
reasons for the degraded signal in the task fMRI condition. The functional connectivity pattern
between these two independent components was positively correlated with duration of longest
sleep bout and negatively correlated with daytime dozing. We investigated the regions
belonging to these two components by selecting the regions that mark higher than the 98th
percentile of the component activation. Seed-based results showed a positive association with
duration of longest sleep bout and negative association with daytime dozing at the connection
level between the posterior side of the inferior frontal junction (IFJp) and almost all the occipital
regions in IC18. This points to a positive association of sleep bout length with the connectivity
between the frontal attentional areas and the intermediate visual regions. Complete

associations of seed-based correlations are also shown in Figure 6.

Finally, we investigated the association of each phenotype with cortical thickness (Figure 1D).

Measured duration of longest sleep bout, depressive symptoms, and cognition all showed

12
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significant and diffuse associations but with strongest overlap along the auditory, insular, and
temporal regions (Figure S7A). Frequency of daytime dozing showed a sparse pattern that
spanned many of the same regions. The results showed that higher cortical thickness was
associated with longest continuous sleep (accelerometer-measured), less frequent depressive
symptoms, higher cognitive score, and lower frequency of daytime dozing in almost all brain
regions This pattern did not hold for the primary visual cortex (V1) and early visual cortex (V2

and V4). Self-reported insomnia did not show any significant association with cortical thickness

values.
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Figure 3: Resting-state connectivity associations results with the sleep phenotypes. A) shows
the functional connectivity associations for the accelerometer-measured duration of longest
sleep bout and self-reported daytime dozing. The different components are grouped and color-
coded based on the Yeo 7 Networks®¢. B) zooms in on the associations between IC5 and IC18
showing seed-based correlation associations between different regions belonging to the

components of interest.
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Correlations of neural signatures of sleep, depression, and cognition show opposite

relationships under task-activated vs. resting conditions

To quantify the similarity in brain-wide patterns of task-based association between phenotypes,
we performed pairwise Pearson correlations between each set of association statistics in the
task and resting state conditions. For the task-based condition, in directional agreement with our
observed phenotypic correlations (Figure 1A), the neural signature of accelerometer-measured
duration of longest sleep bout was negatively correlated with those for depressive symptoms
(r=-0.63; p=5.07x102?), frequency of insomnia (r=-0.14; p=0.04), and frequency of daytime
dozing (r=-0.64; p=1.00x102%). The neural signature for depressive symptoms showed positive
correlations with those for both frequency of insomnia (r=0.17; p=0.03) and daytime dozing
(r=0.64; p=2.36x107?2), indicating similar effects across the cortex despite the latter two

phenotypes showing almost no significant independent associations (Figure 4A).

Shifting to neural signatures in the resting state condition, a notable difference emerged. In
contrast to the results from the task condition and from phenotypic correlations, there were
nontrivial positive correlations between the neural signature for duration of longest sleep bout
and those for both self-reported insomnia (r=0.59; p=2.71x102!) and depressive symptoms
(r=0.48; p=1.87x10'3; Figure 4B). This indicated a similarity between the functional connectivity
changes associated with longer continuous sleep, higher frequency of insomnia, and more
depressive symptoms - which is counterintuitive. This pattern was similar, with the daytime
dozing functional connectivity also showing negative correlations. To confirm the validity of
these results, we retrieved independently modeled associations from Fan et al.?” between self-
reported insomnia, daytime dozing, and sleep duration (data retrieved at
http://lwww.ig4sleep.org/) and performed the same correlational analyses. Reassuringly, we

found nearly identical patterns of correlations between effects (Table S4); self-reported

14
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insomnia and insomnia had a correlation coefficient of -0.66 (compared to -0.59 in our analysis).
While they did not test accelerometer-measured duration of longest sleep bout, the results from
self-reported sleep duration were consistent (correlation with self-reported insomnia=0.58, with
daytime dozing=-0.86). To further confirm these findings, we performed a similar analysis on the
independent HCP dataset, which included self-reported sleep measurements using PSQI?®,
sadness (proxy for depression) measured using the NIH toolbox®’, and cognition measured by
the Mini-Mental State Examination (MMSE)®®. Results for both task-based and resting-state
data were largely in agreement, with the exception of neural signatures for cognition measures
(Figure 4C, D). Correlations between the associations of anatomical models were largely

consistent with those from the task fMRI experiment (Figure S7C).
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Figure 4: Task and resting conditions show a discrepancy in neural association correlations of
sleep, cognition, and depression across two datasets. A) shows the pairwise correlation values
between coefficients from each phenotype model of task-based activations across all brain
regions in the UK Biobank. B) shows the pairwise correlation values between coefficients from
each phenotype model of resting-state activations across all brain regions of the UK Biobank. C)
task-based pairwise correlation measurement similar to A but for the HCP dataset. D) resting
state pairwise correlation measurement similar to B but for the HCP dataset. Bolded values are

statistically significant.
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Discrepant task-activated and resting fMRI signatures of sleep are partly reconciled by

varying sleep duration

In order to investigate the counterintuitive yet durable positive correlation of insomnia and
depression with longer sleep in resting state, we developed two hypotheses to explain it: 1) a
subset of individuals reporting higher levels of depressive symptoms drive the discrepancy due
to the fact that both oversleeping and insomnia are possible symptoms of depression, and 2)
individuals with insomnia and depression symptoms possess resting-state neural patterns that
resemble those with long sleep resulting in a hyperattentive state, preventing them from

sleeping.

To test the first hypothesis, we split the participants by their depression symptoms into those
who have a score of 3 or more as the depressed group and those who have a score less than 3
as the not-depressed group 2. We fitted the models for each group again and the same
correlation patterns between phenotypes persisted in the not-depressed group. In the
depressed group, the insomnia and duration of longest sleep bout correlation disappeared
(Figure 5A). This could be a factor resulting from the fact that the depressed group was small,

with only 944 participants vs. the remaining 29,918.

We then split the participants into approximately equal groups split by the duration of longest
sleep bout median value (greater or less than 6.8 hours). Individuals with an average of less
than 6.8 measured hours of continuous sleep were labeled “short sleepers”, and those with an
average of greater than or equal to 6.8 hours were labeled as “long sleepers” (Figure 5C). The
positive correlation between sleep duration and both self-reported insomnia and depressive
symptoms persisted only within the long sleepers (insomnia: r=-0.73; p=4.41x1073¢; PHQ-2: r=-

0.59; p=3.34x10%). In the short sleeper group, we observed no significant correlation between
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neural signatures of sleep duration and that for PHQ-2 (r=-0.079; p=0.26), and we found a
significant negative correlation of sleep duration with self-reported insomnia (r=-0.20; p=0.003).
The positive correlation between signatures of depressive symptoms and self-reported insomnia
persisted in both short and long sleepers. This result implies that sleep, when measured in “long
sleepers”, relates to functional connectivity values that change in a pattern similar to increasing
symptoms of depression and frequency of insomnia. However, significant negative correlations
with the daytime dozing measure persisted in both groups but the negative correlation between

duration of longest sleep bout and daytime dozing did not reach statistical significance.
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Figure 5: Correlation values of the coefficients of the linear models of functional connectivity
values split by PHQ-2 scores and duration of longest sleep bout. A shows the pairwise
correlation values for the coefficients of the models split by the PHQ-2 score representing
depressed and non-depressed groups. B shows a scatter plot with the line of fit between the
coefficients of the models for two pairs of phenotypes (duration of longest sleep bout and PHQ-
2; duration of longest sleep bout and self-repot insomnia). C shows the pairwise correlation
values for the coefficients of the models split by the duration of longest sleep bout. Bolded
values are statistically significant. D shows a scatter plot with the line of fit between the
coefficients of the models for two pairs of phenotypes (duration of longest sleep bout and PHQ-

2; duration of longest sleep bout and self-repot insomnia).

Brain regions are hyperconnected under the resting condition with depression and

insomnia but hypoconnected during the task condition

In the previous section, we showed similar resting state patterns between depression and
insomnia and duration of longest sleep bout. This was in contrast to the results from the task-
based data. In order to investigate the directionality of associations of the neural connectivity
patterns giving rise to this discrepancy, we compared global connectivity patterns across resting
and task conditions. We calculated the representation connectivity patterns for the task
condition and used seed-based connectivity from the previous analysis. We then modeled
associations with our five sleep, depression, and cognition phenotypes across all pairs of brain
regions as well as an aggregate brain-wide average connectivity measure (Figure 6A,C). We
also modeled the association of the network-specific average connectivity (Figure 6B) in order
to investigate intra- and inter-network connectivity changes. Results show that, for the task
condition, there is a predominantly negative association between representational connectivity

and depressive symptoms and self-reported insomnia (Figure 6A) suggesting hypoconnectivity
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association with these phenotypes. However, in the resting condition, the associations were
mostly positive, suggesting hyperconnectivity. Self-reported daytime dozing showed a strongly
negative association suggesting a strong hypoactivation in the resting condition. These results
are also consistent with the correlation results (Figure 4). Results from the network-wise
connectivities show a significant positive association between accelerometer-measured duration
of longest sleep bout and the default mode network (DMN) inter-connectivity (Figure 6B). This
significant association was also observed in self-reported insomnia but was accompanied by
another significant association between the DMN and frontoparietal network (FPN). Similarly,
depressive symptoms showed a significant positive association with the DMN-FPN connectivity

but not within the DMN.
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Figure 6: Brain regions are hyperconnected with PHQ-2 and insomnia in resting condition but

hypoconnected in task condition. A shows the significant brain representational and functional
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connectivity associations with the five phenotypes for each connection between HCP180
regions. B Network-wise representational (upper) and functional (lower) connectivity
associations (model t-statistic) with the different phenotypes. Bolded associations are
statistically significant. C Global mean connectivity associations with the five phenotypes. Error
bars represent 95% confidence intervals after correcting for multiple comparisons over 5

measures.

Discussion

We observed a striking and consistent contrast between the neural representations of
objectively-measured and self-reported sleep. Specifically, brain-wide resting state fMRI
signatures of long accelerometer-measured sleep were the same as those of higher self-
reported frequency of insomnia and depressive symptoms. This seemingly paradoxical result
was replicated using summary statistics from a previously published study and in independent
analyses of the HCP dataset. Under task conditions, these correlations were inverted. This
discrepancy was partially reconciled by showing that the positive correlations in resting state
data persisted only for individuals with sleep durations measured on average longer than 6.8
hours. Additionally, brain-wide mean connectivity increased with insomnia and depression at
resting state but decreased under the task condition. Our findings may explain heterogeneity in
existing literature on the neural signatures of sleep and depression, and shed new light on the

specific circuits responsible for the connections between sleep, depression, and cognition.

Our task-based analyses relied on a measure of signal-based decoding of task trials using

machine learning. Superior parietal regions showed significant associations with the duration of
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longest sleep bout, depressive symptoms, and cognition. Insomnia and dozing showed few
significant associations, in line with previous univariate analyses on the same data?’.
Conversely, objective sleep measure revealed associations with neural data sensitivity to neural
activity changes in comparison to self-reporting. Duration of longest sleep bout had additional
associations with intermediate visual areas at the lateral occipital junction, with better sleep
being associated with higher multivariate activation; these areas are responsible for shape

detection®.

In addition, resting state results revealed widespread associations similar to Fan et al. 2022?7,
especially for daytime dozing. We found that functional connectivity between the frontoparietal
network and in particular the posterior inferior frontal junction (IFJp) and lateral occipital regions
was positively associated with duration of longest sleep bout. IFJp is known to be responsible
for top-down attention*®4, This suggests an effect of sleep on the top-down visual attention
connections leading to degraded visual processing. It is known that top-down attention can
modulate visual cortex activation patterns*? and thus any impairment in this connection could
impair visual function. This effect was reported previously in patients with primary insomnia®344,
Previous experiments of sleep deprivation have shown a decreased connectivity between
frontal and parietal regions with the visual cortex**=*" and a decrease in activation of the visual
cortex’™® that was reversible using trans magnetic stimulation*®4, It challenges the results from
previous sleep deprivation studies that report a decrease in attention signal at the source at the
dorsolateral prefrontal cortex*>47:59-53 suggesting instead a connectivity impairment. These
studies relied mostly on acute sleep deprivation that could lead to transient impairment in
cognition as opposed to sustained low sleep quality where connectivity becomes impaired as a

result of sustained low attentional signal from the source.
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Our central finding was that functional connectivity signatures were positively correlated
between longer bouts of accelerometer-measured sleep and both frequency of self-reported
insomnia and greater depressive symptoms. This correlation remained in both strata of high and
low depressive symptoms, but only persisted in long sleepers when the population was stratified
by longest duration of sleep bout. The positive correlation between long sleep and depressive
symptoms could in part explain an atypical presentation of depression symptoms:
hypersomnia’®. The positive correlation of long sleep with insomnia could have two
explanations: one is that the resting-state signal of a person with a higher frequency of insomnia
resembles that of a rested wakefulness state thus preventing them from falling asleep and
keeping them in a hyperarousal state®>'*1718, Results from sleep EEG suggest that during sleep,
signals resemble a hyperarousal state decreasing the quality of sleep in insomnia®. Another
possibility is that the objective measure of sleep by accelerometry is not capturing the objective
sensation of sleep quality which is reported by primary insomnia patients and polysomnography
measurements??>23, However, we believe that the first explanation is more likely given the
phenomenon of contradictory subjective and objective sleep measure results was observed in
polysomnography but not accelerometry measures®-21°>-" and that our results were
reproduced in the HCP dataset where sleep duration was self-reported?*. This pattern was also
reproducible through analyzing publicly available coefficients from an independent analysis of

UK Biobank?’.

In our population, the groups of short sleepers (duration of longest sleep bout < 6.8 hours)
showed an inverted association with insomnia which is reasonable but it signals that insomnia
neural signature is multimodal resembling both short and long sleep. There was no significant
association between duration of longest sleep bout and PHQ-2 in that group. The positive
associations between duration of longest sleep bout remained consistent between depressed

and not-depressed groups while insomnia association was insignificant for the depressed group.
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The non-depressed group showed identical associations with the whole cohort which could be
explained that the non-depressed group represented the majority of the cohort. Brain-wide
mean connectivity results revealed that insomnia and depression are associated with
hypoconnectivity in the task condition and hyperconnectivity during the resting condition.
Previous studies have found similar results of hypoactivation in primary insomnia for task-based
fMRI%85° while resting state connectivity results in the literature were mixed*+®. For depression,
hyperconnectivity was observed in various networks for resting conditions®:62, In addition, sleep
state is associated with a breakdown of cortical effective connectivity®*®* so insomnia being

associated with hyperconnectivity in the resting state could signal a reverse effect.

Our study has several limitations. First, we studied a general population sample with only a
small minority of participants diagnosed with depression, insomnia, dementia, or narcolepsy.
Therefore, our findings may not extend to clinical populations with severe impairments and
symptoms. Second, while the results of our analyses in UK Biobank and HCP were largely
consistent, task signatures of cognition with those for other phenotypes were not entirely
consistent. This may have been due to differences in cognitive measures in these two cohorts.
The measure of cognition used in the UK Biobank analysis was a word-symbol matching task
where changes in performance could indicate cognitive decline. In HCP analyses, we utilized
the available test for cognitive decline, the MMSE, but these two measures might not capture
the heterogeneity of brain functions that show dysfunction with cognitive decline. This is
especially evident in our UK Biobank analysis where the cognitive measure was derived from a
single task. Similarly, the results we obtained from our task-based fMRI study might not
necessarily generalize to tasks other than face-shape matching which could limit the

conclusions of this analysis.
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Our results show that longer uninterrupted sleep is related to the strength of sensory and
cognitive processing in vision areas, possibly due to the increased top-down attention
recruitment. Additionally, we counterintuitively found similarities in resting state activity among
people with insomnia, long sleep, and depression symptoms which could signal hyperarousal in
resting state activity. This hyperarousal could increase the possibility of cognitive fatigue that
may end up causing a reduction in task-based activation. This persistent fatigue could give rise
to depressive symptoms with daytime dozing acting as a compensatory mechanism, and may
partly explain the success of sleep deprivation as a therapy for depression®. It also highlights the
heterogeneity of sleep quality factors where previous studies showed hyperconnectivity to be
associated with poor sleep with dorsolateral prefrontal cortex, cuneus, and orbitofrontal cortex
mediating the relationship with depression 2°. That previous work, however, used the overall
PSQI sleep score as a marker for poor sleep. We showed here that within the same HCP cohort

that they used, different components of the PSQI score have different neural signatures.

Our study highlights the importance of investigating the multimodal signature of phenotypes to
understand their diverse manifestations that could give rise to similar symptoms. Our results are
supported by a large sample size of over 30,000 participants from the UK Biobank and over 800
from HCP study. The sheer size of these datasets also allows for studying more brain-wide
associations with reproducible quality and relatively accurate effect sizes®®. We uncover a
phenomenon of brain-wide similarities between sleep quality, insomnia, and depressive
symptoms that could guide advancing clinical practice to investigate more fine-grained details of
sleep habits to guide the optimal care plans all while concurrently tracking the cognitive load of

patients.
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Methods

Software

We utilized FreeSurfer and FSL tools for brain region parcellation and label transformation as
well as for cortical thickness measurements and seed-based correlation analysis and higher-
level modeling of its results. We used python 3.6 for subsequent analyses with Brain Decoder
Toolbox 2 for brain region data extraction, scikit-learn for SVM classifier construction,
statsmodels for OLS model creation. For plotting and visualization, we used the libraries

seaborn® and mne-connectivity.

Dataset

Data was obtained from UK Biobank?®° application #61530. We collected data for the
functional magnetic resonance imaging for the resting state and task-based paradigms as well
as the anatomical data. We also utilized the task data from E-Prime software (software data) to
characterize the task-based runs. For sleep data, we obtained both data from the self-report
sleep quality measures collected at the same imaging instance and from wrist-based
accelerometers, which were worn over a 7-day period and used for extracting quantitative
measurements of sleep quality*4. Other psychiatric (PHQ-2) and cognitive measures (symbol
digit substitution task) were collected from the self-reported mental health questionnaires and
cognitive test results®! conducted at the same imaging instance. Table S1 indicates the variable
codes from UK Biobank and the number of valid subjects extracted for each data modality.
Covariates were extracted from the demographics data in UK Biobank (sex, age, socioeconomic
status, ethnicity, and education level) and the measurement-specific factors (difference in time
between accelerometry measurement and brain image acquisition, head motion, face-shape
task performance, and measurement site). To maximize the number of participants and

strengthen statistical power in each association analysis, we included all participants with an
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available measurement for each phenotype independently rather than investigating only the
participants with all valid measures (Figure S1). This led to different numbers of participants for

each phenotype measurement (Table S2).

Phenotypic correlation analysis

We measured the pairwise phenotypic partial correlations between five output parameters:
sleep quality measured by an accelerometer (duration of longest sleep bout), self-reported
sleeplessness/insomnia frequency, self-reported daytime dozing frequency, cognitive ability
measured by number of correct matches in a symbol-digit substitution task®!, and subclinical
depression score measured by the PHQ-2 scale® with age, sex, study site, ethnicity,
socioeconomic status, difference between time of accelerometer measurement and assessment
center visit (only for the accelerometer output parameter), and education level as covariates.
We calculated confidence intervals and significance by the 99% confidence intervals to correct

for multiple comparisons (0.05 significance level over five outputs).

ROI-based analysis

Regions of interest for the multivariate pattern analyses were constructed using the predefined
cortical parcellations from the Human Connectome Project®®. We combined the bilateral regions
of interest resulting in 180 parcellations. The labels from the HCP parcellation were transformed
using FreeSurfer software®’ from the fsaverage subject cortical surface to each subject’s
surface in the dataset. Labels were then transformed into the volume space of the fMRI data for

each of the resting state and task-based paradigms.
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Task fMRI analysis

The task fMRI experiment in UK Biobank data comprised a maodified version of the face-shape
matching task®, In this task subjects viewed a central cue stimulus accompanied by two
stimuli on the right and the left with one of them matching the central cue. Subjects were tasked
to press a button identifying which of the two stimuli is the one matching the central cue. The
trials contained either human faces or 2D shapes (circle, horizontal ellipse, and vertical ellipse).
In order to perform brain-wide association analysis with the task-based fMRI data, we built
multivariate classification models®334 using support vector machines (SVM) to classify the face
and shape ftrials regardless of subject’s performance. Models were created for each region of
interest where regions were delineated according to the human connectome project (HCP)
parcellation®. We carried forward the classification accuracies from each region as a proxy for
its cortical activation in response to the visual stimuli. We then measured the association of
classification accuracy with our phenotypes of interest using ordinary least squares (OLS)
regression models. We created ordinary least square models relating the classification accuracy
of each region and sleep efficiency. We also added the relevant covariates to the model (sex,
age, imaging site, head motion, socioeconomic status, education level, ethnicity, task
performance accuracy mean, task response time mean, task response time standard deviation,
sex and age interaction, and accelerometry time relative to brain acquisition). To correct for
multiple comparisons, we adjusted the p-values for the false discovery rate using the
Benjamini/Hochberg method. We then divided the resulting model coefficients by the

classification error to up-weight regions with voxels most responsive to the stimuli.

Multivariate pattern analysis

We utilized the readily preprocessed task-based fMRI data from UK Biobank to create

classifiers between faces and shapes for each brain region. Time series from each region was
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extracted using Brain Decoder Toolbox 2 for Python (https://github.com/KamitaniLab/bdpy). We

then applied further preprocessing to the data where the data volumes were shifted by 5
volumes (3.675 seconds) to compensate for the hemodynamic delay. Data was then filtered to
remove the slow signal shift along the run, and then samples were normalized by the mean
value to extract the percent signal change. We then averaged the samples belonging to the
same classification category within each block to improve the signal-to-noise ratio. Finally, the
data points without stimulus were removed and the samples were then randomized. We ended
up with 60 data points for the classifier which were then randomized and divided into training
and test datasets in a 6-fold cross-validation scheme. For each fold, we trained a binary support
vector machine classifier with a linear kernel to classify the faces and shapes. The mean
classification accuracy from each region was then calculated and utilized as a proxy for the

strength of encoding of stimuli in this brain region.

Representational connectivity analysis

We extracted and preprocessed the task fMRI data in a similar fashion as in the MVPA analysis.
We then divided the stimuli into 7 different categories based on the content of stimuli with three
categories representing shapes (circle, horizontal ellipse, and vertical ellipse) and four
representing faces (male, female, angry, and fearful faces). The voxel data for each of these
conditions were then averaged creating a vector of voxel data for each region. We then
computed the representational dissimilarity matrix (RDM)° for each region. To calculate
representational connectivity, we conducted a second-order similarity analysis between region
pairs by calculating the Pearson correlation coefficient between the lower triangles of their

RDMs.
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Cortical thickness measurement

Cortical thickness was measured for each brain region using Freesurfer software anatomical
statistics measurement tools using the FreeSurfer reconstructed brain anatomy images
provided by UK Biobank. We then created ordinary least squares models relating cortical
thickness data to sleep efficiency and relevant covariates (sex, age, socioeconomic status,
education level, ethnicity, imaging site, sex and age interaction, accelerometry time relative to
brain acquisition). To correct for multiple comparison, we adjusted the p-values for false

discovery rate using the Benjamini/Hochberg method.

Functional connectivity analysis

We extracted the readily-processed functional connectivity data based on full correlation from
UK Biobank repository (variable code: 25750) and created ordinary least square models relating
functional connectivity between each node (independent component) and sleep efficiency. We
also added the relevant covariates to the model (sex, age, imaging site, head motion,
socioeconomic status, education level, ethnicity, sex and age interaction, and accelerometry
time relative to brain acquisition). To correct for multiple comparisons, we adjusted the p-values
for multiple comparison using Bonferroni’s correction for five phenotypes and 21 independent

components.

Seed-based correlation analysis

In order to create more fine-grained connectivity patterns that also map to the same regions as
the task-based fMRI, we ran a seed-based correlation analysis on each region using FSL dual
regression tool”. We then divided the resulting correlation map into the HCP region space
computing the mean over each region resulting in a 180 x 180 matrix of connectivity. We then
normalized the rows of the matrix by the self-correlation values (diagonal of the matrix). Results

were used to construct a higher-level model with sleep efficiency as the independent variable
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and the resting state covariates similar to the OLS models previously described in the functional

connectivity analysis.

Brain-wide mean connectivity analysis

We calculated brain-wide mean connectivity by averaging the seed-based connectivity across
all node pairs from the HCP regions for the resting state data. For the task-based data we
averaged the representational connectivity measures across all the regions. We then built OLS
models for each mean connectivity value for each phenotype and calculated the model
coefficients and confidence intervals based on a p-value of 0.01 based on Bonferroni correction

for five phenotypes.

Human connectome project data analysis

We extracted the HCP data from the young adult project®*"2, We extracted the data for the
emotion task and the resting-state. For the emotion task, there were two runs for each subject
with an identical task as that of the UK Biobank. We concatenated the data for these two runs
and constructed the SVM models similar to the protocol used for UK Biobank. For the resting-
state data, we utilized the already processed functional connectivity based on the full correlation
between nodes defined by the group-ICA analysis.

For the phenotypes equivalent to those we analysed in the UK Biobank, we used the sleep
parameters based on the PSQI sleep score?® as there was no objective sleep measures. We
utilized the self-reported sleep duration as a proxy for the accelerometer-measured duration of
longest sleep bout, the PSQI second component that relies on difficulty of falling asleep as a
proxy for insomnia, and the answer to the question on trouble staying awake during daytime
activities as a proxy for daytime dozing. For depression measure, we used the reported sadness

score from the assessment of self-reported negative affect measure from the NIH toolbox®’. For
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cognition, despite the HCP data containing cognitive test, the test score we utilized for the UK
Biobank was not done for the HCP cohort. We utilized the Mini-Mental State Examination
results as generic test for cognition®®. The complete set of subjects with all imaging and

behavioral phenotypes available was 807.
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