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Abstract7

Large single-cell RNA datasets have contributed to unprecedented biological
insight. Often, these take the form of cell atlases and serve as a reference
for automating cell labeling of newly sequenced samples. Yet, classification
algorithms have lacked the capacity to accurately annotate cells, particularly
in complex datasets. Here we present SIMS (Scalable, Interpretable Ma-
chine Learning for Single-Cell), an end-to-end data-efficient machine learning
pipeline for discrete classification of single-cell data that can be applied to
new datasets with minimal coding. We benchmarked SIMS against common
single-cell label transfer tools and demonstrated that it performs as well or
better than state of the art algorithms. We then use SIMS to classify cells in
one of the most complex tissues: the brain. We show that SIMS classifies cells
of the adult cerebral cortex and hippocampus at a remarkably high accuracy.
This accuracy is maintained in trans-sample label transfers of the adult hu-
man cerebral cortex. We then apply SIMS to classify cells in the developing
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brain and demonstrate a high level of accuracy at predicting neuronal sub-
types, even in periods of fate refinement, shedding light on genetic changes
affecting specific cell types across development. Finally, we apply SIMS to
single cell datasets of cortical organoids to predict cell identities and unveil
genetic variations between cell lines. SIMS identifies cell-line differences and
misannotated cell lineages in human cortical organoids derived from different
pluripotent stem cell lines. When cell types are obscured by stress signals,
label transfer from primary tissue improves the accuracy of cortical organoid
annotations, serving as a reliable ground truth. Altogether, we show that
SIMS is a versatile and robust tool for cell-type classification from single-cell
datasets.

Keywords: RNA sequencing, Single Cell, Label transfer, TabNet,8

Neuroscience data, Brain organoids, Neurodevelopment9

1. Introduction10

Next-generation sequencing systems have allowed for large scale collection11

of transcriptomic data at the resolution of individual cells. Within this data12

lies variability allowing us to uncover cell-specific features, such as cell type,13

state, regulatory networks, as well as infer trajectories of cell differentiation14

and specification [1, 2]. These properties are crucial to understand biological15

processes in healthy and diseased tissue. In addition, these properties better16

inform the development of in vitro models, which are often benchmarked17

against cell atlases of primary tissue [1].18

The lowering costs of sequencing, coupled with several barcoding strate-19

gies, have allowed single-cell datasets and atlases to scale with respect to cell20

and sample numbers, as well as data modalities [3]. Yet, despite the increas-21

ing size and complexity of datasets, the most popular pipelines for single cell22

analysis are based on dimensionality reduction and unsupervised clustering23

followed by manual interpretation and annotation of each cell cluster [4].24

This requires a high level of expertise in understanding the most appropriate25

cell markers for a given tissue, a major barrier to newcomers to a field. For26

highly heterogeneous tissues such as the brain, where a consensus in cell type27

nomenclature remains challenging [5], manual cell annotation can introduce28

additional errors.29

Errors in cell annotation may be driven by the following common as-30

sumptions: 1) That marker genes are uniformly highly expressed, which is31
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not always the case [6, 7]. For instance, while OPALIN and HAPLN2 are32

considered markers of oligodendrocytes in the brain, their expression is low33

or undetectable in a large subset of oligodendrocytes at the single cell level34

[8]. Indeed, high levels of HAPLN2 have been proposed as a landmark of35

Parkinson’s Disease [9]. 2) That cell-type marker gene expression is constant36

throughout development, such that a gene that specifically labels a popula-37

tion of cells at one age would label the same population at a different age.38

For example, while it is known that PVALB positive cortical interneurons39

are born during embryonic development [10], the expression of this gene is40

not seen until well after birth [11]. Notably, recent studies have shown that41

a subset of PVALB interneurons may never express the PVALB gene [12].42

3) That gene markers discovered in one species apply to others. In several43

tissues, including the brain, there are major species-specific differences. For44

example, HCN1 is a key marker of cortical layer 5 sub-cerebral projection45

neurons in the mouse, but highly expressed in projection neurons of all cor-46

tical layers in humans [13, 14]. In summary, manual annotation of every47

new dataset based on standard marker genes can lead to compounding error48

propagation and inconsistent single cell atlases, potentially reducing their49

utility.50

The development of software to automate single cell analysis has become51

an important and popular research topic [4, 15, 16, 17]. However, the ac-52

curacy of these automated classifiers often degrades as the number of cell53

types increase, and the number of samples per label becomes small [18].The54

distribution of cell types is often asymmetric, with a majority class domi-55

nating a high percentage of cells. Additionally, technical variability between56

experiments can make robust classification between multiple tissue samples57

difficult. There have been efforts to apply statistical modeling to this prob-58

lem [19, 20], but the high-dimensional nature of transcriptomic data makes59

analysis statistically and computationally intractable [21]. These conditions60

make applying classical models such as support vector machines difficult and61

ineffective[22]. In response, generative neural networks have become a pop-62

ular framework due to their robustness to technical variability within data,63

scalability, and ability to capture biological variation in the latent represen-64

tation of the inputs [23, 24, 25]. These include deep learning models based on65

variational inference [26, 27], adversarial networks [28] and attention trans-66

formers [25]. Early deep learning models exhibit a lack of interpretability due67

to their ”black box” architecture[18]. However, explainable artificial intelli-68

gence (XAI) research aims to understand model decision-making by assigning69

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 17, 2023. ; https://doi.org/10.1101/2023.02.28.529615doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.28.529615
http://creativecommons.org/licenses/by-nc-nd/4.0/


weight values to the genes based on their influence on cell type predictions.70

Despite this, some deep learning approaches display inherent biases favoring71

multivariate gene selection that impedes straightforward data interpretation72

[25, 29]. Additionally, the computational demands of certain deep learning73

systems may preclude adoption by smaller research groups lacking access to74

high-performance computing infrastructure. Ongoing work seeks to enhance75

model interpretability and efficiency to enable broader utilization across the76

biological sciences[25, 28].77

Here we present SIMS (Scalable, Interpretable Machine Learning for78

Single-Cell), a new framework based on the model architecture found in79

TabNet [30]. SIMS is implemented in Pytorch Lightning [31], which allows80

SIMS to be low code and easy to use. We take advantage of the fact that81

TabNet uses a sequential self attention mechanism, which allows for inter-82

pretability of tabular data [30]. Importantly, TabNet does not require any83

feature preprocessing and has built-in interpretability which visualizes the84

contribution of each feature to the model [30]. Given these properties, SIMS85

is an ideal tool to classify RNA sequencing data. We show that SIMS either86

outperforms or is on par with state of the art single cell classifiers in complex87

datasets, such as peripheral blood samples and full body atlases. We apply88

SIMS to datasets of the mammalian brain and show a high accuracy in adult89

and developing tissue. We further apply SIMS to data generated from in90

vitro models, such as pluripotent stem cell-derived cortical organoids. Using91

the SIMS pipeline, we were able to reclassify misslabeled cells through the92

use of label transfer from annotated primary tissue. We propose SIMS as a93

new label transfer tool, capable of robust performance with deep annotation94

and skewed label distributions, high accuracy with small and large datasets,95

and direct interpretability from the input features.96

2. Results97

2.1. Development of a TabNet-based framework for label transfer across sin-98

gle cell RNA datasets99

We developed SIMS, a framework for label transfer across single cell RNA100

datasets that uses TabNet as the classifier component (Supplemental Figure101

1) [30]. TabNet is a transformer-based neural network with sparse feature102

masks that allow for direct prediction interpretability from the input features103

[30]. To better fit the model for the task of single cell classification we added104

two innovations: First, we included Temperature Scaling, a post-processing105
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step of the train network that provides the users with a calibrated probability106

measure for the classification of each cell in the selected cell type [32]. Then,107

we equipped our pipeline with an automated gene intersection mechanism,108

allowing the prediction of datasets with a different number of genes than the109

dataset used for training the model, a common occurrence when different110

sequencing technologies are used.111

In our framework, for each forward pass, batch-normalization is applied.112

The encoder is several steps (parameterized by the user) of self-attention113

layers and learned sparse feature masks. The decoder then takes these en-114

coded features and passes them through a fully-connected layer with batch-115

normalization and a generalized linear unit activation [33]. Interpretability116

by sample is then measured as the sum of feature mask weights across all117

encoding layers.118

SIMS can be trained with either one or several preannotated input datasets,119

allowing for the integration of atlases generated by the same group or by120

different groups. For accurate training, the user must input an annotated121

matrix of gene expression in each cell. After training and production of train-122

ing statistics, the user can input a new unlabeled dataset. Of note, if the123

training data was normalized ahead of training, the user must normalize the124

unlabeled data in a similar manner. The model will then predict the cluster125

assignment for each cell. SIMS will then output the probability of each cell126

belonging to each cluster, where the probability is more than 0.127

SIMS is accessible through a Python API. The development version can128

be found on our GitHub repository at the following link https://github129

.com/braingeneers/SIMS. Additionally, a pip package is also available for130

easy installation https://pypi.org/project/scsims/. SIMS is designed131

to require minimal input from the users. To train the model, the user has132

to only input the data file of the training dataset, a file with the labels, and133

define the class label, the user can also choose to load the dataset into Scanpy134

as an anndata object (Supplemental Figure 2). This process will save the135

learned parameters for each training epoch in a new file.136

To perform the label transfer on a new dataset the user must import the137

weights from the trained model. The user will then input the new unlabeled138

dataset (Supplemental Figure 3).139

SIMS takes the cell by gene expression matrix as an input. For newly140

produced data we recommend an end to end pipeline we have developed141

within Terra. This pipeline takes raw FASTQ files, runs them through the142

CellRanger or StarSolo Dockstore workflows [34, 35, 36] (Supplemental Fig-143
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ure 4), outputs an expression matrix in the h5 format and classifies the cell144

types using a SIMS model trained on the reference dataset of interest. This145

pipeline can also be used to benchmark new methods in an unbiased man-146

ner or to reproduce results obtained from data stored in the Sequence Read147

Archive (SRA) with an additional dockstore workflow step [37, 38]148

To extend the reach of SIMS to investigators without coding experience,149

we developed a web application based on Streamlit. This application allows150

users to perform predictions based on pretrained SIMS models. To access151

the web application the user has to enter the webpage at https://sc-sim152

s-app.streamlit.app/. Once there, the user has to upload their dataset153

of interest in h5ad format, select one of our pretrained models and perform154

the predictions. They will be able to download the predictions in csv format155

and visualize their labeled data as a UMAP.156

2.2. Benchmarking SIMS against existing cell classifiers of single cell RNA157

data158

We conducted benchmark tests in three distinct datasets to evaluate159

SIMS’ performance against other methods built on various theoretical ap-160

proaches. The first dataset we utilized was the PBMC68K, also known as161

Zheng68K, derived from human peripheral blood mononuclear cells [39]. This162

dataset is particularly valuable due to its complex nature, featuring unbal-163

anced cell clusters and cells with similar molecular identities, making it a164

robust choice for benchmarking cell type annotation methods, as it has been165

extensively employed for this purpose. As a second dataset we included the166

human heart dataset, also known as Tucker’s dataset, comprising 11 cell167

types and exhibiting unbalanced cell clusters [40]. This dataset shares sim-168

ilarities with Zheng68K but contains a significantly larger number of cells169

(287,000 cells compared to 68,000 cells). Additionally, we incorporated the170

Human cell landscape, also known as Han’s dataset [18] into our analysis,171

primarily for its substantial size (over 584,000 cells) and the presence of a172

wide array of different cell types, totaling 102.173

In our benchmarking study, we selected a range of tools that represent174

diverse methodologies and functionalities within the field of single-cell analy-175

sis. The scVI and scANVI pipeline was included owing to their deep learning176

foundation, utilizing a variational autoencoder to create cell embeddings [27].177

This latent representation serves as the basis for subsequent model building178

and label transfer, making scVI and scANVI essential benchmark for eval-179

uating deep learning-based approaches in single-cell analysis illustrating the180
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scArches package [24]. Another deep learning-based tool, ScNym, adopts an-181

other two-step process. Beginning with adversarial pretraining, the network182

is refined through fine-tuning for classification, offering a unique perspective183

on how deep learning models can be optimized for single-cell RNA data anal-184

ysis [28]. In contrast, SciBet adopts a non-deep learning approach by fitting185

multinomial models to the mean expression of marker genes. SciBet was186

benchmarked primarily for its inference speed, a crucial aspect considering187

its real-time web-enabled inference capabilities[41]. Seurat, a well-established188

framework in the field, was included due to its versatility in preprocessing,189

visualization, and analysis of single-cell data. Additionally, Seurat provides190

label transfer functionality through the identification of anchors, establish-191

ing pairwise correspondences between cells in different datasets[19]. We also192

wanted to evaluate a model with a simpler paradigm behind it, SingleR,193

which employs a correlation-based method, focusing on variable genes in the194

reference dataset for calculating differences between cell types. Additionally,195

an attempt was made to benchmark against scBERT, a large transformer-196

based model[25]. However, due to its computational complexity, we faced197

limitations. Despite experimenting with an A10 GPU, scBERT’s demands198

were such that we were unable to train or evaluate it on any dataset, even199

with a minimal batch size of 1. These carefully chosen tools enabled a com-200

prehensive evaluation, considering various approaches and methodologies in201

the realm of single-cell analysis.202

To ensure the robustness of our findings and mitigate the influence of ran-203

domness, we employed a fivefold cross-validation strategy. Notably, SIMS204

consistently outperformed the majority of label transfer methods in terms205

of accuracy (Figure 1; Supplemental Table 1) and Macro F1 score (Supple-206

mental Figure 5; Supplemental Table 2) across these diverse datasets. This207

compelling evidence underscores SIMS as a highly accurate and robust clas-208

sifier, demonstrating its proficiency across diverse tissue types. Additionally,209

SIMS exhibits scalability to accommodate a large number of cells and show-210

cases its ability to effectively classify datasets with imbalanced cell types.211

We also conducted a consistent evaluation of pipeline running times by212

employing fivefold cross-validation to assess the speed of the benchmarked213

tools in minutes, using the same comparison methodology (Figure 1E). This214

analysis was carried out within the NRP clusters[42], leveraging user-accessible215

GPUs. Whenever feasible, training and inference processes were executed on216

GPUs; otherwise, they were performed on CPUs.217
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2.3. SIMS accurately performs label transfer in highly complex single cell218

data: Mouse adult cerebral cortex and hippocampus219

Given that SIMS outperforms most state-of-the-art label transfer meth-220

ods in different datasets, we then asked whether it could perform accurately in221

a highly complex tissue, such as the brain. We focused in adult mouse cortical222

and hippocampal data generated by the Allen Brain Institute [43, 44, 45].223

The cerebral cortex is among the most complex tissues due to its cellu-224

lar diversity, the variety and scope of its functions and its transcriptional225

regulation [46]. The cerebral cortex is organized in 6 layers, and several226

cortical areas, each with different composition and proportions of excitatory227

projection neurons (PNs), inhibitory interneurons (INs), glial cells and other228

non-neuronal cell types [46]. The hippocampus, on the other hand, is part229

of the archicortex (also known as allocortex) [47]. It is further subdivided230

into cornu ammonis (CA), dentate gyrus, subiculum, and entorhinal area [47].231

While the hippocampus also has a layered structure, made of 3 layers, the cell232

type composition and numbers vary greatly from those in cerebral cortex [47].233

The great diversity of cell types, the close relationship between some of those234

subtypes, and the anatomical separation between these regions, make cere-235

bral cortex and hippocampal datasets complex but attractive benchmarking236

models to test SIMS.237

The dataset contained 42 cell types, including PNs, INs, endothelial and238

glia cells. Training in 80% of the cells selected at random and testing on the239

remaining 20%, we find that SIMS performs at an accuracy of 97.6% and a240

Macro F1 score of 0.983 (Figure 2 and Supplemental Figure 6).241

We then performed ablation studies to investigate the performance of242

SIMS. We find that training in as little as 7% of the dataset (3,285 cells)243

is sufficient to obtain a label transfer accuracy of over 95% and Median F1244

score of over 0.95 (Supplemental Figure 7). The Macro F1 after training in245

7% of the data is 0.90 (Supplemental Figure 7). Given the low amount of246

training data needed to obtain a high accuracy in label transfer, we conclude247

that SIMS is a data efficient machine learning model.248

SIMS provides interpretability by computing weights for sparse feature249

masks in the encoding layer. These weights indicate the most influential250

genes in the network’s decision-making for assigning cell types. To assess this251

interpretability, we generated three dataset partitions with varying levels of252

granularity. Our aim was to observe if the network could accurately select253

pertinent genes to distinguish the groups formed at each resolution level.254

In order to analyze the results we focused in the Pvalb+ INs, a group of255
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inhibitory neurons born in the Medial ganglionic eminence (MGE). For the256

lowest level of granularity, which limit the cell options to INs, PNs and257

Non-Neuronal Cells, we find that for the INs group some important genes258

selected by the model were Kcnip and Igf1 (Figure 3A-B), both of which259

have been previously shown to be important IN genes [48, 49, 50]. For260

the medium level of granularity (Medial ganglionic eminence, non medial261

ganglionic eminence), and consistent with previous literature we find that262

for the MGE-derived INs the genes selected were Rpp25, Dlx1, Dlx5, Gad1,263

Ffg13 and Cck. [51, 50, 52, 53] (Supplemental Figure 8). For the highest264

level of granularity (Pvalb+ INs), some of the selected genes were Satb1,265

Pvalb, Lypd6, Dlx6os-1 and Bmp3. [53] (Figure 3C-D)266

To confirm that the selection of the most important genes was consistent267

across different runs we performed the experiment with the highest level of268

granularity 300 times. For each experiment we normalized each gene weight269

against the highest weight gene measured in that run and measured the mean270

weight and dispersion index for each gene across all runs (Figure 3E-F). Given271

the explainability matrix E ∈ Rn×m comprised of m genes measured across n272

cells, we select all rows representing cells with the same predicted label and273

compute:274

ēi =
1

nl

nl∑
j=1

Eij for i = 1, 2, . . . , nl

We then average ēi across all 300 runs. To calculate the dispersion index, we275

first measured the average importance of each gene across all 300 runs276

ḡ =
1

m

m∑
i=1

Eij for i = 1, 2, . . . n

and then compute the dispersion index as277

dispgene = ēgene/ḡgene

.278

In the top 10 of genes more important for classification we can find Ex-279

citatory PN markers (Neurod6), Inhibitory IN markers (Cck, Rpp25, Dlx1,280

Gad1), neural progenitor related genes (Fbxw7) and genes related to dif-281

ferent neuropsychiatric disorders (Arpp19, Fhod3, Nrgn). Top genes show282

mean explain values around 0.2 (Figure 3E), for comparison the mean ex-283

plain value for the median gene is around 10−6 (Supplemental Figure 10).284
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This showcases the consistency of gene selection by SIMS and how it could285

be used to find clinically relevant genes overlooked by conventional methods.286

2.4. SIMS accurately performs trans-sample label transfer in highly complex287

single nuclei data: Human adult cerebral cortex288

Single nuclei RNA sequencing has become an important emerging tool in289

the generation of atlases, particularly in tissues where obtaining single cells290

is difficult. Cell nuclei are used in neuroscience because adult neurons are291

difficult to obtain, due to their high connectivity, sensitivity to dissociation292

enzymes and high fragility, often resulting in datasets with abundant cell293

death, low neuronal representation and low quality RNA [54]. Importantly,294

single nuclei sequencing is compatible with cryopreserved banked tissue [55].295

Yet, the data generated in single nuclei RNA sequencing is not necessarily296

similar to the data generated in single cell RNA sequencing. For instance,297

a recent study comparing the abundance of cell activation-related genes in298

microglia sequenced using single cell and single nuclei technologies, showed299

significant differences between both datasets [56]. Moreover, single nuclei300

datasets are more prone to ambient RNA contamination from the lysed cells301

[57]. In the case of the brain, it has been observed that neuronal ambi-302

ent RNA has masked the transcriptomic signature of glia cells, leading to303

incorrect classification of glia subclasses in existing atlases [57].304

Given the high label transfer accuracy of SIMS in single-cell data, we305

then tested its performance in single nuclei datasets. As a proof of principle,306

we selected the human adult cerebral cortex dataset generated by the Allen307

Brain Institute [44, 43]. We trained on 80% of the data and tested the model308

in the remaining 20%. Overall, we obtained an accuracy: 98.0% and a Macro309

F1-score of 0.974 (Figure 4; Supplemental Figure 9; Table 1).310

We then performed a data ablation study and observed that we obtained311

over 95% accuracy using as little as 7% of data for training (2,124 cells).312

Similarly, we obtained a Macro F1-score of over 0.95 with 9% (2,731 cells) of313

the data and a median F1 of over 0.95 with 8% of the data (2,428 cells) for314

training (Supplemental Figure 11).315

We then asked how SIMS performs in trans-sample predictions. This316

dataset is made of 3 different postmortem samples. Namely: H200.1023, a317

43 years old Iranian-descent woman; H200.1025, a 50 years old Caucasian318

male; and H200.1030, a 57 years old Caucasian male. We trained the model319

on one sample and tested it on the other 2 samples. We performed this320

experiment in each possible combination, obtaining accuracies ranging from321
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Training Sample Testing Data Accuracy Macro F1-score
80% of Data 20% of Data 98.0% 0.974
H200.1023 H200.1025 94.0% 0.84
H200.1023 H200.1030 94.4% 0.865
H200.1025 H200.1023 93.1% 0.769
H200.1025 H200.1030 93.1% 0.779
H200.1030 H200.1023 95.8% 0.862
H200.1030 H200.1025 94.8% 0.87

Table 1: Trans-sample accuracies and Macro F1-scores for human adult cere-
bral cortex dataset

93.1 to 95.8% (Figure 4; Supplemental Figure 12; Table 1; Supplemental322

Tables 3-8).323

As shown, SIMS predicts the label accurately for most cell types across324

samples. SIMS shows a decrease in performance when trying to classify Per-325

icytes as sometimes it labels them as Astrocytes (Supplemental Tables 3-8).326

This is consistent with recent work showing that previously annotated single327

nuclei atlases of the brain often mask non-neuronal cell types [57]. In addi-328

tion, we observed that Layer 4 Intratelencephalic neurons often get classified329

as generic Intratelencephalic neurons (Supplemental Tables 3-8). This is in330

agreement with the fact that Layer 4 Intratelencephalic neurons are a subset331

of Intratelencephalic neurons [58]. We also employed this dataset to assess332

the capacity of SIMS to differentiate between recognized cell types and those333

not included in the training dataset. This capability holds significance as it334

can function as a surrogate metric for identifying cells in new datasets that335

were absent from the reference dataset used for training. In this particular336

scenario, we implemented a leave-one-out methodology, where we excluded337

one cell type from the training dataset and then made predictions on the test338

set, encompassing all of its cell types. Subsequent to temperature scaling,339

we utilized the model’s probability outputs as a measure of confidence, such340

that a probability of 0.5 approximately measures that the model possesses341

a 50% level of confidence in the predicted cell type’s accuracy. Following342

this, we established a user-adjustable threshold to determine whether the343

cell type should be labeled as the predicted cell type or categorized as an344

unknown cell type (Figure 4G-H). Altogether, we conclude that SIMS is a345

powerful approach to perform intra-sample and trans-sample label transfer346

in complex and highly diverse tissues such as the adult brain.347
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2.5. SIMS can accurately classify cells during neuronal specification348

Having established that SIMS can accurately predict cell labels in com-349

plex tissues, we then asked how our model performed predicting cells of350

different ages. Classifying cells during development is challenging, as several351

spatiotemporal dynamics can mask the biological cell identities [59]. During352

cortical development, gene networks of competing neuronal identities first353

colocalize within the same cells and are further segregate postmitotically354

[60, 46, 61], likely through activity-dependent mechanisms [62, 63].355

To test the accuracy of SIMS at classifying developing tissue, we focused356

on mouse cortical development due to its short timeline [64]. In the mouse357

cortex, neurogenesis starts at embryonic day (E) 11.5, and it is mostly com-358

pleted by E15.5 [64]. Common C57BL/6 laboratory mice are born at E18.5359

[65]. Neonatal mice are timed based on the postnatal day (P) [65]. We360

took advantage of a cell atlas of mouse cortical development that contains 2361

samples of E18 mouse embryos and 2 samples of P1 mice [60]. These timed362

samples, which are 1 day apart from each other represent timepoints at363

which all mouse neurogenesis is completed [64]. At these timepoints, neu-364

rons may still be undergoing fate refinement [66], and consequently retain365

fate plasticity, albeit limited [67, 68, 69].366

First, we trained a model on one E18 and one P1 sample and tested the367

accuracy of label transfer in two samples, one of each age (Supplemental368

Figure 13 A-B). Across 17 cell types, we find that the model predicts the369

labels with an accuracy of 84.2% and a Macro F1-score of 0.791 (Figure 5A;370

Supplemental Table 9).371

We then tested SIMS by training on two P1 samples and testing the label372

transfer in two E18 samples (Supplemental Figure 13 C-D). We find that in373

this experiment, the label transfer accuracy drops to 73.6% and the Macro374

F1-score to 0.674 (Figure 5B; Supplemental Table 10). Interestingly, however,375

this drop in accuracy is not random, but either follows the developmental tra-376

jectories of the misclassified cells or misclassifies cells as transcriptomically377

similar cell types. For example, astrocytes are a subtype of glia cells that378

retain the ability to divide throughout life [70]. Indeed the major source of as-379

trocytes in the cerebral cortex is other dividing astrocytes [70]. Consequently,380

the ”Cycling Glia Cells” cluster is often predicted as astrocytes (Supplemen-381

tal Figure 13). In the neuronal lineage, we find that SIMS can accurately382

predict most cell types. Going back to the combined ages model, we focused383

on Layer 4 neurons, which is one of the neuronal subtypes with the lowest384

accuracy in label transfer (24.31%). We find that these neurons are often385
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classified as upper layer callosal PNs, and rarely as callosal PNs of the deep386

layers (Figure 5B-E). While morphologically distinct, layer 4 neurons share387

transcriptional homology with callosal PNs [60, 71]. Indeed, recent work has388

shown that Layer 4 neurons transiently have a callosal-projecting axon, which389

is postmitotically eliminated during circuit maturation, well after P1 [58]. In390

agreement, Layer 4 neurons that are mislocalized to the upper cortical layers391

retain an upper layer callosal PN identity and fail to refine their identity [72].392

By comparing the gene expression of upper layer callosal PNs, the correctly393

classified Layer 4 neurons and the misclassified Layer 4 neurons, we observe394

that while upper layer callosal PNs and correctly classified Layer 4 neurons395

have the gene expression patterns proper to their identity, misclassified Layer396

4 neurons have an intermediate expression of genes that define the identity of397

the other two cell types, such as Rorb[73] (Figure 5). Notably, most (90.1%)398

of the misclassified Layer 4 neurons belong to the E18, likely representing399

neurons undergoing fate refinement. Altogether, this example highlights the400

difficulty that cell classifiers face when trying to discretely label cells during401

development.402

Together, we conclude that SIMS can accurately predict cell labels of403

specified neurons. However, when applying SIMS during periods of differ-404

entiation and fate refinement, it uncovers similar identities in the develop-405

mental trajectories. This is likely caused by transcriptomic similarities that406

can often mask the proper identification. Alternatively, SIMS may identify407

subtle differences in fate transitions that cannot be accurately pinpointed by408

traditional clustering methods in the reference atlases.409

2.6. SIMS identifies cell-line differences in gene expression in human cortical410

organoids411

Cortical organoids are a powerful tool to study brain development, evo-412

lution and disease [13, 74, 75]. Yet, like many pluripotent stem cell-derived413

models, cortical organoids are affected by cell line variability and culture con-414

ditions that can affect the reproducibility of the protocols [76]. Moreover,415

transcriptomic analysis of cortical organoids has revealed strong signatures416

of cell stress [77, 78, 79], which can impair proper cell type specification417

[80]. In addition, in vitro conditions generate cell types of uncharacterized418

identity, that do not have an in vivo counterpart [78, 81]. While some have419

argued that these cells should be removed from further analysis [81], the most420

common approach is to annotate them as ”Unknown” cell clusters [74].421
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To understand whether SIMS could be used to uncover cell line differ-422

ences and identify different trajectories, we used a dataset from 6 months423

old human cortical organoids derived from 3 different cell lines (3 organoids424

per batch), each with their own idiosyncrasy [74]. Specifically, this dataset425

contained: 1) one batch of cortical organoids derived from the 11A cell line,426

in which all cells had been identified and no cell was labeled as ”Unknown”,427

2) one batch of cortical organoids derived from the GM8330 cell line, which428

contained a small number of ”Unknown” cells and a large proportion of Im-429

mature INs, and 3) two batches of cortical organoids derived from the PGP1430

cell line, which contained major batch effects. One of those batches had a431

large number of ”Unknown” cells and cells of poor quality, and was therefore432

dropped from further analysis (Figure 6A-B; Supplemental Figure 14).433

We performed label transfers between organoids generated from the three434

cell lines. We first performed an intra-cell line label transfer using the 11A435

organoids. We trained on 2 organoids and predicted the cells on a third436

organoid. We find an Accuracy of 86.0% and a Macro F1-score of 0.794 (Sup-437

plemental Figure 15). We then performed trans-cell line predictions training438

on 11A and predicting the cell types of the other lines. We obtained an Ac-439

curacy of 71.3% and a Macro F1-score of 0.564 when predicting cells from440

PGP1 organoids and an accuracy of 67.4% and a Macro F1-score of 0.570441

when predicting cells from GM8330 organoids. We observe a high degree442

of accuracy for most cell types tested, including Cycling Cells, Intermedi-443

ate Progenitor Cells, Outer Radial Glia/Astroglia, Immature INs, Ventral444

Precursors and Callosal PNs (Supplemental Table 11). Interestingly, Radial445

Glia cells (RGs) from both PGP1 and GM8330 cell lines often were classified446

as Immature PNs. Specifically, we find that 82% of the PGP1 and 42% of447

the GM8330 RGs get predicted as Immature PNs when the data is trained448

on the 11A cell line (Figure 6C-D). Strikingly, only 1.9% of PGP1 RGs and449

3.9% of GM8330 RGs are predicted as RGs. These results suggest major450

differences in gene expression between the RG annotated cells across cortical451

organoids derived from different cell lines.452

Previous work has shown that cell stress in organoids impairs proper fate453

acquisition of PNs [80]. We therefore took advantage of Gruffi, a recently de-454

veloped tool to annotate stressed cells in human neuronal tissue [81]. Overall,455

we find that organoids derived from the GM8330 cell line showed the biggest456

percentage of stressed cells (16.67%), while organoids derived from the PGP1457

and 11A cell lines had 6.6% and 4.9% of stressed cells, respectively.(Figure458

6E). To understand whether the stressed cells were responsible for the mis-459
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classfication, we removed these cells from the 11A training set. We then460

performed a new round of label transfers. Using this approach, we find that461

56% of PGP1-derived RGs and 27%-derived RGs continue to be classified462

as Immature PNs. Importantly, only 7.2% of PGP1-derived and 14% of463

GM8330-derived RGs are predicted as RGs.464

We then removed the stressed cells from both the training and the pre-465

dicted datasets and find that 44% of PGP1-derived and 14% of GM8330-466

derived RGs are classified as Immature PNs. Notably, the number of RGs467

that are properly classified as such remains similar, with only 6.9% of PGP1-468

derived and 19% of GM8330-derived RGs properly predicted. Altogether,469

these results suggest that cell stress alone cannot explain the differences in470

cell expression between RGs of cell lines.471

2.7. SIMS identifies improperly annotated cell lineages in human cortical472

organoid atlases473

Given that label transfer between human cortical organoids derived from474

different cell lines poorly predicted the RG cell type, we then focused on475

assessing the most common predictions for this cell type after stressed cells476

were removed from both the training and the prediction datasets. While477

in the PGP1 line the majority of the misclassified RGs are Immature PNs,478

the second most common cell prediction is the closely related Outer Radial479

Glia/Astroglia cell type. On the other hand, for the GM8330 cell line the480

most commonly predicted cell type is Immature INs. Unlike RGs, Outer Ra-481

dial Glia/Astroglia and Immature PNs that belong to the dorsal telencephalic482

lineage, INs are derived from the distinct and distant ventral telencephalon483

[46]. A deeper analysis into the GM8330 cell line reveals that 65% of the484

Immature PNs also get predicted as Immature INs (Figure 6C), indicating485

a consistent misclassification between neuronal lineages in the GM8330 cell486

line. We then performed a Wilcoxon test rank for differential expression487

analysis between the three cell lines. We found that, unlike the other cell488

lines, Immature PNs derived from GM8330 organoids expressed genes from489

the DLX family, present in INs and not in the PN lineage [82] (Supplemental490

Figure 16). Together, these results suggest an off-target ventralization of491

organoids derived from the GM8330 cell line.492

To confirm this discovery we performed a label transfer experiment train-493

ing on fetal tissue derived from gestational weeks (GW) 14-25 human embryos494

[83]. Most cell types, such as cycling cells and ventral precursors get classi-495

fied as expected. Focusing on neuronal cell types, the majority of Callosal496
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PNs get classified as Excitatory PNs (80% PGP1, 60% GM8330, 74% 11A)497

and Immature INs are properly classified as INs (93% PGP1, 86% GM8330,498

86% 11A). However, Immature PNs have clear difference between the 3 cell499

lines: For the 11A line, 34% of Immature PNs get classified as Excitatory500

PNss and 38% as RGs. Similarly, in the PGP1 line, 57% of Immature PNs501

are classified as Excitatory Ps and 20% as RGs. On the other hand, only 7%502

of the GM8330 Immature PNs are classified as Excitatory PNs, and 21% are503

classified as RGs. Importantly 44% of these cells are predicted as INs. (Sup-504

plemental Figure 17), further suggesting a ventralization of the organoids505

derived from the GM8330 line.506

We then performed a pseudotime analysis using Monocle 3 [84]. In the507

11A and PGP1 lines, we observe a clear differentiation trajectory from RG to508

the Excitatory PN lineage(Immature PNs and Callosal PNs). In these lines,509

the IN lineage follows a separate path (Figure 7A; Supplemental Figure 18).510

Focusing on the GM8330 cell line, we observe that a large subset of Immature511

PNs unexpectedly appear together with the IN lineage (Supplemental Figure512

18). Altogether, the data suggests that SIMS has correctly identified that a513

large subset of cells labeled as Immature PNs in the GM8330 are in fact INs.514

2.8. Leveraging In Vivo Data Refines Cell Type Prediction in Brain Organoids515

Visualization methods based on dimensionality reduction, such as prin-516

cipal component analysis (PCA) and t-distributed stochastic neighbor em-517

bedding (tSNE) often miss the global structure of the data and can lead to518

misclassification of cells [85]. Given that SIMS identified a ventralization519

of the GM8330 cell line (Figure 6), we then asked whether it can identify520

other cells previously misclassified in existing atlases [74]. We analyzed 6521

months old organoids derived from the 11A cell line. We first performed522

pseudotime analysis and found that a subset of cells labeled as Immature523

PNs cluster in between other Immature PNs and Glia Cells (Figure 7A).524

Interestingly, all these cells are identified by Gruffi as stressed cells (Figure525

7B). To test whether these cells were mistakenly classified in previous atlases,526

we performed a label transfer from GW14-25 primary fetal tissue [83]. We527

find that SIMS assigns the entirety of this cell cluster as RGs and not PNs528

(Figure 7C). Gene expression analysis of molecular markers of RGs, such as529

SOX2 and PAX6 (Supplemental Figure 19), confirm that the SIMS label is530

correct. In complement, these cells lack expression of PN subtypes markers531

such TBR1, SATB2, CUX1, CUX2, as well as Pan-PN markers EMX1, DCX,532
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NEUROD2 and NEUROD6 (Supplemental Figure 19). Altogether, these re-533

sults suggest that the stressed cells previously labeled as Immature PNs in534

the 11A cell line are indeed RGs.535

We asked how correcting the cell type annotation in the 11A affected the536

label transfer between organoids derived from different cell lines. We trained537

SIMS in the newly annotated 11A dataset and made predictions in both the538

PGP1 and the GM8330 cells. We found that for the new model trained on539

the 11A cell line there is an Accuracy of 75.7% and a Macro F1-score of 0.583540

for PGP1 organoids and an Accuracy of 76.3% and a Macro F1-score of 0.603541

for GM8330 organoids (Supplemental Table 13,14), representing a significant542

improvement from label transfer experiments before the reclassification (Sup-543

plemental Table 11,12). Furthermore, we find that RGs now get predicted544

at an Accuracy of 43.0% for PGP1 and 32.0% GM8330, as compared to the545

original predictions of 1.9% and 3.9% for the respective cell lines. Together,546

we show that proper identification of cell types through label transfer from547

primary tissue can help systematize multi-sample cell atlases.548

3. Discussion549

Currently, over 1.5M cells per month are sequenced and archived through550

the different cell atlas projects [86]. With the lowering trends in sequencing551

costs the number of cells sequenced is increasing exponentially [3, 86]. Yet,552

cell annotation remains a highly manual process, which is limiting the repro-553

ducibility and introducing biases in the data. Several open access solutions554

have emerged to streamline the process, albeit with different accuracies [2].555

Deep learning approaches that apply transformer-based architectures to556

gene expression data have been shown to outperform other commonly used557

methods [25]. However, these approaches require large number of cells for558

pretraining their algorithms and advanced computational knowledge and re-559

sources to further train their models [25]. SIMS does not require pretraining,560

therefore avoiding large data files and increasing its versatility. An added561

advantage to SIMS is the requirements with which the training can be per-562

formed, which allows for the users to run the program in their local comput-563

ers.564

We designed SIMS as a low code tool for both training and perform-565

ing label transfer across single cell datasets (Figure 1). SIMS can be used566

on user-specified datasets, rather than reference datasets that are usually a567

prerequisite in popular tools. This is meant to remove barriers in adoption568
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by new labs, medical practitioners, students and non-experts alike. Unlike569

other deep learning models [25], SIMS can use genes that are defined by the570

user, allowing the label transfer in novel genomes, or use annotated genomes571

without standard nomenclature. Other deep learning approaches, such as572

scBERT [25], have been shown to work well with datasets of up to 16K573

genes. SIMS, being based on TabNet, and therefore optimized for tabular574

data [30], can work well with over 45K features (Figure 2). This property575

would allow, in principle, SIMS to be trained simultaneously on references of576

multiple species, species with large genomes such as the axolotl [87], as well577

as multimodal data including combined single cell gene expression and gene578

accessibility sequencing datasets [88].579

When it comes to interpretability SIMS is able to output a sparse se-580

lection of the most important genes, that can then be easily plotted in the581

Python ecosystem of Scanpy, while other tools [25] rely on external cross-582

platform packages. This can hamper the adoption of new users, including583

non bioinformaticians [89]. Indeed, non-experts could greatly benefit from584

intuitive and low effort tools that can streamline the analysis and integra-585

tion of their newly generated data with existing knowledge [89]. To facilitate586

its adoption, we created a web app and a Terra pipeline that can be easily587

adopted with minimal coding knowledge and low infrastructural resources,588

offering accesible cloud computing. Furthermore, our approaches facilitate589

the sharing of trained models which can streamline collaboration between590

multiple groups.591

After showing that SIMS performs as good or better than state of the592

art methods, we focused on applying this tool to data generated from the593

brain. The brain is a complex tissue, where the great diversity of neurons594

is generated over a relatively short time period and identities are refined595

throughout life [46, 66]. Several efforts, such as the BRAIN Initiative and596

others, exist to sequence neurons across different ages, species, and diseases597

[90, 91]. While the neuroscience community has started efforts to agree on598

naming conventions across the increasing number of datasets [5, 92], there is599

still significant ontological inconsistencies in existing publications. We believe600

that SIMS could become an important tool to streamline these community-601

driven efforts. It is important to mention that while we focused our work in602

the brain, SIMS can easily be applied to single cell RNA sequencing data of603

any other organ.604

When performing label transfer in fully differentiated neuronal cell types,605

SIMS performed remarkably well, with accuracies above 97%. Unlike many606
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other tools, which define cells by the strong expression of marker genes [7,607

93], the SIMS model takes advantage of lack of expression, and fluctuations608

of expression levels of the whole transcriptome to learn and identify cell609

labels. Consistent with this, we observed that in developing tissue, where610

gene expression is fluctuating and identities are being refined, SIMS was able611

to classify most cell types and identify maturation differences in cell types612

undergoing fate refinement.613

When applied to cortical organoids, SIMS identified previously misan-614

notated cells in existing atlases [74].These errors in annotation were caused615

by traditional clustering followed by differential gene expression analysis and616

marker identification [74]. Notably, stressed cells were often misannotated,617

which is a common issue in organoid development [80, 81]. Revisiting and re-618

annotating existing atlases will greatly increase the accuracy of label transfer619

and improve the development of future protocols. Furthermore, annotating620

stem cell-derived atlases using primary fetal samples as reference can be used621

as a gold standard in the field and to discover cell types underrepresented in622

the existing protocols [74, 91].623

Applying SIMS to developing brain tissue including primary samples and624

organoids, allowed us to identify subtle differences in developmental trajec-625

tories between cell types generated. We therefore believe that SIMS can be626

of great value at studying developmental disorders, such as Autism, where627

existing models have already shown cell-type dependent asynchronous de-628

velopmental trajectories in different neuronal lineages [94]. Hybrid pipelines629

that integrate pseudotime-focused tools, such as Monocle or BOMA [84, 7],630

could become complementary to SIMS and have the potential to provide631

more comprehensive insights into these questions.632

While we have shown that SIMS can accurately predict trans-sample633

labels and perform label transfer across different methodologies (single cell634

and single nuclei RNA sequencing) and models (primary tissue and cortical635

organoids), we have limited our work to samples within the same species.636

This is because neuronal subtypes diverge significantly between species [44]637

and at the individual level gene orthologs can show different expression levels638

in different species [95]. However, some neuronal subtypes, such as MGE-639

derived INs, are transcriptomically more conserved across evolution than640

other primary neurons, including cortical PNs [13, 44]. In the future, these641

IN subtypes could be used as a way to validate SIMS to perform trans-species642

predictions [96]. Additional modifications, such as gene module extraction643

could provide increased accuracy for label transfer, as meta-modules could644
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prove to be more conserved between evolutionary distant species than gene645

orthologs [92, 97, 98].646

In conclusion, we propose SIMS as a novel, accurate and easy to use tool647

to facilitate label transfer in single cell data with a direct application in the648

neuroscience community.649

4. Material and methods650

4.1. The SIMS Pipeline651

The classifier component of the SIMS framework is TabNet [30], a transformer-652

based neural network with sparse feature masks that allow for direct predic-653

tion interpretability from the input features. For each forward pass, batch-654

normalization is applied. The encoder is several steps (parameterized by the655

user) of self-attention layers and learned sparse feature masks, we offer some656

preset configurations that depend on the size and complexity of the reference657

dataset . The decoder then takes these encoded features and passes them658

through a fully-connected layer with batch-normalization and a generalized659

linear unit activation [33]. Interpretability by sample is then measured as the660

sum of feature mask weights across all encoding layers. For our visualiza-661

tion, we average all feature masks across all cells to understand the average662

contribution of each gene to the classification. You could also average the663

feature masks by cell type.664

4.1.1. Model Architecture665

The encoder architecture consists of three components: a feature trans-666

former, an attentive transformer, and a feature mask. The raw features are667

used as inputs, and while no global normalization is applied internally, batch668

normalization is utilized during training to improve convergence and stabil-669

ity. [99]. The same p dimensional inputs are passed to each decision step670

of the encoder, which has Nsteps decision steps. For feature selection at the671

ith step, an element-wise multiplicative learnable mask Mi is used. This672

mask is learned via the attentive transformer, and sparsemax normalization673

[100] is used to induce sparsity in the feature mask. These sequential feature674

masks are then passed to fully-connected layers for the classification head,675

first normalized via batch normalization with a gated linear unit [33] for676

the activation. In our case, we use the raw output of the fully connected677

classification layer, as [31] loss functions handle logits.678
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4.1.2. Interpretability679

In SIMS the input features correspond to the genes used for cell type680

prediction by the classifier. Unlike other machine learning models in where681

computational restrictions force reduced input data representation [101, 41],682

SIMS can be trained on the entire transcriptome for each cell.683

TabNet, which serves as the foundation for SIMS, enables interpretability684

through the calculation of the weights of the sparse feature masks in the en-685

coding layer. This allows for an understanding of which input features were686

utilized in the prediction process at the level of an individual cell. Further-687

more, by averaging the sum of the attention weights across all samples for a688

given cell type, it is possible to determine the features used per class, while689

averaging across all cells in a sample shows the total features used when clas-690

sifying the entire dataset. Similar to other deep learning models [25], in SIMS691

the weights do not represent differential gene expression but a measure of the692

relevance (positive or negative signal) of said gene in the distinction between693

cell types. Additionally, the sparsity introduced in the sequential attention694

layers via the sparsemax prior acts as a form of model regularization [30],695

allowing us to categorize a cell type via only a small number of genes.696

4.2. Code Library Details697

The SIMS pipeline was designed with an easy to use application program-698

ming interface (API) to support a streamlined analysis with minimal code.699

To achieve this goal, the pipeline was constructed primarily using PyTorch700

Lightning, a high-level library that aims to improve reproducibility, modu-701

larity, and simplicity in PyTorch deep learning code. We utilized Weights702

and Biases to visualize training metrics, including accuracy, F1 score, and703

loss, to facilitate the assessment of model performance.704

To accommodate the large data formats used by SIMS, we implemented705

two methods for data loading: a distributed h5 backend for training on h5ad706

files and a custom parser for csv and delimited files that allows for the incre-707

mental loading of individual samples during training. These same methods708

are also used for inference. In addition, cell-type inference can be performed709

directly on an h5ad file that has been loaded into memory. This allows for710

efficient handling of datasets that may exceed the available memory capacity.711

We strongly support the use of h5ad files as they are faster and more efficient712

than plain text files and allow for more straight forward data sharing in the713

python-scanpy environment.714
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All the code and instructions to use SIMS are available in the Braingeneers715

GitHub repository: https://github.com/braingeneers/SIMS716

4.2.1. Web application717

In parallel to the API we also developed a Web application in Streamlit.718

In this case the web application allows for quick and easy inference based on719

pretrained models. The user only needs to input the single cell RNA dataset720

in the h5ad format, select the pretrained model they want to use and perform721

the predictions. The application is hosted in the streamlit developer cloud,722

allowing access from anywhere without the need of institutional credentials.723

Laboratories interested in sharing models created with their data with the724

public can request to include their pretrained models in our repository for725

easy hosting with a git push request.726

4.2.2. Training details727

For all models benchmarked, the Adam optimizer [102] was used. The728

learning rate varied but was generally between 0.003 and 0.01, while the729

weight decay (L2 regularization) was between 0 and 0.1. To numerically730

encode the vectors, we used a standard one-hot encoding, where for K labels731

we have that the kth label is given by the standard basis vector ek of all zeros732

except a 1 in the kth position. To define error in the model, average over the733

categorical cross-entropy loss function, defined as734

L(X, Y ) = − 1

M

M∑
i=1

wiyi log(f(xi)) (1)

Where ix represents the transcriptome vector for the ith sample, yi is the735

encoded label, wi is the weight and M is the size of the batch. For our model,736

we defined wi as the inverse frequency of the ith label, in order to incentivize737

the model to learn the transcriptomic structure of rarer cell types. The final738

signal to update the model weights was calculated as the average across all739

entries in the loss vector.740

A learning rate optimizer was used such that l ← 0.75l when the vali-741

dation loss did not improve for twenty epochs. In all cases, models reached742

convergence by the early stopping criterion on validation accuracy before the743

maximum number of epochs (500) was reached. Gradient clipping was used744

to avoid exploding gradient values, which was required to avoid bad batches745

exploding the loss and stopping convergence. Although we used a train, vali-746

dation and test split for reducing overfitting via hyperparameter tuning bias,747
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the only hyperparameters tuned were the learning rate to avoid divergence in748

the loss and weight decay to avoid overfitting in the smaller datasets. Con-749

vergence took around 20-100 epochs for all models. For all models, we found750

model training to be consistent and had few cases of suboptimal convergence751

due to poor initialization. The train, validation and test sets were stratified,752

meaning the distribution of labels is the same in all three (up to an error of753

one sample, when the number of samples for a given class was not divisible by754

three), except for the ablation study, where there were not enough samples755

to stratify across all three splits.756

For all benchmarks, models were trained using the most granular anno-757

tation available. When F1 score is mentioned in benchmarks it refers to the758

Macro F1-score.759

4.2.3. Datasets760

Peripheral blood mononuclear cells (PBMC68K) dataset. Also761

known as Zheng68K is the PBMC dataset described in [39]. The dataset was762

generated using 10X Genomics technologies and sequenced using Illumina763

NextSeq500. It contains about 68,450 cells within eleven subtypes of cells.764

The distribution of cell types is imbalanced and transciptomic similarities be-765

tween cell types makes classification a difficult task. Due to these properties,766

the PBMC68K dataset is widely used for cell type annotation performance as-767

sessment. The dataset can be accessed at https://www.10xgenomics.com/768

resources/datasets/fresh-68-k-pbm-cs-donor-a-1-standard-1-1-0769

Human cellular landscape: Han’s dataset. The Human cellular770

landscape dataset described in [103]. The dataset was generated using Microwell-771

seq technology. It contains 584000 cells with 102 different cell types across772

all major human organs and different developmental timepoints from more773

than 50 different donors. The data can be accesed at https://cells.ucsc774

.edu/?ds=human-cellular-landscape775

Human Heart: Tucker’s dataset The Tucker dataset described in776

[40] is a single nuclei RNA-sequencing dataset comprised of 287,269 cells777

representing 9 different cell types (20 cell subtypes) from 7 different donors.778

The dataset was acquired from https://singlecell.broadinstitute.or779

g/single_cell/study/SCP498/transcriptional-and-cellular-diver780

sity-of-the-human-heart#study-summary781

Adult mouse cortical and hippocampal dataset This dataset was782

generated by the Allen Brain Institute and described in [43, 44, 45]. The783

dataset was generated from male and female 8 week-old mice labeled using784
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pan-neuronal transgenic lines. The dataset includes micro-dissected corti-785

cal and hippocampal regions. It contains 42 cell types including excitatory786

projection neurons, interneurons and non-neuronal cells. The dataset can be787

accessed at https://portal.brain-map.org/atlases-and-data/rnaseq788

/mouse-whole-cortex-and-hippocampus-10x789

Adult human cortical dataset. This dataset was generated from post-790

mortum samples by the Allen Brain Institute [44, 43]. It includes single-791

nucleus transcriptomes from 49,495 nuclei across multiple human cortical792

areas. The large majority of nuclei are contributed from 3 donors: 1) H200-793

1023 was a female Iranian-descent donor who was 43 years old at the time794

of death. The cause of death was mitral valve collapse. 2) H200-1025 was a795

male Caucasian donor who was 50 years old at the time of death. The cause796

of death was cardiovascular. 3) H200-1030 was a male Caucasian donor who797

was 57 years old at the time of death. The cause of death was cardiovascu-798

lar. For sampling, individual cortical layers were dissected from the middle799

temporal gyrus, anterior cingulate cortex, primary visual cortex, primary800

motor cortex, primary somatosensory cortex and primary auditory cortex.801

All samples were dissected from the left hemisphere. As part of the purifica-802

tion processes, nuclei were isolated and sorted using Fluorescently Activated803

Cell Sorting (FACS) using NeuN as a marker. For statistics, we only used804

cell types that were common between all samples. The data was obtained805

from https://portal.brain-map.org/atlases-and-data/rnaseq/human806

-multiple-cortical-areas-smart-seq.807

Developing mouse cortical dataset. This dataset was described in808

[60]. It contains microdissected cortices from mice ranging from embryonic809

day 10 to postnatal day 4. For this study we used data from mice at em-810

bryonic day 12 (1 batch, 9,348 cells), 13 (1 batch, 8,907 cells), 14 (1 batch,811

5249 cells) and 18 (2 batches, 7,137 cells), as well as postnatal day 1 (2812

batches, 13,072 cells). Of note, only postnatal day 1 samples had Ependy-813

mocytes, and as such, they were removed for inter-age testing. The data was814

downloaded from the Single Cell Portal administered by the Broad Institute.815

https://singlecell.broadinstitute.org/single_cell/study/SCP129816

0/molecular-logic-of-cellular-diversification-in-the-mammalian817

-cerebral-cortex818

Human cortical organoids dataset. We used 6-months old organoids819

described in [74]. The dataset contained cells derived from 3 cell lines:820

GM8330 (3 organoids, 1 batch, 15,256 cells), 11A (3 organoids, 1 batch,821

25,618 cells) and PGP1 (6 organoids 2 batches, 46,989 cells). PGP1 has a822
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strong batch effect which is almost entirely caused by one organoid in batch823

3. The dataset was generated using Chromium Single Cell 3’ Library and824

Gel Bead Kit v.2 (10x Genomics, PN-120237) and sequenced using the Il-825

lumina NextSeq 500 instrument. Of note, one of the cell lines had a cell826

cluster named ”Callosal Projection Neurons” while others had ”Immature827

Callosal Projection Neurons. Given the naming inconsistency, we aggre-828

gated both clusters as ”Callosal Projection Neurons”. We downloaded the829

dataset from the Single Cell Portal administered by the Broad Institute.830

https://singlecell.broadinstitute.org/single_cell/study/SCP282831

/reproducible-brain-organoids#study-summary832

Human fetal brain development. We utilized fetal tissue repre-833

sentative of the second trimester of human development, specifically fo-834

cusing our analysis on data sourced exclusively from the neocortex. This835

study encompassed the sampling of six distinct neocortical regions. The836

dataset contained samples from gestational weeks 14, 17, 18, 19, 20, 22, and837

25. The number of cells contained in this dataset was around 404000 [83].838

https://cells.ucsc.edu/?bp=brain&ds=dev-brain-regions839

4.3. Benchmarking against cell type classification models840

We benchmarked SIMS using the Zheng68K and Tucker’s dataset, as pre-841

viously described[25].We also added Han’s dataset to the benchmark. Briefly,842

we compared our model to:843

scBERT 1.0. scBERT is a transformer architecture based on the deep844

learning model BERT. It has been adapted to work with single cell data and845

it offers interpretability as the attention weights for each gene. [25]846

scNym 0.3.2. scNym is a neural network model for predicting cell types847

from single cell profiling data and deriving cell type representations from848

these models. These models can map single cell profiles to arbitrary output849

classes. [28]850

scANVI 1.0.2 scANVI (single-cell ANnotation using Variational Infer-851

ence) represents a semi-supervised approach designed specifically for single-852

cell transcriptomics data. It relies on the utilization of variational autoen-853

coders as the foundational component of its model architecture[27]854

SciBet 1.0. SciBet is a supervised classification tool, consisting of 4855

steps: preprocessing, feature selection, model training and cell type assign-856

ment, that selects genes using E-test for multinomial model building. [41]857

Seurat 4.0.3. We used Seurat’s reference-based mapping, with the858

Transfer anchor settings, where very transcriptomically simmilar cells from859
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the reference and query datasets are used to create a shared space for the860

two datasets[19]861

SingleR 1.6.1. SingleR is a reference-based method that requires tran-862

scriptomic datasets of pure cell types to infer the cell of origin of each of the863

single cells independently. It uses the Spearman coefficient on variable genes864

and aggregates the coefficients to score the cell for each cell type[20]865

4.4. Pseudotime analysis: Monocle 3.1866

The human cortical organoid dataset was parsed into R (v. 4.2.1) using867

Seurat and its dependencies (v. 4.3.0) and converted into a CellDataSet868

(CDS) for further analysis using Monocle 3 Beta (v. 3.1.2.9; https://cole869

-trapnell-lab.github.io/monocle3/) [84]. Cell clusters and trajectories870

were visualized utilizing the conventional Monocle workflow, as detailed in871

https://cole-trapnell-lab.github.io/monocle3/docs/trajectorie872

s/.873

4.5. Cell stress analysis: Gruffi 1.0874

Gruffi is a computational algorithm that identifies and removes stressed875

cells from brain organoid transcriptomic datasets in an unbiased manner876

[81]. It uses granular functional filtering to isolate stressed cells based on877

stress pathway activity scoring [81]. Gruffi integrates into a typical single-878

cell analysis workflow using Seurat [81]. In this paper we followed the default879

implementation shown in the GitHub repository to obtain a dataframe con-880

taining what cells were stressed based on Gruffi’s default analysis https:881

//github.com/jn-goe/gruffi.882
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Figure 1: Benchmarking SIMS against other cell classifiers.
A)Performance of cell type annotation methods measured by accuracy in
the PBMC68K dataset using fivefold cross-validation.
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Figure 1: Box plots show the median (centre lines), interquartile range
(hinges) and 1.5-times the interquartile range (whiskers). B) Performance
of cell type annotation methods measured by accuracy in the Human heart
dataset. C) Performance of cell type annotation methods measured by ac-
curacy in the Human cell landscape dataset. D) UMAP representation of
the PBMC68K cells, colored by ground truth cell type and representation of
the PBMC68K cells, colored by SIMS predicted cell type. E) Performance
of cell type annotation methods measured by pipeline running time in min-
utes.F) Heatmap for PBMC68K comparing ground truth annotations and
predictions by SIMS G) Heatmap for PBMC68K comparing ground truth
annotations and predictions by SCANVI
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Figure 2: Application of SIMS to single Cell RNA sequencing: Adult
Mouse Cerebral Cortex and Hippocampus A) Ground truth UMAP
representation for the dataset. B) Ground truth UMAP representation for
the Subset of Cells used for testing the algorithm in the train-test split. C)
Predictions made by SIMS in that subset of data. D) Confusion Matrix for
the test-split. L= Layer; IT = Intratelencephalic; PN = Projection Neuron.
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Figure 2: E) Benchmarking SIMS against other cell classifiers. F) Perfor-
mance of cell type annotation methods measured by accuracy in the Allen
mouse dataset using fivefold cross-validation. Box plots show the median
(centre lines), interquartile range (hinges) and 1.5-times the interquartile
range (whiskers)
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Figure 3: SIMS explainability: A) UMAP representation of the Allen
Mouse dataset coloured by macro cell type . B) UMAP representation of the
Allen Mouse dataset coloured by expression of the selected gene by SIMS for
the GABAergic group. C) UMAP representation of the Allen Mouse dataset
coloured by cell type. Same naming convention used for figure 2A.
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Figure 3: D) UMAP representation of the Allen Mouse dataset coloured by
expression of the selected gene by SIMS for the PVALB+ interneuron group.
E) Mean explain value for the top 50 genes across 300 runs. F) Dispersion
index value for the top 50 genes across 300 runs.
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Figure 4: Application of SIMS to trans-sample predictions of single
Nuclei RNA sequencing: Adult human cerebral cortex A) Ground
truth for the test-split data. B) Predictions for the test-split data.
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Figure 4: C) Ground truth for the H200.1023 sample. D) Prediction for
the H200.1023 sample after training on the H200.1030 sample. E) Confu-
sion matrix for the test Split. F) Confusion matrix for the test Split. G)
Accuracy boxplot for the Known and Unknown cell classification with a con-
fidence threshold of 0.6 H) Accuracy boxplot for the Known and Unknown
cell classification with a confidence threshold of 0.7. L = Cortical Layer; PN
= Projection Neuron. Additional examples are on Supplemental Figure 12.
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Figure 5: Application of SIMS to developing tissue: Mouse cerebral
cortex A) Confusion Matrix for E18P1 split, where we trained on Sample
1 E18 and Sample 1 P1 and predicted on Sample 2 E18 and Sample 2 P1
B) Barplot showing the number of Layer 4 Cells that get predicted as the
different cell types. 48
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Figure 5: C) Diagram of the mouse cerebral cortex after neurogenesis. D)
Force Atlas representation of Layer 4 Neurons. E) Violin plot showing gene
expression in the misclassified Layer 4 group compared to the groups that is
classified as.
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Figure 6: Application of SIMS to in vitro generated models: hu-
man cortical organoids A) UMAP representation of the Ground truth
cell type for all cell lines. B) UMAP representation of the batch and cell line
for all cell lines C) Confusion Matrix for GM3880-derived organoids, model
trained on 11A-derived organoids. D) Confusion Matrix for PGP1-derived
organoids, model trained on 11A-derived organoids.E) UMAP representation
for stressed cells as annotated by Gruffi in all organoids. F)Violin plots for
neuronal differentiation and Cell stress genes showing differences among cell
lines
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Figure 7: Application of SIMS to in vitro generated models: human
cortical organoids A) UMAP representation of the Ground truth cell type
for 11A organoids. B) UMAP representation of the label transfer from Fetal
tissue for 11A organoids. C) UMAP representation for stressed cells as an-
notated by Gruffi in the 11A organoids.
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