bioRxiv preprint doi: https://doi.org/10.1101/2023.02.28.529615; this version posted November 17, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

»  Unraveling Neuronal Identities Using SIMS: A Deep
) Learning Label Transfer Tool for Single-Cell RNA
) Sequencing Analysis

+  Jesus Gonzalez-Ferrer®” ¢, Julian Lehrer®? 4 Ash O’Farrell’, Benedict
5 Paten®®, Mircea Teodorescu®®f, David Haussler®®, Vanessa D.
6 Jonsson®*&®  Mohammed A. Mostajo-Radji><&h

®These authors contributed equally to this work.
bGenomics Institute, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
¢Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa
Cruz, 95060, CA, USA
4 Department of Applied Mathematics, University of California Santa Cruz, Santa
Cruz, 95060, CA, USA
¢ Department of Biomolecular Engineering, University of California Santa Cruz, Santa
Cruz, 95060, CA, USA
fDepartment of Electrical and Computer Engineering, University of California Santa
Cruz, Santa Cruz, 95060, CA, USA
9Co-senior authors.
hCorrespondence to vionsson@ucsc.edu (V.D.J.) and mmostajo@ucsc.edu (M.A.M.-R.)

7 Abstract

Large single-cell RNA datasets have contributed to unprecedented biological
insight. Often, these take the form of cell atlases and serve as a reference
for automating cell labeling of newly sequenced samples. Yet, classification
algorithms have lacked the capacity to accurately annotate cells, particularly
in complex datasets. Here we present SIMS (Scalable, Interpretable Ma-
chine Learning for Single-Cell), an end-to-end data-efficient machine learning
pipeline for discrete classification of single-cell data that can be applied to
new datasets with minimal coding. We benchmarked SIMS against common
single-cell label transfer tools and demonstrated that it performs as well or
better than state of the art algorithms. We then use SIMS to classify cells in
one of the most complex tissues: the brain. We show that SIMS classifies cells
of the adult cerebral cortex and hippocampus at a remarkably high accuracy.
This accuracy is maintained in trans-sample label transfers of the adult hu-
man cerebral cortex. We then apply SIMS to classify cells in the developing
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brain and demonstrate a high level of accuracy at predicting neuronal sub-
types, even in periods of fate refinement, shedding light on genetic changes
affecting specific cell types across development. Finally, we apply SIMS to
single cell datasets of cortical organoids to predict cell identities and unveil
genetic variations between cell lines. SIMS identifies cell-line differences and
misannotated cell lineages in human cortical organoids derived from different
pluripotent stem cell lines. When cell types are obscured by stress signals,
label transfer from primary tissue improves the accuracy of cortical organoid
annotations, serving as a reliable ground truth. Altogether, we show that
SIMS is a versatile and robust tool for cell-type classification from single-cell
datasets.

s Keywords: RNA sequencing, Single Cell, Label transfer, TabNet,
o Neuroscience data, Brain organoids, Neurodevelopment

10 1. Introduction

1 Next-generation sequencing systems have allowed for large scale collection
12 of transcriptomic data at the resolution of individual cells. Within this data
13 lies variability allowing us to uncover cell-specific features, such as cell type,
1 state, regulatory networks, as well as infer trajectories of cell differentiation
15 and specification [1, 2]. These properties are crucial to understand biological
16 processes in healthy and diseased tissue. In addition, these properties better
17 inform the development of in wvitro models, which are often benchmarked
18 against cell atlases of primary tissue [1].

19 The lowering costs of sequencing, coupled with several barcoding strate-
2 gies, have allowed single-cell datasets and atlases to scale with respect to cell
2 and sample numbers, as well as data modalities [3]. Yet, despite the increas-
2 ing size and complexity of datasets, the most popular pipelines for single cell
23 analysis are based on dimensionality reduction and unsupervised clustering
2 followed by manual interpretation and annotation of each cell cluster [4].
s This requires a high level of expertise in understanding the most appropriate
s cell markers for a given tissue, a major barrier to newcomers to a field. For
27 highly heterogeneous tissues such as the brain, where a consensus in cell type
22 nomenclature remains challenging [5], manual cell annotation can introduce
20 additional errors.

30 Errors in cell annotation may be driven by the following common as-
a sumptions: 1) That marker genes are uniformly highly expressed, which is
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» not always the case [6, 7]. For instance, while OPALIN and HAPLNZ2 are
;3 considered markers of oligodendrocytes in the brain, their expression is low
s or undetectable in a large subset of oligodendrocytes at the single cell level
5 [8]. Indeed, high levels of HAPLN2 have been proposed as a landmark of
s Parkinson’s Disease [9]. 2) That cell-type marker gene expression is constant
s throughout development, such that a gene that specifically labels a popula-
;s tion of cells at one age would label the same population at a different age.
s For example, while it is known that PVALB positive cortical interneurons
w0 are born during embryonic development [10], the expression of this gene is
a not seen until well after birth [11]. Notably, recent studies have shown that
» a subset of PVALB interneurons may never express the PVALB gene [12].
s 3) That gene markers discovered in one species apply to others. In several
s tissues, including the brain, there are major species-specific differences. For
s example, HCN1 is a key marker of cortical layer 5 sub-cerebral projection
s neurons in the mouse, but highly expressed in projection neurons of all cor-
« tical layers in humans [13, 14]. In summary, manual annotation of every
s new dataset based on standard marker genes can lead to compounding error
s propagation and inconsistent single cell atlases, potentially reducing their
so utility.

51 The development of software to automate single cell analysis has become
2 an important and popular research topic [4, 15, 16, 17]. However, the ac-
53 curacy of these automated classifiers often degrades as the number of cell
s+ types increase, and the number of samples per label becomes small [18].The
s distribution of cell types is often asymmetric, with a majority class domi-
ss nating a high percentage of cells. Additionally, technical variability between
57 experiments can make robust classification between multiple tissue samples
ss difficult. There have been efforts to apply statistical modeling to this prob-
9 lem [19, 20], but the high-dimensional nature of transcriptomic data makes
o analysis statistically and computationally intractable [21]. These conditions
s1 make applying classical models such as support vector machines difficult and
2 ineffective[22]. In response, generative neural networks have become a pop-
&3 ular framework due to their robustness to technical variability within data,
s« scalability, and ability to capture biological variation in the latent represen-
es tation of the inputs [23, 24, 25]. These include deep learning models based on
e variational inference [26, 27|, adversarial networks [28] and attention trans-
v formers [25]. Early deep learning models exhibit a lack of interpretability due
¢ to their "black box” architecture[18]. However, explainable artificial intelli-
o gence (XAI) research aims to understand model decision-making by assigning
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70 weight values to the genes based on their influence on cell type predictions.
7 Despite this, some deep learning approaches display inherent biases favoring
72 multivariate gene selection that impedes straightforward data interpretation
7z [25, 29]. Additionally, the computational demands of certain deep learning
72 systems may preclude adoption by smaller research groups lacking access to
75 high-performance computing infrastructure. Ongoing work seeks to enhance
7 model interpretability and efficiency to enable broader utilization across the
7 biological sciences[25, 28].

78 Here we present SIMS (Scalable, Interpretable Machine Learning for
79 Single-Cell), a new framework based on the model architecture found in
so  TabNet [30]. SIMS is implemented in Pytorch Lightning [31], which allows
g1 SIMS to be low code and easy to use. We take advantage of the fact that
s2 TabNet uses a sequential self attention mechanism, which allows for inter-
g3 pretability of tabular data [30]. Importantly, TabNet does not require any
s feature preprocessing and has built-in interpretability which visualizes the
g5 contribution of each feature to the model [30]. Given these properties, SIMS
ss 1s an ideal tool to classify RNA sequencing data. We show that SIMS either
&7 outperforms or is on par with state of the art single cell classifiers in complex
ss datasets, such as peripheral blood samples and full body atlases. We apply
so  SIMS to datasets of the mammalian brain and show a high accuracy in adult
o and developing tissue. We further apply SIMS to data generated from in
a1 vitro models, such as pluripotent stem cell-derived cortical organoids. Using
e the SIMS pipeline, we were able to reclassify misslabeled cells through the
3 use of label transfer from annotated primary tissue. We propose SIMS as a
o new label transfer tool, capable of robust performance with deep annotation
os and skewed label distributions, high accuracy with small and large datasets,
o and direct interpretability from the input features.

o7 2. Results

w6 2.1. Development of a TabNet-based framework for label transfer across sin-
% gle cell RNA datasets

100 We developed SIMS, a framework for label transfer across single cell RNA
1 datasets that uses TabNet as the classifier component (Supplemental Figure
02 1) [30]. TabNet is a transformer-based neural network with sparse feature
103 masks that allow for direct prediction interpretability from the input features
s [30]. To better fit the model for the task of single cell classification we added
s two innovations: First, we included Temperature Scaling, a post-processing
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s step of the train network that provides the users with a calibrated probability
107 measure for the classification of each cell in the selected cell type [32]. Then,
108 we equipped our pipeline with an automated gene intersection mechanism,
o allowing the prediction of datasets with a different number of genes than the
no dataset used for training the model, a common occurrence when different
m  sequencing technologies are used.

112 In our framework, for each forward pass, batch-normalization is applied.
us  The encoder is several steps (parameterized by the user) of self-attention
us layers and learned sparse feature masks. The decoder then takes these en-
us coded features and passes them through a fully-connected layer with batch-
s normalization and a generalized linear unit activation [33]. Interpretability
u7 by sample is then measured as the sum of feature mask weights across all
us encoding layers.

119 SIMS can be trained with either one or several preannotated input datasets,
o allowing for the integration of atlases generated by the same group or by
1 different groups. For accurate training, the user must input an annotated
122 matrix of gene expression in each cell. After training and production of train-
123 ing statistics, the user can input a new unlabeled dataset. Of note, if the
124 training data was normalized ahead of training, the user must normalize the
125 unlabeled data in a similar manner. The model will then predict the cluster
e assignment for each cell. SIMS will then output the probability of each cell
12z belonging to each cluster, where the probability is more than 0.

128 SIMS is accessible through a Python API. The development version can
120 be found on our GitHub repository at the following link https://github
130 .com/braingeneers/SIMS. Additionally, a pip package is also available for
131 easy installation https://pypi.org/project/scsims/. SIMS is designed
12 to require minimal input from the users. To train the model, the user has
133 to only input the data file of the training dataset, a file with the labels, and
3¢ define the class label, the user can also choose to load the dataset into Scanpy
135 as an anndata object (Supplemental Figure 2). This process will save the
16 learned parameters for each training epoch in a new file.

137 To perform the label transfer on a new dataset the user must import the
s weights from the trained model. The user will then input the new unlabeled
1o dataset (Supplemental Figure 3).

140 SIMS takes the cell by gene expression matrix as an input. For newly
11 produced data we recommend an end to end pipeline we have developed
12 within Terra. This pipeline takes raw FASTQ files, runs them through the
113 CellRanger or StarSolo Dockstore workflows [34, 35, 36] (Supplemental Fig-
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e ure 4), outputs an expression matrix in the h5 format and classifies the cell
us  types using a SIMS model trained on the reference dataset of interest. This
us pipeline can also be used to benchmark new methods in an unbiased man-
7 ner or to reproduce results obtained from data stored in the Sequence Read
us Archive (SRA) with an additional dockstore workflow step [37, 38]

149 To extend the reach of SIMS to investigators without coding experience,
150 we developed a web application based on Streamlit. This application allows
151 users to perform predictions based on pretrained SIMS models. To access
12 the web application the user has to enter the webpage at https://sc-sim
153 s—app.streamlit.app/. Once there, the user has to upload their dataset
1ss  of interest in hbad format, select one of our pretrained models and perform
155 the predictions. They will be able to download the predictions in csv format
155 and visualize their labeled data as a UMAP.

57 2.2. Benchmarking SIMS against existing cell classifiers of single cell RNA
158 data

150 We conducted benchmark tests in three distinct datasets to evaluate
1o SIMS’ performance against other methods built on various theoretical ap-
11 proaches. The first dataset we utilized was the PBMC68K, also known as
162 Zheng68K, derived from human peripheral blood mononuclear cells [39]. This
13 dataset is particularly valuable due to its complex nature, featuring unbal-
e anced cell clusters and cells with similar molecular identities, making it a
165 robust choice for benchmarking cell type annotation methods, as it has been
166 extensively employed for this purpose. As a second dataset we included the
17 human heart dataset, also known as Tucker’s dataset, comprising 11 cell
s types and exhibiting unbalanced cell clusters [40]. This dataset shares sim-
160 ilarities with Zheng68K but contains a significantly larger number of cells
o (287,000 cells compared to 68,000 cells). Additionally, we incorporated the
i Human cell landscape, also known as Han’s dataset [18] into our analysis,
172 primarily for its substantial size (over 584,000 cells) and the presence of a
i3 wide array of different cell types, totaling 102.

174 In our benchmarking study, we selected a range of tools that represent
s diverse methodologies and functionalities within the field of single-cell analy-
e sis. The scVI and scANVT pipeline was included owing to their deep learning
17 foundation, utilizing a variational autoencoder to create cell embeddings [27].
s This latent representation serves as the basis for subsequent model building
o and label transfer, making scVI and scANVI essential benchmark for eval-
180 uating deep learning-based approaches in single-cell analysis illustrating the
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11 scArches package [24]. Another deep learning-based tool, ScNym, adopts an-
1.2 other two-step process. Beginning with adversarial pretraining, the network
183 is refined through fine-tuning for classification, offering a unique perspective
182 on how deep learning models can be optimized for single-cell RNA data anal-
155 ysis [28]. In contrast, SciBet adopts a non-deep learning approach by fitting
185 multinomial models to the mean expression of marker genes. SciBet was
17 benchmarked primarily for its inference speed, a crucial aspect considering
18 its real-time web-enabled inference capabilities[41]. Seurat, a well-established
19 framework in the field, was included due to its versatility in preprocessing,
o visualization, and analysis of single-cell data. Additionally, Seurat provides
11 label transfer functionality through the identification of anchors, establish-
102 ing pairwise correspondences between cells in different datasets[19]. We also
13 wanted to evaluate a model with a simpler paradigm behind it, SingleR,
1wa  which employs a correlation-based method, focusing on variable genes in the
105 reference dataset for calculating differences between cell types. Additionally,
s an attempt was made to benchmark against scBERT, a large transformer-
w7 based model[25]. However, due to its computational complexity, we faced
108 limitations. Despite experimenting with an A10 GPU, scBERT’s demands
199 were such that we were unable to train or evaluate it on any dataset, even
20 with a minimal batch size of 1. These carefully chosen tools enabled a com-
201 prehensive evaluation, considering various approaches and methodologies in
22 the realm of single-cell analysis.

203 To ensure the robustness of our findings and mitigate the influence of ran-
204 domness, we employed a fivefold cross-validation strategy. Notably, SIMS
205 consistently outperformed the majority of label transfer methods in terms
26 of accuracy (Figure 1; Supplemental Table 1) and Macro F1 score (Supple-
207 mental Figure 5; Supplemental Table 2) across these diverse datasets. This
208 compelling evidence underscores SIMS as a highly accurate and robust clas-
200 sifier, demonstrating its proficiency across diverse tissue types. Additionally,
20 SIMS exhibits scalability to accommodate a large number of cells and show-
o cases its ability to effectively classify datasets with imbalanced cell types.
212 We also conducted a consistent evaluation of pipeline running times by
213 employing fivefold cross-validation to assess the speed of the benchmarked
2 tools in minutes, using the same comparison methodology (Figure 1E). This
25 analysis was carried out within the NRP clusters[42], leveraging user-accessible
26 GPUs. Whenever feasible, training and inference processes were executed on
27 GPUs; otherwise, they were performed on CPUs.
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2ns 2.3, SIMS accurately performs label transfer in highly complex single cell
210 data: Mouse adult cerebral cortex and hippocampus

220 Given that SIMS outperforms most state-of-the-art label transfer meth-
21 ods in different datasets, we then asked whether it could perform accurately in
22 a highly complex tissue, such as the brain. We focused in adult mouse cortical
»3 and hippocampal data generated by the Allen Brain Institute [43, 44, 45].
224 The cerebral cortex is among the most complex tissues due to its cellu-
»s lar diversity, the variety and scope of its functions and its transcriptional
26 regulation [46]. The cerebral cortex is organized in 6 layers, and several
27 cortical areas, each with different composition and proportions of excitatory
2 projection neurons (PNs), inhibitory interneurons (INs), glial cells and other
20 mnon-neuronal cell types [46]. The hippocampus, on the other hand, is part
20 of the archicortex (also known as allocortex) [47]. It is further subdivided
an into cornu ammonis (CA), dentate gyrus, subiculum, and entorhinal area [47].
2 While the hippocampus also has a layered structure, made of 3 layers, the cell
23 type composition and numbers vary greatly from those in cerebral cortex [47].
2 The great diversity of cell types, the close relationship between some of those
235 subtypes, and the anatomical separation between these regions, make cere-
236 bral cortex and hippocampal datasets complex but attractive benchmarking
27 models to test SIMS.

238 The dataset contained 42 cell types, including PNs, INs, endothelial and
20 glia cells. Training in 80% of the cells selected at random and testing on the
20 remaining 20%, we find that SIMS performs at an accuracy of 97.6% and a
21 Macro F1 score of 0.983 (Figure 2 and Supplemental Figure 6).

242 We then performed ablation studies to investigate the performance of
23 SIMS. We find that training in as little as 7% of the dataset (3,285 cells)
24 1s sufficient to obtain a label transfer accuracy of over 95% and Median F1
25 score of over 0.95 (Supplemental Figure 7). The Macro F1 after training in
25 7% of the data is 0.90 (Supplemental Figure 7). Given the low amount of
a7 training data needed to obtain a high accuracy in label transfer, we conclude
2s that SIMS is a data efficient machine learning model.

249 SIMS provides interpretability by computing weights for sparse feature
0 masks in the encoding layer. These weights indicate the most influential
51 genes in the network’s decision-making for assigning cell types. To assess this
2 interpretability, we generated three dataset partitions with varying levels of
3 granularity. Our aim was to observe if the network could accurately select
4 pertinent genes to distinguish the groups formed at each resolution level.
»s In order to analyze the results we focused in the Pvalb+ INs, a group of
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256 inhibitory neurons born in the Medial ganglionic eminence (MGE). For the
7 lowest level of granularity, which limit the cell options to INs, PNs and
s Non-Neuronal Cells, we find that for the INs group some important genes
20 selected by the model were Kenip and Igfl (Figure 3A-B), both of which
20 have been previously shown to be important IN genes [48, 49, 50]. For
21 the medium level of granularity (Medial ganglionic eminence, non medial
22 ganglionic eminence), and consistent with previous literature we find that
x3  for the MGE-derived INs the genes selected were Rpp25, DIx1, DIx5, Gadl,
2 Ffgl3 and Cck. [51, 50, 52, 53] (Supplemental Figure 8). For the highest
s level of granularity (Pvalb+ INs), some of the selected genes were Satbl,
26 Pvalb, Lypd6, Dlx6os-1 and Bmp3. [53] (Figure 3C-D)

267 To confirm that the selection of the most important genes was consistent
s across different runs we performed the experiment with the highest level of
0 granularity 300 times. For each experiment we normalized each gene weight
70 against the highest weight gene measured in that run and measured the mean
o1 weight and dispersion index for each gene across all runs (Figure 3E-F). Given
o2 the explainability matrix £ € R"*™ comprised of m genes measured across n
a3 cells, we select all rows representing cells with the same predicted label and
274 compute:

€ = — ij fori:1,2,...,nl

a5 We then average e; across all 300 runs. To calculate the dispersion index, we
e first measured the average importance of each gene across all 300 runs

g:

1 m
— E E;; fori=1,2,...n
M3

o7 and then compute the dispersion index as

dispgene = égene/ggene

278 .

279 In the top 10 of genes more important for classification we can find Ex-
20 citatory PN markers (Neurod6), Inhibitory IN markers (Cck, Rpp25, DIx1,
21 Gadl), neural progenitor related genes (Fbxw7) and genes related to dif-
2 ferent neuropsychiatric disorders (Arppl9, Fhod3, Nrgn). Top genes show
23 mean explain values around 0.2 (Figure 3E), for comparison the mean ex-
2 plain value for the median gene is around 107 (Supplemental Figure 10).
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s This showcases the consistency of gene selection by SIMS and how it could
26 be used to find clinically relevant genes overlooked by conventional methods.

w1 2.4. SIMS accurately performs trans-sample label transfer in highly complex
288 single nuclei data: Human adult cerebral cortex

289 Single nuclei RNA sequencing has become an important emerging tool in
200 the generation of atlases, particularly in tissues where obtaining single cells
20 is difficult. Cell nuclei are used in neuroscience because adult neurons are
202 difficult to obtain, due to their high connectivity, sensitivity to dissociation
203 enzymes and high fragility, often resulting in datasets with abundant cell
20a  death, low neuronal representation and low quality RNA [54]. Importantly,
205 single nuclei sequencing is compatible with cryopreserved banked tissue [55].
26 Yet, the data generated in single nuclei RNA sequencing is not necessarily
207 similar to the data generated in single cell RNA sequencing. For instance,
28 a recent study comparing the abundance of cell activation-related genes in
200 Mmicroglia sequenced using single cell and single nuclei technologies, showed
30 significant differences between both datasets [56]. Moreover, single nuclei
s datasets are more prone to ambient RNA contamination from the lysed cells
32 [57]. In the case of the brain, it has been observed that neuronal ambi-
53 ent RNA has masked the transcriptomic signature of glia cells, leading to
;¢ incorrect classification of glia subclasses in existing atlases [57].

305 Given the high label transfer accuracy of SIMS in single-cell data, we
s then tested its performance in single nuclei datasets. As a proof of principle,
sor - we selected the human adult cerebral cortex dataset generated by the Allen
2s  Brain Institute [44, 43]. We trained on 80% of the data and tested the model
300 in the remaining 20%. Overall, we obtained an accuracy: 98.0% and a Macro
a0 Fl-score of 0.974 (Figure 4; Supplemental Figure 9; Table 1).

311 We then performed a data ablation study and observed that we obtained
a2 over 95% accuracy using as little as 7% of data for training (2,124 cells).
213 Similarly, we obtained a Macro F1-score of over 0.95 with 9% (2,731 cells) of
s the data and a median F1 of over 0.95 with 8% of the data (2,428 cells) for
us training (Supplemental Figure 11).

316 We then asked how SIMS performs in trans-sample predictions. This
si7 dataset is made of 3 different postmortem samples. Namely: H200.1023, a
ss 43 years old Iranian-descent woman; H200.1025, a 50 years old Caucasian
a0 male; and H200.1030, a 57 years old Caucasian male. We trained the model
20 on one sample and tested it on the other 2 samples. We performed this
;1 experiment in each possible combination, obtaining accuracies ranging from
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Training Sample | Testing Data | Accuracy | Macro F1-score
80% of Data 20% of Data 98.0% 0.974
H200.1023 H200.1025 94.0% 0.84
H200.1023 H200.1030 94.4% 0.865
H200.1025 H200.1023 93.1% 0.769
H200.1025 H200.1030 93.1% 0.779
H200.1030 H200.1023 95.8% 0.862
H200.1030 H200.1025 94.8% 0.87

Table 1: Trans-sample accuracies and Macro F1-scores for human adult cere-
bral cortex dataset

2 93.1 to 95.8% (Figure 4; Supplemental Figure 12; Table 1; Supplemental
23 Tables 3—8).

324 As shown, SIMS predicts the label accurately for most cell types across
»s  samples. SIMS shows a decrease in performance when trying to classify Per-
»s icytes as sometimes it labels them as Astrocytes (Supplemental Tables 3-8).
327 This is consistent with recent work showing that previously annotated single
2 nuclei atlases of the brain often mask non-neuronal cell types [57]. In addi-
29 tion, we observed that Layer 4 Intratelencephalic neurons often get classified
30 as generic Intratelencephalic neurons (Supplemental Tables 3-8). This is in
s agreement with the fact that Layer 4 Intratelencephalic neurons are a subset
s of Intratelencephalic neurons [58]. We also employed this dataset to assess
13 the capacity of SIMS to differentiate between recognized cell types and those
s not included in the training dataset. This capability holds significance as it
15 can function as a surrogate metric for identifying cells in new datasets that
136 were absent from the reference dataset used for training. In this particular
;7 scenario, we implemented a leave-one-out methodology, where we excluded
18 one cell type from the training dataset and then made predictions on the test
139 set, encompassing all of its cell types. Subsequent to temperature scaling,
s we utilized the model’s probability outputs as a measure of confidence, such
s that a probability of 0.5 approximately measures that the model possesses
sz a b0% level of confidence in the predicted cell type’s accuracy. Following
a3 this, we established a user-adjustable threshold to determine whether the
aa  cell type should be labeled as the predicted cell type or categorized as an
15 unknown cell type (Figure 4G-H). Altogether, we conclude that SIMS is a
us  powerful approach to perform intra-sample and trans-sample label transfer
w7 in complex and highly diverse tissues such as the adult brain.

11


https://doi.org/10.1101/2023.02.28.529615
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.28.529615; this version posted November 17, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

us 2.5, SIMS can accurately classify cells during neuronal specification

349 Having established that SIMS can accurately predict cell labels in com-
0 plex tissues, we then asked how our model performed predicting cells of
;s different ages. Classifying cells during development is challenging, as several
32 spatiotemporal dynamics can mask the biological cell identities [59]. During
13 cortical development, gene networks of competing neuronal identities first
s colocalize within the same cells and are further segregate postmitotically
35 [60, 46, 61], likely through activity-dependent mechanisms [62, 63].

356 To test the accuracy of SIMS at classifying developing tissue, we focused
37 on mouse cortical development due to its short timeline [64]. In the mouse
38 cortex, neurogenesis starts at embryonic day (E) 11.5, and it is mostly com-
30 pleted by E15.5 [64]. Common C57BL/6 laboratory mice are born at E18.5
30 [65]. Neonatal mice are timed based on the postnatal day (P) [65]. We
1 took advantage of a cell atlas of mouse cortical development that contains 2
32 samples of E18 mouse embryos and 2 samples of P1 mice [60]. These timed
3 samples, which are 1 day apart from each other represent timepoints at
s« which all mouse neurogenesis is completed [64]. At these timepoints, neu-
s rons may still be undergoing fate refinement [66], and consequently retain
w6 fate plasticity, albeit limited [67, 68, 69].

367 First, we trained a model on one E18 and one P1 sample and tested the
s accuracy of label transfer in two samples, one of each age (Supplemental
30 Figure 13 A-B). Across 17 cell types, we find that the model predicts the
s labels with an accuracy of 84.2% and a Macro Fl-score of 0.791 (Figure 5A;
s Supplemental Table 9).

372 We then tested SIMS by training on two P1 samples and testing the label
w3 transfer in two E18 samples (Supplemental Figure 13 C-D). We find that in
5.4 this experiment, the label transfer accuracy drops to 73.6% and the Macro
w5 Fl-score to 0.674 (Figure 5B; Supplemental Table 10). Interestingly, however,
se  this drop in accuracy is not random, but either follows the developmental tra-
srr jectories of the misclassified cells or misclassifies cells as transcriptomically
ss similar cell types. For example, astrocytes are a subtype of glia cells that
w0 retain the ability to divide throughout life [70]. Indeed the major source of as-
30 trocytes in the cerebral cortex is other dividing astrocytes [70]. Consequently,
31 the ”Cycling Glia Cells” cluster is often predicted as astrocytes (Supplemen-
32 tal Figure 13). In the neuronal lineage, we find that SIMS can accurately
;3 predict most cell types. Going back to the combined ages model, we focused
s on Layer 4 neurons, which is one of the neuronal subtypes with the lowest
35 accuracy in label transfer (24.31%). We find that these neurons are often
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s classified as upper layer callosal PNs, and rarely as callosal PNs of the deep
37 layers (Figure 5B-E). While morphologically distinct, layer 4 neurons share
s transcriptional homology with callosal PNs [60, 71]. Indeed, recent work has
;0 shown that Layer 4 neurons transiently have a callosal-projecting axon, which
w0 is postmitotically eliminated during circuit maturation, well after P1 [58]. In
;1 agreement, Layer 4 neurons that are mislocalized to the upper cortical layers
12 retain an upper layer callosal PN identity and fail to refine their identity [72].
53 By comparing the gene expression of upper layer callosal PNs, the correctly
s classified Layer 4 neurons and the misclassified Layer 4 neurons, we observe
35 that while upper layer callosal PNs and correctly classified Layer 4 neurons
w6 have the gene expression patterns proper to their identity, misclassified Layer
37 4 neurons have an intermediate expression of genes that define the identity of
;s the other two cell types, such as Rorb[73] (Figure 5). Notably, most (90.1%)
39 of the misclassified Layer 4 neurons belong to the E18, likely representing
wo neurons undergoing fate refinement. Altogether, this example highlights the
w1 difficulty that cell classifiers face when trying to discretely label cells during
w2 development.

403 Together, we conclude that SIMS can accurately predict cell labels of
ws  specified neurons. However, when applying SIMS during periods of differ-
w5 entiation and fate refinement, it uncovers similar identities in the develop-
ws mental trajectories. This is likely caused by transcriptomic similarities that
w7 can often mask the proper identification. Alternatively, SIMS may identify
w8 subtle differences in fate transitions that cannot be accurately pinpointed by
w0 traditional clustering methods in the reference atlases.

a0 2.6. SIMS identifies cell-line differences in gene expression in human cortical
a1 organoids

a12 Cortical organoids are a powerful tool to study brain development, evo-
a3 lution and disease [13, 74, 75]. Yet, like many pluripotent stem cell-derived
as models, cortical organoids are affected by cell line variability and culture con-
a5 ditions that can affect the reproducibility of the protocols [76]. Moreover,
a6 transcriptomic analysis of cortical organoids has revealed strong signatures
sz of cell stress [77, 78, 79], which can impair proper cell type specification
s [80]. In addition, in wvitro conditions generate cell types of uncharacterized
a0 identity, that do not have an in vivo counterpart [78, 81]. While some have
20 argued that these cells should be removed from further analysis [81], the most
#1 common approach is to annotate them as ”Unknown” cell clusters [74].
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a2 To understand whether SIMS could be used to uncover cell line differ-
w23 ences and identify different trajectories, we used a dataset from 6 months
#2¢ old human cortical organoids derived from 3 different cell lines (3 organoids
25 per batch), each with their own idiosyncrasy [74]. Specifically, this dataset
w6 contained: 1) one batch of cortical organoids derived from the 11A cell line,
»7 in which all cells had been identified and no cell was labeled as ” Unknown”,
w28 2) one batch of cortical organoids derived from the GM8330 cell line, which
w20 contained a small number of ”Unknown” cells and a large proportion of Im-
s0 mature INs, and 3) two batches of cortical organoids derived from the PGP1
a1 cell line, which contained major batch effects. One of those batches had a
a2 large number of " Unknown” cells and cells of poor quality, and was therefore
a3 dropped from further analysis (Figure 6A-B; Supplemental Figure 14).

a3 We performed label transfers between organoids generated from the three
a5 cell lines. We first performed an intra-cell line label transfer using the 11A
a6 organoids. We trained on 2 organoids and predicted the cells on a third
sz organoid. We find an Accuracy of 86.0% and a Macro F1-score of 0.794 (Sup-
18 plemental Figure 15). We then performed trans-cell line predictions training
a0 on 11A and predicting the cell types of the other lines. We obtained an Ac-
w0 curacy of 71.3% and a Macro Fl-score of 0.564 when predicting cells from
wm PGPI1 organoids and an accuracy of 67.4% and a Macro Fl-score of 0.570
a2 when predicting cells from GMS8330 organoids. We observe a high degree
a3 of accuracy for most cell types tested, including Cycling Cells, Intermedi-
us ate Progenitor Cells, Outer Radial Glia/Astroglia, Immature INs, Ventral
ws  Precursors and Callosal PNs (Supplemental Table 11). Interestingly, Radial
us  Glia cells (RGs) from both PGP1 and GM8330 cell lines often were classified
w7 as Immature PNs. Specifically, we find that 82% of the PGP1 and 42% of
us  the GM8330 RGs get predicted as Immature PNs when the data is trained
wo on the 11A cell line (Figure 6C-D). Strikingly, only 1.9% of PGP1 RGs and
w0 3.9% of GM8330 RGs are predicted as RGs. These results suggest major
s differences in gene expression between the RG annotated cells across cortical
ss2  organoids derived from different cell lines.

453 Previous work has shown that cell stress in organoids impairs proper fate
¢ acquisition of PNs [80]. We therefore took advantage of Gruffi, a recently de-
w55 veloped tool to annotate stressed cells in human neuronal tissue [81]. Overall,
s we find that organoids derived from the GM8330 cell line showed the biggest
s7 percentage of stressed cells (16.67%), while organoids derived from the PGP1
ss and 11A cell lines had 6.6% and 4.9% of stressed cells, respectively.(Figure
50 6E). To understand whether the stressed cells were responsible for the mis-
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wo classfication, we removed these cells from the 11A training set. We then
w1 performed a new round of label transfers. Using this approach, we find that
w2 H6% of PGP1-derived RGs and 27%-derived RGs continue to be classified
w3 as Immature PNs. Importantly, only 7.2% of PGP1-derived and 14% of
e GMB8330-derived RGs are predicted as RGs.

465 We then removed the stressed cells from both the training and the pre-
we dicted datasets and find that 44% of PGP1-derived and 14% of GMS&330-
w7 derived RGs are classified as Immature PNs. Notably, the number of RGs
ws that are properly classified as such remains similar, with only 6.9% of PGP1-
wo derived and 19% of GM8330-derived RGs properly predicted. Altogether,
a0 these results suggest that cell stress alone cannot explain the differences in
an cell expression between RGs of cell lines.

a2 2.7. SIMS identifies improperly annotated cell lineages in human cortical
a73 organoid atlases

474 Given that label transfer between human cortical organoids derived from
a5 different cell lines poorly predicted the RG cell type, we then focused on
ars  assessing the most common predictions for this cell type after stressed cells
ar were removed from both the training and the prediction datasets. While
as in the PGP1 line the majority of the misclassified RGs are Immature PNs,
a0 the second most common cell prediction is the closely related Outer Radial
w0 Glia/Astroglia cell type. On the other hand, for the GM8330 cell line the
i1 most commonly predicted cell type is Immature INs. Unlike RGs, Outer Ra-
w2 dial Glia/Astroglia and Immature PNs that belong to the dorsal telencephalic
w3 lineage, INs are derived from the distinct and distant ventral telencephalon
s [46]. A deeper analysis into the GM8330 cell line reveals that 65% of the
w5 Immature PNs also get predicted as Immature INs (Figure 6C), indicating
s a consistent misclassification between neuronal lineages in the GM8330 cell
w7 line. We then performed a Wilcoxon test rank for differential expression
s analysis between the three cell lines. We found that, unlike the other cell
a0 lines, Immature PNs derived from GM8330 organoids expressed genes from
w0 the DLX family, present in INs and not in the PN lineage [82] (Supplemental
s Figure 16). Together, these results suggest an off-target ventralization of
a2 organoids derived from the GM8330 cell line.

493 To confirm this discovery we performed a label transfer experiment train-
a4 ing on fetal tissue derived from gestational weeks (GW) 14-25 human embryos
a5 [83]. Most cell types, such as cycling cells and ventral precursors get classi-
w6 fied as expected. Focusing on neuronal cell types, the majority of Callosal
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sr PNs get classified as Excitatory PNs (80% PGP1, 60% GMS8330, 74% 11A)
ws and Immature INs are properly classified as INs (93% PGP1, 86% GM8330,
w0 86% 11A). However, Immature PNs have clear difference between the 3 cell
soo lines: For the 11A line, 34% of Immature PNs get classified as Excitatory
sn  PNss and 38% as RGs. Similarly, in the PGP1 line, 57% of Immature PNs
s2 are classified as Excitatory Ps and 20% as RGs. On the other hand, only 7%
03 of the GM8330 Immature PNs are classified as Excitatory PNs, and 21% are
so0 classified as RGs. Importantly 44% of these cells are predicted as INs. (Sup-
ss plemental Figure 17), further suggesting a ventralization of the organoids
so6 derived from the GM8330 line.

507 We then performed a pseudotime analysis using Monocle 3 [84]. In the
s 11A and PGP1 lines, we observe a clear differentiation trajectory from RG to
s0 the Excitatory PN lineage(Immature PNs and Callosal PNs). In these lines,
s0 the IN lineage follows a separate path (Figure 7A; Supplemental Figure 18).
su  Focusing on the GM8330 cell line, we observe that a large subset of Immature
sz PNs unexpectedly appear together with the IN lineage (Supplemental Figure
si3 18). Altogether, the data suggests that SIMS has correctly identified that a
s large subset of cells labeled as Immature PNs in the GM8330 are in fact INs.

sis 2.8, Leveraging In Vivo Data Refines Cell Type Prediction in Brain Organoids

516 Visualization methods based on dimensionality reduction, such as prin-
sz cipal component analysis (PCA) and t-distributed stochastic neighbor em-
sis bedding (tSNE) often miss the global structure of the data and can lead to
s.0 misclassification of cells [85]. Given that SIMS identified a ventralization
s0 of the GMS8330 cell line (Figure 6), we then asked whether it can identify
sz other cells previously misclassified in existing atlases [74]. We analyzed 6
s months old organoids derived from the 11A cell line. We first performed
s23 pseudotime analysis and found that a subset of cells labeled as Immature
s PNs cluster in between other Immature PNs and Glia Cells (Figure 7A).
s5 Interestingly, all these cells are identified by Gruffi as stressed cells (Figure
26 7B). To test whether these cells were mistakenly classified in previous atlases,
s2» 'we performed a label transfer from GW14-25 primary fetal tissue [83]. We
s find that SIMS assigns the entirety of this cell cluster as RGs and not PNs
20 (Figure 7C). Gene expression analysis of molecular markers of RGs, such as
s0 SOX2 and PAX6 (Supplemental Figure 19), confirm that the SIMS label is
s correct. In complement, these cells lack expression of PN subtypes markers
52 such TBR1, SATB2, CUX1, CUX2, as well as Pan-PN markers EMX1, DCX,
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s3. NEUROD2 and NEURODG6 (Supplemental Figure 19). Altogether, these re-
s sults suggest that the stressed cells previously labeled as Immature PNs in
s35 the 11A cell line are indeed RGs.

536 We asked how correcting the cell type annotation in the 11A affected the
s37 label transfer between organoids derived from different cell lines. We trained
533 SIMS in the newly annotated 11A dataset and made predictions in both the
s, PGP1 and the GM8330 cells. We found that for the new model trained on
se0  the 11A cell line there is an Accuracy of 75.7% and a Macro F1-score of 0.583
s for PGP1 organoids and an Accuracy of 76.3% and a Macro F1-score of 0.603
se2  for GM8330 organoids (Supplemental Table 13,14), representing a significant
se3  improvement from label transfer experiments before the reclassification (Sup-
sea plemental Table 11,12). Furthermore, we find that RGs now get predicted
ss at an Accuracy of 43.0% for PGP1 and 32.0% GMS8330, as compared to the
s6 original predictions of 1.9% and 3.9% for the respective cell lines. Together,
ss7 - we show that proper identification of cell types through label transfer from
sis  primary tissue can help systematize multi-sample cell atlases.

s 3. Discussion

550 Currently, over 1.5M cells per month are sequenced and archived through
=1 the different cell atlas projects [86]. With the lowering trends in sequencing
s»  costs the number of cells sequenced is increasing exponentially [3, 86]. Yet,
53 cell annotation remains a highly manual process, which is limiting the repro-
ss«  ducibility and introducing biases in the data. Several open access solutions
sss have emerged to streamline the process, albeit with different accuracies [2].
556 Deep learning approaches that apply transformer-based architectures to
ss7 - gene expression data have been shown to outperform other commonly used
sss. methods [25]. However, these approaches require large number of cells for
ss0  pretraining their algorithms and advanced computational knowledge and re-
se0 sources to further train their models [25]. SIMS does not require pretraining,
ss1  therefore avoiding large data files and increasing its versatility. An added
se2  advantage to SIMS is the requirements with which the training can be per-
ss3 formed, which allows for the users to run the program in their local comput-
564 CI'S.

565 We designed SIMS as a low code tool for both training and perform-
ses ing label transfer across single cell datasets (Figure 1). SIMS can be used
ss7 on user-specified datasets, rather than reference datasets that are usually a
ses  prerequisite in popular tools. This is meant to remove barriers in adoption
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ss0 by new labs, medical practitioners, students and non-experts alike. Unlike
s0  other deep learning models [25], SIMS can use genes that are defined by the
s user, allowing the label transfer in novel genomes, or use annotated genomes
s2 - without standard nomenclature. Other deep learning approaches, such as
s sScBERT [25], have been shown to work well with datasets of up to 16K
st genes. SIMS, being based on TabNet, and therefore optimized for tabular
s5s data [30], can work well with over 45K features (Figure 2). This property
st would allow, in principle, SIMS to be trained simultaneously on references of
s7 multiple species, species with large genomes such as the axolotl [87], as well
szs - as multimodal data including combined single cell gene expression and gene
so  accessibility sequencing datasets [88].

580 When it comes to interpretability SIMS is able to output a sparse se-
ss1 lection of the most important genes, that can then be easily plotted in the
s22 Python ecosystem of Scanpy, while other tools [25] rely on external cross-
ss3 platform packages. This can hamper the adoption of new users, including
se« non bioinformaticians [89]. Indeed, non-experts could greatly benefit from
sss intuitive and low effort tools that can streamline the analysis and integra-
ses  tion of their newly generated data with existing knowledge [89]. To facilitate
ss7 its adoption, we created a web app and a Terra pipeline that can be easily
sss  adopted with minimal coding knowledge and low infrastructural resources,
ss0  offering accesible cloud computing. Furthermore, our approaches facilitate
so0 the sharing of trained models which can streamline collaboration between
s multiple groups.

502 After showing that SIMS performs as good or better than state of the
s3 art methods, we focused on applying this tool to data generated from the
s« brain. The brain is a complex tissue, where the great diversity of neurons
sos 1S generated over a relatively short time period and identities are refined
ss throughout life [46, 66]. Several efforts, such as the BRAIN Initiative and
sov Others, exist to sequence neurons across different ages, species, and diseases
s [90, 91]. While the neuroscience community has started efforts to agree on
s90 naming conventions across the increasing number of datasets [5, 92], there is
s00 still significant ontological inconsistencies in existing publications. We believe
o1 that SIMS could become an important tool to streamline these community-
sz driven efforts. It is important to mention that while we focused our work in
s03 the brain, SIMS can easily be applied to single cell RNA sequencing data of
s any other organ.

605 When performing label transfer in fully differentiated neuronal cell types,
s SIMS performed remarkably well, with accuracies above 97%. Unlike many
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sor other tools, which define cells by the strong expression of marker genes [7,
sz 93], the SIMS model takes advantage of lack of expression, and fluctuations
00 Of expression levels of the whole transcriptome to learn and identify cell
s10 labels. Consistent with this, we observed that in developing tissue, where
su1  gene expression is fluctuating and identities are being refined, SIMS was able
s12  to classify most cell types and identify maturation differences in cell types
s13 undergoing fate refinement.

614 When applied to cortical organoids, SIMS identified previously misan-
s notated cells in existing atlases [74]. These errors in annotation were caused
s16 by traditional clustering followed by differential gene expression analysis and
sz marker identification [74]. Notably, stressed cells were often misannotated,
sis which is a common issue in organoid development [80, 81]. Revisiting and re-
10 annotating existing atlases will greatly increase the accuracy of label transfer
20 and improve the development of future protocols. Furthermore, annotating
s21  stem cell-derived atlases using primary fetal samples as reference can be used
22 as a gold standard in the field and to discover cell types underrepresented in
o3 the existing protocols [74, 91].

624 Applying SIMS to developing brain tissue including primary samples and
s2s organoids, allowed us to identify subtle differences in developmental trajec-
o2 tories between cell types generated. We therefore believe that SIMS can be
sz of great value at studying developmental disorders, such as Autism, where
s existing models have already shown cell-type dependent asynchronous de-
620 velopmental trajectories in different neuronal lineages [94]. Hybrid pipelines
s that integrate pseudotime-focused tools, such as Monocle or BOMA [84, 7],
31 could become complementary to SIMS and have the potential to provide
s2 more comprehensive insights into these questions.

633 While we have shown that SIMS can accurately predict trans-sample
s labels and perform label transfer across different methodologies (single cell
e and single nuclei RNA sequencing) and models (primary tissue and cortical
63 organoids), we have limited our work to samples within the same species.
s 'This is because neuronal subtypes diverge significantly between species [44]
e3¢ and at the individual level gene orthologs can show different expression levels
s in different species [95]. However, some neuronal subtypes, such as MGE-
a0 derived INs, are transcriptomically more conserved across evolution than
a1 other primary neurons, including cortical PNs [13, 44]. In the future, these
sz IN subtypes could be used as a way to validate SIMS to perform trans-species
ses predictions [96]. Additional modifications, such as gene module extraction
saa could provide increased accuracy for label transfer, as meta-modules could
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&5 prove to be more conserved between evolutionary distant species than gene
sss orthologs [92, 97, 98].

647 In conclusion, we propose SIMS as a novel, accurate and easy to use tool
ss  to facilitate label transfer in single cell data with a direct application in the
640 Neuroscience community.

o 4. Material and methods
es1 4.1. The SIMS Pipeline

652 The classifier component of the SIMS framework is TabNet [30], a transformer-
3 based neural network with sparse feature masks that allow for direct predic-
e« tion interpretability from the input features. For each forward pass, batch-
ess normalization is applied. The encoder is several steps (parameterized by the
ess user) of self-attention layers and learned sparse feature masks, we offer some
7 preset configurations that depend on the size and complexity of the reference
s dataset . The decoder then takes these encoded features and passes them
50 through a fully-connected layer with batch-normalization and a generalized
se0 linear unit activation [33]. Interpretability by sample is then measured as the
ss1 sum of feature mask weights across all encoding layers. For our visualiza-
s tion, we average all feature masks across all cells to understand the average
63 contribution of each gene to the classification. You could also average the
s feature masks by cell type.

s 4.1.1. Model Architecture

666 The encoder architecture consists of three components: a feature trans-
es7 former, an attentive transformer, and a feature mask. The raw features are
se used as inputs, and while no global normalization is applied internally, batch
0 normalization is utilized during training to improve convergence and stabil-
0 ity. [99]. The same p dimensional inputs are passed to each decision step
e of the encoder, which has Ng.,s decision steps. For feature selection at the
ez 1th step, an element-wise multiplicative learnable mask M; is used. This
ez mask is learned via the attentive transformer, and sparsemax normalization
o2 [100] is used to induce sparsity in the feature mask. These sequential feature
ers  masks are then passed to fully-connected layers for the classification head,
ers first normalized via batch normalization with a gated linear unit [33] for
sz the activation. In our case, we use the raw output of the fully connected
ers  classification layer, as [31] loss functions handle logits.
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o9 4.1.2. Interpretability

680 In SIMS the input features correspond to the genes used for cell type
1 prediction by the classifier. Unlike other machine learning models in where
2 computational restrictions force reduced input data representation [101, 41],
3 SIMS can be trained on the entire transcriptome for each cell.

684 TabNet, which serves as the foundation for SIMS, enables interpretability
s through the calculation of the weights of the sparse feature masks in the en-
sss coding layer. This allows for an understanding of which input features were
ee7 utilized in the prediction process at the level of an individual cell. Further-
se Mmore, by averaging the sum of the attention weights across all samples for a
o given cell type, it is possible to determine the features used per class, while
o0 averaging across all cells in a sample shows the total features used when clas-
so1  sifying the entire dataset. Similar to other deep learning models [25], in STMS
22 the weights do not represent differential gene expression but a measure of the
s03 relevance (positive or negative signal) of said gene in the distinction between
s cell types. Additionally, the sparsity introduced in the sequential attention
e0s layers via the sparsemax prior acts as a form of model regularization [30],
s0s allowing us to categorize a cell type via only a small number of genes.

sor 4.2. Code Library Details

698 The SIMS pipeline was designed with an easy to use application program-
00 ming interface (API) to support a streamlined analysis with minimal code.
70 To achieve this goal, the pipeline was constructed primarily using PyTorch
701 Lightning, a high-level library that aims to improve reproducibility, modu-
702 larity, and simplicity in PyTorch deep learning code. We utilized Weights
703 and Biases to visualize training metrics, including accuracy, F1 score, and
704 loss, to facilitate the assessment of model performance.

70 To accommodate the large data formats used by SIMS, we implemented
706 two methods for data loading: a distributed h5 backend for training on hbad
707 files and a custom parser for csv and delimited files that allows for the incre-
¢ mental loading of individual samples during training. These same methods
700 are also used for inference. In addition, cell-type inference can be performed
70 directly on an hbad file that has been loaded into memory. This allows for
m  efficient handling of datasets that may exceed the available memory capacity.
72 We strongly support the use of hbad files as they are faster and more efficient
713 than plain text files and allow for more straight forward data sharing in the
74 python-scanpy environment.
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715 All the code and instructions to use SIMS are available in the Braingeneers
76 GitHub repository: https://github.com/braingeneers/SIMS

nr 4.2.1. Web application

718 In parallel to the API we also developed a Web application in Streamlit.
719 In this case the web application allows for quick and easy inference based on
720 pretrained models. The user only needs to input the single cell RNA dataset
71 in the hbad format, select the pretrained model they want to use and perform
722 the predictions. The application is hosted in the streamlit developer cloud,
723 allowing access from anywhere without the need of institutional credentials.
724 Laboratories interested in sharing models created with their data with the
725 public can request to include their pretrained models in our repository for
76 easy hosting with a git push request.

21 4.2.2. Training details

728 For all models benchmarked, the Adam optimizer [102] was used. The
720 learning rate varied but was generally between 0.003 and 0.01, while the
720 weight decay (L2 regularization) was between 0 and 0.1. To numerically
7 encode the vectors, we used a standard one-hot encoding, where for K labels
722 'we have that the kth label is given by the standard basis vector e, of all zeros
733 except a 1 in the kth position. To define error in the model, average over the
74 categorical cross-entropy loss function, defined as

M
1

LX,Y) = -+ ; wiy; log(f (7)) (1)

735 Where ;x represents the transcriptome vector for the ith sample, y; is the

736 encoded label, w; is the weight and M is the size of the batch. For our model,
7z we defined w; as the inverse frequency of the ith label, in order to incentivize
728 the model to learn the transcriptomic structure of rarer cell types. The final
730 signal to update the model weights was calculated as the average across all
70 entries in the loss vector.

741 A learning rate optimizer was used such that [ <— 0.75] when the vali-
2 dation loss did not improve for twenty epochs. In all cases, models reached
723 convergence by the early stopping criterion on validation accuracy before the
744 maximum number of epochs (500) was reached. Gradient clipping was used
75 to avoid exploding gradient values, which was required to avoid bad batches
76 exploding the loss and stopping convergence. Although we used a train, vali-
7 dation and test split for reducing overfitting via hyperparameter tuning bias,
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s the only hyperparameters tuned were the learning rate to avoid divergence in
79 the loss and weight decay to avoid overfitting in the smaller datasets. Con-
750 vergence took around 20-100 epochs for all models. For all models, we found
751 model training to be consistent and had few cases of suboptimal convergence
2 due to poor initialization. The train, validation and test sets were stratified,
753 meaning the distribution of labels is the same in all three (up to an error of
74 one sample, when the number of samples for a given class was not divisible by
755 three), except for the ablation study, where there were not enough samples
756 to stratify across all three splits.

757 For all benchmarks, models were trained using the most granular anno-
78 tation available. When F1 score is mentioned in benchmarks it refers to the
70 Macro Fl-score.

w0 4.2.3. Datasets

761 Peripheral blood mononuclear cells (PBMC68K) dataset. Also
2 known as Zheng68K is the PBMC dataset described in [39]. The dataset was
763 generated using 10X Genomics technologies and sequenced using Illumina
7 NextSeqb00. It contains about 68,450 cells within eleven subtypes of cells.
765 The distribution of cell types is imbalanced and transciptomic similarities be-
76 tween cell types makes classification a difficult task. Due to these properties,
77 the PBMCG68K dataset is widely used for cell type annotation performance as-
s sessment. The dataset can be accessed at https://www.10xgenomics.com/
760 resources/datasets/fresh-68-k-pbm-cs-donor-a-1-standard-1-1-0
770 Human cellular landscape: Han’s dataset. The Human cellular
m landscape dataset described in [103]. The dataset was generated using Microwell-
72 seq technology. It contains 584000 cells with 102 different cell types across
73 all major human organs and different developmental timepoints from more
774+ than 50 different donors. The data can be accesed at https://cells.ucsc
775 .edu/7ds=human-cellular-landscape

776 Human Heart: Tucker’s dataset The Tucker dataset described in
77 [40] is a single nuclei RNA-sequencing dataset comprised of 287,269 cells
7s  representing 9 different cell types (20 cell subtypes) from 7 different donors.
779 The dataset was acquired from https://singlecell.broadinstitute.or
70 g/single_cell/study/SCP498/transcriptional-and-cellular-diver
71 sity-of-the-human-heart#study-summary

782 Adult mouse cortical and hippocampal dataset This dataset was
73 generated by the Allen Brain Institute and described in [43, 44, 45]. The
78« dataset was generated from male and female 8 week-old mice labeled using
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75 pan-neuronal transgenic lines. The dataset includes micro-dissected corti-
76 cal and hippocampal regions. It contains 42 cell types including excitatory
757 projection neurons, interneurons and non-neuronal cells. The dataset can be
7ss accessed at https://portal.brain-map.org/atlases-and-data/rnaseq
70 /mouse-whole-cortex-and-hippocampus-10x

790 Adult human cortical dataset. This dataset was generated from post-
71 mortum samples by the Allen Brain Institute [44, 43]. It includes single-
72 nucleus transcriptomes from 49,495 nuclei across multiple human cortical
03 areas. The large majority of nuclei are contributed from 3 donors: 1) H200-
704 1023 was a female Iranian-descent donor who was 43 years old at the time
795 of death. The cause of death was mitral valve collapse. 2) H200-1025 was a
796 male Caucasian donor who was 50 years old at the time of death. The cause
o7 of death was cardiovascular. 3) H200-1030 was a male Caucasian donor who
798 was 57 years old at the time of death. The cause of death was cardiovascu-
790 lar. For sampling, individual cortical layers were dissected from the middle
g0 temporal gyrus, anterior cingulate cortex, primary visual cortex, primary
g1 Mmotor cortex, primary somatosensory cortex and primary auditory cortex.
sz All samples were dissected from the left hemisphere. As part of the purifica-
g3 tion processes, nuclei were isolated and sorted using Fluorescently Activated
s Cell Sorting (FACS) using NeuN as a marker. For statistics, we only used
s cell types that were common between all samples. The data was obtained
sos from https://portal.brain-map.org/atlases-and-data/rnaseq/human
sor —multiple-cortical-areas-smart-seq.

808 Developing mouse cortical dataset. This dataset was described in
soo [60]. It contains microdissected cortices from mice ranging from embryonic
s day 10 to postnatal day 4. For this study we used data from mice at em-
su  bryonic day 12 (1 batch, 9,348 cells), 13 (1 batch, 8,907 cells), 14 (1 batch,
s 5249 cells) and 18 (2 batches, 7,137 cells), as well as postnatal day 1 (2
a3 batches, 13,072 cells). Of note, only postnatal day 1 samples had Ependy-
s1a - mocytes, and as such, they were removed for inter-age testing. The data was
sis downloaded from the Single Cell Portal administered by the Broad Institute.
sie https://singlecell.broadinstitute.org/single_cell/study/SCP129
sz 0/molecular-logic-of-cellular-diversification-in-the-mammalian
s1s —cerebral-cortex

819 Human cortical organoids dataset. We used 6-months old organoids
0 described in [74]. The dataset contained cells derived from 3 cell lines:
g1 GM8330 (3 organoids, 1 batch, 15,256 cells), 11A (3 organoids, 1 batch,
g2 25,618 cells) and PGP1 (6 organoids 2 batches, 46,989 cells). PGP1 has a
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23 strong batch effect which is almost entirely caused by one organoid in batch
s« 3. The dataset was generated using Chromium Single Cell 3’ Library and
25 Gel Bead Kit v.2 (10x Genomics, PN-120237) and sequenced using the II-
g6 lumina NextSeq 500 instrument. Of note, one of the cell lines had a cell
27 cluster named ”Callosal Projection Neurons” while others had ”Immature
s2s  Callosal Projection Neurons. Given the naming inconsistency, we aggre-
g0 gated both clusters as ”Callosal Projection Neurons”. We downloaded the
s30 dataset from the Single Cell Portal administered by the Broad Institute.
ss1 https://singlecell.broadinstitute.org/single_cell/study/SCP282
sz /reproducible-brain-organoids#study-summary

833 Human fetal brain development. We utilized fetal tissue repre-
s« sentative of the second trimester of human development, specifically fo-
35 cusing our analysis on data sourced exclusively from the neocortex. This
s3s  study encompassed the sampling of six distinct neocortical regions. The
ss7  dataset contained samples from gestational weeks 14, 17, 18, 19, 20, 22, and
s33 25. The number of cells contained in this dataset was around 404000 [83].
s39 https://cells.ucsc.edu/?bp=brain&ds=dev-brain-regions

sa0  4.3. Benchmarking against cell type classification models

841 We benchmarked SIMS using the Zheng68K and Tucker’s dataset, as pre-
s> viously described[25].We also added Han’s dataset to the benchmark. Briefly,
g3 we compared our model to:

844 scBERT 1.0. scBERT is a transformer architecture based on the deep
a5 learning model BERT. It has been adapted to work with single cell data and
sss it offers interpretability as the attention weights for each gene. [25]

847 scNym 0.3.2. scNym is a neural network model for predicting cell types
ss  from single cell profiling data and deriving cell type representations from
a0 these models. These models can map single cell profiles to arbitrary output
g0 classes. [28]

851 scANVTI 1.0.2 scANVI (single-cell ANnotation using Variational Infer-
g2 ence) represents a semi-supervised approach designed specifically for single-
53 cell transcriptomics data. It relies on the utilization of variational autoen-
ess coders as the foundational component of its model architecture[27]

855 SciBet 1.0. SciBet is a supervised classification tool, consisting of 4
sso  steps: preprocessing, feature selection, model training and cell type assign-
7 ment, that selects genes using E-test for multinomial model building. [41]
858 Seurat 4.0.3. We used Seurat’s reference-based mapping, with the
sso  Transfer anchor settings, where very transcriptomically simmilar cells from
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so the reference and query datasets are used to create a shared space for the
s two datasets[19]

862 SingleR 1.6.1. SingleR is a reference-based method that requires tran-
g3 scriptomic datasets of pure cell types to infer the cell of origin of each of the
sss  single cells independently. It uses the Spearman coefficient on variable genes
s and aggregates the coefficients to score the cell for each cell type[20]

ss6  4.4. Pseudotime analysis: Monocle 3.1

867 The human cortical organoid dataset was parsed into R (v. 4.2.1) using
s Seurat and its dependencies (v. 4.3.0) and converted into a CellDataSet
g0 (CDS) for further analysis using Monocle 3 Beta (v. 3.1.2.9; https://cole
so —trapnell-lab.github.io/monocle3/) [84]. Cell clusters and trajectories
s were visualized utilizing the conventional Monocle workflow, as detailed in
sz https://cole-trapnell-lab.github.io/monocle3/docs/trajectorie
873 S/.

sra 4.5, Cell stress analysis: Gruffi 1.0

875 Gruffi is a computational algorithm that identifies and removes stressed
grs  cells from brain organoid transcriptomic datasets in an unbiased manner
er [81]. It uses granular functional filtering to isolate stressed cells based on
s stress pathway activity scoring [81]. Gruffi integrates into a typical single-
g0 cell analysis workflow using Seurat [81]. In this paper we followed the default
sso implementation shown in the GitHub repository to obtain a dataframe con-
ss1 taining what cells were stressed based on Gruffi’s default analysis https:
se2 //github.com/jn-goe/gruffi.

g3 . Declarations

ssa  5.1. Author Contribution Statement

885 B.P., M.T., D.H., V.D.J., and M.A.M.-R. conceived the project. J.G.-
sss I and J.L. performed the experiments. A.O. provided support working
ss7 with the Terra system. J.G.-F. J.L., and M.A.M-R. wrote the paper with
gss contributions from all authors.

26


https://cole-trapnell-lab.github.io/monocle3/
https://cole-trapnell-lab.github.io/monocle3/
https://cole-trapnell-lab.github.io/monocle3/
https://cole-trapnell-lab.github.io/monocle3/docs/trajectories/
https://cole-trapnell-lab.github.io/monocle3/docs/trajectories/
https://cole-trapnell-lab.github.io/monocle3/docs/trajectories/
https://github.com/jn-goe/gruffi
https://github.com/jn-goe/gruffi
https://github.com/jn-goe/gruffi
https://doi.org/10.1101/2023.02.28.529615
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.28.529615; this version posted November 17, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

0 0.2. Data Availability Statement

890 All data used in this paper comes from previously published datasets.

801 Peripheral blood mononuclear cells: https://www.10xgenomics.com/re
g2 sources/datasets/fresh-68-k-pbm-cs-donor-a-1-standard-1-1-0

893 Human cellular landscape: https://cells.ucsc.edu/?ds=human-cel
s« lular—-landscape

895 Tucker’s heart dataset: https://singlecell.broadinstitute.org/si

s ngle_cell/study/SCP498/transcriptional-and-cellular-diversity
g7 —of-the-human-heart

898 Human adult cerebral cortex: https://portal.brain-map.org/atlas
s0 es—and-data/rnaseq/human-multiple-cortical-areas-smart-seq
900 Mouse adult cerebral cortex and hippocampus: https://portal.brain

o0 -map.org/atlases-and-data/rnaseq/mouse-whole-cortex-and-hippo
o2 campus—10x

903 Developing mouse cerebral cortex (E12-P1): https://singlecell.bro
o« adinstitute.org/single_cell/study/SCP1290/molecular-logic-of-c
o5 ellular-diversification-in-the-mammalian-cerebral-cortex

906 Human cortical organoids: https://singlecell.broadinstitute.or
o7 g/single_cell/study/SCP282/reproducible-brain-organoids#study
98 —sSummary

909 Human fetal brain development: https://cells.ucsc.edu/?bp=brain
o0 &ds=dev-brain-regions
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Figure 1: Benchmarking SIMS against other cell Cclassifiers.
A)Performance of cell type annotation methods measured by accuracy in
the PBMC68K dataset using fivefold cross-validation.
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Figure 1: Box plots show the median (centre lines), interquartile range
(hinges) and 1.5-times the interquartile range (whiskers). B) Performance
of cell type annotation methods measured by accuracy in the Human heart
dataset. C) Performance of cell type annotation methods measured by ac-
curacy in the Human cell landscape dataset. D) UMAP representation of
the PBMCG68K cells, colored by ground truth cell type and representation of
the PBMCG68K cells, colored by SIMS predicted cell type. E) Performance
of cell type annotation methods measured by pipeline running time in min-
utes.F') Heatmap for PBMC68K comparing ground truth annotations and
predictions by SIMS G) Heatmap for PBMC68K comparing ground truth
annotations and predictions by SCANVI
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Figure 2: Application of SIMS to single Cell RN A sequencing: Adult
Mouse Cerebral Cortex and Hippocampus A) Ground truth UMAP
representation for the dataset. B) Ground truth UMAP representation for
the Subset of Cells used for testing the algorithm in the train-test split. C)
Predictions made by SIMS in that subset of data. D) Confusion Matrix for
the test-split. L= Layer; I'T = Intratelencephalic; PN = Projection Neuron.
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Figure 2: E) Benchmarking SIMS against other cell classifiers. F) Perfor-
mance of cell type annotation methods measured by accuracy in the Allen
mouse dataset using fivefold cross-validation. Box plots show the median
(centre lines), interquartile range (hinges) and 1.5-times the interquartile
range (whiskers)
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Figure 3: SIMS explainability: A) UMAP representation of the Allen
Mouse dataset coloured by macro cell type . B) UMAP representation of the
Allen Mouse dataset coloured by expression of the selected gene by SIMS for
the GABAergic group. C) UMAP representation of the Allen Mouse dataset
coloured by cell type. Same naming convention used for figure 2A.
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Figure 3: D) UMAP representation of the Allen Mouse dataset coloured by
expression of the selected gene by SIMS for the PVALB+ interneuron group.
E) Mean explain value for the top 50 genes across 300 runs. F) Dispersion
index value for the top 50 genes across 300 runs.
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Figure 4: Application of SIMS to trans-sample predictions of single
Nuclei RNA sequencing: Adult human cerebral cortex A) Ground
truth for the test-split data. B) Predictions for the test-split data.
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Figure 4: C) Ground truth for the H200.1023 sample. D) Prediction for
the H200.1023 sample after training on the H200.1030 sample. E) Confu-
sion matrix for the test Split. F) Confusion matrix for the test Split. G)
Accuracy boxplot for the Known and Unknown cell classification with a con-
fidence threshold of 0.6 H) Accuracy boxplot for the Known and Unknown
cell classification with a confidence threshold of 0.7. L. = Cortical Layer; PN
= Projection Neuron. Additional examples are on Supplemental Figure 12.
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Figure 5: Application of SIMS to developing tissue: Mouse cerebral
cortex A) Confusion Matrix for E18P1 split, where we trained on Sample
1 E18 and Sample 1 P1 and predicted on Sample 2 E18 and Sample 2 P1
B) Barplot showing the number of Layer 4 Cells that get predicted as the

different cell types.
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Figure 5: C) Diagram of the mouse cerebral cortex after neurogenesis. D)
Force Atlas representation of Layer 4 Neurons. E) Violin plot showing gene
expression in the misclassified Layer 4 group compared to the groups that is
classified as.
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Figure 6: Application of SIMS to in vitro generated models: hu-
man cortical organoids A) UMAP representation of the Ground truth
cell type for all cell lines. B) UMAP representation of the batch and cell line
for all cell lines C) Confusion Matrix for GM3880-derived organoids, model
trained on 11A-derived organoids. D) Confusion Matrix for PGP1-derived
organoids, model trained on 11A-derived organoids.E) UMAP representation
for stressed cells as annotated by Gruffi in all organoids. F)Violin plots for
neuronal differentiation and Cell stress genes showing differences among cell
lines
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Figure 7: Application of SIMS to in vitro generated models: human
cortical organoids A) UMAP representation of the Ground truth cell type
for 11A organoids. B) UMAP representation of the label transfer from Fetal
tissue for 11A organoids. C) UMAP representation for stressed cells as an-
notated by Gruffi in the 11A organoids.
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