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Abstract12

Background13

Correlation metrics are widely utilized in genomics analysis and often implemented with little regard to14

assumptions of normality, homoscedasticity, and independence of values. This is especially true when com-15

paring values between replicated sequencing experiments that probe chromatin accessibility, such as assays16

for transposase-accessible chromatin via sequencing (ATAC-seq). Such data can possess several regions17

across the human genome with little to no sequencing depth and are thus non-normal with a large portion18

of zero values. Despite distributed use in the epigenomics field, few studies have evaluated and benchmarked19

how correlation and association statistics behave across ATAC-seq experiments with known differences or20

the effects of removing specific outliers from the data. Here, we developed a computational simulation of21

ATAC-seq data to elucidate the behavior of correlation statistics and to compare their accuracy under set22

conditions of reproducibility.23

Results24

Using these simulations, we monitored the behavior of several correlation statistics, including the Pearson’s25

R and Spearman’s ρ coefficients as well as Kendall’s τ and Top-Down correlation. We also test the behavior26

of association measures, including the coefficient of determination R2, Kendall’s W, and normalized mutual27

information. Our experiments reveal an insensitivity of most statistics, including Spearman’s ρ, Kendall’s τ ,28

and Kendall’s W, to increasing differences between simulated ATAC-seq replicates. The removal of co-zeros29

(regions lacking mapped sequenced reads) between simulated experiments greatly improves the estimates of30

correlation and association. After removing co-zeros, the R2 coefficient and normalized mutual information31

display the best performance, having a closer one-to-one relationship with the known portion of shared,32

enhanced loci between simulated replicates. When comparing values between experimental ATAC-seq data33

using a random forest model, mutual information best predicts ATAC-seq replicate relationships.34

Conclusions35

Collectively, this study demonstrates how measures of correlation and association can behave in epigenomics36

experiments. We provide improved strategies for quantifying relationships in these increasingly prevalent37

and important chromatin accessibility assays.38
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ATAC-seq; Correlation and Association; Normalized Mutual Information; Random Forest40

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 13, 2023. ; https://doi.org/10.1101/2023.04.26.538354doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.26.538354
http://creativecommons.org/licenses/by-nc-nd/4.0/


Background41

Epigenetic modifications play an important role in regulating multiple cellular processes ranging from DNA42

replication to gene expression. These covalent additions to DNA and histone proteins do not alter the43

underlying DNA sequence, but rather, help modulate chromatin structure resulting in distinctive phenotypes.44

Genome-wide epigenetic modifications can be determined using several techniques: the gold-standard is45

chromatin immunoprecipitation followed by sequencing (ChIP-seq) [1, 2, 3]. Chromatin accessibility, or the46

analysis of the regions that are available for DNA:protein interactions potentially resulting in gene expression,47

is measured using an enzyme-driven assay called transposase-accessible chromatin via sequencing (ATAC-48

seq) [4]. These two methods have distinct advantages in probing the state of the epigenome, and both49

approaches generate paired-end sequencing libraries. These data are mapped to the genome to determine50

the loci that are occupied with a particular epigenetic modification or the loci that are localized within an51

open, accessible region. Epigenetic modifications and chromatin accessibility are visualized as peaks resulting52

from the aggregation of sequencing reads [5]. As such, many software platforms used for analysis of ChIP-seq53

and ATAC-seq data sets use ‘peak calling’ to determine locations of epigenetic modifications or accessible54

chromatin regions [6, 7, 8, 9].55

To ensure significance and consistency of identified peaks, best practices have been defined for quantifying56

reproducibility across experimental replicates [8, 10]. These include several quality control metrics and work-57

flows that standardize analysis and enable comparison among different experiments [10]. These standards58

apply to the total number of sequenced reads, total number of identified significant peaks, and concentration59

of sequenced reads within said peaks. For example, pseudo-replication was developed for ChIP-seq analysis60

to assess the amount of variation between biological replicates [8]. In this protocol, synthetic replicates are61

created from true, experimentally derived data: to do this, aligned reads are merged from two true replicates62

and randomly reassigned into new alignments to create two synthetic replicates. This permutation practice63

homogenizes (and splits) signals present within the true, observed replicates, generating the null hypothesis of64

near perfect correlation between pseudo-replicates. Peak calling is then also conducted on pseudo-replicates,65

and the read counts of peaks conserved between the two pseudo-replicates are compared to the observed66

peaks in the true replicates. Landt et al. (2012) proposed that experiments, whose number of observed peak67

counts (among true replicates) divided by the total number of pseudo peaks (between pseudo-replicates),68

which nears a value of one, are broadly reproducible [8]. The ENCODE project has since extended this69

practice to ATAC-seq experiments [11, 12].70

To better understand experimental reproducibility, many studies also conduct correlation analysis on71

binned signals between ATAC-seq replicates [13, 14, 15]. In such analyses, for each replicate, the genome is72
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binned into smaller, contiguous regions, for example using windows of ten kilobase pairs [13]. The number73

of mapped sequenced fragments (defined by a pair of mapped reads) that overlap these bins are counted74

and standardized to fragments per kilobase pair per million reads (Fpkm) [16]. These Fpkm counts are75

then compared between replicates using correlation and association statistics such as Pearson’s R or the76

coefficient of determination (R2), respectively. Values from these statistics trending toward a value of one77

generally indicate a reproducible experiment [17].78

Correlation analysis is a useful tool, not singularly purposed for the analysis of reproducibility in ATAC-79

seq experiments. Such analysis can be found within studies of chromosome accessibility in cancer, ageing80

of human stem cells, cellular diversity, or new ATAC-seq protocols [18, 19, 20, 21, 22, 23]. Furthermore,81

correlation analyses are ubiquitous, found in the fields of genetics, RNA-seq experiments, and in studies of82

3D chromatin architecture [24, 25, 26, 27, 28, 29, 30, 16]. Given their popularity and use in genomic and83

epigenetic studies, software suites—for example deeptools and HiCExplorer—have developed methods and84

tools for calculating correlation metrics between replicates and experiments [13, 31, 32, 33, 34].85

The natural properties of data from genomic and epigenomic experiments make the application of com-86

monly used correlation and association statistics, for example Pearson’s R and R2, potentially problematic as87

none of these data (ATAC-, ChIP-, or Hi-C seq) are normally distributed [35]. Both ATAC- and ChIP-seq ex-88

periments are defined by numerous, loci-specific peaks of signal generated by the accumulation of sequencing89

reads [3, 4]. Mapped sequenced fragments may overlap contiguous genomic bins used in analysis, producing90

non-independent data points [24]. Conversely, regions lacking assayed modifications or with inaccessible91

chromatin will have little to zero signal for ChIP-seq or ATAC-seq data, respectively. Furthermore, during92

correlation analysis, several genomic bins may overlap an inaccessible chromatin region that is reproducible,93

appearing in both the ATAC-seq replicates (or experiments) being compared. As such, each of these bins will94

acquire zero Fpkm and within the bi-variate distribution formed between the replicates. These data points,95

which appear as zero Fpkm in both replicates, are referred to here as co-zeros. Some analysis programs,96

like deeptools, HiCExplorer, and HiCcompare, offer options to remove co-zeros prior to analysis [31, 34, 29].97

However, there is no published guidance on this practice, and while the co-zero values are a feature common98

across genomic and epigenomic data sets [36], the effect of removing such features on correlation statistics99

has not been explored. Despite the known features of genomic and epigenomic data, and the underlying100

assumptions of statistical tests, there have been few studies that explore their expected behavior, accuracy,101

and use of alternative statistics determining reproducibility of such data [26, 27].102

Here, we present a computational approach to generate synthetic ATAC-seq replicates to explore the103

behavior of various correlation and association metrics for epigenomics datasets. These synthetic ATAC-seq104

replicates are generated from eight true data sets to capture features uniquely present within ATAC-seq105
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experiments. We have developed a random subsampling strategy to generate synthetic replicates with106

varying portions of shared peaks, as a proxy for reproducibility. Across our simulations, we apply the107

Pearson’s R [37, 38, 39] and Spearman’s ρ [40] and monitor their behavior, including the effect of removing108

co-zeros. Additionally, we demonstrate the behavior of other statistics, including non-parametrics such as109

Kendall’s τ [41, 42, 43, 44] and an information theoretic approach, normalized mutual information [45, 46], to110

determine their utility in assessing epigenomics data. Finally, we build a random forest model [47] using the111

normalized mutual information and R2 coefficient between experiments to predict the biological relationships112

between replicates. Overall, our results demonstrate an improvement in the expected behavior of all statistics113

after removing co-zeros and normalized mutual information emerges as a promising statistic for measuring114

association between ATAC-seq samples.115
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Results116

ATAC-seq data characteristics and subsamping strategy for synthetic replicate117

generation118

To study the behavior of correlation measurements between ATAC-seq replicates, we analyzed data from119

three experiments using the A549, human lung cell line and implemented a subsampling paradigm to generate120

synthetic replicates. Across these experiments, the total number of reads mapped to the human reference121

genome varied from 15 million to nearly 43 million (Table 1). The number of genome-wide peaks found in122

the ATAC-seq samples varied across experiments and between replicates, ranging from approximately 80 to123

130 thousand (Table 1). The fraction of sequenced read-pairs mapped in peaks (i.e. the FrIP score as defined124

by the ENCODE project [8, 11]), was greater than 0.34 for all of the A549 ATAC-seq samples (Table 1).125

These samples displayed high spatial correlation of peaks across replicates (Figure 1A). Counting all whole126

fragments per kilobase per million (WFpkm), every ten kilobases, we observed a high statistical correlation127

between replicates, with average Pearson’s R of 0.86, 0.87, and 0.94 (p-values < 0.05) between the technical128

replicates of the three biological replicate experiments (Figure 1B).129

For simulations, synthetic replicates were generated using the paired-end read alignment profiles from130

the eight ATAC-seq samples we generated. For each simulation, two synthetic replicates were initiated by131

duplicating a given true ATAC-seq experiment (Figure 2A). Within the true ATAC-seq data set, reproducible,132

significant peaks were identified (see Methods). From these, a random portion of peaks was chosen to vary133

between the two synthetic replicates. This was accomplished by subsampling 85% of the aligned sequenced134

fragments within each of the randomly chosen peaks between the two synthetic replicates (Figure 2B and135

2C). This process was repeated, randomly varying the common peaks from 1 to 95% of peaks between the136

two synthetic replicates. Finally, across all simulations, for each pair of synthetic replicates, the WFpkm137

values were calculated in ten kilobase windows and used in statistical comparisons (Figure 3A).138

Top-down correlation displays best behavior in correlation analysis across simu-139

lations140

Across these down sampling simulations, correlation and association statistics were calculated between each141

pair of synthetic replicates. The Wfpkm counts were used between synthetic replicates in statistical analysis142

(Figure 3A). The values of correlation and association statistics were calculated across simulations, as a143

function of the number of shared peaks between synthetic replicates (Figure 3B) and for each statistic, and144

the area under the curve (AUC) was used in comparisons (Supplementary Figure S1). Of the correlation145
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statistics, the Top-Down correlation statistic had the smallest average AUC of 0.6881 (95% CI: 0.6860 –146

0.6906) and was significantly smaller than the average AUC of the Pearson’s R, at 0.8284 (95% CI: 0.8237147

– 0.8335, p-value = 0, bootstrapped difference of mean AUC). Both the two non-parametric statistics,148

Spearman’s ρ and Kendall τ , had significantly larger average AUCs compared against the Pearson’s R149

(p-values = 0, bootstrapped difference of mean AUC). However, they demonstrated nearly identical AUC150

profiles compared to each other, with average AUC of 0.9140 (95% CI: 0.9118 – 0.9162) and 0.9096 (95%151

CI: 0.9074 – 0.9120) respectively (p-value = 0.037, bootstrapped difference of mean AUC).152

Across the metrics of association, Kendall’s W, normalized mutual information, and the R2 coefficient,153

between replicates, the R2 coefficient exhibited the greatest sensitivity to the change in portion of shared154

peaks between synthetic replicates (Figure 3B). Across simulations, the average AUC of the R2 coefficient155

was 0.7026 (95% CI: 0.6951 – 0.7102). This average AUC was significantly smaller than the average AUC156

of the Kendall’s W and normalized mutual information, with values of 0.957 (95% CI: 0.9559 – 0.9581) and157

0.8197 (95% CI: 0.8153 – 0.8241), respectively (p-value = 0, bootstrapped difference of mean AUC).158

Removal of co-zeros improves estimates of correlation and associations159

Using this simulation paradigm, we evaluated the efficacy of removing co-zeros from the analysis to determine160

the impact on correlation and association statistics. Co-zero values were defined as value counts in ATAC-seq161

experiments that appeared to have zero aligned fragments in a genomic bin of ten kilobases between two162

replicates (Figure 3B, Supplementary Figure S2). On average, these values can make up nearly 5% of a163

given bi-variate distribution formed between real ATAC-seq replicates (Supplementary Figure S3). Across164

all the correlation and association statistics examined here—except for Top-Down correlation—removing the165

co-zero values significantly reduced the average AUC (Table 2, Figure 3B, Supplementary Figure S1). This166

finding was unexpected, as co-zeros are a modest portion of the bi-variate distribution formed between two167

replicates and reproducible data points within the replicates.168

After removing co-zeros, all the correlation statistics, Top-Down correlation, Pearson’s R, Spearman’s169

ρ, and Kendall’s τ , displayed nearly identical sensitivity to the change in shared peaks between replicates170

across simulations (Figure 3B). However, the Pearson’s R had the largest average AUC of 0.6965 (95% CI:171

0.6946 – 0.6984) followed by the Top-Down statistic (AUC of 0.6872, 95% CI: 0.685 – 0.6895, p-value = 0,172

bootstrapped difference of mean AUC). The Spearman’s ρ (mean AUC: 0.6686, 95% CI: 0.6665 – 0.6705) and173

Kendall’s τ (mean AUC: 0.6673, 95% CI: 0.6654 – 0.6691) statistics had the smallest and identical average174

AUC after removing co-zeros (p-value = 0.208, bootstrapped difference of mean AUC). Furthermore, the175

AUC of the Top-Down correlation statistic was unaltered by the exclusion of co-zero values between synthetic176
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replicates (Figure 3B, Supplementary Figure S1, Table 2, p-value = 0.635, bootstrapped difference of mean177

AUC). This observation was not surprising given how Top-Down correlation places emphasis on larger values,178

down-weighting smaller values, such as co-zeros [48].179

Normalized mutual information best estimates difference between replicates180

Removing co-zero values had a similar effect on association metrics, attenuating and improving the average181

AUC across the portion of shared peaks between synthetic replicates (Figure 3B, Supplementary Figure S1).182

Apart from Kendall’s W, the R2 coefficient and normalized mutual information, on average, displayed a nearly183

one-to-one relationship with the portion of shared peaks between replicates (Figure 3B). The average AUC of184

normalized mutual information was 0.5055 (95% CI: 0.5045 – 0.5065) and was smaller than the average AUC185

of the R2 coefficient, with a value of 0.5346 (95% CI: 0.5324 – 0.5368, p-value = 0, bootstrapped difference186

of mean AUC). This difference in average AUC indicates that normalized mutual information better follows187

the designed proportion of shared peaks between synthetic replicates across our simulations, compared to188

the R2 coefficient.189

As introduced earlier, one parameter in this simulation is the removal of a percentage of aligned read-pairs190

from within randomly selected peaks (Figure 2B). Initially set at 85%, this parameter was altered to simulate191

ATAC-seq replicates that are nearly reproducible (at 50%) at every selected peak or broadly unreproducible192

(at 95%) across all selected peaks. Comparing the results between the two simulation sets with 85 and 95%193

of reads removed, we observed no significant difference between the two simulations (see Supplementary194

Data). This is somewhat expected when considering the small difference in magnitude between removing195

85 and 95% of reads from within peaks. In simulations with only 50% of read pairs removed from selected196

peaks, after removing co-zeros, the two statistics that showed the largest response in our simulation were197

the R2 coefficient and normalized mutual information (see Additional File 1 and Additional File 2).198

Validation of mutual information analysis on true ATAC-seq data199

After its successful implementation on simulated replicates, we next examined how normalized mutual in-200

formation behaves when used on replicates from true ATAC-seq experiments. For this analysis, additional201

ATAC-seq experiments were downloaded from the ENCODE project public repository [11]. These included202

additional replicates of the A549 cell line, as well as ATAC-seq experiments in the HepG2, RWPE2, GM12878,203

IMR-90, K562, and WTC11 cell lines (Table 1). With this expanded dataset, the Pearson’s R, the Spear-204

man’s ρ, R2 coefficient, and normalized mutual information were calculated between all pairs of replicates,205

with co-zeros removed from analysis (Figure 4). Removing co-zeros reduced the estimates of correlation and206
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association across samples by approximately 0.18, 0.32, 0.23, and 0.30 on average for the Pearson’s R, the207

Spearman’s ρ, R2 coefficient, and normalized mutual information, respectively (Supplementary Figure S4A).208

These differences were significantly greater than zero (p-value < 10−10, Wilcoxon signed-rank test, Sup-209

plementary Figure S4B). Between comparisons of true experiments, we observed a co-linear relationship in210

the values of the normalized mutual information scores and R2 coefficients (Figure 5A, Pearson’s R = 0.96,211

p-value < 1−10). Of the four statistics, the R2 coefficient displayed the largest variation (σ2 = 0.0329)212

between true replicates (Table 2).213

Predicting replicate relationships using normalized mutual information214

Given the comparable behavior between normalized mutual information and the R2 coefficient on true ATAC-215

seq replicates, we assessed their usefulness in predicting the relationships between experiments. To do this,216

we utilized a random forest model, using the values of the R2 coefficient and normalized mutual information217

between true ATAC-seq experiments as features. Comparisons between any two ATAC-seq experiments218

(either those from the ENCODE project or generated here) were classified into one of three discrete classes:219

(1) between independent ATAC-seq experiments in different cell lines, (2) independent experiments using220

the same cell line, and (3) between true replicates. Plotting the normalized mutual information against the221

R2 coefficient calculated between ATAC-seq experiments with the above classifications revealed clustering222

of experimental relationships between replicates (Figure 5A).223

To build our random forest model, we utilized ten-fold cross validation, stratifying on the replicate class.224

An example confusion matrix from one of these folds demonstrates the model had difficulty distinguishing225

between independent experiments using the same cell line and true, experimental replicates (Figure 5B).226

This difficulty also manifested as lower f1-scores and recall for this class (Supplementary Figure S5). The227

accuracy across these folds ranged from 88 to 98% (Figure 5C). Across the folds, the feature importance228

score of the R2 coefficient was inverted with that of normalized mutual information (Figure 5C). Overall, we229

observed a greater feature importance score for normalized mutual information, with a significant average230

pair-wise difference between the R2 coefficient and normalized mutual information of 6.78% (p-value < 0.05,231

Wilcoxon signed-rank test).232
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Discussion233

To improve the assessment of reproducibility in epigenomic data sets, we sought to investigate the use of234

several correlation and association statistics on binned genomic signals. Our findings suggest that best235

practices should include analyzing association between compared replicates (or experiments) via normalized236

mutual information with binned, Fpkm counts rounded to the nearest whole integer, after the removal of237

co-zero values as input. In choosing a correlation statistic, after removing co-zero values, our results indicate238

little difference in the outputs from the Pearson’s R, Spearman’s ρ, Kendall’s τ , or Top-Down correlation239

statistics. Notably, from simulations, we observed that the Top-Down correlation statistic was unaffected240

by the removal of co-zeros values. As such, this statistic should serve as an alternative for investigators if241

binned co-zeros values between replicates are retained.242

As part of this study, we generated highly correlated, new ATAC-seq experimental replicates of the A549243

cell line. Our data highly correlates with previously published ATAC-seq data of the A549 cell line generated244

by the ENCODE project. Using these data, we generated a novel simulation that utilizes down sampling245

to generate replicates with known varying signals. While similar simulation studies have been conducted on246

Hi-C sequencing data [30], to our knowledge, no prior study has examined the behavior of statistical metrics247

on ATAC-seq data. That said, there are several statistics and methodologies that may be used to analyze248

this data type, such as Poisson regression [49]. Improving on this simulation design could help generate a249

framework that allows researchers to develop new statistical tools for hypothesis testing.250

In our simulations, we observed that most statistics overestimate the correlation of signal between repli-251

cates. One specific strategy we investigated to reduce this inflation was the removal of co-zeros, which is an252

option present in several bioinformatic software suites [31, 34, 29]. Our analysis demonstrated that removal253

of these values can provide a more accurate estimate of correlation between replicates as measured by the254

known number of peaks between replicates. Interestingly, we never observed a correlation value that perfectly255

trends with the designed number of peaks between synthetic replicates. We also did not observer negative256

correlation values between the replicate Fpkm counts. The first of these observations can be explained by257

background autocorrelation still present within our synthetic replicates. The second of these observations258

may point to a limitation in the design of our simulation, as negative correlation values have been observed259

in true ATAC-seq profiles [31, 20]260

In epigenomics and chromatin accessibility data sets, biological interpretation of the data is dependent261

upon visualization of “peaks” where accumulation of sequenced reads denotes the presence of a modification262

or an accessible region. Regions with zero (or nearly zero) aligned sequenced reads are deemed unmodified263

or inaccessible and largely ignored when interpreting data. Correlation statistics should provide biologists264
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with the confidence that replicates are truly comparable. As stated above, the inclusion of co-zeros seems to265

inflate values of most correlation and association statistics. Thus, removal of co-zeros formed by the genomic266

bins that overlap and account for inaccessible regions may be warranted.267

Using our simulation, we also examined the behavior of three association statistics, which we distinguish268

from the set of correlation statistics as those metrics ranging in value from zero to one. These association269

statistics were the R2 coefficient, normalized mutual information statistic, and Kendall’s W. Prior to the270

removal of co-zeros, the only association statistic that displayed any sensitivity to the change in shared peaks271

between replicates was the R2 coefficient. Co-zeros inflate the value of this statistic by reducing the total272

summed error between data points during calculation. Similarly, co-zeros increase the information gained273

between replicates when calculating the normalized mutual information score. In other words, knowing274

a replicate has a value of zero at a given genomic bin provides information that there is a zero at the275

corresponding bin within the other replicate. After removing co-zeros, we saw a large improvement in the276

sensitivity of both these statistics.277

Curiously, Kendall’s W displayed the least sensitivity to the designed peak counts between synthetic278

replicates. This statistic was of interest given Kendall’s W is capable of simultaneously examining the ranks279

of more than two input samples [50, 41]. This would have provided researchers with a statistical tool capable280

of examining correlation among a full set (triplicate) of replicates within a single test, rather than multiple281

pair-wise comparisons. Removing co-zeros did little to improve the sensitivity of this statistic. The other282

statistic from Kendall, Kendall’s τ , displayed similar performance to the other non-parametric statistic,283

Spearman’s ρ. This finding is contrary to other studies of Kendall’s τ conducted in the fields of signal284

processing and psychology [43, 44]. For analysis of genomic data, the Spearman’s ρ is standard in deeptools’285

correlation functions [13]286

Of the statistics examined here, the R2 coefficient and normalized mutual information score were the287

most sensitive to the change in shared peaks between replicates (when co-zeros were removed). Comparison288

of these two statistics revealed that normalized mutual information was the better-behaved statistic. This289

behavior manifested as smaller AUC within simulations, less variation in values across simulations, and290

smoother values between unrelated synthetic replicates. Similarly, the computational evidence provided by291

our random forest model suggests that normalized mutual information was better at estimating experimental292

relationships between true ATAC-seq replicates. Taken together, these results indicate that of the two met-293

rics, normalized mutual information may be the stronger association metric for ATAC-seq data. Information294

theoretic approaches, such as normalized mutual information, have been utilized in several other biological295

fields, ranging from cancer genomics to fungal genetics [51, 52, 53, 54, 55, 56, 57]. Regarding ATAC-seq296

data, a handful of other studies have specifically used mutual information in data integration, analysis, and297

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 13, 2023. ; https://doi.org/10.1101/2023.04.26.538354doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.26.538354
http://creativecommons.org/licenses/by-nc-nd/4.0/


deep-learning of single-cell ATAC-seq profiles [58, 59]. For those investigator interested in using information298

theoretic approaches, several of these functions are made easily available within the python, scikit learn299

library [46].300

Sparsity and zero mapped sequenced reads are not unique properties of ATAC-seq data. These extend301

to genomic, Hi-C, ChIP-seq, and RNA-seq data sets. Imputation along with modified zero-inflated models302

have been used with success for studying RNA sequencing data sets and detecting regions with differential303

expression [60]. Simulations and models of sampling zero-genomic count data have been developed to under-304

stand the effects of these values, particularly in the context of differential analysis [36]. Previous simulation305

studies of ATAC-seq have been focused on generating ATAC-seq data, for pipeline development, or single-cell306

ATAC-seq samples, to examined different approaches in their analysis [61, 62]. To our knowledge, this is307

the first example of using a simulation approach for studying reproducibility and association of ATAC-seq308

samples. Adapting strategies from these previous studies will help improve our simulation and expand it to309

other genomic and epigenomic sequencing data. The current results of our study strongly suggest that nor-310

malized mutual information is an appropriate metric for measuring reproducibility in chromatin accessibility311

assays.312
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Conclusions313

For this study, we produced eight ATAC-seq experiments using the A549 Cancer cell line. Across replicates,314

these ATAC-seq samples are well correlated and reproducible. For investigations of chromatin accessibility315

(particularly in the A549 cell line), these experiments are an additional resource for developing analysis316

pipelines, peak detection algorithms, and machine learning approaches.317

Leveraging the A549 ATAC-seq experiments, we designed a computational simulation to generate simu-318

lated replicates. Specifically, synthetic replicates were coded that share a known, fixed portion of significantly319

enriched loci. Using these replicates, correlation metrics—the Pearson’s R, Spearman’s ρ, Top-Down, and320

Kendall’s τ—and association statistics (ranging from zero to one—the R2 coefficient, Kendall’s W, and nor-321

malized mutual information—were tested for accuracy. Overall, the reported value of these statistics was322

inflated and much larger than the fixed portion of shared, significant loci between replicates.323

Removing specific outliers from ATAC-seq data, specifically the removal of co-zeros, improved estimates324

of correlation and association. We estimate that co-zero values, when comparing WFpkm counts between two325

real ATAC-seq experiments, occupy nearly five percent of a bi-variate distribution. While only a small portion326

of the total data, filtering these values from analysis greatly improves the measurements of most correlation327

and association statistics between samples, in simulation. Applied to real ATAC-seq data, removing co-zero328

values from comparison significantly reduced the reported correlation and association statistic, matching329

results from simulation.330

One of the association statistics examined here is normalized mutual information, an information theoretic331

approach that is less well known across the (epi)genomics field. After removing co-zero values, normalized332

mutual information displayed the lowest inflation relative to the similarity between simulated replicates.333

The R2 coefficient also performed well in simulations (after removal of co-zeros), displaying good sensitiv-334

ity to differences between simulated replicates. Of these two association metrics, a random forest model335

selected normalized mutual information as the stronger feature when estimating experimental relationships336

between real ATAC-seq experiments. From these results we conclude that normalized mutual information is337

a powerful, non-parametric approach for estimating association between ATAC-seq experiments.338

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 13, 2023. ; https://doi.org/10.1101/2023.04.26.538354doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.26.538354
http://creativecommons.org/licenses/by-nc-nd/4.0/


Methods339

Construction of A549 ATAC-seq libraries340

ATAC-seq experimental libraries were generated using A549 human lung carcinoma epithelial cells (ATCC,341

VA, catalog #CCL-185) [63, 64, 65]. Three biological replicate libraries were prepared from freshly harvested342

cells using an ATAC-seq kit (Active Motif, 53150) following the manufacturer’s protocol. The remaining343

five libraries were prepared using cryopreserved cells following methods outlined in Milani et al. (2016) with344

modifications [18]. Briefly, A549 cells were cultured in T75 flasks and harvested by trypsinization using345

0.25% (w/v) Trypsin-EDTA (0.5%) solution (Gibco, 15400054). Harvested cells were centrifuged and pellets346

resuspended in freezing media containing DMEM (Gibco, 11885-084), 10% FBS (Corning, 35-015-CV), and347

10% DMSO (ATCC, 4-X). Pellets were frozen using an isopropyl alcohol chamber (Thermo Fisher Scientific,348

5100-0001) at –80◦C. After 24 hours, frozen cells were transferred to liquid nitrogen for long term storage.349

To perform experiments, cryopreserved cells were transferred to –80◦C for several days, and the tube was350

immersed in 37°C water bath for approximately two minutes on the day libraries were prepared. Thawed cells351

were resuspended in 1X PBS with protease inhibitor cocktail (Thermo Fisher Scientific, 78430). Cell counts352

and viability were assessed and aliquots containing 80,000 cells per sample were processed into ATAC-seq353

libraries.354

Sequencing, alignment and filtering355

ATAC-seq libraries were sequenced at the sequencing facility at Los Alamos National Laboratory on an356

Illumina NextSeq2000 sequencer in paired end mode (PE151) using P3 chemistry. With Fastp, raw reads357

were trimmed and filtered to remove Nextra adaptors and reads with repetitive sequences [66]. Additionally358

reads were also filtered to remove bases with low quality scores (q < 15). These processed reads were aligned359

to the new, telomere-to-telomere human reference genome, version 2 [67] via bwa [68]. After alignment,360

duplicate sequenced pairs were marked via samblaster and removed from analysis [69]. Read pairs mapping361

to the mitochondria were also removed (see Supplementary Table S1).362

Other data used363

Raw ATAC-seq data, in the form of paired fastq.gz files, was downloaded from the ENCODE project for364

the A549, HepG2, RWPE2, GM12878, IMR-90, K562, and WTC11 cell lines [70, 11]. The ENCODE file365

experiment and replicate accession numbers are included in Table 1. For alignment, these data were passed366

through the same pipeline described above for ATAC-seq samples generated here, and aligned to the human,367
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telomere-to-telomere, reference genome [67].368

Peak calling, peak filtering and reproducibility369

After filtering, sample alignments were analyzed to identify loci displaying significant enrichment of paired-370

end reads. This peak calling was conducted using MACS2 [6, 71]. Specifically, after removing duplicates371

and mitochondrial mapped reads, samples were further filtered using samtools with the following flags:372

-F 4 -F 256 -F 512 -F 1024 -F 2048 -q 30 and then passed to MACS2 in BAMPE mode [72, 73].373

Between true, biological replicates, reproducible peaks were identified via irreproducible discovery rate374

thresholding [74]. Using ChIP-R, replicate narrow peak files were filtered to retain only those peaks that375

were consistent across all replicates; in ChIP-R, where command line parameter, m = number of biological376

replicates [75]. In addition to this setting the ’-fragment’ option was also invoked. These sets of final peak377

counts were retained for further analysis.378

Genomic down-sampling and simulation design379

For each of the eight ATAC-seq experiments of A549 cells generated in this study, synthetic replicates were380

generated by duplicating a given sample into two copies and then randomly, varying the total number of381

shared peaks between them. Specifically, for a given ATAC-seq experiment, a set portion of peaks was382

chosen at random, such that within one of the synthetic replicates, a given selected peak was depleted,383

randomly removing a portion of the alignments within the peak bounds (as defined by MACS2). These384

sets of peaks were randomly selected from the set of reproducible peaks for that sample and its associated385

biological replicates (see above). Three sets of simulations were conducted, removing 50, 85 and 95% of reads386

within selected peaks. This procedure results in two synthetic ATAC-seq replicates, generated from a single,387

true parent ATAC-seq data set. These synthetic ‘sister’ ATAC-seq data sets have identical genome-wide388

alignments except within a sub-set of loci that vary between them. From each true ATAC-seq data set,389

synthetic sister replicates were generated by varying the total percentage of shared peaks from 99 to 5%,390

with a delta of 5%. For each simulation, across the change in portion of shared peaks, a common random391

seed was used to preserve autocorrelation across this axis. This process was repeated fifteen times for each392

of the eight, A549 ATAC-seq samples, totaling a one hundred and twenty simulations.393

Genomic binning, fragment counts, and standardization394

On both synthetic samples from simulation studies or replicates from (true) ATAC-seq experiments, a ge-395

nomic binning approach was used to estimate correlation and association statistics between samples. For396
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each chromosome, contiguous bins were established 5’–3’, every ten kilobases. Within each of these bins, the397

number of sequenced fragments is counted and standardized to fragments per kilobase per million. These398

counts were rounded up to their nearest whole integer generating standardized counts of whole fragments399

per kilobase per million (WFpkm).400

Calculating correlation and association metrics401

In python scripts, using the scipy-stats module [76], the Pearson’s R, Spearman’s ρ, and Kendall’s τ were402

calculated on the WFpkm counts between pairs of ATAC-seq replicates. Functions for the Top-Down cor-403

relation metric [48] and Kendall’s W rank statistic [50, 41] were also developed using custom python code.404

The R2 coefficient was calculated using the square of the Pearson’s R. The normalized mutual information405

statistic from pythons sklearn module [46] was used in association studies. Between any pair of WFpkm406

counts, the bi-variate distribution was examined to identify instances were both profiles contained a value407

of zero WFpkm. For studies of the effects of co-zero inflation, these co-zero values were removed, and the408

correlation (or association) statistics recalculated on these filtered distributions.409

For correlation analysis on ATAC-seq experiments conducted here using A549 cells, the Pearson’s R410

correlation statistic was calculated on WFpkm values between replicates with co-zeros removed. Similarly,411

co-zeros were removed prior to calculating correlation and association statistics between replicates of ATAC-412

seq data downloaded from the ENCODE project public repository.413

Statistical tests on area under the curve414

Across simulations, values of correlation and associations statistics were calculated as a function of the415

designed portion of peaks between synthetic replicates. For each statistic tested, the 95% confidence interval416

of the average area under the curve was calculated via bootstrapping, with a thousand iterations. This417

was done for statistical profiles from simulations with and without co-zero values. For comparisons of the418

average area under the curve, either between statistics or within the same statistic after removing co-zeros,419

one thousand permutations were used to calculate the null distribution of the difference between the mean420

area under the curve [77]. The proportion of these differences greater than or equal to the true observed421

difference was used as the p-value. A significance level of 0.05 was used to reject the null hypothesis, H0: no422

difference in mean area under the curve, in favor of our alternative hypothesis, H1: difference of mean area423

under the curve.424
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Design of random forest model425

A random forest model was built in python using the scikit learn module [47, 46]. Association statistics from426

the ATAC-seq data generated in this study on A549 cells and additional ATAC-seq data downloaded from the427

ENCODE project was used as input (see Table 1). As features in this random forest, the R2 coefficient and428

normalized mutual information were calculated between every pair of ATAC-seq experiments using WFpkm429

counts, across ten kilobase pair, genomic bins and removing co-zero values. The comparison of each unique430

pair of experiments (totaling 276) were discretized as (1) between independent ATAC-seq experiments in431

different cell lines, (2) independent experiments using the same cell line, and (3) between true replicates.432

The total number of comparisons distributed among these three classes was 213, 45, and 18 (respectively).433

Given the over-representation of comparison between independent ATAC-seq experiments in different cell434

lines, 39 of the 213 comparisons were chosen randomly to represent the total, unique comparisons between435

experiments with unique cell lines. This down sampling resulted in 39, 45, and 18 comparisons between436

independent experiments in different cell lines, independent experiments using the same cell line, and true437

replicate experiments, respectively.438

For the testing and training of the model, test and training sets of the classes defined above were selected439

using a stratified, 40:60 split of the data. Additionally, ten-fold, stratified cross validation was used to train440

and test the model [78]. A hundred estimators with the entropy selection criterion were used along with441

default settings in the python random forest classifier function within scikit learn [46].442
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Tables470

Table 1: ATAC-seq Experiments Used, Mapped Reads, Peak Counts and FrIP Scores

Sample Title Cell Line Mapped Reads MACS2 Peaks FrIP Source
A549000 A549 259029456 201532 0.5898 ENCSR032RGS
A549001 A549 329679445 194975 0.5994 ENCSR032RGS
A549002 A549 211291691 206536 0.5596 ENCSR032RGS
A549100 A549 23987725 110323 0.588 This study
A549101 A549 22605005 81917 0.3404 This study
A549102 A549 17618743 82496 0.3702 This study
A549200 A549 35069198 90386 0.3515 This study
A549201 A549 15377297 79933 0.4202 This study
A549300 A549 42567716 130475 0.636 This study
A549301 A549 28744542 107737 0.6391 This study
A549302 A549 35836016 117087 0.6595 This study
GM12878400 GM12878 46889870 114746 0.7159 ENCSR095QNB
GM12878401 GM12878 49588811 134743 0.6452 ENCSR095QNB
HepG2500 HepG2 48113686 173756 0.4257 ENCSR042AWH
HepG2501 HepG2 48246610 135767 0.4605 ENCSR042AWH
IMR-90600 IMR-90 47543633 178156 0.5363 ENCSR200OML
IMR-90601 IMR-90 61359070 200216 0.6104 ENCSR200OML
K562700 K562 48217636 178230 0.5112 ENCSR483RKN
K562701 K562 52270533 176789 0.5196 ENCSR483RKN
RWPE2800 RWPE2 55152003 166239 0.474 ENCSR080SNF
RWPE2801 RWPE2 43166947 177496 0.4555 ENCSR080SNF
RWPE2802 RWPE2 48162285 154758 0.4652 ENCSR080SNF
WTC11900 WTC11 74558506 245677 0.5505 ENCSR541KFY
WTC11901 WTC11 79335328 277824 0.5732 ENCSR541KFY
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Table 2: Mean Area Under the Curve Across Simulations

Statistic Mean (95% CI) Mean (95% CI) – Co-zeros removed p-value a σ2 b

Top-Down Correlation 0.6881 (0.6860 – 0.6906) 0.6872 (0.6850 – 0.6895) 0.635 -
Pearson R 0.8284 (0.8237 – 0.8335) 0.6965 (0.6946 – 0.6984) 0.0 0.0201

R2 0.7026 (0.6951 – 0.7102) 0.5346 (0.5324 – 0.5368) 0.0 0.0329
Spearman ρ 0.9140 (0.9118 – 0.9162) 0.6686 (0.6665 – 0.6705) 0.0 0.0136
Kendall τ 0.9096 (0.9074 – 0.9120) 0.6673 (0.6654 – 0.6691) 0.0 -
Kendall W 0.9570 (0.9559 – 0.9581) 0.8343 (0.8333 – 0.8353) 0.0 -

Normalized Mutual Information 0.8197 (0.8153 – 0.8241) 0.5055 (0.5045 – 0.5065) 0.0 0.016

a The p-value represents the test of differences in mean AUC after removal of co-zeros.
b Variation values were calculated during analysis of data from true ATAC-seq experiments.
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Figures471

Figure 1: ATAC-seq profiles of chromosome 9 form A549 cells. A: TN5 binds to open chromatin, cutting DNA and adding primers to generate a
paired-end sequencing library. B: A549, ATAC-seq replicates along chromosome 9. Samples were generated using fresh cells (green) and previously
cryo-preserved cell cultures (orange and brown). Positively (black) and negatively oriented genes are annotated along the bottom. C: Pair-wise,
bi-variate scatter plots of whole fragments per kb per million values (x- and y-axis) using 10 kb genomic bins between A549, ATAC-seq replicates.
Sample names are annotated along the diagonal. Pair-wise Pearson’s correlation statistic is annotated within subplots.
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Figure 2: Synthetic replicate generation via peak down-sampling. A: An example region along chromosome
17 of true, A549 ATAC-seq data. Real ATAC-seq signal (brown lines) is used to initialize two synthetic
replicates. Red and black horizontal bodies depict negatively and positively oriented genes, respectively. B:
A portion of the genome-wide significant peaks (ranging from 0 - 1) are chosen randomly between the two
synthetic replicates. Within one of the replicates, 85% of paired reads (blue and orange rectangles connected
by grey dotted line) are removed to down-sample signal within that locus. C: Example of two synthetic
replicates with a known portion of peaks varying between them.
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Figure 3: Synthetic replicate bivariate plots and statistical profiles. A: Scatter plots displaying counts per
genomic bin (10 kb in size) of whole fragments per kilobase per million between two synthetic replicates
(x- and y-axis) generated in process Figure 2A – C. The percentage of shared peaks decreases between the
two simulated replicates from top to bottom. B: Correlation and association values (y-axis) as a function of
percentage of shared peaks between synthetic replicates (x-axis). Red and grey curves depict the mean and
95% CI (respectively) values across simulations. A grey, dashed line marks a one-to-one relationship between
the x- and y-axis. Left and right columns display change in values as a function of removing co-zeros.
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Figure 4: Correlation and association statistics across ATAC-seq experiments. From top-to-bottom, left-to-
right, the Person’s R, Spearman’s ρ, R2 coefficient, and normalized mutual information across ATAC-seq
replicates from the ENCODE project and ATAC-seq experiments on A549 cells generated in this study.
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Figure 5: Random forest prediction of experimental relationships. A: The coefficient of determination (R2) versus the normalized mutual information
(y- and x-axis, respectively) calculated on binned counts of WFpkm between ATAC-seq experiments. Blue triangles, orange Xs, and green circles mark
comparisons between independent experiments, independent experiments using the same cell line, and true experimental replicates, respectively. B:
Example confusion matrix from a random forest model using R2 and normalized mutual information as features to predict experimental relationships
(y-axis) presented in A (x-axis). The confusion matrix depicts results of model on a hold-out set (40% of data, accuracy = 95.12%). Light to dark
colors depict the number of counts per class. C: Bi-variate plot displaying the change of paired importance scores from ten-fold cross validation
between the normalized mutual information (x-axis) and R2 (y-axis) features. Dashed lines depict the uni-variate means of the normalized mutual
information and R2 scores. Blue and yellow colors depict the level of accuracy for each fold.
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Supplementary Materials472

Additional File 1473

• Title: Statistical profiles Simulation 0.50.png474

• File Format: png475

• Description: Correlation and association values (y-axis) as a function of percentage of shared peaks476

between synthetic replicates (x-axis). Red and grey curves depict the mean and 95% CI (respectively)477

values across simulations. A grey, dashed line marks a one-to-one relationship between the x- and478

y-axis. Left and right columns display change in values as a function of removing co-zeros. Results are479

from simulations with 50% paired reads within selected peaks removed.480

Additional File 2481

• Title: Statistical profiles Simulation 0.95.png482

• File Format: png483

• Description: Correlation and association values (y-axis) as a function of percentage of shared peaks484

between synthetic replicates (x-axis). Red and grey curves depict the mean and 95% CI (respectively)485

values across simulations. A grey, dashed line marks a one-to-one relationship between the x- and486

y-axis. Left and right columns display change in values as a function of removing co-zeros. Results are487

from simulations with 95% paired reads within selected peaks removed.488
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Figure S1: Boxplots displaying the area under the curve (y-axis) across statistics (x-axis) with co-zeros
retained and removed from analysis (blue and orange boxes, respectively).

Figure S2: Bi-variate plot of WFpkm counts (across 10 kb genomic bins) between replicates of real, A549
ATAC-seq experiments. Dark red to blue colors and marker size designate the density (log10 (WFpkm
counts)) of counts between replicates. Co-zero values appear as an orange dot in lower left corner. A dashed
grey line represents a one-to-one relationship between the two replicates.
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Figure S3: The percent of co-zero values in bi-variate WFpkm distributions between real ATAC-seq experi-
ments. Sample names are annotated along the x- and y-axis.
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Figure S4: The effect of removing co-zeros from analysis on ATAC-seq experiments from the ENCODE
project. A Shift in the estimates of correlation and association before (x-axis) and after (y-axis) removing co-
zeros from analysis for the Pearson’s R, the Spearman’s ρ, R2 coefficient, and normalized mutual information,
left to right respectively. A dashed line denotes a one-to-one relationship. B The pair-wise difference in
correlation and association metrics from estimates before and after removing co-zeros.

Figure S5: The f1-scores, recall, and precision of the random forest model with ten-fold, stratified cross
validation. Blue, orange, and green colors denote experimental relationship class.

29

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 13, 2023. ; https://doi.org/10.1101/2023.04.26.538354doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.26.538354
http://creativecommons.org/licenses/by-nc-nd/4.0/


.

Table S1: Read Counts of ATAC-seq Experiments

Sample Title Cell Line Total Reads Mapped Reads Not Used mtDNA Duplicates Un-mapped Low Quality Reads Replicate Name Source
A549000 A549 341325836 259029456 21246814 12009324 46948944 408486 1682812 ENCLB404SKN ENCSR032RGS
A549001 A549 442074976 329679445 27536117 15475857 66338506 506856 2538195 ENCLB605LCC ENCSR032RGS
A549002 A549 277970512 211291691 18456829 11170486 35323112 343051 1385343 ENCLB817BKI ENCSR032RGS
A549100 A549 65405524 23987725 2973344 33653170 3093813 48906 1648566 2501 001 This study
A549101 A549 84816540 22605005 2595465 55231224 2481489 32350 1871007 2501 002 This study
A549102 A549 64084756 17618743 2122339 40809830 1979951 67472 1486421 2501 003 This study
A549200 A549 133625408 35069198 4386111 86279921 4418826 31955 3439397 2501 007 This study
A549201 A549 69273610 15377297 1834370 48556785 1780806 27699 1696653 2501 008 This study
A549300 A549 86963986 42567716 4788405 31620108 5703777 121028 2162952 2501 018 This study
A549301 A549 84297712 28744542 3582876 44737775 5400961 118620 1712938 2501 019 This study
A549302 A549 97877188 35836016 4491769 49816243 5663997 42546 2026617 2501 020 This study
GM12878400 GM12878 76479882 46889870 4260513 11245729 12635046 252057 1196667 ENCLB584REF ENCSR095QNB
GM12878401 GM12878 69456510 49588811 4319318 7334534 6740176 186878 1286793 ENCLB907YRF ENCSR095QNB
HepG2500 HepG2 76077306 48113686 6037783 8348893 11668633 235020 1673291 ENCLB074EQT ENCSR042AWH
HepG2501 HepG2 88838406 48246610 6580203 19207768 12021756 605060 2177009 ENCLB324GIU ENCSR042AWH
IMR-90600 IMR-90 84117916 47543633 11830808 8448694 9559287 5990188 745306 ENCLB432QLN ENCSR200OML
IMR-90601 IMR-90 95034796 61359070 6202820 14378540 10233756 1872742 987868 ENCLB937FOM ENCSR200OML
K562700 K562 78745422 48217636 6777147 10759718 10705486 91659 2193776 ENCLB758GEG ENCSR483RKN
K562701 K562 83982064 52270533 6752478 10447009 12175330 162811 2173903 ENCLB918NXF ENCSR483RKN
RWPE2800 RWPE2 67263926 55152003 6718663 753542 2685741 286519 1667458 ENCLB293SLX ENCSR080SNF
RWPE2801 RWPE2 53441754 43166947 5244472 1277887 2088775 323207 1340466 ENCLB734LAL ENCSR080SNF
RWPE2802 RWPE2 60212304 48162285 5946340 1888964 2288274 331284 1595157 ENCLB984XHJ ENCSR080SNF
WTC11900 WTC11 115952320 74558506 7218516 7595855 21538753 4422396 618294 ENCLB621FEI ENCSR541KFY
WTC11901 WTC11 127343084 79335328 7889715 9553155 24757738 5028262 778886 ENCLB715JYV ENCSR541KFY
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