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» Abstract

13 Background

1 Correlation metrics are widely utilized in genomics analysis and often implemented with little regard to
15 assumptions of normality, homoscedasticity, and independence of values. This is especially true when com-
16 paring values between replicated sequencing experiments that probe chromatin accessibility, such as assays
v for transposase-accessible chromatin via sequencing (ATAC-seq). Such data can possess several regions
18 across the human genome with little to no sequencing depth and are thus non-normal with a large portion
10 of zero values. Despite distributed use in the epigenomics field, few studies have evaluated and benchmarked
20 how correlation and association statistics behave across ATAC-seq experiments with known differences or
a1 the effects of removing specific outliers from the data. Here, we developed a computational simulation of
» ATAC-seq data to elucidate the behavior of correlation statistics and to compare their accuracy under set

;3 conditions of reproducibility.

2  Results

»  Using these simulations, we monitored the behavior of several correlation statistics, including the Pearson’s
s R and Spearman’s p coefficients as well as Kendall’s 7 and Top-Down correlation. We also test the behavior
2 of association measures, including the coefficient of determination B2, Kendall’s W, and normalized mutual
;s information. Our experiments reveal an insensitivity of most statistics, including Spearman’s p, Kendall’s 7,
2 and Kendall’s W, to increasing differences between simulated ATAC-seq replicates. The removal of co-zeros
w0 (regions lacking mapped sequenced reads) between simulated experiments greatly improves the estimates of
s correlation and association. After removing co-zeros, the R? coefficient and normalized mutual information
» display the best performance, having a closer one-to-one relationship with the known portion of shared,
;3 enhanced loci between simulated replicates. When comparing values between experimental ATAC-seq data

u  using a random forest model, mutual information best predicts ATAC-seq replicate relationships.

s Conclusions

3 Collectively, this study demonstrates how measures of correlation and association can behave in epigenomics
s experiments. We provide improved strategies for quantifying relationships in these increasingly prevalent
s and important chromatin accessibility assays.

»  Keywords

w ATAC-seq; Correlation and Association; Normalized Mutual Information; Random Forest
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« Background

« Epigenetic modifications play an important role in regulating multiple cellular processes ranging from DNA
s replication to gene expression. These covalent additions to DNA and histone proteins do not alter the
« underlying DNA sequence, but rather, help modulate chromatin structure resulting in distinctive phenotypes.
s Genome-wide epigenetic modifications can be determined using several techniques: the gold-standard is
s chromatin immunoprecipitation followed by sequencing (ChIP-seq) [1, 2, 3]. Chromatin accessibility, or the
. analysis of the regions that are available for DN A:protein interactions potentially resulting in gene expression,
s 1s measured using an enzyme-driven assay called transposase-accessible chromatin via sequencing (ATAC-
s seq) [4]. These two methods have distinct advantages in probing the state of the epigenome, and both
s approaches generate paired-end sequencing libraries. These data are mapped to the genome to determine
s the loci that are occupied with a particular epigenetic modification or the loci that are localized within an
s open, accessible region. Epigenetic modifications and chromatin accessibility are visualized as peaks resulting
53 from the aggregation of sequencing reads [5]. As such, many software platforms used for analysis of ChIP-seq
s« and ATAC-seq data sets use ‘peak calling’ to determine locations of epigenetic modifications or accessible
55 chromatin regions [6, 7, 8, 9].

56 To ensure significance and consistency of identified peaks, best practices have been defined for quantifying
5o reproducibility across experimental replicates [8, 10]. These include several quality control metrics and work-
s flows that standardize analysis and enable comparison among different experiments [10]. These standards
s apply to the total number of sequenced reads, total number of identified significant peaks, and concentration
e of sequenced reads within said peaks. For example, pseudo-replication was developed for ChIP-seq analysis
s to assess the amount of variation between biological replicates [8]. In this protocol, synthetic replicates are
62 created from true, experimentally derived data: to do this, aligned reads are merged from two true replicates
6s and randomly reassigned into new alignments to create two synthetic replicates. This permutation practice
&+ homogenizes (and splits) signals present within the true, observed replicates, generating the null hypothesis of
e near perfect correlation between pseudo-replicates. Peak calling is then also conducted on pseudo-replicates,
e and the read counts of peaks conserved between the two pseudo-replicates are compared to the observed
e peaks in the true replicates. Landt et al. (2012) proposed that experiments, whose number of observed peak
s counts (among true replicates) divided by the total number of pseudo peaks (between pseudo-replicates),
s which nears a value of one, are broadly reproducible [8]. The ENCODE project has since extended this
o practice to ATAC-seq experiments [11, 12].

n To better understand experimental reproducibility, many studies also conduct correlation analysis on

2 binned signals between ATAC-seq replicates [13, 14, 15]. In such analyses, for each replicate, the genome is


https://doi.org/10.1101/2023.04.26.538354
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.26.538354; this version posted June 13, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

7 binned into smaller, contiguous regions, for example using windows of ten kilobase pairs [13]. The number
= of mapped sequenced fragments (defined by a pair of mapped reads) that overlap these bins are counted
 and standardized to fragments per kilobase pair per million reads (Fpkm) [16]. These Fpkm counts are
7 then compared between replicates using correlation and association statistics such as Pearson’s R or the
7 coefficient of determination (R?), respectively. Values from these statistics trending toward a value of one
7 generally indicate a reproducible experiment [17].

79 Correlation analysis is a useful tool, not singularly purposed for the analysis of reproducibility in ATAC-
s seq experiments. Such analysis can be found within studies of chromosome accessibility in cancer, ageing
s of human stem cells, cellular diversity, or new ATAC-seq protocols [18, 19, 20, 21, 22, 23]. Furthermore,
@ correlation analyses are ubiquitous, found in the fields of genetics, RNA-seq experiments, and in studies of
sz 3D chromatin architecture [24, 25, 26, 27, 28, 29, 30, 16]. Given their popularity and use in genomic and
s epigenetic studies, software suites—for example deeptools and HiCExplorer—have developed methods and
s tools for calculating correlation metrics between replicates and experiments [13, 31, 32, 33, 34].

86 The natural properties of data from genomic and epigenomic experiments make the application of com-
& monly used correlation and association statistics, for example Pearson’s R and R?, potentially problematic as
s none of these data (ATAC-, ChIP-, or Hi-C seq) are normally distributed [35]. Both ATAC- and ChIP-seq ex-
s periments are defined by numerous, loci-specific peaks of signal generated by the accumulation of sequencing
o reads [3, 4]. Mapped sequenced fragments may overlap contiguous genomic bins used in analysis, producing
o non-independent data points [24]. Conversely, regions lacking assayed modifications or with inaccessible
oo chromatin will have little to zero signal for ChIP-seq or ATAC-seq data, respectively. Furthermore, during
o3 correlation analysis, several genomic bins may overlap an inaccessible chromatin region that is reproducible,
w appearing in both the ATAC-seq replicates (or experiments) being compared. As such, each of these bins will
os acquire zero Fpkm and within the bi-variate distribution formed between the replicates. These data points,
o which appear as zero Fpkm in both replicates, are referred to here as co-zeros. Some analysis programs,
o like deeptools, HiCExplorer, and HiCcompare, offer options to remove co-zeros prior to analysis [31, 34, 29].
¢ However, there is no published guidance on this practice, and while the co-zero values are a feature common
o across genomic and epigenomic data sets [36], the effect of removing such features on correlation statistics
w0 has not been explored. Despite the known features of genomic and epigenomic data, and the underlying
1w assumptions of statistical tests, there have been few studies that explore their expected behavior, accuracy,
102 and use of alternative statistics determining reproducibility of such data [26, 27].

103 Here, we present a computational approach to generate synthetic ATAC-seq replicates to explore the
104 behavior of various correlation and association metrics for epigenomics datasets. These synthetic ATAC-seq

s replicates are generated from eight true data sets to capture features uniquely present within ATAC-seq
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w0s experiments. We have developed a random subsampling strategy to generate synthetic replicates with
w7 varying portions of shared peaks, as a proxy for reproducibility. Across our simulations, we apply the
ws  Pearson’s R [37, 38, 39] and Spearman’s p [40] and monitor their behavior, including the effect of removing
09 co-zeros. Additionally, we demonstrate the behavior of other statistics, including non-parametrics such as
o Kendall’s 7 [41, 42, 43, 44] and an information theoretic approach, normalized mutual information [45, 46], to
w  determine their utility in assessing epigenomics data. Finally, we build a random forest model [47] using the
12 normalized mutual information and R? coefficient between experiments to predict the biological relationships
3 between replicates. Overall, our results demonstrate an improvement in the expected behavior of all statistics
s after removing co-zeros and normalized mutual information emerges as a promising statistic for measuring

us  association between ATAC-seq samples.
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1 Results

w ATAC-seq data characteristics and subsamping strategy for synthetic replicate

us  generation

1o To study the behavior of correlation measurements between ATAC-seq replicates, we analyzed data from
120 three experiments using the A549, human lung cell line and implemented a subsampling paradigm to generate
11 synthetic replicates. Across these experiments, the total number of reads mapped to the human reference
12 genome varied from 15 million to nearly 43 million (Table 1). The number of genome-wide peaks found in
123 the ATAC-seq samples varied across experiments and between replicates, ranging from approximately 80 to
e 130 thousand (Table 1). The fraction of sequenced read-pairs mapped in peaks (i.e. the FrIP score as defined
s by the ENCODE project [8, 11]), was greater than 0.34 for all of the A549 ATAC-seq samples (Table 1).
s These samples displayed high spatial correlation of peaks across replicates (Figure 1A). Counting all whole
w7 fragments per kilobase per million (WFpkm), every ten kilobases, we observed a high statistical correlation
s between replicates, with average Pearson’s R of 0.86, 0.87, and 0.94 (p-values < 0.05) between the technical
10 replicates of the three biological replicate experiments (Figure 1B).

130 For simulations, synthetic replicates were generated using the paired-end read alignment profiles from
1 the eight ATAC-seq samples we generated. For each simulation, two synthetic replicates were initiated by
122 duplicating a given true ATAC-seq experiment (Figure 2A). Within the true ATAC-seq data set, reproducible,
133 significant peaks were identified (see Methods). From these, a random portion of peaks was chosen to vary
13« between the two synthetic replicates. This was accomplished by subsampling 85% of the aligned sequenced
s fragments within each of the randomly chosen peaks between the two synthetic replicates (Figure 2B and
136 2C). This process was repeated, randomly varying the common peaks from 1 to 95% of peaks between the
17 two synthetic replicates. Finally, across all simulations, for each pair of synthetic replicates, the WFpkm

s values were calculated in ten kilobase windows and used in statistical comparisons (Figure 3A).

1w Top-down correlation displays best behavior in correlation analysis across simu-

1w lations

1w Across these down sampling simulations, correlation and association statistics were calculated between each
12 pair of synthetic replicates. The Wfpkm counts were used between synthetic replicates in statistical analysis
13 (Figure 3A). The values of correlation and association statistics were calculated across simulations, as a
1 function of the number of shared peaks between synthetic replicates (Figure 3B) and for each statistic, and

us  the area under the curve (AUC) was used in comparisons (Supplementary Figure S1). Of the correlation
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us  statistics, the Top-Down correlation statistic had the smallest average AUC of 0.6881 (95% CI: 0.6860 —
wr 0.6906) and was significantly smaller than the average AUC of the Pearson’s R, at 0.8284 (95% CI: 0.8237
us  — 0.8335, p-value = 0, bootstrapped difference of mean AUC). Both the two non-parametric statistics,
1 Spearman’s p and Kendall 7, had significantly larger average AUCs compared against the Pearson’s R
150 (p-values = 0, bootstrapped difference of mean AUC). However, they demonstrated nearly identical AUC
151 profiles compared to each other, with average AUC of 0.9140 (95% CI: 0.9118 — 0.9162) and 0.9096 (95%
152 CI: 0.9074 — 0.9120) respectively (p-value = 0.037, bootstrapped difference of mean AUC).

153 Across the metrics of association, Kendall’s W, normalized mutual information, and the R? coefficient,
1« between replicates, the R? coefficient exhibited the greatest sensitivity to the change in portion of shared
155 peaks between synthetic replicates (Figure 3B). Across simulations, the average AUC of the R? coefficient
156 was 0.7026 (95% CIL: 0.6951 — 0.7102). This average AUC was significantly smaller than the average AUC
157 of the Kendall’'s W and normalized mutual information, with values of 0.957 (95% CI: 0.9559 — 0.9581) and
158 0.8197 (95% CI: 0.8153 — 0.8241), respectively (p-value = 0, bootstrapped difference of mean AUC).

s Removal of co-zeros improves estimates of correlation and associations

10 Using this simulation paradigm, we evaluated the efficacy of removing co-zeros from the analysis to determine
11 the impact on correlation and association statistics. Co-zero values were defined as value counts in ATAC-seq
12 experiments that appeared to have zero aligned fragments in a genomic bin of ten kilobases between two
163 replicates (Figure 3B, Supplementary Figure S2). On average, these values can make up nearly 5% of a
e given bi-variate distribution formed between real ATAC-seq replicates (Supplementary Figure S3). Across
165 all the correlation and association statistics examined here—except for Top-Down correlation—removing the
166 co-zero values significantly reduced the average AUC (Table 2, Figure 3B, Supplementary Figure S1). This
17 finding was unexpected, as co-zeros are a modest portion of the bi-variate distribution formed between two
s replicates and reproducible data points within the replicates.

160 After removing co-zeros, all the correlation statistics, Top-Down correlation, Pearson’s R, Spearman’s
w  p, and Kendall’s 7, displayed nearly identical sensitivity to the change in shared peaks between replicates
i across simulations (Figure 3B). However, the Pearson’s R had the largest average AUC of 0.6965 (95% CI:
2 0.6946 — 0.6984) followed by the Top-Down statistic (AUC of 0.6872, 95% CI: 0.685 — 0.6895, p-value = 0,
s bootstrapped difference of mean AUC). The Spearman’s p (mean AUC: 0.6686, 95% CI: 0.6665 — 0.6705) and
w  Kendall’'s 7 (mean AUC: 0.6673, 95% CI: 0.6654 — 0.6691) statistics had the smallest and identical average
ws  AUC after removing co-zeros (p-value = 0.208, bootstrapped difference of mean AUC). Furthermore, the

s AUC of the Top-Down correlation statistic was unaltered by the exclusion of co-zero values between synthetic
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v replicates (Figure 3B, Supplementary Figure S1, Table 2, p-value = 0.635, bootstrapped difference of mean
ws  AUC). This observation was not surprising given how Top-Down correlation places emphasis on larger values,

ws  down-weighting smaller values, such as co-zeros [48].

w INormalized mutual information best estimates difference between replicates

11 Removing co-zero values had a similar effect on association metrics, attenuating and improving the average
12 AUC across the portion of shared peaks between synthetic replicates (Figure 3B, Supplementary Figure S1).
1z Apart from Kendall’s W, the R? coefficient and normalized mutual information, on average, displayed a nearly
18« one-to-one relationship with the portion of shared peaks between replicates (Figure 3B). The average AUC of
s normalized mutual information was 0.5055 (95% CI: 0.5045 — 0.5065) and was smaller than the average AUC
s of the R? coefficient, with a value of 0.5346 (95% CI: 0.5324 — 0.5368, p-value = 0, bootstrapped difference
w7 of mean AUC). This difference in average AUC indicates that normalized mutual information better follows
188 the designed proportion of shared peaks between synthetic replicates across our simulations, compared to
w the R? coefficient.

190 As introduced earlier, one parameter in this simulation is the removal of a percentage of aligned read-pairs
1 from within randomly selected peaks (Figure 2B). Initially set at 85%, this parameter was altered to simulate
12 ATAC-seq replicates that are nearly reproducible (at 50%) at every selected peak or broadly unreproducible
03 (at 95%) across all selected peaks. Comparing the results between the two simulation sets with 85 and 95%
e of reads removed, we observed no significant difference between the two simulations (see Supplementary
105 Data). This is somewhat expected when considering the small difference in magnitude between removing
106 85 and 95% of reads from within peaks. In simulations with only 50% of read pairs removed from selected
17 peaks, after removing co-zeros, the two statistics that showed the largest response in our simulation were

s the R? coefficient and normalized mutual information (see Additional File 1 and Additional File 2).

1w Validation of mutual information analysis on true ATAC-seq data

20 After its successful implementation on simulated replicates, we next examined how normalized mutual in-
20 formation behaves when used on replicates from true ATAC-seq experiments. For this analysis, additional
22 ATAC-seq experiments were downloaded from the ENCODE project public repository [11]. These included
203 additional replicates of the A549 cell line, as well as ATAC-seq experiments in the HepG2, RWPE2, GM12878,
20 IMR-90, K562, and WTC11 cell lines (Table 1). With this expanded dataset, the Pearson’s R, the Spear-
205 man’s p, R? coefficient, and normalized mutual information were calculated between all pairs of replicates,

206 with co-zeros removed from analysis (Figure 4). Removing co-zeros reduced the estimates of correlation and
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207 association across samples by approximately 0.18,0.32,0.23, and 0.30 on average for the Pearson’s R, the
28 Spearman’s p, R? coefficient, and normalized mutual information, respectively (Supplementary Figure S4A).
20 These differences were significantly greater than zero (p-value < 10710, Wilcoxon signed-rank test, Sup-
20 plementary Figure S4B). Between comparisons of true experiments, we observed a co-linear relationship in
on the values of the normalized mutual information scores and R? coefficients (Figure 5A, Pearson’s R = 0.96,
22 p-value < 1719). Of the four statistics, the R? coefficient displayed the largest variation (02 = 0.0329)

a3 between true replicates (Table 2).

2 Predicting replicate relationships using normalized mutual information

25 Given the comparable behavior between normalized mutual information and the R? coefficient on true ATAC-
2 seq replicates, we assessed their usefulness in predicting the relationships between experiments. To do this,
27 we utilized a random forest model, using the values of the R? coefficient and normalized mutual information
28 between true ATAC-seq experiments as features. Comparisons between any two ATAC-seq experiments
29 (either those from the ENCODE project or generated here) were classified into one of three discrete classes:
20 (1) between independent ATAC-seq experiments in different cell lines, (2) independent experiments using
21 the same cell line, and (3) between true replicates. Plotting the normalized mutual information against the
2 R? coefficient calculated between ATAC-seq experiments with the above classifications revealed clustering
223 of experimental relationships between replicates (Figure 5A).

24 To build our random forest model, we utilized ten-fold cross validation, stratifying on the replicate class.
»s  An example confusion matrix from one of these folds demonstrates the model had difficulty distinguishing
26 between independent experiments using the same cell line and true, experimental replicates (Figure 5B).
2z This difficulty also manifested as lower fl-scores and recall for this class (Supplementary Figure S5). The
28 accuracy across these folds ranged from 88 to 98% (Figure 5C). Across the folds, the feature importance
2o score of the R? coefficient was inverted with that of normalized mutual information (Figure 5C). Overall, we
20 observed a greater feature importance score for normalized mutual information, with a significant average
»  pair-wise difference between the R? coefficient and normalized mutual information of 6.78% (p-value < 0.05,

22 Wilcoxon signed-rank test).
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= 1Discussion

2 To improve the assessment of reproducibility in epigenomic data sets, we sought to investigate the use of
25 several correlation and association statistics on binned genomic signals. Our findings suggest that best
26 practices should include analyzing association between compared replicates (or experiments) via normalized
27 mutual information with binned, Fpkm counts rounded to the nearest whole integer, after the removal of
28 co-zero values as input. In choosing a correlation statistic, after removing co-zero values, our results indicate
20 little difference in the outputs from the Pearson’s R, Spearman’s p, Kendall’s 7, or Top-Down correlation
xuo statistics. Notably, from simulations, we observed that the Top-Down correlation statistic was unaffected
an by the removal of co-zeros values. As such, this statistic should serve as an alternative for investigators if
22 binned co-zeros values between replicates are retained.

23 As part of this study, we generated highly correlated, new ATAC-seq experimental replicates of the A549
aa - cell line. Our data highly correlates with previously published ATAC-seq data of the A549 cell line generated
s by the ENCODE project. Using these data, we generated a novel simulation that utilizes down sampling
26 to generate replicates with known varying signals. While similar simulation studies have been conducted on
ar Hi-C sequencing data [30], to our knowledge, no prior study has examined the behavior of statistical metrics
us  on ATAC-seq data. That said, there are several statistics and methodologies that may be used to analyze
20 this data type, such as Poisson regression [49]. Improving on this simulation design could help generate a
0 framework that allows researchers to develop new statistical tools for hypothesis testing.

251 In our simulations, we observed that most statistics overestimate the correlation of signal between repli-
»x2  cates. One specific strategy we investigated to reduce this inflation was the removal of co-zeros, which is an
253 option present in several bioinformatic software suites [31, 34, 29]. Our analysis demonstrated that removal
»s  of these values can provide a more accurate estimate of correlation between replicates as measured by the
»s  known number of peaks between replicates. Interestingly, we never observed a correlation value that perfectly
»6  trends with the designed number of peaks between synthetic replicates. We also did not observer negative
s correlation values between the replicate Fpkm counts. The first of these observations can be explained by
s background autocorrelation still present within our synthetic replicates. The second of these observations
0 may point to a limitation in the design of our simulation, as negative correlation values have been observed
20 in true ATAC-seq profiles [31, 20]

261 In epigenomics and chromatin accessibility data sets, biological interpretation of the data is dependent
%2 upon visualization of “peaks” where accumulation of sequenced reads denotes the presence of a modification
263 or an accessible region. Regions with zero (or nearly zero) aligned sequenced reads are deemed unmodified

s or inaccessible and largely ignored when interpreting data. Correlation statistics should provide biologists

10
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s with the confidence that replicates are truly comparable. As stated above, the inclusion of co-zeros seems to
s inflate values of most correlation and association statistics. Thus, removal of co-zeros formed by the genomic
%7 bins that overlap and account for inaccessible regions may be warranted.

268 Using our simulation, we also examined the behavior of three association statistics, which we distinguish
%0 from the set of correlation statistics as those metrics ranging in value from zero to one. These association
a0 statistics were the R? coefficient, normalized mutual information statistic, and Kendall’s W. Prior to the
on removal of co-zeros, the only association statistic that displayed any sensitivity to the change in shared peaks
a2 between replicates was the R? coefficient. Co-zeros inflate the value of this statistic by reducing the total
a3 summed error between data points during calculation. Similarly, co-zeros increase the information gained
o between replicates when calculating the normalized mutual information score. In other words, knowing
a5 a replicate has a value of zero at a given genomic bin provides information that there is a zero at the
o corresponding bin within the other replicate. After removing co-zeros, we saw a large improvement in the
a7 sensitivity of both these statistics.

218 Curiously, Kendall’s W displayed the least sensitivity to the designed peak counts between synthetic
a9 replicates. This statistic was of interest given Kendall’'s W is capable of simultaneously examining the ranks
20 of more than two input samples [50, 41]. This would have provided researchers with a statistical tool capable
s of examining correlation among a full set (triplicate) of replicates within a single test, rather than multiple
22 pair-wise comparisons. Removing co-zeros did little to improve the sensitivity of this statistic. The other
23 statistic from Kendall, Kendall’s 7, displayed similar performance to the other non-parametric statistic,
2 Spearman’s p. This finding is contrary to other studies of Kendall’s 7 conducted in the fields of signal
285 processing and psychology [43, 44]. For analysis of genomic data, the Spearman’s p is standard in deeptools’
25 correlation functions [13]

287 Of the statistics examined here, the R? coefficient and normalized mutual information score were the
28 most sensitive to the change in shared peaks between replicates (when co-zeros were removed). Comparison
20 of these two statistics revealed that normalized mutual information was the better-behaved statistic. This
200 behavior manifested as smaller AUC within simulations, less variation in values across simulations, and
21 smoother values between unrelated synthetic replicates. Similarly, the computational evidence provided by
22 our random forest model suggests that normalized mutual information was better at estimating experimental
203 relationships between true ATAC-seq replicates. Taken together, these results indicate that of the two met-
204 rics, normalized mutual information may be the stronger association metric for ATAC-seq data. Information
25 theoretic approaches, such as normalized mutual information, have been utilized in several other biological
26 fields, ranging from cancer genomics to fungal genetics [51, 52, 53, 54, 55, 56, 57]. Regarding ATAC-seq

27 data, a handful of other studies have specifically used mutual information in data integration, analysis, and

11
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28 deep-learning of single-cell ATAC-seq profiles [58, 59]. For those investigator interested in using information
20 theoretic approaches, several of these functions are made easily available within the python, scikit learn
w0 library [46].

301 Sparsity and zero mapped sequenced reads are not unique properties of ATAC-seq data. These extend
s to genomic, Hi-C, ChIP-seq, and RNA-seq data sets. Imputation along with modified zero-inflated models
33 have been used with success for studying RNA sequencing data sets and detecting regions with differential
s0¢  expression [60]. Simulations and models of sampling zero-genomic count data have been developed to under-
w05 stand the effects of these values, particularly in the context of differential analysis [36]. Previous simulation
w6 studies of ATAC-seq have been focused on generating ATAC-seq data, for pipeline development, or single-cell
sr - ATAC-seq samples, to examined different approaches in their analysis [61, 62]. To our knowledge, this is
s the first example of using a simulation approach for studying reproducibility and association of ATAC-seq
w0 samples. Adapting strategies from these previous studies will help improve our simulation and expand it to
a0 other genomic and epigenomic sequencing data. The current results of our study strongly suggest that nor-
au  malized mutual information is an appropriate metric for measuring reproducibility in chromatin accessibility

312 aSSays.
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s Conclusions

s For this study, we produced eight ATAC-seq experiments using the A549 Cancer cell line. Across replicates,
a5 these ATAC-seq samples are well correlated and reproducible. For investigations of chromatin accessibility
a6 (particularly in the A549 cell line), these experiments are an additional resource for developing analysis
a7 pipelines, peak detection algorithms, and machine learning approaches.

318 Leveraging the A549 ATAC-seq experiments, we designed a computational simulation to generate simu-
a0 lated replicates. Specifically, synthetic replicates were coded that share a known, fixed portion of significantly
a0 enriched loci. Using these replicates, correlation metrics—the Pearson’s R, Spearman’s p, Top-Down, and
»  Kendall’s 7—and association statistics (ranging from zero to one—the R? coefficient, Kendall’s W, and nor-
3 malized mutual information—were tested for accuracy. Overall, the reported value of these statistics was
23 inflated and much larger than the fixed portion of shared, significant loci between replicates.

32 Removing specific outliers from ATAC-seq data, specifically the removal of co-zeros, improved estimates
s of correlation and association. We estimate that co-zero values, when comparing WFpkm counts between two
w26 real ATAC-seq experiments, occupy nearly five percent of a bi-variate distribution. While only a small portion
a7 of the total data, filtering these values from analysis greatly improves the measurements of most correlation
s and association statistics between samples, in simulation. Applied to real ATAC-seq data, removing co-zero
9 values from comparison significantly reduced the reported correlation and association statistic, matching
a0 results from simulation.

331 One of the association statistics examined here is normalized mutual information, an information theoretic
s approach that is less well known across the (epi)genomics field. After removing co-zero values, normalized
;3 mutual information displayed the lowest inflation relative to the similarity between simulated replicates.
s The R? coefficient also performed well in simulations (after removal of co-zeros), displaying good sensitiv-
s ity to differences between simulated replicates. Of these two association metrics, a random forest model
3 selected normalized mutual information as the stronger feature when estimating experimental relationships
s between real ATAC-seq experiments. From these results we conclude that normalized mutual information is

18 a powerful, non-parametric approach for estimating association between ATAC-seq experiments.
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» Methods

w0 Construction of A549 ATAC-seq libraries

s ATAC-seq experimental libraries were generated using A549 human lung carcinoma epithelial cells (ATCC,
s VA, catalog #CCL-185) [63, 64, 65]. Three biological replicate libraries were prepared from freshly harvested
s cells using an ATAC-seq kit (Active Motif, 53150) following the manufacturer’s protocol. The remaining
s five libraries were prepared using cryopreserved cells following methods outlined in Milani et al. (2016) with
s modifications [18]. Briefly, A549 cells were cultured in T75 flasks and harvested by trypsinization using
s 0.25% (w/v) Trypsin-EDTA (0.5%) solution (Gibco, 15400054). Harvested cells were centrifuged and pellets
s resuspended in freezing media containing DMEM (Gibco, 11885-084), 10% FBS (Corning, 35-015-CV), and
us 10% DMSO (ATCC, 4-X). Pellets were frozen using an isopropyl alcohol chamber (Thermo Fisher Scientific,
s 5100-0001) at —80°C. After 24 hours, frozen cells were transferred to liquid nitrogen for long term storage.
0 To perform experiments, cryopreserved cells were transferred to —80°C for several days, and the tube was
s immersed in 37°C water bath for approximately two minutes on the day libraries were prepared. Thawed cells
32 were resuspended in 1X PBS with protease inhibitor cocktail (Thermo Fisher Scientific, 78430). Cell counts
13 and viability were assessed and aliquots containing 80,000 cells per sample were processed into ATAC-seq

54 libraries.

s Sequencing, alignment and filtering

s ATAC-seq libraries were sequenced at the sequencing facility at Los Alamos National Laboratory on an
37 Illumina NextSeq2000 sequencer in paired end mode (PE151) using P3 chemistry. With Fastp, raw reads
s were trimmed and filtered to remove Nextra adaptors and reads with repetitive sequences [66]. Additionally
10 reads were also filtered to remove bases with low quality scores (q < 15). These processed reads were aligned
s0  to the new, telomere-to-telomere human reference genome, version 2 [67] via bwa [68]. After alignment,
s duplicate sequenced pairs were marked via samblaster and removed from analysis [69]. Read pairs mapping

%2 to the mitochondria were also removed (see Supplementary Table S1).

ws Other data used

s  Raw ATAC-seq data, in the form of paired fastq.gz files, was downloaded from the ENCODE project for
w5 the A549, HepG2, RWPE2, GM12878, IMR-90, K562, and WTC11 cell lines [70, 11]. The ENCODE file
6 experiment and replicate accession numbers are included in Table 1. For alignment, these data were passed

37 through the same pipeline described above for ATAC-seq samples generated here, and aligned to the human,
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s telomere-to-telomere, reference genome [67].

w Peak calling, peak filtering and reproducibility

s After filtering, sample alignments were analyzed to identify loci displaying significant enrichment of paired-
sn end reads. This peak calling was conducted using MACS2 [6, 71]. Specifically, after removing duplicates
sz and mitochondrial mapped reads, samples were further filtered using samtools with the following flags:

w3 -F 4 -F 2566 -F 512 -F 1024 -F 2048 -q 30 and then passed to MACS2 in BAMPE mode [72, 73].

374 Between true, biological replicates, reproducible peaks were identified via irreproducible discovery rate
a5 thresholding [74]. Using ChIP-R, replicate narrow peak files were filtered to retain only those peaks that
s were consistent across all replicates; in ChIP-R, where command line parameter, m = number of biological
s replicates [75]. In addition to this setting the *-fragment’ option was also invoked. These sets of final peak

s counts were retained for further analysis.

w Genomic down-sampling and simulation design

s For each of the eight ATAC-seq experiments of A549 cells generated in this study, synthetic replicates were
s generated by duplicating a given sample into two copies and then randomly, varying the total number of
2 shared peaks between them. Specifically, for a given ATAC-seq experiment, a set portion of peaks was
3 chosen at random, such that within one of the synthetic replicates, a given selected peak was depleted,
s« randomly removing a portion of the alignments within the peak bounds (as defined by MACS2). These
s sets of peaks were randomly selected from the set of reproducible peaks for that sample and its associated
16 biological replicates (see above). Three sets of simulations were conducted, removing 50, 85 and 95% of reads
s7  within selected peaks. This procedure results in two synthetic ATAC-seq replicates, generated from a single,
s true parent ATAC-seq data set. These synthetic ‘sister’ ATAC-seq data sets have identical genome-wide
9 alignments except within a sub-set of loci that vary between them. From each true ATAC-seq data set,
w0 synthetic sister replicates were generated by varying the total percentage of shared peaks from 99 to 5%,
sa with a delta of 5%. For each simulation, across the change in portion of shared peaks, a common random
32 seed was used to preserve autocorrelation across this axis. This process was repeated fifteen times for each

33 of the eight, A549 ATAC-seq samples, totaling a one hundred and twenty simulations.

x (Genomic binning, fragment counts, and standardization

35 On both synthetic samples from simulation studies or replicates from (true) ATAC-seq experiments, a ge-

36 nomic binning approach was used to estimate correlation and association statistics between samples. For
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37 each chromosome, contiguous bins were established 5—3’, every ten kilobases. Within each of these bins, the
s number of sequenced fragments is counted and standardized to fragments per kilobase per million. These
30 counts were rounded up to their nearest whole integer generating standardized counts of whole fragments

wo  per kilobase per million (WFpkm).

o Calculating correlation and association metrics

w2 In python scripts, using the scipy-stats module [76], the Pearson’s R, Spearman’s p, and Kendall’s 7 were
w3 calculated on the WFpkm counts between pairs of ATAC-seq replicates. Functions for the Top-Down cor-
s relation metric [48] and Kendall’s W rank statistic [50, 41] were also developed using custom python code.
ws  The R? coefficient was calculated using the square of the Pearson’s R. The normalized mutual information
ws  statistic from pythons sklearn module [46] was used in association studies. Between any pair of WFpkm
w7 counts, the bi-variate distribution was examined to identify instances were both profiles contained a value
ws  of zero WEpkm. For studies of the effects of co-zero inflation, these co-zero values were removed, and the
wo correlation (or association) statistics recalculated on these filtered distributions.

410 For correlation analysis on ATAC-seq experiments conducted here using A549 cells, the Pearson’s R
a correlation statistic was calculated on WFpkm values between replicates with co-zeros removed. Similarly,
a2 co-zeros were removed prior to calculating correlation and association statistics between replicates of ATAC-

as  seq data downloaded from the ENCODE project public repository.

ae  Statistical tests on area under the curve

a5 Across simulations, values of correlation and associations statistics were calculated as a function of the
a6 designed portion of peaks between synthetic replicates. For each statistic tested, the 95% confidence interval
a7 of the average area under the curve was calculated via bootstrapping, with a thousand iterations. This
sz was done for statistical profiles from simulations with and without co-zero values. For comparisons of the
a0 average area under the curve, either between statistics or within the same statistic after removing co-zeros,
20 one thousand permutations were used to calculate the null distribution of the difference between the mean
2 area under the curve [77]. The proportion of these differences greater than or equal to the true observed
w2 difference was used as the p-value. A significance level of 0.05 was used to reject the null hypothesis, Hg: no
w3 difference in mean area under the curve, in favor of our alternative hypothesis, H;: difference of mean area

24 under the curve.
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»s  Design of random forest model

#6 A random forest model was built in python using the scikit learn module [47, 46]. Association statistics from
w27 the ATAC-seq data generated in this study on A549 cells and additional ATAC-seq data downloaded from the
»s  ENCODE project was used as input (see Table 1). As features in this random forest, the R? coefficient and
»29  mnormalized mutual information were calculated between every pair of ATAC-seq experiments using WFpkm
w0 counts, across ten kilobase pair, genomic bins and removing co-zero values. The comparison of each unique
a1 pair of experiments (totaling 276) were discretized as (1) between independent ATAC-seq experiments in
s different cell lines, (2) independent experiments using the same cell line, and (3) between true replicates.
.3 The total number of comparisons distributed among these three classes was 213, 45, and 18 (respectively).
s Given the over-representation of comparison between independent ATAC-seq experiments in different cell
a5 lines, 39 of the 213 comparisons were chosen randomly to represent the total, unique comparisons between
a6 experiments with unique cell lines. This down sampling resulted in 39, 45, and 18 comparisons between
.7 independent experiments in different cell lines, independent experiments using the same cell line, and true
a8 replicate experiments, respectively.

230 For the testing and training of the model, test and training sets of the classes defined above were selected
w0 using a stratified, 40:60 split of the data. Additionally, ten-fold, stratified cross validation was used to train
s and test the model [78]. A hundred estimators with the entropy selection criterion were used along with

a2 default settings in the python random forest classifier function within scikit learn [46].
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«~ Tables

Table 1: ATAC-seq Experiments Used, Mapped Reads, Peak Counts and FrIP Scores

Sample Title | Cell Line | Mapped Reads | MACS2 Peaks | FrIP Source

A549¢00 A549 259029456 201532 0.5898 | ENCSRO032RGS
A549001 A549 329679445 194975 0.5994 | ENCSR032RGS
A549¢02 A549 211291691 206536 0.5596 | ENCSR032RGS
A5491¢9 A549 23987725 110323 0.588 | This study
A549:01 A549 22605005 81917 0.3404 | This study
A549102 A549 17618743 82496 0.3702 | This study
A549500 A549 35069198 90386 0.3515 | This study
A54950, A549 15377297 79933 0.4202 | This study
A549300 A549 42567716 130475 0.636 | This study
A549301 A549 28744542 107737 0.6391 | This study
A549302 A549 35836016 117087 0.6595 | This study
GM12878490 | GM12878 | 46889870 114746 0.7159 | ENCSR095QNB
GM12878401 | GM12878 | 49588811 134743 0.6452 | ENCSR095QNB
HepG2500 HepG2 48113686 173756 0.4257 | ENCSR042AWH
HepG2501 HepG2 48246610 135767 0.4605 | ENCSR042AWH
IMR-90600 IMR-90 47543633 178156 0.5363 | ENCSR2000ML
IMR-90601 IMR-90 61359070 200216 0.6104 | ENCSR2000ML
K562700 K562 48217636 178230 0.5112 | ENCSR483RKN
K562701 K562 52270533 176789 0.5196 | ENCSR483RKN
RWPE2g RWPE2 55152003 166239 0.474 | ENCSROS80SNF
RWPE2g9; RWPE2 43166947 177496 0.4555 | ENCSROS80SNF
RWPE2g9o RWPE2 48162285 154758 0.4652 | ENCSROS80OSNF
WTCl11gg WTC11 74558506 245677 0.5505 | ENCSR541KFY
WTCl1ggy WTC11 79335328 277824 0.5732 | ENCSR541KFY
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Table 2: Mean Area Under the Curve Across Simulations

Statistic Mean (95% CI) Mean (95% CI) — Co-zeros removed | p-value ® | o2 P
Top-Down Correlation 0.6881 (0.6860 — 0.6906) 0.6872 (0.6850 — 0.6895) 0.635 -
Pearson R 0.8284 (0.8237 — 0.8335) 0.6965 (0.6946 — 0.6984) 0.0 0.0201
R? 0.7026 (0.6951 — 0.7102) 0.5346 (0.5324 — 0.5368) 0.0 0.0329
Spearman p 0.9140 (0.9118 — 0.9162) 0.6686 (0.6665 — 0.6705) 0.0 0.0136
Kendall 7 0.9096 (0.9074 — 0.9120) 0.6673 (0.6654 — 0.6691) 0.0 ;
Kendall W 0.9570 (0.9559 — 0.9581) 0.8343 (0.8333 — 0.8353) 0.0 -
Normalized Mutual Information | 0.8197 (0.8153 — 0.8241) 0.5055 (0.5045 — 0.5065) 0.0 0.016

& The p-value represents the test of differences in mean AUC after removal of co-zeros.
b Variation values were calculated during analysis of data from true ATAC-seq experiments.
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Figure 1: ATAC-seq profiles of chromosome 9 form A549 cells. A: TN5 binds to open chromatin, cutting DNA and adding primers to generate a
paired-end sequencing library. B: A549, ATAC-seq replicates along chromosome 9. Samples were generated using fresh cells (green) and previously
cryo-preserved cell cultures (orange and brown). Positively (black) and negatively oriented genes are annotated along the bottom. C: Pair-wise,
bi-variate scatter plots of whole fragments per kb per million values (x- and y-axis) using 10 kb genomic bins between A549, ATAC-seq replicates.
Sample names are annotated along the diagonal. Pair-wise Pearson’s correlation statistic is annotated within subplots.
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Figure 2: Synthetic replicate generation via peak down-sampling. A: An example region along chromosome
17 of true, A549 ATAC-seq data. Real ATAC-seq signal (brown lines) is used to initialize two synthetic
replicates. Red and black horizontal bodies depict negatively and positively oriented genes, respectively. B:
A portion of the genome-wide significant peaks (ranging from 0 - 1) are chosen randomly between the two
synthetic replicates. Within one of the replicates, 85% of paired reads (blue and orange rectangles connected
by grey dotted line) are removed to down-sample signal within that locus. C: Example of two synthetic
replicates with a known portion of peaks varying between them.
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Figure 3: Synthetic replicate bivariate plots and statistical profiles. A: Scatter plots displaying counts per
genomic bin (10 kb in size) of whole fragments per kilobase per million between two synthetic replicates
(x- and y-axis) generated in process Figure 2A — C. The percentage of shared peaks decreases between the
two simulated replicates from top to bottom. B: Correlation and association values (y-axis) as a function of
percentage of shared peaks between synthetic replicates (x-axis). Red and grey curves depict the mean and
95% CI (respectively) values across simulations. A grey, dashed line marks a one-to-one relationship between
the x- and y-axis. Left and right columns display change in values as a function of removing co-zeros.
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Figure 4: Correlation and association statistics across ATAC-seq experiments. From top-to-bottom, left-to-
right, the Person’s R, Spearman’s p, R? coefficient, and normalized mutual information across ATAC-seq
replicates from the ENCODE project and ATAC-seq experiments on A549 cells generated in this study.
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Figure 5: Random forest prediction of experimental relationships. A: The coefficient of determination (R?) versus the normalized mutual information
(y- and x-axis, respectively) calculated on binned counts of WFpkm between ATAC-seq experiments. Blue triangles, orange Xs, and green circles mark
comparisons between independent experiments, independent experiments using the same cell line, and true experimental replicates, respectively. B:
Example confusion matrix from a random forest model using R? and normalized mutual information as features to predict experimental relationships
(y-axis) presented in A (x-axis). The confusion matrix depicts results of model on a hold-out set (40% of data, accuracy = 95.12%). Light to dark
colors depict the number of counts per class. C: Bi-variate plot displaying the change of paired importance scores from ten-fold cross validation
between the normalized mutual information (x-axis) and R? (y-axis) features. Dashed lines depict the uni-variate means of the normalized mutual
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«~ Supplementary Materials

a3 Additional File 1

ata e Title: Statistical_profiles_Simulation_0.50.png

a7 e File Format: png

476 e Description: Correlation and association values (y-axis) as a function of percentage of shared peaks
anr between synthetic replicates (x-axis). Red and grey curves depict the mean and 95% CI (respectively)
a18 values across simulations. A grey, dashed line marks a one-to-one relationship between the x- and
479 y-axis. Left and right columns display change in values as a function of removing co-zeros. Results are
480 from simulations with 50% paired reads within selected peaks removed.

1 Additional File 2

a8 e Title: Statistical_profiles_Simulation_0.95.png

283 e File Format: png

284 e Description: Correlation and association values (y-axis) as a function of percentage of shared peaks
a5 between synthetic replicates (x-axis). Red and grey curves depict the mean and 95% CI (respectively)
286 values across simulations. A grey, dashed line marks a one-to-one relationship between the x- and
287 y-axis. Left and right columns display change in values as a function of removing co-zeros. Results are
288 from simulations with 95% paired reads within selected peaks removed.
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Figure S1: Boxplots displaying the area under the curve (y-axis) across statistics (x-axis) with co-zeros
retained and removed from analysis (blue and orange boxes, respectively).
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Figure S2: Bi-variate plot of WFpkm counts (across 10 kb genomic bins) between replicates of real, A549
ATAC-seq experiments. Dark red to blue colors and marker size designate the density (logl0 (WFpkm
counts)) of counts between replicates. Co-zero values appear as an orange dot in lower left corner. A dashed
grey line represents a one-to-one relationship between the two replicates.
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Figure S3: The percent of co-zero values in bi-variate WEpkm distributions between real ATAC-seq experi-
ments. Sample names are annotated along the x- and y-axis.
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Figure S4: The effect of removing co-zeros from analysis on ATAC-seq experiments from the ENCODE
project. A Shift in the estimates of correlation and association before (x-axis) and after (y-axis) removing co-
zeros from analysis for the Pearson’s R, the Spearman’s p, R? coefficient, and normalized mutual information,
left to right respectively. A dashed line denotes a one-to-one relationship. B The pair-wise difference in
correlation and association metrics from estimates before and after removing co-zeros.
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Figure S5: The fl-scores, recall, and precision of the random forest model with ten-fold, stratified cross
validation. Blue, orange, and green colors denote experimental relationship class.
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Table S1: Read Counts of ATAC-seq Experiments

Sample Title | Cell Line | Total Reads | Mapped Reads | Not Used | mtDNA Duplicates | Un-mapped | Low Quality Reads | Replicate Name Source

A549000 A549 341325836 259029456 21246814 12009324 | 46948944 408486 1682812 ENCLB404SKN ENCSRO032RGS
A549001 Ab549 442074976 329679445 27536117 15475857 | 66338506 506856 2538195 ENCLB605LCC ENCSRO032RGS
A549002 A549 277970512 211291691 18456829 | 11170486 | 35323112 343051 1385343 ENCLB817BKI ENCSRO032RGS
A549100 A549 65405524 23987725 2973344 33653170 | 3093813 48906 1648566 2501-001 This study
A549101 Ab549 84816540 22605005 2595465 55231224 | 2481489 32350 1871007 2501-002 This study
A549192 A549 64084756 17618743 2122339 40809830 | 1979951 67472 1486421 2501_003 This study
A549200 Ab49 133625408 35069198 4386111 86279921 | 4418826 31955 3439397 2501_007 This study
A549901 A549 69273610 15377297 1834370 48556785 | 1780806 27699 1696653 2501-008 This study
A549300 A549 86963986 42567716 4788405 31620108 | 5703777 121028 2162952 2501018 This study
A549301 Ab49 84297712 28744542 3582876 44737775 | 5400961 118620 1712938 2501.019 This study
A549302 A549 97877188 35836016 4491769 49816243 | 5663997 42546 2026617 2501-020 This study
GM12878400 GM12878 | 76479882 46889870 4260513 11245729 | 12635046 252057 1196667 ENCLB584REF ENCSR095QNB
GM12878401 | GM12878 | 69456510 49588811 4319318 7334534 6740176 186878 1286793 ENCLB907YRF | ENCSR095QNB
HepG2500 HepG2 76077306 48113686 6037783 8348893 11668633 235020 1673291 ENCLBO74EQT ENCSR042AWH
HepG2501 HepG2 88838406 48246610 6580203 19207768 | 12021756 605060 2177009 ENCLB324GIU ENCSR042AWH
IMR-90600 IMR-90 84117916 47543633 11830808 | 8448694 9559287 5990188 745306 ENCLB432QLN | ENCSR2000ML
IMR-90601 IMR-90 95034796 61359070 6202820 14378540 | 10233756 1872742 987868 ENCLB937FOM | ENCSR2000ML
K562700 K562 78745422 48217636 6777147 10759718 | 10705486 91659 2193776 ENCLB758GEG | ENCSR483RKN
K562701 K562 83982064 52270533 6752478 10447009 | 12175330 162811 2173903 ENCLB918NXF | ENCSR483RKN
RWPE2g00 RWPE2 67263926 55152003 6718663 753542 2685741 286519 1667458 ENCLB293SLX ENCSRO80SNF
RWPE2g01 RWPE2 53441754 43166947 5244472 1277887 2088775 323207 1340466 ENCLB734LAL ENCSRO80SNF
RWPE2g02 RWPE2 60212304 48162285 5946340 1888964 2288274 331284 1595157 ENCLB984XHJ | ENCSRO80SNF
WTC11g00 WTC11 115952320 74558506 7218516 7595855 21538753 4422396 618294 ENCLB621FEI ENCSR541KFY
WTCl1lgp1 WTC11 127343084 79335328 7889715 9553155 24757738 5028262 778886 ENCLB715JYV ENCSR541KFY
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