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Abstract

The unprecedented increase in life expectancy presents a unique opportunity and the
necessity to explore both healthy and pathological aspects of ageing.
Electroencephalography (EEG) has been widely used to identify neuromarkers of cognitive
ageing due to its affordability and richness in information. However, despite the growing
volume of data and methodological advancements, the abundance of contradictory and non-
reproducible findings has hindered clinical translation. To address these challenges, our
study introduces a comprehensive workflow expanding on previous EEG studies and
investigates various static and dynamic power and connectivity estimates as potential
neuromarkers of cognitive ageing in a large dataset. We also assess the robustness of our
findings by testing their susceptibility to band specification. Finally, we characterise our
findings using functionally annotated brain networks to improve their interpretability and

multi-modal integration.

Our analysis demonstrates the effect of methodological choices on findings and that
dynamic rather than static neuromarkers are not only more sensitive but also more robust.
Consequently, they emerge as strong candidates for cognitive ageing neuromarkers.
Moreover, we were able to replicate the most established EEG findings in cognitive ageing,
such as alpha oscillation slowing, increased beta power, reduced reactivity across multiple
bands, and decreased delta connectivity. Additionally, when considering individual variations
in alpha band, we clarified that alpha power is characteristic of memory performance rather
than ageing, highlighting its potential as a neuromarker for cognitive ageing. Finally, our
approach using functionally annotated source reconstruction allowed us to provide insights
into domain-specific electrophysiological mechanisms underlying memory performance and

ageing.
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1. Introduction

A major accomplishment of the 20™ century was the remarkable gain in global life
expectancy, particularly in industrialised countries, which saw a rise of approximately 30
years (Christensen et al., 2009). However, age is also the strongest risk factor for many
chronic diseases, including cancer, cardiovascular and neurodegenerative diseases (Niccoli
and Partridge, 2012). Thus, understanding normal brain ageing and developing interventions
that maintain cognitive function is paramount to support a better quality of life throughout
one’s lifespan. Among the earliest and extensively studied cognitive changes associated
with ageing is the alteration of memory (Reid and MacLullich, 2006), which also occurs in
individuals ageing typically without any evidence of dementia (James et al.,, 2008).
Accordingly, as many as half of healthy older adults’ report worrying about their everyday

memory (Jonker et al., 2000).

Planning successful intervention regimes requires understanding both non-pathological
and pathological changes associated with ageing and cognitive decline, alongside the
identification of robust and reliable biomarkers (Belleville and Bherer, 2012; Gallen and
D’Esposito, 2019; Simpraga et al., 2017). With the rise of open science and data sharing
initiatives, there is now increased access to large datasets rich in phenotypic information
(Collerton et al., 2007; Taylor et al., 2017), triggering several biomarker projects (Cole and
Franke, 2017; Dickerson and Wolk, 2012; Engemann et al., 2020; Martin-Ruiz et al., 2011).
Among the potential biomarkers, functional brain imaging metrics have increasingly emerged
as promising options to monitor and identify reliable markers of brain development, ageing

and disease (Foo et al., 2021; Grady, 2012; Jack et al., 2017; Nyberg et al., 2010; Tooley et
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al., 2022). Functional MRI has been widely used in neuroimaging studies and provides
valuable information. However, it has inherent limitations, particularly as an indirect measure
of neural activity, with poorer temporal resolution that hinders the characterisation of the fast
dynamic properties of neural processes. In contrast, electrophysiological techniques, such
as magnetoencephalography (MEG) and electroencephalography (EEG) are better suited to
investigate temporal and spectral properties of neural activity across the lifespan and in the
context of diseases. Recent studies have highlighted their importance in understanding the
neural changes underlying Alzheimer's Disease (AD) (Maestu et al., 2019) and their
potential in neuromarker research (Engemann et al., 2020). Furthermore, EEG has the

added advantage of being portable, easy to implement and an affordable imaging technique.

The high temporal resolution of M/EEG allows for the comprehensive characterisation of
neural oscillations, providing insights on both normal and pathological brain function
(Schnitzler and Gross, 2005). These oscillations are conventionally categorised into five
classical frequency bands: delta (1-4 Hz), theta (4-7 Hz), alpha (8-13 Hz), beta (14-30 Hz),
and gamma (>31 Hz). Alpha oscillations, in particular, constitute a robust
electrophysiological characteristic of the awake human brain (Nunez and Srinivasan, 2009).
Reduction in alpha power and alpha reactivity, defined as the reduction of alpha power upon
opening the eyes, characterises not only non-pathological ageing but also pathological
cognitive decline (Babiloni et al., 2022, 2006). These findings have been substantiated in a
recent meta-analysis (Lejko et al., 2020) and have been associated with performance in
memory, language, and executive functions (Van Der Hiele et al., 2008). Although some
studies have reported evidence of age-related changes in other frequency bands, these
findings are less conclusive (Trammell et al., 2017). A common limitation in previous studies
is the adoption of fixed boundaries between frequency bands, which can bias findings in
populations with different characteristics, such as age (Cohen, 2021). Indeed, recent studies
have highlighted the importance of considering individual alpha frequency when comparing

power and brain connectivity differences between younger and older adults. They
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demonstrate that age-related decreases in alpha frequency can bias findings in power and

connectivity metrics against older adults (Jabes et al., 2021; Scally et al., 2018).

Functional connectivity measures, which commonly assess temporal correlations
between time series data from two or more independent M/EEG channels or sources, have
become increasingly recognised as key metrics for understanding brain regions’
communication and activity coordination, as well as identifying potential neuromarkers of
ageing and disease (Engels et al., 2015; Javaid et al., 2022; Schoonhoven et al., 2022).
Consequently, numerous studies have reported age-related changes in connectivity across
various frequency bands, including increased connectivity in the beta band and decreased
connectivity in other bands (Moezzi et al., 2019), increased connectivity in theta and beta
bands, and age- and cognition-related decreases in alpha band (Chow et al., 2022).
Additionally, cross-frequency coupling has shown substantial predictive power in
pathological cognitive decline (Musaeus et al., 2020). However, meta-analyses revealed
considerable methodological variation in functional connectivity studies, which causes
significant level of inconsistency, and even contradictory findings (Lejko et al., 2020;
Mahjoory et al., 2017). The vast methodological variations emphasise the importance of

carefully constructed, reproducible, and shareable processing pipelines.

Furthermore, it is important to consider how we represent and summarise EEG findings
to increase interpretability and facilitate comparison across different imaging modalities. In
the fMRI literature, the widespread use of brain network parcellations based on structural
and functional properties has contributed to the interpretability of activation patterns
(Dewiputri et al., 2021). This is especially important in neuromarker research, as it strongly
influences the mechanistic understanding and translational potential of the neuromarkers.
While studies have demonstrated significant similarity between fMRI and M/EEG resting
state networks (Brookes et al., 2011; Custo et al., 2017; Hillebrand et al., 2012), a network-
based approach for reporting and interpreting the functional relevance of electrophysiological

findings is scarcely used (but see (Choi et al., 2021; Zhang et al., 2021)).
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In this study, we leveraged the recently published Leipzig Study for Mind-Body-Emotion
Interactions (LEMON) dataset (Babayan et al., 2019), which includes, among other metrics,
resting-state EEG, and memory performance assessment in over 200 young and older adult
participants. Our aim was to investigate electrophysiological neuromarkers of healthy ageing
and their association with memory function. Resting-state activity provides valuable insights
into the intrinsic characteristics of the brain’s neural architecture (Fox and Raichle, 2007),
which can reflect individual differences in cognitive function (Zou et al., 2013) and
discriminate pathological conditions (Zhang et al., 2021). Resting-state data is particularly
valuable in neuromarker research due to its ease of implementation, not requiring active
participant engagement. This makes it more accessible and less burdensome in clinical
settings, allowing for utilisation in longitudinal studies and identifying unique neurobiological
signatures. Previous studies using the LEMON dataset have already begun demonstrating
its utility in revealing age-related changes in brain function. For example, studies have
already shown a decrease in signal variability (SD) and power in the lower frequencies (1-12
Hz) in sources related to the default mode network (DMN), as well as an age-related
increase in signal variability and power in the higher frequencies (15-25 Hz and 12-30 Hz,
respectively) in sources in the central frontal and temporal regions (Kumral et al., 2020;

Zhong et al., 2020).

Here, we expand on previous studies conducted on the LEMON dataset and other
datasets by investigating several electrophysiological neuromarkers and their association
with healthy ageing and memory performance within the same participants. We included
both resting state conditions, i.e., eyes open (EO) and eyes closed (EC), using two different
approaches. (a) By averaging their activity (mMEOEC), we increased statistical power to
identify features consistent across brain states, likely corresponding to individual traits. (b)
Calculating their ratio (EC/EO) as a marker of reactivity, however, can offer insights into
changes in brain dynamics. This latter measure has been used in studies exploring cognitive

decline (Barry and De Blasio, 2017) and predicting cognitive performance (Van Der Hiele et
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al.,, 2008). We investigated power and functional connectivity, both within- and across
frequency bands, for both approaches. Given the growing recognition of individualised
frequency bands, we considered how individual variations affected age- and memory-related
findings on activity and connectivity metrics. All analyses were performed at the source level,
thus obtaining a more fine-grained topographic distribution of the features, which is important
in predicting cognitive ageing (Engemann et al., 2020). Finally, we interpret the results on
the level of neuropsychologically meaningful networks to allow a more integrative view and a
more direct link between brain and behaviour. To support open and reproducible science, we
implemented our analyses using a configurable and scalable neuroimaging pipeline (Cusack

et al., 2015).

2. Methods

2.1. Participants
This study used data from the Leipzig Study for Mind-Body-Emotion Interactions

(LEMON) project (Babayan et al., 2019), including 227 participants (82 female) divided into
nine pre-defined age groups with age ranges centred at 22.5, 27.5, 32.5, 37.5, 57.5, 62.5,
67.5, 72.5, and 77.5. Participants were further labelled as “young” (20-40 years old) and
“older” (55-80 years old). Exclusion criteria included ongoing substance misuse, neurological
disorders, malignant disease, cardiovascular disease, psychiatric illness requiring inpatient
treatment, pregnancy, claustrophobia, metallic body implants including tattoos, tinnitus,
hypertension, recent involvement in research or advanced psychology degrees, and certain
medications including those acting on the central nervous system, chemotherapy, and
psychopharmacological medicines. Data collection was in accordance with the Declaration
of Helsinki and was approved by the medical faculty ethics committee at the University of

Leipzig (reference 154/13-ff).
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2.2. Behavioural data

Participants completed a cognitive test battery and the resting state (rs)-EEG on
separate sequential daily sessions. Out of test battery, we selected the two tests that directly
measured memory function, i.e., an adapted version of the California Verbal Learning Test
(CVLT-ll, (Niemann et al.,, 2008)) and the 2-Back task from the Test of Attentional
Performance (TAP; (Ziemmermann and Fimm, 2021, n.d.)). The CVLT-Il was done first,
followed by the TAP as a 20-minute filler task, and the CVLT-II delayed recall condition after.
TAP was employed as a filler task as it is unlikely to interfere with verbal learning (Jones et

al., 2014).

The CVLT-Il was used to assess participants’ verbal learning and episodic memory.
Participants were acoustically presented with 16 words and instructed to remember them.
They were then presented with this same list and asked to immediately recall its contents
five consecutive times. This was followed by several different recall conditions. In the
interference condition, participants learned a new list once and immediately recalled the
original list. In the cued condition, participants were presented with four categories and
asked to recall which words from the original list correspond with which category. In the
delayed condition, participants were asked to recall the original list after a delay of 20
minutes, both with and without category cues. In the recognition condition, participants were
presented with a new list of words and asked to determine which of these were on the
original list. Cued conditions were used to assess associative memory functioning, whilst

performance across the other conditions assessed episodic memory.

The 2-Back task from the TAP was used to assess working memory. This task,
presented visually to participants on a computer screen, serially showed a list of numbers (1-
9) for 5 minutes. Participants were required to press a button if the number currently on the
screen matched the one they saw two numbers prior. Accuracy, omissions, and reaction

times were recorded for each participant to assess their performance.
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Composite measures of associative (AM), episodic (EM), and working memory (WM)
were created by extracting scores from the CVLT-Il and TAP. These composite scores were
favoured over individual test scores to allow for a more comprehensive memory assessment
of each domain. A composite episodic memory score was created by factor analysing CVLT-
Il recall on first and fifth trials, the sum of correct recalls from the first to fifth trial, recall after
a short delay, delayed recall by 20 minutes, and recognition of learned words. All measures
correlated above 0.4, Kaiser-Meyer-Olkin’s measurement of sampling adequacy
considerably exceeded 0.5 at 0.81, and Bartlett's test of Sphericity was significant (x*(15) =
1273.51, p < 0.001), all of which indicated good factorizability. From this, one principal
component with an Eigenvalue above 1 emerged, which accounted for 71.24% of the
variance across episodic memory scores. A composite associative memory score was
similarly created by factor analysing word recall after a short delay with category cues
present and delayed recall by 20 minutes with category cues present. Measures were highly
correlated, given the smaller number of variables, while the Kaiser-Meyer-Olkin coefficient
was lower but still acceptable at 0.5 (Hadia et al., 2016), and Bartlett's test of Sphericity was
significant (x*(1) = 425.50, p < 0.001). From this analysis, one principal component with an
Eigenvalue > 1 emerged, which accounted for 96.16% of the variance across associative
memory scores. An index score was created to assess working memory faculties measured
with the accuracy on the 2-Back TAP task. This index was calculated by subtracting the
number of incorrect responses from the number of correct responses and dividing the total

by 15 (the number of possible correct responses).

23. EEG

2.3.1. Data acquisition

Sixteen minutes of rs-EEG data were acquired for 216 participants using a BrainAmp MR
plus amplifier with 62-channel active ActiCAP electrodes (Brain Products GmbH, Germany).

Electrodes were placed according to the 10-10 localisation system, referenced to the FCz
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electrode, and the ground electrode was placed on the sternum. Skin electrode impedance
was kept below 5 KQ. During EEG data acquisition, EEG amplitude resolution was set to 0.1
MV, data was digitised at a sampling rate of 2500 Hz, and recorded with an online band-pass

filter between 0.015 Hz and 1 kHz.

Rs-EEG data was collected over 16 blocks, each lasting 60 seconds. Blocks were
divided into eight eyes-open (EO) and eight eyes-closed (EC) conditions interleaved.
Changes between blocks were announced using Presentation software (version 16.5,
Neurobehavioral Systems Inc., Berkeley, CA, USA). Participants were seated in front of a
computer screen and asked to stay awake during EEG data acquisition. During the EO
blocks, they were asked to fixate their gaze on a black cross presented on a white

background.

2.3.2. Pre-processing

We opted for using the raw data instead of the available pre-processed EEG data for two
main reasons. The first was that the published pre-processed data had been band-passed
with 1-45 Hz, thus removing information on high-frequencies which may hold important
information regarding cognition and age-related changes in brain function (Basar, 2013;
Herrmann et al., 2010, 2004). The second was that this allowed us to implement an open
access processing workflow, which allows us better control over data quality, larger

transparency, and flexibility in pre-processing.

Raw rs-EEG was pre-processed using Automatic Analysis (aa, version 5.6;

https://automaticanalysis.github.io, (Cusack et al., 2015)) running on MATLAB R2020a

(Mathworks, Inc, Natick, Massachusetts, USA). The workflow (Fig. S1) included pre-
processing using EEGLab (version 2020.0; (Delorme and Makeig, 2004)) and FieldTrip (git
revision 666b4e3; (Oostenveld et al., 2011)). Raw rs-EEG data was initially down-sampled
from 2500 Hz to 250 Hz and high-pass filtered with 1 Hz. Line noise was removed using a

band-pass filter at 50 Hz and 100 Hz with a bandwidth of 10 Hz. Artefactual channels and
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data segments were removed using Artifact Subspace Reconstruction (Chang et al., 2018),
and data were re-referenced to a common average reference before further data processing.
Further pre-processing included Independent Component Analysis using the AMICA
algorithm (Delorme et al., 2012; Palmer et al., 2007) followed by automated IC selection
using IClabel (Pion-Tonachini et al., 2019) and dipole fitting to inform classification of
components. Finally, data were divided into EO and EC conditions and epoched with a 2-
second interval within each condition (maximum eight bock x 30 = 240 epochs). Following
pre-processing, 163 participants’ EEG data with at least 100 clean epochs were retained for

further analysis.

2.3.3. Data analysis

Data analysis was conducted using FieldTrip (git revision 666b4e3; (Oostenveld et al.,
2011)) as integrated into aa (Fig. S1). Power spectral density (PSD) was calculated using
fast Fourier transforms across the spectrum between 1 Hz and 120 Hz after ‘tapering’ the
data with the Hanning window. Across all participants, a standard, highly-detailed Finite
Element Method volume conduction model was used to solve the forward problem (Huang et
al., 2016) using the SimBio toolbox as integrated into FieldTrip (Vorwerk et al., 2018). The
source model was created based on the cortical sheet of each participant as constructed
with FreeSurfer and downsampled to around 4000 tessels using Connectome Workbench

(https://Iwww.humanconnectome.org/software/connectome-workbench). Source activity was

reconstructed by using exact low-resolution brain electromagnetic tomography (eLORETA)
as implemented in FieldTrip (Pascual-Marqui, 2007). The leadfield matrix and the source
filter were generated between the modelled cortical sources and the EEG channels and
were used to compute the abovementioned time-frequency decomposition at the source

level.

The epoched signal was computed at the source level and averaged for regions of the

Desikan-Killiany-Tourville (DKT) atlas (Desikan et al., 2006). The Freesurfer parcellation
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annotated 62 regions according to the DKT atlas; however, 11 of them (the entorhinal, the
cingulate isthmus, the medial orbitofrontal, the parahippocampal, and the pars orbitalis of the
inferior frontal bilaterally, as well as the right posterior cingulate) failed to be mapped to the
source model thus leaving 51 virtual channels. Band-limited power spectrums were
calculated by averaging the PSD according to standard EEG frequency bands (delta: 1-3 Hz;
theta: 4-7 Hz; alpha: 8-13 Hz; beta: 14-32 Hz; lower gamma: 33-80 Hz; upper gamma: 81-
120 Hz) before statistical analysis. For connectivity, time-frequency decomposition was
averaged according to 33 bins with increasing width (delta: 6 bins; theta: 7 bins; alpha: 6
bins; beta: 5 bins; lower gamma: 5 bins; upper gamma: 4 bins) and two measures were
computed between virtual channels. These were the within-frequency connectivity, as
characterised by the debiased weighted phase lag index (wPLI) (Vinck et al., 2011), and
cross-frequency connectivity as characterised by the phase locking value (PLV) (Schmidt et
al., 2014). In a recent study, Siebenhiihner and co-workers demonstrated the reliability and
biological plausibility of these measures (Siebenhiihner et al., 2020), as well as their

correspondence with cognitive performance.

In addition to considering standard EEG frequency bands, we estimated individual bands
using a combination of extended Better OSCillation detection (eBOSC) (Kosciessa et al.,
2020) and Fitting Oscillations & One Over F (FOOOF) (Donoghue et al., 2020). eBOSC uses
a 6-wave wavelet transform across the spectrum to calculate PSD for individual band
detection. On the other hand, FOOOF operates by parameterising a PSD model by fitting
Gaussian curves to capture band-limited power spectra as peak-like deviations from the
background activity. After calculating the PSD across the spectrum between 2 Hz and 80 Hz,
a FOOOF model was fitted to detect up to six Gaussian curves with a peak width between 1
and 6 Hz and a minimum peak height of 0.05 a.u. or 1.5 SD, whichever is higher. The band
estimates (peak frequency and bandwidth) were averaged across channels to calculate the
individual bands. The procedure provides stable estimates for alpha and beta bands within

the standard bands (see above). Theta band was shifted accordingly, while keeping its
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original bandwidth; however, delta band's width was adjusted to correspond to all
frequencies below the theta band. Gamma bands were unaffected. Individual variations in
band frequencies are accounted for in all results reported in the main text, while
corresponding results without band individualisation are reported in the supplemental

material for comparison.

2.3.4. Combined neural measures

Averaging measures for EC and EO conditions (mean (m) ECEO, calculated as EC+EO)

allows the investigation of neural features stable across the two states. The literature on
defining EC/EO reactivity is not conclusive, and various approaches have been reported
from simple difference (Bellato et al., 2020), through ratio (Fonseca et al., 2011), to
normalised difference (Wan et al., 2019); usually without detailed justification. Considering a

report of a linear relationship between EC and EO estimates in all frequency bands (Barry
and De Blasio, 2017) also seen in our data (not shown), we decided to use their ratio (i.e. %)

as a measure of EC/EO reactivity.

The combinations of neural measures have been performed at the last stage of the
analysis before statistics. For example, source-level power estimates have been calculated
for the EC and the EO conditions separately, and then these source-level estimates have
been combined (average and ratio, respectively) to obtain the final features we entered in

the statistical analysis.

2.3.5. Statistical analysis

Behavioural data was analysed with R version 3.6.0 (2019-04-26). Since none of the
behavioural data showed a normal distribution (AM: W = 0.94, p < 0.001; EM: W =0.97, p =
0.003; WM: W =0.81, p < 0.001), we used Mann-Whitney U tests and Kruskal-Wallis tests

when comparing “young” and “older” groups and the nine pre-defined age groups,
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respectively. Effect sizes have been interpreted according to Funder and Ozer (Funder and

Ozer, 2019).

The effect of age and the neural correlate of the associative, episodic, and working
memory domains were tested on all estimates, i.e., the time-frequency decomposition and
the within- and cross-frequency connectivity. The effect of age was tested by means of linear
regression using the interval variable of age groups as the independent variable. The neural
correlates of memory domains were tested by means of linear regression using the
composite measures as the independent variable. Due to the strong linear relationship
between age and memory performances (see Results), these linear regressions have been
conducted for the “young” and “older” groups separately. Also, the effect of age on memory
performances has been accounted for by the orthogonalisation of memory performances

with respect to age within each group.

Statistical inference was calculated by means of nonparametric Monte-Carlo estimation
of the significance probabilities as implemented in FieldTrip. For all estimates, statistical
significance was calculated based on 1000 iterations of threshold-free cluster enhancement
(TFCE), and a significance threshold of p = 0.05 was employed. TFCE- and other cluster-
based statistics are robust inferential procedures offering greater freedom and sensitivity
(Maris and Oostenveld, 2007). They, however, require clear rules on cluster formation, i.e.,
which data points can form a cluster. If we consider time-frequency decomposition, where
the data is acquired from single channels, a cluster-forming rule can be defined based on the
topographic distribution of the channels based on the assumption that data from channels
spatially closer to each other are likely to be more similar (Frémer et al., 2018). However,
defining a cluster-forming rule for channel combinations for connectivity is less
straightforward since they lack a clearly defined topographic property (both channels

correspond to their spatial locations).
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2.3.6. Graphs for cluster-forming rules for functional connectivity

To address the issue of creating cluster-forming rules for channel combinations for
connectivity metrics we used graphs, i.e., in a similar fashion to how channels and their
connectivity (spatial and functional) can be modelled as graphs, channel combinations can

also be modelled as graphs. Our rationale and procedure is described below.

Let us begin with a standard graph where the nodes represent channels, and the edges
link any pair of channels either spatially (Gspq:, Fig. 1A) or via hypothesised functional
connectivity (G, Fig. 1B). Adjacencies between the edges of a graph G can be found
using the line-graph representation L(G), where each node in L(G) corresponds to an edge
in ¢ (Harary and Norman, 1960) (L(Ggspac) and L(Geonyn), Fig 1C-D). More explicitly, if two
edges in G are incident on a common node, they will be connected via an edge in L(G), i.e.
they will be adjacent. A further restriction on the edge-adjacency in an L(G) can be applied,
whereby two edges can only be adjacent if the non-shared nodes are also adjacent in G.
This additional restriction on edge-adjacency is based on the rationale that extends the
aforementioned observation of data similarity to connections, namely, connections between
a channel to a set of channels adjacent to each other are likely to be more similar. The result
of this additional restriction is the restricted line graph L,.(G), and we can have one for the
spatial connectivity (L,(Gspqe), Fig 1E) and another for the hypothesised functional

connectivity (L, (G.onn), Fig. 1F).

This additional restriction of edge-adjacency can be generalised so that the restricted
edge-adjacency of a hypothesised functional connectivity graph L,(G.,,,) is based on the
node-adjacency in a spatial graph G,,.. More explicitly, two edges can only be adjacent in
L, (Geonn) 1f the non-shared nodes are also adjacent in Gy, This concept is demonstrated
in Fig. 1G, wherein the line-graph of the fully connected hypothesised functional connectivity
L(Geonn) is restricted by the spatial graph G, to return a spatially restricted line graph
Ls(Geonn)- LOOKING closely, one can see that nodes 1 and 2 of L, (G.,,,,) (Which are edges

in the original hypothesised functional connectivity graph G.,,,,), are not connected because
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even though they share node A in G_,,,, the non-shared nodes (B and C) are not adjacent
in the spatial graph G,,,.. For inferencing on connectivity, the cluster-forming rule is defined

based on the spatially restricted line graph Ly, (G.onrn)-

3. Results

3.1. Demographics and behavioural data
The final sample included 163 participants, 112 (33 female) in the “young” group and 51

(24 female) from the “older” group. The sample distribution across the nine age groups can

be observed in Table S1 and Fig. 2A.

The composite memory scores are displayed in Fig. 2B-G and Table S2 for both the
“young” and “older” groups, and for the nine age groups. Wilcoxon rank sum tests were
performed to compare the composite associative (AM), episodic (EM), and working (WM)
memory scores between the “young” and the “older” group. The composite memory scores
were significantly larger in younger than older adults’ groups in every domain, with a very
large effect size, AM (Fig. 2B): W=4233.5, p<0.001, r = 0.48; EM (Fig. 2D): W=4591,
p<0.001, r = 0.61; WM (Fig. 2F): W=4235.5, p<0.001, r = 0.48. Considering the nine pre-
defined age groups the Kruskal-Wallis rank sum test also resulted in significant differences
with small to medium effects, AM (Fig. 2C): x*(8)=28.61, p<0.001, r = 0.18; EM (Fig. 2E):

X°(8)=40.99, p<0.001, r = 0.25; WM (Fig. 2G): xX(8)=31.18, p<0.001, r = 0.19.

3.2. Age-related changes in mEOEC power and EO/EC reactivity and
relation to memory performance

3.2.1. Age-related changes in frequency and the effects of band individualisation on
power

We first investigated whether individual peak frequencies within alpha and beta
frequency ranges varied with age. The topographic distribution of the effect of ageing
revealed global changes in peak frequency for both alpha and beta frequencies, with

somewhat weaker effect in the frontal regions for alpha and the posterior midline regions for
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both alpha and beta (Fig. 3, topoplots). This effect was statistically significant only for alpha
in the EC condition in the frontal midline, occipital, and right temporal regions. The analysis
of peak frequencies revealed an age-related downward shift in individual alpha and beta
across sensors (Fig. 3, regression plots, data was averaged across all sensors for each
individualised frequency band). This shift was larger in the EC conditions for frequencies in
the alpha range (EC: 0.008 Hz/year, EO: 0.002 Hz/year) and in the EO condition for
frequencies in the beta range (EC: 0.01 Hz/year, EO: 0.019 Hz/year), reaching significance
for alpha EC (1(161)=-2.294, p=0.023) and near-significance for beta EO (t(161)=-1.935,
p=0.055). This indicates that the effects of ageing on peak frequency changes are more
robustly detected in the alpha band for the EC condition. This might in part be explained by
the relatively larger signal-to-noise ratio in alpha during EC. Importantly, there is a large
between-subject variance, which is even larger than the effect of ageing, which explains only
2-3% of the variance in the data. These results highlight the importance of condition-specific

individualisation beyond simply scaling with age.

Next, we investigated the effect of individualised frequency ranges on power estimates
by comparing the relative differences observed between the individually determined and
canonical bands. Individualised alpha and beta bands were centred at the individual alpha
and beta peak frequencies * the estimated half-bandwidth, delta and theta bands were
shifted to ensure there was no overlap between the bands while keeping their canonical
bandwidth. Compared with standard bands, band individualisation resulted in around 10%
global reduction in mEOEC power with more emphasis on the frontal and central areas in
the delta and theta power and a 10% localised increase in the temporo-occipital areas in the
theta power (Fig. 4, top left half). On the other hand, band individualisation strongly
increased the alpha and beta power, resulting in up to 18% and 110% increase, respectively,
with a maximum effect in the frontal areas (alpha) an the temporo-parieto-occipital junction
(beta) (Fig. 4, top right half). The band individualisation also affected the reactivity in power,

although with a smaller effect. There was an up to 2% global increase in delta reactivity with


https://doi.org/10.1101/2023.08.26.554888
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.26.554888; this version posted September 15, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

more emphasis on the central regions, while there was an up to 7% increase in theta
reactivity in the occipital regions (Fig. 4, bottom left half). The alpha and beta reactivity
increases were larger, up to 10% and 30%, respectively, and primarily included the frontal
and posterior regions (Fig. 4, bottom right half). Overall, these results support the
importance of considering individually defined frequency bands when exploring age-related

changes in brain function.

3.2.2. Age-related changes in mean power and reactivity

Our results for mean power and power reactivity are displayed in Fig. 5 for individualised
bands and in Fig. S2 for canonical frequency bands; Table 1 summarises the age-related

changes per frequency band (individualised and canonical) for each brain network.

We observed an age-related reduction in mEOEC delta power in the occipital and
midfrontal regions corresponding to the Visual, Default, Control, and Dorsal Attention
networks. Delta power reactivity showed more focal changes in the Visual, Dorsal Attention,
and Limbic networks. Here, band individualisation made only minor difference (Fig. 5 vs Fig.
S2). We found age-related reduction of mean theta power and reactivity in the occipital
regions corresponding to the Visual network and no changes in the midline regions. Here,
band individualisation strongly increased the sensitivity to detect the ageing effect in theta
reactivity. We saw no effect in alpha power or reactivity. Here, band individualisation made
only minor difference by pushing a very focal effect of ageing below the significance
threshold in alpha reactivity in the right prefrontal region. Aging affected beta mEOEC power
and reactivity differently, increasing mEOEC beta power in the Somatomotor and Dorsal and
Ventral Attention networks while reducing beta reactivity in the Visual, Limbic, Somatomotor,
and Dorsal Attention networks. Band individualisation strongly increased the sensitivity to
detect ageing effects in beta power. We saw an age-related reduction in reactivity in the

lower gamma band in the Visual and Limbic networks. Finally, we observed some age-
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related reductions in reactivity in the upper gamma band in the Visual, Dorsal Attention, and

Limbic networks.

3.2.3. Mean power and reactivity correlates of memory

Analyses of the relationship between memory performance and the mean power
estimates only showed significant correlations with performance in working memory for both
young and older adults (Fig. 6). mMEOEC power in individualised bands was positively
correlated with working memory performance in the alpha band for both young and older
adults. The topography showed overlapping left-lateralised correlation in both groups in
regions belonging to the Dorsal Attention network, occupying a larger area in the young
group (Fig. 6A and Table 2). Furthermore, younger adults also showed significantly positive
correlations with a similar topography for lower and upper gamma activity. Overall, this
supports previous findings of the importance of the Dorsal and Ventral Attention networks
and alpha and gamma activity in working memory (Jokisch and Jensen, 2007; Majerus et al.,

2018).

When performing the same analyses for the canonical frequency bands we observed in
addition a positive relationship between mEOEC theta power and working memory
performance for both young and older adults (Fig. S3 and Table 2). Band individualisation
eliminated this relationship and improved the sensitivity to detect the abovementioned

relationship in the alpha range.

Analyses of the relationship between memory performance and power reactivity
estimates showed significantly positive relationships across all memory domains, but only for
delta frequency and in the young adults’ group (Fig. 6B). This relationship was observed in
the right Control and the bilateral Default networks in all three memory functions. For
working memory there was a widely distributed correlation with delta reactivity. Band
individualisation improved sensitivity in general and led to more significant test statistics and

somewhat larger extent of the engagement of the various networks (Fig. S3B).
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3.3. Age-related changes in connectivity in mEOEC and EO/EC reactivity
and relation to memory performance

3.3.1. Band individualisation effects on connectivity

Band individualisation affected connectivity estimates more drastically than power
estimates. It eliminated all age-related and some of the WM-related variation in cross-
frequency connectivity. For consistency and simplicity, in the rest of the paper we will only
discuss cases where age- and memory-related findings were present for canonical and
individualised bands.

3.3.2. Age-related changes in connectivity

Aging lead to a widespread reduction in mEOEC delta connectivity, with stronger
emphasis on the cross-hemispheric connections and a focal increase in the reactivity in
lower gamma connectivity between the Control and Dorsal and Ventral Attention networks
(Fig. 7). Band individualisation strongly increased the sensitivity (in the delta band) revealing
a more distributed reduction in the connectivity, especially between the hemispheres (102
intra vs 266 cross connections). The involved connections form a network with the right
Visual network (41% of the connections) as the main hub.

3.3.3. Connectivity correlates of memory

Analyses of the relationship between memory performance and the reactivity of
connectivity revealed the involvement of several networks in working memory, however, only
in the young group (Fig. 8). The reactivity of the theta-alpha, alpha-lower gamma, and beta-
lower gamma connectivity across several networks showed to be increased in those with
better working memory. The theta-alpha connections were rather intra-hemispheric (38 intra
vs 22 cross) with right-sided dominance (9 left vs 29 right). The connectivity pattern formed a
network with the right Ventral Attention (38% of the connections) and Visual (48% of the
connections) networks as the main modulating hubs (62% and 93% of their connections are
outputs, respectively). The alpha-lower gamma connections, however, were rather cross-

hemispheric (42 intra vs 70 cross) with some within-hemispheric connections particularly in
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the left hemisphere (33 left vs 9 right). The connections for alpha-lower gamma formed a
network with the left Visual (63% of the connections) network as the main receptive hub

(80% of its connections are input).

4. Discussion

In this study, we used the open-access LEMON dataset to investigate
electrophysiological markers of healthy ageing and memory function. Our study confirmed
the impact of individually defined frequency bands on electrophysiological neuromarkers of
ageing and cognitive function. Moreover, we also identified several resting state
electrophysiological correlates of memory function, particularly when focusing on dynamic,
i.e. reactivity estimates of power and functional connectivity. Notably, our findings are
presented using functionally annotated brain networks to improve interpretability, we deploy
graphs to perform cluster correction for functional connectivity and we provide a sharable

and reproducible pipeline for electrophysiological data analysis.

4.1. Methodological implications

A robust finding in the literature is a slowing in alpha frequency with age (Cesnaite et al.,
2023; Klimesch, 1999; Trondle et al., 2023). The same observation was replicated here for
the eyes closed condition where the alpha amplitude is naturally larger, and matching the
condition typically investigated in previous ageing studies (Babiloni et al., 2006; Breslau et
al., 1989; Polich, 1997; Trondle et al., 2023; Vysata et al., 2012). This age-related shift in
peak alpha frequency has important methodological implications, specifically that canonical
alpha bands are not appropriate for investigating age-related changes in alpha power
(Trondle et al., 2023) or connectivity (Clark et al., 2004; Jabés et al., 2021; Knyazeva et al.,

2018; Lodder and van Putten, 2011; Peltz et al., 2010). Our study confirms these findings


https://doi.org/10.1101/2023.08.26.554888
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.26.554888; this version posted September 15, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

and further suggests the importance of considering between-participant and -condition
variability when adjusting bands. This band individualisation has a moderate-to-strong effect
on potential neuromarkers. It moderately reduced delta and theta and strongly increased
alpha and beta power (Fig. 4). Despite applying the individual band boundaries uniformly
across the channels for each participant, we observed some topographic heterogeneity,
especially for the alpha and beta bands, with a stronger effect in the posterior areas. More
importantly, the effect of band individualisation on the reactivity indicates that EC and EO
conditions are affected differently. This difference is negligible in the delta and theta bands
(<38%) and moderate in the alpha (8-18%) and beta bands (5-40%). The topographic
heterogeneity of the effect further supports an interaction between location and condition.
These results underpin the importance of condition-specific band individualisation, which
influences the sensitivity of identifying neural correlates of ageing and cognitive

performance.

Since individual peaks were reliably detected only for the alpha and beta bands,
corresponding differences, i.e., age-related increase in beta power (Fig. 5 vs Fig. S2) and
neural correlates of working-memory in the alpha power (Fig. 6 vs Fig. S3), are not
surprising. However, the downward shift of the alpha band can also affect the neighbouring
theta band, which explains the increase in sensitivity of detecting age-related reduction in
theta reactivity (Fig. 5 vs Fig. S2). The effect of band individualisation on connectivity is even
more drastic. It eliminated most of the findings, while enabling greater sensitivity in detecting
age-related increase in within-delta connectivity and some of the neural correlates of working

memory in the reactivity of cross-frequency connectivity (Fig. 7-8).

The visual comparison of the magnitude of the effect of band individualisation on power
and connectivity suggests that power measures are more robust and reliable because there
is less difference between the two sets of findings. Connectivity, however, seems more
sensitive to methodological choice; therefore, the construction of any workflow analysing

connectivity should be well-justified. This also implies that findings on connectivity-based
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neuromarkers are more likely to change with the advancement of the field. Because
methodological flexibility can lead to inconsistent findings and a lack of reproducibility (Lejko
et al.,, 2020; Mahjoory et al., 2017) we used a reproducible and shareable pipeline

(Automatic Analysis) to build a transparent workflow.

4.2. Confirmatory findings on age-related electrophysiological changes

The pace of reduction in alpha frequency with age (0.5 Hz from 20- to 80-year-old) was
between what has been previously reported (0.45 Hz (Trondle et al.,, 2023) to 1 Hz
(Donoghue et al., 2020; Knyazeva et al., 2018). This slowing was observed throughout the
scalp, especially in the midfrontal and occipital regions with larger effect on the right
hemisphere, similarly to Trondle et al. (Trondle et al., 2023). Slowing in alpha frequency
might reflect changes on the level of neurotransmission and excitation-inhibition ratios, as
well as a decrease in axonal conduction velocity (Dustman et al., 1993; Hong and Rebec,
2012). A more controversial finding in ageing research pertains to changes in alpha power,
with previous findings indicating either a decline with age (Babiloni et al., 2006; Barry and De
Blasio, 2017; Kumral et al., 2020), or no age-related alterations (Sahoo et al., 2020)
particularly when controlling for the reduction in alpha peak frequency or non-oscillatory 1/f
slope of the EEG (Caplan et al., 2015; Cesnaite et al., 2023). Our findings agree with the
later evidence of no changes in alpha power when defining individualised bands centred on

individual alpha frequency.

We observed a reduction in delta and theta and an increase in beta power (NEOEC),
similarly to the first study analysing this dataset with slightly different methodology (Kumral et
al., 2020). The topography of age-related changes in mean power was somewhat similar to
Kumral et al., 2020. However, there were also some notable differences, potentially due to a
different estimation of power and our use of data acquired in both the EO and EC conditions.
In contrast with Kumral et al., we found age-related reduction of mean theta power and

reactivity in the occipital regions corresponding to the visual network and no changes in the
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midline regions. Age-related changes in theta power are however controversial. Previous
studies have shown decreases (Vlahou et al., 2014), increases (Babiloni et al., 2006; Ishii et
al., 2018; Klass and Brenner, 1995) or no changes (Hong and Rebec, 2012) with age. The
observed decrease in delta and theta power with age in our study might however be
explained by the now well-replicated flattening of the 1/f slope with age, with higher impact
on lower frequencies (Dave et al., 2018; Lodder and van Putten, 2011; Voytek et al., 2015).
Perhaps less controversial is our observation of age-related increases in beta power, which
agrees with previous literature showing higher resting-state beta activity in older adults
(Gémez et al., 2013; Heinrichs-Graham et al., 2018; Heinrichs-Graham and Wilson, 2016;
Hubner et al., 2018; Koyama et al., 1997; Veldhuizen et al., 1993). The topography of our
findings matches previous studies showing higher spontaneous beta power in frontal and
parietal regions that form part of the Somatomotor and Salience networks. In particular, the
observation of increased power in the Somatomotor network matches previous whole-brain
analysis indicating motor regions as those with higher differences in beta power between
young and older cohorts (Heinrichs-Graham and Wilson, 2016). Changes in beta power at
rest are thought to index age-related changes in GABAergic inhibition (Inamoto et al., 2023;

Rossiter et al., 2014).

In regards to age-related changes in reactivity we observed a decrease in reactivity
across all frequency bands with the exception of the alpha band. In accordance with Barry
and De Blasio (Barry and De Blasio, 2017), we also detected an anterior-posterior gradient
in the spatial distribution of age-related changes in the reactivity across several bands. We
complement these findings by showing a reduction in gamma reactivity, which was not
previously investigated in this dataset but is consistent with similar findings in Jabes et al.
(Jabes et al., 2021). Moreover, our findings allow us to observe finer spatial patterns at
functional network level (see below) that were not captured by previous studies with lower

spatial resolution.


https://doi.org/10.1101/2023.08.26.554888
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.26.554888; this version posted September 15, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

The analysis of the relationship between connectivity and age revealed several age-
related changes. While most age-related changes in mEOEC power were not significant
when using individualised bands, we observed a robust age-related decrease in connectivity
in the delta band across hemispheres, with most changes affecting the connections of the
right visual network. Comparison of resting state EEG of Alzheimer's disease patients and
healthy controls led to similar findings suggesting a decline in interhemispheric

communication or compensation mechanisms (Hata et al., 2016).

4.3. New findings on age-related electrophysiological changes and
memory function

With our more comprehensive analysis, we were also able to complement existing
findings and contribute to the debate on the relationship between EEG oscillations and
cognitive ageing. We propose that our assessment of the effect of the condition-specific
individualisation adds additional weight to our findings. In particular, we found increased
sensitivity in detecting age-related changes in the beta power, the theta reactivity and the
delta connectivity and the neural correlates of working-memory in the alpha power and the

theta-alpha and the alpha-lower gamma connectivity.

Several studies, however, found a link between the alpha power and cognitive
performance or decline (Babiloni et al., 2022; Fonseca et al., 2011; Van Der Hiele et al.,
2008), which is also consistent with our finding of a positive correlation between alpha (and
gamma) power and working memory performance. These indicate that alpha power can be
considered a reliable and specific neuromarker of working memory performance irrespective

of age.

However, our investigation of the relationship between functional connectivity and
memory performance only showed consistent findings in the younger group. In particular, we
found that better working memory performance correlated with rest reactivity of theta-alpha

connectivity within and between frontal and parietal regions. This pattern closely resembles


https://doi.org/10.1101/2023.08.26.554888
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.26.554888; this version posted September 15, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

changes elicited by working-memory tasks (Akiyama et al., 2017). Moreover, the reactivity of
both theta-alpha and alpha-gamma connectivity have been reported to correlate with
attention, processing speed, and executive functions (Siebenhiihner et al., 2020), key
components of working memory. Our findings also resolve some of the inconsistency around
the role of delta oscillations in cognition (Trammell et al., 2017) by showing that it reflects
domain-independent dynamics (i.e., reactivity) rather than static components of memory.
The lack of significant correlates of connectivity and memory performance in older adults
might be partly explained by the lower sample size in comparison with the effect size in this
age group; however, the literature on the relationship between rs-EEG connectivity and
memory is scarce. Hata and coworkers, for example, were able to demonstrate the reduced
connectivity within the delta band as a potential neuromarker of dementia rather than healthy
memory function in a sample including 28 “probable AD patients” and 30 healthy controls

(Hata et al., 2016).

4.3.1. Functionally annotated electrophysiology

Our electrophysiological findings confirmed that ageing affects the activity (power) and
reactivity of multiple networks involved in perception and cognition, such as the Control,
Dorsal Attention, Visual, Default networks (Fig. 5). The functional annotation draws a richer
picture of and provides contextual support and mechanistic understanding for the neural
correlates of memory performance, indicating the primary roles of Dorsal and Ventral
Attention networks in working memory (Fig. 6a) and the primary role of Control networks in
associative and episodic memory (Fig. 6b). The left hemispheric lateralisation of the neural
correlates of working memory (Fig. 6a) emphasizes the verbal components (Nagel et al.,
2013; Ray et al., 2008) of the working memory task used during the assessment. Our
findings on the role of cross-frequency connectivity in working memory further confirms the
sensitivity of neuromarkers related to dynamic (i.e., reactivity) rather than static neural

features and revealed some fundamental differences in the engagement of the lower- (theta-
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alpha) and higher- (alpha-gamma) frequency networks in working memory. The lower-
frequency network predominantly engages the right hemisphere via shorter paths and is
driven by the Visual and Ventral Attention network (Fig. 8, first row) suggesting integration of
information implemented via perception driven (i.e., bottom-up) and salience and
subsequent attention-driven (i.e., top-down) processes (Akiyama et al., 2017). The higher-
frequency network, on the other hand, is characterised by cross-hemispheric communication
via longer paths modulated by the Visual network (Fig. 8, second row) suggesting the

dominance of top-down processes.

Investigating electrophysiological neuromarkers at source level allows one to identify
their correspondence and functional annotation with fMRI findings even without synchronous
recording. In addition to improving the interpretability of the EEG findings, this approach also

allows to put them into a wider multimodal context.

4.4. Limitations

While the LEMON dataset constitutes a powerful resource to study electrophysiological
markers of healthy ageing, it currently has some inherent limitations. The first is the absence
of participants’ ages, as the dataset contains instead nine pre-defined age groups. Such
arrangement reduces the sensitivity to detect age-related changes because it does not allow
the full modelling of age-related variability. The second is the overrepresentation of younger
participants (<=35 year-old) in the sample. This was further aggravated by the rejection of
samples with artifacts, which was more common in the older group. As a result, our analyses
have more power to detect effects in the “young” than in the “older” group; therefore, the lack
of an effect in the “older” group cannot be unambiguously interpreted. Thirdly, we omitted the
investigation of the effect of sex due to the unbalanced representation of females and males
across the age groups and the whole sample. Finally, information about the time of the day
in which acquisitions took place was not available and circadian and ultradian rhythms can

impact spectral characteristics of EEG signals (Lehnertz et al.,, 2021). These limitations
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might be addressed by the addition of further information and extensions to the LEMON
dataset or combining it with other openly available datasets. The analyses of these datasets

will benefit from reproducible pipelines, such as the one we produced for this study.

An additional limitation of our study is that power estimates included both periodic and
aperiodic components. While we did account for individual differences when defining
frequency bands, a recent study emphasized the importance of decomposing periodic and
aperiodic components when investigating the age effect on alpha power during the EC
conditions, albeit mentioning that the contribution of the two components to cognitive decline
is still unclear (Trondle et al., 2023). Future studies could investigate how accounting for
both individualised bands and aperiodic components contribute to changes in functional
connectivity patterns within and between frequency bands and their relation to cognitive

performance.

Finally, the statistical framework as implemented in Fieldtrip does not support multiple
regression. To partially overcome this limitation, we split the participants into “young” and
“older” groups, however, it does not allow a full separation of the age-effect from the
correlates of memory functions, somewhat reducing the sensitivity to detect them. The LIMO
toolbox allows modelling multiple variabilities in M/EEG data by using hierarchical linear
modelling (Pernet et al., 2011). Future developments in our pipeline or Fieldtrip might

address this issue and allow the full integration of LIMO.

5. Conclusion

Despite the recent developments in neuroimaging, which allow sophisticated analyses
on larger datasets to extract psychobiologically relevant features to be conducted, we still
have limited success in identifying reliable neuromarkers of age-related cognitive decline.
The present paper synthesizes best practices and implements methodological

considerations to provide an integrative insight into the electrophysiological correlates of
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age-related cognitive decline using functionally annotated brain networks. Our analyses
confirmed the most established neuromarkers of cognitive ageing, while it also clarified the
role of delta and alpha oscillations in memory performance and their changes in ageing. We
also highlighted the importance of considering the variation in band specification across
individuals and conditions and demonstrated the higher sensitivity of dynamic rather than

static electrophysiological neuromarkers in ageing and memory.
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10. Figures and tables

Figure 1. Clustering of connectivity based on graph theory

(A) Hypothetical layout of signal visualised as a Ggpq,- The red nodes marked with upper-
cased letters correspond to the signal locations, while the blue edges marked with numbers
correspond to the spatial relationship of the signal locations. (B) Connectivity to be tested for
the signals in G, Visualised as a G, The red nodes marked with upper-cased letters
correspond to the same signal locations as in Gg,,, While the blue edges marked with
numbers correspond to the functional connectivity to be tested. (C) and (D) represents the
line-graphs of Gg,q; and Ggonp, respectively. The blue nodes correspond to the edges of
original graphs, while the grey lines correspond to the egde-adjacencies (i.e.,
neighbourhoodness of edges). (E) and (F) represents the line-graphs of Gy, and Ggonn,
respectively, with adjacency restricted to edges with adjacent non-shared nodes. As you can
see, edges 4 and 5 of G,,,, are not adjacent anymore because their non-shared nodes (B
and C) are also not adjacent. It does not change the line-graph of G.,,, because all
connectivity between all signals is of our interest and, therefore, all nodes are connected to
all nodes. (G) represents the final solution, where the edge-adjacency for G, iS restricted
based on the node-adjacency in Gg,,,. As a result, edges 4 and 5 of G,,, are not adjacent

anymaore.

Figure 2. Demographics and memory performance of the final sample

(A) Distribution of age and gender. (B), (D) and (F) show the distribution of performance
in associative (B), episodic (D) and working (F) memory for the participants labelled as
“young” and “older”. (C), (E) and (G) show the distribution of performance in the same
memory domains for the participants in the original age groups. In plots (B-G), the dots

represent individual performances.
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Figure 3. Age-related changes in alpha and beta peak frequency

The topoplots demonstrate the localised effect of age on the peak frequencies for alpha
and beta and for eyes-closed (EC) and eyes-open (EO) conditions. The values correspond
to the slope (B) of the regression analysis. The white stars correspond to significant effect.
The line and scatter plots demonstrate the effect of age on the same peak frequencies
averaged over all channels. The red lines correspond to the regression line, while the blue

dots correspond to the individual peak frequencies.

Figure 4. The effect of band individualisation on the combined neural measures

The surface plots demonstrate the localised effect of band individualisation on the
combined neural measures of mean power (NECEO) and reactivity (EC/EO). The values
correspond to how much the measures change (in % of the measures estimated in the

canonical bands) after individualisation.

Figure 5. Age-related changes in the combined neural measures

The surface plots demonstrate the significant localised effect of ageing, measured as t-
statistics of the regression, on the combined neural measures of mean power (MECEO) and
reactivity (EC/EO) in the individualised bands. "ns.” denotes cased with no significant effect.
The polar plots visualise the detected effects averaged in the seven functionally annotated
networks in both hemispheres. The colour corresponds to the effect size as measured with
the t-statistics of the regression, while the size of the wedges corresponds to the proportion

of the functional network involved.
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Figure 6. Neural correlates of memory

(A) The surface plots show brain areas where mean power (MECEO) in the
individualised bands has a significant relationship with working memory performance of the
“younger” (upper row) and the “older” (lower row) participants. (B) The surface plots show
brain areas where reactivity (EC/EO) in the individualised delta band has a significant
relationship with associative (AM), episodic (EM), and working memory (WM) performance

of the “younger” participants.

"ns.” denotes cased with no significant effect. The polar plots visualise the detected
effects averaged in the seven functionally annotated networks in both hemispheres. The
colour corresponds to the effect size as measured with the t-statistics of the regression,
while the size of the wedges corresponds to the proportion of the functional network

involved.

Figure 7. The effect of age and band individualisation on the combined

connectivity measures

The matrix plots summarise the number of connections with significant age-related
changes as detected by using canonical (upper triangle) and individualised (lower triangle)
bands. Red and blue colours correspond to positive and negative effect, respectively. Within-
frequency connectivity is visualised in the diagonal region, while cross-frequency
connectivity is visualised in the off-diagonal regions. For the latter, only lower-to-higher

frequency connectivity was estimated.

For mean connectivity (MECEO), only the delta band showed significant age-related
reduction also after band-individualisation, which is further visualised on the surface and the

network plots.
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Figure 8. Connectivity correlates of working memory

The matrix plots summarise the number of connections with significant relationship with
working memory performance of the “young” participants as detected by using canonical
(upper triangle) and individualised (lower triangle) bands. Red and blue colours correspond
to positive and negative effect, respectively. Within-frequency connectivity (none detected) is
visualised in the diagonal region, while cross-frequency connectivity is visualised in the off-

diagonal regions. For the latter, only lower-to-higher frequency connectivity was estimated.

Only reactivity (EC/EO) in theta-alpha, alpha-lower gamma, and beta-lower gamma
connectivity showed significant positive relationship with working memory performance of
“young” participants also after band-individualisation, which are further visualised on the
surface and the network plots. The cross-frequency connectivity is directed (lower to higher

frequency), and the direction of the connectivity is marked with arrowheads.

Table 1. The effect of age and band individualisation on the combined neural

measures

The table summarises in which functionally annotated networks we detected age-related
changes in mean power (MECEQO) and reactivity (EC/EO) by using canonical (C) and

individualised (I) bands.

Table 2. The effect band individualisation on the neural correlates of working

memory

The table summarises in which functionally annotated networks we detected significant
relationship between mean power (MECEO) and working memory performance of the
“young” (Y) and the “older” (O) participants by using canonical (C) and individualised (I)

bands.
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11. Supplemental materials

Supplemental figure 1. Data processing and analysis workflow as implemented in

Automatic Analysis (aa)

The figure represents the data processing and analysis steps and the data flow between
them. The steps, implemented as aa modules (aamod_*), are visualised as text in a box,
while the data, managed in aa streams, are visualised as text on arrows indicating direction
of the dataflow. The preprocessing steps are common for the canonical and individualised
bands. Analysis steps using canonical bands are marked with green, while analysis steps

using individualised bands are marked with turquoise.

Supplemental figure 2. Age-related changes in the combined neural measures

The surface plots demonstrate the significant localised effect of ageing, measured as t-
statistics of the regression, on the combined neural measures of mean power (MECEO) and
reactivity (EC/EQ) in the canonical bands. "ns.” denotes cased with no significant effect. The
polar plots visualise the detected effects averaged in the seven functionally annotated
networks in both hemispheres. The colour corresponds to the effect size as measured with
the t-statistics of the regression, while the size of the wedges corresponds to the proportion

of the functional network involved.

Supplemental figure 3. Neural correlates of memory

(A) The surface plots show brain areas where mean power (MECEO) in the canonical
bands has a significant relationship with working memory performance of the “younger”

(upper row) and the “older” (lower row) participants. (B) The surface plots show brain areas
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where reactivity (EC/EO) in the canonical delta band has a significant relationship with
associative (AM), episodic (EM), and working memory (WM) performance of the “younger”

participants.

"ns.” denotes cased with no significant effect. The polar plots visualise the detected
effects averaged in the seven functionally annotated networks in both hemispheres. The
colour corresponds to the effect size as measured with the t-statistics of the regression,
while the size of the wedges corresponds to the proportion of the functional network

involved.

Supplemental table 1. Participant demographics

The table summarises the number of participants divided into sexes and the nine age

groups in the final sample after data cleaning.

Supplemental table 2. Memory performance

The table summarises the associative (AM), episodic (EM), and working memory (WM)

performance of the “young” and the “older” participants.
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