

# 1 T4SEpp: a pipeline integrated with protein language

## 2 models effectively predicting bacterial type IV secreted

### 3 effectors

4 Yueming Hu<sup>1, #</sup>, Yejun Wang<sup>2,3, #</sup>, Xiaotian Hu<sup>1</sup>, Haoyu Chao<sup>1</sup>, Sida Li<sup>1</sup>, Qinyang Ni<sup>1</sup>,  
5 Yanyan Zhu<sup>1</sup>, Yixue Hu<sup>2</sup>, Ziyi Zhao<sup>2</sup>, Ming Chen<sup>1,\*</sup>.

6

7 <sup>1</sup> Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou,  
8 China.

<sup>2</sup> Youth Innovation Team of Medical Bioinformatics, Shenzhen University Medical School, Shenzhen, China.

<sup>3</sup> Department of Cell Biology and Genetics, College of Basic Medicine, Shenzhen University Medical School, Shenzhen, China.

13

14 <sup>#</sup>YH and YW contributed equally to this study

15 \*Correspondence: mchen@zjhu.edu.cn (M.C.); Tel /Fax: +86-(0)571-88206612 (M.C.)

16

17 **Abstract**

18 Many pathogenic bacteria use type IV secretion systems(T4SSs) to deliver effectors  
19 (T4SEs) into the cytoplasm of eukaryotic cells, causing diseases. The identification of  
20 effectors is a crucial step in understanding the mechanisms of bacterial pathogenicity, but  
21 this remains a major challenge. In this study, we used the full-length embedding features  
22 generated by six pre-trained protein language models to train classifiers predicting T4SEs,  
23 and compared their performance. An integrated model T4SEpp was assembled by a  
24 module searching full-length, signal sequence and effector domain homologs of known  
25 T4SEs, a machine learning module based on the hand-crafted features extracted from the  
26 signal sequences, and the third module containing three best-performing protein language  
27 pre-trained models. T4SEpp outperformed the other state-of-the-art (SOTA) software  
28 tools, achieving ~0.95 sensitivity at a high specificity of ~0.99, based on the assessment  
29 of an independent testing dataset. Additionally, we performed a comprehensive search  
30 among 8,761 bacterial species, leading to the discovery of 227 species belonging to 3  
31 phyla and 117 genera that possess T4SSs. Furthermore, leveraging the power of T4SEpp,  
32 we successfully identified a grand total of 12,622 plausible T4SEs. Overall, T4SEpp  
33 provides a better solution to assist in the identification of bacterial T4SEs, and facilitates  
34 studies of bacterial pathogenicity. T4SEpp is freely accessible at  
35 <https://bis.zju.edu.cn/T4SEpp>.

36 **Key words:** T4SEpp; Type IV Secreted Effector; Deep Learning; Protein Language Model;  
37 Prediction

38

39 **Introduction**

40 Gram-negative bacteria employ more than one dozen of secretion systems to transport  
41 proteins out of the cell envelope[1, 2]. Among them, the type IV secretion system (T4SS)  
42 is a complex molecular machine spanning both the inner and outer membranes, and  
43 translocate substrate proteins into eukaryotic host cells in only one step[3-9].  
44 Protein-translocating T4SSs can be divided into two major families according to the  
45 composition of component elements: type IVA, exemplified by the *A. tumefaciens*  
46 VirB/VirD4 T4SS and *H. pylori* Cag T4SS, and type IVB exemplified by *Legionella* Dot/Icm  
47 T4SS[9]. Substrate proteins translocated by T4SSs, also called effectors, play important  
48 roles in bacterial infections and pathogenicity[1, 10, 11].

49 Effectors of T4SSs (T4SEs) are transported directly or as complexes with DNA in many  
50 pathogenic bacteria, such as *Helicobacter pylori*, *Legionella pneumophila*, *Bordetella*  
51 *pertussis*, *Coxiella*, *Brucella*, and *Bartonella*[12-17]. T4SS-mediated entry of effector  
52 proteins into recipient cells is contact-dependent[18]. Once they enter the eukaryotic host  
53 cytoplasm, they disrupt signal transduction and cause various host diseases. Identifying  
54 these effectors is crucial for understanding the mechanisms of infection and pathogenicity  
55 caused by these bacteria. However, because the composition and sequences vary  
56 significantly, it is challenging to identify new T4SEs experimentally. Although many T4SEs  
57 have been identified and characterized in a few model organisms[19-22], the exact  
58 mechanism remains unclear.

59 Since 2009 when the first machine-learning algorithm was introduced, tens of  
60 computational models have been developed to predict T4SEs[2, 23]. Early algorithms  
61 were mainly species-specific, such as those predicting T4SEs in *Legionella*  
62 *pneumophila*[23]. In another study, Wang *et al.* developed an SVM-based model,  
63 T4SEpre, which exhibited good overall and cross-species performance[24]. However,  
64 T4SEpre only considers the features buried in the C-terminal 100 amino acids[24]. More  
65 studies, especially ensemble models recently developed with multi-aspect features, learn  
66 features from full-length proteins to improve performance[25, 26]. Deep learning

67 algorithms have also been applied in for the prediction of T4SEs. For example,  
68 CNN-T4SE integrated three convolutional neural network (CNN) models to learn the  
69 features of amino acid composition, solvent accessibility, and secondary structure of the  
70 full-length T4SEs[27]. T4SEfinder is a multi-layer perception (MLP) model that learns the  
71 features generated by a pre-trained BERT model[28], which can predict T4SEs  
72 accurately[29]. Notably, BERT is a natural language processing (NLP) model that is  
73 appealing in biology and other fields[30-35]. NLP models have been successfully applied  
74 to the prediction of protein subcellular localization[31, 32], secondary structure[32, 33, 35],  
75 and others[34]. Besides T4SEfinder, the NLP-based pre-trained transformers have also  
76 been used for the prediction of bacterial type III secreted effectors and Sec/Tat substrates,  
77 both achieving superior performance[36, 37].

78 Although machine learning strategies have achieved some success in the identification of  
79 T4SEs[2, 23, 24], the high false-positive rate has been a big challenge. To reduce the  
80 false-positive rate in predicting type III effectors, Hui et al. proposed a strategy to combine  
81 machine learning models with homology searching, and integrate multiple modules  
82 considering the multi-aspect biological features of the effector genes[38]. To improve  
83 model performance, other models have also considered the multiple features and a  
84 combination of homology-based strategies in the prediction of type III effectors[39-41]. For  
85 T4SE prediction, homology searching was also been applied independently. For example,  
86 S4TE integrates 13 sequence homology-based features, including homology to known  
87 effectors, homology to eukaryotic domains, presence of subcellular localization signals,  
88 and secretion signals, and develops a scoring scheme to predict T4SEs mainly from  $\alpha$ -  
89 and  $\gamma$ -proteobacteria[42]. Despite the high precision, the sensitivity could be influenced by  
90 the large diversity of T4SE composition and sequences. Therefore, it could be a better  
91 solution to take the advantages of both machine learning approaches, especially  
92 ensemblers, and homology-based methods, designing an integrated T4SE prediction  
93 pipeline that combines various models and comprehensively considers various  
94 characteristics of effector sequences.

95 In this study, we proposed a hybrid strategy for predicting T4SEs. First, a homology  
96 searching strategy scanned both the global homology of full-length proteins and the local  
97 homology of domains to known effectors. Additionally, we retrained a machine learning  
98 module T4SEpre[24] with updated T4SE data and hand-crafted amino acid composition  
99 features in the C-termini. Furthermore, a group of transfer learning models was developed  
100 based on the features generated by various pretrained transformers. For the transfer  
101 learning models, we utilized the deep context protein language models ESM-1b, ProtBert,  
102 ProtT5-XL, and ProtAlbert to represent protein sequence features[32, 33]. These features  
103 can characterize the intrinsic but unclear properties of protein sequences and the  
104 interactions between positions. Based on these feature representations, application  
105 models were developed to classify T4SEs using a deep neural network architecture with  
106 an attention mechanism. Finally, we integrated the homology-based modules, machine  
107 learning models based on traditional handcrafted features, and transfer learning models  
108 with transformer-generated features into a pipeline, namely T4SEpp, which assembles  
109 the individual modules in a linear function to generate a prediction score reflecting the  
110 likelihood of a protein to be a T4SE. A web application for T4SEpp is also available via the  
111 link: <https://bis.zju.edu.cn/T4SEpp>.

112

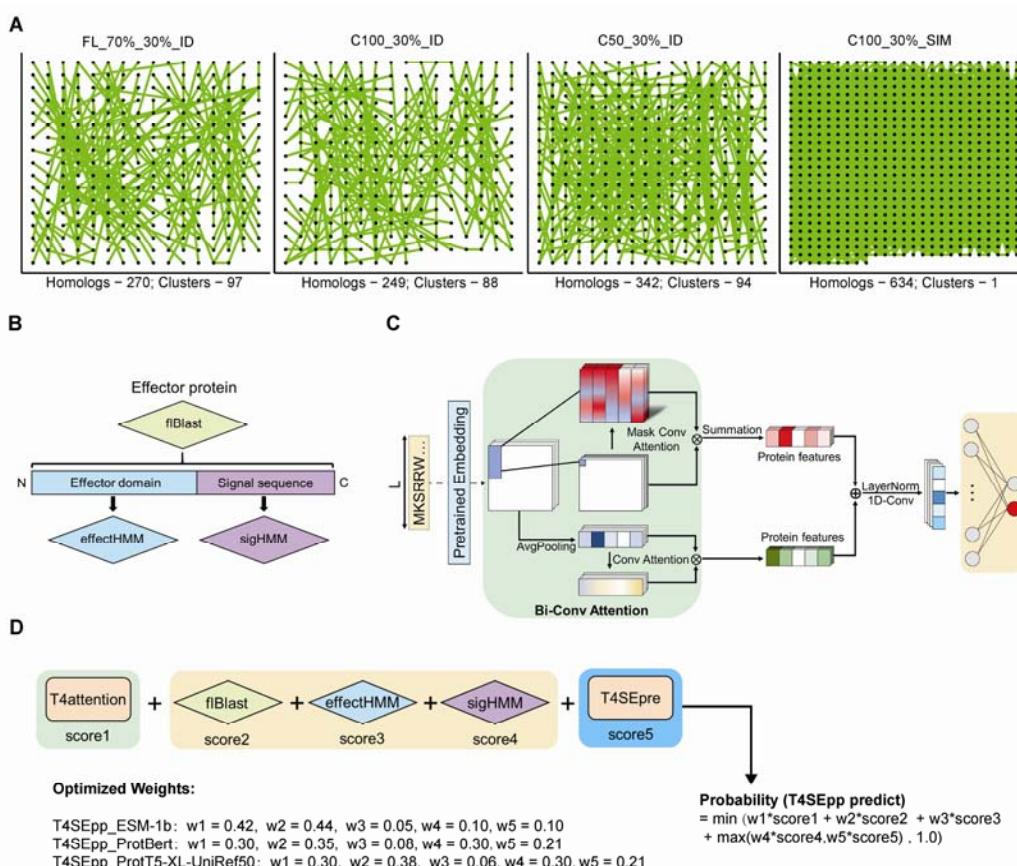
113 **Results**

114 **Sequence homology among verified effectors and the integrated**  
115 **prediction framework**

116 Experimentally verified effectors were collected from literature and databases, and 653  
117 proteins were obtained after removing redundant sequences, representing the latest and  
118 most comprehensive list of experimentally verified T4SEs[26, 43] (see [Materials and](#)  
119 [Methods](#)). Pairwise sequence alignments of full-length (FL) effector proteins or their  
120 C-terminal peptides of 100 or 50 amino acids (C100 or C50, respectively) were performed.  
121 For the FL proteins, 481 non-homologous clusters were identified after homology filtering  
122 for the proteins with > 30% identity and > 70% length coverage of the pair of proteins  
123 (FL\_70%\_30%\_ID) ([Figure 1A](#)). However, for the C100 sequences, 249 were homologous  
124 to others with an identity of > 30%, and 473 non-redundant clusters were retained from  
125 these sequences after homology filtering (C100\_30%\_ID) ([Figure 1A](#)). The reduction in  
126 the number of clusters indicated that the C-terminal 100 amino acids showed more  
127 homology than the full-length effector proteins, but there were no significant differences  
128 between them (473/654 vs. 481/654, EBT  $P= 0.614$ ). The C50 sequences further reflected  
129 the typical C-terminal homology between effectors. A total of 342 peptides were found to  
130 have homology with the others, while 401 clusters remained for these peptides after  
131 homology filtering (C50\_30%\_ID, 401/654 vs. 481/654, EBT  $P=3.17e-03$ ) ([Figure 1A](#)).  
132 Rigorous homology filtering is a prerequisite for the application of machine learning to  
133 sequence analysis and effector identification. Sequence homology is often measured  
134 using similarity (SIM) rather than identity, with a cut-off of  $\leq 30\%$  for proteins. Therefore,  
135 we also employed a loose measure of homology, defined as >30% similarity, to examine  
136 sequence similarity between validated effectors. Surprisingly, the homology network  
137 involved all the 634 C100 peptides (C100\_30%\_SIM) ([Figure 1A](#)). The results  
138 demonstrated that the validated T4SEs showed unexpectedly significant homology,  
139 especially for the C-terminus.

140 Taking full advantage of the fragmental similarity between T4SEs, combined with machine  
141 learning techniques, a comprehensive prediction pipeline (T4SEpp) was designed ([Figure](#)

142 **1B and C).** Several homology searching modules have been developed to detect  
143 full-length (fIBlast), effector domain (effectHMM) and C-terminal signal region (sigHMM)  
144 homologs of known T4SEs. A previous machine learning model, T4SEpre, which predicts  
145 T4SEs based on the C-terminal hand-crafted features and fine-tuned based on an  
146 updated dataset [24]. Using the generative features from pre-trained transformers, we  
147 also developed a deep learning module, T4attention, incorporated with the Bi-Conv  
148 attention mechanism. **Figure 1D** shows the framework of T4SEpp, taking the prediction  
149 scores of the homology search module (fIBlast, effectHMM, and sigHMM), T4SEpre, and  
150 T4attention into a linear model to generate the final score, which reflects the likelihood of  
151 an input protein to be an effector.



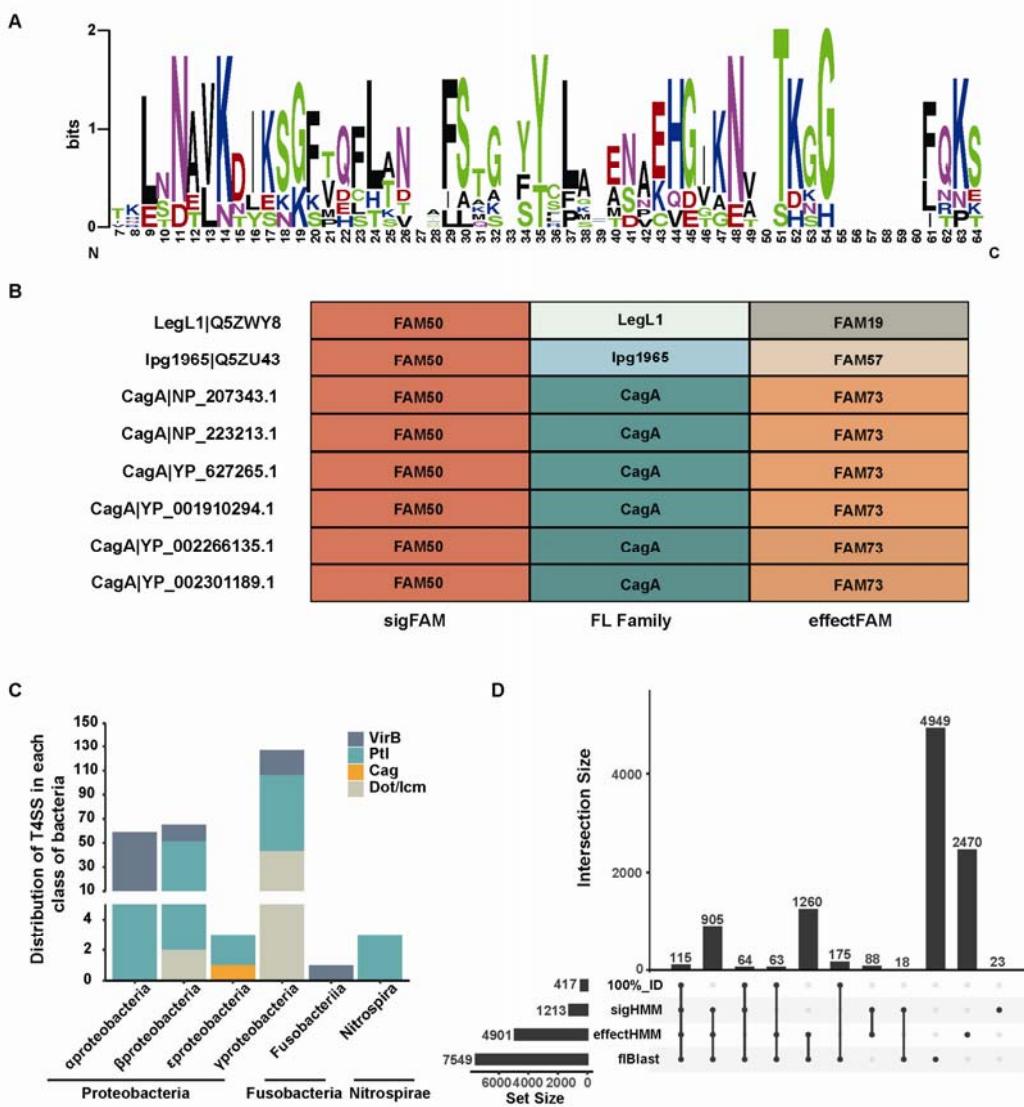
152  
153 **Figure 1.** Sequence homology among T4S effectors and an integrated prediction framework. (A)  
154 Sequence homology network of T4SE. The nodes represented effectors with homology with at least one  
155 other effector. The pairs with homology (identified by the criteria defined at the top) were connected by  
156 green lines. The cluster and homology represented the number of T4SE multi-member clusters and  
157 homologous proteins. (B) Homology-based modules developed for T4SEpp, based on the full-length  
158 effector proteins (fIBlast) or signal sequence (sigHMM), and effector (effectHMM) domains. (C)

159 T4attention, a deep learning model framework based on Bi-Conv attention. (D) Flowchart of the T4SEpp  
160 prediction program. The weighted sum of the prediction scores from each individual module is  
161 incorporated into the probability that a protein is a T4SE.

162 **T4SE families of signal sequences and functional domains**

163 According to the homology of the C50 peptides, the effectors could be clustered into 405  
164 signal sequence families, including 94 multi-member and 311 singlet families  
165 ([Supplementary Table S3](#)). After the signal sequences (C50) were removed, 640 effectors  
166 with a length of  $\geq$  30 amino acids remained, of which 270 were classified into 106  
167 multi-member families and 370 represented singlet families ([Supplementary Table S4](#)).  
168 The sequences within each multi-component family showed striking similarity, and  
169 multiple positions appeared conserved, as shown for one example, sigFAM50 ([Fig. 2A](#)).  
170 The amino acid composition (AAC) showed apparent preference in multiple positions, e.g.,  
171 leucine in positions 9, 24, and 37, serine in position 18, 30, and 64, and asparagine in  
172 position 11, 26, and 48, of sigFAM50 ([Fig. 2A](#)). Effectors of the same signal sequence  
173 family may belong to different effector functional domain families and *vice versa*. For  
174 example, six cytotoxin-associated gene A (CagA) effectors and two *Legionella* proteins  
175 contained the signal sequences of the same family (sigFAM50, [Figure 2B; Supplementary](#)  
176 [Table S3](#)), but they also fell into three different effector functional domain families  
177 (effectFAM73 for all the CagAs, and effectFAM19 and effectFAM57 for the other two  
178 proteins; [Figure 2B; Supplementary Table S4](#)). This could be related to frequent domain  
179 reshuffling events that have been reported in *Legionella*[44].

180 Furthermore, we searched for homologs of known T4SEs from the representative  
181 bacterial genomes downloaded from UniProt (8761 genomes; [Supplementary Table S5](#)).  
182 In total, 258 protein-translocating T4SSs were detected from 227 bacterial strains  
183 distributed in their phyla (*Proteobacteria*, *Fusobacteria* and *Nitrospira*), six classes  
184 (*Alphaproteobacteria*, *Betaproteobacteria*, *Epsilonproteobacteria*, *Gammaproteobacteria*  
185 *Fusobacteriia*, and *Nitrospira*), 117 genera and 227 species ([Figure 2C, Supplementary](#)  
186 [Table S6](#)). In these strains with T4SSs, 10,130 proteins were detected with full-length or  
187 local homology to the known T4SEs using the individual homology searching modules,  
188 and 1,020 were identified by all the three modules ([Figure 2D, Supplementary Table S7](#)).



189

190 **Figure 2.** Search for T4SS and effectors in the UniProt reference proteome based on sequence  
191 homology. (A) Multiple-sequence alignment (MSA) of a homologous cluster (i.e., sigFAM50) of T4SE  
192 signal sequences. Then, utilize the sequence logo of position-specific Amino Acid Compositions (AAC)  
193 corresponding to the alignment. The height of the amino acid in each position indicated the AAC  
194 preference. (C) Using the core protein components of T4SS to construct a Hidden Markov Model (HMM)  
195 to predict the distribution of T4SS in the UniProt reference proteome. (D) Three homologous modules  
196 (sigHMM, effectHMM and flBlast) were used to predict the potential T4SE in the UniProt reference  
197 proteome containing T4SS, respectively. Where 100%\_ID represents a known verified T4SE.

198 **Prediction of T4SEs with pre-trained transformer-based models**

199 Recently, protein language models have been successfully applied for structural  
200 prediction and sequence classification. In this research, we used six pre-trained models,  
201 ESM-1b, ProtAlbert, ProtBert-BFD, ProtBert-UniRef100, ProtT5-XL-BFD, and

202 ProtT5-XL-UniRef50, to generate features; based on this, we developed deep learning  
203 models (T4attention) based on Bi-Conv attention respectively to classify T4SEs and  
204 non-T4SEs. The T4attention models based on different sequence embedding features  
205 were compared for performance based on a five-fold cross-validation strategy ([Table 1](#)).  
206 Generally, T4attention\_ESM-1b performed the best, followed by  
207 T4attention\_ProT5-XL-UniRef50, and T4attention\_ProAlbert showed the poorest  
208 performance, according to the Matthew's correlation coefficient (MCC) and F1-score  
209 ([Table 1](#)). T4attention\_ESM-1b not only reached the highest MCC and F1-score (0.861  
210 and 0.819, respectively), but required the lowest computational resources ([Supplementary](#)  
211 [Figure S3](#)). It was also noted that, for the same protein language model architecture,  
212 ProtBert or ProtT5-XL, for example, the generation of features from models pre-trained  
213 from various volumes of protein database required similar computational resource, but the  
214 smaller database-based pre-trained models always generated features for subsequent  
215 T4attention models with better performance (MCC of T4attention\_ProBert vs.  
216 T4attention\_ProBert-BFD, 0.814 vs. 0.797; T4attention\_ProT5-XL-UniRef50 vs.  
217 ProtT5-XL-BFD, 0.818 vs. 0.800) ([Table 1, Supplementary Figure S3](#)). The redundancy of  
218 protein sequences in the BFD dataset might lead to biases in model training, and further  
219 compromise the performance of models addressing downstream tasks.  
220 We also evaluated the performance and generalization abilities of these models on an  
221 independent testing dataset. T4attention\_ProBert showed the overall the best  
222 performance, for which the MCC, F1-score, and accuracy reached 0.917, 0.927, and  
223 0.987, respectively ([Table 2](#)). T4attention\_ESM-1b was unexpected and showed poor  
224 performance ([Table 2](#)). Consistent with the cross-validation results, the ProBert and  
225 ProtT5-XL models, based on the features generated by transformers pre-trained from a  
226 smaller database (UniRef100/UniRef50), showed better performance ([Table 2,](#)  
227 [Supplementary Figure S4](#)).  
228 Considering the performance of models based on both cross-validation results and the  
229 independent testing dataset, as well as the requirement of computational resources, we  
230 integrated three models, T4attention\_ESM-1b, T4attention\_ProBert, and

231 T4attention\_ProtT5-XL-UniRef50, into the pipeline to predict T4SEs.

232 **An integrated pipeline predicting T4SEs with largely improved performance**

233 In addition to the models based on the features generated by the transformer, we tested  
234 traditional machine learning models based on hand-crafted features. To this end, we  
235 fine-tuned two models of T4SEpre models (T4SEpre\_psAac and T4SEpre\_bpBac) to  
236 learn the amino acid composition features in the C-termini of T4SEs[24]. Both models  
237 showed a certain performance in the prediction of T4SEs according to the cross-validation  
238 results or the independent testing dataset, although they were not comparable to the  
239 T4attention models ([Tables 1 and 2](#)).

240 To further improve the accuracy and reduce the false positive rate for T4SE prediction, we  
241 assembled a unified pipeline, T4SEpp, integrating the homology searching modules,  
242 machine learning models based on hand-crafted features and models based on  
243 transformer-generated features ([Figure 1](#)). The integrated pipeline showed strikingly  
244 better performance than the individual models, with MCC values of 0.930, 0.911 and  
245 0.924 for T4SEpp\_ESM-1b, T4SEpp\_ProtBert, and T4SEpp\_ProtT5-XL-UniRef50 based  
246 on the cross-validation evaluation and 0.883, 0.943, and 0.942 for the testing dataset,  
247 respectively ([Tables 1 and 2](#)).

248 T4SEpp was also compared to other state-of-the-art(SOTA) T4SE prediction models,  
249 such as Bastion4[26], CNNT4SE[27] and T4SEfinder[29]. Among these other models,  
250 Bastion4 showed the best performance, which was close to that of the T4attention models  
251 but was far inferior to the integrated T4SEpp ([Table 2](#)).

252 **Genome-wide screening of T4SEs in *Helicobacter pylori* and other  
253 bacteria**

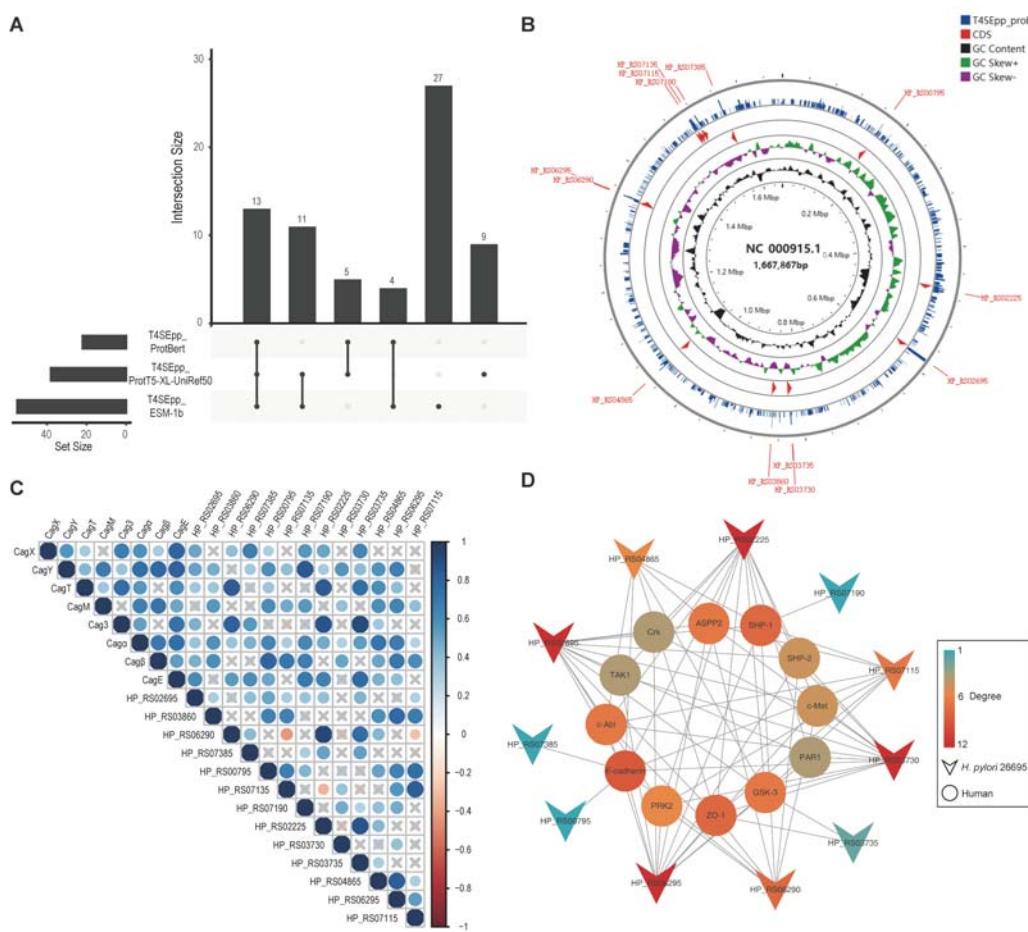
254 *H. pylori* is a gram-negative, spiral-shaped bacterium that colonizes the stomach in  
255 approximately half of the world's population[45]. Although most individuals do not  
256 experience any adverse health outcomes attributable to *H. pylori*, the presence of these  
257 bacteria in the stomach increases the risk of developing gastric diseases[46-50]. *H. pylori*  
258 infection is also the strongest known risk factor for gastric cancer, the third leading cause

259 of cancer-related death worldwide[51]. T4SS plays an important role in *H. pylori*[47-50].  
260 However, to date, only one T4SE, CagA, has been identified for the T4SS in *H. pylori*[52].  
261 Here, we applied T4SEpp to screen T4SE candidates from the proteins derived from the  
262 genome of *H. pylori* 26695, a model *H. pylori* strain (NCBI accession number:  
263 NC\_000915.1). The three T4SEpp integrated models, T4SEpp\_ESM-1b,  
264 T4SEpp\_ProtBert, and T4SEpp\_ProtT5-XL-UniRef50, predicted 55, 22, and 38 T4SE  
265 candidates, respectively, and 13 were shared by the prediction results of all the three  
266 models (Figure 3A-B; Supplementary Tables S6, S8). The 13 potential effector genes  
267 were scattered throughout the genome (Figure 3B). Notably, *HP\_RS02695*, which  
268 encodes the only known effector CagA, was among the 13 candidates (Figure 3B).

269 Gene co-expression was analyzed for the 13 T4SE candidate genes in *H. pylori* 26695  
270 using an RNA-seq dataset sampled from the strain collected under 12 different  
271 conditions[53]. Except for *HP\_RS06290*, *HP\_RS03730*, *HP\_RS04865*, and *HP\_RS06295*,  
272 the remaining eight genes showed a strong expression correlation with *cagA* expression  
273 (Figure 3C). The genes co-expressed with *cagA* also showed a significant correlation with  
274 the expression of the core component genes of the Cag T4SS (Figure 3C). Furthermore,  
275 we annotated 12 human proteins that showed experimentally verified interactions with  
276 CagA by literature search, including ASPP2, c-Abl, c-Met, Crk, E-cadherin, GSK-3, PAR1,  
277 PRK2, SHP-1, SHP-2, TAK1, and ZO-1[54-65]. The interaction network between the 13  
278 potential *H. pylori* 26695 T4SEs and the 12 human proteins was inferred (Figure 3D). Ten  
279 of the candidate T4SEs showed potential interaction with at least one of the human  
280 proteins (Figure 3D). Similar to CagA, *HP\_RS02225*, *HP\_RS06295* and *HP\_RS03730*  
281 showed interacted with all the 12 human proteins (Figure 3D). Taken together, the proteins  
282 predicted by T4SEpp could potentially represented new T4SEs, or may be closely related  
283 to the pathogenicity of *H. pylori* 26695.

284 We also used T4SEpp to screen the T4SE candidates from the genomes of 227 bacterial  
285 strains bearing T4SSs. T4SEpp\_ESM-1b, T4SEpp\_ProtBert, and  
286 T4SEpp\_ProtT5-XL-UniRef50 detected 16,972, 20,441 and 17,197 T4SE candidates  
287 respectively, with 12,622 common candidates co-predicted by all the three T4SEpp

288 models (Supplementary Table S9, Supplementary Figure S5).



289

290 **Figure 3.** Whole-proteome detection for T4SEs in pathogenic bacteria (*H. pylori* 26695). (A) Prediction of  
291 potential T4SEs in the *H. pylori* 26695 proteome using three T4SEpp models. (B) Use the circos diagram  
292 to show the distribution of potential T4SEs predicted by the three T4SEpp models on the *H. pylori* 26695  
293 chromosome (NC\_000915.1), where T4SEpp\_prob represents the mean value of the prediction results of  
294 the three T4SEpp models, and the outer circle of the circos diagram represents the three T4SEpp model  
295 predictions were all positive. (C) Under 12 different expression conditions of *H. pylori* 26695, the  
296 expression correlation of Cag T4SS core components with 12 potential T4SEs and CagA (HP\_RS02695)  
297 predicted by three T4SEpp models were positive. (D) Prediction of potential interactions between 12  
298 potential T4SEs in *H. pylori* 26695 and 12 human proteins using DeepHPI. These 12 human proteins are  
299 known to interact with CagA(HP\_RS02695).

### 300 **Web server and implementation of T4SEpp**

301 To facilitate the implementation of T4SEpp, we developed a user-friendly web application  
302 (<https://bis.zju.edu.cn/T4SEpp>). The three T4SEpp integrated models, T4SEpp\_ESM-1b,  
303 T4SEpp\_ProBert, and T4SEpp\_ProT5-XL-UniRef50 can be chosen and implemented by  
304 users. Both the overall prediction results and the results of the individual modules are

305 displayed in table format, which can be downloaded and filtered easily.

306 **Discussion**

307 T4SS plays a crucial role in bacterial pathogenicity by secreting effectors into host cells. *L.*  
308 *pneumophila* can translocate more than 300 known effectors into human cells via the  
309 Dot/Icm T4SS system, causing legionellosis[66, 67]. In *H. pylori*, CagA is the only known  
310 T4SE that can hijack multiple signaling pathways in gastric epithelial cells, leading to  
311 gastritis, gastric ulcer and even gastric cancer[68, 69]. Identifying the full repertoire of  
312 T4SEs in a pathogen is important to understand its pathogenic mechanisms.  
313 Computational methods can assist with the effective identification of new effectors[70].  
314 However, the currently available T4SE prediction tools still show high false positive  
315 rates[2]. To address this issue, we developed a unified T4SE prediction pipeline, T4SEpp,  
316 which includes homologous search modules, traditional machine learning modules and  
317 natural language processing-based modules. T4SEpp outperformed other SOTA methods  
318 for predicting T4SEs, with improved sensitivity and specificity. Furthermore, we initiated a  
319 web server that can conveniently implement the T4SEpp pipeline, providing the prediction  
320 results for each module.

321 Although the component modules of T4SEpp can be used for T4SE prediction, they often  
322 show higher false positive rates when used alone. This could be related to the low power  
323 of the individual dimensions of the features. Specifically, T4SE signal sequences were  
324 considered to contain important common features guiding T4SE secretion and  
325 translocation, which were used for effective T4SE prediction using tools such as  
326 T4SEpre[24]. However, the computational models based only on the signal sequences  
327 showed performance inferior to other models based on multiple-aspect features extracted  
328 from full-length proteins[26]. In this study, we discovered high sequence similarity in the  
329 C-terminal signal region among the proteins, without apparent homology to full-length  
330 effectors. Such undetected homology could have introduced bias and led to overfitting of  
331 various established machine learning algorithms and the discrepancy between the  
332 reported and actual accuracy of these methods. However, the C-terminal homology could  
333 also suggest the independent evolution of the signal sequences, and it could potentially

334 be applied to facilitate the identification of new effectors[42].

335 In this study, three types of modules were integrated to predict T4SEs. Homology  
336 searching-based modules provide more accurate results, but they also show a lower  
337 capacity to detect new effectors with or without remote homology. The re-trained T4SEpre  
338 modules focused on the important features of the C-terminal signal sequences of T4SEs.  
339 T4attention learns from the full-length effector proteins the features generated by protein  
340 language models (pLMs) pre-trained with large-scale protein databases. These  
341 pLM-based models can learn new, previous unknown features that may involve  
342 position-position interactions, and have demonstrated outstanding performance in the  
343 prediction of proteins with various biological functions, such as subcellular localization and  
344 secondary structure. We used multiple pLMs to build transfer learning models, most of  
345 which exhibited excellent performance in T4SE prediction. Interestingly, we noticed that  
346 the pre-trained pLMs based on the larger datasets did not generate better prediction  
347 performance. pLMs pre-trained on smaller datasets are more efficient. Therefore, the  
348 transfer models were trained with the pLMs based on smaller non-redundant protein  
349 datasets. T4SEpp, which integrated all three types of modules, significantly outperformed  
350 both individual modules and other similar applications.

351 Using T4SEpp, we analyzed the potential new T4SEs in both *H. pylori* and other strains  
352 bearing T4SS. We identified 12 new T4SEs in *H. pylori*. We also identified 12,205 new  
353 T4SEs and 417 known T4SEs from 227 strains bearing a T4SS. The results suggested  
354 that there are many new effectors yet to be clarified.

355 Despite the significant performance improvement of T4SEpp, there remains a need to  
356 further improve the prediction of T4SEs. Other features that have been known to  
357 contribute to the recognition of T4SEs, such as the GC content of genomic loci,  
358 phylogenetic profiles, consensus regulatory motifs in promoters, physicochemical  
359 properties, secondary structures, homology to eukaryotic domains, and  
360 organelle-targeting signals, have not been integrated into the current version of the  
361 model[70]. Novel features that could be further integrated to improve the model  
362 performance remain to be disclosed. The different types (IVA and IVB) of effectors,

363 chaperone-dependent or chaperone-independent effectors, or species-specific effectors  
364 can also be modeled and predicted separately to make more accurate prediction[70].  
365

366 **Materials and methods**

367 **Datasets**

368 The 390 T4SEs used by Bastion4 as the positive training dataset[26] and 540 T4SEs  
369 annotated in SecReT4 v2.0[43] were collected and merged, and in total we got 653  
370 non-identical, validated T4SEs. CD-HIT[71] was used to filter homology-redundant  
371 proteins with sequence identity  $\geq 60\%$ , generating 518 non-redundant T4SEs, which were  
372 used as the positive training dataset([Supplementary Figure S1A](#)). For the negative  
373 training dataset, we collected 1112 and 1548 non-T4SE protein sequences from  
374 Bastion4[26] and PredT4SE-stack[72], respectively. The same procedure was used to  
375 eliminate the sequence redundancy among the non-T4SEs and between the non-T4SEs  
376 and T4SEs in the positive training dataset, generating 1590 non-redundant non-T4SEs  
377 ([Supplementary Figure S1A](#)). An independent validation dataset was also prepared, for  
378 which the T4SEs were collected from the testing dataset of Bastion4 (30) and others (74)  
379 annotated from literature published recently ([Supplementary Table S1](#)), and the 150  
380 testing non-T4SEs of Bastion4 were also used as negative ones. CD-HIT was used to  
381 filter the redundant proteins with  $\geq 60\%$  sequence identity to the training proteins and  
382 among proteins in the validation dataset, resulting in 20 non-redundant T4SEs and 150  
383 non-T4SEs ([Supplementary Figure S1B](#)).

384 **Genome-wide screening of protein-translocation T4SSs**

385 The conserved core component proteins were collected from four representative  
386 protein-translocation T4SSs, including the *Agrobacterium tumefaciens* VirB/VirD4 T4SS  
387 (inner membrane complex proteins VirB3, VirB6, VirB8, VirB10 and VirD4, and outer  
388 membrane complex proteins VirB7, VirB9 and VirB10)[16], the *Bordetella pertussis* Ptl  
389 T4SS (inner membrane complex proteins PtlB, PtlE and PtlH, and outer membrane  
390 complex proteins PtlF and PtlG)[73], the *Helicobacter pylori* Cag T4SS (inner membrane  
391 complex proteins Cag $\alpha$ , Cag $\beta$  and CagE, and outer membrane complex proteins CagX,  
392 CagY, CagT, CagM and Cag3)[18], the *Legionella pneumophila* Dot/Icm T4SS (inner  
393 membrane complex proteins IcmB, IcmG and DotB, and outer membrane complex

394 proteins DotC, DotD, DotG and IcmK)[16]. Hidden Markov Model (HMM) profiles were  
395 built using HMMER 3.1 for the T4SS component protein families[74]. Protein sequences  
396 derived from the 8761 reference bacterial genomes curated in UniProt were scanned with  
397 HMMER and the HMM profiles to determine the distribution of homologs of T4SS core  
398 component proteins ([Supplementary Table S5](#)).

399 **Homology networks of the T4SE peptide sequences**

400 The sequences of 653 non-identical verified T4SE proteins were used to construct the  
401 homology networks. JAligner implemented the Smith-Waterman algorithm to determine  
402 the similarity between any pair of full-length effectors or peptide fragments of designated  
403 length (<http://jaligner.sourceforge.net/>). The identity and similarity percentages between  
404 any pair of sequences were used as measures to determine the homology level[38].

405 **Homology-based T4SE detection modules**

406 Diamond blastp was used to determine the homology and cluster the full-length effector  
407 proteins[75] and to screen new full-length homologs (fBlast). Two proteins showing  $\geq 30\%$   
408 similarity for  $\geq 70\%$  of the full length of either protein were considered to be full-length  
409 homologs[38, 76]. The C-terminal 50-aa signal sequences of the verified effectors were  
410 clustered according to homology networks with 30% identity for 70% length aligned by  
411 JAligner. HMM profiles were built for each signal sequence family, and a sigHMM module  
412 was developed to screen for proteins with C-terminal sequences homologous to the  
413 profiles of known T4SE signal sequence families. The homology cutoff for HMM searching  
414 was optimized for each family, ensuring that all or most of the known effectors recalled  
415 and maintained a higher specificity. For effectHMM, we removed the C-terminal 50-aa  
416 signal from each known effector sequence, and the remaining peptide fragment  
417 with  $>30$ -aa length was used for domain clustering. Pairwise alignment was repeatedly  
418 performed with BLAST between the domain sequences, and the cutoff for homology was  
419 optimized based on the average coverage of the aligned length multiplied by the identity,  
420 that is,  $\geq 10$ [38]. The HMM profiles were built for the effector domain families, and  
421 effectHMM was developed using a similar procedure as sigHMM to screen the proteins

422 with homologous T4SE effector-domains. We used EBT to compare general homology  
423 between proteins[38, 77].

424 **Fine-tune T4SEpre models with updated datasets**

425 Fine-tune T4SEpre models (T4SEpre\_psAac and T4SEpre\_bpBac) using the new  
426 training datasets of T4SEs and non-T4SEs. The original T4SEpre procedure was followed  
427 for feature representation, parameter optimization and model training[24]. Briefly,  
428 sequential amino acid, bi-residue and motif composition features and position-specific  
429 amino acid composition profile for the positive training dataset were represented for each  
430 C-terminal 100-aa sequence for the psAac model. For the bpBac model, position-specific  
431 amino acid composition profiles of both the positive and the negative training datasets  
432 (Bi-Profile Bayesian features) were represented for each C-terminal 100-aa sequence.  
433 Support vector machine (SVM) models were trained for feature matrices. The kernel  
434 functions, that is, linear, polynomial, sigmoid, and radial base function (RBF), and  
435 corresponding parameters (cost and gamma) were optimized using a 5-fold  
436 cross-validation grid search strategy. The sklearn v1.0.1 was used for implementing SVM  
437 model training and kernel/parameter optimization.

438 **The deep learning architecture of T4attention based on pre-trained protein  
439 language models**

440 Input embeddings. Frozen embeddings were extracted directly from protein language  
441 models (pLMs) without fine-tuning the training data. Four different basic LMs were used in  
442 this study, and six different pLMs were pre-trained with different datasets. The basic LMs  
443 include, (i) "ESM-1b"[33], which is a Transformer model, (ii) "ProtBert" [32], which is a  
444 BERT-based encoder model[30], generating two pLMs pre-trained on BFD[78] and  
445 UniRef100[79] data, respectively, (iii) ProtT5-XL[32], which is an encoder model based on  
446 T5[80], generating two pLMs pre-trained on BFD and UniRef50, respectively, and (iv)  
447 ProtAlbert[32], which is an encoder model based on Albert[81] and pre-trained only with  
448 UniRef100.

449 Optimization strategy. We use a BERT-like optimizer AdamW and a Cosine Warm-up  
450 strategy[30] to optimize the loss of the learning model. The initial learning rate is set to  
451 0.0001, the batch size is set to 18, and the warm-up steps were set to 10. An early  
452 stopping strategy was applied to monitor the validation ACC with 30 epochs to prevent  
453 overfitting. To address the challenges of imbalanced positive and negative samples and  
454 the difficulty of training individual samples in deep learning model training, we adopted the  
455 Focal Loss method to mitigate the issue of gradient descent difficulty[82]. Focal Loss  
456 increases the hyperparameter  $\gamma$  (default  $\gamma=2$ ) based on the weighted cross-entropy loss,  
457 which controls the shape of the curve.

$$FL(p_t) = -\alpha_t(1 - p_t)^\gamma \log(p_t)$$

458  $\alpha_t$ : Weight of the sample t,

459  $p_t$ : Binary cross entropy loss.

460 T4attention model. The input to T4attention (Figure 1C, Supplement Figure S2) is a  
461 protein embedding  $E_0 \in \mathbb{R}^{n \times d_0}$ , where  $n$  is the sequence length and  $d_0$  is the size of the  
462 embedding (depending on the feature extraction model). T4attention is a model based on  
463 Bi-Conv attention. In the protein embedding direction, average pooling is performed  
464 directly, and the input is transformed by two separate 1D convolutions, where the 1D  
465 convolution serves as the attention coefficient  $e$  and value  $v$  for computing the embedding  
466 dimension,  $e, v \in \mathbb{R}^{d_1}$ . Thus, we obtained the feature representation of the embedding  
467 dimension  $x = \text{softmax}(e) \times v$ . In the direction of the protein sequence, we randomly  
468 intercept the length of  $m$  in the length direction of the protein-embedding sequence such  
469 that the protein embedding becomes  $E_1 \in \mathbb{R}^{m \times d_0}$ . Similar to the convolutional attention  
470 calculation in the protein embedding direction, the attention coefficient  $e'$  and value  $v'$  are  
471 obtained,  $e', v' \in \mathbb{R}^{m \times d_1}$ . The difference is that the direction of the convolution is in the  
472 direction of the sequence length, so that we can obtain the feature representation of the  
473 protein sequence direction and converge according to the sequence length direction by  
474  $x' = \sum_i^m \text{softmax}(e') \times v'$ . The convolution attention results of the embedding direction  
475 and the protein sequence direction are merged and passed through the LayerNorm and

476 the residual one-dimensional convolution, and the class probabilities are obtained through  
477 the two-layer multi-layer perceptron (MLP),  $p(\mathbf{c}|\mathbf{x}) = \text{softmax}(\text{MLP}(\text{Conv}(\mathbf{x} + \mathbf{x}') +$   
478  $(\mathbf{x} + \mathbf{x}'))$ ), where  $\mathbf{c}$  indicates the category of the output (i.e., T4SE or nonT4SE).

479 T4attention was developed using PyTorch v1.10.1. The models were trained and  
480 evaluated with 24-GB of memory and an NVIDIA GeForce RTX 3090 GPU for  
481 acceleration.

482 **Integrated T4SE prediction model**

483 T4SEpp is a linear model that integrates multiple prediction modules developed or  
484 re-trained in this study, including homology-searching modules for full-length or  
485 fragmented effector proteins, traditional machine-learning modules with hand-crafted  
486 features, and the attention-based transfer learning modules using the features generated  
487 by pre-trained protein language models. For any prediction module, the factor was set to  
488 1.0 if there was a positive prediction result, and 0 otherwise. Weight  $\mathbf{x}$  was assigned  
489 empirically to each module, where  $\mathbf{x} \in (0, 0.50)$ . The maximum T4SEpp predicted value  
490 was set as 1.0. We trained the model using a grid search with 5-fold cross-validation to  
491 determine the optimal combination of weights. The early stopping strategy was similar to  
492 that used for T4attention. The final optimal parameters were shown in [Figure 1D](#).

493 **Assessment of model performance**

494 Measures including accuracy (ACC), sensitivity (SN), specificity (SP), precision (PR),  
495 F1-score, Matthew's correlation coefficient (MCC), the area under the receiver operating  
496 characteristic curve (rocAUC), and the precision recall rate curve (AUPRC) were  
497 calculated to evaluate and compare the performance of models predicting T4SEs. Some  
498 of these measures are defined as follows:

$$ACC = \frac{TP + TN}{TP + TN + FP + FN}$$

$$SN = \frac{TP}{TP + FN}$$

$$SP = \frac{TN}{TN + FP}$$

$$PR = \frac{TP}{TP + FP}$$

$$F1-score = \frac{2 \times TP}{2 \times TP + FP + FN}$$

$$MCC = \frac{(TP \times TN) - (FP \times FN)}{\sqrt{(TP + FN) \times (TP + FP) \times (TN + FN) \times (TN + FP)}}$$

499 where TP, TN, FP, and FN represent the number of true positives, true negatives, false  
500 positives, and false negatives, respectively.

### 501 **RNA-seq analysis**

502 RNA-seq datasets of *H. pylori* 26695 under different conditions were downloaded from the  
503 NCBI GEO DataSets database with accessions GSE165055 and GSE165056[53]. After  
504 removing the adapters and low-quality sequences with Trimmomatic v0.39[83], the  
505 cleaned reads were mapped to the *H. pylori* 26695 reference genome (NC\_000915.1)  
506 using READemption (Version 2.0.0)[84]. The annotated genes were then quantified and  
507 analyzed. Protein-Protein Interaction (PPI) Networks were built and visualized using the  
508 Cytoscape v3.9.1[85].

### 509 **Availability**

510 The online version of the T4SEpp is freely accessible at <https://bis.zju.edu.cn/T4SEpp>.  
511 The standalone version of the T4SEpp model and the individual modules were are also  
512 deposited at <https://github.com/yuemhu/T4SEpp>. RNA-seq data are publicly available in  
513 the NCBI GEO DataSets database with accession numbers GSE165055 and  
514 GSE165056.

### 515 **Funding**

516 This work was supported by the National Key Research and Development Program of  
517 China (2016YFA0501704, 2018YFC0310602), the National Natural Sciences Foundation  
518 of China (31771477, 32070677), the Science and Technology Innovation Leading  
519 Scientist (2022R52035), and the 151 talent project of Zhejiang Province (first level),  
520 Collaborative Innovation Center for Modern Crop Production co-sponsored by province

521 and ministry, and the Natural Science Fund of Shenzhen (JCYJ20190808165205582).

522 **Authors' Contribution**

523 MC conceived and supervised the project. YH, MC, and YW coordinated the project. YH,  
524 YZ, YH, and ZZ dataset collection. YH provided codes, models and software tools. YH,  
525 XH, and HC developed the website. YH and YW performed model comparison and  
526 RNA-seq data analyses. YH, XH, HC, SL, QN, YW, and MC wrote the first draft of this  
527 manuscript. YH, YW, and MC revised the manuscript accordingly.

528 **Conflict of Interest: none declared.**

529

530 **ReferencesUncategorized References**

- 531 1. Costa TR, Felisberto-Rodrigues C, Meir A, Prevost MS, Redzej A, Trokter M, et al. Secretion  
532 systems in Gram-negative bacteria: structural and mechanistic insights. *Nat Rev Microbiol.*  
533 2015;13(6):343-59. doi: 10.1038/nrmicro3456. PMID: 25978706.
- 534 2. Hui X, Chen Z, Zhang J, Lu M, Cai X, Deng Y, et al. Computational prediction of secreted proteins in  
535 gram-negative bacteria. *Comput Struct Biotechnol J.* 2021;19:1806-28. doi: 10.1016/j.csbj.2021.03.019.  
536 PMID: 33897982.
- 537 3. Grohmann E, Christie PJ, Waksman G, Backert S. Type IV secretion in Gram-negative and  
538 Gram-positive bacteria. *Mol Microbiol.* 2018;107(4):455-71. doi: 10.1111/mmi.13896. PMID: 29235173.
- 539 4. Galan JE, Waksman G. Protein-Injection Machines in Bacteria. *Cell.* 2018;172(6):1306-18. doi:  
540 10.1016/j.cell.2018.01.034. PMID: 29522749.
- 541 5. Waksman G. From conjugation to T4S systems in Gram-negative bacteria: a mechanistic biology  
542 perspective. *EMBO Rep.* 2019;20(2). doi: 10.15252/embr.201847012. PMID: 30602585.
- 543 6. Li YG, Hu B, Christie PJ. Biological and Structural Diversity of Type IV Secretion Systems. *Microbiol  
544 Spectr.* 2019;7(2). doi: 10.1128/microbiolspec.PSIB-0012-2018. PMID: 30953428.
- 545 7. Gonzalez-Rivera C, Bhatty M, Christie PJ. Mechanism and Function of Type IV Secretion During  
546 Infection of the Human Host. *Microbiol Spectr.* 2016;4(3). doi: 10.1128/microbiolspec.VMBF-0024-2015.  
547 PMID: 27337453.
- 548 8. Christie PJ. The Mosaic Type IV Secretion Systems. *EcoSal Plus.* 2016;7(1). doi:  
549 10.1128/ecosalplus.ESP-0020-2015. PMID: 27735785.
- 550 9. Christie PJ, Gomez Valero L, Buchrieser C. Biological Diversity and Evolution of Type IV Secretion  
551 Systems. *Curr Top Microbiol Immunol.* 2017;413:1-30. doi: 10.1007/978-3-319-75241-9\_1. PMID:  
552 29536353.
- 553 10. Chandran Darbari V, Waksman G. Structural Biology of Bacterial Type IV Secretion Systems. *Annu  
554 Rev Biochem.* 2015;84:603-29. doi: 10.1146/annurev-biochem-062911-102821. PMID: 26034891.
- 555 11. Sheedlo MJ, Ohi MD, Lacy DB, Cover TL. Molecular architecture of bacterial type IV secretion  
556 systems. *PLoS Pathog.* 2022;18(8):e1010720. doi: 10.1371/journal.ppat.1010720. PMID: 35951533.
- 557 12. Ansari S, Yamaoka Y. *Helicobacter pylori* Virulence Factor Cytotoxin-Associated Gene A  
558 (CagA)-Mediated Gastric Pathogenicity. *Int J Mol Sci.* 2020;21(19). doi: 10.3390/ijms21197430. PMID:  
559 33050101.
- 560 13. Hubber A, Roy CR. Modulation of host cell function by *Legionella pneumophila* type IV effectors.  
561 *Annu Rev Cell Dev Biol.* 2010;26:261-83. doi: 10.1146/annurev-cellbio-100109-104034. PMID:  
562 20929312.
- 563 14. Wozniak RA, Waldor MK. Integrative and conjugative elements: mosaic mobile genetic elements  
564 enabling dynamic lateral gene flow. *Nat Rev Microbiol.* 2010;8(8):552-63. doi: 10.1038/nrmicro2382.  
565 PMID: 20601965.
- 566 15. Wallden K, Rivera-Calzada A, Waksman G. Type IV secretion systems: versatility and diversity in  
567 function. *Cell Microbiol.* 2010;12(9):1203-12. doi: 10.1111/j.1462-5822.2010.01499.x. PMID: 20642798.
- 568 16. Costa TRD, Harb L, Khara P, Zeng L, Hu B, Christie PJ. Type IV secretion systems: Advances in  
569 structure, function, and activation. *Mol Microbiol.* 2021;115(3):436-52. doi: 10.1111/mmi.14670. PMID:  
570 33326642.
- 571 17. Burns DL. Type IV transporters of pathogenic bacteria. *Curr Opin Microbiol.* 2003;6(1):29-34. doi:  
572 10.1016/s1369-5274(02)00006-1. PMID: 12615216.

573 18. Cover TL, Lacy DB, Ohi MD. The *Helicobacter pylori* Cag Type IV Secretion System. *Trends Microbiol.* 2020;28(8):682-95. doi: 10.1016/j.tim.2020.02.004. PMID: 32451226.

574 19. Ward DV, Zambryski PC. The six functions of *Agrobacterium* VirE2. *Proc Natl Acad Sci U S A.* 2001;98(2):385-6. doi: 10.1073/pnas.98.2.385. PMID: 11209039.

575 20. Schrammeijer B, den Dulk-Ras A, Vergunst AC, Jurado Jacome E, Hooykaas PJ. Analysis of Vir protein translocation from *Agrobacterium tumefaciens* using *Saccharomyces cerevisiae* as a model: evidence for transport of a novel effector protein VirE3. *Nucleic Acids Res.* 2003;31(3):860-8. doi: 10.1093/nar/gkg179. PMID: 12560481.

576 21. Hofreuter D, Odenbreit S, Puls J, Schwan D, Haas R. Genetic competence in *Helicobacter pylori*: mechanisms and biological implications. *Res Microbiol.* 2000;151(6):487-91. doi: 10.1016/s0923-2508(00)00164-9. PMID: 10961464.

577 22. Lee YW, Wang J, Newton HJ, Lithgow T. Mapping bacterial effector arsenals: in vivo and in silico approaches to defining the protein features dictating effector secretion by bacteria. *Curr Opin Microbiol.* 2020;57:13-21. doi: 10.1016/j.mib.2020.04.002. PMID: 32505919.

578 23. Burstein D, Zusman T, Degtyar E, Viner R, Segal G, Pupko T. Genome-scale identification of *Legionella pneumophila* effectors using a machine learning approach. *PLoS Pathog.* 2009;5(7):e1000508. doi: 10.1371/journal.ppat.1000508. PMID: 19593377.

579 24. Wang Y, Wei X, Bao H, Liu SL. Prediction of bacterial type IV secreted effectors by C-terminal features. *BMC Genomics.* 2014;15:50. doi: 10.1186/1471-2164-15-50. PMID: 24447430.

580 25. Zou L, Nan C, Hu F. Accurate prediction of bacterial type IV secreted effectors using amino acid composition and PSSM profiles. *Bioinformatics.* 2013;29(24):3135-42. doi: 10.1093/bioinformatics/btt554. PMID: 24064423.

581 26. Wang J, Yang B, An Y, Marquez-Lago T, Leier A, Wilksch J, et al. Systematic analysis and prediction of type IV secreted effector proteins by machine learning approaches. *Brief Bioinform.* 2019;20(3):931-51. doi: 10.1093/bib/bbx164. PMID: 29186295.

582 27. Hong J, Luo Y, Mou M, Fu J, Zhang Y, Xue W, et al. Convolutional neural network-based annotation of bacterial type IV secretion system effectors with enhanced accuracy and reduced false discovery. *Brief Bioinform.* 2020;21(5):1825-36. doi: 10.1093/bib/bbz120. PMID: 31860715.

583 28. Rao R, Bhattacharya N, Thomas N, Duan Y, Chen X, Canny J, et al. Evaluating Protein Transfer Learning with TAPE. *Adv Neural Inf Process Syst.* 2019;32:9689-701. PMID: 33390682.

584 29. Zhang Y, Zhang Y, Xiong Y, Wang H, Deng Z, Song J, et al. T4SEfinder: a bioinformatics tool for genome-scale prediction of bacterial type IV secreted effectors using pre-trained protein language model. *Brief Bioinform.* 2022;23(1). doi: 10.1093/bib/bbab420. PMID: 34657153.

585 30. Devlin J, Chang M-W, Lee K, Toutanova K, editors. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding2019 June; Minneapolis, Minnesota: Association for Computational Linguistics.

586 31. Stärk H, Dallago C, Heinzinger M, Rost B. Light attention predicts protein location from the language of life. *Bioinform Adv.* 2021;1(1):vbab035. doi: 10.1093/bioadv/vbab035. PMID: 36700108.

587 32. Elnaggar A, Heinzinger M, Dallago C, Rehawi G, Wang Y, Jones L, et al. ProtTrans: Toward Understanding the Language of Life Through Self-Supervised Learning. *IEEE Trans Pattern Anal Mach Intell.* 2022;44(10):7112-27. doi: 10.1109/TPAMI.2021.3095381. PMID: 34232869.

588 33. Rives A, Meier J, Sercu T, Goyal S, Lin Z, Liu J, et al. Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. *Proc Natl Acad Sci U S A.* 2021;118(15). doi: 10.1073/pnas.2016239118. PMID: 33876751.

617 34. Lee J, Yoon W, Kim S, Kim D, Kim S, So CH, et al. BioBERT: a pre-trained biomedical language  
618 representation model for biomedical text mining. *Bioinformatics*. 2020;36(4):1234-40. doi:  
619 10.1093/bioinformatics/btz682. PMID: 31501885.

620 35. Heinzinger M, Elnaggar A, Wang Y, Dallago C, Nechaev D, Matthes F, et al. Modeling aspects of the  
621 language of life through transfer-learning protein sequences. *BMC Bioinformatics*. 2019;20(1):723. doi:  
622 10.1186/s12859-019-3220-8. PMID: 31847804.

623 36. Wagner N, Alburquerque M, Ecker N, Dotan E, Zerah B, Pena MM, et al. Natural language  
624 processing approach to model the secretion signal of type III effectors. *Front Plant Sci*. 2022;13:1024405.  
625 doi: 10.3389/fpls.2022.1024405. PMID: 36388586.

626 37. Teufel F, Almagro Armenteros JJ, Johansen AR, Gislason MH, Pihl SI, Tsirigos KD, et al. SignalP  
627 6.0 predicts all five types of signal peptides using protein language models. *Nat Biotechnol*.  
628 2022;40(7):1023-5. doi: 10.1038/s41587-021-01156-3. PMID: 34980915.

629 38. Hui X, Chen Z, Lin M, Zhang J, Hu Y, Zeng Y, et al. T3SEpp: an Integrated Prediction Pipeline for  
630 Bacterial Type III Secreted Effectors. *mSystems*. 2020;5(4). doi: 10.1128/mSystems.00288-20. PMID:  
631 32753503.

632 39. Dong X, Lu X, Zhang Z. BEAN 2.0: an integrated web resource for the identification and functional  
633 analysis of type III secreted effectors. *Database (Oxford)*. 2015;2015:bav064. doi:  
634 10.1093/database/bav064. PMID: 26120140.

635 40. Goldberg T, Rost B, Bromberg Y. Computational prediction shines light on type III secretion origins.  
636 *Sci Rep*. 2016;6:34516. doi: 10.1038/srep34516. PMID: 27713481.

637 41. Wagner N, Avram O, Gold-Binshtok D, Zerah B, Teper D, Pupko T. Effectidor: an automated  
638 machine-learning-based web server for the prediction of type-III secretion system effectors.  
639 *Bioinformatics*. 2022;38(8):2341-3. doi: 10.1093/bioinformatics/btac087. PMID: 35157036.

640 42. Meyer DF, Noroy C, Moumene A, Raffaele S, Albina E, Vachiery N. Searching algorithm for type IV  
641 secretion system effectors 1.0: a tool for predicting type IV effectors and exploring their genomic context.  
642 *Nucleic Acids Res*. 2013;41(20):9218-29. doi: 10.1093/nar/gkt718. PMID: 23945940.

643 43. Bi D, Liu L, Tai C, Deng Z, Rajakumar K, Ou HY. SecReT4: a web-based bacterial type IV secretion  
644 system resource. *Nucleic Acids Res*. 2013;41(Database issue):D660-5. doi: 10.1093/nar/gks1248. PMID:  
645 23193298.

646 44. Burstein D, Amaro F, Zusman T, Lifshitz Z, Cohen O, Gilbert JA, et al. Genomic analysis of 38  
647 Legionella species identifies large and diverse effector repertoires. *Nat Genet*. 2016;48(2):167-75. doi:  
648 10.1038/ng.3481. PMID: 26752266.

649 45. Hooi JK, Lai WY, Ng WK, Suen MMY, Underwood FE, Tanyingoh D, et al. Global Prevalence of  
650 *Helicobacter pylori* Infection: Systematic Review and Meta-Analysis. *Gastroenterology*.  
651 2017;153(2):420-9. doi: 10.1053/j.gastro.2017.04.022. PMID: 28456631.

652 46. Cover TL, Blaser MJ. *Helicobacter pylori* in health and disease. *Gastroenterology*.  
653 2009;136(6):1863-73. doi: 10.1053/j.gastro.2009.01.073. PMID: 19457415.

654 47. Blaser MJ, Perez-Perez GI, Kleanthous H, Cover TL, Peek RM, Chyou PH, et al. Infection with  
655 *Helicobacter pylori* strains possessing cagA is associated with an increased risk of developing  
656 adenocarcinoma of the stomach. *Cancer Res*. 1995;55(10):2111-5. PMID: 7743510.

657 48. Figueiredo C, Machado JC, Pharoah P, Seruca R, Sousa S, Carvalho R, et al. *Helicobacter pylori*  
658 and interleukin 1 genotyping: an opportunity to identify high-risk individuals for gastric carcinoma. *J Natl  
659 Cancer Inst*. 2002;94(22):1680-7. doi: 10.1093/jnci/94.22.1680. PMID: 12441323.

660 49. Plummer M, van Doorn LJ, Franceschi S, Kleter B, Canzian F, Vivas J, et al. *Helicobacter pylori*

661 cytotoxin-associated genotype and gastric precancerous lesions. *J Natl Cancer Inst.*  
662 2007;99(17):1328-34. doi: 10.1093/jnci/djm120. PMID: 17728213.

663 50. Cover TL. *Helicobacter pylori* Diversity and Gastric Cancer Risk. *mBio*. 2016;7(1):e01869-15. doi:  
664 10.1128/mBio.01869-15. PMID: 26814181.

665 51. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018:  
666 GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA Cancer  
667 J Clin.* 2018;68(6):394-424. doi: 10.3322/caac.21492. PMID: 30207593.

668 52. Knorr J, Ricci V, Hatakeyama M, Backert S. Classification of *Helicobacter pylori* Virulence Factors:  
669 Is CagA a Toxin or Not? *Trends Microbiol.* 2019;27(9):731-8. doi: 10.1016/j.tim.2019.04.010. PMID:  
670 31130493.

671 53. Loh JT, Shum MV, Jossart SDR, Campbell AM, Sawhney N, McDonald WH, et al. Delineation of the  
672 pH-Responsive Regulon Controlled by the *Helicobacter pylori* ArsRS Two-Component System. *Infect  
673 Immun.* 2021;89(4). doi: 10.1128/IAI.00597-20. PMID: 33526561.

674 54. Nescic D, Buti L, Lu X, Stebbins CE. Structure of the *Helicobacter pylori* CagA oncoprotein bound to  
675 the human tumor suppressor ASPP2. *Proc Natl Acad Sci U S A.* 2014;111(4):1562-7. doi:  
676 10.1073/pnas.1320631111. PMID: 24474782.

677 55. Poppe M, Feller SM, Romer G, Wessler S. Phosphorylation of *Helicobacter pylori* CagA by c-Abl  
678 leads to cell motility. *Oncogene.* 2007;26(24):3462-72. doi: 10.1038/sj.onc.1210139. PMID: 17160020.

679 56. Churin Y, Al-Ghoul L, Kepp O, Meyer TF, Birchmeier W, Naumann M. *Helicobacter pylori* CagA  
680 protein targets the c-Met receptor and enhances the motogenic response. *J Cell Biol.*  
681 2003;161(2):249-55. doi: 10.1083/jcb.200208039. PMID: 12719469.

682 57. Suzuki M, Mimuro H, Suzuki T, Park M, Yamamoto T, Sasakawa C. Interaction of CagA with Crk  
683 plays an important role in *Helicobacter pylori*-induced loss of gastric epithelial cell adhesion. *J Exp Med.*  
684 2005;202(9):1235-47. doi: 10.1084/jem.20051027. PMID: 16275761.

685 58. Murata-Kamiya N, Kurashima Y, Teishikata Y, Yamahashi Y, Saito Y, Higashi H, et al. *Helicobacter  
686 pylori* CagA interacts with E-cadherin and deregulates the beta-catenin signal that promotes intestinal  
687 transdifferentiation in gastric epithelial cells. *Oncogene.* 2007;26(32):4617-26. doi:  
688 10.1038/sj.onc.1210251. PMID: 17237808.

689 59. Lee DG, Kim HS, Lee YS, Kim S, Cha SY, Ota I, et al. *Helicobacter pylori* CagA promotes  
690 Snail-mediated epithelial-mesenchymal transition by reducing GSK-3 activity. *Nat Commun.* 2014;5:4423.  
691 doi: 10.1038/ncomms5423. PMID: 25055241.

692 60. Saadat I, Higashi H, Obuse C, Umeda M, Murata-Kamiya N, Saito Y, et al. *Helicobacter pylori* CagA  
693 targets PAR1/MARK kinase to disrupt epithelial cell polarity. *Nature.* 2007;447(7142):330-3. doi:  
694 10.1038/nature05765. PMID: 17507984.

695 61. Mishra JP, Cohen D, Zamperone A, Nescic D, Muesch A, Stein M. CagA of *Helicobacter pylori*  
696 interacts with and inhibits the serine-threonine kinase PRK2. *Cell Microbiol.* 2015;17(11):1670-82. doi:  
697 10.1111/cmi.12464. PMID: 26041307.

698 62. Saju P, Murata-Kamiya N, Hayashi T, Senda Y, Nagase L, Noda S, et al. Host SHP1 phosphatase  
699 antagonizes *Helicobacter pylori* CagA and can be downregulated by Epstein-Barr virus. *Nat Microbiol.*  
700 2016;1:16026. doi: 10.1038/nmicrobiol.2016.26. PMID: 27572445.

701 63. Higashi H, Tsutsumi R, Muto S, Sugiyama T, Azuma T, Asaka M, et al. SHP-2 tyrosine phosphatase  
702 as an intracellular target of *Helicobacter pylori* CagA protein. *Science.* 2002;295(5555):683-6. doi:  
703 10.1126/science.1067147. PMID: 11743164.

704 64. Lamb A, Yang XD, Tsang YH, Li JD, Higashi H, Hatakeyama M, et al. *Helicobacter pylori* CagA

705 activates NF-kappaB by targeting TAK1 for TRAF6-mediated Lys 63 ubiquitination. *EMBO Rep.* 2009;10(11):1242-9. doi: 10.1038/embor.2009.210. PMID: 19820695.

706

707 65. Amieva MR, Vogelmann R, Covacci A, Tompkins LS, Nelson WJ, Falkow S. Disruption of the  
708 epithelial apical-junctional complex by *Helicobacter pylori* CagA. *Science*. 2003;300(5624):1430-4. doi:  
709 10.1126/science.1081919. PMID: 12775840.

710 66. Goncalves IG, Simoes LC, Simoes M. *Legionella pneumophila*. *Trends Microbiol.* 2021;29(9):860-1.  
711 doi: 10.1016/j.tim.2021.04.005. PMID: 33994277.

712 67. Mondino S, Schmidt S, Rolando M, Escoll P, Gomez-Valero L, Buchrieser C. Legionnaires' Disease:  
713 State of the Art Knowledge of Pathogenesis Mechanisms of *Legionella*. *Annu Rev Pathol.*  
714 2020;15:439-66. doi: 10.1146/annurev-pathmechdis-012419-032742. PMID: 31657966.

715 68. Hatakeyama M. Oncogenic mechanisms of the *Helicobacter pylori* CagA protein. *Nat Rev Cancer*.  
716 2004;4(9):688-94. doi: 10.1038/nrc1433. PMID: 15343275.

717 69. Hatakeyama M. *Helicobacter pylori* CagA and gastric cancer: a paradigm for hit-and-run  
718 carcinogenesis. *Cell Host Microbe*. 2014;15(3):306-16. doi: 10.1016/j.chom.2014.02.008. PMID:  
719 24629337.

720 70. Zhao Z, Hu Y, Hu Y, White AP, Wang Y. Features and algorithms: facilitating investigation of  
721 secreted effectors in Gram-negative bacteria. *Trends Microbiol.* 2023. doi: 10.1016/j.tim.2023.05.011.  
722 PMID: 37349207.

723 71. Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or  
724 nucleotide sequences. *Bioinformatics*. 2006;22(13):1658-9. doi: 10.1093/bioinformatics/btl158. PMID:  
725 16731699.

726 72. Xiong Y, Wang Q, Yang J, Zhu X, Wei DQ. PredT4SE-Stack: Prediction of Bacterial Type IV  
727 Secreted Effectors From Protein Sequences Using a Stacked Ensemble Method. *Front Microbiol*.  
728 2018;9:2571. doi: 10.3389/fmicb.2018.02571. PMID: 30416498.

729 73. O'Callaghan D, Cazeveille C, Allardet-Servent A, Boschioli ML, Bourg G, Foulongne V, et al. A  
730 homologue of the *Agrobacterium tumefaciens* VirB and *Bordetella pertussis* Ptl type IV secretion systems  
731 is essential for intracellular survival of *Brucella suis*. *Mol Microbiol*. 1999;33(6):1210-20. doi:  
732 10.1046/j.1365-2958.1999.01569.x. PMID: 10510235.

733 74. Eddy SR. Profile hidden Markov models. *Bioinformatics*. 1998;14(9):755-63. doi:  
734 10.1093/bioinformatics/14.9.755. PMID: 9918945.

735 75. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. *Nat Methods*.  
736 2015;12(1):59-60. doi: 10.1038/nmeth.3176. PMID: 25402007.

737 76. Hu Y, Huang H, Cheng X, Shu X, White AP, Stavrinides J, et al. A global survey of bacterial type III  
738 secretion systems and their effectors. *Environ Microbiol*. 2017;19(10):3879-95. doi:  
739 10.1111/1462-2920.13755. PMID: 28401683.

740 77. Hui X, Hu Y, Sun MA, Shu X, Han R, Ge Q, et al. EBT: a statistic test identifying moderate size of  
741 significant features with balanced power and precision for genome-wide rate comparisons.  
742 *Bioinformatics*. 2017;33(17):2631-41. doi: 10.1093/bioinformatics/btx294. PMID: 28472273.

743 78. Steinegger M, Soding J. Clustering huge protein sequence sets in linear time. *Nat Commun*.  
744 2018;9(1):2542. doi: 10.1038/s41467-018-04964-5. PMID: 29959318.

745 79. Suzek BE, Wang Y, Huang H, McGarvey PB, Wu CH, UniProt C. UniRef clusters: a comprehensive  
746 and scalable alternative for improving sequence similarity searches. *Bioinformatics*. 2015;31(6):926-32.  
747 doi: 10.1093/bioinformatics/btu739. PMID: 25398609.

748 80. Raffel C, Shazeer N, Roberts A, Lee K, Narang S, Matena M, et al. Exploring the Limits of Transfer

749 Learning with a Unified Text-to-Text Transformer. *Journal of Machine Learning Research*. 2020;21:1-67.  
750 doi: 10.48550/arXiv.1910.10683.

751 81. Lan Z, Chen M, Goodman. S, Gimpel. K, Sharma. P, Soricut. R. ALBERT: A Lite BERT for  
752 Self-supervised Learning of Language Representations. *International Conference on Learning  
753 Representations*; 20 Dec2019.

754 82. Lin TY, Goyal P, Girshick R, He K, Dollar P. Focal Loss for Dense Object Detection. *IEEE Trans  
755 Pattern Anal Mach Intell*. 2020;42(2):318-27. doi: 10.1109/TPAMI.2018.2858826. PMID: 30040631.

756 83. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data.  
757 *Bioinformatics*. 2014;30(15):2114-20. doi: 10.1093/bioinformatics/btu170. PMID: 24695404.

758 84. Forstner KU, Vogel J, Sharma CM. READemption-a tool for the computational analysis of  
759 deep-sequencing-based transcriptome data. *Bioinformatics*. 2014;30(23):3421-3. doi:  
760 10.1093/bioinformatics/btu533. PMID: 25123900.

761 85. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software  
762 environment for integrated models of biomolecular interaction networks. *Genome Res*.  
763 2003;13(11):2498-504. doi: 10.1101/gr.1239303. PMID: 14597658.

764

765

766 **Tables**

767 **Table 1. Performance comparison of the models in T4SEpp on 5-fold**  
768 **cross-validation dataset.**

| Method                         | ACC                | SN                 | SP                 | PR                 | F1                 | MCC                | rocAUC             | AUPRC              |
|--------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| T4attention_ESM-1b             | <b>0.934±0.010</b> | 0.844±0.017        | <b>0.963±0.008</b> | <b>0.881±0.026</b> | <b>0.861±0.021</b> | <b>0.819±0.028</b> | 0.950±0.008        | <b>0.897±0.026</b> |
| T4attention_ProtBert           | 0.931±0.013        | <b>0.859±0.030</b> | 0.954±0.013        | 0.861±0.036        | 0.859±0.025        | 0.814±0.033        | <b>0.954±0.010</b> | <b>0.897±0.028</b> |
| T4attention_ProtBert-BFD       | 0.924±0.007        | 0.846±0.015        | 0.950±0.009        | 0.848±0.023        | 0.847±0.012        | 0.797±0.017        | 0.939±0.006        | 0.848±0.047        |
| T4attention_ProtT5-XL-UniRef50 | 0.933±0.015        | 0.844±0.021        | 0.962±0.016        | <b>0.881±0.044</b> | <b>0.861±0.028</b> | 0.818±0.038        | 0.949±0.007        | 0.895±0.030        |
| T4attention_ProtT5-XL-BFD      | 0.925±0.021        | 0.847±0.017        | 0.950±0.025        | 0.851±0.065        | 0.849±0.037        | 0.800±0.051        | 0.949±0.011        | 0.887±0.032        |
| T4attention_ProtAlbert         | 0.921±0.014        | 0.851±0.009        | 0.944±0.015        | 0.834±0.037        | 0.842±0.024        | 0.790±0.033        | 0.940±0.015        | 0.860±0.036        |
| T4SEpre_psAac <sup>a</sup>     | 0.841±0.014        | 0.825±0.030        | 0.858±0.049        | 0.856±0.040        | 0.839±0.012        | 0.686±0.030        | 0.917±0.016        | 0.884±0.015        |
| T4SEpre_bpbaAac <sup>a</sup>   | 0.856±0.032        | 0.817±0.059        | 0.894±0.038        | 0.887±0.037        | 0.849±0.036        | 0.716±0.061        | 0.918±0.018        | 0.898±0.023        |
| T4SEpp_ESM-1b                  | 0.974±0.004        | 0.919±0.009        | 0.993±0.005        | 0.976±0.015        | 0.946±0.008        | 0.930±0.011        | 0.995±0.004        | 0.949±0.069        |
| T4SEpp_ProtBert                | 0.967±0.006        | 0.909±0.005        | 0.986±0.007        | 0.956±0.022        | 0.932±0.011        | 0.911±0.016        | 0.994±0.003        | 0.964±0.038        |
| T4SEpp_ProtT5-XL-UniRef50      | 0.972±0.006        | 0.917±0.009        | 0.990±0.006        | 0.968±0.019        | 0.942±0.012        | 0.924±0.015        | 0.994±0.003        | 0.957±0.049        |

769 ACC, Accuracy; SN, sensitivity; SP, specificity; PR, precision; F1, F1-score; MCC, Matthews correlation coefficient; rocAUC,  
770 area under the receiver operating characteristic curve; AUPRC, precision recall rate curve; <sup>a</sup>, fine-tune the model.

771 **Table 2. Performance comparison of the models in T4SEpp and other tools on the**  
772 **independent dataset.**

| Method                        | ACC   | SN           | SP    | PR    | F1    | MCC   | rocAUC       | AUPRC |
|-------------------------------|-------|--------------|-------|-------|-------|-------|--------------|-------|
| T4attention_ESM-1b            | 0.935 | 0.850        | 0.947 | 0.680 | 0.756 | 0.743 | 0.956        | 0.850 |
| T4attention_ProtBert          | 0.982 | <b>0.950</b> | 0.987 | 0.905 | 0.927 | 0.917 | <b>0.989</b> | 0.936 |
| T4attention_ProtBert-BFD      | 0.959 | <b>0.950</b> | 0.960 | 0.760 | 0.844 | 0.828 | 0.973        | 0.936 |
| T4attention_ProtT5-XLUniRef50 | 0.959 | 0.900        | 0.967 | 0.783 | 0.837 | 0.816 | 0.973        | 0.880 |
| T4attention_ProtT5-XL-BFD     | 0.929 | <b>0.950</b> | 0.927 | 0.633 | 0.760 | 0.741 | 0.973        | 0.930 |
| T4attention_ProtAlbert        | 0.953 | 0.900        | 0.960 | 0.750 | 0.818 | 0.796 | 0.959        | 0.891 |
| T4SEpp_ESM-1b                 | 0.976 | 0.850        | 0.993 | 0.944 | 0.894 | 0.883 | 0.922        | 0.868 |

|                             |              |              |              |              |              |              |       |              |
|-----------------------------|--------------|--------------|--------------|--------------|--------------|--------------|-------|--------------|
| T4SEpp_ProtBert             | <b>0.988</b> | <b>0.950</b> | 0.993        | 0.950        | <b>0.950</b> | <b>0.943</b> | 0.974 | <b>0.946</b> |
| T4SEpp_ProtT5-XL-UniRef50   | <b>0.988</b> | 0.900        | <b>1.000</b> | <b>1.000</b> | 0.947        | 0.942        | 0.948 | 0.901        |
| T4SEfinder-TAPEBert_MLP     | 0.958        | 0.850        | 0.973        | 0.810        | 0.829        | 0.806        | 0.959 | 0.805        |
| T4SEfinder-hybridbilstm     | 0.941        | 0.800        | 0.960        | 0.727        | 0.762        | 0.730        | 0.945 | 0.852        |
| T4SEfinder-pssm_cnn         | 0.906        | 0.800        | 0.920        | 0.571        | 0.667        | 0.625        | 0.923 | 0.759        |
| Bastion4                    | 0.965        | 0.900        | 0.973        | 0.818        | 0.857        | 0.838        | 0.907 | 0.706        |
| CNNT4SE                     | 0.953        | 0.700        | 0.987        | 0.875        | 0.778        | 0.758        | 0.943 | 0.860        |
| T4SEpre_psAac <sup>a</sup>  | 0.888        | 0.700        | 0.913        | 0.519        | 0.596        | 0.541        | 0.921 | 0.740        |
| T4SEpre_bpBAac <sup>a</sup> | 0.829        | 0.700        | 0.847        | 0.378        | 0.491        | 0.427        | 0.895 | 0.730        |

773 ACC, Accuracy; SN, sensitivity; SP, specificity; PR, precision; F1, F1-score; MCC, Matthews correlation coefficient; rocAUC,

774 area under the receiver operating characteristic curve; AUPRC, precision recall rate curve; <sup>a</sup>, fine-tune the model.

775

776 **Supplementary data**

777 **Supplementary Figure S1.** The workflow to construct the training(A) or independent  
778 testing(B) dataset in this study.

779 **Supplementary Figure S2.** Two modules used by the T4attention model.

780 **Supplementary Figure S3.** The relationship between the feature extraction time of 6  
781 different protein natural language models and the prediction performance of T4attention  
782 model F1-score (A) and MCC (B) in the 5-fold cross-validation dataset.

783 **Supplementary Figure S4.** The relationship between T4attention model prediction  
784 performance F1-score (A) and MCC (B) in the independent test set and the overall  
785 time-consuming use of 6 different protein natural language models to extract features and  
786 their T4attention model predictions.

787 **Supplementary Figure S5.** Three T4SEpp model were used to predict the potential  
788 T4SE in the UniProt reference proteome containing T4SS, respectively. Where 100%\_ID  
789 represents a known verified T4SE.

790 **Supplementary Table S1.** The 74 T4SEs independently collected from the literature.

791 **Supplementary Table S2.** Hyperparameters used in deep learning models of  
792 T4attention.

793 **Supplementary Table S3.** Homologous Clusters of T4S Effector Signal Sequences.

794 **Supplementary Table S4.** The distribution of effector domain families.

795 **Supplementary Table S5.** Distribution of the Uniprot Bacteria Reference Proteomes  
796 (Download date October 19, 2022).

797 **Supplementary Table S6.** Distribution of T4SS in the UniPort bacterial reference  
798 proteome.

799 **Supplementary Table S7.** Homology prediction results of T4SE in strains containing  
800 T4SS in the Uniport Bacteria Reference Proteomes.

801 **Supplementary Table S8.** Distribution of potential T4SEs in the *H. pylori\_26695*  
802 (NC\_000915.1).

803 **Supplementary Table S9.** Distribution of potential T4SEs in the Uniport Bacteria  
804 Reference Proteomes.