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17 Abstract

18 Many pathogenic bacteria use type IV secretion systems(T4SSs) to deliver effectors
19  (T4SEs) into the cytoplasm of eukaryotic cells, causeing diseases. The identification of
20  effectors is a crucial step in understanding the mechanisms of bacterial pathogenicity, but
21 this remains a major challenge. In this study, we used the full-length embedding features
22  generated by six pre-trained protein language models to train classifiers predicting T4SEs,
23 and compared their performance. An integrated model TASEpp was assembled by a
24  module searching full-length, signal sequence and effector domain homologs of known
25  T4SEs, a machine learning module based on the hand-crafted features extracted from the
26  signal sequences, and the third module containing three best-performing protein language
27  pre-trained models. T4SEpp outperformed the other state-of-the-art (SOTA) software
28  tools, achieving ~0.95 sensitivity at a high specificity of ~0.99, based on the assessment
29  of an independent testing dataset. Additionally, we performed a comprehensive search
30 among 8,761 bacterial species, leading to the discovery of 227 species belonging to 3
31 phyla and 117 genera that possess T4SSs. Furthermore, leveraging the power of TASEpp,
32 we successfully identified a grand total of 12,622 plausible T4SEs. Overall, T4SEpp
33  provides a better solution to assist in the identification of bacterial TASEs, and facilitates
34 studies of bacterial pathogenicity. ~T4SEpp is freely accessible at

35 https://bis.zju.edu.cn/T4SEpp.

36 Key words: T4SEpp; Type IV Secreted Effector; Deep Learning; Protein Language Model,
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39 Introduction

40 Gram-negative bacteria employ more than one dozen of secretion systems to transport
41 proteins out of the cell envelope[1, 2]. Among them, the type IV secretion system (T4SS)
42 is a complex molecular machine spanning both the inner and outer membranes, and
43 translocate substrate proteins into eukaryotic host cells in only one step[3-9].
44  Protein-translocating T4SSs can be divided into two major families according to the
45  composition of component elements: type IVA, exemplified by the A. tumfaciens
46  VirB/VirD4 T4SS and H. pylori Cag T4SS, and type IVB exemplified by Legionella Dot/Icm
47  T4SS[9]. Substrate proteins translocated by T4SSs, also called effectors, play important

48 roles in bacterial infections and pathogenicity[1, 10, 11].

49  Effectors of T4SSs (T4SEs) are transported directly or as complexes with DNA in many
50 pathogenic bacteria, such as Helicobacter pylori, Legionella pneumophila, Bordetella
51 pertussis, Coxiella, Brucella, and Bartonella[12-17]. T4SS-mediated entry of effector
52  proteins into recipient cells is contact-dependent[18]. Once they enter the eukaryotic host
53  cytoplasm, they disrupt signal transduction and cause various host diseases. Identifying
54  these effectors is crucial for understanding the mechanisms of infection and pathogenicity
55  caused by these bacteria. However, because the composition and sequences vary
56  significantly, it is challenging to identify new T4SEs experimentally. Although many T4SEs
57 have been identified and characterized in a few model organisms[19-22], the exact

58 mechanism remains unclear.

59  Since 2009 when the first machine-learning algorithm was introduced, tens of
60 computational models have been developed to predict T4SEs[2, 23]. Early algorithms
61 were mainly species-specific, such as those predicting T4SEs in Legionella
62 pneumophila[23]. In another study, Wang et al. developed an SVM-based model,
63  T4SEpre, which exhibited good overall and cross-species performance[24]. However,
64  T4SEpre only considers the features buried in the C-terminal 100 amino acids[24]. More
65  studies, especially ensemble models recently developed with multi-aspect features, learn

66 features from full-length proteins to improve performance[25, 26]. Deep learning
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67  algorithms have also been applied in for the prediction of T4SEs. For example,
68 CNN-T4SE integrated three convolutional neural network (CNN) models to learn the
69 features of amino acid composition, solvent accessibility, and secondary structure of the
70  full-length T4SEs[27]. T4SEfinder is a multi-layer perception (MLP) model that learns the
71 features generated by a pre-trained BERT model[28], which can predict T4SEs
72  accurately[29]. Notably, BERT is a natural language processing (NLP) model that is
73  appealing in biology and other fields[30-35]. NLP models have been successfully applied
74  to the prediction of protein subcellular localization[31, 32], secondary structure[32, 33, 35],
75  and others[34]. Besides T4SEfinder, the NLP-based pre-trained transformers have also
76  been used for the prediction of bacterial type Il secreted effectors and Sec/Tat substrates,

77  both achieving superior performance[36, 37].

78  Although machine learning strategies have achieved some success in the identification of
79  TASEs[2, 23, 24], the high false-positive rate has been a big challenge. To reduce the
80 false-positive rate in predicting type Il effectors, Hui et al. proposed a strategy to combine
81 machine learning models with homology searching, and integrate multiple modules
82  considering the multi-aspect biological features of the effector genes[38]. To improve
83  model performance, other models have also considered the multiple features and a
84  combination of homology-based strategies in the prediction of type Il effectors[39-41]. For
85  T4SE prediction, homology searching was also been applied independently. For example,
86  SATE integrates 13 sequence homology-based features, including homology to known
87  effectors, homology to eukaryotic domains, presence of subcellular localization signals,
88  and secretion signals, and develops a scoring scheme to predict T4SEs mainly from a-
89  and y-proteobacteria[42]. Despite the high precision, the sensitivity could be influenced by
90 the large diversity of TASE composition and sequences. Therefore, it could be a better
9 solution to take the advantages of both machine learning approaches, especially
92 ensemblers, and homology-based methods, designing an integrated T4SE prediction
93 pipeline that combines various models and comprehensively considers various

94  characteristics of effector sequences.
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95 In this study, we proposed a hybrid strategy for predicting T4ASEs. First, a homology
96  searching strategy scanned both the global homology of full-length proteins and the local
97  homology of domains to known effectors. Additionally, we retrained a machine learning
98 module T4SEpre[24] with updated T4SE data and hand-crafted amino acid composition
99 features in the C-termini. Furthermore, a group of transfer learning models was developed
100 based on the features generated by various pretrained transformers. For the transfer
101 learning models, we utilized the deep context protein language models ESM-1hb, ProtBert,
102  ProtT5-XL, and ProtAlbert to represent protein sequence features[32, 33]. These features
103 can characterize the intrinsic but unclear properties of protein sequences and the
104 interactions between positions. Based on these feature representations, application
105 models were developed to classify T4SEs using a deep neural network architecture with
106  an attention mechanism. Finally, we integrated the homology-based modules, machine
107  learning models based on traditional handcrafted features, and transfer learning models
108  with transformer-generated features into a pipeline, namely T4SEpp, which assembles
109 the individual modules in a linear function to generate a prediction score reflecting the
110  likelihood of a protein to be a TASE. A web application for T4SEpp is also available via the

111 link: https://bis.zju.edu.cn/T4SEpp.
112
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113 Results

114 Sequence homology among verified effectors and the integrated

115  prediction framework

116 Experimentally verified effectors were collected from literature and databases, and 653
117  proteins were obtained after removing redundant sequences, representing the latest and
118  most comprehensive list of experimentally verified T4SEs[26, 43] (see Materials and
119  Methods). Pairwise sequence alignments of full-length (FL) effector proteins or their
120  C-terminal peptides of 100 or 50 amino acids (C100 or C50, respectively) were performed.
121 For the FL proteins, 481 non-homologous clusters were identified after homology filtering
122  for the proteins with > 30% identity and > 70% length coverage of the pair of proteins
123  (FL_70%_30%_ID) (Figure 1A). However, for the C100 sequences, 249 were homologous
124  to others with an identity of > 30%, and 473 non-redundant clusters were retained from
125  these sequences after homology filtering (C100_30%_ID) (Figure 1A). The reduction in
126  the number of clusters indicated that the C-terminal 100 amino acids showed more
127  homology than the full-length effector proteins, but there were no significant differences
128  between them (473/654 vs. 481/654, EBT P=0.614). The C50 sequences further reflected
129  the typical C-terminal homology between effectors. A total of 342 peptides were found to
130  have homology with the others, while 401 clusters remained for these peptides after
131 homology filtering (C50_30%_ID, 401/654 vs. 481/654, EBT P=3.17e-03) (Figure 1A).
132  Rigorous homology filtering is a prerequisite for the application of machine learning to
133  sequence analysis and effector identification. Sequence homology is often measured
134  using similarity (SIM) rather than identity, with a cut-off of < 30% for proteins. Therefore,
135  we also employed a loose measure of homology, defined as >30% similarity, to examine
136  sequence similarity between validated effectors. Surprisingly, the homology network
137 involved all the 634 C100 peptides (C100 _30% SIM) (Figure 1A). The results
138 demonstrated that the validated T4SEs showed unexpectedly significant homology,

139  especially for the C-terminus.

140  Taking full advantage of the fragmental similarity between T4SEs, combined with machine

141 learning techniques, a comprehensive prediction pipeline (T4SEpp) was designed (Figure
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142 1B and C). Several homology searching modules have been developed to detect
143  full-length (fiBlast), effector domain (effectHMM) and C-terminal signal region (sigHMM)
144 homologs of known T4SEs. A previous machine learning model, T4SEpre, which predicts
145  T4SEs based on the C-terminal hand-crafted features and fine-tuned based on an
146  updated dataset [24]. Using the generative features from pre-trained transformers, we
147  also developed a deep learning module, T4attention, incorporated with the Bi-Conv
148  attention mechanism. Figure 1D showes the framework of T4SEpp, taking the prediction
149  scores of the homology search module (fIBlast, effectHMM, and sigHMM), T4SEpre, and
150 T4attention into a linear model to generate the final score, which reflects the likelihood of

151 aninput protein to be an effector.
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153 Figure 1. Sequence homology among T4S effectors and an integrated prediction framework. (A)
154 Sequence homology network of T4ASE. The nodes represented effectors with homology with at least one
155 other effector. The pairs with homology (identified by the criteria defined at the top) were connected by
156 green lines. The cluster and homology represented the number of TASE multi-member clusters and
157 homologous proteins. (B) Homology-based modules developed for TASEpp, based on the full-length
158 effector proteins (fBlast) or signal sequence (sigHMM), and effector (effectHMM) domains. (C)
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159 T4attention, a deep learning model framework based on Bi-Conv attention. (D) Flowchart of the T4ASEpp
160 prediction program. The weighted sum of the prediction scores from each individual module is
161 incorporated into the probability that a protein is a T4SE.

162  T4SE families of signal sequences and functional domains

163  According to the homology of the C50 peptides, the effectors could be clustered into 405
164  signal sequence families, including 94 mult-member and 311 singlet families
165  (Supplementary Table S3). After the signal sequences (C50) were removed, 640 effectors
166  with a length of = 30 amino acids remained, of which 270 were classified into 106
167  multi-member families and 370 represented singlet families (Supplementary Table S4).
168 The sequences within each multi-component family showed striking similarity, and
169  multiple positions appeared conserved, as shown for one example, sigFAM50 (Fig. 2A).
170  The amino acid composition (AAC) showed apparent preference in multiple positions, e.g.,
171 leucine in positions 9, 24, and 37, serine in position 18, 30, and 64, and asparagine in
172 position 11, 26, and 48, of sigFAM50 (Fig. 2A). Effectors of the same signal sequence
173  family may belong to different effector functional domain families and vice versa. For
174  example, six cytotoxin-associated gene A (CagA) effectors and two Legionella proteins
175  contained the signal sequences of the same family (sigFAM50, Figure 2B; Supplementary
176  Table S3), but they also fell into three different effector functional domain families
177  (effectFAM73 for all the CagAs, and effectFAM19 and effectFAM57 for the other two
178  proteins; Figure 2B; Supplementary Table S4). This could be related to frequent domain

179  reshuffling events that have been reported in Legionella[44].

180  Furthermore, we searched for homologs of known T4SEs from the representative
181 bacterial genomes downloaded from UniProt (8761 genomes; Supplementary Table S5).
182 In total, 258 protein-translocating T4SSs were detected from 227 bacterial strains
183  distributed in their phyla (Proteobacteria, Fusobacteria and Nitrospirae), six classes
184  (Alphaproteobacteria, Betaproteobacteria, Epsilonproteobacteria, Gammaproteobacteria
185  Fusobacteriia, and Nitrospira), 117 genera and 227 species (Figure 2C, Supplementary
186  Table S6). In these strains with T4SSs, 10,130 proteins were detected with full-length or
187  local homology to the known T4SEs using the individual homology searching modules,

188  and 1,020 were identified by all the three modules (Figure 2D, Supplementary Table S7).
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190 Figure 2. Search for T4SS and effectors in the UniProt reference proteome based on sequence
191 homology. (A) Multiple-sequence alignment (MSA) of a homologous cluster (i.e., sigFAM50) of T4SE
192  signal sequences. Then, utilize the sequence logo of position-specific Amino Acid Compositions (AAC)
193 corresponding to the alignment. The height of the amino acid in each position indicated the AAC
194 preference. (C) Using the core protein components of T4SS to construct a Hidden Markov Model (HMM)
195  to predict the distribution of T4SS in the UniProt reference proteome. (D) Three homologous modules
196 (sigHMM, effectHMM and fIBlast) were used to predict the potential TASE in the UniProt reference
197 proteome containing T4SS, respectively. Where 100%_ID represents a known verified TASE.

198  Prediction of T4SEs with pre-trained transformer-based models
199  Recently, protein language models have been successfully applied for structural

200 prediction and sequence classification. In this research, we used six pre-trained models,

201 ESM-1b, ProtAlbert, ProtBert-BFD, ProtBert-UniRefl100, ProtT5-XL-BFD, and
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202  ProtT5-XL-UniRef50, to generate features; based on this, we developed deep learning
203  models (T4attention) based on Bi-Conv attention respectively to classify T4SEs and
204  non-T4SEs. The T4attention models based on different sequence embedding features
205 were compared for performance based on a five-fold cross-validation strategy (Table 1).
206  Generally, T4attention_ESM-1b performed the best, followed by
207  T4attention_ProtT5-XL-UniRef50, and T4attention_ProtAlbert showed the poorest
208 performance, according to the Matthew's correlation coefficient (MCC) and F1l-score
209 (Table 1). T4attention_ESM-1b not only reached the highest MCC and F1-score (0.861
210  and 0.819, respectively), but required the lowest computational resources (Supplementary
211 Figure S3). It was also noted that, for the same protein language model architecture,
212 ProtBert or ProtT5-XL, for example, the generation of features from models pre-trained
213  from various volumes of protein database required similar computational resource, but the
214 smaller database-based pre-trained models always generated features for subsequent
215  T4attention models with better performance (MCC of T4attention_ProtBert vs.
216  T4attention_ProtBert-BFD, 0.814 vs. 0.797; T4attetion ProtT5-XL-UniRef50 vs.
217  ProtT5-XL-BFD, 0.818 vs. 0.800) (Table 1, Supplementary Figure S3). The redundancy of
218  protein sequences in the BFD dataset might lead to biases in model training, and further

219  compromise the performance of models addressing downstream tasks.

220 We also evaluated the performance and generalization abilities of these models on an
221 independent testing dataset. T4attention_ProtBert showed the overall the best
222  performance, for which the MCC, F1-score, and accuracy reached 0.917, 0.927, and
223  0.987, respectively (Table 2). T4attention ESM-1b was unexpected and showed poor
224  performance (Table 2). Consistent with the cross-validation results, the ProtBert and
225  ProtT5-XL models, based on the features generated by transformers pre-trained from a
226 smaller database (UniRefl00/UniRef50), showed better performance (Table 2,

227  Supplementary Figure S4).

228  Considering the performance of models based on both cross-validation results and the
229 independent testing dataset, as well as the requirement of computational resources, we

230 integrated three models, T4attention_ ESM-1b, T4attention_ProtBert, and


https://doi.org/10.1101/2023.07.01.547179
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.01.547179; this version posted August 26, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

231  T4attention_ProtT5-XL-UniRef50, into the pipeline to predict T4SEs.

232  Anintegrated pipeline predicting T4SEs with largely improved performance

233  In addition to the models based on the features generated by the transformer, we tested
234  traditional machine learning models based on hand-crafted features. To this end, we
235 fine-tuned two models of T4SEpre models (T4SEpre_psAac and T4SEpre_bpbAac) to
236 learn the amino acid composition features in the C-termini of TASEs[24]. Both models
237  showed a certain performance in the prediction of TASEs according to the cross-validation
238 results or the independent testing dataset, although they were not comparable to the

239  T4attention models (Tables 1 and 2).

240  To further improve the accuracy and reduce the false positive rate for T4SE prediction, we
241  assembled a unified pipeline, TASEpp, integrating the homology searching modules,
242  machine learning models based on hand-crafted features and models based on
243  transformer-generated features (Figure 1). The integrated pipeline showed strikingly
244  Dbetter performance than the individual models, with MCC values of 0.930, 0.911 and
245  0.924 for TASEpp_ESM-1b, T4SEpp_ProtBert, and T4SEpp_ProtT5-XL-UniRef50 based
246  on the cross-validation evaluation and 0.883, 0.943, and 0.942 for the testing dataset,

247  respectively (Tables 1 and 2).

248 T4SEpp was also compared to other state-of-the-art(SOTA) T4SE prediction models,
249  such as Bastion4[26], CNNT4SE[27] and T4SEfinder[29]. Among these other models,
250 Bastion4 showed the best performance, which was close to that of the T4attention models

251 but was far inferior to the integrated T4SEpp (Table 2).

252 Genome-wide screening of T4SEs in Helicobacter pylori and other

253 bacteria

254  H. pylori is a gram-negative, spiral-shaped bacterium that colonizes the stomach in
255  approximately half of the world's population[45]. Although most individuals do not
256  experience any adverse health outcomes attributable to H. pylori, the presence of these
257  bacteria in the stomach increases the risk of developing gastric diseases[46-50]. H. pylori

258 infection is also the strongest known risk factor for gastric cancer, the third leading cause
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259  of cancer-related death worldwide[51]. T4SS plays an important role in H. pylori[47-50].
260  However, to date, only one T4SE, CagA, has been identified for the T4SS in H. pylori[52].
261 Here, we applied T4SEpp to screen T4SE candidates from the proteins derived from the
262 genome of H. pylori 26695, a model H. pylori strain (NCBI accession number:
263 NC_000915.1). The three T4SEpp integrated models, T4SEpp ESM-1b,
264  TASEpp_ProtBert, and T4SEpp_ProtT5-XL-UniRef50, predicted 55, 22, and 38 T4SE
265 candidates, respectively, and 13 were shared by the prediction results of all the three
266 models (Figure 3A-B; Supplementary Tables S6, S8). The 13 potential effector genes
267 were scattered throughout the genome (Figure 3B). Notably, HP_RS02695, which

268  encodes the only known effector CagA, was among the 13 candidates (Figure 3B).

269  Gene co-expression was analyzed for the 13 T4SE candidate genes in H. pylori 26695
270 using an RNA-seq dataset sampled from the strain collected under 12 different
271 conditions[53]. Except for HP_RS06290, HP_RS03730, HP_RS04865, and HP_RS06295,
272  the remaining eight genes showed a strong expression correlation with cagA expression
273  (Figure 3C). The genes co-expressed with cagA also showed a significant correlation with
274  the expression of the core component genes of the Cag T4SS (Figure 3C). Furthermore,
275 we annotated 12 human proteins that showed experimentally verified interactions with
276  CagAby literature search, including ASPP2, c-Abl, c-Met, Crk, E-cadherin, GSK-3, PAR1,
277 PRK2, SHP-1, SHP-2, TAK1, and ZO-1[54-65]. The interaction network between the 13
278  potential H. pylori 26695 T4SEs and the 12 human proteins was inferred (Figure 3D). Ten
279  of the candidate T4SEs showed potential interaction with at least one of the human
280  proteins (Figure 3D). Similar to CagA, HP_RS02225, HP_RS06295 and HP_RS03730
281 showed interacted with all the 12 human proteins (Figure 3D). Taken together, the proteins
282  predicted by T4SEpp could potentially represented new T4SEs, or may be closely related

283  to the pathogenicity of H. pylori 26695.

284  We also used T4SEpp to screen the T4SE candidates from the genomes of 227 bacterial
285  strains bearing T4SSs. TASEpp_ESM-1b, TASEpp_ProtBert, and
286  T4SEpp_ProtT5-XL-UniRef50 detected 16,972, 20,441 and 17,197 T4SE candidates

287  respectively, with 12,622 common candidates co-predicted by all the three T4SEpp
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288  models (Supplementary Table S9, Supplementary Figure S5).
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290 Figure 3. Whole-proteome detection for T4SEs in pathogenic bacteria (H. pylori 26695). (A) Prediction of
291 potential TASEs in the H. pylori 26695 proteome using three T4ASEpp models. (B) Use the circos diagram
292 to show the distribution of potential TASEs predicted by the three TASEpp models on the H. pylori 26695
293 chromosome (NC_000915.1), where T4SEpp_prob represents the mean value of the prediction results of
294 the three T4ASEpp models, and the outer circle of the circos diagram represents the three T4ASEpp model
295 predictions were all positive. (C) Under 12 different expression conditions of H. pylori 26695, the
296 expression correlation of Cag T4SS core components with 12 potential T4ASEs and CagA (HP_RS02695)
297 predicted by three TASEpp models were positive. (D) Prediction of potential interactions between 12
298 potential T4SEs in H. pylori 26695 and 12 human proteins using DeepHPI. These 12 human proteins are
299  known to interact with CagA(HP_RS02695).

300 Web server and implementation of T4SEpp

301  To facilitate the implementation of T4SEpp, we developed a user-friendly web application

302  (https://bis.zju.edu.cn/T4SEpp). The three T4SEpp integrated models, TASEpp_ESM-1b,

303 T4SEpp_ProtBert, and T4SEpp_ProtT5-XL-UniRef50 can be chosen and implemented by

304  users. Both the overall prediction results and the results of the individual modules are
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305 displayed in table format, which can be downloaded and filtered easily.

306 Discussion

307  T4SS plays a crucial role in bacterial pathogenicity by secreting effectors into host cells. L.
308 pneumophila can translocated more than 300 known effectors into human cells via the
309 Dot/lcm T4SS system, causing legionellosis[66, 67]. In H. pylori, CagA is the only known
310 T4SE that can hijack multiple signaling pathways in gastric epithelial cells, leading to
311 gastritis, gastric ulcer and even gastric cancer[68, 69]. Identifying the full repertoire of
312 T4SEs in a pathogen is important to understand its pathogenic mechanisms.
313  Computational methods can assist with the effective identification of new effectors[70].
314  However, the currently available T4SE prediction tools still show high false positive
315  rates[2]. To address this issue, we developed a unified T4SE prediction pipeline, T4SEpp,
316  which includes homologous search modules, traditional machine learning modules and
317  natural language processing-based modules. TASEpp outperformed other SOTA methods
318  for predicting T4SEs, with improved sensitivity and specificity. Furthermore, we initiated a
319  web server that can conveniently implement the TASEpp pipeline, providing the prediction

320 results for each module.

321 Although the component modules of T4SEpp can be used for T4SE prediction, they often
322  show higher false positive rates when used alone. This could be related to the low power
323  of the individual dimensions of the features. Specifically, TASE signal sequences were
324  considered to contain important common features guiding T4SE secretion and
325  translocation, which were used for effective T4SE prediction using tools such as
326  T4SEpre[24]. However, the computational models based only on the signal sequences
327  showed performance inferior to other models based on multiple-aspect features extracted
328  from full-length proteins[26]. In this study, we discovered high sequence similarity in the
329 C-terminal signal region among the proteins, without apparent homology to full-length
330 effectors. Such undetected homology could have introduced bias and led to overfitting of
331 various established machine learning algorithms and the discrepancy between the
332 reported and actual accuracy of these methods. However, the C-terminal homology could

333  also suggest the independent evolution of the signal sequences, and it could potentially
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334  be applied to facilitate the identification of new effectors[42].

335 In this study, three types of modules were integrated to predict T4ASEs. Homology
336  searching-based modules provide more accurate results, but they also show a lower
337  capacity to detect new effectors with or without remote homology. The re-trained T4SEpre
338 modules focused on the important features of the C-terminal signal sequences of T4SEs.
339 T4attention learns from the full-length effector proteins the features generated by protein
340 language models (pLMs) pre-trained with large-scale protein databases. These
341 pLM-based models can learn new, previous unknown features that may involve
342  position-position interactions, and have demonstrated outstanding performance in the
343  prediction of proteins with various biological functions, such as subcellular localization and
344  secondary structure. We used multiple pLMs to build transfer learning models, most of
345  which exhibited excellent performance in TASE prediction. Interestingly, we noticed that
346 the pre-trained pLMs based on the larger datasets did not generate better prediction
347  performance. pLMs pre-trained on smaller datasets are more efficient. Therefore, the
348 transfer models were trained with the pLMs based on smaller non-redundant protein
349 datasets. TASEpp, which integrated all three types of modules, significantly outperformed

350  both individual modules and other similar applications.

351 Using T4SEpp, we analyzed the potential new T4SEs in both H. pylori and other strains
352  bearing T4SS. We identified 12 new T4SEs in H. pylori. We also identified 12,205 new
353  T4SEs and 417 known T4SEs from 227 strains bearing a T4SS. The results suggested

354  that there are many new effectors yet to be clarified.

355  Despite the significant performance improvement of TASEpp, there remains a need to
356  further improve the prediction of T4SEs. Other features that have been known to
357  contribute to the recognition of T4SEs, such as the GC content of genomic loci,
358  phylogenetic profiles, consensus regulatory motifs in promoters, physicochemical
359  properties, secondary structures, homology to eukaryotic domains, and
360 organelle-targeting signals, have not been integrated into the current version of the
361 model[70]. Novel features that could be further integrated to improve the model

362 performance remain to be disclosed. The different types (IVA and IVB) of effectors,
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363 chaperone-dependent or chaperone-independent effectors, or species-specific effectors

364  can also be modeled and predicted separately to make more accurate prediction[70].
365
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366 Materials and methods

367 Datasets

368 The 390 T4SEs used by Bastion4 as the positive training dataset[26] and 540 T4SEs
369 annotated in SecReT4 v2.0[43] were collected and merged, and in total we got 653
370  non-identical, validated T4SEs. CD-HIT[71] was used to filter homology-redundant
371 proteins with sequence identity = 60%, generating 518 non-redundant T4SEs, which were
372 used as the positive training dataset(Supplementary Figure S1A). For the negative
373  training dataset, we collected 1112 and 1548 non-T4SE protein sequences from
374  Bastion4[26] and PredT4SE-stack[72], respectively. The same procedure was used to
375 eliminate the sequence redundancy among the non-T4SEs and between the non-T4SEs
376 and T4SEs in the positive training dataset, generating 1590 non-redundant non-T4SEs
377  (Supplementary Figure S1A). An independent validation dataset was also prepared, for
378  which the TASEs were collected from the testing dataset of Bastion4 (30) and others (74)
379 annotated from literature published recently (Supplementary Table S1), and the 150
380 testing non-T4SEs of Bastion4 were also used as negative ones. CD-HIT was used to
381 filter the redundant proteins with 260% sequence identity to the training proteins and
382 among proteins in the validation dataset, resulting in 20 non-redundant T4SEs and 150

383  non-T4SEs (Supplementary Figure S1B).

384  Genome-wide screening of protein-translocation T4SSs

385 The conserved core component proteins were collected from four representative
386  protein-translocation T4SSs, including the Agrobacterium tumefaciens VirB/VirD4 T4SS
387  (inner membrane complex proteins VirB3, VirB6, VirB8, VirB10 and VirD4, and outer
388 membrane complex proteins VirB7, VirB9 and VirB10)[16], the Bordetella pertussis Ptl
389 T4SS (inner membrane complex proteins PtIB, PtIE and PtlH, and outer membrane
390 complex proteins PtlIF and PtIG)[73], the Helicobacter pylori Cag T4SS (inner membrane
391 complex proteins Caga, Cagp and CagE, and outer membrane complex proteins CagX,
392 Cagy, CagT, CagM and Cag3)[18], the Legionella pneumophila Dot/lcm T4SS (inner

393 membrane complex proteins IcmB, lcmG and DotB, and outer membrane complex
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394  proteins DotC, DotD, DotG and lcmK)[16]. Hidden Markov Model (HMM) profiles were
395  built using HMMER 3.1 for the T4SS component protein families[74]. Protein sequences
396  derived from the 8761 reference bacterial genomes curated in UniProt were scanned with
397 HMMER and the HMM profiles to determine the distribution of homologs of T4SS core

398 component proteins (Supplementary Table S5).

399 Homology networks of the TASE peptide sequences

400 The sequences of 653 non-identical verified TASE proteins were used to construct the
401 homology networks. JAligner implemented the Smith-Waterman algorithm to determine
402  the similarity between any pair of full-length effectors or peptide fragments of designated
403 length (http://jaligner.sourceforge.net/). The identity and similarity percentages between

404  any pair of sequences were used as measures to determine the homology level[38].

405 Homology-based T4SE detection modules

406  Diamond blastp was used to determine the homology and cluster the full-length effector
407  proteins[75] and to screen new full-length homologs (flBlast). Two proteins showing 230%
408  similarity for 270% of the full length of either protein were considered to be full-length
409  homologs[38, 76]. The C-terminal 50-aa signal sequences of the verified effectors were
410  clustered according to homology networks with 30% identity for 70% length aligned by
411 JAligner. HMM profiles were built for each signal sequence family, and a sigHMM module
412  was developed to screen for proteins with C-terminal sequences homologous to the
413  profiles of known T4SE signal sequence families. The homology cutoff for HMM searching
414  was optimized for each family, ensuring that all or most of the known effectors recalled
415 and maintained a higher specificity. For effectHMM, we removed the C-terminal 50-aa
416  signal from each known effector sequence, and the remaining peptide fragment
417  with >30-aa length was used for domain clustering. Pairwise alignment was repeatedly
418  performed with BLAST between the domain sequences, and the cutoff for homology was
419  optimized based on the average coverage of the aligned length multiplied by the identity,
420 that is, =210[38]. The HMM profiles were built for the effector domain families, and

421 effectHMM was developed using a similar procedure as sigHMM to screen the proteins
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422  with homologous T4SE effector-domains. We used EBT to compare general homology

423  between proteins[38, 77].

424  Fine-tune T4SEpre models with updated datasets

425  Fine-tune T4SEpre models (T4SEpre_psAac and T4SEpre_bpbAac) using the new
426 training datasets of T4SEs and non-T4SEs. The original T4SEpre procedure was followed
427  for feature representation, parameter optimization and model training[24]. Briefly,
428  sequential amino acid, bi-residue and motif composition features and position-specific
429 amino acid composition profile for the positive training dataset were represented for each
430 C-terminal 100-aa sequence for the psAac model. For the bpbAac model, position-specific
431 amino acid composition profiles of both the positive and the negative training datasets
432  (Bi-Profile Bayesian features) were represented for each C-terminial 100-aa sequence.
433  Support vector machine (SVM) models were trained for feature matrices. The kernel
434  functions, that is, linear, polynomial, sigmoid, and radial base function (RBF), and
435  corresponding parameters (cost and gamma) were optimized using a 5-fold
436  cross-validation grid search strategy. The sklearn v1.0.1 was used for implementing SVM

437  model training and kernel/parameter optimization.

438 The deep learning architecture of T4attention based on pre-trained protein

439 language models

440 Input embeddings. Frozen embeddings were extracted directly from protein language

441 models (pLMs) without fine-tuning the training data. Four different basic LMs were used in
442  this study, and six different pLMs were pre-trained with different datasets. The basid LMs
443  include, (i) “ESM-1b"[33], which is a Transformer model, (ii) "ProtBert" [32], which is a
444  BERT-based encoder model[30], generating two pLMs pre-trained on BFD[78] and
445  UniRefl00[79] data, respectively, (iii) ProtT5-XL[32], which is an encoder model based on
446  T5[80], generating two pLMs pre-trained on BFD and UniRef50, respectively, and (iv)
447  ProtAlbert[32], which is an encoder model based on Albert[81] and pre-trained only with

448 UniRef100.
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449  Optimization strategy. We use a BERT-like optimizer AdamW and a Cosine Warm-up

450  strategy[30] to optimize the loss of the learning model. The initial learning rate is set to
451  0.0001, the batch size is set to 18, and the warm-up steps were set to 10. An early
452  stopping strategy was applied to monitor the validation ACC with 30 epochs to prevent
453  overfitting. To address the challenges of imbalanced positive and negative samples and
454  the difficulty of training individual samples in deep learning model training, we adopted the
455  Focal Loss method to mitigate the issue of gradient descent difficulty[82]. Focal Loss
456  increases the hyperparameter y (default y=2) based on the weighted cross-entropy loss,

457  which controls the shape of the curve.

FL(p,) = —a,(1 - p)¥ log(p,)
458  a;: Weight of the sample t,
459  p,;: Binary cross entropy loss.

460  T4attention model. The input to T4attention (Figure 1C, Supplement Figure S2) is a

461 protein embedding E, € R™*% where n is the sequence length and d is the size of the
462 embedding (depending on the feature extraction model). T4attention is a model based on
463  Bi-Conv attention. In the protein embedding direction, average pooling is performed
464  directly, and the input is transformed by two separate 1D convolutions, where the 1D
465  convolution serves as the attention coefficient e and value v for computing the embedding
466  dimension, e,v € R%1. Thus, we obtained the feature representation of the embedding
467 dimension x = softmax(e) X v. In the direction of the protein sequence, we randomly
468 intercept the length of m in the length direction of the protein-embedding sequence such
469 that the protein embedding becomes E; € R™*9o, Similar to the convolutional attention
470  calculation in the protein embedding direction, the attention coefficient ' and value v' are
471 obtained, e',v' € R™* %1, The difference is that the direction of the convolution is in the
472  direction of the sequence length, so that we can obtain the feature representation of the

473  protein sequence direction and converge according to the sequence length direction by
474 x'= Z'i"softmax(e’) x v'. The convolution attention results of the embedding direction

475  and the protein sequence direction are merged and passed through the LayerNorm and
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476  the residual one-dimensional convolution, and the class probabilities are obtained through
477  the two-layer multi-layer perceptron (MLP), p(c|x) = softmax(MLP(Conv(x +x') +

478 (x+ x’))), where c indicates the category of the output (i.e., T4ASE or nonT4SE).

479  T4attention was developed using PyTorch v1.10.1. The models were trained and
480 evaluated with 24-GB of memory and an NVIDIA GeForce RTX 3090 GPU for

481  acceleration.
482 Integrated T4SE prediction model

483 T4SEpp is a linear model that integrates multiple prediction modules developed or
484  re-trained in this study, including homology-searching modules for full-length or
485 fragmented effector proteins, traditional machine-learning modules with hand-crafted
486 features, and the attention-based transfer learning modules using the features generated
487 by pre-trained protein language models. For any prediction module, the factor was set to
488 1.0 if there was a positive prediction result, and 0 otherwise. Weight x was assigned
489  empirically to each module, where x € (0,0.50). The maximum T4SEpp predicted value
490 was set as 1.0. We trained the model using a grid search with 5-fold cross-validation to
491 determine the optimal combination of weights. The early stopping strategy was similar to

492  that used for T4attention. The final optimal parameters were shown in Figure 1D.
493  Assessment of model performance

494  Measures including accuracy (ACC), sensitivity (SN), specificity (SP), precision (PR),
495  Fl-score, Matthew's correlation coefficient (MCC), the area under the receiver operating
496  characteristic curve (rocAUC), and the precision recall rate curve (AUPRC) were
497  calculated to evaluate and compare the performance of models predicting T4SEs. Some

498 of these measures are defined as follows:

Acc - TP +TN
" TP+TN+FP+FN
N = TP
" TP+ FN
TN
sP

“TN + FP
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TP

PR=1pFp

2XTP
2XTP+FP+FN

F1 — score =

(TP x TN) — (FP x FN)

Mcc =
JTP +FN) x (TP + FP) x (TN + FN) x (TN + FP)

499  where TP, TN, FP, and FN represent the number of true positives, true negatives, false

500 positives, and false negatives, respectively.

501 RNA-seq analysis

502 RNA-seq datasets of H. pylori 26695 under different conditions were downloaded from the
503 NCBI GEO DataSets database with accessions GSE165055 and GSE165056[53]. After
504 removing the adapters and low-quality sequences with Trimmomatic v0.39[83], the
505 cleaned reads were mapped to the H. pylori 26695 reference genome (NC_000915.1)
506  using READemption (Version 2.0.0)[84]. The annotated genes were then quantified and
507 analyzed. Protein-Protein Interaction (PPI) Networks were built and visualized using the

508 Cytoscope v3.9.1[85].

509 Availability

510  The online version of the TASEpp is freely accessible at https://bis.zju.edu.cn/TASEpp.

511 The standalone version of the T4SEpp model and the individual modules were are also

512  deposited at https://github.com/yuemhu/T4SEpp. RNA-seq data are publicly available in

513 the NCBI GEO DataSets database with accession numbers GSE165055 and

514  GSE165056.
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766 Tables

767 Table 1. Performance comparison of the models in T4SEpp on 5-fold

768 cross-validation dataset.

Method ACC SN SP PR F1 mMccC rocAUC AUPRC
TAattention_ESM-1b 0.934+0.010 0.844+0.017 0.963+0.008 0.881+0.026 0.861+0.021 0.819+0.028 0.950+0.008 0.897+0.026
T4attention_ProtBert 0.931+0.013 0.859+0.030 0.954+0.013 0.861+0.036 0.859+0.025 0.814+0.033 0.954+0.010 0.897+0.028
T4attention_ProtBert-BFD 0.924+0.007 0.846+0.015 0.950+0.009 0.848+0.023 0.847+0.012 0.797+0.017 0.939+0.006 0.848+0.047

TAattention_ProtT5-XL-UniRef50 0.9330.015 0.844+0.021 0.962+0.016 0.881+0.044 0.861+0.028 0.818+0.038 0.949+0.007 0.895+0.030

TAattention_ProtT5-XL-BFD 0.925+0.021 0.847+0.017 0.950+0.025 0.851+0.065 0.849+0.037 0.800+0.051 0.949+0.011 0.887+0.032

Taattention_ProtAlbert 0.921+0.014 0.851+0.009 0.944+0.015 0.8340.037 0.842+0.024 0.790+0.033 0.940+0.015 0.860+0.036
a

TASEpre_psAac 0.841+0.014 0.825+0.030 0.858+0.049 0.856+0.040 0.839:0.012 0.686+0.030 0.917+0.016 0.884+0.015

T4SEpre_bpbAac 0.856:+0.032 0.817+0.059 0.894:0.038 0.887+0.037 0.849:+0.036 0.716+0.061 0.918+0.018 0.898+0.023

T4SEpp_ESM-1b 0.974+0.004 0.919+0.009 0.993+0.005 0.976+0.015 0.946+0.008 0.930+0.011 0.995+0.004 0.949+0.069

TASEpp_ProtBert 0.967+0.006 0.909+0.005 0.986+0.007 0.956+0.022 0.932+0.011 0.911+0.016 0.994+0.003 0.964+0.038

T4SEpp_ProtT5-XL-UniRef50  0.972+0.006 0.917+0.009 0.990+0.006 0.968+0.019 0.942+0.012 0.924+0.015 0.994+0.003 0.957+0.049

769 ACC, Accuracy; SN, sensitivity; SP, specificity; PR, precision; F1, F1-score; MCC, Matthews correlation coefficient; rocAUC,

770 area under the receiver operating characteristic curve; AUPRC, precision recall rate curve; ?, fine-tune the model.

771 Table 2. Performance comparison of the models in TASEpp and other tools on the

772 independent dataset.

Method ACC SN SP PR F1 MCC rocAUC AUPRC
T4attention_ESM-1b 0.935 0.850 0.947 0.680 0.756 0.743 0.956 0.850
T4attention_ProtBert 0.982 0.950 0.987 0.905 0.927 0.917 0.989 0.936
T4attention_ProtBert-BFD 0.959 0.950 0.960 0.760 0.844 0.828 0.973 0.936
T4attention_ProtT5-XLUniRef50 0.959 0.900 0.967 0.783 0.837 0.816 0.973 0.880
T4attention_ProtT5-XL-BFD 0.929 0.950 0.927 0.633 0.760 0.741 0.973 0.930
T4attention_ProtAlbert 0.953 0.900 0.960 0.750 0.818 0.796 0.959 0.891

T4SEpp_ESM-1b 0.976 0.850 0.993 0.944 0.894 0.883 0.922 0.868
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T4SEpp_ProtBert 0.988 0.950 0.993 0.950 0.950 0.943 0.974 0.946
T4SEpp_ProtT5-XL-UniRef50 0.988 0.900 1.000 1.000 0.947 0.942 0.948 0.901
T4SEfinder-TAPEBert_MLP 0.958 0.850 0.973 0.810 0.829 0.806 0.959 0.805
T4SEfinder-hybridbilstm 0.941 0.800 0.960 0.727 0.762 0.730 0.945 0.852
T4SEfinder-pssm_cnn 0.906 0.800 0.920 0.571 0.667 0.625 0.923 0.759
Bastion4 0.965 0.900 0.973 0.818 0.857 0.838 0.907 0.706
CNNT4SE 0.953 0.700 0.987 0.875 0.778 0.758 0.943 0.860
T4SEpre_psAac? 0.888 0.700 0.913 0.519 0.596 0.541 0.921 0.740
T4SEpre_bpbAac® 0.829 0.700 0.847 0.378 0.491 0.427 0.895 0.730

773 ACC, Accuracy; SN, sensitivity; SP, specificity; PR, precision; F1, F1-score; MCC, Matthews correlation coefficient; rocAUC,

774 area under the receiver operating characteristic curve; AUPRC, precision recall rate curve; ?, fine-tune the model.

775
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776  Supplementary data

777  Supplementary Figure S1. The workflow to construct the training(A) or independent
778  testing(B) dataset in this study.

779  Supplementary Figure S2. Two modules used by the T4attention model.

780  Supplementary Figure S3. The relationship between the feature extraction time of 6
781  different protein natural language models and the prediction performance of T4attention
782  model F1-score (A) and MCC (B) in the 5-fold cross-validation dataset.

783  Supplementary Figure S4. The relationship between T4attention model prediction
784  performance Fl-score (A) and MCC (B) in the independent test set and the overall
785  time-consuming use of 6 different protein natural language models to extract features and
786  their T4attention model predictions.

787  Supplementary Figure S5. Three T4ASEpp model were used to predict the potential
788  TA4SE in the UniProt reference proteome containing T4SS, respectively. Where 100%_ID
789  represents a known verified T4SE.

790  Supplementary Table S1. The 74 T4SEs independently collected from the literature.

791 Supplementary Table S2. Hyperparameters used in deep learning models of
792  T4attention.

793  Supplementary Table S3. Homologous Clusters of T4S Effector Signal Sequences.

794  Supplementary Table S4. The distribution of effector domain families.

795  Supplementary Table S5. Distribution of the Uniprot Bacteria Reference Proteomes
796  (Download date October 19, 2022).

797  Supplementary Table S6. Distribution of T4SS in the UniPort bacterial reference
798  proteome.

799  Supplementary Table S7. Homology prediction results of T4SE in strains containing
800 T4SS in the Uniport Bacteria Reference Proteomes.

801 Supplementary Table S8. Distribution of potential T4SEs in the H. pylori_26695
802 (NC_000915.1).

803  Supplementary Table S9. Distribution of potential T4SEs in the Uniport Bacteria

804 Reference Proteomes.
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