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Abstract 17 

Many pathogenic bacteria use type IV secretion systems(T4SSs) to deliver effectors 18 

(T4SEs) into the cytoplasm of eukaryotic cells, causeing diseases. The identification of 19 

effectors is a crucial step in understanding the mechanisms of bacterial pathogenicity, but 20 

this remains a major challenge. In this study, we used the full-length embedding features 21 

generated by six pre-trained protein language models to train classifiers predicting T4SEs, 22 

and compared their performance. An integrated model T4SEpp was assembled by a 23 

module searching full-length, signal sequence and effector domain homologs of known 24 

T4SEs, a machine learning module based on the hand-crafted features extracted from the 25 

signal sequences, and the third module containing three best-performing protein language 26 

pre-trained models. T4SEpp outperformed the other state-of-the-art (SOTA) software 27 

tools, achieving ~0.95 sensitivity at a high specificity of ~0.99, based on the assessment 28 

of an independent testing dataset. Additionally, we performed a comprehensive search 29 

among 8,761 bacterial species, leading to the discovery of 227 species belonging to 3 30 

phyla and 117 genera that possess T4SSs. Furthermore, leveraging the power of T4SEpp, 31 

we successfully identified a grand total of 12,622 plausible T4SEs. Overall, T4SEpp 32 

provides a better solution to assist in the identification of bacterial T4SEs, and facilitates 33 

studies of bacterial pathogenicity. T4SEpp is freely accessible at 34 

https://bis.zju.edu.cn/T4SEpp. 35 

Key words: T4SEpp; Type IV Secreted Effector; Deep Learning; Protein Language Model; 36 

Prediction 37 
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Introduction 39 

Gram-negative bacteria employ more than one dozen of secretion systems to transport 40 

proteins out of the cell envelope[1, 2]. Among them, the type IV secretion system (T4SS) 41 

is a complex molecular machine spanning both the inner and outer membranes, and 42 

translocate substrate proteins into eukaryotic host cells in only one step[3-9]. 43 

Protein-translocating T4SSs can be divided into two major families according to the 44 

composition of component elements: type IVA, exemplified by the A. tumfaciens 45 

VirB/VirD4 T4SS and H. pylori Cag T4SS, and type IVB exemplified by Legionella Dot/Icm 46 

T4SS[9]. Substrate proteins translocated by T4SSs, also called effectors, play important 47 

roles in bacterial infections and pathogenicity[1, 10, 11]. 48 

Effectors of T4SSs (T4SEs) are transported directly or as complexes with DNA in many 49 

pathogenic bacteria, such as Helicobacter pylori, Legionella pneumophila, Bordetella 50 

pertussis, Coxiella, Brucella, and Bartonella[12-17]. T4SS-mediated entry of effector 51 

proteins into recipient cells is contact-dependent[18]. Once they enter the eukaryotic host 52 

cytoplasm, they disrupt signal transduction and cause various host diseases. Identifying 53 

these effectors is crucial for understanding the mechanisms of infection and pathogenicity 54 

caused by these bacteria. However, because the composition and sequences vary 55 

significantly, it is challenging to identify new T4SEs experimentally. Although many T4SEs 56 

have been identified and characterized in a few model organisms[19-22], the exact 57 

mechanism remains unclear.  58 

Since 2009 when the first machine-learning algorithm was introduced, tens of 59 

computational models have been developed to predict T4SEs[2, 23]. Early algorithms 60 

were mainly species-specific, such as those predicting T4SEs in Legionella 61 

pneumophila[23]. In another study, Wang et al. developed an SVM-based model, 62 

T4SEpre, which exhibited good overall and cross-species performance[24]. However, 63 

T4SEpre only considers the features buried in the C-terminal 100 amino acids[24]. More 64 

studies, especially ensemble models recently developed with multi-aspect features, learn 65 

features from full-length proteins to improve performance[25, 26]. Deep learning 66 
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algorithms have also been applied in for the prediction of T4SEs. For example, 67 

CNN-T4SE integrated three convolutional neural network (CNN) models to learn the 68 

features of amino acid composition, solvent accessibility, and secondary structure of the 69 

full-length T4SEs[27]. T4SEfinder is a multi-layer perception (MLP) model that learns the 70 

features generated by a pre-trained BERT model[28], which can predict T4SEs 71 

accurately[29]. Notably, BERT is a natural language processing (NLP) model that is 72 

appealing in biology and other fields[30-35]. NLP models have been successfully applied 73 

to the prediction of protein subcellular localization[31, 32], secondary structure[32, 33, 35], 74 

and others[34]. Besides T4SEfinder, the NLP-based pre-trained transformers have also 75 

been used for the prediction of bacterial type III secreted effectors and Sec/Tat substrates, 76 

both achieving superior performance[36, 37]. 77 

Although machine learning strategies have achieved some success in the identification of 78 

T4SEs[2, 23, 24], the high false-positive rate has been a big challenge. To reduce the 79 

false-positive rate in predicting type III effectors, Hui et al. proposed a strategy to combine 80 

machine learning models with homology searching, and integrate multiple modules 81 

considering the multi-aspect biological features of the effector genes[38]. To improve 82 

model performance, other models have also considered the multiple features and a 83 

combination of homology-based strategies in the prediction of type III effectors[39-41]. For 84 

T4SE prediction, homology searching was also been applied independently. For example, 85 

S4TE integrates 13 sequence homology-based features, including homology to known 86 

effectors, homology to eukaryotic domains, presence of subcellular localization signals, 87 

and secretion signals, and develops a scoring scheme to predict T4SEs mainly from α- 88 

and γ-proteobacteria[42]. Despite the high precision, the sensitivity could be influenced by 89 

the large diversity of T4SE composition and sequences. Therefore, it could be a better 90 

solution to take the advantages of both machine learning approaches, especially 91 

ensemblers, and homology-based methods, designing an integrated T4SE prediction 92 

pipeline that combines various models and comprehensively considers various 93 

characteristics of effector sequences. 94 
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In this study, we proposed a hybrid strategy for predicting T4SEs. First, a homology 95 

searching strategy scanned both the global homology of full-length proteins and the local 96 

homology of domains to known effectors. Additionally, we retrained a machine learning 97 

module T4SEpre[24] with updated T4SE data and hand-crafted amino acid composition 98 

features in the C-termini. Furthermore, a group of transfer learning models was developed 99 

based on the features generated by various pretrained transformers. For the transfer 100 

learning models, we utilized the deep context protein language models ESM-1b, ProtBert, 101 

ProtT5-XL, and ProtAlbert to represent protein sequence features[32, 33]. These features 102 

can characterize the intrinsic but unclear properties of protein sequences and the 103 

interactions between positions. Based on these feature representations, application 104 

models were developed to classify T4SEs using a deep neural network architecture with 105 

an attention mechanism. Finally, we integrated the homology-based modules, machine 106 

learning models based on traditional handcrafted features, and transfer learning models 107 

with transformer-generated features into a pipeline, namely T4SEpp, which assembles 108 

the individual modules in a linear function to generate a prediction score reflecting the 109 

likelihood of a protein to be a T4SE. A web application for T4SEpp is also available via the 110 

link: https://bis.zju.edu.cn/T4SEpp. 111 

  112 
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Results 113 

Sequence homology among verified effectors and the integrated 114 

prediction framework 115 

Experimentally verified effectors were collected from literature and databases, and 653 116 

proteins were obtained after removing redundant sequences, representing the latest and 117 

most comprehensive list of experimentally verified T4SEs[26, 43] (see Materials and 118 

Methods). Pairwise sequence alignments of full-length (FL) effector proteins or their 119 

C-terminal peptides of 100 or 50 amino acids (C100 or C50, respectively) were performed. 120 

For the FL proteins, 481 non-homologous clusters were identified after homology filtering 121 

for the proteins with > 30% identity and > 70% length coverage of the pair of proteins 122 

(FL_70%_30%_ID) (Figure 1A). However, for the C100 sequences, 249 were homologous 123 

to others with an identity of > 30%, and 473 non-redundant clusters were retained from 124 

these sequences after homology filtering (C100_30%_ID) (Figure 1A). The reduction in 125 

the number of clusters indicated that the C-terminal 100 amino acids showed more 126 

homology than the full-length effector proteins, but there were no significant differences 127 

between them (473/654 vs. 481/654, EBT P= 0.614). The C50 sequences further reflected 128 

the typical C-terminal homology between effectors. A total of 342 peptides were found to 129 

have homology with the others, while 401 clusters remained for these peptides after 130 

homology filtering (C50_30%_ID, 401/654 vs. 481/654, EBT P=3.17e-03) (Figure 1A). 131 

Rigorous homology filtering is a prerequisite for the application of machine learning to 132 

sequence analysis and effector identification. Sequence homology is often measured 133 

using similarity (SIM) rather than identity, with a cut-off of ≤ 30% for proteins. Therefore, 134 

we also employed a loose measure of homology, defined as >30% similarity, to examine 135 

sequence similarity between validated effectors. Surprisingly, the homology network 136 

involved all the 634 C100 peptides (C100_30%_SIM) (Figure 1A). The results 137 

demonstrated that the validated T4SEs showed unexpectedly significant homology, 138 

especially for the C-terminus. 139 

Taking full advantage of the fragmental similarity between T4SEs, combined with machine 140 

learning techniques, a comprehensive prediction pipeline (T4SEpp) was designed (Figure 141 
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1B and C). Several homology searching modules have been developed to detect 142 

full-length (flBlast), effector domain (effectHMM) and C-terminal signal region (sigHMM) 143 

homologs of known T4SEs. A previous machine learning model, T4SEpre, which predicts 144 

T4SEs based on the C-terminal hand-crafted features and fine-tuned based on an 145 

updated dataset [24]. Using the generative features from pre-trained transformers, we 146 

also developed a deep learning module, T4attention, incorporated with the Bi-Conv 147 

attention mechanism. Figure 1D showes the framework of T4SEpp, taking the prediction 148 

scores of the homology search module (flBlast, effectHMM, and sigHMM), T4SEpre, and 149 

T4attention into a linear model to generate the final score, which reflects the likelihood of 150 

an input protein to be an effector. 151 

 152 

Figure 1.  Sequence homology among T4S effectors and an integrated prediction framework. (A) 153 

Sequence homology network of T4SE. The nodes represented effectors with homology with at least one 154 

other effector. The pairs with homology (identified by the criteria defined at the top) were connected by 155 

green lines. The cluster and homology represented the number of T4SE multi-member clusters and 156 

homologous proteins. (B) Homology-based modules developed for T4SEpp, based on the full-length 157 

effector proteins (flBlast) or signal sequence (sigHMM), and effector (effectHMM) domains. (C) 158 
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T4attention, a deep learning model framework based on Bi-Conv attention. (D) Flowchart of the T4SEpp 159 

prediction program. The weighted sum of the prediction scores from each individual module is 160 

incorporated into the probability that a protein is a T4SE. 161 

T4SE families of signal sequences and functional domains 162 

According to the homology of the C50 peptides, the effectors could be clustered into 405 163 

signal sequence families, including 94 multi-member and 311 singlet families 164 

(Supplementary Table S3). After the signal sequences (C50) were removed, 640 effectors 165 

with a length of ≥ 30 amino acids remained, of which 270 were classified into 106 166 

multi-member families and 370 represented singlet families (Supplementary Table S4). 167 

The sequences within each multi-component family showed striking similarity, and 168 

multiple positions appeared conserved, as shown for one example, sigFAM50 (Fig. 2A). 169 

The amino acid composition (AAC) showed apparent preference in multiple positions, e.g., 170 

leucine in positions 9, 24, and 37, serine in position 18, 30, and 64, and asparagine in 171 

position 11, 26, and 48, of sigFAM50 (Fig. 2A). Effectors of the same signal sequence 172 

family may belong to different effector functional domain families and vice versa. For 173 

example, six cytotoxin-associated gene A (CagA) effectors and two Legionella proteins 174 

contained the signal sequences of the same family (sigFAM50, Figure 2B; Supplementary 175 

Table S3), but they also fell into three different effector functional domain families 176 

(effectFAM73 for all the CagAs, and effectFAM19 and effectFAM57 for the other two 177 

proteins; Figure 2B; Supplementary Table S4). This could be related to frequent domain 178 

reshuffling events that have been reported in Legionella[44]. 179 

Furthermore, we searched for homologs of known T4SEs from the representative 180 

bacterial genomes downloaded from UniProt (8761 genomes; Supplementary Table S5). 181 

In total, 258 protein-translocating T4SSs were detected from 227 bacterial strains 182 

distributed in their phyla (Proteobacteria, Fusobacteria and Nitrospirae), six classes 183 

(Alphaproteobacteria, Betaproteobacteria, Epsilonproteobacteria, Gammaproteobacteria 184 

Fusobacteriia, and Nitrospira), 117 genera and 227 species (Figure 2C, Supplementary 185 

Table S6). In these strains with T4SSs, 10,130 proteins were detected with full-length or 186 

local homology to the known T4SEs using the individual homology searching modules, 187 

and 1,020 were identified by all the three modules (Figure 2D, Supplementary Table S7). 188 
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 189 

Figure 2. Search for T4SS and effectors in the UniProt reference proteome based on sequence 190 

homology. (A) Multiple-sequence alignment (MSA) of a homologous cluster (i.e., sigFAM50) of T4SE 191 

signal sequences. Then, utilize the sequence logo of position-specific Amino Acid Compositions (AAC) 192 

corresponding to the alignment. The height of the amino acid in each position indicated the AAC 193 

preference. (C) Using the core protein components of T4SS to construct a Hidden Markov Model (HMM) 194 

to predict the distribution of T4SS in the UniProt reference proteome. (D) Three homologous modules 195 

(sigHMM, effectHMM and flBlast) were used to predict the potential T4SE in the UniProt reference 196 

proteome containing T4SS, respectively. Where 100%_ID represents a known verified T4SE. 197 

Prediction of T4SEs with pre-trained transformer-based models 198 

Recently, protein language models have been successfully applied for structural 199 

prediction and sequence classification. In this research, we used six pre-trained models, 200 

ESM-1b, ProtAlbert, ProtBert-BFD, ProtBert-UniRef100, ProtT5-XL-BFD, and 201 
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ProtT5-XL-UniRef50, to generate features; based on this, we developed deep learning 202 

models (T4attention) based on Bi-Conv attention respectively to classify T4SEs and 203 

non-T4SEs. The T4attention models based on different sequence embedding features 204 

were compared for performance based on a five-fold cross-validation strategy (Table 1). 205 

Generally, T4attention_ESM-1b performed the best, followed by 206 

T4attention_ProtT5-XL-UniRef50, and T4attention_ProtAlbert showed the poorest 207 

performance, according to the Matthew's correlation coefficient (MCC) and F1-score 208 

(Table 1). T4attention_ESM-1b not only reached the highest MCC and F1-score (0.861 209 

and 0.819, respectively), but required the lowest computational resources (Supplementary 210 

Figure S3). It was also noted that, for the same protein language model architecture, 211 

ProtBert or ProtT5-XL, for example, the generation of features from models pre-trained 212 

from various volumes of protein database required similar computational resource, but the 213 

smaller database-based pre-trained models always generated features for subsequent 214 

T4attention models with better performance (MCC of T4attention_ProtBert vs. 215 

T4attention_ProtBert-BFD, 0.814 vs. 0.797; T4attetion_ProtT5-XL-UniRef50 vs. 216 

ProtT5-XL-BFD, 0.818 vs. 0.800) (Table 1, Supplementary Figure S3). The redundancy of 217 

protein sequences in the BFD dataset might lead to biases in model training, and further 218 

compromise the performance of models addressing downstream tasks.  219 

We also evaluated the performance and generalization abilities of these models on an 220 

independent testing dataset. T4attention_ProtBert showed the overall the best 221 

performance, for which the MCC, F1-score, and accuracy reached 0.917, 0.927, and 222 

0.987, respectively (Table 2). T4attention_ESM-1b was unexpected and showed poor 223 

performance (Table 2). Consistent with the cross-validation results, the ProtBert and 224 

ProtT5-XL models, based on the features generated by transformers pre-trained from a 225 

smaller database (UniRef100/UniRef50), showed better performance (Table 2, 226 

Supplementary Figure S4).  227 

Considering the performance of models based on both cross-validation results and the 228 

independent testing dataset, as well as the requirement of computational resources, we 229 

integrated three models, T4attention_ESM-1b, T4attention_ProtBert, and 230 
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T4attention_ProtT5-XL-UniRef50, into the pipeline to predict T4SEs. 231 

An integrated pipeline predicting T4SEs with largely improved performance 232 

In addition to the models based on the features generated by the transformer, we tested 233 

traditional machine learning models based on hand-crafted features. To this end, we 234 

fine-tuned two models of T4SEpre models (T4SEpre_psAac and T4SEpre_bpbAac) to 235 

learn the amino acid composition features in the C-termini of T4SEs[24]. Both models 236 

showed a certain performance in the prediction of T4SEs according to the cross-validation 237 

results or the independent testing dataset, although they were not comparable to the 238 

T4attention models (Tables 1 and 2).  239 

To further improve the accuracy and reduce the false positive rate for T4SE prediction, we 240 

assembled a unified pipeline, T4SEpp, integrating the homology searching modules, 241 

machine learning models based on hand-crafted features and models based on 242 

transformer-generated features (Figure 1). The integrated pipeline showed strikingly 243 

better performance than the individual models, with MCC values of 0.930, 0.911 and 244 

0.924 for T4SEpp_ESM-1b, T4SEpp_ProtBert, and T4SEpp_ProtT5-XL-UniRef50 based 245 

on the cross-validation evaluation and 0.883, 0.943, and 0.942 for the testing dataset, 246 

respectively (Tables 1 and 2). 247 

T4SEpp was also compared to other state-of-the-art(SOTA) T4SE prediction models, 248 

such as Bastion4[26], CNNT4SE[27] and T4SEfinder[29]. Among these other models, 249 

Bastion4 showed the best performance, which was close to that of the T4attention models 250 

but was far inferior to the integrated T4SEpp (Table 2). 251 

Genome-wide screening of T4SEs in Helicobacter pylori and other 252 

bacteria 253 

H. pylori is a gram-negative, spiral-shaped bacterium that colonizes the stomach in 254 

approximately half of the world's population[45]. Although most individuals do not 255 

experience any adverse health outcomes attributable to H. pylori, the presence of these 256 

bacteria in the stomach increases the risk of developing gastric diseases[46-50]. H. pylori 257 

infection is also the strongest known risk factor for gastric cancer, the third leading cause 258 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 26, 2023. ; https://doi.org/10.1101/2023.07.01.547179doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.01.547179
http://creativecommons.org/licenses/by-nc-nd/4.0/


of cancer-related death worldwide[51]. T4SS plays an important role in H. pylori[47-50]. 259 

However, to date, only one T4SE, CagA, has been identified for the T4SS in H. pylori[52]. 260 

Here, we applied T4SEpp to screen T4SE candidates from the proteins derived from the 261 

genome of H. pylori 26695, a model H. pylori strain (NCBI accession number: 262 

NC_000915.1). The three T4SEpp integrated models, T4SEpp_ESM-1b, 263 

T4SEpp_ProtBert, and T4SEpp_ProtT5-XL-UniRef50, predicted 55, 22, and 38 T4SE 264 

candidates, respectively, and 13 were shared by the prediction results of all the three 265 

models (Figure 3A-B; Supplementary Tables S6, S8). The 13 potential effector genes 266 

were scattered throughout the genome (Figure 3B). Notably, HP_RS02695, which 267 

encodes the only known effector CagA, was among the 13 candidates (Figure 3B).  268 

Gene co-expression was analyzed for the 13 T4SE candidate genes in H. pylori 26695 269 

using an RNA-seq dataset sampled from the strain collected under 12 different 270 

conditions[53]. Except for HP_RS06290, HP_RS03730, HP_RS04865, and HP_RS06295, 271 

the remaining eight genes showed a strong expression correlation with cagA expression 272 

(Figure 3C). The genes co-expressed with cagA also showed a significant correlation with 273 

the expression of the core component genes of the Cag T4SS (Figure 3C). Furthermore, 274 

we annotated 12 human proteins that showed experimentally verified interactions with 275 

CagA by literature search, including ASPP2, c-Abl, c-Met, Crk, E-cadherin, GSK-3, PAR1, 276 

PRK2, SHP-1, SHP-2, TAK1, and ZO-1[54-65]. The interaction network between the 13 277 

potential H. pylori 26695 T4SEs and the 12 human proteins was inferred (Figure 3D). Ten 278 

of the candidate T4SEs showed potential interaction with at least one of the human 279 

proteins (Figure 3D). Similar to CagA, HP_RS02225, HP_RS06295 and HP_RS03730 280 

showed interacted with all the 12 human proteins (Figure 3D). Taken together, the proteins 281 

predicted by T4SEpp could potentially represented new T4SEs, or may be closely related 282 

to the pathogenicity of H. pylori 26695.  283 

We also used T4SEpp to screen the T4SE candidates from the genomes of 227 bacterial 284 

strains bearing T4SSs. T4SEpp_ESM-1b, T4SEpp_ProtBert, and 285 

T4SEpp_ProtT5-XL-UniRef50 detected 16,972, 20,441 and 17,197 T4SE candidates 286 

respectively, with 12,622 common candidates co-predicted by all the three T4SEpp 287 
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models (Supplementary Table S9, Supplementary Figure S5). 288 

 289 

Figure 3. Whole-proteome detection for T4SEs in pathogenic bacteria (H. pylori 26695). (A) Prediction of 290 

potential T4SEs in the H. pylori 26695 proteome using three T4SEpp models. (B) Use the circos diagram 291 

to show the distribution of potential T4SEs predicted by the three T4SEpp models on the H. pylori 26695 292 

chromosome (NC_000915.1), where T4SEpp_prob represents the mean value of the prediction results of 293 

the three T4SEpp models, and the outer circle of the circos diagram represents the three T4SEpp model 294 

predictions were all positive. (C) Under 12 different expression conditions of H. pylori 26695, the 295 

expression correlation of Cag T4SS core components with 12 potential T4SEs and CagA (HP_RS02695) 296 

predicted by three T4SEpp models were positive. (D) Prediction of potential interactions between 12 297 

potential T4SEs in H. pylori 26695 and 12 human proteins using DeepHPI. These 12 human proteins are 298 

known to interact with CagA(HP_RS02695). 299 

Web server and implementation of T4SEpp 300 

To facilitate the implementation of T4SEpp, we developed a user-friendly web application 301 

(https://bis.zju.edu.cn/T4SEpp). The three T4SEpp integrated models, T4SEpp_ESM-1b, 302 

T4SEpp_ProtBert, and T4SEpp_ProtT5-XL-UniRef50 can be chosen and implemented by 303 

users. Both the overall prediction results and the results of the individual modules are 304 
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displayed in table format, which can be downloaded and filtered easily. 305 

Discussion 306 

T4SS plays a crucial role in bacterial pathogenicity by secreting effectors into host cells. L. 307 

pneumophila can translocated more than 300 known effectors into human cells via the 308 

Dot/Icm T4SS system, causing legionellosis[66, 67]. In H. pylori, CagA is the only known 309 

T4SE that can hijack multiple signaling pathways in gastric epithelial cells, leading to 310 

gastritis, gastric ulcer and even gastric cancer[68, 69]. Identifying the full repertoire of 311 

T4SEs in a pathogen is important to understand its pathogenic mechanisms. 312 

Computational methods can assist with the effective identification of new effectors[70]. 313 

However, the currently available T4SE prediction tools still show high false positive 314 

rates[2]. To address this issue, we developed a unified T4SE prediction pipeline, T4SEpp, 315 

which includes homologous search modules, traditional machine learning modules and 316 

natural language processing-based modules. T4SEpp outperformed other SOTA methods 317 

for predicting T4SEs, with improved sensitivity and specificity. Furthermore, we initiated a 318 

web server that can conveniently implement the T4SEpp pipeline, providing the prediction 319 

results for each module. 320 

Although the component modules of T4SEpp can be used for T4SE prediction, they often 321 

show higher false positive rates when used alone. This could be related to the low power 322 

of the individual dimensions of the features. Specifically, T4SE signal sequences were 323 

considered to contain important common features guiding T4SE secretion and 324 

translocation, which were used for effective T4SE prediction using tools such as 325 

T4SEpre[24]. However, the computational models based only on the signal sequences 326 

showed performance inferior to other models based on multiple-aspect features extracted 327 

from full-length proteins[26]. In this study, we discovered high sequence similarity in the 328 

C-terminal signal region among the proteins, without apparent homology to full-length 329 

effectors. Such undetected homology could have introduced bias and led to overfitting of 330 

various established machine learning algorithms and the discrepancy between the 331 

reported and actual accuracy of these methods. However, the C-terminal homology could 332 

also suggest the independent evolution of the signal sequences, and it could potentially 333 
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be applied to facilitate the identification of new effectors[42]. 334 

In this study, three types of modules were integrated to predict T4SEs. Homology 335 

searching-based modules provide more accurate results, but they also show a lower 336 

capacity to detect new effectors with or without remote homology. The re-trained T4SEpre 337 

modules focused on the important features of the C-terminal signal sequences of T4SEs. 338 

T4attention learns from the full-length effector proteins the features generated by protein 339 

language models (pLMs) pre-trained with large-scale protein databases. These 340 

pLM-based models can learn new, previous unknown features that may involve 341 

position-position interactions, and have demonstrated outstanding performance in the 342 

prediction of proteins with various biological functions, such as subcellular localization and 343 

secondary structure. We used multiple pLMs to build transfer learning models, most of 344 

which exhibited excellent performance in T4SE prediction. Interestingly, we noticed that 345 

the pre-trained pLMs based on the larger datasets did not generate better prediction 346 

performance. pLMs pre-trained on smaller datasets are more efficient. Therefore, the 347 

transfer models were trained with the pLMs based on smaller non-redundant protein 348 

datasets. T4SEpp, which integrated all three types of modules, significantly outperformed 349 

both individual modules and other similar applications. 350 

Using T4SEpp, we analyzed the potential new T4SEs in both H. pylori and other strains 351 

bearing T4SS. We identified 12 new T4SEs in H. pylori. We also identified 12,205 new 352 

T4SEs and 417 known T4SEs from 227 strains bearing a T4SS. The results suggested 353 

that there are many new effectors yet to be clarified. 354 

Despite the significant performance improvement of T4SEpp, there remains a need to 355 

further improve the prediction of T4SEs. Other features that have been known to 356 

contribute to the recognition of T4SEs, such as the GC content of genomic loci, 357 

phylogenetic profiles, consensus regulatory motifs in promoters, physicochemical 358 

properties, secondary structures, homology to eukaryotic domains, and 359 

organelle-targeting signals, have not been integrated into the current version of the 360 

model[70]. Novel features that could be further integrated to improve the model 361 

performance remain to be disclosed. The different types (IVA and IVB) of effectors, 362 
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chaperone-dependent or chaperone-independent effectors, or species-specific effectors 363 

can also be modeled and predicted separately to make more accurate prediction[70].  364 

  365 
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Materials and methods 366 

Datasets 367 

The 390 T4SEs used by Bastion4 as the positive training dataset[26] and 540 T4SEs 368 

annotated in SecReT4 v2.0[43] were collected and merged, and in total we got 653 369 

non-identical, validated T4SEs. CD-HIT[71] was used to filter homology-redundant 370 

proteins with sequence identity ≥ 60%, generating 518 non-redundant T4SEs, which were 371 

used as the positive training dataset(Supplementary Figure S1A). For the negative 372 

training dataset, we collected 1112 and 1548 non-T4SE protein sequences from 373 

Bastion4[26] and PredT4SE-stack[72], respectively. The same procedure was used to 374 

eliminate the sequence redundancy among the non-T4SEs and between the non-T4SEs 375 

and T4SEs in the positive training dataset, generating 1590 non-redundant non-T4SEs 376 

(Supplementary Figure S1A). An independent validation dataset was also prepared, for 377 

which the T4SEs were collected from the testing dataset of Bastion4 (30) and others (74) 378 

annotated from literature published recently (Supplementary Table S1), and the 150 379 

testing non-T4SEs of Bastion4 were also used as negative ones. CD-HIT was used to 380 

filter the redundant proteins with ≥60% sequence identity to the training proteins and 381 

among proteins in the validation dataset, resulting in 20 non-redundant T4SEs and 150 382 

non-T4SEs (Supplementary Figure S1B). 383 

Genome-wide screening of protein-translocation T4SSs 384 

The conserved core component proteins were collected from four representative 385 

protein-translocation T4SSs, including the Agrobacterium tumefaciens VirB/VirD4 T4SS 386 

(inner membrane complex proteins VirB3, VirB6, VirB8, VirB10 and VirD4, and outer 387 

membrane complex proteins VirB7, VirB9 and VirB10)[16], the Bordetella pertussis Ptl 388 

T4SS (inner membrane complex proteins PtlB, PtlE and PtlH, and outer membrane 389 

complex proteins PtlF and PtlG)[73], the Helicobacter pylori Cag T4SS (inner membrane 390 

complex proteins Cagα, Cagβ and CagE, and outer membrane complex proteins CagX, 391 

CagY, CagT, CagM and Cag3)[18], the Legionella pneumophila Dot/Icm T4SS (inner 392 

membrane complex proteins IcmB, IcmG and DotB, and outer membrane complex 393 
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proteins DotC, DotD, DotG and IcmK)[16]. Hidden Markov Model (HMM) profiles were 394 

built using HMMER 3.1 for the T4SS component protein families[74]. Protein sequences 395 

derived from the 8761 reference bacterial genomes curated in UniProt were scanned with 396 

HMMER and the HMM profiles to determine the distribution of homologs of T4SS core 397 

component proteins (Supplementary Table S5).  398 

Homology networks of the T4SE peptide sequences 399 

The sequences of 653 non-identical verified T4SE proteins were used to construct the 400 

homology networks. JAligner implemented the Smith-Waterman algorithm to determine 401 

the similarity between any pair of full-length effectors or peptide fragments of designated 402 

length (http://jaligner.sourceforge.net/). The identity and similarity percentages between 403 

any pair of sequences were used as measures to determine the homology level[38].  404 

Homology-based T4SE detection modules 405 

Diamond blastp was used to determine the homology and cluster the full-length effector 406 

proteins[75] and to screen new full-length homologs (flBlast). Two proteins showing ≥30% 407 

similarity for ≥70% of the full length of either protein were considered to be full-length 408 

homologs[38, 76]. The C-terminal 50-aa signal sequences of the verified effectors were 409 

clustered according to homology networks with 30% identity for 70% length aligned by 410 

JAligner. HMM profiles were built for each signal sequence family, and a sigHMM module 411 

was developed to screen for proteins with C-terminal sequences homologous to the 412 

profiles of known T4SE signal sequence families. The homology cutoff for HMM searching 413 

was optimized for each family, ensuring that all or most of the known effectors recalled 414 

and maintained a higher specificity. For effectHMM, we removed the C-terminal 50-aa 415 

signal from each known effector sequence, and the remaining peptide fragment 416 

with >30-aa length was used for domain clustering. Pairwise alignment was repeatedly 417 

performed with BLAST between the domain sequences, and the cutoff for homology was 418 

optimized based on the average coverage of the aligned length multiplied by the identity, 419 

that is, ≥10[38]. The HMM profiles were built for the effector domain families, and 420 

effectHMM was developed using a similar procedure as sigHMM to screen the proteins 421 
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with homologous T4SE effector-domains. We used EBT to compare general homology 422 

between proteins[38, 77]. 423 

Fine-tune T4SEpre models with updated datasets 424 

Fine-tune T4SEpre models (T4SEpre_psAac and T4SEpre_bpbAac) using the new 425 

training datasets of T4SEs and non-T4SEs. The original T4SEpre procedure was followed 426 

for feature representation, parameter optimization and model training[24]. Briefly, 427 

sequential amino acid, bi-residue and motif composition features and position-specific 428 

amino acid composition profile for the positive training dataset were represented for each 429 

C-terminal 100-aa sequence for the psAac model. For the bpbAac model, position-specific 430 

amino acid composition profiles of both the positive and the negative training datasets 431 

(Bi-Profile Bayesian features) were represented for each C-terminial 100-aa sequence. 432 

Support vector machine (SVM) models were trained for feature matrices. The kernel 433 

functions, that is, linear, polynomial, sigmoid, and radial base function (RBF), and 434 

corresponding parameters (cost and gamma) were optimized using a 5-fold 435 

cross-validation grid search strategy. The sklearn v1.0.1 was used for implementing SVM 436 

model training and kernel/parameter optimization. 437 

The deep learning architecture of T4attention based on pre-trained protein 438 

language models 439 

Input embeddings. Frozen embeddings were extracted directly from protein language 440 

models (pLMs) without fine-tuning the training data. Four different basic LMs were used in 441 

this study, and six different pLMs were pre-trained with different datasets. The basid LMs 442 

include, (i) “ESM-1b”[33], which is a Transformer model, (ii) "ProtBert" [32], which is a 443 

BERT-based encoder model[30], generating two pLMs pre-trained on BFD[78] and 444 

UniRef100[79] data, respectively, (iii) ProtT5-XL[32], which is an encoder model based on 445 

T5[80], generating two pLMs pre-trained on BFD and UniRef50, respectively, and (iv) 446 

ProtAlbert[32], which is an encoder model based on Albert[81] and pre-trained only with 447 

UniRef100. 448 
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Optimization strategy. We use a BERT-like optimizer AdamW and a Cosine Warm-up 449 

strategy[30] to optimize the loss of the learning model. The initial learning rate is set to 450 

0.0001, the batch size is set to 18, and the warm-up steps were set to 10. An early 451 

stopping strategy was applied to monitor the validation ACC with 30 epochs to prevent 452 

overfitting. To address the challenges of imbalanced positive and negative samples and 453 

the difficulty of training individual samples in deep learning model training, we adopted the 454 

Focal Loss method to mitigate the issue of gradient descent difficulty[82]. Focal Loss 455 

increases the hyperparameter γ (default γ=2) based on the weighted cross-entropy loss, 456 

which controls the shape of the curve.  457 

������ � ����	 � ���� 
������ 

��: Weight of the sample t, 458 

��: Binary cross entropy loss. 459 

T4attention model. The input to T4attention (Figure 1C, Supplement Figure S2) is a 460 

protein embedding 
� � �����, where n is the sequence length and d0 is the size of the 461 

embedding (depending on the feature extraction model). T4attention is a model based on 462 

Bi-Conv attention. In the protein embedding direction, average pooling is performed 463 

directly, and the input is transformed by two separate 1D convolutions, where the 1D 464 

convolution serves as the attention coefficient e and value v for computing the embedding 465 

dimension, �, � � ���. Thus, we obtained the feature representation of the embedding 466 

dimension � � ���������� � �. In the direction of the protein sequence, we randomly 467 

intercept the length of m in the length direction of the protein-embedding sequence such 468 

that the protein embedding becomes 
� � �����. Similar to the convolutional attention 469 

calculation in the protein embedding direction, the attention coefficient e' and value v' are 470 

obtained, ��, �� � �����. The difference is that the direction of the convolution is in the 471 

direction of the sequence length, so that we can obtain the feature representation of the 472 

protein sequence direction and converge according to the sequence length direction by 473 

�� � � ���������	��



� ��. The convolution attention results of the embedding direction 474 

and the protein sequence direction are merged and passed through the LayerNorm and 475 
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the residual one-dimensional convolution, and the class probabilities are obtained through 476 

the two-layer multi-layer perceptron (MLP), ���|�� � �������� �!"#�$��� % �	� %477 

�� % �	�&�, where c indicates the category of the output (i.e., T4SE or nonT4SE). 478 

T4attention was developed using PyTorch v1.10.1. The models were trained and 479 

evaluated with 24-GB of memory and an NVIDIA GeForce RTX 3090 GPU for 480 

acceleration. 481 

Integrated T4SE prediction model 482 

T4SEpp is a linear model that integrates multiple prediction modules developed or 483 

re-trained in this study, including homology-searching modules for full-length or 484 

fragmented effector proteins, traditional machine-learning modules with hand-crafted 485 

features, and the attention-based transfer learning modules using the features generated 486 

by pre-trained protein language models. For any prediction module, the factor was set to 487 

1.0 if there was a positive prediction result, and 0 otherwise. Weight x was assigned 488 

empirically to each module, where ' � �0,0.50�. The maximum T4SEpp predicted value 489 

was set as 1.0. We trained the model using a grid search with 5-fold cross-validation to 490 

determine the optimal combination of weights. The early stopping strategy was similar to 491 

that used for T4attention. The final optimal parameters were shown in Figure 1D. 492 

Assessment of model performance 493 

Measures including accuracy (ACC), sensitivity (SN), specificity (SP), precision (PR), 494 

F1-score, Matthew’s correlation coefficient (MCC), the area under the receiver operating 495 

characteristic curve (rocAUC), and the precision recall rate curve (AUPRC) were 496 

calculated to evaluate and compare the performance of models predicting T4SEs. Some 497 

of these measures are defined as follows:  498 
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where TP, TN, FP, and FN represent the number of true positives, true negatives, false 499 

positives, and false negatives, respectively. 500 

RNA-seq analysis 501 

RNA-seq datasets of H. pylori 26695 under different conditions were downloaded from the 502 

NCBI GEO DataSets database with accessions GSE165055 and GSE165056[53]. After 503 

removing the adapters and low-quality sequences with Trimmomatic v0.39[83], the 504 

cleaned reads were mapped to the H. pylori 26695 reference genome (NC_000915.1) 505 

using READemption (Version 2.0.0)[84]. The annotated genes were then quantified and 506 

analyzed. Protein-Protein Interaction (PPI) Networks were built and visualized using the 507 

Cytoscope v3.9.1[85]. 508 

Availability 509 

The online version of the T4SEpp is freely accessible at https://bis.zju.edu.cn/T4SEpp. 510 

The standalone version of the T4SEpp model and the individual modules were are also 511 

deposited at https://github.com/yuemhu/T4SEpp. RNA-seq data are publicly available in 512 

the NCBI GEO DataSets database with accession numbers GSE165055 and 513 

GSE165056. 514 
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Tables 766 

Table 1. Performance comparison of the models in T4SEpp on 5-fold 767 

cross-validation dataset. 768 

Method ACC SN SP PR F1 MCC rocAUC AUPRC 

T4attention_ESM-1b 0.934±0.010 0.844±0.017 0.963±0.008 0.881±0.026 0.861±0.021 0.819±0.028 0.950±0.008 0.897±0.026 

T4attention_ProtBert 0.931±0.013 0.859±0.030 0.954±0.013 0.861±0.036 0.859±0.025 0.814±0.033 0.954±0.010 0.897±0.028 

T4attention_ProtBert-BFD 0.924±0.007 0.846±0.015 0.950±0.009 0.848±0.023 0.847±0.012 0.797±0.017 0.939±0.006 0.848±0.047 

T4attention_ProtT5-XL-UniRef50 0.933±0.015 0.844±0.021 0.962±0.016 0.881±0.044 0.861±0.028 0.818±0.038 0.949±0.007 0.895±0.030 

T4attention_ProtT5-XL-BFD 0.925±0.021 0.847±0.017 0.950±0.025 0.851±0.065 0.849±0.037 0.800±0.051 0.949±0.011 0.887±0.032 

T4attention_ProtAlbert 0.921±0.014 0.851±0.009 0.944±0.015 0.834±0.037 0.842±0.024 0.790±0.033 0.940±0.015 0.860±0.036 

T4SEpre_psAac
a
 0.841±0.014 0.825±0.030 0.858±0.049 0.856±0.040 0.839±0.012 0.686±0.030 0.917±0.016 0.884±0.015 

T4SEpre_bpbAac
a
 0.856±0.032 0.817±0.059 0.894±0.038 0.887±0.037 0.849±0.036 0.716±0.061 0.918±0.018 0.898±0.023 

T4SEpp_ESM-1b 0.974±0.004 0.919±0.009 0.993±0.005 0.976±0.015 0.946±0.008 0.930±0.011 0.995±0.004 0.949±0.069 

T4SEpp_ProtBert 0.967±0.006 0.909±0.005 0.986±0.007 0.956±0.022 0.932±0.011 0.911±0.016 0.994±0.003 0.964±0.038 

T4SEpp_ProtT5-XL-UniRef50 0.972±0.006 0.917±0.009 0.990±0.006 0.968±0.019 0.942±0.012 0.924±0.015 0.994±0.003 0.957±0.049 

ACC, Accuracy; SN, sensitivity; SP, specificity; PR, precision; F1, F1-score; MCC, Matthews correlation coefficient; rocAUC, 769 

area under the receiver operating characteristic curve; AUPRC, precision recall rate curve; a, fine-tune the model. 770 

Table 2. Performance comparison of the models in T4SEpp and other tools on the 771 

independent dataset.  772 

Method ACC SN SP PR F1 MCC rocAUC AUPRC 

T4attention_ESM-1b 0.935 0.850 0.947 0.680 0.756 0.743 0.956 0.850 

T4attention_ProtBert 0.982 0.950 0.987 0.905 0.927 0.917 0.989 0.936 

T4attention_ProtBert-BFD 0.959 0.950 0.960 0.760 0.844 0.828 0.973 0.936 

T4attention_ProtT5-XLUniRef50 0.959 0.900 0.967 0.783 0.837 0.816 0.973 0.880 

T4attention_ProtT5-XL-BFD 0.929 0.950 0.927 0.633 0.760 0.741 0.973 0.930 

T4attention_ProtAlbert 0.953 0.900 0.960 0.750 0.818 0.796 0.959 0.891 

T4SEpp_ESM-1b 0.976 0.850 0.993 0.944 0.894 0.883 0.922 0.868 
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T4SEpp_ProtBert 0.988 0.950 0.993 0.950 0.950 0.943 0.974 0.946 

T4SEpp_ProtT5-XL-UniRef50 0.988 0.900 1.000 1.000 0.947 0.942 0.948 0.901 

T4SEfinder-TAPEBert_MLP 0.958 0.850 0.973 0.810 0.829 0.806 0.959 0.805 

T4SEfinder-hybridbilstm 0.941 0.800 0.960 0.727 0.762 0.730 0.945 0.852 

T4SEfinder-pssm_cnn 0.906 0.800 0.920 0.571 0.667 0.625 0.923 0.759 

Bastion4 0.965 0.900 0.973 0.818 0.857 0.838 0.907 0.706 

CNNT4SE 0.953 0.700 0.987 0.875 0.778 0.758 0.943 0.860 

T4SEpre_psAaca 0.888 0.700 0.913 0.519 0.596 0.541 0.921 0.740 

T4SEpre_bpbAaca 0.829 0.700 0.847 0.378 0.491 0.427 0.895 0.730 

ACC, Accuracy; SN, sensitivity; SP, specificity; PR, precision; F1, F1-score; MCC, Matthews correlation coefficient; rocAUC, 773 

area under the receiver operating characteristic curve; AUPRC, precision recall rate curve; a, fine-tune the model. 774 

  775 
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Supplementary data 776 

Supplementary Figure S1. The workflow to construct the training(A) or independent 777 

testing(B) dataset in this study.  778 

Supplementary Figure S2. Two modules used by the T4attention model. 779 

Supplementary Figure S3. The relationship between the feature extraction time of 6 780 

different protein natural language models and the prediction performance of T4attention 781 

model F1-score (A) and MCC (B) in the 5-fold cross-validation dataset. 782 

Supplementary Figure S4. The relationship between T4attention model prediction 783 

performance F1-score (A) and MCC (B) in the independent test set and the overall 784 

time-consuming use of 6 different protein natural language models to extract features and 785 

their T4attention model predictions. 786 

Supplementary Figure S5. Three T4SEpp model were used to predict the potential 787 

T4SE in the UniProt reference proteome containing T4SS, respectively. Where 100%_ID 788 

represents a known verified T4SE. 789 

Supplementary Table S1. The 74 T4SEs independently collected from the literature. 790 

Supplementary Table S2. Hyperparameters used in deep learning models of 791 

T4attention. 792 

Supplementary Table S3. Homologous Clusters of T4S Effector Signal Sequences. 793 

Supplementary Table S4. The distribution of effector domain families. 794 

Supplementary Table S5. Distribution of the Uniprot Bacteria Reference Proteomes 795 

(Download date October 19, 2022). 796 

Supplementary Table S6. Distribution of T4SS in the UniPort bacterial reference 797 

proteome. 798 

Supplementary Table S7. Homology prediction results of T4SE in strains containing 799 

T4SS in the Uniport Bacteria Reference Proteomes. 800 

Supplementary Table S8. Distribution of potential T4SEs in the H. pylori_26695 801 

(NC_000915.1). 802 

Supplementary Table S9. Distribution of potential T4SEs in the Uniport Bacteria 803 

Reference Proteomes. 804 
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