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Abstract

In recent years, improvements in throughput of single cell RNA-seq have resulted in a
significant increase in the number of cells profiled. The generation of single cell RNA-seq
datasets comprising >1 million cells is becoming increasingly common, giving rise to
demands for more efficient computational workflows. Here, we present an update to our
sngle cell RNA-seq analysis web server application, ICARUS (available at
https://launch.icarus-scrnaseq.cloud.edu.au/) that allows effective analysis of large-scale
single cell RNA-seq datasets. ICARUS v3 utilises the geometric cell sketching method to
subsample cells from the overall dataset for dimensionality reduction and clustering that can
be then projected to the large dataset. We then extend this functionality to select a
representative subset of cells for downstream data analysis applications including differential
expression analysis, gene co-expression network construction, gene regulatory network
construction, trgectory analysis, cell-cell communication inference and cell cluster
associations to GWAS traits. We demonstrate analysis of single cell RNA-seq datasets using
ICARUS v3 of 1.3 million cells completed within the hour.

| ntroduction

With the increased throughput of single cell RNA-seq technologies in recent years, the
necessity for large scale data analysis is becoming increasingly important. Single cell RNA-
seq datasets and data from aggregated sources now include millions of cells (1,2) which has
increased the need for efficient computational analysis. We have previously introduced
ICARUS, an interactive web server application for single cell RNA-seq analysis (3,4).
ICARUS utilises the Seurat R workflow to perform preprocessing, dimensionality reduction
and clustering. Recently released Seurat V5 (https://cran.r-
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proj ect.org/web/packages/ Seurat/index.html) and the BPCells R package
(https://github.com/bnprks/BPCells) introduces methods to store large datasets on-disk whilst
utilising geometric sketch-based methods to identify a subpopulation of representative cells
from the overall dataset to store in memory for rapid and iterative exploration. This
drastically lowers computational processing time whilst retaining power to detect
heterogeneity across the data. Our update to ICARUS v3 harnesses this methodology to
perform dimensionality reduction and clustering as well as utilising this population of
sketched cells to perform common downstream data analysis including co-expression
network analysis (5), regulatory gene network construction (now updated to use the
SCENIC+ regulatory motif database) (6), trajectory analysis (7), cell-cell signaling (8) and

examination of cell cluster association with GWAS traits (3,4).
Exceptional computational processing speed

ICARUS v3 implements the ‘geometric sketching’ method of sampling a subset of
representative cells in the overall dataset. This method was first introduced by Berger and
colleagues (9) and recently incorporated into the Seurat v5. Geometric sketching involves an
approximation of the geometry of a single cell RNA-seq dataset by employing equal-volume
boxes within multidimensional space that each cell occupies defined by its gene expression
profile. These boxes are positioned to encompass all cells in the dataset, ensuring that each
box contains at least one cell. Cells are then sampled at random from these boxes ensuring
that both rare cell types and common cell types that occupy a similar volume of
transcriptomic space are equally represented in the ‘sketched’ dataset (9). Once a subset of
sketched cells is determined, this heavily reduced dataset is stored in memory while the larger
overall dataset is stored on-disk using the BPCels R  package
(https://github.com/bnprks/BPCells). Dimensionality reduction and clustering are performed
on the sketched dataset at efficient speed, and the resultant clusters from the sketched dataset
are then projected back onto the overall dataset stored on disk (ProjectData functionality of
Seurat v5). We demonstrate efficient clustering of a dataset comprised of 1.3 million cells
completed within the hour (Figure 1).
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Figure 1 Efficient single cell RNA-seq analysis with ICARUS v3. (A) Efficient computational speed is
achieved in ICARUS v3 through the use of a ‘geometric sketching’ method of sampling a subset of
representative cells whilst the larger overall dataset is stored on-disk. Dimensionality reduction and clustering is
performed on the sketched dataset and then projected back onto the overall dataset. (B) Benchmarking of
ICARUS v3 dimensionality reduction and clustering for various datasets of increasing cell numbers (Dataset list
available in Supplementary 1). A sketched dataset of 10,000 cells was taken. Each sketched dataset was scaled
and log normalised and dimensionality reduction was performed using 2000 variable features
(Seurat::FindVariableFeatures) and the first 50 PCA dimensions. Graph based clustering was performed using
the Louvain algorithm with a k-nearest value of 20. Benchmarking was performed on a Linux Ubuntu 22.04.2
LTS with 64GB RAM and AMD EPY C-Milan Processor with 16 CPU cores. Benchmarking was also assessed
on a Windows 11 machine with 16GB ram running a 16-core 11th Gen Intel(R) Core(TM) i7-11800H
@2.30GHz. (C) ICARUS v3 introduces cell type annotation against large single cell atlases including Tabula
sapiens, Tabula muris senis, human lung cell atlas and others publicly available in the Chan Zuckerberg
CELLXGENE database. (D) The geometric sketched dataset is leveraged to perform common downstream data
analysis including co-expression network analysis, gene regulatory network construction, trajectory analysis,

cell-cell signalling and examination of cell cluster association with GWAS traits.
Cell type annotation against single cell atlases.

Another mgor update introduced in ICARUS v3 is the incorporation of large single cell
RNA-seq atlases comprising of millions of cells for cell cluster labelling. ICARUS now
supports cell label transfer utilising the SingleR method (10) for atlases including Tabula
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sapiens (2), Tabula muris sensis (1), Human Brain Cell Atlas v1.0 (11), Human Lung Cell
Atlas (12), Asan Immune Diversity Atlas (AIDA)

(https://chanzuckerberg.com/sci ence/programs-resources/single-cel | -bi ol ogy/ancestry-

networks/immune-cell-atlas-of -asian-populations/), developing human immune system (13),
healthy human liver (14) and adult human retina (15). Furthermore, datasets from the Chan
Zuckerberg CELLXGENE (CZ CELLxGENE) database may be directly loaded into ICARUS
and cell type labels transferred using SingleR methodology. ICARUS additionally retains the

functionality to perform cell cluster labelling through sctype, a R package that congregates
cell type specific markers from CellMarker (http://biocc.hrbmu.edu.cn/CellMarker) and

PanglaoDB (https://panglaodb.se) databases. To achieve efficient cell type annotation, the
subset of sketched cells is first annotated against the reference datasets using SingleR or
sctype and then projected back onto the larger overall dataset.

Doublet detection at scale

We have previously introduced the DoubletFinder (16) methodology of identifying cell
multiplets that may arise during single cell RNA-seq library generation. However, the
computational speed of DoubletFinder during artificial k nearest neighbour (pANN)
simulation is not efficient for large datasets (17). ICARUS v3 utilises the subset of sketched
cells to perform pANN generation at a small scale which then are projected back to the
overall dataset (ProjectData functionality of Seurat v5) to enable approximation of multiplets

at alarge scale.
Streamlined incor poration of 10X Genomics and Anndata hdf5 files

We also introduce an easier method of data input with support for the 10X Genomics hdf5
and Anndata hdf5 file formats (18). Users may now upload multiple hdf5 files at once for
streamlined integration. Integration of datasets may be performed using anchor-based CCA
integration (19), anchor-based RPCA integration (19), harmony (20) or fastMNN (21).

Summary

Our latest update to ICARUS provides users with the capability to process large datasets at
speed that previously could not be effectively processed. To our knowledge, ICARUS is
currently the only publicly accessible web server that supports in depth analysis of large-scale
single cell RNA-seq data. Moreover, users can take advantage of ICARUS s built-in save and
load feature, which has also been updated to leverage on-disk storage to streamline analysis
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and minimize computational time spent for repeated analyses requiring resource-intensive
steps. ICARUS will continue to receive ongoing updates as new methodologies are
developed, ensuring that users have access to a cutting-edge resource for making novel

discoveries.
Data availability

The functionality of ICARUS v3 was demonstrated on 5 datasets of increasing cell numbers
(Supplementary 1). Data is available from 10X Genomics and ChanZuckerberg CellxGene
databases. Refer to Supplementary 1 for full details. The datasets are aso fully accessible
from ICARUS v3 application.

Benchmarking

For benchmarking, a sketched dataset of 10,000 cells was generated using the SketchData
function from Seurat whilst the large overall dataset was stored on disk using the BPCells
write_matrix function. The sketched dataset was then scaled and log normalised and
dimensionality  reduction was performed using 2000 variable features
(Seurat::FindVariableFeatures) and the first 50 PCA dimensions. Graph based clustering was
performed using the Louvain algorithm with a k-nearest value of 20. Benchmarking was
performed on a Linux Ubuntu 22.04.2 LTS with 64GB RAM and an AMD EPYC-Milan
Processor with 16 CPU cores. Benchmarking was also assessed on a Windows 11 machine
with 16GB ram running a 16-core 11th Gen Intel(R) Core(TM) i7-11800H @2.30GHz.

Code availability

ICARUS is available at https://launch.icarus-scrnaseg.cloud.edu.au/. The application is free
and open to all users with no login requirement. For data privacy reasons, the user datais not

retained on the server after the user-session is terminated.

R source code of the ICARUS v3 shiny app is available at 10.5281/zenodo.10155798.
Alternatively, a docker version is accessible through the Docker Hub under the name

‘icarusscrnaseg/icarus v3'.
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