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Abstract 

In recent years, improvements in throughput of single cell RNA-seq have resulted in a 

significant increase in the number of cells profiled. The generation of single cell RNA-seq 

datasets comprising >1 million cells is becoming increasingly common, giving rise to 

demands for more efficient computational workflows. Here, we present an update to our 

single cell RNA-seq analysis web server application, ICARUS (available at 

https://launch.icarus-scrnaseq.cloud.edu.au/) that allows effective analysis of large-scale 

single cell RNA-seq datasets. ICARUS v3 utilises the geometric cell sketching method to 

subsample cells from the overall dataset for dimensionality reduction and clustering that can 

be then projected to the large dataset. We then extend this functionality to select a 

representative subset of cells for downstream data analysis applications including differential 

expression analysis, gene co-expression network construction, gene regulatory network 

construction, trajectory analysis, cell-cell communication inference and cell cluster 

associations to GWAS traits. We demonstrate analysis of single cell RNA-seq datasets using 

ICARUS v3 of 1.3 million cells completed within the hour. 

 

Introduction 

With the increased throughput of single cell RNA-seq technologies in recent years, the 

necessity for large scale data analysis is becoming increasingly important. Single cell RNA-

seq datasets and data from aggregated sources now include millions of cells (1,2) which has 

increased the need for efficient computational analysis. We have previously introduced 

ICARUS, an interactive web server application for single cell RNA-seq analysis (3,4). 

ICARUS utilises the Seurat R workflow to perform preprocessing, dimensionality reduction 

and clustering. Recently released Seurat v5 (https://cran.r-
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project.org/web/packages/Seurat/index.html) and the BPCells R package 

(https://github.com/bnprks/BPCells) introduces methods to store large datasets on-disk whilst 

utilising geometric sketch-based methods to identify a subpopulation of representative cells 

from the overall dataset to store in memory for rapid and iterative exploration. This 

drastically lowers computational processing time whilst retaining power to detect 

heterogeneity across the data. Our update to ICARUS v3 harnesses this methodology to 

perform dimensionality reduction and clustering as well as utilising this population of 

sketched cells to perform common downstream data analysis including co-expression 

network analysis (5), regulatory gene network construction (now updated to use the 

SCENIC+ regulatory motif database) (6), trajectory analysis (7), cell-cell signalling (8) and 

examination of cell cluster association with GWAS traits (3,4).  

Exceptional computational processing speed 

ICARUS v3 implements the ‘geometric sketching’ method of sampling a subset of 

representative cells in the overall dataset. This method was first introduced by Berger and 

colleagues (9) and recently incorporated into the Seurat v5. Geometric sketching involves an 

approximation of the geometry of a single cell RNA-seq dataset by employing equal-volume 

boxes within multidimensional space that each cell occupies defined by its gene expression 

profile. These boxes are positioned to encompass all cells in the dataset, ensuring that each 

box contains at least one cell. Cells are then sampled at random from these boxes ensuring 

that both rare cell types and common cell types that occupy a similar volume of 

transcriptomic space are equally represented in the ‘sketched’ dataset (9). Once a subset of 

sketched cells is determined, this heavily reduced dataset is stored in memory while the larger 

overall dataset is stored on-disk using the BPCells R package 

(https://github.com/bnprks/BPCells). Dimensionality reduction and clustering are performed 

on the sketched dataset at efficient speed, and the resultant clusters from the sketched dataset 

are then projected back onto the overall dataset stored on disk (ProjectData functionality of 

Seurat v5). We demonstrate efficient clustering of a dataset comprised of 1.3 million cells 

completed within the hour (Figure 1). 

 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2023. ; https://doi.org/10.1101/2023.11.20.567692doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.20.567692
http://creativecommons.org/licenses/by-nd/4.0/


Figure 1 Efficient single cell RNA-seq analysis with ICARUS v3. (A) Efficient computational speed is 

achieved in ICARUS v3 through the use of a ‘geometric sketching’ method of sampling a subset of 

representative cells whilst the larger overall dataset is stored on-disk. Dimensionality reduction and clustering is 

performed on the sketched dataset and then projected back onto the overall dataset. (B) Benchmarking of 

ICARUS v3 dimensionality reduction and clustering for various datasets of increasing cell numbers (Dataset list 

available in Supplementary 1). A sketched dataset of 10,000 cells was taken. Each sketched dataset was scaled 

and log normalised and dimensionality reduction was performed using 2000 variable features 

(Seurat::FindVariableFeatures) and the first 50 PCA dimensions. Graph based clustering was performed using 

the Louvain algorithm with a k-nearest value of 20. Benchmarking was performed on a Linux Ubuntu 22.04.2 

LTS with 64GB RAM and AMD EPYC-Milan Processor with 16 CPU cores. Benchmarking was also assessed 

on a Windows 11 machine with 16GB ram running a 16-core 11th Gen Intel(R) Core(TM) i7-11800H 

@2.30GHz. (C) ICARUS v3 introduces cell type annotation against large single cell atlases including Tabula 

sapiens, Tabula muris senis, human lung cell atlas and others publicly available in the Chan Zuckerberg 

CELLxGENE database. (D) The geometric sketched dataset is leveraged to perform common downstream data 

analysis including co-expression network analysis, gene regulatory network construction, trajectory analysis, 

cell-cell signalling and examination of cell cluster association with GWAS traits. 

Cell type annotation against single cell atlases. 

Another major update introduced in ICARUS v3 is the incorporation of large single cell 

RNA-seq atlases comprising of millions of cells for cell cluster labelling. ICARUS now 

supports cell label transfer utilising the SingleR method (10) for atlases including Tabula 
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sapiens (2), Tabula muris sensis (1), Human Brain Cell Atlas v1.0 (11), Human Lung Cell 

Atlas (12), Asian Immune Diversity Atlas (AIDA) 

(https://chanzuckerberg.com/science/programs-resources/single-cell-biology/ancestry-

networks/immune-cell-atlas-of-asian-populations/), developing human immune system (13), 

healthy human liver (14) and adult human retina (15). Furthermore, datasets from the Chan 

Zuckerberg CELLxGENE (CZ CELLxGENE) database may be directly loaded into ICARUS 

and cell type labels transferred using SingleR methodology. ICARUS additionally retains the 

functionality to perform cell cluster labelling through sctype, a R package that congregates 

cell type specific markers from CellMarker (http://biocc.hrbmu.edu.cn/CellMarker) and 

PanglaoDB (https://panglaodb.se) databases. To achieve efficient cell type annotation, the 

subset of sketched cells is first annotated against the reference datasets using SingleR or 

sctype and then projected back onto the larger overall dataset.  

Doublet detection at scale 

We have previously introduced the DoubletFinder (16) methodology of identifying cell 

multiplets that may arise during single cell RNA-seq library generation. However, the 

computational speed of DoubletFinder during artificial k nearest neighbour (pANN) 

simulation is not efficient for large datasets (17). ICARUS v3 utilises the subset of sketched 

cells to perform pANN generation at a small scale which then are projected back to the 

overall dataset (ProjectData functionality of Seurat v5) to enable approximation of multiplets 

at a large scale. 

Streamlined incorporation of 10X Genomics and Anndata hdf5 files 

We also introduce an easier method of data input with support for the 10X Genomics hdf5 

and Anndata hdf5 file formats (18). Users may now upload multiple hdf5 files at once for 

streamlined integration. Integration of datasets may be performed using anchor-based CCA 

integration (19), anchor-based RPCA integration (19), harmony (20) or fastMNN (21).  

Summary 

Our latest update to ICARUS provides users with the capability to process large datasets at 

speed that previously could not be effectively processed. To our knowledge, ICARUS is 

currently the only publicly accessible web server that supports in depth analysis of large-scale 

single cell RNA-seq data. Moreover, users can take advantage of ICARUS’s built-in save and 

load feature, which has also been updated to leverage on-disk storage to streamline analysis 
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and minimize computational time spent for repeated analyses requiring resource-intensive 

steps. ICARUS will continue to receive ongoing updates as new methodologies are 

developed, ensuring that users have access to a cutting-edge resource for making novel 

discoveries. 

Data availability 

The functionality of ICARUS v3 was demonstrated on 5 datasets of increasing cell numbers 

(Supplementary 1). Data is available from 10X Genomics and ChanZuckerberg CellxGene 

databases. Refer to Supplementary 1 for full details. The datasets are also fully accessible 

from ICARUS v3 application.  

Benchmarking 

For benchmarking, a sketched dataset of 10,000 cells was generated using the SketchData 

function from Seurat whilst the large overall dataset was stored on disk using the BPCells 

write_matrix function. The sketched dataset was then scaled and log normalised and 

dimensionality reduction was performed using 2000 variable features 

(Seurat::FindVariableFeatures) and the first 50 PCA dimensions. Graph based clustering was 

performed using the Louvain algorithm with a k-nearest value of 20. Benchmarking was 

performed on a Linux Ubuntu 22.04.2 LTS with 64GB RAM and an AMD EPYC-Milan 

Processor with 16 CPU cores. Benchmarking was also assessed on a Windows 11 machine 

with 16GB ram running a 16-core 11th Gen Intel(R) Core(TM) i7-11800H @2.30GHz. 

Code availability 

ICARUS is available at https://launch.icarus-scrnaseq.cloud.edu.au/. The application is free 

and open to all users with no login requirement. For data privacy reasons, the user data is not 

retained on the server after the user-session is terminated. 

R source code of the ICARUS v3 shiny app is available at 10.5281/zenodo.10155798. 

Alternatively, a docker version is accessible through the Docker Hub under the name 

‘icarusscrnaseq/icarus_v3’. 

Acknowledgements 

We thank the New Zealand–China Non-Communicable Diseases Research Collaboration 

Centre (NCD CRCC). This web server is supported by the Australian National eResearch 

Collaboration Tools and Resources (Nectar Research Cloud) initiative. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2023. ; https://doi.org/10.1101/2023.11.20.567692doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.20.567692
http://creativecommons.org/licenses/by-nd/4.0/


Funding 

New Zealand Ministry of Business Innovation and Employment funding for New Zealand–

China Non-Communicable Diseases Research [UOOX1601]. Funding for open access charge: 

New Zealand–China Non-Communicable Diseases Research [UOOX1601]. 

Contributions 

A.J., K.L., and R.S., considered the study. A.J., developed the method, implemented the 

webserver tool, and analysed the data. A.J., wrote the manuscript. A.J., K.L., and R.S., 

supervised the study, tested the webserver, and revised the manuscript. All the authors read 

and approved the final manuscript. 

References 

1. Almanzar, N., Antony, J., Baghel, A.S., Bakerman, I., Bansal, I., Barres, B.A., Beachy, P.A., 
Berdnik, D., Bilen, B., Brownfield, D. et al. (2020) A single-cell transcriptomic atlas 
characterizes ageing tissues in the mouse. Nature, 583, 590-595. 

2. Consortium*, T.T.S., Jones, R.C., Karkanias, J., Krasnow, M.A., Pisco, A.O., Quake, S.R., 
Salzman, J., Yosef, N., Bulthaup, B., Brown, P. et al. (2022) The Tabula Sapiens: A multiple-
organ, single-cell transcriptomic atlas of humans. Science, 376, eabl4896. 

3. Jiang, A., Lehnert, K., You, L. and Snell, R.G. (2022) ICARUS, an interactive web server for 
single cell RNA-seq analysis. Nucleic Acids Research, 50, W427-W433. 

4. Jiang, A., You, L., Snell, R.G. and Lehnert, K. (2023) Delineation of complex gene 
expression patterns in single cell RNA-seq data with ICARUS v2.0. NAR Genomics and 
Bioinformatics, 5. 

5. Song, W.-M. and Zhang, B. (2015) Multiscale Embedded Gene Co-expression Network 
Analysis. PLOS Computational Biology, 11, e1004574. 

6. Bravo González-Blas, C., De Winter, S., Hulselmans, G., Hecker, N., Matetovici, I., 
Christiaens, V., Poovathingal, S., Wouters, J., Aibar, S. and Aerts, S. (2023) SCENIC+: 
single-cell multiomic inference of enhancers and gene regulatory networks. Nature Methods, 
20, 1355-1367. 

7. Cao, J., Spielmann, M., Qiu, X., Huang, X., Ibrahim, D.M., Hill, A.J., Zhang, F., Mundlos, S., 
Christiansen, L., Steemers, F.J. et al. (2019) The single-cell transcriptional landscape of 
mammalian organogenesis. Nature, 566, 496-502. 

8. Jin, S., Guerrero-Juarez, C.F., Zhang, L., Chang, I., Ramos, R., Kuan, C.-H., Myung, P., 
Plikus, M.V. and Nie, Q. (2021) Inference and analysis of cell-cell communication using 
CellChat. Nature Communications, 12, 1088. 

9. Hie, B., Cho, H., DeMeo, B., Bryson, B. and Berger, B. (2019) Geometric Sketching 
Compactly Summarizes the Single-Cell Transcriptomic Landscape. Cell Systems, 8, 483-
493.e487. 

10. Aran, D., Looney, A.P., Liu, L., Wu, E., Fong, V., Hsu, A., Chak, S., Naikawadi, R.P., 
Wolters, P.J., Abate, A.R. et al. (2019) Reference-based analysis of lung single-cell 
sequencing reveals a transitional profibrotic macrophage. Nature Immunology, 20, 163-172. 

11. Siletti, K., Hodge, R., Mossi Albiach, A., Lee, K.W., Ding, S.-L., Hu, L., Lönnerberg, P., 
Bakken, T., Casper, T., Clark, M. et al. (2023) Transcriptomic diversity of cell types across 
the adult human brain. Science, 382, eadd7046. 

12. Sikkema, L., Ramírez-Suástegui, C., Strobl, D.C., Gillett, T.E., Zappia, L., Madissoon, E., 
Markov, N.S., Zaragosi, L.-E., Ji, Y., Ansari, M. et al. (2023) An integrated cell atlas of the 
lung in health and disease. Nature Medicine, 29, 1563-1577. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2023. ; https://doi.org/10.1101/2023.11.20.567692doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.20.567692
http://creativecommons.org/licenses/by-nd/4.0/


13. Suo, C., Dann, E., Goh, I., Jardine, L., Kleshchevnikov, V., Park, J.-E., Botting, R.A., 
Stephenson, E., Engelbert, J., Tuong, Z.K. et al. (2022) Mapping the developing human 
immune system across organs. Science, 376, eabo0510. 

14. Andrews, T.S., Atif, J., Liu, J.C., Perciani, C.T., Ma, X.Z., Thoeni, C., Slyper, M., Eraslan, G., 
Segerstolpe, A., Manuel, J. et al. (2022) Single�Cell, Single�Nucleus, and Spatial RNA 
Sequencing of the Human Liver Identifies Cholangiocyte and Mesenchymal Heterogeneity. 
Hepatology Communications, 6, 821-840. 

15. Liang, Q., Cheng, X., Wang, J., Owen, L., Shakoor, A., Lillvis, J.L., Zhang, C., Farkas, M., 
Kim, I.K., Li, Y. et al. (2023) A multi-omics atlas of the human retina at single-cell resolution. 
Cell Genomics, 3, 100298. 

16. McGinnis, C.S., Murrow, L.M. and Gartner, Z.J. (2019) DoubletFinder: Doublet Detection in 
Single-Cell RNA Sequencing Data Using Artificial Nearest Neighbors. Cell Systems, 8, 329-
337.e324. 

17. Xi, N.M. and Li, J.J. (2021) Benchmarking Computational Doublet-Detection Methods for 
Single-Cell RNA Sequencing Data. Cell Systems, 12, 176-194.e176. 

18. Virshup, I., Rybakov, S., Theis, F.J., Angerer, P. and Wolf, F.A. (2021) anndata: Annotated 
data. bioRxiv, 2021.2012.2016.473007. 

19. Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W.M., 3rd, Hao, Y., 
Stoeckius, M., Smibert, P. and Satija, R. (2019) Comprehensive Integration of Single-Cell 
Data. Cell, 177, 1888-1902 e1821. 

20. Korsunsky, I., Millard, N., Fan, J., Slowikowski, K., Zhang, F., Wei, K., Baglaenko, Y., 
Brenner, M., Loh, P.R. and Raychaudhuri, S. (2019) Fast, sensitive and accurate integration 
of single-cell data with Harmony. Nat Methods, 16, 1289-1296. 

21. Zhang, F., Wu, Y. and Tian, W. (2019) A novel approach to remove the batch effect of 
single-cell data. Cell Discovery, 5, 46. 

 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2023. ; https://doi.org/10.1101/2023.11.20.567692doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.20.567692
http://creativecommons.org/licenses/by-nd/4.0/

