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SUMMARY

Preterm birth (PTB), often preceded by preterm labor, is a major cause of neonatal
morbidity and mortality worldwide. Most PTB cases involve intra-amniotic inflammation
without detectable microorganisms, termed in utero sterile inflammation, for which there is no
established treatment. Here, we propose homeostatic macrophages to prevent PTB and adverse
neonatal outcomes caused by in utero sterile inflammation. Single-cell atlases of the maternal-
fetal interface revealed that homeostatic maternal macrophages are reduced with human labor.
M2 macrophage treatment prevented PTB and reduced adverse neonatal outcomes in mice with
in utero sterile inflammation. Specifically, M2 macrophages halted premature labor by
suppressing inflammatory responses in the amniotic cavity, including inflammasome activation,
and mitigated placental and offspring lung inflammation. Moreover, M2 macrophages restored
neonatal gut homeostasis and enhanced resistance to systemic bacterial infection. Our findings
show that M2 macrophages are a promising strategy to mitigate PTB and improve neonatal

outcomes from in utero sterile inflammation.
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INTRODUCTION

Preterm birth, the leading cause of neonatal morbidity and mortality worldwide?, is
often preceded by spontaneous preterm labor, a syndrome of multiple etiologies®. Among the
known and proposed causes of preterm labor, intra-amniotic inflammation is the best
characterized and accounts for a large proportion of cases®>. The recent incorporation of next
generation sequencing in obstetrics has revealed that most cases of intra-amniotic inflammation
occur in the absence of invading microbes in the amniotic cavity®®, resulting in the discovery of
sterile intra-amniotic inflammation (hereafter referred to as in utero sterile inflammation).
Hence, this new condition is diagnosed by elevated concentrations of inflammatory mediators
such as interleukin (IL)-6 in amniotic fluid, in the absence of detectable microorganisms using
culture and molecular microbiological techniques® . Importantly, in utero sterile inflammation
has been linked to adverse short- and long-term outcomes for the offspring of women with this
clinical condition”**. Specifically, women with in utero sterile inflammation are at greater risk of
having placentas affected by acute histologic chorioamnionitis'?, which is linked to the

13-15

development of deleterious neonatal conditions such as bronchopulmonary dysplasia and

necrotizing enterocolitis'®*’

, likely due to exposure of the fetal lungs and intestine to intra-
amniotic inflammation'®*°. However, despite the strong associations between in utero sterile
inflammation and adverse fetal and neonatal outcomes, no approved treatments currently exist.
Sterile inflammation can be triggered by danger signals or alarmins released during
cellular stress or injury®>?. Consistently, clinical studies have also shown that women with
spontaneous preterm labor and in utero sterile inflammation have increased amniotic fluid

7,24-26

concentrations of alarmins . Indeed, women with preterm labor and elevated amniotic

concentrations of the prototypical alarmin high-mobility group box-1 (HMGB1) (>8.55 ng/mL)
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5
delivered earlier than those with lower concentrations of this alarmin’. Furthermore, we have
provided mechanistic evidence showing that the in utero delivery of HMGB1 induces preterm
labor and birth in mice?”?°. Moreover, our in vitro studies demonstrated that incubation with
HMGB1 induces the activation of the NLRP3 inflammasome®, one of the central pathway in

triggering preterm labor and birth in women® and mice®*3*

experiencing in utero sterile
inflammation®. Hence, a therapeutic approach targeting the NLRP3 inflammasome, elevated
inflammatory cytokines in amniotic fluid such as IL-6, and the process of preterm labor could
represent a promising strategy for treating in utero inflammation and its devastating perinatal
consequences.

The maternal-fetal interface hosts a notable and heterogeneous population of
macrophages®®*. Specifically, we reported that macrophages expressing a homeostatic or M2-
like phenotype are more abundant in both term and preterm gestation than those expressing
inflammatory phenotypes®, pointing to an important role for these cells in maintaining
pregnancy homeostasis. Next, we demonstrated that the depletion of maternal macrophages
results in preterm birth as well as neonatal growth restriction and increased mortality*.
Furthermore, we also showed that the adoptive transfer of M2-polarized macrophages prevents
preterm birth induced by intra-amniotic LPS*, providing proof-of-concept that such cells can
serve as a therapeutic approach for in utero sterile inflammation. Thus, here we propose the use
of M2-polarized macrophages as a cellular therapy to prevent preterm labor associated with in
utero sterile inflammation as well as its consequences for the offspring.

In this study, we employ a translational mechanistic approach by first leveraging our

single-cell atlases of the human maternal-fetal interface to demonstrate a labor-associated

reduction of homeostatic macrophages. Next, by using a clinically relevant animal model of in
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95 utero sterile inflammation induced by the intra-amniotic injection of the alarmin HMGB1, we
96 investigate the potential restoration of M2-polarized macrophages (hereafter also referred to as
97 M2 macrophages) via adoptive transfer to prevent preterm birth and reduce the adverse neonatal
98 outcomes. In addition, we utilize molecular approaches to investigate the inflammatory
99  responses driven by HMGB1-induced in utero sterile inflammation and the homeostatic effects
100  of M2 macrophage treatment in maternal and fetal tissues targeted by transferred macrophages,
101 including those involved in the common pathway of parturition. Moreover, we evaluate the
102  damage to key fetal and neonatal organs, namely the lung and intestine, driven by exposure to in
103  utero sterile inflammation, including alterations of the gut microbiome, and whether this was
104  reverted by M2 macrophage treatment. Last, we challenge neonates with Group B Streptococcus
105 to determine whether M2 macrophage treatment restores neonatal immunocompetence.
106  Collectively, our data indicate that treatment with M2 macrophages represents a novel cellular
107  approach that can prevent preterm birth and ameliorate the adverse neonatal outcomes induced

108 by in utero sterile inflammation.
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109 RESULTS

110  The maternal-fetal interface hosts a homeostatic macrophage population that is diminished
111 with labor

112 We first hypothesized that labor is accompanied by a reduction of homeostatic
113 macrophages in maternal compartments. Our previous flow cytometry studies targeting specific
114  macrophage subsets suggested that such a reduction occurs at the maternal-fetal interface (i.e.,
115  the decidua)*®*’. However, we sought to test our hypothesis using an unbiased discovery
116  approach. To do this, we leveraged our previously generated single-cell atlases of the
117 myometrium and maternal-fetal interface®*®. The maternal-fetal interface includes key sites of
118  contact between maternal and fetal tissues: the fetal placenta embedded in the maternal decidua
119  basalis adjacent to the myometrium, and the fetal extraplacental membranes enclosing the
120  amniotic cavity and attached to the maternal decidua parietalis, next to the myometrium (Figure
121 1A). Our myometrial single-cell atlas includes samples collected from women with term labor as
122 well as term non-labor controls®, whereas our single-cell atlases of the placenta and
123 extraplacental membranes also include samples from women with preterm labor in addition to

124  the term groups***

. Given that preterm non-labor deliveries are only performed due to
125  pregnancy complications, such cases are not suited for use as gestational age controls for preterm
126  labor and thus historically have not been utilized in our studies. After normalizing data from our
127  three single-cell atlases, we identified seven distinct macrophage clusters, termed M1 — M7,
128  across all tissues (Figure 1B, Supplementary Table 1). Of note, these cluster numbers were not

129  chosen to correlate with the conventional M1-M2 paradigm, but rather reflect cluster number

130  assignments. We focused on the M1 and M2 clusters because they constituted a significant
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131 proportion of macrophages in the myometrium, placenta, and extraplacental membranes (Figure
132 1B).

133 Our single-cell atlases include maternal and fetal genotyping data, which allow us to
134  assign an origin to each individual cell. Therefore, we next determined the origins of
135  macrophages in each compartment (Figure 1C). As expected, macrophages in the myometrium
136  were entirely of maternal origin (Figure 1C). In the placenta, both maternal and fetal
137  macrophages were identified, with the majority of maternal macrophages corresponding to the
138 M1 cluster and fetal macrophages to the M2 cluster (Figure 1C). By contrast, the extraplacental
139  membranes include some fetal macrophages, but the M2 cluster was predominantly of maternal
140  origin (Figure 1C). Next, we evaluated whether the proportions of M1 and M2 clusters, as well
141  as other macrophage clusters, differed between labor and non-labor samples. The only subset
142  that decreased during labor was the maternal M2 cluster in the myometrium (Figure 1D). We
143  also observed a non-significant 1.4-fold decrease in the proportion of the maternal M2 cluster in
144  the basal plate (maternal tissue attached to the placenta) in women with preterm labor and birth
145  compared to those with term labor and birth (Figure 1E). This may be due to the small sample
146  size and the challenges associated with collecting human preterm samples. Last, using the top 20
147  marker genes for the M2 cluster (Figure 1F), we performed over-representation analysis (ORA)
148  based on the Gene Ontology (GO). The biological processes enriched in the M2 cluster included
149  "homeostatic process,” “regulation of immune system process,” and ‘"regulation of
150  developmental process," supporting the homeostatic functions of this macrophage cluster (Figure
151  1G and Supplementary Figure 1A). These processes were distinct from those enriched in other

152  macrophage clusters (Supplementary Figure 1B).
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153 Taken together, our single-cell atlases confirmed that the myometrium and other maternal
154  compartments attached to the placenta host a significant population of homeostatic macrophages,
155  and that these cells are reduced during labor, confirming our hypothesis (Figure 1A).
156
157 M2 macrophage treatment prevents preterm birth and improves neonatal survival in a
158  mouse model of in utero sterile inflammation
159 Next, we determined whether homeostatic macrophages could serve as a viable
160  therapeutic approach to prevent preterm birth. We therefore performed adoptive transfer of M2
161  macrophages in a murine model of in utero sterile inflammation induced by the ultrasound-
162  guided intra-amniotic injection of the alarmin HMGB1 (Figure 2A). To ensure the clinical
163  relevance of this model, we injected HMGBL1 at concentrations found in women with preterm
164  labor and in utero sterile inflammation’. The intra-amniotic delivery of HMGB1 shortened
165  gestational length (Figure 2B), resulting in high rates of preterm birth (Figure 2C). Notably,
166  treatment with M2 macrophages extended gestational length, preventing preterm birth (Figure
167  2B&C). Neonatal mortality was elevated in mice exposed to in utero sterile inflammation, given
168  that most preterm neonates die; yet, such mortality was mitigated by treatment with M2
169  macrophages (Figure 2D). Furthermore, neonates born to dams intra-amniotically injected with
170  HMGBLI failed to thrive, but once again this effect was ameliorated by treatment with M2
171 macrophages (Figure 2E). Moreover, surviving neonates that had been exposed to HMGB1-
172 induced in utero sterile inflammation displayed growth restriction; however, such impairment
173 was rescued by prenatal treatment with M2 macrophages (Figure 2F). Thus, these data indicate

174  that M2 macrophage treatment can serve as a viable therapy to not only prevent preterm birth but
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175 also ameliorate the adverse neonatal outcomes driven by exposure to in utero sterile
176  inflammation.
177
178 M2 macrophages dampen HMGB1-induced in utero sterile inflammation, including
179  inflammasome activation, in the amniotic cavity
180 We next sought to uncover the mechanisms whereby adoptively transferred M2
181  macrophages were preventing adverse outcomes driven by HMGB1-induced in utero sterile
182  inflammation. First, to establish the Kkinetics of the in utero sterile inflammatory response, we
183  collected the amniotic fluid of HMGB1-injected dams at 24, 48, 72, or 96 h post-injection to
184  evaluate the concentrations of IL-6, total IL-13, and TNF - classic cytokines associated with in

185  utero sterile inflammation®?

(Figure 3A). The intra-amniotic delivery of HMGBL1 increased the
186  amniotic fluid concentrations of IL-6, the gold standard cytokine used to clinically diagnose in
187  utero sterile inflammation®’, at 72 h post-injection (Figure 3B), consistent with the observed
188  timing of preterm labor post-HMGBL1 injection. Notably, M2 macrophage treatment not only
189  reduced amniotic fluid concentrations of IL-6 at 72 h post-injection, but also those of TNF and
190 total IL-1p (Figure 3C&D), even though these were not significantly affected by HMGB1
191  (Supplementary Figure 2). We then focused on the inflammasome, a key signaling pathway
192  implicated in the in utero inflammatory response triggered by alarmins, leading to the processing
193  of active caspase (CASP)-1 and mature IL-1p (Figure 3E)***%®. The intra-amniotic delivery of
194 HMGBL1 caused an increase in active CASP-1 and mature IL-1p in amniotic fluid (Figure

195 3F&G). Notably, M2 macrophage treatment dampened such inflammasome activation by

196  reducing both active CASP-1 and mature IL-1p (Figure 3H&I). These data indicate that M2
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197  macrophages exert their homeostatic effects in the amniotic cavity by dampening the HMGB1-
198 induced inflammatory cytokine response, including inflammasome activation.
199
200 M2 macrophagesinterferewith the pathway of preterm labor
201 The processes of term and preterm labor share a common underlying pathway including
202 fetal membrane activation, uterine contractility, and cervical remodeling*°. Such processes are
203  characterized by the activation of pro-inflammatory signaling networks, including inflammasome
204  activation®’. Indeed, we recently reported that inflammasome activation in the fetal membranes
205  and uterine tissues is essential for the onset of preterm labor in mice undergoing in utero sterile
206  inflammation®. However, this pathway is not involved in the cervical processes associated with
207  preterm labor®®®%, Hence, we next evaluated whether M2 macrophage treatment abrogates
208  inflammatory processes, including inflammasome activation in the fetal membranes (Figure 4A)
209  and uterine tissues. Consistent with our findings in amniotic fluid, intra-amniotic injection of
210 HMGBLI increased levels of active CASP-1 and mature IL-1p in the fetal membranes, indicating
211 inflammasome activation (Figure 4B&C). Yet, M2 macrophage treatment abrogated
212 inflammasome activation in the fetal membranes, as indicated by reduced quantities of active
213 CASP-1 and mature IL-1p (Figure 4D&E). Moreover, gene expression profiling revealed that
214  intra-amniotic injection of HMGB1 induced the overexpression of several inflammatory genes in
215  the fetal membranes, including a significant increase in Ccl17 (Figure 4F&G). Conversely, M2
216  macrophage treatment exhibited a broad anti-inflammatory effect by downregulating the
217 expression of Tlr4, Cxcll, Tnf, and II1b in the fetal membranes (Figure 4H&I). These findings
218 indicate that M2 macrophages disrupt the inflammatory process of preterm labor in the fetal

219  membranes.
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220 In the uterine tissues, intra-amniotic injection of HMGB1 induced inflammasome
221  activation (Supplementary Figure 3A-H), but this was not significantly reduced by treatment
222 with M2 macrophages. However, HMGBL1 failed to induce a significant inflammatory response
223 in uterine tissues, and treatment with M2 macrophages had no significant effect (Supplementary
224  Figure 4A&B). These findings suggest that HMGB1-induced preterm labor in mice did not
225  trigger a strong inflammatory response in uterine tissues, rendering M2 macrophage treatment
226 unnecessary for preventing preterm birth.
227 In addition to the fetal membranes and uterus, the complex pathway of parturition also
228 involves the initiation of an immune response in the decidual tissues®*®*®, However, we have
229  demonstrated that such an inflammatory response is not associated with inflammasome
230  activation®***** Through inflammatory gene profiling, we found that HMGB1 did not strongly
231 induce an inflammatory response in the decidua; yet, M2 macrophage treatment downregulated
232 several inflammatory genes (Supplementary Figure 5A&B). This finding show that, even in the
233 absence of abnormal decidual inflammation, M2 macrophages restrict the labor-associated
234  inflammatory response at the maternal-fetal interface.
235 Together, these findings demonstrate that M2 macrophage treatment prevents preterm
236  birth induced by in utero sterile inflammation by interfering with the inflammatory processes
237  required to activate the pathway of preterm labor in the fetal membranes and maternal-fetal
238 interface.
239
240 M2 macrophage treatment mitigatesinflammation in fetal and neonatal tissues
241 Given the robust homeostatic effects of M2 macrophages in the amniotic cavity and fetal

242  membranes, we next investigated their ability to penetrate other fetal organs. We utilized a model
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243 wherein M2 macrophages derived from donor CD45.1" mice were transferred to recipient
244  CD45.2" dams injected with HMGB1. Afterwards, maternal blood, maternal and fetal tissues,
245 and amniotic fluid were collected to track the migration of transferred cells (Supplementary
246 Figure 6A). Transferred M2 macrophages retained their M2 phenotype (data not shown), as
247  previously reported®. Representative flow cytometry dot plots display the proportions of
248  CD45.1" M2 macrophages detected in maternal and fetal compartments (Supplementary Figure
249  6B). Quantification of transferred CD45.1" M2 macrophages revealed distinct Kinetic patterns
250 across the maternal and fetal compartments (Supplementary Figure 6C&D). CD45.1" M2
251 macrophages were highest in the maternal blood and lung at 2 hours post-injection, decreasing to
252 negligible levels by 12 hours. Conversely, a gradual accumulation of CD45.1" M2 macrophages
253  was observed in the uterus, while modest numbers were consistently detected in the decidua at
254 each time point (Supplementary Figure 6C). In the fetal compartments, CD45.1" M2
255  macrophages were abundant in the placenta at 2 hours and declined over time, similar to the
256  pattern in maternal blood, suggesting localization in the intervillous space rather than the
257  parenchyma (Supplementary Figure 6D). A small number of CD45.1" M2 macrophages
258  accumulated in the fetal membranes over time, with a few reaching the amniotic cavity. In
259  contrast, these cells were scarcely detected in the fetal intestine and lung at 2 hours, becoming
260  negligible by 6 and 12 hours. The transient presence of M2 macrophages in the fetal lung and
261  intestine is likely due to exposure to amniotic fluid, as evidenced by their absence in the
262  unexposed fetal liver at any time point (Supplementary Figure 6D). These findings demonstrate
263  that adoptively transferred M2 macrophages primarily migrate to intrauterine compartments,

264  with limited penetration into fetal compartments.
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265 Therefore, it is likely that M2 macrophages exert their homeostatic effects on the fetus
266  through indirect mechanisms by downregulating the inflammatory response in the amniotic
267  cavity and surrounding fetal membranes (Figures 3 and 4) and reducing inflammation in the
268  placenta. We then evaluated the effect of M2 macrophage treatment on the placenta. The intra-
269  amniotic injection of HMGBL1 triggered the upregulation of Tir4, Gjal, and Ptgs2, along with a
270 non-significant increase in the expression of other genes, including Ccl17 and Nfkb2, in the
271 placenta (Supplementary Figure 7A). Treatment with M2 macrophages downregulated the
272 expression of Ccl17 and Nfkb2 (Supplementary Figure 7B). Hence, M2 macrophages effectively
273 dampen placental inflammation as part of their beneficial effects in utero.
274 Next, we focused on the fetal lung since preterm neonates born to women with intra-
275  amniotic inflammation are at high risk of developing bronchopulmonary dysplasia****. In the
276  fetal lung (Figure 5A), intra-amniotic injection of HMGB1 resulted in the upregulation of 116,
277  Tnfrsfla, 1133, NIrp6, and TIr9 (Figure 5B&C). M2 macrophage treatment downregulated the
278  expression of Tnfrsfla and Nodl (Figure SD&E). Next, we explored whether the homeostatic
279  effects of M2 macrophages were evident in the neonatal lung by evaluating inflammatory gene
280  expression in this tissue. Neonates born to dams treated with M2 macrophages exhibited a
281  diminished inflammatory profile in the neonatal lung, characterized by reduced expression of 116,
282  Ccl2, Socs3, and Cxcll in comparison to offspring from untreated dams (Figure 5F&G). These
283  findings indicate that M2 macrophages dampen inflammatory responses in the fetal lung, with
284  sustained effects in the neonatal lung. This underscores the protective role of these cells in
285  mitigating in utero sterile inflammation.
286 In addition to the lungs, the fetal intestine is also exposed to amniotic fluid, putting

287  neonates born to women with intra-amniotic inflammation at high risk of developing necrotizing
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288 enterocolitis'®’. Therefore, we next explored inflammatory gene expression in the fetal intestine
289  following an intra-amniotic injection of HMGBL. This revealed alterations in inflammatory gene
290  expression (Supplementary Figure 8), consistent with our previous reports on in utero
291 inflammation®°. Unlike in the fetal lung, the inflammatory milieu in the fetal intestine was
292  downregulated, suggesting that in utero sterile inflammation exerts different effects across fetal
293 organs. Since we previously showed that treatment with an anti-inflammatory drug did not exert
294  a significant impact on the fetal intestine exposed to in utero sterile inflammaiton®, we shifted
295  our focus to investigate the effects of M2 macrophage treatment on the neonatal intestine (Figure
296  6A). Treatment with M2 macrophages boosted the neonatal gut inflammatory response
297  dampened by in utero exposure to HMGB1 (Figure 6B, D, F). Specifically, M2 macrophage
298  treatment upregulated the expression of Aim2, Cd68, Tnf, Rgs4, Ccl5, and Ccl17 in the small
299 intestine; Caspl and Ccl17 in the cecum; and Il1a, Cd68, Caspl, Jun, Kdmeb, and Ccl17 in the
300 colon (Figure 6C, E, G) of neonates. These data show that treatment with M2 macrophages
301 enhances the neonatal gut inflammatory profile, which is otherwise suppressed by in utero
302  exposure to sterile inflammation.
303 We recently demonstrated that in utero sterile inflammation leads to neonatal gut
304  dyshiosis®. Therefore, we proceeded to evaluate whether treatment with M2 macrophages could
305  mitigate this dysbiosis by performing 16S rRNA gene sequencing of the small intestine, cecum,
306  and colon from neonates born to dams intra-amniotically injected with HMGB1 with or without
307 M2 macrophage treatment (Supplementary Figure 9A). Alpha diversity metrics of the
308  microbiome indicated no differences in the community evenness of the small intestine, cecum, or
309 colon between groups (data not shown). When examining beta diversity, principal coordinate

310 analysis (PCoA) revealed that the neonatal microbiomes were strongly clustered by treatment
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311 group (Supplementary Figure 9B) and underwent consistent changes in structure and
312 Firmicutes/Bacteroidetes ratio (Supplementary Figure 9C-E). In the small intestine, M2
313  macrophage treatment was associated with a shift in the microbiome structure (Supplementary
314  Figures 9D and 10A&B) characterized by decreased abundance of Rodentibacter (ASV-5) and
315  Ruminiclostridium (ASV-17) (Supplementary Figure 10C). Similar patterns were also observed
316  in the cecum (Supplementary Figures 9D and 10D&E), in which a decreased abundance of
317  Ruminiclostridium (ASV-17), Lachnospiraceae (ASV-24), and Lachnoclostrium (ASV-15) was
318 observed alongside an increased abundance of Lachnospiraceae (ASV-39) (Supplementary
319  Figure 10F). Consistently, in the colon, the microbiome structure was modified by M2
320 macrophage treatment (Supplementary Figures 9D and 10G&H), resulting in decreased
321  abundance of Ruminiclostridium (ASV-17), Lachnospiraceae (ASV-24), and Lachnoclostrium
322 (ASV-15) (Supplementary Figure 10l). Treatment with M2 macrophages alone did not alter the
323 alpha or beta diversity of the neonatal gut microbiome (Supplementary Figure 9F-H). Thus,
324  prenatal treatment with M2 macrophages can change neonatal gut dysbiosis induced by in utero
325  exposure to sterile inflammation.
326 Collectively, the data demonstrate that prenatal treatment with M2 macrophages dampens
327  fetal tissue inflammation, thereby preventing subsequent neonatal organ inflammatory injury and
328  gut microbiome dysbiosis. These findings suggest potential mechanisms through which this
329  cellular therapy improves neonatal outcomes following exposure to in utero sterile inflammation.
330
331 M2 macrophage treatment improves neonatal ability to fight Group B Streptococcus

332 infection following in utero sterileinflammation
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333 Thus far, we have demonstrated that M2 macrophage treatment enhances survival and
334  alleviates inflammation in neonates exposed to in utero sterile inflammation. Therefore, we last
335  assessed whether these changes would result in improved neonatal ability to combat systemic
336 infection with Group B Sreptococcus (GBS), a microbe commonly associated with neonatal
337 infection and sepsis®’. At two weeks of age, control neonates (i.e., pups born to dams without
338  any treatment) and neonates exposed in utero to HMGB1 alone, HMGB1 with vehicle treatment,
339 or HMGB1 with M2 macrophage treatment received intraperitoneal injection of GBS (Figure
340 7A). In utero exposure to HMGB1 caused low neonatal survival rates within the first five days
341  post-GBS infection (Figure 7B). Notably, prenatal treatment with M2 macrophages bolstered
342  neonatal survival to be comparable to controls (Figure 7B), indicating improved capacity to fight
343 GBS infection. In utero exposure to HMGBL1 also negatively impacted neonatal weight, which
344  was significantly reduced compared to controls at five days post-infection (Figure 8cC). Prenatal
345  treatment with M2 macrophages partially rescued neonatal weight but did not fully restore it to
346  the control trajectory (Figure 7C), a phenomenon that requires further investigation. The
347  improved neonatal survival and growth driven by M2 macrophage treatment were accompanied
348 by reduced incidence of hypothermia (considered the murine equivalent of fever®*) upon GBS
349 infection (Supplementary Figure 11). Thus, prenatal treatment with M2 macrophages bolsters the
350 capacity to clear pathogenic bacteria in neonates compromised by exposure to in utero sterile

351 inflammation.
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352 DISCUSSION

353 The lack of knowledge regarding specific molecular targets in women with in utero
354  sterile inflammation has made the investigation of useful treatment options challenging. In the
355  current study, we provide mechanistic evidence for M2 macrophage treatment as a cellular
356  therapy that can prevent preterm birth resulting from in utero sterile inflammation. The reasoning
357  behind choosing M2 macrophages as an approach to prevent preterm birth and the mechanisms
358 through which they exert these effects are explained below. First, our prior studies have
359 indicated that both physiological and pathological labor are accompanied by a shift in
360 macrophage polarization, primarily at the maternal-fetal interface, with a subset of these cells
361 acquiring a pro-inflammatory M1-like phenotype****. Here, we build on this concept by showing
362 that M2-like homeostatic macrophages of maternal origin are reduced in the myometrium and
363  basal plate of women with term and preterm labor, respectively. This finding complements our
364  previous targeted approaches, which showed a reduction of decidual M2 macrophages in women
365  experiencing preterm labor and birth*. Hence, it is possible that homeostatic macrophages in the
366 uterine and decidua tissues help maintain a favorable environment at the maternal-fetal interface
367 and surrounding tissues, thereby dampening inflammatory signaling associated with the
368  premature onset of labor. The latter concept is supported by our prior observations that the
369  depletion of maternal macrophages can result in preterm labor and birth**. Second, labor
370 involves coordinated activation across multiple maternal and fetal tissues, conventionally

4750 Herein, we demonstrate that M2

371 referred to as the common pathway of parturition
372 macrophages infiltrate the maternal-fetal interface, interfere with the common pathway of labor
373 in the fetal membranes and decidua, and dampen fetal inflammation mediated by the placenta

374  and amniotic cavity. In line with this, M2 macrophages express immunomodulatory factors, such
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375 as arginase-1 and IL-10, that can modify the tissue microenvironment and prevent local immune
376  activation®®®. Indeed, in a previous study using an animal model of LPS-induced intra-amniotic
377  inflammation, we found that treatment with M2 macrophages increased concentrations of IL-10
378 in both maternal circulation and amniotic fluid, along with a reduction in inflammatory
379 mediators at the maternal-fetal interface®, providing further evidence that homeostatic
380 macrophages target both maternal and fetal components in the process of preterm labor. Third,
381  we previously demonstrated that the inflammasome is a key pathway involved in premature

52 or alarmins®***%. As a proof of concept, we administered a

382  labor induced by microbes
383  specific inhibitor of the NLRP3 inflammasome (i.e., MCC950)* to dams injected with the
384  alarmin S100B and observed reduced rates of preterm birth and adverse neonatal outcomes®.
385  While NLRP3 inhibitors hold promise, further research is required to comprehensively assess
386  their effects on offspring before considering their use during pregnancy. The current study
387  demonstrates that M2 macrophages suppress inflammasome activation in the amniotic cavity and
388  fetal membranes, offering an alternative strategy for modulating this signaling pathway.

389 In utero sterile inflammation is not only detrimental due to its short-term outcomes, such

390  as preterm birth, but is importantly linked to long-term negative consequences for the offspring

7,11 27-29,32,34,55,

391 as indicated by human data™ and animal studies 6355 Such consequences are not
392  entirely the result of prematurity, as neonates born at term to HMGB1-injected dams still had
393  reduced survival compared to those that received treatment with M2 macrophages. Thus, even a
394  relatively brief exposure to in utero sterile inflammation imprints fetal tissue alterations that can
395  be carried over to neonatal life. This concept is supported by previous research demonstrating
396 that prenatal treatments or exposures during gestation can induce permanent changes in neonatal

397 ife®>%®% Of interest, recent research employing a transient gestational infection model revealed
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398 the role of the IL-6/Th17 axis in augmenting offspring gut immunity, indicating that prenatal
399 immunological events can induce long-lasting effects®’. Transient exposure to a maternally-
400  derived inflammatory cytokine, IL-6, was similarly explored in pregnant mice and found to
401  result in permanent alteration of neuronal gene programs, providing mechanistic evidence for
402 how prenatal inflammation drives long-term changes in neonatal neurodevelopment®. Strikingly,
403 in the current study, we report that prenatal treatment with M2 macrophages mitigates the
404  negative consequences of in utero sterile inflammation, enhancing survival, reversing growth
405  restriction, and overall improving neonatal infection resistance. Therefore, the current study
406  supports two key concepts: firstly, acute insults in utero can disrupt developmental
407  programming, resulting in impaired immunocompetence in the offspring, the full extent and
408  significance of which remain poorly understood; and second, the prenatal cellular therapy using
409 M2 macrophages demonstrated herein exerts substantial homeostatic effects, effectively
410  countering such alterations.
411 Proper formation of the gut microbiota during early life is essential for the development
412 of a healthy adult gut®. Indeed, multiple inflammatory, metabolic, neurologic, cardiovascular,
413 and gastrointestinal diseases have been linked to disruption of the microbiota during early life™.
414  Importantly, the risk of gut dysbiosis is increased in preterm neonates compared to those
415  delivered at term®, and thus the prevention or treatment of premature labor leading to preterm
416  birth, particularly in the context of in utero sterile inflammation, is essential to ensure the
417  development of a healthy gut microbiota and avoid long-term consequences. Several prenatal
418  events have been studied and found to contribute to microbiota dysbiosis in human neonates,
419  including maternal diet and antibiotic use, among others®®"*. Specifically, the combined presence

420  of acute histologic chorioamnionitis/funisitis was linked to altered microbial composition in
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421 neonatal fecal samples, including modified abundance of Bacteroidetes and Fusobacteria’.
422  Importantly, neonates affected by acute histologic chorioamnionitis alone or acute histologic
423  chorioamnionitis/funisitis had higher incidence of late-onset sepsis/death, thereby providing an
424  association between microbiome alterations and short-term adverse events’?. Consistent with
425  these studies, we demonstrated herein that adverse neonatal outcomes resulting from in utero
426  sterile inflammation are similarly linked to alterations in gut microbiome composition, and that
427  prenatal treatment with M2 macrophages improves these aberrations. Although the current study
428  did not continuously examine the neonatal gut microbiome from birth to the weaning period, our
429  results indicate that treatment with M2 macrophages promotes the proper maturation of a
430  "healthy" gut microbiota, which can contribute to reducing disease risk in neonatal life.
431 It is worth acknowledging that there are inherent differences between humans and murine
432 models. Key physiological factors such as gestational length, placental structure, immune system
433 regulation, and hormonal regulation vary between humans and mice, as has been extensively
434 described”®™. Therefore, we consider that any interventions that prove effective in murine
435  models, such as the M2 macrophages demonstrated in the current study, require additional
436  validation in models that more closely resemble human, such as non-human primates, to more
437  firmly establish their clinical relevance during pregnancy.
438 Collectively, the data presented herein link a reduction in maternal homeostatic
439  macrophages to human labor and mechanistic evidence in mice demonstrating that M2
440 macrophages can treat in utero sterile inflammation, thereby preventing preterm birth and
441  adverse neonatal outcomes. Specifically, treatment with M2 macrophages mitigates
442  inflammatory responses in the amniotic cavity and surrounding fetal membranes by inhibiting

443  inflammasome activation and halting inflammatory processes in the common pathway of labor,
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thereby extending gestational length and preventing preterm birth. Importantly, M2 macrophage
treatment not only diminishes inflammation in the placenta as well as the fetal and neonatal lung
but also enhances neonatal intestinal responses. Neonates born to dams prenatally treated with
M2 macrophages demonstrate a distinct gut microbiome compared to those born from dams with
in utero sterile inflammation, alongside an improved ability to clear bacterial infections. In
conclusion, these findings provide mechanistic evidence that M2 macrophages can serve as a
cellular approach not only to prevent premature labor leading to preterm birth but also to

enhance fetal and neonatal immunity following in utero exposure to sterile inflammation.
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481  FigureLegends
482  Figure 1. Single-cel atlases of the human maternal-fetal interface reveal that maternal
483  homeostatic macrophages are reduced with labor. (A) Representative diagram showing the
484  placenta, extraplacental membranes, and myometrium, along with our working hypothesis that a
485  reduction in homeostatic macrophages may accompany the processes of labor. (B) Uniform
486  Manifold Approximation and Projection (UMAP) plots showing seven distinct macrophage
487  clusters (M1 — M7) in (Top row) the myometrium from women who delivered at term with
488  (n=11) or without (n=13) labor, (Middle row) the placenta (placental villi and basal plate) from
489  women who delivered at term with (n=27) or without (n=21) labor or preterm after preterm labor
490 (n=3), and (Bottom row) extraplacental membranes from women who delivered at term with
491  (n=27) or without (n=21) labor or preterm after preterm labor (n=3). (C) UMAP plots showing
492  maternal (blue) or fetal (red) origin of all macrophage clusters in the (top to bottom)
493  myometrium, placenta, and extraplacental membranes. (D) Plot showing the proportions of
494  maternal M2 macrophages in the myometrium from women with term non-labor (TNL) or those
495  with term labor (TIL). (E) Plot showing the proportions of maternal M2 macrophages in the
496  basal plate from women with term in labor (TIL) or preterm labor (PTL). P-values were
497  determined using Mann-Whitney U-tests. **p < 0.01. (F) STRING analysis showing the top 20
498  marker genes from the M2 cluster. (G) Over-representation analysis showing enriched Gene
499  Ontology processes in the M2 cluster. Dot size corresponds to gene count and color scaling
500 represents false discovery rate-adjusted p-values (g<0.05) as determined by Wilcoxon Rank Sum
501 test. See also Figure S1 and Table S1.

502
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503 Figure 2. M2 macrophages prevent preterm birth and neonatal mortality induced by in
504 utero sterile inflammation. (A) To induce in utero sterile inflammation, the alarmin HMGB1
505  was intra-amniotically administered to C57BL/6 dams under ultrasound guidance on 14.5 days
506  post coitum (dpc). Bone marrow-derived cells were collected from C57BL/6 mice, differentiated,
507 and polarized to an M2 phenotype (M2 M®) in vitro. M2 M® were administered intravenously
508 to C57BL/6 dams on 13.5 and 14.5 dpc. Dams were monitored until delivery, and neonatal
509  survival and weight were recorded until three weeks of age. (B) Gestational length shown as box
510 plots where midlines indicate medians and whiskers indicate minimum/maximum range. P-
511  values were determined using the Kruskal-Wallis test followed by two-stage linear step-up
512  procedure of Benjamini, Krieger, and Yekutieli post-hoc test. (C) Rates of preterm birth among
513  dams injected with PBS (n = 20), HMGBL1 (n = 28), PBS + M2 M® (n = 14), and HMGB1 + M2
514  M® (n = 29) are shown as bar plots. P-values were determined using two-sided Fisher’s exact
515 test. (D) Pie charts representing the survival at birth of preterm neonates. PBS (n = 20 litters),
516 HMGBL1 (n = 20 litters), PBS + M2 M® (n = 14 litters), and HMGB1 + M2 M® (n = 16 litters).
517 (E) Kaplan-Meier survival curves from neonates at weeks 1, 2, and 3 of life. PBS (n = 20 litters),
518 HMGBL1 (n = 20 litters), PBS + M2 M® (n = 14 litters), and HMGB1 + M2 M® (n = 16 litters).
519  P-values were determined using the Gehan-Breslow-Wilcoxon test. (F) Individual weights
520 (grams, g) of neonates across the first three weeks of life are shown as box plots where midlines
521 indicate medians and whiskers indicate minimum/maximum range. PBS (n = 11 litters), HMGB1
522  (n =11 litters), PBS + M2 M® (n = 11 litters), and HMGB1 + M2 M® (n = 14 litters). P-values
523  were determined using the Kruskal-Wallis test followed by Dunn’s post-hoc test. *p < 0.05; **p
524  <0.01; ***p < 0.001.

525
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526 Figure 3. M2 macrophages dampen HMGB1-induced in utero sterile inflammation,
527 including inflammasome activation, in the amniotic cavity. (A) Dams were intra-amniotically
528 injected with HMGB1 on 14.5 days post coitum (dpc). Amniotic fluid was collected at 24, 48,
529 72, or 96 h post-HMGBL1 injection for cytokine determination. (B) Concentrations of IL-6 in the
530 amniotic fluid of HMGB1-injected dams at 24, 48, 72, and 96 h post-injection are shown as box
531  plots (n = 8 dams per time point). P-values were determined using the Kruskal-Wallis test
532  followed by two-stage linear step-up procedure of Benjamini, Krieger, and Yekutieli post-hoc
533  test. (C) M2 macrophages (M2 M®) or vehicle (PBS) were intravenously administered on 13.5
534  dpc and 14.5 dpc to dams followed by ultrasound-guided intra-amniotic injection of HMGB1 on
535 145 dpc. Amniotic fluid was collected at 72 h post-HMGB1 injection for cytokine
536  determination. (D) Concentrations of IL-6, TNF, and total IL-1p in the amniotic fluid of the
537 HMGB1+Vehicle dams (n = 16 dams) or HMGB1+M2 M® dams (n = 16 dams) at 72 h post-
538 injection are shown as box plots. P-values were determined using the two-tailed Mann-Whitney
539  U-test. (E) To determine inflammasome activation, amniotic fluid of dams that received PBS,
540 HMGB1, HMGB1 + Vehicle, or HMGB1 + M2 M® was collected at 72 h post-HMGB1
541 injection for immunoblotting. (F) Immunoblotting of active caspase (CASP)-1 expression and
542  mature IL-1B expression in the amniotic fluid of dams injected with PBS or HMGBLI.
543  Representative CASP-1 immunoblot image shows 6 samples per group, and representative
544  mature IL-1p immunoblot image shows 3 pooled samples (pooled amniotic fluids from 3 dams)
545  per group. (G) Protein quantification of active CASP-1 in the amniotic fluid of dams injected
546 with PBS (n = 12) or HMGBL1 (n = 13). Protein quantification of mature IL-1p in the pooled
547  amniotic fluid of dams injected with PBS (n = 3) or HMGBL1 (n = 3). Data are shown as boxplots

548  where midlines indicate medians, boxes denote interquartile ranges, and whiskers indicate the
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549  minimum/maximum range. P-values were determined using the one-tailed Mann-Whitney U-
550 test. (H) Immunoblotting of active CASP-1 expression and mature IL-1p expression in the
551  amniotic fluid of HMGB1+Vehicle or HMGB1+M2 M® dams. Representative CASP-1
552  immunoblot image shows 6 samples per group, and representative mature IL-1p immunoblot
553  image shows 3 pooled samples (pooled amniotic fluids from 3 dams) per group. (I) Protein
554  quantification of active CASP-1 in the amniotic fluid of dams injected with HMGB1+Vehicle (n
555 = 12) or HMGB1+M2 M® (n = 14). Protein quantification of mature IL-1p in the pooled
556  amniotic fluid of dams injected with HMGB1+Vehicle (n = 3) or HMGB1+M2 M® (n = 3). P-
557  values were determined using the one-tailed Mann-Whitney U-test. Data are shown as boxplots
558  where midlines indicate medians, boxes denote interquartile ranges, and whiskers indicate the
559  minimum/maximum range. *p < 0.05; **p < 0.01; ***p < 0.001. See also Figure S3.
560
561  Figure 4. M2 macrophages inhibit inflammasome activation and regulate gene expression
562 in the fetal membranes. (A) Dams received intra-amniotic injection of PBS (control) or
563 HMGBL1 on 14.5 days post coitum (dpc). M2 macrophages (M2 M®) or vehicle (PBS) were
564 intravenously administered to dams on 13.5 dpc and 14.5 dpc followed by intra-amniotic
565 injection of HMGB1 on 14.5 dpc. Tissue collection was performed at 72 h post-injection to
566  collect the fetal membranes for immunoblotting and to determine gene expression. (B)
567 Immunoblotting of active caspase (CASP)-1, mature IL-1B, and B-actin (ACTB) in the fetal
568 membranes of PBS- or HMGB1-injected dams. Representative immunoblot images depict 6
569  samples per group in each gel. (C) Protein quantification of active CASP-1 and mature IL-1p
570  (both normalized by ACTB) in the fetal membranes of PBS- or HMGB1-injected dams (n = 6

571  per group). (D) Immunoblotting of active CASP-1, mature IL-1p, and ACTB in the fetal
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572 membranes from HMGB1+Vehicle or HMGB1+M2 M® dams. Representative immunoblot
573  images depict 6 samples per group in each gel. (E) Relative quantification of active CASP-1 and
574  mature IL-1p (both normalized by ACTB) in the fetal membranes of HMGB1+Vehicle or
575 HMGB1+M2 M® dams (n = 6 per group). (F) Representative heatmaps displaying the
576  expression of key inflammatory genes in the fetal membranes of PBS- (n = 8) or HMGB1-
577 injected (n = 8) dams. (G) Expression of Ccl17 in the fetal membranes of PBS- or HMGB1-
578 injected dams. Data are shown as boxplots where midlines indicate medians, boxes denote
579 interquartile ranges, and whiskers indicate the minimum/maximum range. P-values were
580  determined using the two-tailed Mann-Whitney U-test. (H) Representative heatmaps displaying
581  the expression of key inflammatory genes in the fetal membranes of HMGB1+Vehicle (n = 8) or
582 HMGB1+M2 M® (n = 8) dams. (I) Expression of TIr4, Cxcll, Tnf, and Il11b in the fetal
583  membranes of HMGB1+Vehicle or HMGB1+M2 M® dams. Data are shown as boxplots where
584  midlines indicate medians, boxes denote interquartile ranges, and whiskers indicate the
585  minimum/maximum range. P-values were determined using the two-tailed Mann-Whitney U-
586  test. *p < 0.05; **p < 0.01.

587

588  Figure 5. M2 macrophages ameliorate fetal and neonatal lung inflammation induced by in
589 utero sterile inflammation. (A) Dams received intra-amniotic injection of PBS (control) or
590 HMGB1 on 14.5 days post coitum (dpc). M2 macrophages (M2 M®) or vehicle (PBS) were
591 intravenously administered to dams on 13.5 dpc and 14.5 dpc followed by intra-amniotic
592 injection of HMGB1 on 14.5 dpc. Tissue collection was performed at 72 h post-injection to
593  collect the fetal lung for gene expression. (B) Representative heatmaps displaying the expression

594  of inflammatory genes in the fetal lung of PBS- (n = 8) or HMGB1-injected (n = 8) dams. (C)
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595  Expression of 116, Tnfrsfla, 1133, NIrp6, and TIr9 in the fetal lung of PBS- or HMGB1-injected
596 dams. Data are shown as boxplots where midlines indicate medians, boxes denote interquartile
597  ranges, and whiskers indicate the minimum/maximum range. P-values were determined using the
598  two-tailed Mann-Whitney U-test. (D) Representative heatmaps displaying the expression of
599 inflammatory genes in the fetal lung of HMGB1+Vehicle (n = 8) or HMGB1+M2 M® (n = 8)
600 dams. (E) Expression of Tnfrsfla and Nodl in the fetal lung of HMGB1+Vehicle or
601  HMGB1+M2 M® dams. (F) The lung was collected at 14-16 days of life from neonates born to
602 HMGB1+Vehicle or HMGB1+M2 M® dams to evaluate gene expression as shown in the
603  representative heatmap. (G) Expression of 116, Ccl2, Socs3, and Cxcl1 in the neonatal lung (n =
604 10 per group). Data are shown as boxplots where midlines indicate medians, boxes denote
605 interquartile ranges, and whiskers indicate the minimum/maximum range. P-values were
606  determined using the two-tailed Mann-Whitney U-test. *p < 0.05; **p < 0.01.

607

608 Figure 6. M2 macrophages regulate neonatal gut inflammation resulting from in utero
609  sterile inflammation. (A) M2 macrophages (M2 M®) or PBS (Vehicle) were intravenously
610  administered to dams on 13.5 dpc and 14.5 dpc followed by intra-amniotic injection of HMGB1
611  on 14.5 dpc. After delivery, neonates were monitored until 14-16 days of age, after which the
612  small intestine, cecum, and colon were collected to determine gene expression. Representative
613  heatmaps display gene expression in the (B) neonatal small intestine, (D) cecum, and (F) colon
614  of neonates born to HMGB1+Vehicle (n = 10 neonates) or HMGB1+M2 M® (n = 10 neonates)
615 dams. The expression of specific genes in the (C) neonatal small intestine (Aim2, Cd68, Tnf,
616 Rgs4, Ccl5, Ccll7), (E) cecum (Caspl and Ccll7), and (G) colon (ll1a, Cd68, Caspl, Jun,

617  Kdmeb, Ccl17) are shown as box plots. P-values were determined using the two-tailed Mann-
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618  Whitney U-test. Data are shown as boxplots where midlines indicate medians, boxes denote
619 interquartile ranges, and whiskers indicate the minimum/maximum range. *p < 0.05; **p < 0.01.
620  See also Figures S8-S10.
621
622  Figure7. M2 macrophages improve neonatal immunocompetence. (A) M2 macrophages (M2
623  M®) or PBS (Vehicle) were intravenously administered to dams on 13.5 dpc and 14.5 dpc
624  followed by intra-amniotic injection of HMGB1 on 14.5 dpc. Pregnant dams without any
625  treatment or injected with HMGB1 alone were also included. After delivery, surviving neonates
626  were monitored until 14-16 days of age, after which they received intraperitoneal injection of
627  Group B Streptococcus (GBS) and were observed for five days. (B) The survival rates of GBS-
628 infected neonates born to untreated (n = 10 neonates), HMGB1-injected (n = 10 neonates),
629 HMGB1+Vehicle (n = 12 neonates), or HMGB1+M2 M® (n = 12 neonates) dams over the five
630 days post-challenge are displayed as Kaplan-Meier survival curves. P-values were determined
631  using the Gehan-Breslow-Wilcoxon test. (C) Mean weights of GBS-infected neonates over the
632  five days post-challenge. P-values for comparing the mean weight at the end of day five (final
633  data point in plot) were determined using the two-tailed Mann-Whitney U-test. *p < 0.05; **p <

634  0.01; ***p < 0.001. See also Figure S11.
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635 STARMETHODS

636 KEY RESOURCESTABLE
637 (Submitted separately)
638

639

640
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641 RESOURCE AVAILABILITY
642 Lead Contact
643 Further information and requests for resources and reagents should be directed to and will

644  be fulfilled by the lead contact, Nardhy Gomez-Lopez (nardhy.gomez-lopez@wayne.edu).

645

646  Materials Availability

647 This study did not generate new unique reagents.
648

649  Dataand Code Availability

650 Single-cell RNA-sequencing data were previously reported*®

and are deposited in the
651 NIH dbGAP database (phs001886.v5.p1). 16S rRNA gene sequencing files and associated
652  metadata have been uploaded to the National Center for Biotechnology Information’s Sequence
653  Read Archive (PRINA925285). All other data are presented within the current manuscript and/or

654 its supplementary materials.
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655 EXPERIMENTAL MODEL AND SUBJECT DETAILS

656 C57BL/6 (strain # 000664) and B6 CD45.1 (B6.SJL-Ptprc® Pepc®/BoyJ; strain # 002014)
657  mice were purchased from The Jackson Laboratory (Bar Harbor, ME, USA). Mice were housed
658 in the animal care facility at the C.S. Mott Center for Human Growth and Development at
659  Wayne State University (Detroit, MI, USA) under a circadian cycle (light:dark = 12:12 h). Eight-
660  to twelve-week-old females were mated with males of proven fertility. Females were checked
661  daily between 8 and 9 a.m. to investigate the appearance of a vaginal plug, which indicated 0.5
662  days post coitum (dpc). Plugged females were then housed separately from the male mice and
663  their weights were monitored daily. A weight gain of > 2 grams by 12.5 dpc confirmed
664  pregnancy. Mice were randomly assigned to study groups prior to the experiments described
665  herein. Numbers of biological replicates are indicated in each figure caption. All procedures
666  were approved by the Institutional Animal Care and Use Committee (IACUC) at Wayne State
667  University under Protocol Nos. A-07-03-15, 18-03-0584, and 21-04-3506.

668

669 METHOD DETAILS

670 Analysisof scRNA-seq data

671  Data normalization and pre-processing

672 Data from three of our previously generated human scRNA-seq datasets***® were
673  combined and re-analyzed to specifically investigate macrophage populations at the maternal-
674  fetal interface. All datasets were pre-processed and normalized with a comparable pipeline. In
675  brief, sequencing data were processed using Cell Ranger version 4.0.0 (10x Genomics). The
676  fastq files were aligned using kallisto™®, and bustools”” was used to summarize the cell/gene

677  transcript counts in a matrix for each sample. In parallel, “cellranger counts” was also used to
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678 align the sScRNA-seq reads using the STAR aligner’ to produce the bam files necessary for
679  demultiplexing the individual of origin based on genotype information using souporcell” and
680  demuxlet®. Quality metrics were calculated and each library was determined to be of excellent
681  quality based on 10X Genomics recommendations. Any droplet/GEM barcode assigned to a
682  double or ambiguous cell in demuxlet or souporcell was filtered, and only cells that could be
683  assigned to a pregnancy case were kept. Furthermore, any cells with less than 100 or more than
684 10,000 genes were filtered out, as well as those with > 25% mitochondrial reads. Cells annotated
685 as macrophages (details regarding the annotation process can be found in the original

686  publications*

) were extracted and combined into a new Seurat object.

687 All count data matrices were normalized and combined using the “NormalizedData”
688  “FindVariableFeatures” and “ScaleData” methods implemented in the Seurat package in R®%,
689  Next, the Seurat “RunPCA” function was applied to obtain the first 50 principal components, and
690 the different libraries were integrated and harmonized using the Harmony package in R®® while
691  accounting for library of origin as a potential batch effect. The top 30 harmony components were
692  then processed using the Seurat “runUMAP” function to embed and visualize the cells in a two-
693  dimensional map via the Uniform Manifold Approximation and Projection for Dimension
694  Reduction (UMAP) algorithm. The “FindClusters” function with a resolution of 0.1 was used to
695  cluster the single cells into seven distinct clusters. The two most abundant macrophage cell type
696  clusters (M1 and M2) were found to be equivalent to the previously annotated clusters
697 Macrophage-1 and Macrophage-2, respectively that we have previously reported*“. The
698  proportions of specific macrophage clusters within a tissue were compared between groups using

699  Mann-Whitney U-tests.

700
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701  Gene ontology
702 The differential expression of selected marker genes for each cell type/cluster were
703  identified using the Wilcoxon Rank Sum test implemented by FindAllMarkers function from
704  Seurat. For this analysis, we compared each cluster to all cell types. The clusterProfiler®* was
705  used to perform Over-Representation Analysis (ORA) based on the Gene Ontology (GO) using
706 “enrichGO” function. We first compared all clusters to each other using “compareCluster” and
707  reported the top terms for each cluster. Since many of these terms were shared, we then focused
708  on the M2 cluster and compared the list of unique genes identified with a FDR of 5% for this
709  population against the universe of all genes expressed in macrophages. Only ORA results that
710  were significant after correction were reported with g < 0.05 being considered statistically
711 significant.
712
713 Intra-amniotic administration of HM GB1
714 Ultrasound-guided intra-amniotic injection of HMGB1 was performed as previously

715  reported®” %

. Briefly, dams were anesthetized on 14.5 dpc by inhalation of 2% isoflurane
716  (Fluriso™/Isoflurane, USP; VetOne, Boise, ID, USA) and 1-2 L/min of oxygen in an induction
717  chamber, and a mixture of 1.5-2% isoflurane and 1.5-2 L/min of oxygen was used to maintain
718  anesthesia. Mice were positioned on a heating pad and stabilized with adhesive tape, and fur was
719  removed from the abdomen and thorax using Nair cream (Church & Dwight Co., Inc., Ewing,
720  NJ, USA). Body temperature was detected with a rectal probe (VisualSonics, Toronto, ON,
721 Canada) throughout the procedure, and respiratory and heart rates were monitored by electrodes

722 embedded in the heating pad. An ultrasound probe was fixed and mobilized with a mechanical

723 holder, and the transducer was slowly moved toward the abdomen®. The ultrasound-guided
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724  intra-amniotic injection of recombinant human HMGB1 (Biolegend, San Diego, CA, USA) at a
725  concentration of 9 ng dissolved in 100 uL of sterile 1X phosphate-buffered saline (PBS; Life
726 Technologies, Grand Island, NY, USA) was performed in each amniotic sac using a 30G needle
727  (BD PrecisionGlide Needle; Becton Dickinson, Franklin Lakes, NJ, USA). After ultrasound
728  completion, mice were placed under a heat lamp for recovery defined as when the mouse
729  resumed normal activities, such as walking and interacting with its environment, which typically
730  occurred within 10 min after removal from anesthesia. After recovery, dams were monitored via
731 video camera (Sony Corporation, Tokyo, Japan) to observe pregnancy and neonatal outcomes.
732
733 Isolation, differentiation, and adoptive transfer of M2 macr ophages
734 Bone marrow cells were isolated, differentiated, and adoptively transferred following a
735  previously established protocol®. Briefly, bone marrow cells were collected from female mice
736 (12-16 weeks old) and treated with red blood cell lysis buffer (Ammonium Chloride Solution;
737  Cat# 07800, Stem Cell Technologies; Vancouver, CA). Then, cells were resuspended and
738  cultured in Iscove's Modified Dulbecco's Media (IMDM) medium (Thermo-Fisher Scientific;
739  Waltham, MA, USA) supplemented with 10% fetal bovine serum (FBS; Invitrogen, Carlsbad,
740 CA, USA), 1X antibiotic-antimycotic (Cat# 15240062; Thermo-Fisher Scientific), and 10 ng/ml
741 recombinant macrophage colony-stimulating factor (M-CSF; Cat# 576402; BiolLegend, San
742 Diego, CA, USA) for 7 days. On day 7, the culture medium was replaced with fresh IMDM
743 medium supplemented with 10% FBS, 1X antibiotic-antimycotic, 10 ng/ml of recombinant I1L-4
744  (Cat# 574302, BioLegend), and 10 ng/ml of recombinant 1L-13 (Cat# 575902, BioLegend). After
745  14-18 h, M2 macrophages were collected by washing with ice-cold PBS (Fisher Scientific

746  Bioreagents, Fair Lawn, NJ, USA or Life Technologies Limited, Pailey, UK). The purity and
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747  phenotype of macrophages after M2 polarization were routinely checked throughout the course
748  of the study, as we have previously reported”®. Prior to injection, the viability of M2
749 macrophages was consistently confirmed to be >90%. Approximately 2-5 x 10° cells were
750  resuspended in 100 puL PBS for intravenous injection into dams on 13.5 and 14.5 dpc, prior to the
751  administration of HMGB1 or PBS on 14.5 dpc. This timing was chosen so that the transferred
752 M2 macrophages would have sufficient time to reach key maternal and fetal tissues during the
753 critical window of inflammation resulting in preterm birth, as previously reported™®.
754
755  Perinatal outcomes
756 Gestational length was calculated as the duration of time from the presence of the vaginal
757  plug (0.5 dpc) to the detection of the first pup in the cage bedding. Preterm birth was defined as
758  delivery occurring before 18.75 dpc based on the lowest gestational age at delivery observed in
759  the control group. The rate of preterm birth was calculated as the proportion of females
760  delivering preterm out of the total number of mice per group. The rate of stillbirth was defined as
761  the proportion of delivered pups found dead among the total number of pups. The rate of
762  neonatal mortality was defined as the proportion of pups found dead among the total number of
763 pups. Neonatal mortality rates and weights were calculated and recorded at postnatal weeks 1, 2,
764  and 3.
765
766 Sampling from damsintra-amniotically injected with HM GB1
767 Dams were euthanized at 24, 48, 72, and 96 h after intra-amniotic HMGBL1 injection for
768  tissue collection. The amniotic fluid was collected from each amniotic sac and centrifuged at

769 1,300 x g for 5 min at 4°C. The resulting supernatants were stored at -20°C until analysis. The
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770  maternal whole blood was collected from each dam, mixed with heparin (Cat# 2106-15VL,;
771 Sigma-Aldrich, St. Louis, MO, USA), and centrifuged at 800 x g for 10 min at 4°C. Collection of
772 the uterus, decidua, placenta, fetal membrane, fetal lung, and fetal intestine was performed. The
773 placentas and fetuses were imaged and weighed during tissue dissection. The collected tissues
774  were snap-frozen in liquid nitrogen for immunoblotting or preserved in RNAlater Stabilization
775  Solution (Cat# AM7021; Invitrogen by Thermo-Fisher Scientific, Carlsbad, CA, USA),
776  according to the manufacturer’s instructions.
777
778  Determination of cytokine concentrationsin amniotic fluid
779 Concentrations of IL-6, IL-1p, and TNF were determined in murine amniotic fluid using
780  the U-PLEX Custom Biomarker Group 1 (ms) assay (Cat# K15069M-2; Meso Scale Discovery,
781 Rockville, MD, USA), according to the manufacturer’s instructions. Plates were read using the
782  MESO QuickPlex SQ 120 (Meso Scale Discovery) and analyte concentrations were calculated
783  using the Discovery Workbench software v4.0 (Meso Scale Discovery). The sensitivities of IL-6,
784  IL-1PB, and TNF were 4.8 pg/ml, 3.1 pg/ml, and 1.3 pg/ml, respectively.
785
786  RNA isolation, cDNA synthess, and gPCR analysis of tissuesfrom pregnant mice
787 Total RNA was isolated from the uterus, decidua, placenta, fetal membranes, fetal lung,
788  and fetal intestine using QIAshredders (Cat# 79656; Qiagen, Germantown, MD, USA), RNase-
789  Free DNase Sets (Cat# 79254; Qiagen), and RNeasy Mini Kits (Cat# 74106; Qiagen), according
790  to the manufacturer’s instructions. The NanoDrop 8000 spectrophotometer (Thermo Scientific,
791  Wilmington, DE, USA) and the Bioanalyzer 2100 (Agilent Technologies, Waldbronn, Germany)

792  were used to evaluate RNA concentrations, purity, and integrity. SuperScript IV VILO Master
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793  Mix (cat# 11756050; Invitrogen by Thermo Fisher Scientific Baltics UAB, Vilnius, Lithuania)
794  was used to synthesize complementary (C)DNA. Gene expression profiling of the tissues was
795  performed on the BioMark System for high-throughput gPCR (Fluidigm, San Francisco, CA,
796  USA) with the TagMan gene expression assays (Applied Biosystems, Life Technologies
797  Corporation, Pleasanton, CA, USA) listed in Supplementary Table 2. Negative delta cycle
798  threshold (-ACy) values were determined using multiple reference genes (Actb, Gapdh, Gusb,
799 and Hsp90abl) averaged within each sample for contractility-associated and inflammatory
800  genes. The -AC+ values were normalized by calculating the Z-score of each gene with the study
801  groups. Heatmaps were created representing the Z-score of each -AC+ using GraphPad Prism
802  (GraphPad, San Diego, CA, USA).

803

804 Tissuelysate preparation and protein quantification

805 Snap-frozen fetal membrane and uterus were mechanically homogenized in PBS
806  containing a complete protease inhibitor cocktail (Cat# 11836170001; Roche Applied Sciences,
807  Mannheim, Germany) for 10 min. The resulting lysates were centrifuged at 16,100 x ¢
808 (maximum speed) for 5 min at 4°C. The total protein concentrations in amniotic fluid
809  (supernatant) and tissue lysate samples were tested by the Pierce BCA Protein Assay Kit (Cat#
810  23225; Pierce Biotechnology, Thermo-Fisher Scientific, Inc., Rockford, IL, USA) prior to
811  immunoblotting. Cell lysates or concentrated culture medium from murine bone marrow-derived
812  macrophages were utilized as positive controls for the expression of active CASP-1 and mature
813  IL-1B, as previously described®*.

814

815  Immunoblotting
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816 Cell lysates or culture supernatants from murine bone marrow-derived macrophages (30
817 g per well; positive control), amniotic fluid (20 pg total protein per well), fetal membrane
818 lysates (75 ug per well), and uterine tissue lysates (75 pg per well) were subjected to
819 electrophoresis in sulfate-polyacrylamide gels (Cat# NP0336BOX; Invitrogen). The proteins
820  were transferred onto nitrocellulose membranes (Cat# 1620145; Bio-Rad, Hercules, CA, USA),
821  which were then submerged in 5% blotting-graded blocking solution (Cat# 1706404; Bio-Rad)
822  for 30 min at room temperature. Next, the membranes were probed overnight at 4°C with anti-
823  mouse CASP-1 (Cat# 14-9832-82; Thermo-Fisher Scientific) or anti-mouse mature IL-1p (Cat#
824  63124S; Cell Signaling Technology, Danvers, MA, USA; only for fetal membranes). After
825  incubation with each primary antibody, membranes were incubated with HRP-conjugated anti-
826  rat IgG (Cat# 7077S; Cell Signaling) for CASP-1 or HRP-conjugated anti-heavy chain of rabbit
827 1gG (Cat# HRP-66467; Proteintech, Rosemont, IL, USA) for mature IL-1p for 1 h at room
828  temperature. The ChemiGlow West Chemiluminescence Substrate Kit (Cat# 60-12596-00;
829  ProteinSimple, San Jose, CA, USA) was used to detect chemiluminescence signals, and
830  corresponding images were acquired using the ChemiDoc Imaging System (Bio-Rad). The
831  membranes that were loaded with fetal membrane and uterine tissue lysates were re-probed for 1
832  h at room temperature with a mouse anti-f-actin (ACTB) monoclonal antibody (Cat# A5441,
833  Sigma-Aldrich). Then, the membranes were incubated with HRP-conjugated anti-mouse IgG
834  (Cat# 7076S; Cell Signaling) for 30 min at room temperature. The chemiluminescence signals of
835 the ACTB were detected as shown above. Finally, quantification was performed using ImageJ
836  software as previously reported **. In short, each individual protein band was automatically
837  quantified on the blot images. The internal control, p-actin, was used to normalize the target

838  protein expression in each fetal membrane and uterine tissue sample for relative quantification.
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840 Immunoprecipitation of maturelL-1p
841 Immunoprecipitation of cleaved IL-13 from uterine tissue lysates and amniotic fluid was

842  performed using the Pierce™ Classic IP Kit (Cat# 26146; Thermo Fisher Scientific) following
843  the manufacturer’s instructions. Amniotic fluid samples (n = 3 per study group) were pooled.
844  Culture supernatants from murine bone marrow-derived macrophages were utilized as positive
845  controls. Each uterine tissue lysate (1 mg protein) or pooled amniotic fluid sample (1 mg protein)
846  was pre-cleared using the control agarose resin and incubated with rabbit anti-mouse mature IL-
847 1P antibody overnight at 4°C to form the immune complex. Next, the immune complex was
848  captured using Pierce Protein A/G Agarose. After several washes to remove non-bound proteins,
849  the immune complex was eluted with sample buffer and subjected to electrophoresis in 4%-12%
850  polyacrylamide gels followed by Western blot transfer, as described above. The blot was then
851 incubated with rabbit anti-mouse mature IL-1p antibody, followed by incubation with an HRP-
852  conjugated anti-heavy chain of rabbit IgG antibody. Finally, chemiluminescence signals were
853  detected with the ChemiGlow West Substrate Kit and images were acquired using the ChemiDoc
854  Chemiluminescence Imaging System, and quantification was performed using ImageJ software.
855

856  Tracking transferred M2 macrophagesin vivo

857 Bone marrow from B6 CD45.1 mice was collected, isolated, and differentiated into M2
858  macrophages, as described above. Pregnant C57BL/6 recipient mice were intravenously injected
859  with 2-5x10° CD45.1" donor M2 macrophages at 13.5 and 14.5 dpc followed by intra-amniotic
860 injection of HMGB1 on 14.5 dpc, as described above. Mice were euthanized at 2, 6, or 12 h after

861 intra-amniotic injection to collect the maternal blood, maternal lung, uterus, decidua, and
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862  placenta as well as the fetal membrane, fetal intestine, fetal liver, fetal liver, and amniotic fluid.
863  Whole maternal blood (100 pL) was used directly for immunophenotyping following the
864  procedure described below. For maternal and fetal tissues, leukocytes were isolated by following
865  protocols adapted from®. Briefly, maternal and fetal tissues were gently minced using fine
866  scissors and enzymatically digested with StemPro Accutase Cell Dissociation Reagent (Cat#
867  A1110501, Thermo-Fisher) for 30 min at 37°C. Cells were filtered using a 100 um cell strainer
868  (Cat# 22-363-549, Fisher Scientific, Fair Lawn, NY, USA) followed by washing with PBS prior
869  to immunophenotyping. Immediately after isolation of leukocytes, cell pellets were re-suspended
870  in FACS buffer and pre-incubated with rat anti-mouse CD16/CD32 Fc Block™ (Cat# 553142,
871  clone 2.4G2; BD Bioscience, Franklin Lakes, NJ, USA) for 10 min on ice and subsequently
872  incubated with specific fluorochrome-conjugated monoclonal anti-mouse antibodies shown in
873  Supplementary Table 3. Cells were acquired using the BD LSRFortessa flow cytometer (BD
874  Biosciences) with FACSDiva 9.0 software (BD Biosciences). CountBright absolute counting
875  beads (Thermo Fisher Scientific) were added prior to acquisition. The analysis was performed
876  and the figures were created by using FlowJo software v10 (FlowJo, Ashland, OR, USA).
877
878  Sampling and gene expressing profiling of neonates
879 Neonates born to dams that received M2 macrophages or PBS followed by HMGB1 were
880  sacrificed at 14 days of life, and the lung and intestine (cecum, colon, and small intestine) were
881  preserved in RNAlater Stabilization Solution. Gene expression analysis was performed using the
882  methods described above (see “RNA isolation, cDNA synthesis, and gPCR analysis™).
883

884  Neonatal sampling for gut microbiome analysis
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885 Dams underwent treatment with M2 macrophages alone, or were injected with HMGB1
886  and treated with vehicle or M2 macrophages, as described above. A group of non-injected dams
887  (control) was also included. There was no group-level separation of these dams; each was housed
888  alone after receiving their respective injections. After delivery, dams were housed with their
889  neonates. Surviving neonates were euthanized on postnatal day 14-16. Samples from the
890  neonatal small intestine, cecum, and colon as well as environmental controls were obtained using
891  sterile swabs (FLOQSwabs, Cat# 553C Copan Diagnostics, Murieta, CA, USA) under aseptic
892  conditions. Each experimental group included samples obtained from neonates born to three
893  different dams. All swab samples collected for 16S rRNA gene sequencing were stored at -80°C
894  until DNA extractions were performed.
895
896  DNA extraction
897 Genomic DNA was extracted from swabs of the small intestine, cecum, and colon (n = 35
898  each) and negative blank DNA extraction kit controls using the DNeasy PowerLyzer Powersoil
899 kit (Qiagen, Germantown, MD, USA), with minor modifications to the manufacturer’s protocol
900 as previously described® . All swabs were randomized across extraction runs. The purified
901  DNA was stored at -20°C.
902
903  16srRNA Gene Sequencing

904 The V4 region of the 16S rRNA gene was amplified and sequenced via the dual indexing

7-89,91
|'90 d8 89,9

905 strategy developed by Kozich et al.”™ as previously describe , with the exception that
906 library builds were performed using 32 cycles of PCR prior to the equimolar pooling of all

907 sample libraries for multiplex sequencing. 16S rRNA gene sequences were clustered into
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908 amplicon sequence variants (ASVs) defined by 100% sequence similarity using DADAZ2 version
909  1.12%in R version 4.2.2% as previously described™, with the exception that forward and reverse
910  reads were truncated at 240 and 215 bases, respectively. Sequences were then classified using the
911  silva_nr_v132_train_set database with a minimum bootstrap value of 80%, and sequences that
912  were derived from Archaea, chloroplast, Eukaryota, or mitochondria were removed.
913 Potential background DNA contaminant ASVs were identified using the R package
914  decontam version 1.18.0% and the “IsContaminant” function. One of the 82 ASVs identified as a
915  contaminant [Lachnospiraceae (ASV-2)] was present in > 90% of both biological and control
916  samples, however, it had a greater mean relative abundance in biological (12.95%) than in
917  control samples (1.77%) and was therefore not removed from the dataset. The two taxa with the
918  highest mean prevalence and abundance in control samples that were removed from the dataset
919  were Burkholderiaceae (ASV-42) (41.7% and 5.3%) and Pseudomonas (ASV-97) (50.0% and
920  3.8%, respectively). The mean relative abundances of these two ASVs across all biological
921  samples were 0.0003% and 0.006%, respectively. Other ASVs removed from the dataset
922 included taxa that have previously been reported to be contaminants in 16S rRNA gene
923  sequencing studies (e.g., Acinetobacter, Cloacibacterium, Corynebacterium, Cutibacterium,
924 Escherichia, Halomonas, Pseudomonas, Ralstonia, Sphingomonas, Staphylococcus,
925  Senotrophomonas, and Xanthomonas)®%*.
926 After removing contaminant ASVs, all samples were normalized to 8,715 reads using the
927  “rarefy_even_depth” function in phyloseq 1.42.0', resulting in 20 bacterial profiles with
928  Good’s coverage'® values > 99.68% for each of the three sample types. The final dataset

929  contained a total of 411 ASVs. No cross-tissue comparisons were conducted.

930
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931 Betadiversty

932 Beta diversity of bacterial profiles was characterized using the Bray-Curtis similarity
933 index. Principal coordinate analysis (PCoA) plots were used to visualize the Bray-Curtis
934  similarity of the sample profiles. Using nonparametric multivariate analysis of variance
935  (NPMANOVA) as implemented in vegan 2.6.4'%, differences in bacterial community structure
936  across treatments were evaluated for each tissue type.

937

938 Differential abundance of bacterial species

939 Differential abundance of the 25 most prevalent ASVs between treatment groups was
940 independently evaluated for the small intestine, cecum, and colon datasets using two-tailed
941  Mann-Whitney U-tests with Holm's correction for multiple comparisons as implemented in R
942  version 4.2.2. Adjusted p-values < 0.1 were considered significant.

943

944  Neonatal bacterial challenge

945 Group B Sreptococcus (GBS, CNCTC 10/84, serotype V, sequence type 26) was
946  originally isolated from a neonate with sepsis. From an overnight culture, a sub-culture was
947  placed with fresh Tryptic Soy Broth (Cat# 211825; BD Bioscience, Franklin Lakes, NJ, USA)
948 and grown to the logarithmic phase (OD600 0.8-0.9). Additional dilution was performed using
949  sterile PBS to reach working concentrations. Thriving term neonates (14-16 days old) born to
950 dams that did not receive any treatment (control) and dams injected solely with HMGBL1, PBS
951  (vehicle for M2 macrophages) followed by HMGB1, or M2 macrophages followed by HMGB1

952  were intraperitoneally injected with 2x10° colony-forming units of GBS in 200 uL sterile PBS.
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953  Survivability, body weight, and rectal temperature of the challenged neonates were checked at 4-
954 6 hintervals throughout the daytime for 5 days.
955
956 QUANTIFICATION AND STATISTICAL ANALYSIS
957 Statistical analyses were performed using GraphPad Prism (v9.5.0; GraphPad, San Diego,
958 CA, US) as indicated in each figure caption. Flow cytometry analysis was performed using
959  FlowJo software v10. Protein expression quantification was performed using ImageJ software.
960 To determine gene expression levels from gPCR arrays, -AC+ values were calculated using
961 averaged reference genes (Actb, Gapdh, Gusb, and Hsp90abl) within each sample. Heatmaps
962 were created to represent the Z-scores. Single-cell RNA-sequencing and microbiome data

963  analysis were performed using R (v.4.2.2; https://www.r-project.org/), as described above. A p-

964  value <0.05 or adjusted p-value (g-value) < 0.1 was considered statistically significant.

965

966  Supplemental Items

967 Document S1. Figures S1-S11 and Tables S2-S3

968 Table S1. Excel file containing additional data too large to fit in a PDF, related to Figure 1

969

970  Supplemental Item L egends

971  Figure S1. Gene Ontology of macrophage populations at the maternal-fetal interface, related to
972  Figure 1.

973  Figure S2. Intra-amniotic injection of HMGB1 does not significantly alter amniotic fluid

974  concentrations of total IL-1p and TNF, related to Figure 3.
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975 Figure S3. M2 macrophages do not significantly alter HMGB1-induced inflammasome
976  activation in the uterine tissues.
977 Figure $A4. Neither HMGB1 nor M2 macrophage treatment induce changes in uterine gene
978  expression.
979  Figure S5. M2 macrophages dampen inflammatory gene expression in the decidua.
980 Figure S6. Adoptively transferred M2 macrophages accumulate at the maternal-fetal interface
981  but do not reach fetal organs.
982  Figure S7. M2 macrophages ameliorate the HMGB1-induced inflammatory response in the
983  placenta.
984  Figure S8. HMGBLI regulates gene expression in the fetal intestine, related to Figure 6.
985  Figure S9. M2 macrophages change the neonatal gut microbiome after in utero exposure to
986 HMGBL, related to Figure 6.
987 Figure S10. M2 macrophages modulate microbiome dysbiosis in each compartment of the
988  neonatal gut, related to Figure 6.
989  Figure S11. M2 macrophages reduce neonatal hypothermia upon bacterial challenge, related to
990 Figure 7.
991  Table S1. Marker genes used to distinguish macrophage clusters M1-M7, related to Figure 1
992  Table S2. TagMan assays utilized for qPCR.

993 Table S3. Antibodies utilized for flow cytometry.
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