

1 **TITLE**

2 **Immediate effects of light on circadian eclosion and locomotor activity depend on**
3 **distinct sensory input pathways**

4

5 **AUTHORS**

6 Daniel Bidell¹, Natalie-Danielle Feige¹, Tilman Triphan², Claudia Müller¹, Dennis Pauls¹,
7 Charlotte Helfrich-Förster³ and Mareike Selcho^{1,*}

8

9 **AFFILIATIONS**

10 ¹ Department of Animal Physiology, Institute of Biology, Leipzig University, Talstraße 33,
11 04103 Leipzig, Germany

12 ² Department of Genetics, Institute of Biology, Leipzig University, Talstraße 33, 04103
13 Leipzig, Germany

14 ³Neurobiology and Genetics, Biocenter, University of Würzburg, 97074 Würzburg, Germany

15
16 * Corresponding author: MS (mareike.selcho@uni-leipzig.de)

17

18

19

20 **ABSTRACT**

21 Animals need to be able to sharpen circadian behavioural output in the adaptation to the
22 variable environment. Light is the main entraining signal of the circadian clock, but can also
23 directly increase alertness, locomotor activity, body temperature and heart rate in diurnal
24 animals including humans. Thus, immediate effects of light can enhance or even overwrite
25 circadian output and thereby mask circadian behaviour.

26 In *Drosophila melanogaster*, immediate light effects are most evident as a lights-on
27 response in two well described behavioural rhythms of the fly – the emergence rhythm of
28 the adult insect from the pupa, called eclosion, and the diurnal rhythm of locomotor activity.
29 Here, we show that the immediate effect of light on rhythmic eclosion depends on the R8
30 photoreceptor cells of the compound eyes, while the light response of locomotor activity is
31 triggered by different light detecting cells and organs, that seem to compensate for the loss
32 of each other.

33

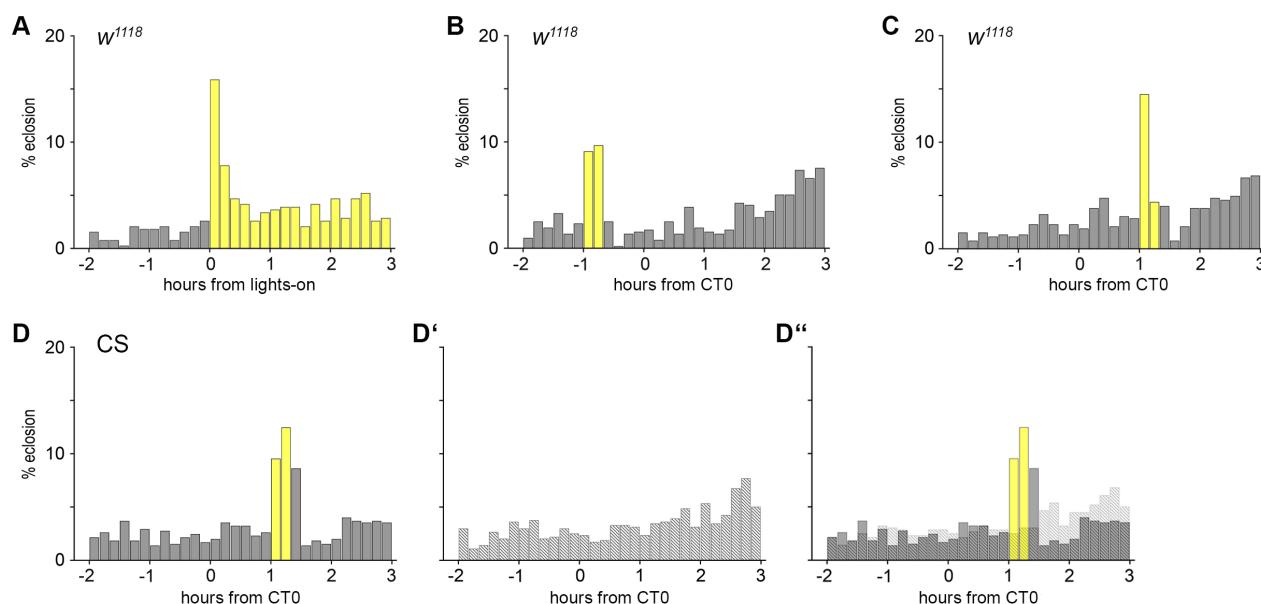
34

35 **INTRODUCTION**

36 An appropriate daily timing of behaviour is of critical importance for animal fitness ^{1,2}. Light
37 shapes the daily timing in two ways: (1) the cyclic change in light intensity acts as an
38 entraining signal, synchronizing the endogenous (circadian) timing system to appropriately
39 adjust an organism to the 24h environmental period; (2) light directly modulates behaviour
40 i.e. increases alertness, locomotor activity, body temperature and heart rate in diurnal
41 animals including humans ³⁻⁷ and suppresses activity and promotes sleep in nocturnal
42 animals ^{8,9}. These immediate light effects are independent of the circadian clock and since
43 they often obscure (“mask”) circadian behaviours, they are also referred to as “masking” ¹⁰.
44 The immediate light effects are essential for appropriate responses of the animal to changes
45 in the environment and for sharpening the behavioural output. Interestingly, light responses
46 are not only shown to be independent of the circadian clock, they can even provoke quasi-
47 wildtype activity rhythms in clock-less and thus arrhythmic fruit flies and mice under natural-
48 like conditions ¹¹⁻¹³. This clearly underlines their importance.

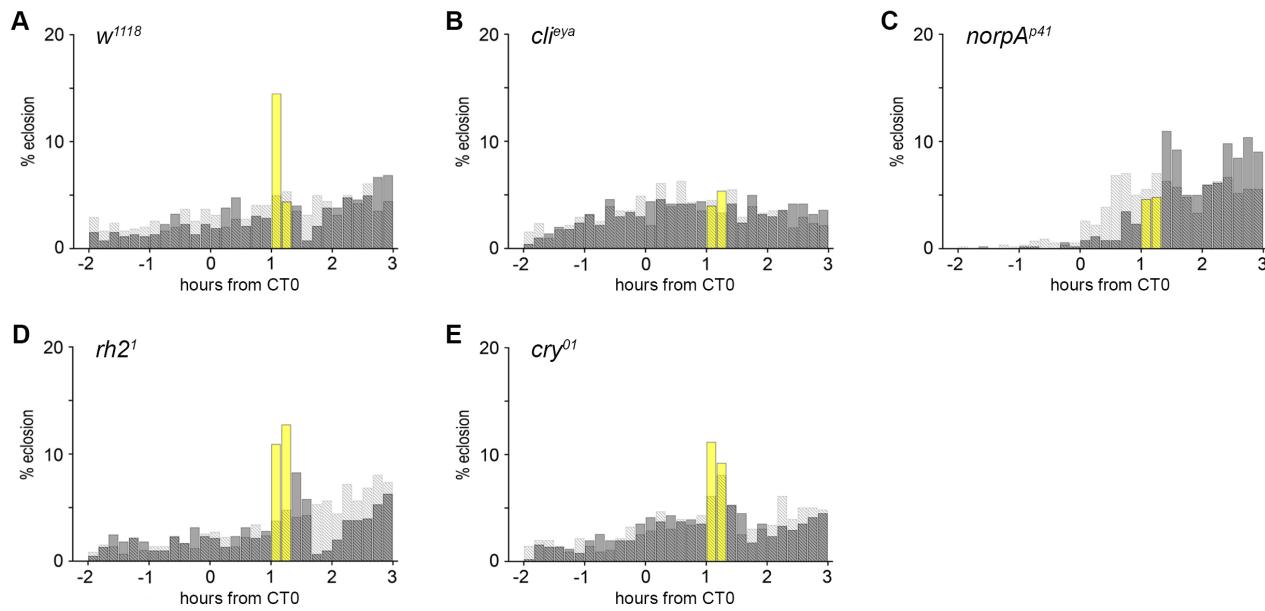
49 In *Drosophila melanogaster*, the immediate light effects are most evident as a lights-on
50 response in the two well described behavioural rhythms of the fly – the emergence rhythm
51 of the adult insect from the pupa, called eclosion, and the adult activity rhythm ¹⁴⁻¹⁷. Eclosion
52 is gated by the circadian clock to the early day, most probably to prevent desiccation and
53 enhance survival rate. A light stimulus induces a rapid increase in eclosion rate (lights-on
54 effect) that is eliminated in flies without eyes and potentially in mutants lacking ocelli ^{14,15}.
55 Even though the lights-on effect is gone, eclosion remains synchronized to the light-dark
56 cycle in eyeless flies by the circadian blue-light photopigment Cryptochrome (CRY; ^{14,18,19},
57 reviewed by ²⁰). Similarly, the locomotor activity rhythm of adult eyeless flies remains
58 synchronized to the light-dark cycle due to entrainment by CRY (reviewed by ²¹), but the
59 immediate increase of activity after lights-on, also known as “startle response” disappears
60 after elimination of the eyes ^{16,22}. Subsequent studies showed that several rhodopsins
61 contribute to this immediate light effect in adult flies ^{23,24}.

62 Flies receive light information via two external organs, the compound eyes and ocelli, as
63 well as the internal extraretinal Hofbauer-Buchner (H-B) eyelets. In addition, a small subset
64 of central brain neurons express the blue-light sensitive photopigment CRY ^{18,19}. The fruit
65 fly’s compound eye consists of around 800 ommatidia, each of them equipped with six outer
66 (R1-6) and two inner (R7, R8) photoreceptor cells. While the outer photoreceptor cells
67 express the photoreceptor protein Rhodopsin 1 (Rh1), the inner ones express specific


68 combinations of Rh3, Rh4, Rh5 and Rh6 (reviewed by ²⁵). Photoreceptor proteins are
69 specifically expressed in two main ommatidia types: pale ommatidia express Rh3 in R7 and
70 Rh5 in R8 photoreceptors and yellow ommatidia Rh4 in R7 and Rh6 in R8 cells. A third type,
71 the DRA ommatidia, positioned in the dorsal rim area (DRA) expresses Rh3 in R7 and R8
72 cells. The photoreceptors R1-6 were shown to be involved in dim light vision and the
73 perception of motion ²⁶, while R7/R8 are involved in colour vision ²⁶⁻²⁸ and DRA
74 photoreceptors are involved in polarization vision ²⁹. Besides the large compound eyes, fruit
75 flies contain three simple dorsal eyes called ocelli. Ocelli consist of only one photoreceptor
76 type, containing Rh2 ^{30,31}. The ocelli do not form an image or perceive objects in the
77 environment, instead they are sensitive to changes in light intensities and seem to response
78 to polarized light. As Rh2 is highly sensitive to UV light, the ocelli provide information to
79 distinguishing between sky and the ground (reviewed by ³²). This enables the fly to maintain
80 its orientation in space. The H-B eyelets evolve from the larval Bolwig's organ and express
81 Rh6 ^{20,33-35}. These extraretinal light detecting cells are involved in entrainment at high light
82 intensities ³⁶. In addition to the light detecting organs, *Drosophila* contains CRY expressing
83 neurons in the brain and compound eyes, sensitive to blue light ³⁷⁻⁴⁰. Beside the compound
84 eyes, CRY is the main photoreceptor involved in light entrainment of the circadian clock ^{16,41}.
85 In our study, we aim to identify the neuronal correlates of the immediate light effects that
86 trigger specific behavioural responses counteracting or reinforcing circadian rhythms. For
87 this, we use eclosion and locomotor activity as behavioural readouts to examine immediate
88 light effects on circadian behaviours. We provide evidence that the light effect on eclosion
89 is mediated by Rh5-positive R8 photoreceptor neurons of the compound eyes. In contrast,
90 the ocelli, the H-B eyelets, as well as light sensitive CRY-positive cells are not required to
91 elicit this lights-on response. Interestingly, the light response on locomotor activity in the
92 night remains in flies without eyes, ocelli or CRY-positive cells. We hypothesize redundant
93 signalling pathways and propose that light perceiving cells and organs compensate the loss
94 of each other, enabling flies to react to changes in their environment. Thus, immediate
95 effects of light on circadian behaviours seem to depend on different underlying neuronal
96 networks.

97

98 RESULTS


99 Light elicits an immediate increase in eclosion at lights-on in fly populations monitored under
100 14:10 light:dark cycles (Fig.1A). This immediate effect is also visible in flies kept under
101 constant darkness when a light pulse is given at times around circadian time 0 (CT0, Fig.1B-

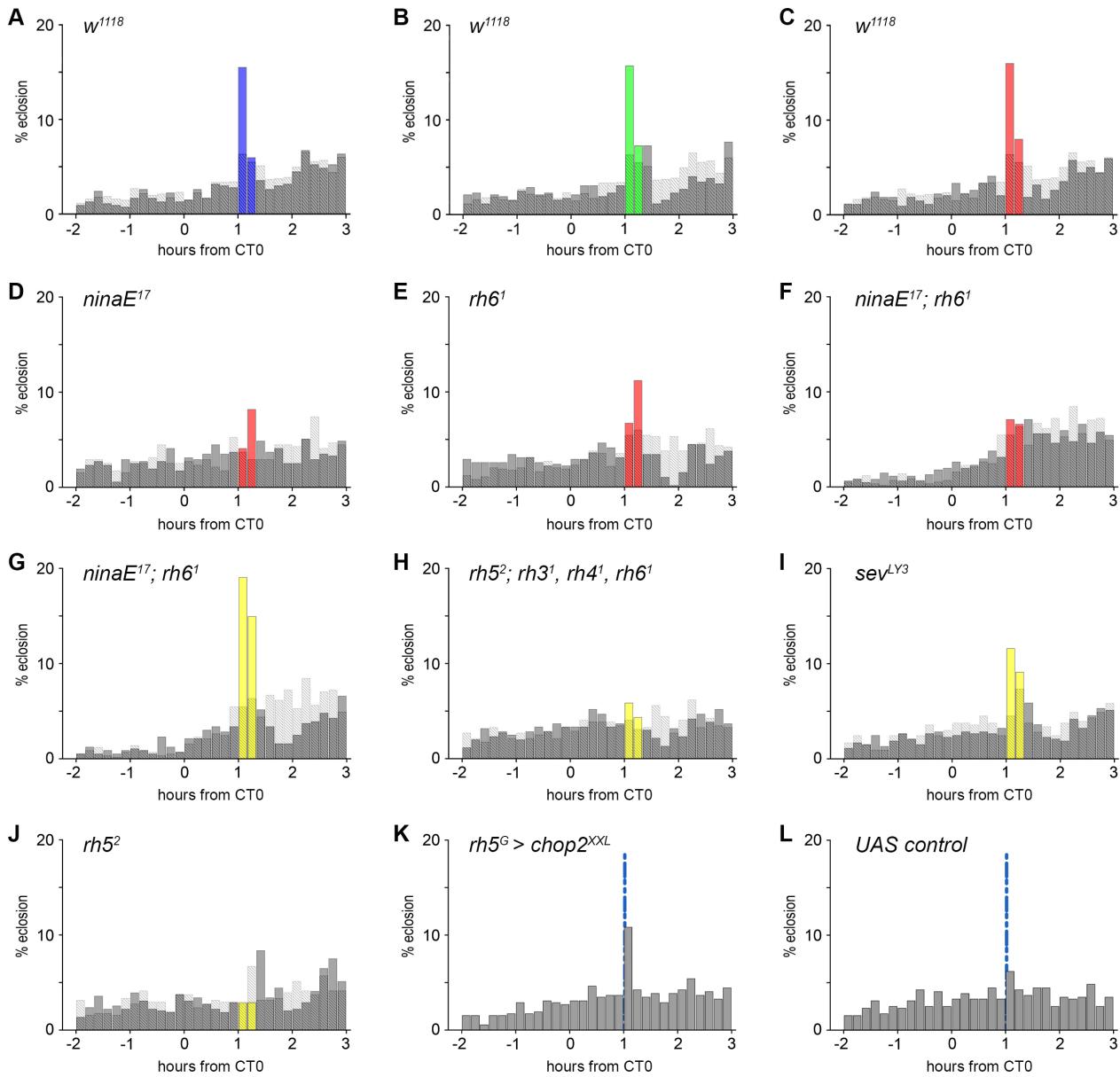
102 D). In detail, in line with previous studies ¹⁵, we could show that a twenty minutes white light
103 pulse ($I = 4,1 \text{ W/m}^2$) one hour before or after CT0 elicits an immediate eclosion response in
104 control flies (Fig.1B-D). The light response thus enables the flies to eclose promptly in
105 response to their environment, reinforcing the behaviour controlled by the clock. Next, we
106 tested whether the pigmentation of the eyes plays a role in the detection of light necessary
107 to elicit immediate eclosion. For this, we monitored eclosion in red-eyed CantonS (CS) and
108 white-eyed (w^{1118}) flies. Both groups showed a clear eclosion peak in response to light, even
109 though the distribution within the twenty minutes is different (Fig.1C,D, S1). Nevertheless,
110 eye-colour does not influence the immediate response to light. Further, we tested different
111 mutants to discover the light perceiving cells and organs triggering immediate eclosion. The
112 lights-on response is gone in flies lacking the compound eyes (cl^{leya} , Fig.2B; ^{14,15}) and in
113 *norpA* (no receptor potential) mutants with disturbed phospholipase C function (*norpA*^{p41},
114 Fig.2C). In contrast, flies with disabled light perception in photoreceptors of the ocelli (*rh2*¹,
115 Fig.2D), *cry*-positive cells (*cry*⁰¹, Fig.2E) or the Rh6-positive H-B eyelets (*rh6*¹, Fig.S2),
116 respectively, showed an immediate increase in eclosion in response to light indicating the
117 exclusive requirement of the compound eyes in the immediate effect of light on eclosion.
118

119
120 **Fig.1: The immediate light effect on eclosion behaviour.** (A) Eclosion pattern of *Drosophila* flies in ten
121 minutes intervals at the times around lights-on. Light elicits an immediate increase in eclosion. (B,C) The lights-
122 on response is visible in flies perceiving a twenty minutes light pulse (B) one hour before (-1) or (C) one hour
123 after (1) expected lights-on at CT (circadian time) 0. (D-D') Wildtype CantonS (CS) flies show an immediate
124 response to light (D), while flies in darkness lack the eclosion peak (D'). (D'') The third plot combines (D) and
125 (D') to visualize the immediate light response in comparison to the appropriate controls monitored in darkness.
126 Grey bars: % eclosion in dark phase, yellow bars: % eclosion in light phase; dashed bars: % eclosion in
127 controls. n= 384 (A), 516 (B), 524 (C), 649 (D), 636 (D').

128

129

130 **Fig.2: The immediate light effect on eclosion behaviour requires the compound eyes and**
131 **phospholipase C activity. (A-E)** Eclosion pattern in ten minutes intervals at the times around circadian time
132 (CT) 0. Each plot visualizes the results for the experimental (grey, yellow bars) and control groups (dashed
133 bars) as shown in Fig.1D-D''. **(B,C)** Flies without eyes (B, *clieya*) and impaired phospholipase C activity (C,
134 *norpA^{P41}*) lack the lights-on response. **(D,E)** Flies lacking the rhodopsin (Rh) of the ocelli photoreceptor cells
135 (D, *rh2¹*) or the photoprotein Cryptochrome (E, *cry⁰¹*) respond to light. Grey bars: % eclosion in dark phase,
136 yellow bars: % eclosion in light phase; dashed bars: % eclosion in darkness controls. n_{exp} , n_{ctrl} = 524, 544 (A);
137 502, 508 (B); 520, 539 (C); 604, 584 (D); 510, 556 (E).

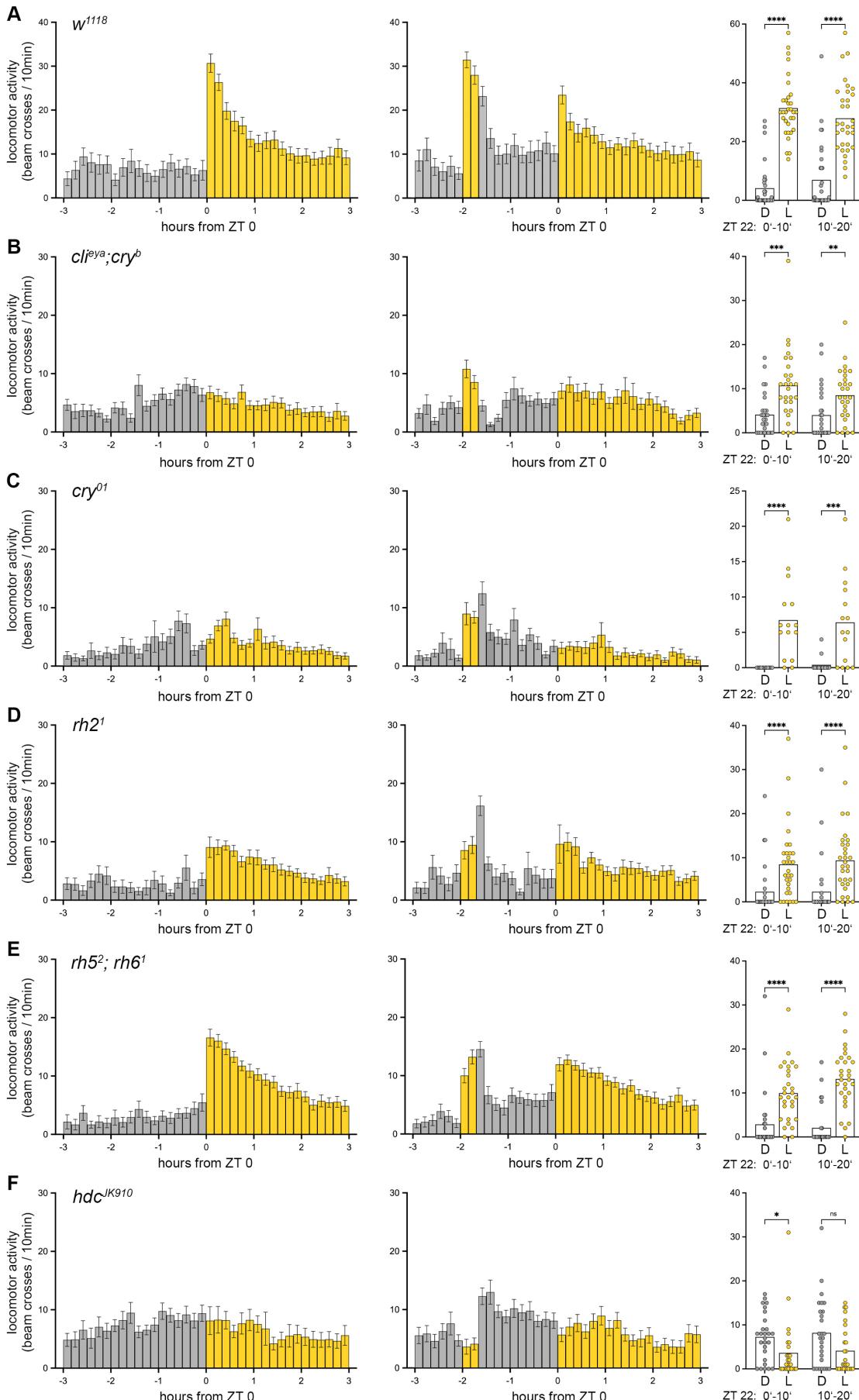

138

139 Our data so far suggest that the compound eyes are required for the immediate light effect
140 on eclosion. Light information is received by photoreceptor cells of the compound eyes and
141 converted into neuronal activity. The outer photoreceptor cells R1-R6 contain Rh1, the inner
142 R7 cells express Rh3 (R7pale) or Rh4 (R7yellow) and proximal R8 cells express either Rh5
143 (R8pale) or Rh6 (R8yellow), while DRA ommatidia express Rh3 in R7 and R8. Thus, the
144 different photoreceptor cells respond to light of a specific spectrum as the five different
145 rhodopsin's of the compound eyes have different absorption spectra⁴²⁻⁴⁴. Therefore,
146 illumination by monochromatic light of different wavelength will allow to address specific sets
147 of Rh cells only and thereby give insights into the sufficiency of the different photoreceptor
148 cells in this context. Flies showed an immediate behavioural response to twenty minutes
149 blue (455–475 nm, $I = 3,6 \text{ W/m}^2$), green (510–545 nm, $I = 2 \text{ W/m}^2$) and red (625–642 nm,
150 $I = 2,3 \text{ W/m}^2$) light pulses (Fig.3A-C). In contrast to mammals, where immediate light-effects
151 depend exclusively on blue light-sensitive melanopsin-expressing retinal ganglion cells⁴⁵⁻⁴⁹,
152 flies are able to additionally respond to longer wavelengths. As red light of 633nm could only
153 be absorbed by Rh1 or Rh6, we monitored the immediate light responses in flies without

154 Rh1 (*ninaE*¹⁷), flies that lack Rh6 (*rh6*¹) and double mutants without both of these rhodopsins
155 (*ninaE*¹⁷; *rh6*¹). As expected, the lights-on response is missing in the *rh1,rh6* double mutant
156 (Fig.3F). Lacking just one of the red light detecting rhodopsins leads to a reduced lights-on
157 response (Fig.3D,E). Interestingly, however, flies lacking Rh1 and Rh6 show an immediate
158 behavioural response to a twenty minutes white light pulse ($I = 4,1 \text{ W/m}^2$, Fig.3G), indicating
159 that Rh1 and Rh6 are both involved in the immediate effect of red light, but are dispensable
160 for the immediate effect of white light on eclosion. In addition, as Rh1 is the only rhodopsin
161 expressed in the outer photoreceptor cells, R1-R6 might not be required for the lights-on
162 response to white light. To further disentangle the role of the R7, R8 cells, we screened
163 rhodopsin and photoreceptor mutants for their behavioural response to white light (Fig.3G-
164 J). The quadruple mutant (*rh5*²; *rh3*¹, *rh4*¹, *rh6*¹) lacks all rhodopsins of the inner
165 photoreceptors, so that light perception is only possible via R1-R6. The lack of the lights-on
166 response (Fig.3H) indicates that (1) R7 and/ or R8 transmit light information for the lights-
167 on response and (2) functional outer photoreceptors are not sufficient to trigger immediate
168 eclosion. To address if R7 is involved in the immediate effect of light, we monitored eclosion
169 in *sevenless* mutants (*sev*^{LY3}, Fig.3I). Flies without R7 photoreceptor cells show an
170 immediate response, so that R8 cells are considered for the transmission of light information.
171 R8 cells express Rh5 or Rh6. Since the absence of Rh6 has no effect on the immediate
172 response to light (Fig.3G and Fig.S2), we tuned our attention to the role of *rh5* mutants on
173 eclosion (*rh5*², Fig.3J). As expected, flies lacking Rh5 show no lights-on response. Thus,
174 pale R8 ommatidia expressing functional Rh5 turned out to be essential for the immediate
175 response to light. In line with this hypothesis, we optogenetically activated *rh5*-expressing
176 R8 neurons (Fig.3K,L). Photostimulation of *rh5*-positive neurons via Channelrhodopsin-2^{XXL}
177 (*rh5*^G;>*chop2*^{XXL}, Fig.3K; ^{50,51}) using a blue light pulse triggered immediate eclosion, while
178 the response is absent in control flies (Fig.3L). This demonstrates that activation of *rh5*-
179 positive R8 cells triggers immediate eclosion. Our data demonstrate that Rh5-expressing
180 R8 cells are necessary and sufficient for the immediate light effect on eclosion.

181

182



183

184 **Fig.3: The immediate light effect on eclosion behaviour depends on R8 cells.** (A-J) Eclosion pattern in
185 ten minutes intervals at the times around circadian time (CT) 0. Each plot visualizes the results for the
186 experimental (grey, yellow bars) and control groups (dashed bars) as shown in Fig.1D-D''. (A-C) Twenty
187 minutes blue (A, 455–475 nm, I = 3.6 W/m²), green (B, 510–545 nm, I = 2 W/m²) and red (C, 625–642 nm, I
188 = 2.3 W/m²) light pulses elicit immediate eclosion. (D-F) The eclosion response to red light is visible in *rh1* (D,
189 *ninaE¹⁷*) and *rh6* mutants (E, *rh6¹*), but gone in *rh1, rh6* double mutants (F, *ninaE¹⁷; rh6¹*). (G) In contrast, *rh1, rh6*
190 double mutants (*ninaE¹⁷; rh6¹*) respond with an increase of eclosion to white light (I = 4.1 W/m²). (H) The
191 quadruple mutant (*rh5²; rh3¹, rh4¹, rh6¹*), lacking all rhodopsins of the inner photoreceptors, shows no reaction
192 to light. (I) The lights-on response in flies without R7 cells (*sev^{LY3}*). (J) Flies lacking Rh5 (*rh5²*) do not respond
193 to light with increased eclosion. (K) Optogenetic activation of *rh5*-positive neurons with a 2 min blue light pulse
194 (blue line; 455–475 nm, I = 3.41 μW/mm²) one hour after expected lights-on elicits eclosion. (L) Control flies
195 without Gal4 expression (*w¹¹¹⁸; chop2^{XXL}*) do not respond to the 2 min light pulse. n_{exp}, n_{ctrl} = 534, 1543 (A);
196 521, 1543 (B); 547, 1543 (C); 511, 512 (D); 579, 731 (E); 604, 567 (F); 561, 567 (G); 595, 518 (H), 525, 531
197 (I); 585, 506 (J); n= 516 (K), 515 (L).

198

199 Eclosion is not the only circadian behaviour that can be modulated by light. To explore
200 whether immediate light effects are generally mediated by R8 cells of the compound eyes
201 as demonstrated above, we turned our attention to locomotor activity. Locomotor activity in
202 *Drosophila* is regulated by the circadian clock so that flies display low levels of nocturnal
203 activity and higher levels of diurnal activity. Importantly, flies display a lights-on response in
204 the transition from night to day at ZT0 (startle response, Fig.4A). To investigate immediate
205 light effects, we applied a twenty minutes white light pulse (~435 – 780 nm, $I = 0.923 \text{ W/m}^2$)
206 at ZT22, two hours before the anticipated lights-on response in the transition from night to
207 day. Former studies clearly showed that unexpected light at night elicits an immediate
208 increase in activity ^{52–54}. As expected, the light pulse elicited an immediate increase in
209 locomotor activity, similar to the light effect on eclosion (Fig.4A, Fig.1). Interestingly, in
210 contrast to eclosion, the immediate light response in locomotor activity is also present in
211 eyeless flies that lack additionally functional CRY (*cl/eya;cry^b*; Fig.4B). Thus, neither
212 photoreceptor cells of the compound eyes nor CRY are required for the increase in activity
213 in response to light (Fig.4B and Fig.S3 for *rh* and *norpA* mutants). In addition, we analysed
214 locomotor activity in two different *cry* mutants to clarify the role of photosensitive neurons
215 outside the visual system (*cry^b* and *cry⁰¹*). Flies without functional CRY responded to light at
216 ZT22 with an immediate increased locomotor activity (Fig.4C and Fig.S3A). Further,
217 immediate light effects can be seen in flies with disabled light perception in photoreceptors
218 of the ocelli (*rh2¹*, Fig.4D) and flies without Rh5 and Rh6 and therefore without functional
219 eyelets (*rh5²*, *rh6¹*; Fig.4E). Thus, all the different cells and organs that perceive light appear
220 to mediate its immediate effects and compensate for the failure of individual photoreceptors,
221 so that flies can respond immediately to a light stimulus. In contrast, flies without a functional
222 histidine decarboxylase (*hdc^{JK910}*), the enzyme necessary for histamine synthesis, show no
223 increase in locomotor activity in response to light (Fig.4F). Histamine is the main transmitter
224 of the photoreceptor cells of the eyes, ocelli and eyelets ⁵⁵, leaving the hypothesis that *cry*-
225 positive cells alone may not be sufficient to elicit the lights-on response.
226 In summary, our data provides evidence that immediate light effects are present on eclosion
227 and locomotor activity. However, the underlying signalling pathways appear to be different.

229 **Fig. 4: The immediate light effect on locomotor activity is visible in flies without functional eyes, photosensation in cry-positive cells or ocelli. (A-F)** Activity pattern in ten minutes intervals at the time
230 around Zeitgeber time (ZT) 0. First and second column show bar plots of mean \pm SEM activity at the day the
231 light pulse was applied (second column) and the activity of the same flies on the previous day (first column).
232 The third column visualizes the comparison between the mean activity at ZT22 in 10 minutes intervals (0'-10'
233 and 10'-20') during the light pulse (L) and the previous control day in darkness (D). **(A)** Activity data of control
234 (*w¹¹¹⁸*) and **(B)** eyeless (*cli^{eya}; cry^b*) flies, **(C)** flies lacking Cryptochrome (*cry⁰¹*), **(D)** flies without functional ocelli
235 photoreceptors (*rh2¹*), **(E)** flies without Rh5 and Rh6 (*rh5²; rh6²*) do respond to light. **(F)** The light response is
236 absent in flies that lack the histidine decarboxylase (*hdc^{JK910}*) and therefore histamine, the transmitter of
237 photoreceptor cells. n = 27- 32; asterisks denote level of significance: **p \leq 0.01, ***p \leq 0.001, ****p \leq 0.0001.
238

239

240

241

242 DISCUSSION

243 Even though light triggers immediate eclosion and activity, modifying circadian behaviour,
244 the necessary underlying networks seem to differ already at sensory input level. The lights-
245 on response on eclosion depends on Rh5-positive R8 cells of the compound eyes, while the
246 light response on locomotor activity works without eyes, ocelli, eyelets or photosensitive *cry*-
247 positive brain cells and is only absent when histamine is missing. For activity increase at
248 night the different light detecting organs and cells can compensate the loss of each other,
249 probably to ensure the ability to react to the unexpected external stimulus.

250 The functional redundancy of photoreceptors was also described in nocturnal mice. Here,
251 bright light at night leads to an inhibition of locomotor activity, whereas dim light increases
252 activity⁵⁶⁻⁵⁸. Mice with degenerated retina (*rd/rd* mice), devoid of rods and cones, lack the
253 increase of activity by dim light, but still show activity inhibition by bright light. In addition,
254 mice lacking the photopigment melanopsin (*Opn4^{-/-}*) in the retinal ganglion cells also show
255 inhibition of activity by bright light, while double mutants (*Opn4^{-/-}; rd/rd*) loose the ability to
256 respond to light^{47,48,59}. Thus, also in mice, several photopigments contribute to the
257 immediate light responses and these are able to compensate to some degree the loss of
258 each other to ensure immediate responses to unexpected external stimuli.

259 The immediate effect of light on locomotor activity is visible every morning in flies under LD
260 rhythms at ZT0 (16,17). Interestingly, former studies showed, that the immediate increase
261 in locomotion (= startle response) at ZT0 depends on the compound eyes and is completely
262 absent in eyeless flies¹⁶. Here, we observed the same: eyeless flies (*cli^{eya}; cry^b* mutants,
263 which lack functional CRY in addition to the eyes) as well as flies without histamine (*hdc^{JK910}*
264 mutants) lack the startle response at ZT0 (first column, Fig.4B,F). Nevertheless, a light pulse
265 during the night two hours before lights-on at ZT22, provokes an immediate increase in

266 activity in *c/eye^a;cry^b* mutants (Fig.4B). Only the disruption of neuronal communication of
267 photoreceptor cells of the eyes, ocelli and eyelets by the loss of histamine (*hdc^{JK910}* mutants)
268 prevents a startle response at night (ZT22, Fig. 4F). The immediate increase in activity in
269 response to light at night at ZT22 is thus mediated by functionally redundant photoreceptor
270 cells, whereas the startle response at ZT0 depends purely on the receptors in the eyes.
271 Interestingly, recent data suggests that CRY suppresses activity during the night in flies, as
272 the absence of CRY enhances activity during moonlit nights ⁶⁰. Flies were as active during
273 moonlit nights as they were during the day, suggesting that CRY is important for
274 distinguishing nocturnal low light of moonlight intensity from day light, and most interestingly
275 this was also true for marine bristle worms ⁶⁰. If CRY is present, it seems to suppress activity
276 during the night in the diurnal *D. melanogaster* and to suppress swarming activity during the
277 day in the nocturnal marine bristle worms. This finding for *Drosophila* is corroborated by the
278 present study: *cry^b* mutants show strong immediate light effects upon a light pulse, but flies
279 that lack the function of all photoreceptors except of CRY (*hdc^{JK910}* mutants) don't show this
280 response. In summary, we conclude that the immediate light effects of adult flies in response
281 to nocturnal light are mediated by all rhodopsins (those in the compound eyes, the H-B
282 eyelets and putatively also the ocelli), while they are inhibited by CRY. This is different for
283 the startle response at ZT0. Here we could not see any inhibiting effect of CRY.
284 The immediate effect of light on locomotion in *Drosophila* is modulated in a time-of-day-
285 dependent manner: light at night increases activity, while activity is suppressed during the
286 day ^{52,54}. The switch in behaviour seems to depend on the daily morphological changes of
287 central clock neurons ⁵⁴ and on a light-mediated circuit switching in the *Drosophila* neuronal
288 clock network ⁶¹. The differences in the photoreceptor necessity at ZT22 and ZT0 might
289 reflect the changes in time of the day.
290 Even though the context dependent behavioural plasticity depends on the circadian clock,
291 the increase in activity in response to light is still visible in flies without functional internal
292 clocks ^{52,54,62}. The masking effect is therefore clock independent, but we cannot completely
293 exclude that contextualization of the light stimuli is disturbed in *hdc^{JK910}* mutants leading to
294 a decrease in activity in response to light at ZT22. In any case, the experiments using the
295 *hdc^{JK910}* mutants show that the immediate effects of light on locomotion are mediated via
296 neurotransmission through histamine, which is the main transmitter of the compound eyes,
297 ocelli and H-B eyelets ⁵⁵. The H-B eyelets use additionally acetylcholine (ACh) as a
298 neurotransmitter ³⁶ and a very recent paper shows that this is also true for the inner
299 photoreceptors R8 (Xiao et al. 2023, *Nature*, in press). Most interestingly, ACh appears to

300 transmit photic input to the circadian clock, while histamine transmits visual signals for image
301 detection and motion. Thus, consistent with our results histamine seems to be the
302 transmitter for the direct light responses.

303

304 For the immediate effect of light on eclosion, only Rh5 in R8 cells of the compound eyes is
305 needed. Possibly, not all photoreceptors are yet mature at the time of eclosion. This is
306 certainly true for the H-B eyelets that are fully functional only several days after eclosion⁶³.
307 For the other photoreceptors such a delayed maturation is not known, but it is possible that
308 not all the connections to the central brain, in particular those that connect to activity-
309 promoting centres, are fully established.

310

311

312 METHODS

313 Fly stocks

314 Flies were raised on standard cornmeal and molasses medium at 25°C and 65% relative
315 humidity at a 14:10 light-dark (L:D) cycle unless otherwise stated. For optogenetic
316 experiments, vials have been covered with a light filter foil (Nr. 026; LEE Filters Worldwide,
317 UK). The following flies were used in this study: *cli^{eya}*⁽⁶⁴⁾, *cry⁰¹*⁽⁶⁵⁾, *cry^b*⁽⁶⁶⁾, kind gift of R.
318 *Stanewsky*), *hdc^{JK910}*⁽⁶⁷⁾, *nina^{E17}*^(68,69), *norpA^{p41}*^(70,71), kind gift of R. Stanewsky), *rh2¹*⁽⁷²⁾,
319 kind gift of C. Montell), *rh5²*⁽⁷³⁾, kind gift of R. Stanewsky), *rh6¹*⁽⁷⁴⁾, kind gift of C. Montell),
320 *nina^{E17}*; *rh6¹*⁽⁷⁵⁾, *sev^{LY3}*⁽⁷⁶⁾ and the following combinations of the mutants were used:
321 *cli^{eya}*; *cry^b* and *rh5²*; *rh6¹* and *rh5²*; *rh3¹*, *rh4¹*, *rh6¹*. The Gal4- and UAS- lines used: *rh5^G*
322 (⁷², kind gift of C. Montell; BDSC #66671), *UAS-chop2^{XXL}*⁽⁵¹⁾, *10xUAS-IVS-myR::GFP*⁽⁷⁷⁾;
323 BDSC #32197).

324

325 Eclosion behaviour

326 To investigate the immediate light effect on eclosion behaviour, an eclosion monitor based
327 on the WEclMon-System^{78,79} was used (Fig.S4A). Experiments were performed under
328 constant temperature (24.5°C ± 0.2°C) and humidity (around 65% RH). Temperature
329 fluctuations upon light exposure were below 0.2°C. 7 to 9 days old pupae were placed onto
330 a transparent acrylic plate. This plate was placed on an area light with an RGB or White-
331 LED illumination (LED-color: λ(blue)= 455 – 475 nm, λ(green)= 510 – 545 nm, λ(red)= 625
332 – 642 nm; white LED (λ= ~430 – 730 nm, Fig.S4B); Hansen GmbH, Germany, Luminous

333 Panel (RGBW)) and an additional IR LED strip was installed at the bottom of the lighting unit
334 (SOLAROX® LED, λ (infrared) = 850nm, IR1-60-850, Winger Electronics GmbH & Co. KG,
335 Germany) and covered with an aluminum box. Flies were kept in darkness and received a
336 twenty minutes light pulse one hour after expected lights-on (CT1) on the second day, or
337 remained in darkness (darkness control). The eclosion monitor is equipped with a camera
338 (DMK 27AUC02 with a TPL 0420 6MP objective; DMK 37BUX287 with a TPL 0620 6MP
339 objective, The Imaging Source Europe GmbH) that took images every two minutes (IC
340 Capture 64bit, V2.5.1547.4007, The Imaging Source Europe GmbH, Germany). We
341 developed a Python-script for Fiji (V2.9.0, ⁸⁰) that was able to independently scan a selected
342 image sequence for eclosion events (detailed description below).

343

344 Eclosion data analysis

345 The detection of hatching events is based on the difference in brightness between a pupa
346 and an empty pupal case. The latter is almost transparent while a late pupa is considerably
347 darker (Fig.S4C, empty pupal case marked with an asterisk). In the first step of the analysis
348 all pupae are detected. The pupae are darker than the background and can be easily
349 extracted in a single image. After setting a threshold (Fig.S4D), objects are detected, and
350 their outlines stored. Objects that are outside of the parameters defined for a pupa (area too
351 big or too small) are excluded. Note the empty pupal case that is excluded from further
352 analysis. As the pupae are stationary, we can follow them through time and calculate the
353 median grey value of the area contained in their respective outlines (Fig.S4E) for each
354 frame. Alternatively, the average or mode (i.e. most frequent) grey values can be used. A
355 large jump in brightness indicates an eclosion event (Fig.S4F-H). The median grey values
356 are more than doubled from around 40 to almost 100. For each eclosion event a few frames
357 before and after the event are extracted to help with manual confirmation of real hatching
358 events or to exclude inaccurate detections (Fig.S4G). The time for each eclosion event is
359 stored in a csv file for further analysis. Additional checks are implemented to reduce the
360 number of incorrect detections and handle changes in lighting. See the commented source
361 code for details. The complete workflow is implemented as a Python script for Fiji. Specific
362 parameters that depend on camera resolution, optics and lighting can be set manually (e.g.
363 area of the pupae in pixel, difference in brightness for full and empty pupae, etc.). All code
364 and further information can be found at <https://github.com/trphant/EclosionDetector>.
365 For the evaluation of eclosion events, a time window of five hours was chosen, from two
366 hours before expected lights-on to three hours after expected lights-on. To calculate the

367 eclosion percentage (% eclosion), the number of flies eclosed in a 10 min time interval was
368 normalized to the number of flies eclosed during the 5 h time window. The bar plots in
369 Fig.1D”, Fig.2 and Fig.3 visualize the eclosion of flies perceiving a 20 min light pulse and of
370 appropriate control flies kept in darkness (Fig.1D-D”). n refers to the number of individuals
371 tested.

372 To analyze changes in eclosion rate in response to the light the eclosion rate for
373 experimental (L) and control (D) flies in the first 10 min (0'-10') and second 10 min (10'-20')
374 interval after lights-on at CT1 was calculated:

375 Eclosion rate = eclosion_CT1_n / mean eclosion_CT2-CT3

376 with eclosion_CT1_n = eclosed flies at CT1 in the first 10min (0'-10') or second (10'-20') ten
377 minutes in light (L) or darkness (D) and eclosion_CT2-CT3 = mean eclosion from CT2 to
378 CT3.

379 Data was analysed with Excel (Microsoft) and Prism 8.2 (GraphPad). The Shapiro-Wilk
380 test was used to analyse normal distribution and data were compared by an unpaired two-
381 tailed t-test. Not normally distributed data were compared by a nonparametric Mann-
382 Whitney rank sum test. Prism was used to plot the results (Fig.S1,S2). Significance levels
383 refer to the raw p values obtained in the statistical tests.

384

385 Optogenetics

386 For optogenetic activation, Channelrhodopsin-2^{XXL} (UAS-*chop2*^{XXL}) has been used to
387 depolarize *rh5*-positive neurons by blue light. Pupae have been collected under red light
388 during their subjective day to monitor eclosion. One hour after expected lights-on pupae
389 received a 2 min blue light stimulus (455 – 475 nm, I = 3,41 μ W/mm²) and eclosion was
390 monitored and calculated as described above. n refers to the number of individuals tested.

391

392 Locomotor Activity

393 Flies were entrained to a 12:12 LD rhythm to be able to compare results to the data by ^{52,54}.
394 To investigate the lights-on effect on locomotor activity, we placed two to four days old flies
395 in small glass tubes with 2% agarose and 4% sugar on one side into the *Drosophila* Activity
396 Monitoring System (DAM, V2, TriKinetics Inc., USA) and recorded locomotor activity for the
397 next four night-day cycles under constant temperature and humidity (24.9 \pm 0.1°C, ~65%
398 RH). In the first three night-day cycles the light regime did not differ from the entrained
399 rhythm (12:12 LD). On the fourth night, a 20 min light pulse (λ = ~435 – 780 nm, I = 0.923

400 W/m²) was given two hours before normal lights-on at ZT22. The data received from the
401 DAM system was analyzed by taking the number of counts of a 10 min interval of each tube
402 and calculating the average activity. This was done for both the 6 h time window (-3 h to +3
403 h from ZT0) in which the 20 min light pulse was given and the same time window on the day
404 before, which was used as control. To analyze changes in locomotor activity in response to
405 light, the activity at ZT22 under light (L) was compared to the activity at ZT22 in darkness
406 (D) the day before (third column Fig.4, S3).

407 Data was analysed with Excel (Microsoft) and Prism 8.2 (GraphPad). The Shapiro-Wilk
408 test was used to analyse normal distribution. Group means were compared by an ordinary
409 one-way ANOVA with Tukey correction and for not normally distributed data by a Kruskal-
410 Wallis test. Prism was used to plot data. Significance levels refer to the raw p values
411 obtained in the statistical tests.

412

413 Immunohistochemistry

414 Whole heads have been fixed for 2 hours in 4% PFA. After washing in PBS (Phosphate
415 Buffered Saline) specimens have been embedded in 7% agarose and cut into 70-100 µm
416 sections using a vibratome (Leica VT1000S; ⁸¹). Sections have been washed three times
417 for 10 min in 0.3% PBT (PBS with 0.3% TritonX-100), blocked for 1,5 h in 5% normal goat
418 serum in PBT. Afterwards the first antibody solution was incubated overnight at 4°C.
419 Specimens were washed six times and the second antibody solution was added and
420 incubated overnight at 4°C. After another washing step, specimens were mounted in
421 Vectashield (Vector Laboratories) and stored at 4°C until scanning. Probes have been
422 imaged using a LSM 800 (Zeiss). Afterwards the images have been edited for brightness
423 and contrast using FIJI and Adobe Photoshop (V23.5.3).

424 The following antibodies were used: rabbit-α-GFP (1:1000; life technologies, A11122), 3C11
425 α-Synapsin (1:50, ⁸²), goat-α-rabbit AlexaFluor 488 (1:250, life technologies, A11034) and
426 goat-α-mouse STAR RED (1:250, Abberior, STRED-1001).

427

428 Data Availability

429 The datasets generated and analysed during the current study are available from the
430 corresponding author on reasonable request.

431

432

433 REFERENCES

434 1. Daan, S. & Tinbergen, J. Young Guillemots (*Uria lomvia*) Leaving Their Arctic Breeding

435 Cliffs: A Daily Rhythm in Numbers and Risk. *Ardea* **67**, 96–100 (1979).

436 2. DeCoursey, P. J., Walker, J. K. & Smith, S. A. A circadian pacemaker in free-living
437 chipmunks: essential for survival? *J. Comp. Physiol. A* **186**, 169–180 (2000).

438 3. Erkert, H. G. & Gröber, J. Direct modulation of activity and body temperature of owl
439 monkeys (*Aotus lemurinus griseimembra*) by low light intensities. *Folia Primatol.* **47**, 171–188
440 (1986).

441 4. Aschoff, J. & von Goetz, C. Masking of circadian activity rhythms in canaries by light and
442 dark. *J. Biol. Rhythms* **4**, 29–38 (1989).

443 5. Badia, P., Myers, B., Boecker, M., Culpepper, J. & Harsh, J. R. Bright light effects on body
444 temperature, alertness, EEG and behavior. *Physiol. Behav.* **50**, 583–588 (1991).

445 6. Dijk, D. J., Cajochen, C. & Borbély, A. A. Effect of a single 3-hour exposure to bright light
446 on core body temperature and sleep in humans. *Neurosci. Lett.* **121**, 59–62 (1991).

447 7. Cajochen, C. et al. High sensitivity of human melatonin, alertness, thermoregulation, and
448 heart rate to short wavelength light. *J. Clin. Endocrinol. Metab.* **90**, 1311–1316 (2005).

449 8. Altimus, C. M. et al. Rods-cones and melanopsin detect light and dark to modulate sleep
450 independent of image formation. *Proc. Natl. Acad. Sci. U.S.A.* **105**, 19998–20003 (2008).

451 9. Mrosovsky, N. In praise of masking: behavioural responses of retinally degenerate mice to
452 dim light. *Chronobiol. Int.* **11**, 343–348 (1994).

453 10. Mrosovsky, N. Masking: history, definitions, and measurement. *Chronobiol. Int.* **16**, 415–
454 429 (1999).

455 11. Daan, S. et al. Lab mice in the field: unorthodox daily activity and effects of a dysfunctional
456 circadian clock allele. *J. Biol. Rhythms* **26**, 118–129 (2011).

457 12. Vanin, S. et al. Unexpected features of *Drosophila* circadian behavioural rhythms under
458 natural conditions. *Nature* **484**, 371–375 (2012).

459 13. Schlichting, M., Menegazzi, P. & Helfrich-Förster, C. Normal vision can compensate for the
460 loss of the circadian clock. *Proc. Biol. Sci.* **282**, (2015).

461 14. Engelmann, W. & Honegger, H. Tagesperiodische Schlupfrhythmik einer augenlosen
462 *Drosophila melanogaster*- Mutante. *Naturwissenschaften* 588 (1966).

463 15. McNabb, S. L. & Truman, J. W. Light and peptidergic eclosion hormone neurons stimulate
464 a rapid eclosion response that masks circadian emergence in *Drosophila*. *J. Exp. Biol.* **211**, 2263–
465 2274 (2008).

466 16. Rieger, D., Stanewsky, R. & Helfrich-Förster, C. Cryptochrome, compound eyes, Hofbauer-
467 Buchner eyelets, and ocelli play different roles in the entrainment and masking pathway of the
468 locomotor activity rhythm in the fruit fly *Drosophila melanogaster*. *J. Biol. Rhythms* **18**, 377–391
469 (2003).

470 17. Wheeler, D. A., Hamblen-Coyle, M. J., Dushay, M. S. & Hall, J. C. Behavior in Light-Dark
471 Cycles of *Drosophila* Mutants That Are Arrhythmic, Blind, or Both. *J Biol Rhythms* **8**, 67–94 (1993).

472 18. Emery, P., So, W. V., Kaneko, M., Hall, J. C. & Rosbash, M. CRY, a *Drosophila* Clock and
473 Light-Regulated Cryptochrome, Is a Major Contributor to Circadian Rhythm Resetting and
474 Photosensitivity. *Cell* **95**, 669–679 (1998).

475 19. Stanewsky, R. et al. The cryb Mutation Identifies Cryptochrome as a Circadian
476 Photoreceptor in *Drosophila*. *Cell* **95**, 681–692 (1998).

477 20. Helfrich-Förster, C. & Engelmann, W. Photoreceptors for the Circadian Clock of the Fruitfly.
478 in *Biological Rhythms* (ed. Kumar, V.) 94–106 (Springer Berlin Heidelberg, 2002). doi:10.1007/978-
479 3-662-06085-8_9.

480 21. Helfrich-Förster, C. The circadian system of *Drosophila melanogaster* and its light input
481 pathways1. *Zoology* **105**, 297–312 (2002).

482 22. Helfrich, C. & Engelmann, W. Circadian rhythm of the locomotor activity in *Drosophila*
483 *melanogaster* and its mutants 'sine oculis' and 'small optic lobes'. *Physiological Entomology* **8**,
484 257–272 (1983).

485 23. Schlichting, M., Grebler, R., Peschel, N., Yoshii, T. & Helfrich-Förster, C. Moonlight
486 Detection by *Drosophila*'s Endogenous Clock Depends on Multiple Photopigments in the
487 Compound Eyes. *J Biol Rhythms* **29**, 75–86 (2014).

488 24. Schlichting, M., Grebler, R., Menegazzi, P. & Helfrich-Förster, C. Twilight Dominates Over
489 Moonlight in Adjusting *Drosophila*'s Activity Pattern. *J Biol Rhythms* **30**, 117–128 (2015).

490 25. Rister, J. & Desplan, C. The retinal mosaics of opsin expression in invertebrates and
491 vertebrates. *Dev Neurobiol* **71**, 1212–1226 (2011).

492 26. Heisenberg, M. & Buchner, E. The rôle of retinula cell types in visual behavior of *Drosophila*
493 *melanogaster*. *J. Comp. Physiol.* **117**, 127–162 (1977).

494 27. Schnaitmann, C., Garbers, C., Wachtler, T. & Tanimoto, H. Color discrimination with
495 broadband photoreceptors. *Curr. Biol.* **23**, 2375–2382 (2013).

496 28. Melnattur, K. V. et al. Multiple redundant medulla projection neurons mediate color vision in
497 *Drosophila*. *J. Neurogenet.* **28**, 374–388 (2014).

498 29. Wernet, M. F. et al. Genetic dissection reveals two separate retinal substrates for
499 polarization vision in *Drosophila*. *Curr. Biol.* **22**, 12–20 (2012).

500 30. Feiler, R., Harris, W. A., Kirschfeld, K., Wehrhahn, C. & Zuker, C. S. Targeted
501 misexpression of a *Drosophila* opsin gene leads to altered visual function. *Nature* **333**, 737–741
502 (1988).

503 31. Pollock, J. A. & Benzer, S. Transcript localization of four opsin genes in the three visual
504 organs of *Drosophila*; RH2 is ocellus specific. *Nature* **333**, 779–782 (1988).

505 32. Sabat, D., Priyadarshini, S. & Mishra, M. Understanding the Structural and Developmental
506 Aspect of Simple Eye of *Drosophila*: The Ocelli. *Journal of Cell Signaling* **1**, 1–10 (2016).

507 33. Hofbauer, A. & Buchner, E. Does *Drosophila* have seven eyes? *Naturwissenschaften* **76**,
508 335–336 (1989).

509 34. Sprecher, S. G. & Desplan, C. Switch of rhodopsin expression in terminally differentiated
510 *Drosophila* sensory neurons. *Nature* **454**, 533–537 (2008).

511 35. Yasuyama, K. & Meinertzhagen, I. A. Extraretinal Photoreceptors at the Compound Eye's
512 Posterior Margin in *Drosophila melanogaster*. *J. Comp. Neurol.* **412**, 193–202 (1999).

513 36. Schlichting, M., Menegazzi, P., Rosbash, M. & Helfrich-Förster, C. A distinct visual pathway
514 mediates high light intensity adaptation of the circadian clock in *Drosophila*. *J. Neurosci.* 1497–18
515 (2019) doi:10.1523/JNEUROSCI.1497-18.2018.

516 37. Yoshii, T., Todo, T., Wülbeck, C., Stanewsky, R. & Helfrich-Förster, C. Cryptochrome is
517 present in the compound eyes and a subset of *Drosophila*'s clock neurons. *J. Comp. Neurol.* **508**,
518 952–966 (2008).

519 38. Benito, J., Houl, J. H., Roman, G. W. & Hardin, P. E. The Blue-Light Photoreceptor
520 CRYPTOCHROME Is Expressed in a Subset of Circadian Oscillator Neurons in the *Drosophila*
521 CNS. *J Biol Rhythms* **23**, 296–307 (2008).

522 39. Hoang, N. et al. Human and *Drosophila* Cryptochromes Are Light Activated by Flavin
523 Photoreduction in Living Cells. *PLoS Biol* **6**, e160 (2008).

524 40. Fogle, K. J., Parson, K. G., Dahm, N. A. & Holmes, T. C. CRYPTOCHROME Is a Blue-Light
525 Sensor That Regulates Neuronal Firing Rate. *Science* **331**, 1409–1413 (2011).

526 41. Emery, P. et al. *Drosophila* CRY Is a Deep Brain Circadian Photoreceptor. *Neuron* **26**, 493–
527 504 (2000).

528 42. Feiler, R., Harris, W. A., Kirschfeld, K., Wehrhahn, C. & Zuker, C. S. Targeted
529 misexpression of a *Drosophila* opsin gene leads to altered visual function. *Nature* **333**, 737–741
530 (1988).

531 43. Feiler, R. et al. Ectopic expression of ultraviolet-rhodopsins in the blue photoreceptor cells
532 of *Drosophila*: visual physiology and photochemistry of transgenic animals. *J. Neurosci.* **12**, 3862–
533 3868 (1992).

534 44. Salcedo, E. et al. Blue- and green-absorbing visual pigments of *Drosophila*: ectopic
535 expression and physiological characterization of the R8 photoreceptor cell-specific Rh5 and Rh6
536 rhodopsins. *J. Neurosci.* **19**, 10716–10726 (1999).

537 45. Redlin, U., Vrang, N. & Mrosovsky, N. Enhanced masking response to light in hamsters
538 with IGL lesions. *J. Comp. Physiol. A* **184**, 449–456 (1999).

539 46. Redlin, U. & Mrosovsky, N. Masking by light in hamsters with SCN lesions. *J. Comp.*
540 *Physiol. A* **184**, 439–448 (1999).

541 47. Mrosovsky, N. & Hattar, S. Impaired masking responses to light in melanopsin-knockout
542 mice. *Chronobiol. Int.* **20**, 989–999 (2003).

543 48. Panda, S. et al. Melanopsin is required for non-image-forming photic responses in blind
544 mice. *Science* **301**, 525–527 (2003).

545 49. Gall, A. J., Smale, L., Yan, L. & Nunez, A. A. Lesions of the Intergeniculate Leaflet Lead to
546 a Reorganization in Circadian Regulation and a Reversal in Masking Responses to Photic Stimuli
547 in the Nile Grass Rat. *PLoS ONE* **8**, e67387 (2013).

548 50. Nagel, G. *et al.* Channelrhodopsin-2, a directly light-gated cation-selective membrane
549 channel. *Proc. Natl. Acad. Sci. U.S.A.* **100**, 13940–13945 (2003).

550 51. Dawydow, A. *et al.* Channelrhodopsin-2–XXL, a powerful optogenetic tool for low-light
551 applications. *Proc. Natl. Acad. Sci. U.S.A.* **111**, 13972–13977 (2014).

552 52. Lu, B., Liu, W., Guo, F. & Guo, A. Circadian modulation of light-induced locomotion
553 responses in *Drosophila melanogaster*. *Genes, Brain and Behavior* **7**, 730–739 (2008).

554 53. Kim, E. Y. *et al.* Drosophila CLOCK Protein Is under Posttranscriptional Control and
555 Influences Light-Induced Activity. *Neuron* **34**, 69–81 (2002).

556 54. Song, B. J., Sharp, S. J. & Rogulja, D. Daily rewiring of a neural circuit generates a
557 predictive model of environmental light. *Sci. Adv.* **7**, eabe4284 (2021).

558 55. Pollack, I. & Hofbauer, A. Histamine-like immunoreactivity in the visual system and brain of
559 *Drosophila melanogaster*. *Cell Tissue Res* **266**, 391–398 (1991).

560 56. Mrosovsky, N. Contribution of classic photoreceptors to entrainment. *J Comp Physiol A*
561 **189**, 69–73 (2003).

562 57. Redlin, U., Cooper, H. M. & Mrosovsky, N. Increased masking response to light after
563 ablation of the visual cortex in mice. *Brain Research* **965**, 1–8 (2003).

564 58. Mrosovsky, N., Foster, R. G. & Salmon, P. A. Thresholds for masking responses to light in
565 three strains of retinally degenerate mice. *Journal of Comparative Physiology A: Sensory, Neural,*
566 *and Behavioral Physiology* **184**, 423–428 (1999).

567 59. Hattar, S. *et al.* Melanopsin and rod–cone photoreceptive systems account for all major
568 accessory visual functions in mice. *Nature* **424**, 75–81 (2003).

569 60. Zurl, M. *et al.* Two light sensors decode moonlight versus sunlight to adjust a plastic
570 circadian/circalunidian clock to moon phase. *Proc. Natl. Acad. Sci. U.S.A.* **119**, e2115725119
571 (2022).

572 61. Schlichting, M. *et al.* Light-Mediated Circuit Switching in the *Drosophila* Neuronal Clock
573 Network. *Current Biology* **29**, 3266–3276.e3 (2019).

574 62. Stoleru, D., Peng, Y., Agosto, J. & Rosbash, M. Coupled oscillators control morning and
575 evening locomotor behaviour of *Drosophila*. *Nature* **431**, 862–868 (2004).

576 63. Helfrich-Förster, C. *et al.* The Extraretinal Eyelet of *Drosophila*: Development,
577 Ultrastructure, and Putative Circadian Function. *J. Neurosci.* **22**, 9255–9266 (2002).

578 64. Bonini, N. M., Leiserson, W. M. & Benzer, S. The eyes absent gene: Genetic control of cell
579 survival and differentiation in the developing *Drosophila* eye. *Cell* **72**, 379–395 (1993).

580 65. Dolezelova, E., Dolezel, D. & Hall, J. C. Rhythm defects caused by newly engineered null
581 mutations in *Drosophila*'s cryptochrome gene. *Genetics* **177**, 329–345 (2007).

582 66. Stanewsky, R. *et al.* The cryb Mutation Identifies Cryptochrome as a Circadian
583 Photoreceptor in *Drosophila*. *Cell* **95**, 681–692 (1998).

584 67. Burg, M. G., Sarthy, P. V., Koliantz, G. & Pak, W. L. Genetic and molecular identification of
585 a *Drosophila* histidine decarboxylase gene required in photoreceptor transmitter synthesis. *The*
586 *EMBO Journal* **12**, 911–919 (1993).

587 68. O'Tousa, J. E. *et al.* The *Drosophila* ninaE gene encodes an opsin. *Cell* **40**, 839–850
588 (1985).

589 69. Kumar, J. P. & Ready, D. F. Rhodopsin plays an essential structural role in *Drosophila*
590 photoreceptor development. *Development* **121**, 4359–4370 (1995).

591 70. Pak, W. L., Grossfield, J. & White, N. V. Nonphototactic Mutants in a Study of Vision of
592 *Drosophila*. *Nature* **222**, 351–354 (1969).

593 71. Szular, J. *et al.* Rhodopsin 5 – and Rhodopsin 6 –Mediated Clock Synchronization in
594 *Drosophila melanogaster* Is Independent of Retinal Phospholipase C-β Signaling. *J Biol Rhythms*
595 **27**, 25–36 (2012).

596 72. Sokabe, T., Chen, H.-C., Luo, J. & Montell, C. A Switch in Thermal Preference in
597 *Drosophila* Larvae Depends on Multiple Rhodopsins. *Cell Reports* **17**, 336–344 (2016).

598 73. Yamaguchi, S., Wolf, R., Desplan, C. & Heisenberg, M. Motion vision is independent of
599 color in *Drosophila*. *Proc. Natl. Acad. Sci. U.S.A.* **105**, 4910–4915 (2008).

600 74. Cook, T., Pichaud, F., Sonneville, R., Papatsenko, D. & Desplan, C. Distinction between
601 Color Photoreceptor Cell Fates Is Controlled by Prospero in *Drosophila*. *Developmental Cell* **4**,
602 853–864 (2003).

603 75. Hanai, S., Hamasaki, Y. & Ishida, N. Circadian entrainment to red light in *Drosophila*:
604 requirement of Rhodopsin 1 and Rhodopsin 6. *NeuroReport* **19**, 1441–1444 (2008).

605 76. Stark, W. S., Walker, J. A. & Harris, W. A. Genetic dissection of the photoreceptor system
606 in the compound eye of *Drosophila melanogaster*. *The Journal of Physiology* **256**, 415–439 (1976).

607 77. Pfeiffer, B. D. *et al.* Refinement of Tools for Targeted Gene Expression in *Drosophila*.
608 *Genetics* **186**, 735–755 (2010).

609 78. Ruf, F., Fraunholz, M., Öchsner, K., Kaderschabek, J. & Wegener, C. WEclMon - A simple
610 and robust camera-based system to monitor *Drosophila* eclosion under optogenetic manipulation
611 and natural conditions. *PLoS ONE* **12**, e0180238 (2017).

612 79. Selcho, M. *et al.* Central and peripheral clocks are coupled by a neuropeptide pathway in
613 *Drosophila*. *Nat Commun* **8**, 15563 (2017).

614 80. Schindelin, J. *et al.* Fiji: an open-source platform for biological-image analysis. *Nat Methods*
615 **9**, 676–682 (2012).

616 81. Pauls, D., Blechschmidt, C., Frantzmann, F., El Jundi, B. & Selcho, M. A comprehensive
617 anatomical map of the peripheral octopaminergic/tyraminergic system of *Drosophila melanogaster*.
618 *Sci Rep* **8**, 15314 (2018).

619 82. Klagges, B. R. E. *et al.* Invertebrate Synapsins: A Single Gene Codes for Several Isoforms
620 in *Drosophila*. *J. Neurosci.* **16**, 3154–3165 (1996).

621

622

623 Acknowledgments

624 We thank Claude Desplan, Craig Montell, Christopher Schnaitmann and Ralf Stanewsky
625 for providing flies and Simon Sprecher for sharing antibodies. This work was supported by
626 grants from the German Research Foundation (DFG) to MS (PA3241/2-1) and DP
627 (PA1979/2-1). Stocks obtained from the Bloomington *Drosophila* Stock Center (NIH
628 P40OD018537) were used in this study.

629

630 Author contributions

631 MS and DP conceived and designed the experiments. DB, NDF, CM performed the
632 experiments. TT wrote code for analysis. MS wrote the main manuscript text with
633 significant input from DP and CHF. MS and DB prepared the figures. All authors reviewed
634 the manuscript.

635

636 Additional information

637 The authors declare no competing interests.

638

639