

1 Impaired polyamine metabolism causes behavioral and neuroanatomical defects 2 in a novel mouse model of Snyder-Robinson Syndrome

3 Oluwaseun Akinyele¹, Anushe Munir^{1,2}, Marie A. Johnson¹, Megan S. Perez^{1,2}, Yuan Gao³,
4 Jackson R. Foley⁴, Yijen Wu⁵, Tracy Murray-Stewart⁴, Robert A. Casero, Jr.⁴, Hulya Bayir³, Dwi
5 U. Kemaladewi^{1,2}

6 ¹Div. of Genetic and Genomic Medicine, Dept. of Pediatrics, University of Pittsburgh School of Medicine,
7 Pittsburgh, USA.

⁸ ²Dept. of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, USA.

⁹ Children's Neuroscience Institute, Dept. of Pediatrics, University of Pittsburgh School of Medicine,
¹⁰ Pittsburgh, USA.

11 ⁴Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland,
12 USA.

13 ⁵Dept. of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, USA.

14

15 Corresponding author:

16 Dwi U. Kemaladewi, Ph.D.

17 Department of Pediatrics, University of Pittsburgh School of Medicine

18 UPMC Children's Hospital of Pittsburgh

19 4401 Penn Ave, Pittsburgh, PA 15224 USA

20 Dwi.kemaladewi@chp.edu

21

22 **Abstract**

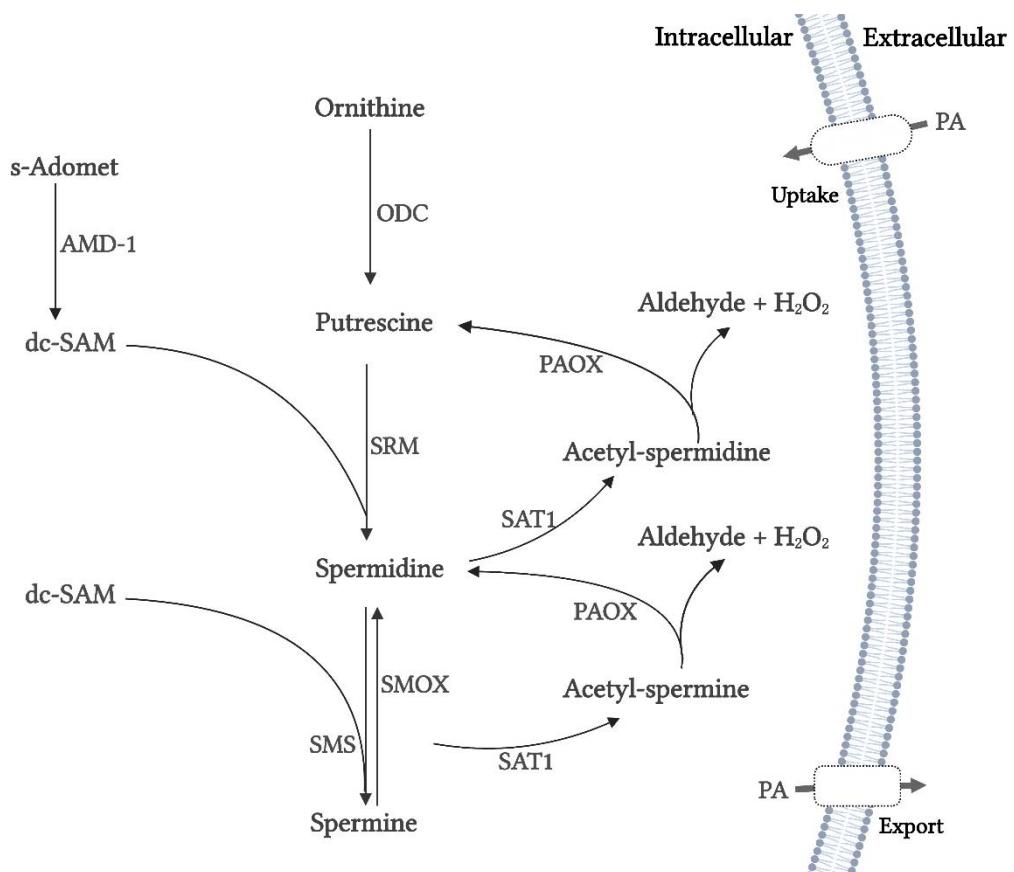
23 Polyamines (putrescine, spermidine, and spermine) are essential molecules for normal cellular
24 functions and are subject to strict metabolic regulation. Mutations in the gene encoding
25 spermine synthase (SMS) lead to accumulation of spermidine in an X-linked recessive disorder
26 known as Snyder-Robinson syndrome (SRS). Presently, no treatments exist for this rare
27 disease that manifests with a spectrum of symptoms including intellectual disability,
28 developmental delay, thin habitus, and low muscle tone. The development of therapeutic
29 interventions for SRS will require a suitable disease-specific animal model that recapitulates
30 many of the abnormalities observed in patients.

31 Here, we characterize the molecular, behavioral, and neuroanatomical features of a mouse
32 model with a missense mutation in *Sms* gene that results in a glycine-to-serine substitution at
33 position 56 (G56S) of the SMS protein. Mice harboring this mutation exhibit a complete loss of
34 SMS protein and elevated spermidine/spermine ratio in skeletal muscles and the brain. In
35 addition, the G56S mice demonstrate increased anxiety, impaired learning, and decreased
36 explorative behavior in fear conditioning, Morris water maze, and open field tests, respectively.
37 Furthermore, these mice failed to gain weight over time and exhibit abnormalities in brain
38 structure and bone density. Transcriptomic analysis of the cerebral cortex revealed
39 downregulation of genes associated with mitochondrial oxidative phosphorylation and ribosomal
40 protein synthesis. Our findings also revealed impaired mitochondrial bioenergetics in fibroblasts
41 isolated from the G56S mice, indicating a correlation between these processes in the affected
42 mice. Collectively, our findings establish the first in-depth characterization of an SRS preclinical
43 mouse model that identifies cellular processes that could be targeted for future therapeutic
44 development.

45 **Keywords:** Polyamines, Spermine synthase, spermine, neurological, disease, pathogenesis.

46

47 **Introduction**


48 The polyamines putrescine, spermidine, and spermine are ubiquitous molecules essential for
49 normal cellular functions. As a group, these polycationic molecules are responsible for
50 maintaining chromatin structure, regulating gene expression, metabolic pathways, and specific
51 ion channels, as well as cell growth and death. Polyamines are also critical contributors to the
52 many processes underlying immune cell activation, wound healing, and general tissue growth
53 and development (1–7). Given their central role in cellular metabolism, the levels of intracellular
54 polyamines are tightly regulated via *de novo* synthesis, interconversion, and transport into and
55 out of the cell (Figure 1).

56 Most of the intracellular polyamine pool arises from *de novo* synthesis. The diamine putrescine,
57 which is the main precursor in this pathway, is synthesized from ornithine via the actions of the
58 enzyme ornithine decarboxylase (ODC). Spermidine and spermine are higher-order polyamines
59 derived from putrescine. Spermidine synthase (SRM) catalyzes the reaction between putrescine
60 and decarboxylated S-adenosylmethionine (dc-SAM) that generates spermidine. Spermine is
61 then synthesized from spermidine and dc-SAM by spermine synthase (SMS). Spermidine and
62 spermine can be converted back to their respective precursors via the actions of
63 spermidine/spermine N¹-acetyltransferase (SAT1) and acetylpolyamine oxidase (PAOX).
64 Similarly, spermine oxidase (SMOX) catalysis the direct conversion of spermine to spermidine.
65 Dysregulation or absence of any of these enzymes alters the homeostatic levels of cellular
66 polyamines. Aberrancies in polyamine metabolism have been implicated in numerous diseases,
67 including cancers, Alzheimer's disease, and Snyder-Robinson Syndrome (SRS) (8–11).

68 SRS (OMIM: 309583) is a rare (frequency currently unknown, more than 100 reported cases),
69 X-linked intellectual disability syndrome associated with several known deleterious mutations in
70 the SMS gene (MIM *300105). These lead to the loss or reduction of spermine synthase
71 enzymatic activity and reductions in the intracellular spermine content of the cell (10). Loss of
72 SMS activity also leads to an accumulation of spermidine and a high intracellular
73 spermidine/spermine ratio. These parameters are use as biomarkers for SRS diagnosis (11).
74 SRS is characterized by intellectual disability, seizures, and general developmental delay (11–
75 13). Individuals diagnosed with SRS exhibit thin body habitus and low muscle tone (hypotonia).
76 These clinical findings may be apparent at infancy and worsen over time (11,14). Some SRS
77 patients have difficulty walking and may never become ambulatory (12).

78 Although, a specific mutation in the SMS gene was first identified and reported as the cause of
79 SRS as early as 2003 (15), there are no suitable mammalian models to study disease
80 pathophysiology and support the development of effective therapeutic interventions. Previous

81 reports featured a *Drosophila* model in which an appropriate mutation was introduced into the
82 *sms* gene (16) (17). While *Drosophila* models are readily available, many pathogenic factors
83 that are critical to our understanding of vertebrate diseases are not conserved in this species
84 and thus key aspects and mechanisms may not be detectable (17). To address this concern,
85 several groups used the *Gy* (*Gyro*) mice to explore the pathogenesis of SRS (18,19). The *Gy*
86 mouse strain features a complete loss of the chromosomal region containing the *Sms* gene and
87 exhibits several of the abnormalities described in SRS patients, including altered polyamine
88 content, cognitive impairment, and bone abnormalities (20,21). However, in addition to the *Sms*
89 deletion, the *Gy* mice also have a deletion of the *Phex* gene. *Phex* encodes the phosphate-
90 regulating endopeptidase homolog, which is a protein involved in phosphate transport that has
91 been implicated in the pathogenesis of X-linked hypophosphatemia (20,21). These additional
92 *Phex* mutation complicates the interpretation of many of the abnormalities observed in the *Gy*
93 mice, meaning this strain is a poor model to study SRS pathophysiology and for therapy
94 development.

95

96 **Figure 1. The polyamine metabolic pathway.** Abbreviations: ODC, ornithine decarboxylase; SRM, spermidine
97 synthase; SMS, spermine synthase; s-Adomet, s-adenosylmethionine; AMD1, adenosylmethionine decarboxylase;
98 dc-SAM, decarboxylated s-adenosylmethionine; PAOX, acetylpolyamine oxidase; SAT1, spermidine/spermine
99 polyamino transferase; PAs, polyamines.

100 Here, we characterized a recently generated mouse model of SRS (22) that carries a missense
101 mutation in the *Sms* gene (GGC to TCC), a glycine to serine substitution at position 56 of the
102 SMS protein (G56S). This mutation is analogous to that reported in individuals diagnosed with
103 severe SRS (12). In this study, we investigate the disease presentation in the G56S mice and
104 explored potential mechanisms underlying some of the observed abnormalities. Our findings
105 revealed that G56S mice exhibit many of the phenotypic (both behavioral and neuroanatomical)
106 abnormalities reported in SRS individuals (12,23,24). Furthermore, a transcriptomic analysis
107 identified critical changes in gene expression patterns that might contribute to these observed
108 aberrancies.

109 **Materials and methods**

110 **Mice:** All animals used in this study were housed at the University of Pittsburgh Division of
111 Laboratory Animal Resources, Rangos Research Building, following the IACUC protocol
112 number 2206137, which was approved by the University of Pittsburgh's Institutional Animal
113 Care and Use Committee. The colony of mutant mice was established by breeding female
114 heterozygous *Sms* mutation carriers (C57BL/6J-*Sms*^{em2Lutzy}/J; Jackson Laboratory stock #
115 031170) and male WT C57BL/6J mice (Jackson Laboratory stock # 000664). The male offspring
116 of this cross that harbored the X-linked G56S *Sms* mutation and WT littermate controls were
117 used in the experiments described in this study. To ensure that only male mice harboring the
118 desired mutation were used, pups were genotyped at Transnetyx.com using the following
119 probes: forward primer ACCTGGCAGGACCATGGATATTAA, reverse primer
120 GTGTTCACATCTAAAGCCCATGAGA, reporter 1 AACAAAGAATGGCAGGTAAG and reporter 2
121 ACGAACAAAGAATTCCAGG.

122 **Open field activity assay:** The open field chamber is a hollow square field box equipped with
123 tracking software (ACTITRACK, Panlab/Harvard Apparatus, USA) connected to an infrared
124 tracking system that monitors animal movement. The walls of the box were opacified (covered
125 with aluminum foil) to prevent the environment from influencing the behavior of the mouse
126 undergoing testing. The chamber was divided into two imaginary zones: an outer zone (45 x 45
127 cm) and an inner or center zone (18.5 cm x 18.5 cm, centered at 22.5 cm from the wall on each
128 side). Experiments were undertaken under constant room temperature (22 – 25°C) and light
129 levels. The mice were habituated in the procedure room for 15 minutes each time before the
130 assay was initiated. This was done to reduce any stress on the mice before the tests were
131 conducted. Each mouse was released at the same location near the wall of the box and
132 movement was evaluated for 15 minutes using the infrared tracking system. The positions
133 recorded for each mouse were used to generate tracking plots and to determine the distance

134 traveled, speed, and time spent in each zone (i.e., within the entire apparatus and specifically in
135 the center zone). The total amount of time spent and the type of body motion (i.e., rearing,
136 leaning, and vertical activity) detected in the center zone were used as relative measurements
137 of explorative behavior and anxiety-related responses, respectively.

138 **Auditory-cued fear conditioning:** The conditioning procedure was carried out using a
139 specifically designed chamber (model *H10-11M-TC-SF* Coulbourn Instruments, Whitehall, PA,
140 USA). The conditioning chamber (25 × 25 × 25 cm) had three grey methacrylate walls, a grid
141 floor connected to a shock scrambler to deliver foot shock as the unconditioned stimulus (US),
142 and a speaker mounted on the chamber ceiling to deliver audible tones as the conditioned
143 stimulus (CS). The conditioning chamber was fitted with a high-sensitivity camera system that
144 monitored animal movement. The chamber was confined in a ventilated, soundproof enclosure
145 (78 × 53 × 50 cm) on an anti-vibration table in a quiet room. The door to the room remained
146 closed throughout the conditioning and testing periods.

147 On the first day (fear acquisition), the animals were habituated for 120 sec in the chamber
148 before the delivery of CS-US pairs (i.e., a 75 dB tone [CS] for 20 sec followed by a 15-sec trace
149 and then foot shocks [US] of 0.6 mA for 2 sec) with variable and pseudo-randomly distributed
150 intervals between pairs of stimuli (90 – 203 sec). On the second day (fear retention), the session
151 started with the mice placed in the same environment. During this phase, the mice were
152 provided with no stimulation that might elicit contextual fear responses. Freezing responses in
153 this otherwise familiar environment were monitored.

154 For the third session, the mice were placed in a different environmental setting (i.e., a chamber
155 with a covered floor and white walls) to assess the retention of cued fear in a novel context.
156 Baseline fear responses were monitored for 90 sec followed by the delivery of three CS (75 dB
157 and 20 s) separated by variable inter-trial intervals (ITIs). The movement of the animal was
158 sampled at a frequency of 50 Hz for quantitative analysis (Freezeframe, Coulbourn Instruments,
159 USA). Freezing was analyzed during the delivery of the CS (20 sec periods) as well as during
160 the 15 sec trace period that would ordinarily precede the US (not delivered) to monitor the
161 associative fear response. The animals were gently handled before, during, and after the test to
162 avoid introducing any additional potential stress before or during each test that could influence
163 the measured responses.

164 **Morris Water Maze (MWM) Task:** The MWM task was performed in a circular pool containing
165 water using the procedure described by Tsien et al. (25) with slight modifications. The animals
166 were trained to find an escape platform that was submerged in the water. The animals were not
167 habituated in the pool before the training. The training protocol (hidden platform, used to

168 evaluate spatial learning) included five sessions with 4 trials per session per day. Navigation
169 was tracked by a video camera and the escape latency (i.e., the time required to locate the
170 platform) was recorded. An animal that failed to locate the platform within 90 sec was guided to
171 the platform. We then performed visible (to measure spatial memory) and probe (to measure
172 non-spatial memory) tests on day six. In the visible test, colored tape was placed at the top of
173 the platform. For the probe test, the platform was removed; the mice were allowed to swim in
174 the pool for 60 s, and the time spent in each quadrant of the pool was recorded. The acquired
175 data was analyzed using the ANY-maze software.

176 ***In vivo Magnetic Resonance Imaging (MRI) scans:*** All mice were subjected to *in vivo* brain
177 imaging while under isoflurane anesthesia. The mice were placed in a clear plexiglass
178 anesthesia induction box that permitted unimpeded visual monitoring. Induction was achieved
179 by the administration of 3% isoflurane in oxygen for several minutes. The depth of anesthesia
180 was monitored by toe reflex (extension of limbs, spine positioning) and respiration rate. Once
181 established, the appropriate level of anesthesia was maintained by continuous administration of
182 1-2% isoflurane in oxygen via a nose cone. The mice were then transferred to the designated
183 animal bed for imaging. Respiration was monitored using a pneumatic sensor placed between
184 the animal bed and the mouse's abdomen. Rectal temperature was measured with a fiber optic
185 sensor and maintained with a feedback-controlled source of warm air (SA Instruments, Stony
186 Brook, NY, USA).

187 *In vivo* brain MRI was carried out on a Bruker BioSpec 70/30 USR spectrometer (Bruker
188 BioSpin MRI, Billerica, MA, USA) operating at 7-Tesla field strength and equipped with an
189 actively shielded gradient system and a quadrature radio-frequency volume coil with an inner
190 diameter of 35 mm. Multi-planar T₂-weighted anatomical images were acquired with a Rapid
191 Imaging with Refocused Echoes (RARE) pulse sequence with the following parameters: field of
192 view (FOV) = 2 cm, matrix = 256 X 256, slice thickness = 1 mm, in-plane resolution = 78 μ m X
193 78 μ m, echo time (TE) = 12 msec, RARE factor = 8, effective echo time (ETE) = 48 msec,
194 repetition time (TR) = 1800 msec, and flip angle = 180⁰. Multi-planar diffusion MRI was
195 performed using the following parameters: field of view (FOV) = 2.0 cm, matrix = 128 X 128,
196 slice thickness = 1.5 mm, in-plane resolution = 156 μ m X 156 μ m, TE = 16.31 msec, TR = 1500
197 msec, diffusion preparation with the spin echo sequence, diffusion gradient duration = 4 msec,
198 diffusion gradient separation = 8 msec, diffusion direction = 30, number of A₀ images = 1, and b
199 value = 1500 s/mm².

200 The MRI data were exported to a DICOM format and analyzed using the open source ITK-
201 SNAP (<http://www.itksnap.org>) brain segmentation software by 2 independent observers who
202 were blinded to the experimental conditions. The volumes of each region of interest (ROI),

203 including the amygdala, corpus callosum, thalamus, ventricles, hippocampus, and cortex were
204 manually drawn by blinded observers based on the information obtained from the Allen mouse
205 brain atlas (<https://mouse.brain-map.org/static/atlas>). To account for potential difference in the
206 sizes of brains in G56S and WT mice, volumes from each brain region were normalized to the
207 total brain volume of each mouse.

208 Diffusion MRI was analyzed by the open source DSI studio (<http://dsi-studio.labsolver.org/>) to
209 obtain fractional anisotropy (FA). ROIs contributing to quantitative and statistical analyses,
210 including the cortex, hippocampus, thalamus, corpus callosum, and ventricles with
211 cerebrospinal fluid (CSF) were manually segmented and defined by blinded independent
212 observers.

213 ***In vivo* micro-Computed Tomography (micro-CT) scans:** All mice undergoing *in vivo* micro-
214 CT imaging were maintained under general inhalation anesthesia with isoflurane as described
215 for MRI scans above. Once established, anesthesia was maintained with 1.5% isoflurane in
216 oxygen administered using a nose cone and the mouse was transferred to the designated
217 animal bed for imaging. Respiration was monitored as described above. Respiration gating was
218 performed using BioVet system that was triggered by maximal inhalation with a 500 ms trigger
219 delay.

220 Respiration-gated *in vivo* micro-CT imaging was performed with Siemens Inveon Multimodality
221 micro-CT-SPECT-PET system with the following parameters: full rotation, 360° projections;
222 settle time 1000 msec; 4X4 binning; effective pixel size of 76.75 μm; trans axial field of view
223 (FOV) 78.6 mm with 4096 pixels; axial FOV 76.1 mm with 3968 pixels 80 kV of voltage; current
224 of 500 μA; exposure time of 410 ms. The three-dimensional (3D) micro-CT images were
225 reconstructed using the Feldkamp algorithm and were calibrated in Hounsfield Units (HU).
226 Double distilled water was set at a readout of 0 and air at 1000 HU.

227 The 3D micro-CT image stacks were analyzed using the Inveon Research Workplace (IRW).
228 The ROI analysis function was used with a thresholding tool that created several ROIs with
229 different Hounsfield Unit (HU). A cylindrical 3D ROI was drawn around the body that
230 encompassed the entire body. All external air around the mouse was excluded from the ROI
231 and a custom threshold was set between 400 – 5700 HU to capture the bones. The mean HU
232 values obtained from each ROI were used to quantify bone density.

233 **Body composition measurements:** Body composition (percentage lean and fat weight) of the
234 mice was measured by quantitative MRI (EchoMRI, Echo Medical Systems, Houston, TX).
235 Animals were placed in thin-walled plastic cylinders with plastic restraining inserts. Each animal

236 was briefly subjected to a low-intensity electromagnetic field that measured total body
237 composition. Percentages of fat and lean weights were determined based on total body weight.

238 **Primary cell isolation:** Primary fibroblast cells from the ears of the G56S and WT mice were
239 isolated using the protocol described by Khan and Gasser (26).

240 **RNA isolation and quantitative polymerase chain reaction (qPCR):** Total RNA was isolated
241 from mouse tissues using the Nucleospin RNA Plus kit (Macherey-Nagel, cat# 740984.50),
242 following the manufacturer's instructions. cDNA synthesis was performed using the iScript
243 Reverse Transcriptase Supermix kit (BioRad, Cat# 1708841) according to the manufacturer's
244 instructions. qPCR was performed using 2X SYBR Green Fast qPCR Mix kit (ABclonal, cat#
245 RM21203) in a C1000 Touch Thermal Cycler (BioRad, USA). The primer sequences used to
246 amplify target genes of interest are listed in Supplementary **Table 1**. The expression of
247 endogenous *Gapdh* was used as an internal control to measure the relative expression of genes
248 of interest. The $2^{\Delta\Delta Ct}$ was used to assess relative fold change in gene expression in tissue
249 samples from WT and G56S mice. Values are presented as the percentage change in fold
250 expression.

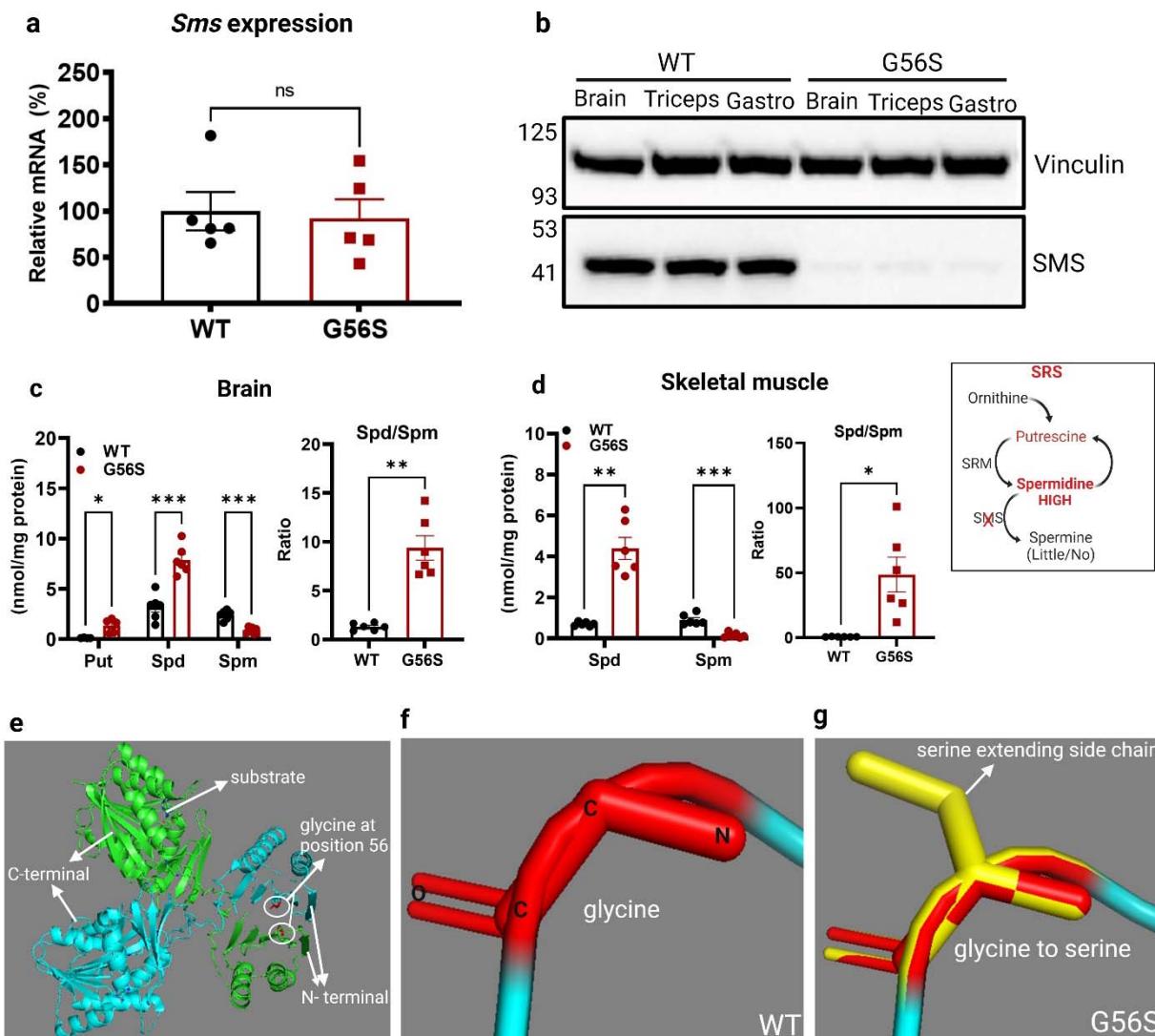
251 **RNA-sequencing (RNA-seq) and pathway enrichment analysis:** After completing the RNA
252 extraction procedure described above, samples were submitted to the Health Sciences
253 Genomic Core at the UPMC Children's Hospital of Pittsburgh. RNA quality was determined
254 using the Agilent Bioanalyzer 2100 (Agilent Technologies, USA). cDNA libraries were prepared
255 using a 3'-Tag-RNA-Seq library kit (Illumina). Sequencing was performed using one lane of a Hi-
256 Seq 4000 platform with pair-end 40 bp reads. Analysis of sequence reads, including quality
257 control, mapping, and generation of tables of differentially expressed genes (DEGs), heatmaps,
258 and volcano plots) were performed using the Qiagen licensed CLC Genomic Workbench
259 software version 22.0.1. Pathway enrichment analysis of the DEGs was performed using the
260 Qiagen-licensed Ingenuity Pathway Analysis (IPA) software. The gene expression profile
261 identified by RNA-seq was validated by qPCR as described above.

262 **In vivo analysis of mitochondria respiration:** Oxygen consumption rates (OCRs) were
263 determined with a Seahorse XFe96 Extracellular Flux Bioanalyzer (Agilent Technologies, Santa
264 Clara, California, USA). Primary fibroblasts plated in 96-well assay plate at a density of 40,000
265 cells/well were cultured overnight and then equilibrated with Seahorse XF base medium (Agilent
266 Technologies) supplemented with glucose, sodium pyruvate, and L-glutamine at 37°C in a CO₂-
267 free incubator for 1 hour prior to the assay. Mitochondrial function was assessed by sequential
268 addition of 1.5 μM oligomycin, 1 μM FCCP (carbonyl cyanide-4-[trifluoromethoxy]

269 phenylhydrazone), and 0.5 μ M rotenone/antimycin A by the Seahorse Bioanalyzer. Data was
270 normalized by the total protein content of the cells.

271 **Protein isolation, quantification, and western blotting.** Total proteins were extracted from
272 tissues isolated from G56S and WT mice tissues using RIPA homogenizing buffer (150 μ L of 50
273 mM Tris HCl pH 7.4, 150 nM NaCl, 1 mM EDTA) followed by homogenization using a bullet
274 blender. After homogenization, 150 μ L of RIPA double-detergent buffer (2% deoxycholate, 2%
275 NP-40, 2% Triton X-100 in RIPA homogenizing buffer) supplemented with protease inhibitor
276 cocktail (Roche, cat# A32953) was added to the tissue homogenate followed by incubation on a
277 shaker for 1 h at 4°C. The tissue homogenate was then centrifuged at 11,000 g for 10 min at
278 4°C. The resulting supernatant was used to quantify total protein using the Pierce BCA protein
279 assay kit (Thermo Scientific, cat# 23225) according to the manufacturer's protocol. Twenty
280 micrograms of total protein were fractionated on 4 – 12% gradient gel (Thermo Scientific, cat#
281 NP0336BOX). After proteins had separated on the gel, they were transferred by electroblotting
282 onto a polyvinylidene fluoride (PVDF) membrane and blocked with 5% non-fat milk in TBS-
283 Tween-20. The membrane was then incubated overnight with rabbit anti-spermine synthase
284 (Abcam, cat# ab156879 [EPR9252B]) or rabbit anti-vinculin (Abcam, cat# ab129002
285 [EPR8185]). After incubation with the primary antibody, the membranes were washed and then
286 incubated with the secondary antibody (Goat Anti-Rabbit IgG – HRP conjugate, Bio-Rad cat#
287 1706515) for one hour at room temperature. Specific protein bands were detected using
288 SuperSignal™ West Femto Maximum Sensitivity Substrate (Thermo Scientific, cat# 34095).
289 Bands corresponding to immunoreactive SMS and Vinculin were identified and quantified using
290 the ChemiDoc Imaging System (BioRad).

291 **Polyamine measurement:** The polyamine content in isolated tissues was measured by the
292 precolumn dansylation, high-performance liquid chromatography method described by Kabra et
293 al. using 1,7-diaminoheptane as the internal standard (27).


294 **Statistical analysis:** Statistical analysis was performed using Graphpad Prism software vs 9.0.
295 Each variable was statistically compared between the WT and G56S mice using unpaired
296 Student's t-test unless otherwise stated. A *p* value less than 0.05 was considered statistically
297 significant.

298 **RESULTS**

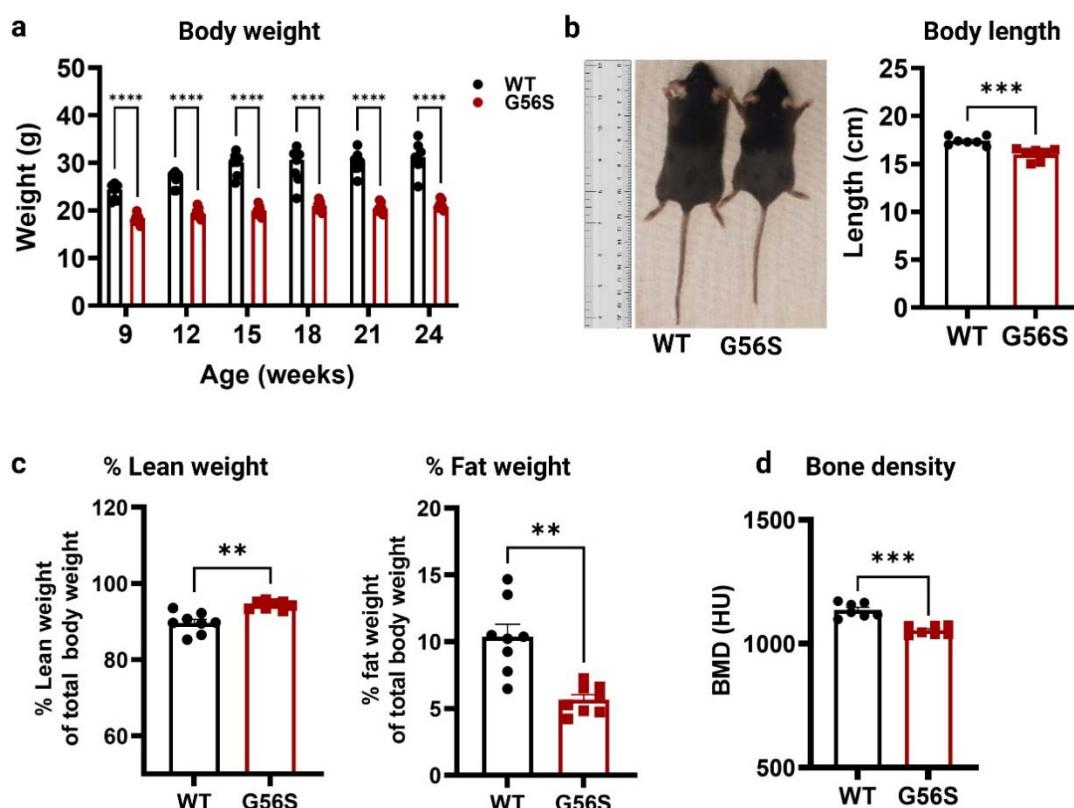
299 ***Sms* mutation altered polyamine content in mouse tissues**

300 To determine whether the substitution of two nucleotides (GGC to TCC) in exon two of the *Sms*
301 gene altered its expression profile and tissue polyamine levels, we measured the mRNA and

302 protein levels of SMS in tissues isolated from both the G56S and WT mice. While there were no
303 significant changes in the level of *Sms* mRNA (Figure 2a), we observed a near-complete loss of
304 SMS protein in both the brain and skeletal muscles of G56S mice (Figure 2b). Similarly, HPLC
305 analysis of tissue polyamines revealed elevated levels of both putrescine and spermidine and a
306 significant decrease in spermine in brain tissue from G56S mice. The spermidine to spermine
307 ratio was 7-times higher in brain tissue from G56S mice compared to WT controls (Figure 2c).
308 Our findings also revealed a significant increase in spermidine but decrease spermine content in
309 skeletal muscles of the G56S strain (Figure 2d and inset). Putrescine was below the limits of
310 detection in the sampled muscle. Figure 2e presents the two-dimensional (2D) crystal structure
311 of the dimerized and fully functional SMS protein including the C-terminal (catalytic) and N-
312 terminal (dimerization) domains; the amino acid within the latter domain at position 56 (WT,
313 glycine) is highlighted in Figure 2f. Figure 2g presents the mutant SMS protein with a serine at
314 position 56; the extended side chain characteristic of this amino acid may interfere with
315 monomer dimerization, as previously described by Zhang et. al., (28) and may lead to the loss
316 of SMS protein despite normal transcript level.

317

318 **Figure 2. Tissue polyamine content and a potential mechanism underlying SMS protein loss.** (a) Mouse brain
319 **Sms gene transcript level as quantified by RT-qPCR.** The level of gene transcript in the mutant was compared to the
320 WT mice set at 100% reference value (b) Expression of SMS protein in isolated brain and skeletal muscles (triceps
321 and gastrocnemius) from WT and G56S mice. (c) Determination of brain polyamine content and SPD/SPM ratios in
322 WT and G56S mice quantified by HPLC. (d) Skeletal muscle polyamine content in both G56S and WT mice. Note:
323 spermine levels were below the limit of detection in the G56S skeletal muscle. (e) 2D-crystal structure of the
324 SMS protein with glycine at position 56 in the N-terminal region (circled). The 2D-crystal structure of SMS was
325 modeled from protein data bank ID: 3C6M. (f) The atomic structure of glycine at position 56 in the N-terminal region
326 of SMS protein. (g) Serine in place of glycine at position 56 of SMS protein; the extended serine sidechain is
327 highlighted in yellow. Panels a-d, values shown are mean \pm standard error of the mean (S.E.M.); n = 3 – 5 mice per
328 group; *p < 0.05, **p < 0.01, ns = not significant.


329

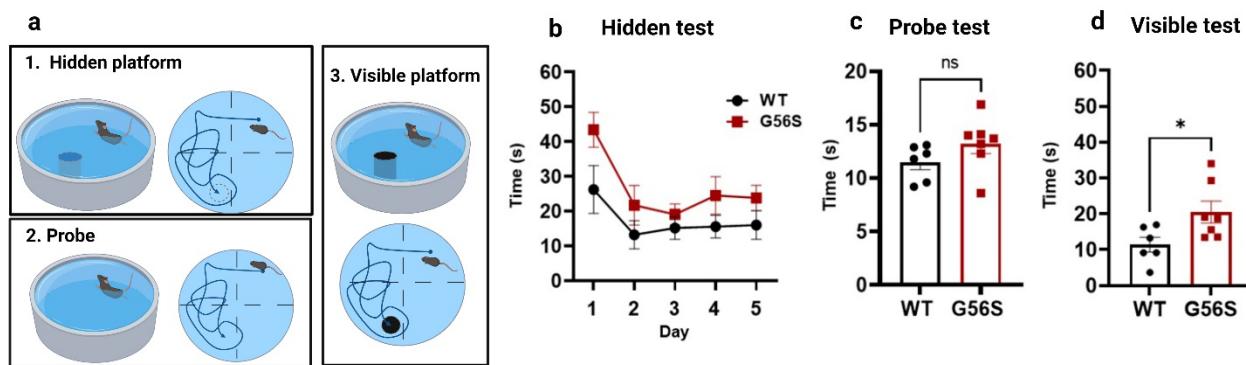
330 Biometric parameters are significantly altered in G56S mice

331 Patients diagnosed with SRS typically exhibit an asthenic physique with thin body build and
332 short stature. Many of these patients also exhibit significant bone abnormalities and low muscle
333 tone (11). To understand the mechanisms contributing to these physical aberrations, we
334 determined the impact of altered polyamine content on the growth and development of G56S
335 mice. Routine measurements revealed that the G56S mice have significantly lower body weight

336 than age-matched WT counterparts and also gained little to no weight throughout the duration of
337 the study period (Figure 3a). Similarly, the G56S mice exhibit significantly reduced body lengths
338 (Figure 3b). Collectively, these results suggest that the mutant mice may experience failure to
339 thrive compared to their WT littermates. Also, an analysis of the body composition of mutant
340 mice revealed a higher percentage of lean weight and a lower fat weight compared to their WT
341 counterparts (Figure 3c). This finding may reflect the diminished body build typically observed in
342 patients diagnosed with SRS. Similarly, quantification of bone density by micro-CT revealed that
343 the G56S mice exhibited decreased bone density compared to their WT littermates (Figure 3d).
344 Taken together, this data suggests that changes in polyamine content observed in the G56S
345 mice tissues have an impact on overall development and result in general failure to thrive.

346

347

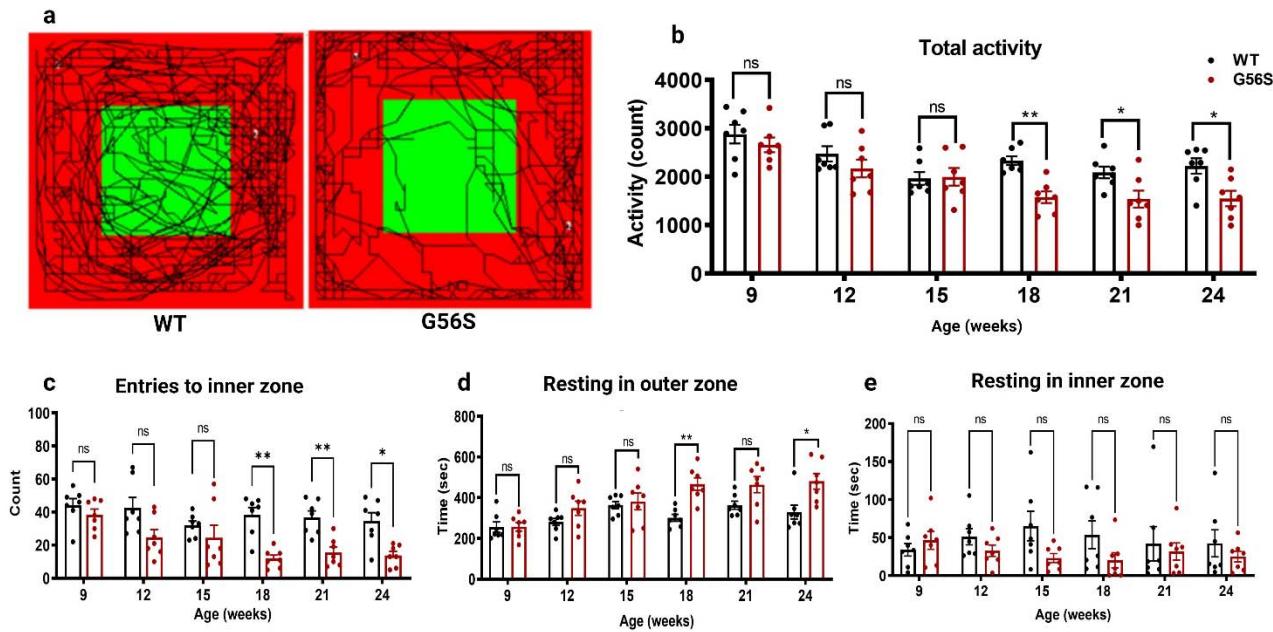

348 **Figure 3. Biometric analysis of male G56S and WT mice.** (a) Total body weight was measured in 3-week
349 intervals. (b) Body length of 24-week-old mice. (c) Body composition of 15-week-old mice (% lean and % fat weight)
350 determined by Echo-MRI scan. (d) Bone mineral density (BMD) of 20-week-old mice measured by micro-CT scan.
351 Values shown are mean \pm S.E.M., n = 7 mice per group, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

352 **G56S mice exhibit signs of cognitive impairment**

353 Mild to severe cognitive impairment is one of the major clinical observations of SRS. Two
354 patients diagnosed with the G56S mutation were reported to have severe cognitive disabilities
355 (12). To explore the impact of the G56S mutation on cognition, we evaluated the performance of
356 G56S and WT mice using the Morris water maze (MWM) test. For this test, the mice were

357 placed in a pool of water and were subjected to five days of training in which they learned to
358 locate an escape platform that was submerged and thus hidden under the water (Figure 4a,
359 panel 1). The time taken to find the platform on each day was recorded.

360 While our findings revealed no significant differences in the time required to find the escape
361 platform, we observed a trend that suggests that the WT were somewhat more effective than
362 the G56S mice at performing the task (Figure 4b). A secondary probe test, in which the platform
363 was completely removed from the pool (day 6; see Figure 4a, panel 2) revealed no significant
364 differences in the time spent in the escape quadrant (Figure 4c), however, the G56S mice
365 required significantly more time to locate a visible platform (see Figure 4a, panel 3) compared to
366 the WT mice (Figure 4d). This result may indicate that the WT mice learned and retained the
367 information needed to complete this task more effectively than the G56S mice. Overall, the
368 results of the MWM test suggest that the G56S mice exhibit relatively mild learning impairments
369 compared to the WT mice.


370
371 **Figure 4. Performance of G56S and WT mice in a Morris Water Maze (MWM) test.** (a) Description of the three
372 components of the MWM test. (b) Time required to locate a hidden escape platform on each day of a five-day training
373 period. (c) Time spent in the escape quadrant (probe test without the platform) given a limit of 60 sec on day 6. (d)
374 Time required to locate a visible escape platform on day 6. Data are mean \pm S.E.M., n=7 mice per group; two-way
375 ANOVA for repeated measures (a) and unpaired t-tests for (b) and (c), not significant (ns); *p < 0.05.

376 **Diminished explorative behavior in an open field test was observed in the G56S mice**

377 Anxiety-related responses are among the major symptoms of many neurological and
378 neurodevelopmental disorders, including SRS. To study this behavior, an open field tests can
379 be employed to evaluate and characterize different mouse strains. In our study, both the WT
380 and G56S mice were provided the opportunity to explore an open field arena which had been
381 divided into an outer and inner zones (Figure 5a). We assessed the total activity, the resting
382 time in each zone, the number of times each mouse entered the inner zone and the time spent
383 in the inner zone. The test was performed once every three weeks for 15 min to characterize
384 changes in behavior with advancing age.

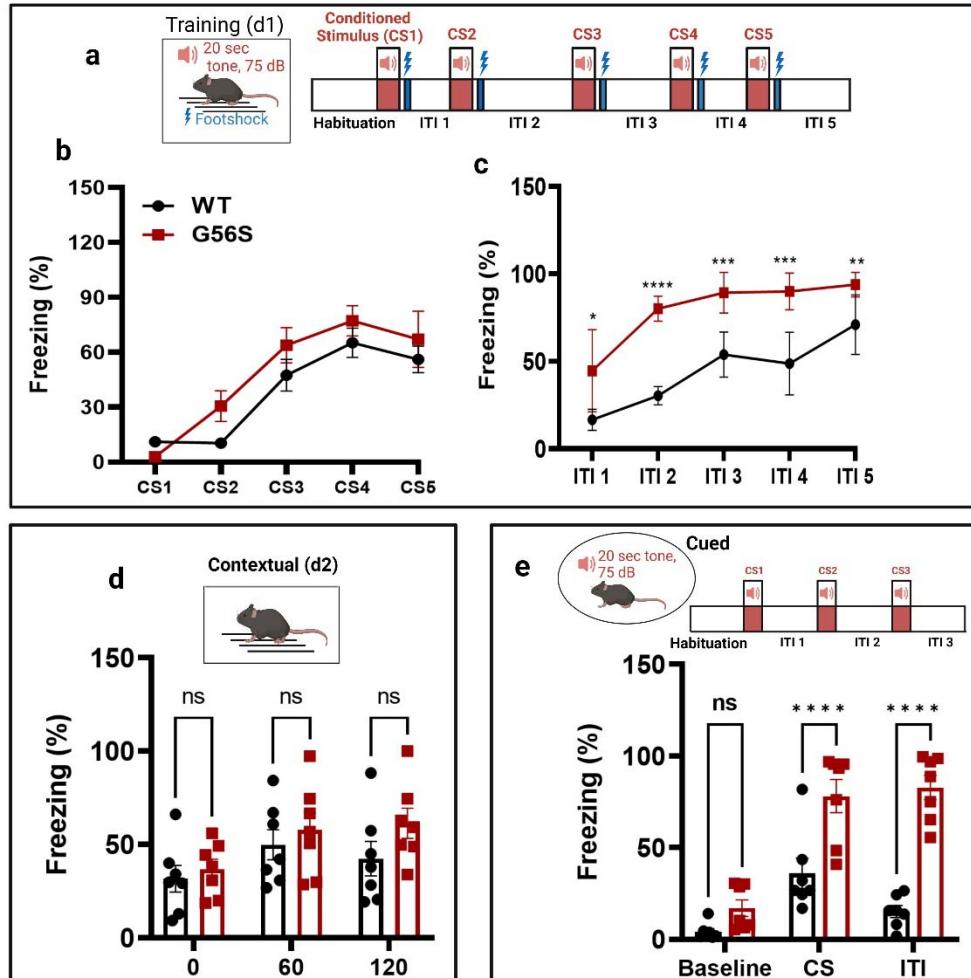
385 Among our results, we found that the G56S mice were less active compared to their WT
386 counterparts (Figure 5a). While no statistically significant differences were detected between the
387 two strains when the mice were less than 18 weeks old, the G56S mice became significantly
388 less active with increasing age compared to their WT littermates (Figure 5b). Similarly, G56S
389 mice were much less likely to enter the inner zone of the open field arena than their WT
390 counterparts beginning at 18 weeks of age (Figure 5c). These results suggest the possibility that
391 the G56S mice experience slow but steady disease progression.

392 Older G56S mice also spent significantly more time resting in the outer zone (Figure 5d) and
393 less time resting in the inner zone of the open field compared to the WT control (Figure 5e).
394 Collectively, these findings suggest that G56S mice exhibit less explorative behavior than their
395 WT counterparts and that these responses may represent higher anxiety or fear that increases
396 as the mice age.

397
398 **Figure 5. Anxiety-related response monitoring in an open field test.** (a) Movement pattern of the animals for 15
399 min in the open field test at 24 weeks of the age. (b) Total activity of the animals in the open field test measured as
400 the number of total numbers of movement, rearing, and other bodily activities. (c) Number of entries to the center
401 zone of the open field test. (d and e) Resting time of the animals in the outer and center zones of the open field
402 respectively. Data shown are mean \pm S.E.M., n=7, *p < 0.05; **p < 0.01; ns, not significant.

403
404
405 **Fear-related responses were higher in the G56S mice**
406 Fear-related responses exhibited by both WT and G56S mice were assessed via
407 measurements of stress-induced freezing. This response is an innate anti-predator fear-related
408 behavior that is characterized by a complete tonic immobilization while sparing respiration. This

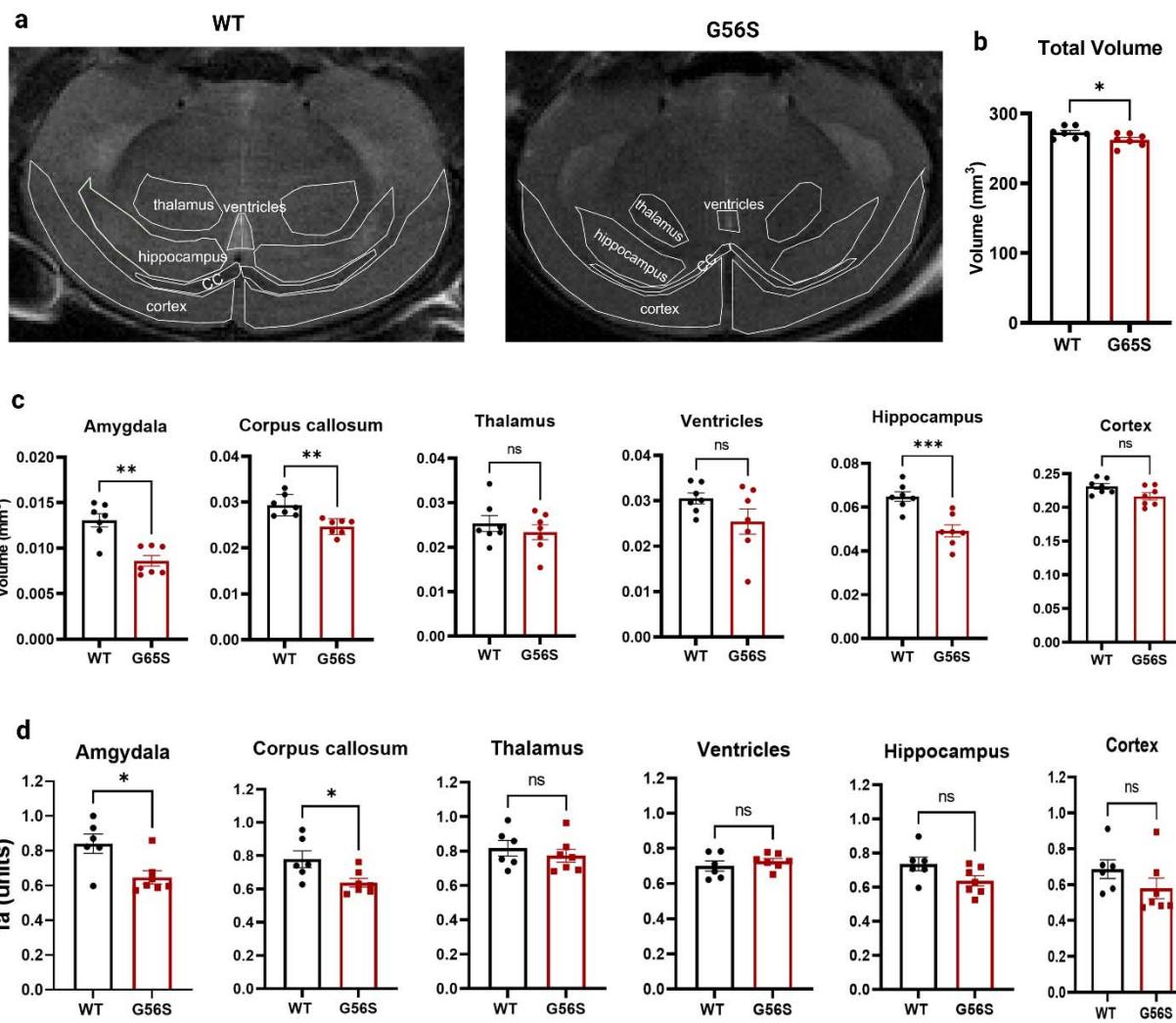
409 test uses auditory-cued fear conditioning, which requires the mouse to associate an aversive
410 outcome with an otherwise unrelated cued stimulation.


411 In this experiment, anxiety or fear responses are expressed as the percentage of time spent in a
412 freezing position after sound stimulation (an auditory cue) followed by foot shock (aversive
413 condition).

414 On the first day of the test, the mice were trained to associate the sound (conditioned stimulus,
415 CS) with the foot shock (unconditioned stimulus, US). The percentage of time spent in stress-
416 induced freezing was recorded during the CS and after delivery of the US (Figure 6a). We
417 observed a consistent increase in the freezing responses following the CS in both groups of
418 mice; this response reached a plateau after the delivery of the fourth sound stimulation and
419 decreased after the fifth (Figure 6b). These results suggest similar rates of fear acquisition by
420 both groups of mice. However, we observed significant differences in the freezing responses
421 displayed during the inter-trial intervals (ITIs, i.e., the period between the last foot shock and the
422 next sound stimulation). The G56S mice exhibited significantly longer, and more frequent
423 freezing responses compared to the WT mice (Figure 6c). Similarly, WT mice recovered
424 ambulation more rapidly than the G56S mice following administration of the CS and US. This
425 result indicates that the G56S mice exhibit more profound fear responses following stimulations
426 than their WT counterparts.

427 We then compared the freezing responses of G56S and WT mice in a contextual test. This test
428 was performed 24 hours after the CS-US training and involved no stimulation; the mice were
429 placed in the same experimental chamber and their freezing responses in this environment
430 were measured. While no statistically significant differences were observed, we detected a
431 pattern that suggested that the G56S might exhibit increased freezing responses compared to
432 the WT mice (Figure 6d). This trend suggests that the innate fear responses exhibited by the
433 G56S mice may be more profound when compared to those of their WT littermates.

434 In the cued test, we evaluated the freezing responses of both WT and G56S mice to the CS
435 only in a different environmental setting. After measuring baseline freezing responses during an
436 initial 60 sec habituation period, the mice were subjected to 20 sec of auditory stimulation (CS).
437 Their fear response during the CS and various intertrial intervals were then monitored. While the
438 G56S mice exhibited comparatively higher baseline freezing responses compared to their WT
439 counterparts in the new environmental setting, the differences did not achieve statistical
440 significance. By contrast, the G56S mice exhibited significantly higher fear responses compared
441 to the WT controls both during the CS as well as the ITIs (Figure 6e). Of note, the percentage
442 freezing during the ITIs exhibited by the G56S mice was not only elevated, but it also remained

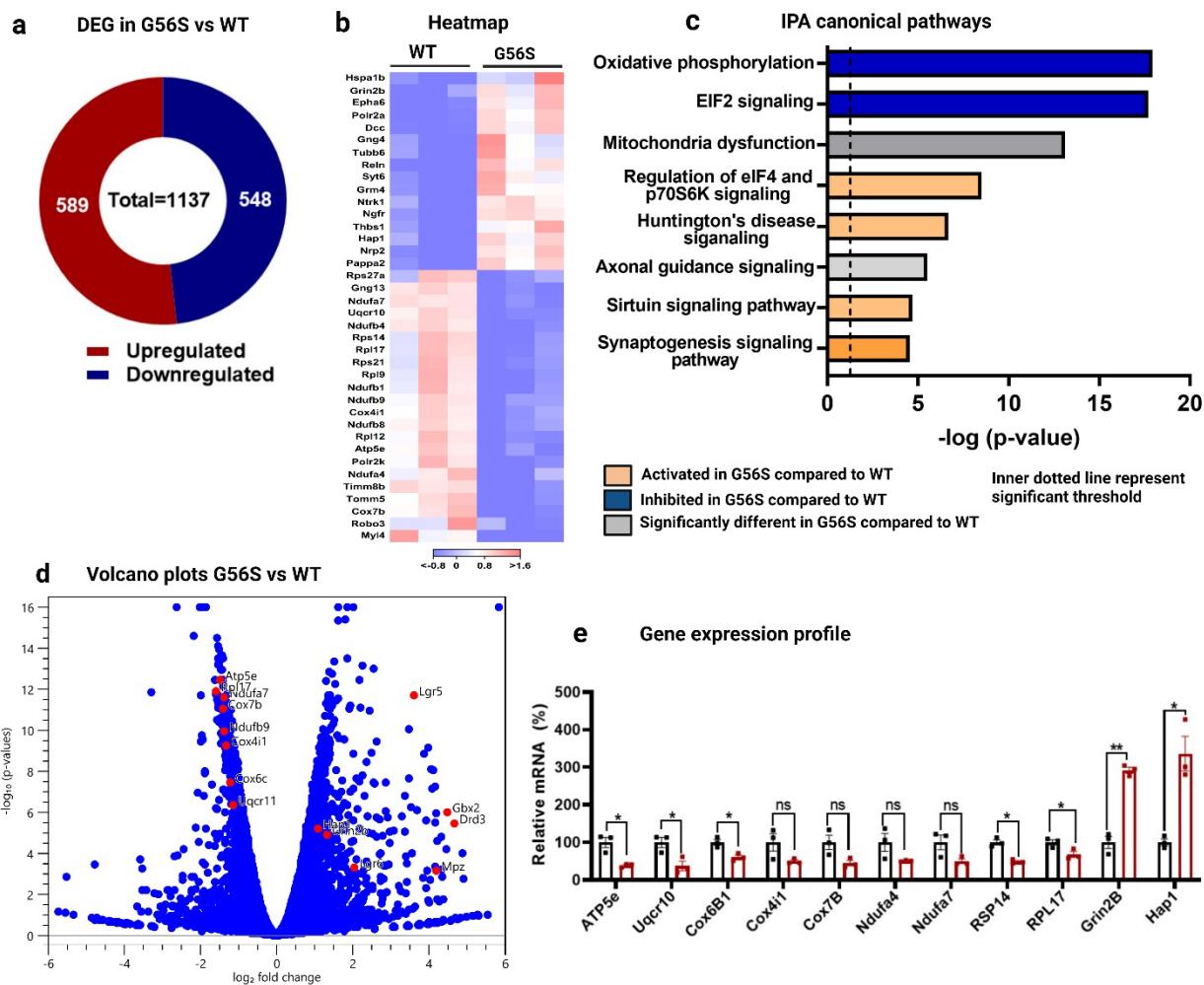

443 at a level similar to that observed during the CS. Taken together, these data suggest that the
444 G56S mice exhibit higher anxiety-related fear responses than their WT counterparts. This
445 finding may represent a specific neurological dysfunction similar to those observed in patients
446 diagnosed with SRS.

447
448 **Figure 6. Auditory-cued fear responses following a conditioned stimulus (CS).** (a and b) Fear learning and fear
449 response levels after each conditioned stimulus (CS; inter-trial interval, ITI) were assessed in 4–5-month-old G56S
450 and WT mice (n=7 per group). The fear response was expressed as the percentage of time spent in a stereotypical
451 freezing state during the presentation of the CS repeated five times during fear acquisition (CS 1–5; a 75 dB tone
452 lasting 20 sec followed by a foot shock). This was repeated four times with staggered inter-trial intervals. The inset (a)
453 documents the experimental sequences on day 1, which include habituation (hab), tone presentation (CS, loud-
454 speaker symbol), shock delivery (lightning symbol), and ITIs of varying durations. (c) WT and G56S mice
455 demonstrated significantly different responses during fear acquisition (genotype effects and genotype trial interactions
456 were evaluated by two-way ANOVA for repeated measures). (d) Fear response in contextual setting, without sound
457 and shock stimulation, performed 24 hours after fear acquisition. (e) Cue-fear response (with a changed
458 environment) induced by CS alone (tone: 20 sec, repeated three times with no foot shock) with variable ITIs. The
459 Baseline value represents the percentage spent in the freezing state during habituation before the CS (sound); the
460 CS response represents the average of three CS trials; the bars labeled ITI represent the average of the three ITIs for
461 each mouse. The inset documents the experimental sequences used on day 2, including habituation (hab), tone
462 presentation (CS, loud-speaker symbol), and ITIs of varying durations. Results obtained from WT and G56S mice
463 were compared using unpaired *t*-tests. Values shown are mean \pm S.E.M., **p* < 0.05; ***p* < 0.01; ****p* < 0.001; *****p* <
464 0.0001.

465 **G56S mice exhibit neuroanatomical changes**

466 We explored brain anatomical structures to determine whether the G56S mutation and resulting
467 alterations in polyamine metabolism were associated with major structural changes. We also
468 determined how altered brain structures might correlate with the behavioral defects described in
469 previous tests. For these experiments, brain volumes were assessed using T2-weighted
470 anatomical scans and diffusion tensor imaging (DTI) (Figure 7a). Other DTI parameters
471 collected included fractional anisotropy (fa), mean diffusivity (md), axial diffusivity (ad), and
472 radial diffusivity (rd). The results of whole-brain imaging showed that the G56S mice have
473 significantly smaller brain volumes than WT mice (Figure 7b). Similarly, analysis of several
474 specific brain regions that were selected based on reports describing SRS patients (23,24) and
475 our behavioral data revealed that the volumes of the amygdala (involved in fear learning and
476 emotional responses), the hippocampus (involved in cognitive functions), and the corpus
477 callosum were all significantly lower in the G56S mouse strain (Figure 7c). Also, DTI analysis of
478 the various brain regions revealed that fa, which is a measure of the microstructural integrity of
479 the white matter of the amygdala and the corpus callosum, was significantly lower in the G56S
480 mice compared to the WT controls. The other regions, including the hippocampus and the
481 cortex, exhibited decreasing trends, although they were not statistically significance (Figure 7d).

482
483
484
485
486
487
488
489
490


Figure 7. In vivo MRI structural analyses. (a) Representative MRI images of coronal sections of brains from WT and G56S mice. Annotations of different regions of the brain were based on the Allen Mouse Brain Atlas. (b and c) MRI volumetric analyses of the total brain volume and volumes of annotated regions highlighted in panel (a). Quantification of the volume of each region was normalized to the total brain volume for each sample. Volumes of each brain region were quantified using ITK snap software to assess RER8 MRI scan images. (d) Fractional anisotropy (fa) was quantified using DSI studio software. Comparisons of single variables between WT and G56S mice were performed using unpaired *t*-tests. Data shown are mean \pm S.E.M., n= 5-7, *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant. **Note:** The amygdala region was not visible in the image shown in panel (a) above.

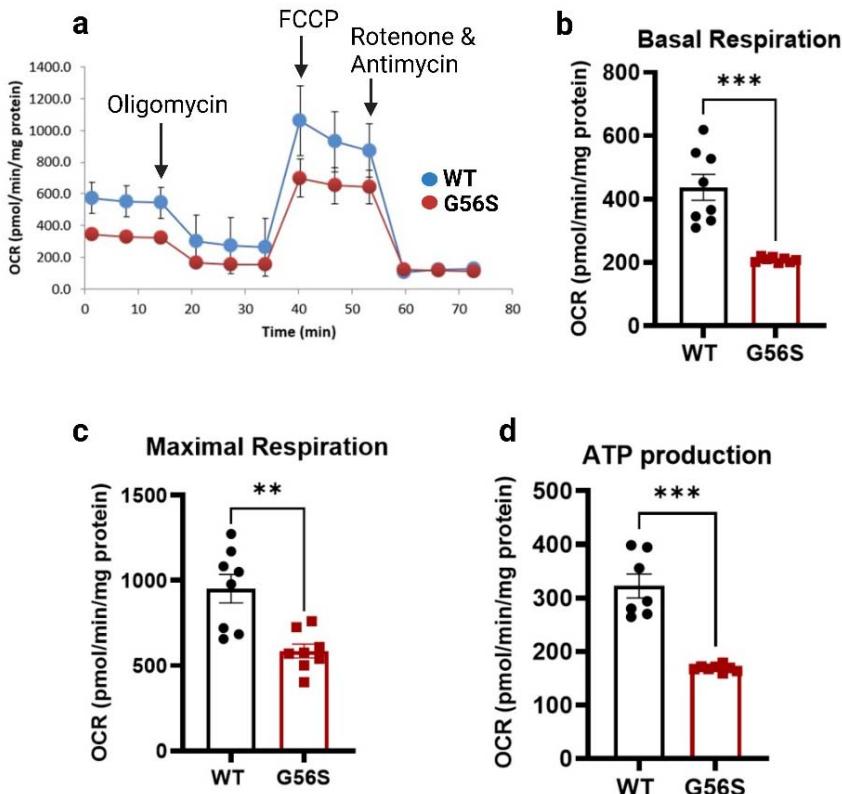
491

Mutation in *Sms* gene alters transcriptomic profile of the G56S mouse brain cortex

492 To elucidate the molecular mechanisms underlying some of the observed phenotypic and
493 behavioral differences, we isolated RNA and performed a transcriptomic analysis of the brain
494 cortex tissue of WT and G56S mice. We focused on the cortex because of its role in directing
495 higher complex tasks, including learning, memory, and consciousness. Furthermore, results
496 from previous studies suggest that spermine may have a protective role specifically within the
497 cerebral cortex (23,29). The results of our transcriptomic analysis of brain cortex tissue from WT
498 and G56S mice revealed more than 1,000 differentially expressed genes (DEGs) (Figure 8a and

499 Supplementary **Table 2**). A heatmap revealed differential expression of genes involved in
500 several key cellular and metabolic processes (Figure 8b).
501 Importantly we found differential expression of genes that contribute to mitochondrial function
502 and ribosomal protein synthesis. We performed gene enrichment pathway analysis to identify
503 possible metabolic pathways that might be altered in the G56S mice. Our results revealed
504 downregulation of pathways involved in mitochondrial oxidative phosphorylation (OXPHOS) and
505 ribosome protein synthesis (i.e., eukaryotic initiation factor 2 [eIF2] signaling) in the G56S mice
506 (Figure 8c). In addition, Huntington's disease, sirtuin, and synaptogenesis signaling pathways
507 were all upregulated in the G56S mice brain cortex compared to the WT (Figure 8c). The
508 expression pattern of genes involved in these metabolic processes were further confirmed in the
509 G56S mice relative to the WT by a Volcano plot (Figure 8d). We observed decreased
510 expression of *ATP5e*, *Uqcr10*, *Cox6B1*, *Cox4i1*, *Cox7b*, *Ndufa4*, and *Ndufa7* (all involved in
511 mitochondria OXPHOS), as well as decreased expression of *Rpl17* and *Rsp14* (both implicated
512 in ribosome protein synthesis via eIF2 signaling) in the brain cortex of the G56S mice compared
513 to the WT control (Figure 8e). Furthermore, we found increase expression of *Hap1* and *Grin2b*,
514 which are Huntington-associated protein 1 and ionotropic NMDA receptor subunit 2b
515 respectively (Figure 8e), both implicated in Huntington disease signaling.
516 Collectively, these data strongly suggest that the G56S mutation in the *Sms* gene and the
517 subsequent alterations in brain polyamine content result in changes in the expression profile of
518 genes involved in central cellular and metabolic processes of the brain. These observations may
519 explain one or more of the phenotypic abnormalities observed in G56S mice.
520

521


522 **Figure 8. Transcriptomic analysis of isolated brain cortical tissues.** (a) Differentially expressed genes (DEGs)
523 were identified using Qiagen CLC Genomic Workshop software. (b) Heatmap of selected genes that exhibit
524 statistically significant differences in expression ($p < 0.05$) and absolute values of \log_2 -fold change (LFC) greater than
525 or equal to 1. (c) Gene enrichment analysis of up- and downregulated transcripts with $p < 0.05$ and absolute LFC \geq
526 0.5 in the brain tissue from G56S compared to WT mice. Gene enrichment analysis was done using the Qiagen
527 Ingenuity Pathway Analysis (IPA) software. (d) A volcano plot showing the relative expression of selected genes
528 involved in oxidative phosphorylation and other pathways based on the results of the enrichment analysis. (e) qPCR
529 validation of RNA-seq results for selected genes implicated in oxidative phosphorylation, eukaryotic initiation factor 2
530 (eIF2) signaling, and Huntington's disease. The data shown mean \pm S.E.M, (n=3 for both WT and G56S mice). * $p <$
531 0.05; ** $p < 0.01$, ns, not significant.

532 **G56S mice exhibit impaired mitochondrial respiration**

533 To confirm the downregulation of mitochondrial oxidative phosphorylation predicted by gene
534 expression analysis, we isolated primary fibroblasts from both the WT and G56S mice and
535 evaluated mitochondrial respiration using the XFe96 Seahorse bioanalyzer. Our results
536 revealed that both basal and oligomycin-sensitive respiration were significantly diminished in
537 fibroblasts isolated from G56S mice (Figures 9a and 9b). Similarly, maximum respiration and
538 rates of ATP synthesis were also significantly reduced in fibroblasts from the G56S mice
539 compared to the WT (Figures 9c and 9d). Taken together, these data suggest that SMS

540 deficiency and impaired polyamine metabolism in G56S fibroblasts will lead to impaired
541 mitochondrial bioenergetics and functions.

542

543
544 **Figure 9. Mitochondrial respiration in isolated fibroblasts.** (a) Respiratory profiles of primary fibroblasts isolated
545 from WT (blue line) and G56S (red). Oligomycin (ATP synthase inhibitor), FCCP (H⁺ ionophore), and
546 rotenone/antimycin (mitochondria complex I/III inhibitors) were added at the times indicated. (b) Basal respiration, (c)
547 maximal respiration, and (d) ATP production in fibroblasts from WT and G56S mice were assessed using a Seahorse
548 XFe96 analyzer. Data shown are mean \pm s.e.m. of average n=8 technical replicates of two independent experiments.
549 **p < 0.01; ***p < 0.001.

550 Discussion

551 One of the main challenges of preclinical research intended to elucidate the mechanisms
552 underlying diseases associated with cognitive impairment is the identification of a robust and
553 translationally relevant animal model. While the G56S mouse features an *Sms* gene-specific
554 missense mutation that replicates a genetic lesion identified in patients with severe forms of
555 SRS, it is not known whether this mouse represents a useful tool for therapy development.
556 Therefore, the goal of this study is to provide a detailed behavioral and neuroanatomical
557 assessment of these mice as a baseline for future phenotype reversal studies. In addition, we
558 studied the transcriptomic landscape of the brain cortex to identify gene expression patterns that
559 may contribute to the abnormalities observed in the mice and possibly in SRS patients.

560 SRS is a disease characterized by abnormal somatic features and a general failure to thrive.
561 Patients are described as having asthenic body builds, mild short stature, and diminished body
562 mass. These patients also exhibit abnormal bone structure and sustain frequent fractures (11).
563 In the current study, we report that the G56S mice exhibit lower body weights as well as
564 reduced overall length, bone mineral density, and body fat composition compared to their WT
565 counterparts. These findings suggest that the G56S mouse model reproduces many of the
566 abnormal clinical features described for SRS. However, the impact of the resulting disruptions in
567 polyamine metabolism and their contributions to disease-specific symptomatology remain
568 unknown. A previous study that focusing on bone marrow-derived multipotent stromal cells
569 (MSCs), revealed that the mRNA silencing of SMS gene resulted in impaired cell proliferation
570 and a reduced capacity for osteogenesis (30). These results suggest a possible link between
571 the *Sms* mutation, dysregulated polyamine metabolism, and the decreased bone mineral
572 density observed in both patients and the G56S mice. While most SRS patients, including those
573 with the G56S mutation (12) are eventually diagnosed with kyphoscoliosis, no scoliosis was
574 detected in micro-CT scans of these mice. However, we cannot rule out the possibility that
575 abnormal spines may develop in older mice.

576 The decreased body fat composition might be attributed to the increase in tissue spermidine, as
577 this polyamine has been implicated in promoting lipolysis (31). However, it is also possible that
578 the absence of SMS can result in impaired mitochondrial functions (16,30). In this case, the
579 mice will depend more heavily on glycolysis as a means of energy generation; resulting in the
580 utilization of greater amounts of food with less available to be converted to and stored as body
581 fat. The decreased body weight seen in these mice supports the general idea that disturbances
582 in polyamine homeostasis impair cell growth and tissue development (4) which may lead to
583 general growth failure.

584 Similar to what has been reported in many SRS patients, the G56S mice display signs of
585 cognitive impairment and exhibit significant reduction in exploratory behavior when evaluated in
586 an open field test. These findings suggest that these mice exhibit amplified anxiety-related
587 behaviors. This hypothesis was further studied using the fear-conditioning test. Mutant mice
588 displayed significantly heightened fear responses when presented with an auditory conditioned
589 stimulus (CS) followed by unconditioned stimulus (US; foot shock). The increase in fear
590 responses in both the contextual and cued tests further confirm the observed heightened
591 anxiety-related behavior in the G56S mouse strain. Overall, this data provides some evidence
592 suggesting the existence of neurological abnormalities in the mutant mice. Since polyamines
593 are important contributors to the development of the nervous system (32), several regions of the
594 brain might be contributing to these behavioral defects. Both the amygdala and the

595 hippocampus in the G56S mice, which are brain regions involved in fear-associated memory
596 and learning showed decrease volume compared to the WT, similar to that reported in SRS
597 patients (23). Thus, these results suggest that impaired polyamine metabolism and excess
598 spermidine accumulation may lead to atrophy and neuronal loss in these regions (23) as well as
599 the defects in behavioral and learning outcomes observed in these mice. The possibility that
600 disrupted polyamine metabolism might lead to brain atrophy was further confirmed by the
601 decrease in the fa value found in G56S mice. Although we did not measure the polyamine
602 content in specific regions of the brain, we believe that the total brain polyamine content most
603 likely reflects the overall content in the different regions, given that G56S mice lack SMS in all
604 tissues and that this mutation is not tissue or brain-region specific.

605 Another potential mechanism that might explain the behavioral defects observed in G56S mice
606 is spermidine-mediated disruption of receptor signaling. In an earlier study, Rubin *et al.* (33)
607 reported that intra-amygdala administration of spermidine in an experimental rat model resulted
608 in a dose-dependent increase in freezing responses. These results suggested that the excess
609 accumulation of spermidine in the brains of G56S mice might contribute to the observed
610 increase in anxiety-related behaviors. The mechanisms underlying spermidine-mediated
611 increases in fear responses have not yet been clarified.

612 Spermidine may regulate the function of the amygdala via interactions with and modulation of
613 the ion channel receptor for N-methyl-D-aspartate (NMDA); an earlier report detailed polyamine-
614 mediated negative regulation of this receptor (34). Administration of arcaine, a putative
615 competitive antagonist at the polyamine binding site of the NMDA receptor, resulted in a
616 decrease in spermidine-induced fear responses in rats (33). Collectively, these results suggest
617 that spermidine levels may have an impact on amygdala function and that excess accumulation
618 of spermidine may induce a fear response as well as other behavioral abnormalities seen in the
619 G56S mice. It is important to note that anxiety has been identified as one of the main symptoms
620 of numerous neurological disorders (35). Although there are no clinical reports that document
621 this specific behavior in SRS patients, family members have confirmed anxiety and the
622 prevalence of fear-related behaviors in some patients (personal communication, Snyder-
623 Robinson Foundation Conference 2022).

624 In addition to the neuroanatomic defects, other potential mechanisms contributing to the
625 phenotypic abnormalities observed in the G56S mice were revealed by the transcriptomic
626 analysis. These include impaired mitochondrial function, alterations in ribosomal protein
627 synthesis signaling pathways, and upregulation of genes implicated in the pathogenesis of
628 Huntington's disease. The mitochondria are important energy-generating cellular organelles;

629 mitochondrial dysfunction has been implicated in a variety of different neurological or
630 neurodegenerative diseases (36). Results from previous studies have suggested that impaired
631 mitochondrial function might contribute to the pathogenesis of SRS (16,30) via one of several
632 potential mechanisms:

- 633 (i) Increased spermidine levels that accumulate in cells that lack SMS may promote the
634 synthesis and release of reactive oxygen species (ROS) secondary to increased
635 catabolism. Elevated ROS results in mitochondrial oxidative stress and impaired
636 mitochondrial function (16).
- 637 (ii) Polyamines play essential roles in modulating gene expression. Earlier reports
638 suggest that spermine modulates mammalian mitochondrial translation initiation
639 processes (37,38). Thus, the lack of SMS or spermine could inhibit synthesis of
640 mitochondrial proteins and result in impaired mitochondrial functions.
- 641 (iii) Normal mitochondrial metabolism can result in the accumulation of potentially
642 damaging levels of by-products including ROS and Ca^{2+} (39). As a polycationic
643 molecule, spermine can scavenge mitochondrial ROS (40,41), and reduce the levels
644 of mitochondrial permeability transition pore (mPTP) generated in response to Ca^{2+}
645 accumulation (42). Thus, the lack of SMS or an observed decrease in cellular
646 spermine content may result in mitochondrial damage.
- 647 (iv) Another potential mechanism of mitochondrial impairment in SRS may relate to the
648 decreased expression of nuclear genes encoding mitochondrial proteins reported in
649 this study. Although we do not yet understand how *Sms* mutations and/or decrease
650 spermine content result in the changes in gene expression pattern observed in this
651 study, either factor may be involved in direct or indirect interactions with critical
652 transcription factors. It will be important to identify relevant transcription factors as
653 this may improve our understanding of how spermine and/or SMS modulate
654 mitochondrial function.

655 In conclusion, efforts to develop effective therapies for SRS will require a better understanding
656 of the disease pathophysiology as well as suitable disease-specific animal models that
657 recapitulate many of the critical abnormalities diagnosed in these patients. The findings
658 presented in this study suggest that the G56S mouse is a good model that can be used to study
659 SRS pathogenesis and may be an important tool for therapeutic development. This study also
660 provides parameters that may be used to assess the effectiveness of therapy for SRS in a
661 murine model. Finally, the data shown here offers insight that could be used to improve the
662 current clinical management of SRS.

663

664

665 **Acknowledgements:**

666 We thank the Snyder-Robinson Foundation, C. Lutz, and A. Zuberi for generating and providing
667 the G56S mouse model; A. Schmidt, E. Goetzman, and K. Schwab for the advice and
668 assistance with animal imaging; W. MacDonald, R. Elbakri, and A. Chattopadhyay for the help
669 on transcriptomic and pathway analyses; C. van 't Land, A. Karunandhi, and G. Vockley for
670 SeaHorse experiment; O. Tomisin for help with the 2D protein crystal structure modeling.
671 Members of the Kemaladewi laboratory are acknowledged for technical support and input in this
672 study. This research was supported in part by the University of Pittsburgh Center for Research
673 Computing through the resources provided. Specifically, this work used the HTC cluster, which
674 is supported by NIH award number S10OD028483. This work was supported by the RK Mellon
675 Institute for Pediatric Research Postdoctoral Fellowship (to O.A.), the Chan Zuckerberg Rare-
676 as-One Initiative/Snyder-Robinson Foundation and University of Pennsylvania Orphan Disease
677 Center Million Dollar Bike Ride (MDBR-20-135-SRS) to R.A.C and T.M.S., and the Children's
678 Trust of UPMC Children's Hospital of Pittsburgh Foundation, Dept. of Pediatrics, Univ. of
679 Pittsburgh School of Medicine, Research Advisory Committee Grant, NIH Director's New
680 Innovator Award DP2-AR081047, NIH R01-AR078872 (to D.U.K.).

681 **Author contributions:**

682 Conceptualization: O.A. and D.U.K; Investigation: O.A., A.M., M.J., M.S.P., Y.G., Y.W., J.F.,
683 T.M.S, R.A.C.; Formal analysis and visualization: O.A., A.M., M.E.P., Y.G., Y.W., H.B., D.U.K;
684 Writing: O.A. and D.U.K.; Supervision, D.U.K. All authors read and commented on the
685 manuscript.

686 **References:**

- 687 1. Bachrach U, Wang YC, Tabib A. Polyamines: New cues in cellular signal transduction. *News in
688 Physiological Sciences*. 2001;16(3).
- 689 2. Landau G, Bercovich Z, Park MH, Kahana C. The role of polyamines in supporting growth of
690 mammalian cells is mediated through their requirement for translation initiation and elongation.
691 *Journal of Biological Chemistry*. 2010;285(17).
- 692 3. Hesterberg R, Cleveland J, Epling-Burnette P. Role of Polyamines in Immune Cell Functions.
693 *Medical Sciences*. 2018;6(1).
- 694 4. Kemaladewi DU, Benjamin JS, Hyatt E, Ivakine EA, Cohn RD. Increased polyamines as protective
695 disease modifiers in congenital muscular dystrophy. *Hum Mol Genet*. 2018;27(11).

696 5. Akinyele O, Wallace HM. Understanding the Polyamine and mTOR Pathway Interaction in Breast
697 Cancer Cell Growth. *Medical Sciences*. 2022 Sep 10;10(3):51.

698 6. Arruabarrena-Aristorena A, Zabala-Letona A, Carracedo A. Oil for the cancer engine: The cross-
699 talk between oncogenic signaling and polyamine metabolism. Vol. 4, *Science Advances*. 2018.

700 7. Holbert CE, Cullen MT, Casero RA, Stewart TM. Polyamines in cancer: integrating organismal
701 metabolism and antitumour immunity. *Nat Rev Cancer*. 2022 Aug 27;22(8):467–80.

702 8. Lewandowski NM, Ju S, Verbitsky M, Ross B, Geddie ML, Rockenstein E, et al. Polyamine pathway
703 contributes to the pathogenesis of Parkinson disease. *Proc Natl Acad Sci U S A*. 2010;107(39).

704 9. Soda K. The mechanisms by which polyamines accelerate tumor spread. *Journal of Experimental
705 and Clinical Cancer Research*. 2011;30(1).

706 10. Milovic V, Turchanowa L. Polyamines and colon cancer. In: *Biochemical Society Transactions*.
707 2003.

708 11. Schwartz CE, Peron A, Kutler MJ, Snyder-Robinson Syndrome ;, Adam MP, Ardinger HH, et al.
709 Snyder-Robinson Syndrome Synonym: Spermine Synthase Deficiency. 2013.

710 12. de Alencastro G, McCloskey DE, Kliemann SE, Maranduba CMC, Pegg AE, Wang X, et al. New SMS
711 mutation leads to a striking reduction in spermine synthase protein function and a severe form of
712 Snyder-Robinson X-linked recessive mental retardation syndrome. *J Med Genet*. 2008;45(8).

713 13. Larcher L, Norris JW, Lejeune E, Buratti J, Mignot C, Garel C, et al. The complete loss of function
714 of the SMS gene results in a severe form of Snyder-Robinson syndrome. *Eur J Med Genet*.
715 2020;63(4).

716 14. Valera Ribera C, Martinez-Ferrer, Flores Fernández E, Vázquez Gómez I, Orenes Vera A, Valls
717 Pascual E, et al. Snyder-Robinson syndrome: differential diagnosis of osteogenesis imperfecta.
718 *Osteoporosis International*. 2022;33(5).

719 15. Cason AL, Ikeguchi Y, Skinner C, Wood TC, Holden KR, Lubs HA, et al. X-linked spermine synthase
720 gene (SMS) defect: The first polyamine deficiency syndrome. *European Journal of Human
721 Genetics*. 2003;11(12).

722 16. Li C, Brazill JM, Liu S, Bello C, Zhu Y, Morimoto M, et al. Spermine synthase deficiency causes
723 lysosomal dysfunction and oxidative stress in models of Snyder-Robinson syndrome. *Nat
724 Commun*. 2017;8(1).

725 17. Tao X, Zhu Y, Diaz-Perez Z, Yu SH, Foley JR, Stewart TM, et al. Phenylbutyrate modulates
726 polyamine acetylase and ameliorates Snyder-Robinson syndrome in a *Drosophila* model and
727 patient cells. 2022; Available from: <https://doi.org/10.1172/jci>.

728 18. MacKintosh CA, Pegg AE. Effect of spermine synthase deficiency on polyamine biosynthesis and
729 content in mice and embryonic fibroblasts, and the sensitivity of fibroblasts to 1,3-bis-(2-
730 chloroethyl)-N-nitrosourea. *Biochemical Journal*. 2000;351(2).

731 19. Wang X, Ikeguchi Y, McCloskey DE, Nelson P, Pegg AE. Spermine synthesis is required for normal
732 viability, growth, and fertility in the mouse. *Journal of Biological Chemistry*. 2004;279(49).

733 20. Meyer RA, Henley CM, Meyer MH, Morgan PL, McDonald AG, Mills C, et al. Partial deletion of
734 both the spermine synthase gene and the Pex gene in the X-linked hypophosphatemic, Gyro (Gy)
735 mouse. *Genomics*. 1998;48(3).

736 21. Lyon MF, Scriver CR, Baker LR, Tenenhouse HS, Kronick J, Mandla S. The Gy mutation: Another
737 cause of X-linked hypophosphatemia. *Proc Natl Acad Sci U S A*. 1986;83(13).

738 22. Laskowski S. THE JACKSON LABORATORY AND SNYDER-ROBINSON FOUNDATION ANNOUNCE
739 NEW RESEARCH MODELS FOR SNYDER-ROBINSON SYNDROME.

740 23. Kesler SR, Schwartz C, Stevenson RE, Reiss AL. The impact of spermine synthase (SMS) mutations
741 on brain morphology. *Neurogenetics*. 2009;10(4).

742 24. Starks RD, Kirby PA, Ciliberto MA, Hefti MM. Snyder-Robinson Syndrome: An Autopsy Case
743 Report. *Autops Case Rep*. 2018;8(3).

744 25. Tsien JZ, Huerta PT, Tonegawa S. The essential role of hippocampal CA1 NMDA receptor-
745 dependent synaptic plasticity in spatial memory. *Cell*. 1996;87(7).

746 26. Khan M, Gasser S. Generating primary fibroblast cultures from mouse ear and tail tissues. *Journal*
747 *of Visualized Experiments*. 2016;2016(107).

748 27. Kabra PM, Lee HK, Lubich WP, Marton LJ. Solid-phase extraction and determination of dansyl
749 derivatives of unconjugated and acetylated polyamines by reversed-phase liquid
750 chromatography: Improved separation systems for polyamines in cerebrospinal fluid, urine and
751 tissue. *J Chromatogr B Biomed Sci Appl*. 1986;380(C).

752 28. Zhang Z, Teng S, Wang L, Schwartz CE, Alexov E. Computational analysis of missense mutations
753 causing Snyder-Robinson syndrome. *Hum Mutat*. 2010 Sep;31(9):1043–9.

754 29. Clarkson AN, Liu H, Pearson L, Kapoor M, Harrison JC, Sammut IA, et al. Neuroprotective effects
755 of spermine following hypoxia-ischemia-induced brain damage: A mechanistic study. *The FASEB*
756 *Journal*. 2004 Jul 7;18(10):1114–6.

757 30. Ramsay AL, Alonso-Garcia V, Chaboya C, Radut B, Le B, Florez J, et al. Modeling Snyder-Robinson
758 Syndrome in multipotent stromal cells reveals impaired mitochondrial function as a potential
759 cause for deficient osteogenesis. *Sci Rep*. 2019;9(1).

760 31. Monelli E, Villacampa P, Zabala-Letona A, Martinez-Romero A, Llena J, Beiroa D, et al. Angiocrine
761 polyamine production regulates adiposity. *Nat Metab*. 2022;4(3).

762 32. Slotkin TA, Bartolome J. Role of ornithine decarboxylase and the polyamines in nervous system
763 development: A review. *Brain Res Bull*. 1986;17(3).

764 33. Rubin MA, Berlese DB, Stiegemeier JA, Volkweis MA, Oliveira DM, dos Santos TLB, et al. Intra-
765 Amygdala Administration of Polyamines Modulates Fear Conditioning in Rats. *Journal of*
766 *Neuroscience*. 2004;24(9).

767 34. Subramaniam S, O'connor MJ, Masukawa LM, McGonigle P. Polyamine effects on the NMDA
768 receptor in human brain. *Exp Neurol*. 1994;130(2).

769 35. Davies RD, Gabbert SL, Riggs PD. Anxiety disorders in neurologic illness. *Curr Treat Options*
770 *Neurol*. 2001;3(4).

771 36. Guo CY, Sun L, Chen XP, Zhang DS. Oxidative stress, mitochondrial damage and
772 neurodegenerative diseases. *Neural Regen Res.* 2013;8(21).

773 37. Lee M, Matsunaga N, Akabane S, Yasuda I, Ueda T, Takeuchi-Tomita N. Reconstitution of
774 mammalian mitochondrial translation system capable of correct initiation and long polypeptide
775 synthesis from leaderless mRNA. *Nucleic Acids Res.* 2021;49(1).

776 38. Christian BE, Haque ME, Spremulli LL. The effect of spermine on the initiation of mitochondrial
777 protein synthesis. *Biochem Biophys Res Commun.* 2010;391(1).

778 39. Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced
779 ROS release. Vol. 94, *Physiological Reviews*. 2014.

780 40. Ha HC, Sirisoma NS, Kuppusamy P, Zweier JL, Woster PM, Casero RA. The natural polyamine
781 spermine functions directly as a free radical scavenger. *Proc Natl Acad Sci U S A.* 1998;95(19).

782 41. Sava IG, Battaglia V, Rossi CA, Salvi M, Toninello A. Free radical scavenging action of the natural
783 polyamine spermine in rat liver mitochondria. *Free Radic Biol Med.* 2006;41(8).

784 42. Elustondo PA, Negoda A, Kane CL, Kane DA, Pavlov E v. Spermine selectively inhibits high-
785 conductance, but not low-conductance calcium-induced permeability transition pore. *Biochim
786 Biophys Acta Bioenerg.* 2015;1847(2).

787

788

789