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Abstract 9 

Background: 10 

Approximately 95% of samples analyzed in univariate genome-wide association studies 11 

(GWAS) are of European ancestry. This bias toward European ancestry populations in 12 

association screening also exists for other analyses and methods that are often developed 13 

and tested on European ancestry only. However, existing data in non-European populations, 14 

which are often of modest sample size, could benefit from innovative approaches as recently 15 

illustrated in the context of polygenic risk scores. 16 

Methods: 17 

Here, we extend and assess the potential limitations and gain of our multi-trait GWAS pipeline, 18 

JASS (Joint Analysis of Summary Statistics), for the analysis of non-European ancestries. To 19 

this end, we conducted the joint GWAS of 19 hematological traits and glycemic traits across 20 
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five ancestries (European (EUR), admixed American (AMR), African (AFR), East Asian (EAS), 21 

South-East Asian (SAS)). 22 

Results: 23 

We detected 367 new genome-wide significant associations in non-European populations (15 24 

in Admixed American (AMR), 72 in African (AFR) and 280 in East Asian (EAS)). New 25 

associations detected represent 5%, 17% and 13% of associations in the AFR, AMR and EAS 26 

populations, respectively. Overall, multi-trait testing increases the replication of European 27 

associated loci in non-European ancestry by 15%. Pleiotropic effects were highly similar at 28 

significant loci across ancestries (e.g. the mean correlation between multi-trait genetic effects 29 

of EUR and EAS ancestries was 0.88). For hematological traits, strong discrepancies in multi-30 

trait genetic effects are tied to known evolutionary divergences: the ARKC1 loci, which is 31 

adaptive to overcome the p.vivax induced malaria.  32 

Conclusions: 33 

Multi-trait GWAS can be a valuable tool to narrow the genetic knowledge gap between 34 

European and non-European populations. 35 

 36 
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 38 

Background  39 

After 15 years of intensive GWAS analyses, investigators are reaping tangible translational 40 

benefits such as drug repurposing opportunity, and actionable polygenic risk scores [1]. Yet, 41 

~95% of samples analyzed in GWAS are from European ancestry [2]. Genetic insights gained 42 

on European ancestry are only partially transferrable to other ancestries: polygenic risk scores 43 

have lessened accuracy [3–5], and genetic testing yields more often ambiguous results in non-44 

European ancestries [6]. Altogether, this gap in data and analyses is a major bias in the 45 
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existing research that can result in increased health disparities [7,8]. The genetic community 46 

is increasingly aware of this issue and strongly recommend to include more individuals from 47 

non-European ancestries in GWAS studies [2,7,9–12]. Increasing the sample size coverage 48 

of non-European ancestries has been identified as one of the most important objectives for 49 

the genetic community in the coming years [1].  50 

 51 

Increasing the sampling of non-European ancestries is paramount, but computational method 52 

development is also an area of improvement that is less often discussed [10,11]. Many 53 

statistical genetics methods are developed and tested primarily on the European population. 54 

To ascertain this bias, we surveyed 25 recent methods in statistical genetics (Table S1). 55 

Amongst these methods 20 conducted an application on human real data, all included 56 

European data, and 13 focused on European data exclusively. When developed on European 57 

data exclusively, using these computational methods on European ancestry becomes all the 58 

more easy: input files (e.g. specific formats of reference panels) are often provided, 59 

performances and potential pitfalls are known, and protocols (e.g. parameters) are specific. In 60 

comparison, applying these methods to diverse ancestries can require substantial additional 61 

work and can be perceived as riskier since potential performance discrepancies are 62 

undocumented.  63 

 64 

This European by default mode creates a snowballing effect where secondary analysis 65 

increases further the genetic knowledge gap between European and non-European 66 

ancestries. Furthermore, the analysis of non-European do not only address a public health 67 

gap, but also offer opportunities and several recent publications illustrate the benefit of 68 

methodological development for the analysis of diverse populations in various applications 69 

such as: polygenic risk scores [13], association testing [14], and TWAS [15].  70 

 71 

In this context, we tested if the properties of our previously developed JASS (Joint Analysis of 72 

Summary Statistics) pipeline – its ability to detect biologically relevant associations missed by 73 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 19, 2023. ; https://doi.org/10.1101/2023.06.23.546248doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?fGLSUG
https://www.zotero.org/google-docs/?vrPjcw
https://www.zotero.org/google-docs/?LHEEDH
https://www.zotero.org/google-docs/?CkAC9K
https://www.zotero.org/google-docs/?nwNuHZ
https://www.zotero.org/google-docs/?f0LExj
https://www.zotero.org/google-docs/?RX6Rlt
https://doi.org/10.1101/2023.06.23.546248
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

univariate GWAS [16,17] – would generalize to non-European ancestries. To this end, we 74 

conducted the joint GWAS of 19 hematological traits and glycemic traits retrieved from two 75 

large trans ancestry studies [18,19]. We applied our pipeline to five ancestries (European 76 

(EUR), Admixed American (AMR), African (AFR), East Asian (EAS), South-East Asian (SAS)), 77 

and investigated the performance and robustness of each step of the pipeline across 78 

ancestries. For the given input data, the pipeline generalized properly to three out of the four 79 

non-European ancestries: AMR, AFR, and EAS. We detected 367 new genome-wide 80 

significant associations in non-European populations (15 in AMR, 72 in AFR and 280 in EAS). 81 

We then report to what extent multi-trait testing increases the replication of European 82 

associated loci in non-European ancestry. Finally, we investigate the conservation of 83 

pleiotropy across ancestries, and tie the observed differences to known evolutionary 84 

divergences. Altogether these analyses suggest that multi-trait GWAS methods can be 85 

valuable to take advantage of modest size cohorts and to narrow the genetic knowledge gap 86 

between European and non-European populations.  87 

Methods 88 

Survey of ancestries used in recently published methods in statistical genetics 89 

To ascertain a potential bias in ancestries used to develop and test recent statistical genetic 90 

tools, we surveyed 25 publications. We looked up ancestries studied in: i) methodology 91 

focused publications of the American Journal of Human Genetics published after January 92 

2023, ii) Bioinformatics publications in the “Genetics and Population Analysis” section of the 93 

March, April and May issues, and iii) the first page of results of the Google Scholar query 94 

“gwas summary statistics methods” ordered by relevance and published after 2021 (query was 95 

performed by Dr. Julienne on May 17th 2023). This survey does not pretend to 96 

comprehensively ascertain the ancestry bias in method development in statistical genetics. Its 97 

aim is rather to provide a snapshot of common practices of the field at the time of this study. 98 
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Summary Statistics 99 

GWAS of hematological traits originate from the Chen et al paper [19] and were downloaded 100 

from the GWAS Catalog (https://www.ebi.ac.uk/gwas/publications/32888493#study_panel). 101 

We analyzed 15 quantitative hematological traits in 740,292 participants from four ancestries: 102 

563 946 Europeans, 151,807 East Asians, 9,368 Admixed Americans and 15 171 Africans 103 

(Table S2). GWAS of glycemic traits come from the [18] study downloadable from GWAS 104 

Catalog (https://www.ebi.ac.uk/gwas/publications/34059833). We analyzed four glycemic 105 

traits in 281,416 individuals without diabetes from European, East Asian, Admixed American 106 

and African American or Afro-Caribbean (African population) populations (Table S2). Links 107 

towards harmonized, imputed, and curated summary statistics using the JASS pipeline are 108 

provided in the “Availability of data and material” section. 109 

Data preprocessing 110 

We leveraged our previously published method, JASS[16,17], to harmonize data of each 111 

ancestry for multi-trait GWAS. Briefly, the JASS pipeline is implemented in nextflow and 112 

proceeds through four preprocessing steps: i) mapping and alignment on the reference panel, 113 

ii) harmonization of the sample size, iii) computation of the genetic covariance matrices using 114 

the LDScore regression and, iv) imputation. In addition to summary statistics, the pipeline 115 

requires the following input for each ancestry: a reference panel, a file indicating LD 116 

independent regions, LD matrices for imputation (using Robust and Accurate imputation from 117 

Summary Statistics, RAISS) and input files for the LDSC regression[20].  118 

 119 

Input files for the JASS pipeline were prepared for the five ancestries. A reference panel for 120 

common SNPs (MAF > 1%) was built from 1000 Genomes consortium[21] phase 3 data (hg38 121 

build). When absent in 1000G, an rsid identifier was retrieved from all germline variations listed 122 

in Ensembl (http://ftp.ensembl.org/pub/release-105/variation/gvf/homo_sapiens). LD score 123 

files were computed using the ldsc.py script available at https://github.com/bulik/ldsc with the 124 
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following inline options: --l2 --ld-wind-kb 1000. LD matrices for imputation were generated 125 

using the generate_genome_matrices function from the RAISS python package (see 126 

https://statistical-genetics.pages.pasteur.fr/raiss/#precomputation-of-ld-correlation). 127 

 128 

RAISS Imputation parameters were chosen to ensure high accuracy for all traits and 129 

ancestries as described in the documentation (https://statistical-130 

genetics.pages.pasteur.fr/raiss/#optimizing-raiss-parameters-for-your-data). We 131 

systematically assessed RAISS accuracy for all traits and ancestries on chr22. We set RAISS 132 

key parameters to --R2-threshold 0.6, --minimum-ld 5 and --eigen-threshold 0.05 and report 133 

corresponding accuracies in Table S3. The correlations between the imputed and initial values 134 

range from 0.93 to 0.99.  135 

Links towards the JASS pipeline and associated computational tools are provided in the 136 

“Availability of data and material” section. 137 

LD independent regions  138 

For each ancestry, we computed LD independent regions using the R package bigsnpr [22] 139 

designed for massive analysis of SNP arrays. The function snp_ldsplit splits a correlation 140 

matrix in quasi-independent blocks using dynamic programming [23]. We optimized settings 141 

to reach a tradeoff between the sum of squared correlations outside the blocks (cost) and the 142 

number of regions found in a chromosome (n_block). On the chromosome 22 of each 143 

ancestry, we have varied the minimum number of variants in each block (min_size) between 144 

250 and 10 000, the maximum number of variants in each block (max_size) between 1000 145 

and 50 000, and the threshold under which squared correlations are ignored (thr_r2) between 146 

0.005 and 0.4. By analyzing the results, we selected thr_r2 = 0.05, min_size = 4000, max_size 147 

= 5000, max_K = 400 as it provides a balance between the cost and the number of regions 148 

for all chromosomes of all ancestry (Figure S1). 149 
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The omnibus multi-trait test and contrast with univariate GWAS 150 

To perform the omnibus multi-trait tests, JASS relies on a theoretical framework and a 151 

software architecture described in [16,17]. Briefly, assuming an infinitesimal model and under 152 

the null hypothesis of no genetic effects, the statistic of the omnibus test (equation 1) follows 153 

a  distribution where  denotes the number of traits considered in the study. The omnibus 154 

test statistic is defined as: 155 

 156 

 (equation 1) 157 

 158 

where  is the vector of the z-score across traits and  is the residual z-score covariance 159 

under the null hypothesis. As derived in [20], for a pair of traits i and j the expected covariance 160 

under the null hypothesis is equal to , where  is the total covariance 161 

between traits  and ,  is the number of samples shared between studies  and , and  162 

and  are the sample sizes of studies  and .  163 

Validation of the estimation of   by the LDscore regression in non-European ancestries 164 

To ensure that the   parameter of the omnibus test is correctly estimated in non-European 165 

ancestries, we compared the direct estimate of  computed in UK Biobank and an indirect 166 

estimate derived from the LDscore regression applied to GWAS summary statistics. We used 167 

the ancestry segmentation presented in [4] and worked with the Indian (equivalent to SAS), 168 

Nigerian (equivalent to AFR), and Caribbean (equivalent to AFR with admixture with EUR) 169 

individuals. We restricted our analysis to complete cases (Sample sizes of 5565, 3427, and 170 

1959 for Indian, Nigerian, and Caribbean individuals respectively) for hematological traits so 171 

the term 
𝑛𝑠

√𝑛1𝑛2
 equals 1. For each population, we derived a direct estimate of  by computing 172 

the Pearson correlation between hematological traits in UK BioBank. We then derived LDscore 173 

estimates by: i) computing univariate GWAS on each trait using plink, ii) applying the JASS 174 
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pipeline on the resulting summary statistics. To compute the LDscore for each variant, we 175 

used the SAS 1000G reference panel for the Indian population and the AFR 1000G reference 176 

panel for the Caribbean and Nigerian populations (Availability of data and material). 177 

Characterization of new genetic associations  178 

JASS identifies significant genetic variants using a two step procedure. First, large LD 179 

independent regions (see paragraph above for region computation) are scanned for new 180 

associations. For each LD independent region, the minimum association p-value for the 181 

univariate test across traits and for the joint test are retrieved. In regions containing significant 182 

association for JASS, we searched for potential additional lead SNPs using the PLINK clump 183 

function [24] with the following parameters: a significance threshold equal or greater than 5.10-184 

8 (--clump-p1), a significance threshold for other SNPs in the clump equal or greater than 5.10-185 

4 (--clump-p2) and a linkage disequilibrium of =0.2 (--clump-r2). We filtered out isolated lead 186 

SNPs (clumps containing only the lead SNPs) to remove poor quality associations. A lead 187 

SNPs is considered as a new association if the p-value of the omnibus test is significant while 188 

the minimum univariate test p-value across traits is not. Note that we choose to apply no multi 189 

testing correction to the minimum univariate p-value as we wish to contrast JASS results with 190 

all associations reported previously in the literature. 191 

 192 

Trans ancestry meta analysis 193 

 194 

We performed a trans ancestry multi-trait GWAS by adapting the omnibus test to the trans 195 

ancestry setting. Under the null hypothesis, the omnibus statistic follows a  distribution 196 

with  degree of freedom where  denotes the number of traits considered. As a cohort of a 197 

given ancestry is independent from cohorts of other ancestries, the sum of the omnibus 198 

statistics across all ancestries, , follows a chi-square 199 

with  degree of freedom. 200 
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 201 

For a given SNPs:  202 

  203 

where  is the vector of z-scores across traits, is the ancestry considered and  is the 204 

residual covariance between Z-score under the null for the ancestry .  205 

 206 

To contrast the multi-trait trans ancestry analysis against univariate meta-analysis we 207 

performed a meta-analysis on Z-score (assuming fixed genetic effects) and retrieved the 208 

minimum p-value across traits. 209 

For a given trait, we computed the trans ancestry meta analysis Z-score as: 210 

  211 

 212 

As LD independent regions cannot be defined across ancestries, we define regions as 1Mbp 213 

blocks and select one lead SNPs per block as the one with a minimum p-value. 214 

Simulating a smaller sample size for European data 215 

To simulate a diminished sample size for the European data, we scaled down Z-scores of 216 

lead SNPs with the following formula: 217 

 218 

 219 

 220 

Once scaled down, new p-values for the univariate test and the omnibus test were computed. 221 

We varied the simulated sample size from a fraction of 0 to 100% of the initial sample by 222 

increments of 1%.  223 
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Functional annotation 224 

We mapped lead SNPs to genes through positional mapping and eQTLs (expression 225 

Quantitative Trait Loci) using Functional Mapping and Annotation of Genome-Wide 226 

Association Studies (FUMA GWAS) [25]. For position based mapping, SNPs were mapped to 227 

their nearest gene if the distance was under 10kb. For eQTL mapping, we selected blood and 228 

immune system tissues (eQTL catalog (BLUEPRINT monocyte, BLUEPRINT neutrophil, 229 

BLUEPRINT T-cell, CEDAR platelet, CEDAR T-cell CD4, CEDAR T-cell CD8, GENCORD T-230 

cell, Kasela 2017 T-cell CD4, Kasela 2017 T-cell CD8, Lepik 2017 blood, Naranbhai 2015 231 

neutrophil CD16), van der Wijst et al. scRNA eQTLs (B cells, Dendritic cells, Natural Killer 232 

cells, Monocytes, Classical Monocyte, Non-classical Monocytes, CD4 T cells, CD8 T cells, 233 

PBMC), DICE (Naive B cells, Naive CD4 T cells, Naive (activated) CD4 T cells, Naive CD8 T 234 

cells, Naive (activated) CD8 T cells, Classical Monocytes, Non-classical Monocytes, Natural 235 

Killer cells, TFH CD4 T cells, TH1 CD4 T cells, TH17 CD4 T cells, TH1-17 CD4 T cells, TH2 236 

CD4 T cells, Memory TREG CD4 T cells, Naive TREG CD4 T cells), Blood eQTLs (Westra et 237 

al. (2013) BIOS QTL Browser), GTEx v8 Blood Vessel (GTEx Cells EBV-transformed 238 

lymphocytes, GTEx Whole Blood)).  239 

To compute the genomic distance between novel associations mapped to the same genes in 240 

the EUR and EAS ancestries, we retrieved genes linked by significant eQTLs to SNPs 241 

discovered by JASS exclusively in each ancestry. Then, using the intersection of EAS and 242 

EUR genes, we computed the genomic distance between the linked SNP in EAS and the 243 

linked SNP in EUR for each gene. If a gene was linked to multiple SNPs, the pair of SNPs with 244 

the smallest distance was retained. 245 

For the investigation of newly detected genes in African ancestry, we focused on genes tied 246 

to SNPs discovered by JASS exclusively and belonging to at least one GeneOntology (GO) 247 

set. Then, we queried each of this gene function on The Human Gene Database GeneCards 248 

(www.genecards.org, [26]). 249 
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Results 250 

Overview of the study 251 

Our analysis focused on 15 hematological and four glycemic quantitative traits in five 252 

superpopulations (Figure 1). We retrieve summary statistics from two large trans ancestry 253 

meta-analyses each focusing either on hematological traits or on glycemic traits. Using a 254 

single source for summary statistics by group of traits allows to minimize potential 255 

discrepancies in data preprocessing across ancestries. It also allows for an increased sample 256 

overlap between traits, which can be beneficial for the statistical power of the multi-trait 257 

test[16,27,28]. Sample size varies widely between populations: GWAS on hematological 258 

phenotypes studied 563,946 individuals from EUR ancestry, 151,807 for the EAS ancestry, 259 

9,368 for AMR ancestry, 15,171 for AFR ancestry, and 8189 for SAS ancestry (Table S2). 260 

While the sample size across hematological traits is relatively homogeneous, the sample size 261 

in glycemic traits presents large discrepancies. For instance, in the AFR population, ten times 262 

more individuals were analyzed for fasting glucose phenotype than for the two-hour glucose 263 

tolerance test. We applied a previously developed pipeline [17] to: i) curate and harmonize 264 

GWAS summary statistics, ii) impute missing statistics within each study using the RAISS 265 

software (Robust and Accurate Imputation from Summary Statistics,[29]), and iii) compute 266 

multi-trait GWAS. Entry files for the Nextflow pipeline were generated and made publicly 267 

available to facilitate the analysis of summary statistics from all ancestries (Supplementary 268 

Note 1 and Availability of data and material).  269 

The median increase in the number of variants across traits after imputation is 6%, 13%, 22%, 270 

21% and 27% for AFR, AMR, EUR, SAS and EAS ancestries, respectively (Table S2 and 271 

Figure S2). The imputation method relies on the linkage disequilibrium (LD) structure; the 272 

number of variant increases seems to reflect the differences in LD block length across 273 

ancestry[8,21]. Imputation performances and the impact of imputation on the number of 274 

significant loci with the univariate test are congruent with our previous observations [29] (Table 275 
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S3). All traits available by ancestry were analyzed jointly using an omnibus test implemented 276 

in JASS[16,17] (applied to association z-scores), grouping them by hematological traits and 277 

glycemic traits. We used the LDscore regression [20] to estimate the covariance of z-scores 278 

under the null hypothesis  (Table S4) – a required input for the omnibus test (Methods) – 279 

along with heritabilities, and genetic correlation across all traits (Supplementary note 2, 280 

Figure S3 and Table S5). The covariance of z-scores under the null ( ) hypothesis is a critical 281 

parameter for the validity of the omnibus test. We previously validated its estimation by the 282 

LDscore regression in the European population[16]. We reproduce a similar validation in non-283 

European ancestries present in UK biobank (namely the Indian, Nigerian and Caribbean 284 

populations[4]). Briefly, when all samples are shared between phenotypes,  is equal to the 285 

Pearson correlation matrix of phenotypes. If one has access to individual level data, the 286 

Pearson correlation matrix can be compared to its estimation by the LDscore regression 287 

(Methods). Overall, LDscore estimates were accurate (mean absolute error = 0.03) even in 288 

the Caribbean population, which is admixed between the European and African ancestries[4] 289 

(Figure S4).  290 

Overall, all analyses passed standard quality controls except for the SAS ancestry. More 291 

precisely, we observed an inflation of the joint test statistics on hematological traits after 292 

imputation. This limited robustness seems to arise from the higher collinearity of the residual 293 

covariance matrix for this ancestry. We discuss this issue in depth in the supplementary 294 

material (Supplementary note 3 and Figure S5). Because we cannot rule out additional 295 

sources of biases, we decided to exclude both the multi-trait GWAS on hematological traits 296 

and on glycemic traits for the SAS ancestry from subsequent analyses. 297 

Using the intersection of available SNPs across ancestries, we first performed a trans-ancestry 298 

multi-trait GWAS by summing the omnibus test statistics across ancestries and by contrasting 299 

its results with a univariate trans-ancestry meta analysis (see Methods). For glycemic traits, 300 

the set of SNPs available after performing the intersection was too small (#Nsnps = 8727). 301 

Hence, the trans-ancestry GWAS was performed only on hematological traits. Focusing on 302 
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hematological traits, we compared association positioning and features across ancestries, and 303 

systematically studied to what extent loci are shared across ancestries. We assessed the 304 

biological relevance of significant associations by annotating them with Functional Mapping 305 

and Annotation of Genome-Wide Association Studies (FUMA GWAS,[25]) and The Human 306 

Gene Database GeneCards (www.genecards.org,[26]).  307 

308 

Figure 1. Overview of the study. After harmonization and imputation of GWAS summary 309 

statistics, multi-traits GWAS were performed for the four ancestries on hematological and 310 

glycemic phenotypes separately. We computed the heritability, genetic correlation and 311 

association statistics covariance under the null for each ancestry. An additional trans-ancestry 312 
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multi-trait GWAS was conducted for hematological traits. Significant hematological 313 

associations were further analyzed through functional annotation and by comparing their 314 

position and features across ancestries. *For the EAS ancestry, two traits are missing: mean 315 

platelet count volume and red blood cell count distribution width. 316 

New genetic associations 317 

  #Associations 
found by 

European East Asian African Admixed 
American 

Trans Total by 
Test 

Hematolo
gical 
traits 

joint test only 2,173 271 72 14 50 2,580 

univariate test and 
joint test 

14,153 981 875 43 1,457 17,509 

univariate test only 4,800 389 420 53 293 5,955 

Total by ancestry 21,126 1,641 1367 110 1,800 26,044 

Glycemic 
traits 

joint test only 58 9 0 1  68 

univariate test and 
joint test 

371 32 0 8  411 

univariate test only 89 6 1 0  96 

Total by ancestry 518 47 1 9  575 

 318 

Table 1. Independent genetic associations detected with the JASS omnibus test using 319 

the standard p-value threshold of 5.10-8. Number of associations found for 15 blood and 320 

four glycemic traits in four different populations with the joint test and the univariate tests. 321 

Associations that are significant only with the joint test (new associations) are distinguished 322 

from associations that are significant with univariate tests. 323 

 324 

We report 2,648 new independent associations (Table 1, Tables S6-S10, Figures S6-S10). 325 

Genomic inflation factors are congruent with an adequate control of the type 1 error ranging 326 

from 0.99 for the AMR ancestry to 1.23 for the European ancestry (Figures S11-S13). New 327 
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associations are LD-independent associations significant exclusively for the joint test 328 

(Methods). The univariate p-value is defined as the minimum p-value of univariate tests 329 

across traits. Although this choice leads to an inflation of the univariate p-value, it allows for 330 

the inclusion of all associations previously reported in the literature and provides a stringent 331 

definition of new associations detected by JASS. For the TRANS ancestry analysis, we 332 

derived a TRANS ancestry multi-trait association statistic by calculating the sum of the 333 

omnibus test statistics across ancestries. Since samples are independent from one ancestry 334 

to another, the obtained statistic follows a  with degrees of freedom equal to the number of 335 

ancestries times the number of traits (Methods). To contrast this TRANS ancestry multi-trait 336 

analysis with a univariate approach, we computed a standard meta-analysis for each trait, 337 

assuming fixed genetic effects across ancestries (Methods).  338 

 New associations represent 10%, 17%, 5%, 13%, and 2.8% of associations detected by the 339 

joint test in the EUR, EAS, AFR, AMR and TRANS GWAS, respectively. The vast majority of 340 

associations are associated with hematological traits (97%), following the same trend as 341 

univariate association (97.5% of univariate associations are also associated with 342 

hematological traits). JASS identified new genetic associations in modest sample size cohorts 343 

(i.e 9,368 individuals for AMR) on hematological traits emphasizing the interest in using non-344 

European data when conducting secondary analyses even when they are seemingly 345 

underpowered [10]. Concerning glycemic traits, the very modest number of new signals for 346 

AFR and AMR might be explained by the low coverage of glycemic summary statistics for 347 

these ancestries (Table S2). Indeed, for these two ancestries, the approximate number of 348 

SNPs available for glycemic traits is 2 million whereas more than 8 million SNPs were available 349 

for hematological traits. Here, we chose to report all associations below the standard p-value 350 

threshold of 5e10-8 for completeness. However, a stricter choice would have been to apply a 351 

Bonferroni correction taking into account the number of multi-trait GWAS performed in the 352 

current report (11). When applying a Bonferroni correction, the number of new associations is 353 
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41, 6, 169, 1479 and 36 in the AFR, AMR, EAS, EUR and TRANS ancestry analyses 354 

respectively.  355 

 356 

Focusing on hematological trait associations, 38% of new associations detected in the African 357 

population arise from absent or rare variants (minor allele frequency [MAF] < 1%) in other 358 

studied populations (Table S11). In contrast, 4% and none of the new associations detected 359 

in the East Asian or European populations were rare or absent in all other populations. The 360 

African population's unique allele diversity appears to be a key factor in explaining the number 361 

of associations discovered in this population.  362 

Shared loci across ancestries for hematological traits 363 

We compared association loci across populations to assess the extent of their potential 364 

overlap across ancestries. To this end, the genome was segmented into non-overlapping 365 

regions of 1 Mbp that were considered detected in one ancestry if the region contained at least 366 

a significant association (joint or univariate). We represented (Figure 2A) the overlap of loci 367 

across populations with an UpSetR plot – an improved Venn diagram for the visualization of 368 

numerous set intersections. When including several ancestries, we considered the 369 

intersection as newly discovered if at least one of the genetic associations was found by the 370 

joint test only (Figure 2A). The joint test increased the discovery of non-European ancestry 371 

specific loci by over 33% (from 10 regions to 15 regions). Of these specific loci, 12 regions on 372 

15 were detected in the AFR ancestry and 4 of those associations were discovered exclusively 373 

by the joint test. This result is in line with previous reports that African cohorts tend to yield 374 

more associations by sample than European cohorts [8]. The large number of specific loci 375 

detected in European ancestry samples likely reflects the larger sample size of the European 376 

cohorts. Specific loci in the European population tended to have a weaker signal (i.e., higher 377 

p-value) than those shared by at least one other ancestry (rank test p-value = 0.008, Figure 378 

S14). These weaker signals might be detected in other ancestries when reaching an 379 

equivalent sample size. To test this hypothesis, we artificially weakened the signal of lead 380 
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SNPs detected in the European population to simulate a range of diminished sample sizes 381 

(Methods) and computed the fraction of 1 Mbp loci that remained specific to European 382 

ancestry (Figure S15). When the sample sizes were similar in the pair of ancestries, the 383 

fraction of loci specific to European ancestry ranged from 0 (when compared to AMR) to ~15% 384 

(when compared to EAS). This observation is in line with most genetic associations sharing 385 

the same region within different populations as observed in previous studies [30–32].  386 

 387 

Performing the multi-trait GWAS increased the proportion of significant associations detected 388 

in the trans-ancestry and European GWAS that were also found in non-European ancestries 389 

by 15% (Figure 2A, 430 regions were replicated with the univariate test, 495 regions were 390 

replicated when considering both tests). A substantial number (367) of loci were shared by the 391 

European, Asian and trans-ancestry analyses and 10% of those shared associations are 392 

detected by the joint test. Multi-trait GWAS can increase the number of replicated associations 393 

with no additional samples.  394 

 395 

 396 

Figure 2. Genetic signal similarity across 4 superpopulations. A) Overlapping loci across 397 

four superpopulations. Shows shared and specific loci in the studied populations for 398 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 19, 2023. ; https://doi.org/10.1101/2023.06.23.546248doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?lTA2gR
https://doi.org/10.1101/2023.06.23.546248
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

hematological traits, B) Illustration of the comparison of multi-trait signals across ancestries. 399 

For shared loci a correlation between the vectors of the genetic signal is computed. The 400 

squared Pearson correlation gives an indication of how much the multi-trait signal is 401 

conserved. C) Histogram of multi-trait genetic signal similarity (R² Pearson correlation) for 402 

pairs of lead SNPs located in a shared region. Each panel corresponds to one ancestry pair. 403 

Similarity of the multi-trait signal between ancestry pairs 404 

To quantify whether ancestries had similar multi-trait association patterns in overlapping 405 

significant loci, we compared multi-trait vectors of genetic effects in shared loci across all pairs 406 

of ancestry, measured as the squared correlation (R²) of genetic effects across traits (Figures 407 

2B-C). Multi-trait effect size vectors were strikingly similar between the EUR and EAS 408 

superpopulations with 75% of SNP pairs in shared loci having a correlation across traits higher 409 

than 0.8 (Figure 2C, Figure S14). At first glance, the similarity between the EUR and AFR 410 

superpopulations seemed lessened. However most of the low correlation SNPs pairs (80% of 411 

the shared loci with a rho <0.8) were located on chromosome 1 near the ACKR1 (Figure 3) 412 

locus (Chromosome 1: 159,204,875-159,206,500 forward strand), which is known to be 413 

adaptive to overcome the p.vivax induced malaria[8,33]. After accounting for the ACKR1 locus 414 

the median of correlation between EUR and AFR significant loci was 0.87. Overall, except for 415 

the ACKR1 locus, multi-trait patterns were shared between ancestries for hematological traits. 416 
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 417 

Figure 3. Examples of a diverging multi-trait signal: the ACKR1 locus. For each ancestry, 418 

Manhattan plot and corresponding multi-trait signal heatmap for hematological traits at the 419 

ACKR1 locus. Under each Manhattan plot, the normalized SNP genetic effects (z-scores) are 420 

reported through a heatmap. Colors represent the value of the Z-scores. hematological traits 421 

order: LYMPH, NEUT, MCV, EO, MONO, RBC, HGB, MCH, HCT, WBC, BASO, MCHC, PLT, 422 

MPV, RDW. 423 

Functional annotation for hematological trait GWAS 424 

To validate the biological relevance of associations found by the joint test, and in particular 425 

novel associations, we focused our functional analysis on hematological traits. Indeed, for 426 

hematological traits, the joint test detected enough associations in all ancestries to allow for a 427 

comparison of the relevance of the functional enrichment across ancestries. Briefly, we 428 

mapped lead SNPs using a combination of positional and eQTLs mapping (Table S12 reports 429 

the number of genes mapped by each method). Lead SNPs were mapped to their nearest 430 

genes if their distance was less than 10kb. For eQTLs mapping, we selected eQTLs detected 431 
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in the immune system and blood cells (Methods), which corresponds to the trait assessed in 432 

the GWAS. To characterize genes found by the annotation step, we looked in which tissue the 433 

genes were differentially expressed (Figure S17). For each population, we represented the 434 

five first tissues with the highest p-value for upregulated genes (Figure 4A). Blood was 435 

significantly enriched for the four populations. 436 

To further analyze the annotation of the associations discovered by the joint test, we selected 437 

genes linked to a SNP significant for the joint test. We then selected genes annotated in GO 438 

(Gene Ontology) term sets [34] (Methods, Tables S13-S16). For European ancestry, 3 342 439 

genes were identified, 388 genes for the EAS population and 49 genes for the AFR population. 440 

For the Admixed American population, there were no genes related to the genetic associations 441 

found by the joint test only. 442 

 443 

Figure 4. Shared functional features across ancestries. A) Top five tissues with the highest 444 

p-value for upregulated genes for the four populations. Stars show significant enrichments 445 

(Pbon < 0.05). B) Histogram of the difference between the top SNPs positions in European and 446 

East Asian populations. SNP difference positions between European and East Asian 447 

populations for 177 genes shared by these two populations.  448 
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We then investigated whether newly detected signals corresponded to the same regulatory 449 

regions across ancestries by computing the position shift between European and East Asian 450 

populations for SNPs regulating the same gene. (i.e., SNPs that are eQTLs for the same gene, 451 

Methods, Table S17). Here, we focused on the European and East Asian ancestries because 452 

the two ancestries share enough significant loci (433, Figure 1A) to assess whether these loci 453 

systematically regulate the same genes. A total of 177 genes were shared in both ancestries 454 

(i.e., associated with a lead SNP through a significant eQTL). When there were several SNPs 455 

in one ancestry for one gene, we kept those with the closest pair between populations. The 456 

median distance was 86 kb and for 90% of the SNPs, the distance was under 481 kbp (see 457 

Figure 4B). This suggests that the same regulatory regions are involved in gene regulation in 458 

both populations. 459 

Because of the relatively high proportion of newly associated variants specific to the African 460 

ancestry population, we conducted a targeted functional analysis to validate genes associated 461 

with newly identified SNPs in that population. 49 genes were associated with a significant lead 462 

SNP in the AFR population. Each of those genes was looked up in The Human Gene Database 463 

GeneCards (www.genecards.org, [26]) (Table S17). Five genes mapped to hemoglobin 464 

subunits (HBG1, HBG2, HBE1, HBB and HBD) involved in beta thalassemia and fetal 465 

hemoglobin quantitative trait locus 1 diseases. Eight genes mapped to other blood-related 466 

pathways like Tubulin Beta 1 Class VI (TUBB1) expressed in platelets and CD36 molecule 467 

(CD36), a gene protein located at the platelet surface. Five genes mapped to immune system-468 

related pathways. 20 genes mapped to the olfactory receptor family. This overrepresentation 469 

of Olfactory receptors reflects probably more the close proximity of these genes along the 470 

genome rather than a genuine functional enrichment. Indeed, 15 SNPs mapping to an 471 

olfactory receptor family gene are located in a 1 Mbp region (chr11:4.449.477 bp to 472 

chr11:5.539.485 bp). For African ancestry, 37% of associations that were discovered by the 473 

joint test and annotated with GO term genes mapped to relevant blood pathways. 474 
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Discussion 475 

In this study, we applied JASS, a multi-trait analysis pipeline previously developed and tested 476 

on European ancestry to four non-European ancestries. On three (AMR, EAS and AFR) out 477 

of four ancestries, our pipeline generalized without barriers and allowed for the detection of 478 

new associations while controlling for the genomic inflation factor. We also designed a Trans-479 

ancestry extension of the omnibus test. Altogether, single population and trans-ancestry, 480 

omnibus tests identified 367 new associations in non-European ancestry. For hematological 481 

traits, these new associations were linked with genes upregulated in blood, a relevant tissue, 482 

in all ancestries. Notably for AFR ancestry, a fine analysis of new associations pointed toward 483 

blood and immune pathways in 37% of annotated genes. Overall, this study highlights that 484 

imputation followed by multi-trait testing can be a valuable tool set for non-European ancestry 485 

analysis. 486 

Our extension of the omnibus test to perform trans-ancestry GWAS is an elegant and 487 

computationally efficient way to perform trans-ancestry GWAS without assuming 488 

homogeneous effects across ancestries. Indeed, the trans-ancestry omnibus test relies on the 489 

independence of the chi-squares derived in each ancestry to aggregate them in an unique chi-490 

square test. Hence, in each ancestry, the genetic signals can deviate from the null hypothesis 491 

in different directions and contribute to the test statistic. However, our trans-ancestry analysis 492 

detected only a handful of new signals, suggesting that the additional degree of freedom in 493 

the expected distribution under the null hypothesis dilutes the signal and leads to a lack of 494 

statistical power. Incorporating LD local structure of each ancestry into the multi-trait test, as 495 

has been done for univariate GWAS[35], might enable us to further improve our trans-ancestry 496 

multi-trait tests. 497 

Further improvements of JASS could include a better adaptation to admixed populations. 498 

Here, we validated the use of the JASS pipeline for admixed ancestries by showing that the 499 

omnibus test is not inflated for Admixed Americans (Figures S10 and S11), and by assessing 500 
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the accuracy of our estimate of the distribution of Z-scores under the null in the Caribbean 501 

population (Figure S4), which is admixed between the African and European ancestries[4].  502 

Although our current approach appears valid and was able to detect 15 new associations in 503 

the Admixed Americans, it may not be optimal in terms of statistical power or may be biased 504 

for higher degrees of admixture. We recommend a careful inspection of the genomic inflation 505 

factor when using JASS on admixed populations. Further development of the method may 506 

allow JASS to leverage local ancestry in admixed populations to boost GWAS statistical power 507 

as previously done on individual level data [36]. 508 

We encountered an unforeseen pitfall with the SAS ancestry: the imputation led to an 509 

implausible increase in the number of associations for the joint test. After an investigation, this 510 

inflation was due to collinearity of traits investigated coupled to a high sample overlap. This 511 

specific set of conditions leads to an increased condition number for covariance under the null, 512 

or more plainly said, to a null hypothesis that lacks robustness (Supplementary Note 3). 513 

Hence, we do not recommend using the omnibus test in this specific setting. We will further 514 

investigate the robustness of the omnibus test on SAS data to confirm that this inflation is not 515 

related to other specificities of this population.  516 

A large fraction of new genetic associations matched significant eQTL: 80% (1729/2173) for 517 

the European, 60% (163/271) for the East Asian and 82% (59/72) for the African population. 518 

However, for the AMR population, functional annotation was less informative suggesting a 519 

lower multi-trait or eQTLs annotation signal quality (only 1.9% of sampled individuals in GTEx 520 

self-reported as hispanic [37]). Only six significant SNPs out of 57 were eQTLs for a gene. 521 

This observation underlines the importance of representing a diverse population not only in 522 

GWAS sampling but also in other genomic assays. 523 

Our assessment of multi-trait genetic signal similarity across ancestries demonstrates that the 524 

omnibus test allowed for an increased replication of loci detected in European ancestry in non-525 

European ancestries. We mapped associated SNPs to genes through eQTLs and observed 526 
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that genes share the same regulatory regions in the EUR and EAS ancestries. We reported a 527 

systematic comparison of multi-trait genetic signals in shared loci. We observe strikingly 528 

similar multi-trait patterns (with the median of the genetic signal squared correlation at variant 529 

pairs being above 0.8) except in ACKR1 locus which is tied to an adaptation specific to African 530 

ancestries protective for p.vivax parasites. 531 

Our observations suggest an overall stability of the sign of genetic effects except in the ACKR1 532 

loci and are consistent with previous reports that genetic effects are consistent across 533 

ancestries [30,38,39]. Other reports nuance the extent of this similarity by noting that genetic 534 

correlations across ancestries are often significantly lower than 1 [12,40–42], and loci 535 

replication can be lower for specific traits with culturally dependent definition, such as 536 

depression (only 11% of European lead SNPs for depression are replicated East Asian 537 

ancestry [41]). Hematological traits – continuous traits with an objective definition – can be a 538 

good setting to assess replication with less confounding.  539 

Our observation at the ACKR1 loci suggests that modification of multi-trait genetic effects is 540 

associated with evolutionary forces. We hypothesize that divergences in multi-trait effects are 541 

more striking and more telling functionally than a difference in mean between univariate effect 542 

sizes. A systematic investigation coupling trans-ancestry multi-trait genetics and evolutionary 543 

pressure measures could highlight how recent evolutionary events in the human population 544 

transformed genetic effects. In short, through our multi-trait and trans ancestry GWAS we 545 

detected relevant new associations and highlighted the similarity of multi-trait genetics across 546 

ancestry. We argue that a computationally efficient pipeline such as the JASS pipeline could 547 

be a tool of choice to investigate a multi-trait genetic pattern across ancestries and their 548 

potential coupling with evolutionary forces. 549 
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Conclusion 550 

By conducting multi-trait GWAS on 93 summary statistics originating from five ancestries, we 551 

detected 367 new genome-wide significant associations in non-European populations (15 in 552 

AMR, 72 in AFR and 280 in EAS), which represents respectively 7%, 25% and 21% of all 553 

associations in the AFR, AMR and EAS populations. Overall, multi-trait testing increases the 554 

replication of European associated loci in non-European ancestry by 15%. Pleiotropic effects 555 

were highly similar at significant loci across ancestries (e.g. the mean correlation between 556 

multi-trait genetic effect of EUR and EAS was 0.88). For hematological traits, strong 557 

discrepancies in pleiotropic effects are tied to known evolutionary divergences: the ARKC1 558 

loci which is adaptive to overcome the p.vivax induced malaria. Altogether these analyses 559 

suggest that multi-trait GWAS methods can be a valuable tool to narrow the genetic knowledge 560 

gap between European and non-European populations.To facilitate multi-trait GWAS on non 561 

European ancestries, we distribute publicly (Availability of data and material section) the 562 

JASS pipeline, and curated entry files (summary statistics, Reference panel) issued from this 563 

study. 564 
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Linkage disequilibrium matrices for the five ancestries can be downloaded at: 587 
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Summary statistics imputed and harmonized by the JASS pipeline can be downloaded on 589 
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Script and data to reproduce Figures presented in this manuscript: 596 
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