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Abstract

Background:

Approximately 95% of samples analyzed in univariate genome-wide association studies
(GWAS) are of European ancestry. This bias toward European ancestry populations in
association screening also exists for other analyses and methods that are often developed
and tested on European ancestry only. However, existing data in non-European populations,
which are often of modest sample size, could benefit from innovative approaches as recently

illustrated in the context of polygenic risk scores.

Methods:

Here, we extend and assess the potential limitations and gain of our multi-trait GWAS pipeline,
JASS (Joint Analysis of Summary Statistics), for the analysis of non-European ancestries. To

this end, we conducted the joint GWAS of 19 hematological traits and glycemic traits across
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five ancestries (European (EUR), admixed American (AMR), African (AFR), East Asian (EAS),

South-East Asian (SAS)).

Results:

We detected 367 new genome-wide significant associations in non-European populations (15
in Admixed American (AMR), 72 in African (AFR) and 280 in East Asian (EAS)). New
associations detected represent 5%, 17% and 13% of associations in the AFR, AMR and EAS
populations, respectively. Overall, multi-trait testing increases the replication of European
associated loci in non-European ancestry by 15%. Pleiotropic effects were highly similar at
significant loci across ancestries (e.g. the mean correlation between multi-trait genetic effects
of EUR and EAS ancestries was 0.88). For hematological traits, strong discrepancies in multi-
trait genetic effects are tied to known evolutionary divergences: the ARKC1 loci, which is

adaptive to overcome the p.vivax induced malaria.

Conclusions:

Multi-trait GWAS can be a valuable tool to narrow the genetic knowledge gap between

European and non-European populations.

Keywords: statistical genetics, GWAS, multi-trait GWAS, diverse ancestries

Background

After 15 years of intensive GWAS analyses, investigators are reaping tangible translational
benefits such as drug repurposing opportunity, and actionable polygenic risk scores [1]. Yet,
~95% of samples analyzed in GWAS are from European ancestry [2]. Genetic insights gained
on European ancestry are only partially transferrable to other ancestries: polygenic risk scores
have lessened accuracy [3-5], and genetic testing yields more often ambiguous results in non-

European ancestries [6]. Altogether, this gap in data and analyses is a major bias in the
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existing research that can result in increased health disparities [7,8]. The genetic community
is increasingly aware of this issue and strongly recommend to include more individuals from
non-European ancestries in GWAS studies [2,7,9-12]. Increasing the sample size coverage
of non-European ancestries has been identified as one of the most important objectives for

the genetic community in the coming years [1].

Increasing the sampling of non-European ancestries is paramount, but computational method
development is also an area of improvement that is less often discussed [10,11]. Many
statistical genetics methods are developed and tested primarily on the European population.
To ascertain this bias, we surveyed 25 recent methods in statistical genetics (Table S1).
Amongst these methods 20 conducted an application on human real data, all included
European data, and 13 focused on European data exclusively. When developed on European
data exclusively, using these computational methods on European ancestry becomes all the
more easy: input files (e.g. specific formats of reference panels) are often provided,
performances and potential pitfalls are known, and protocols (e.g. parameters) are specific. In
comparison, applying these methods to diverse ancestries can require substantial additional
work and can be perceived as riskier since potential performance discrepancies are

undocumented.

This European by default mode creates a snowballing effect where secondary analysis
increases further the genetic knowledge gap between European and non-European
ancestries. Furthermore, the analysis of non-European do not only address a public health
gap, but also offer opportunities and several recent publications illustrate the benefit of
methodological development for the analysis of diverse populations in various applications

such as: polygenic risk scores [13], association testing [14], and TWAS [15].

In this context, we tested if the properties of our previously developed JASS (Joint Analysis of

Summary Statistics) pipeline — its ability to detect biologically relevant associations missed by
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univariate GWAS [16,17] — would generalize to non-European ancestries. To this end, we
conducted the joint GWAS of 19 hematological traits and glycemic traits retrieved from two
large trans ancestry studies [18,19]. We applied our pipeline to five ancestries (European
(EUR), Admixed American (AMR), African (AFR), East Asian (EAS), South-East Asian (SAS)),
and investigated the performance and robustness of each step of the pipeline across
ancestries. For the given input data, the pipeline generalized properly to three out of the four
non-European ancestries: AMR, AFR, and EAS. We detected 367 new genome-wide
significant associations in non-European populations (15 in AMR, 72 in AFR and 280 in EAS).
We then report to what extent multi-trait testing increases the replication of European
associated loci in non-European ancestry. Finally, we investigate the conservation of
pleiotropy across ancestries, and tie the observed differences to known evolutionary
divergences. Altogether these analyses suggest that multi-trait GWAS methods can be
valuable to take advantage of modest size cohorts and to narrow the genetic knowledge gap

between European and non-European populations.

Methods

Survey of ancestries used in recently published methods in statistical genetics

To ascertain a potential bias in ancestries used to develop and test recent statistical genetic
tools, we surveyed 25 publications. We looked up ancestries studied in: i) methodology
focused publications of the American Journal of Human Genetics published after January
2023, ii) Bioinformatics publications in the “Genetics and Population Analysis” section of the
March, April and May issues, and iii) the first page of results of the Google Scholar query
“gwas summary statistics methods” ordered by relevance and published after 2021 (query was
performed by Dr. Julienne on May 17" 2023). This survey does not pretend to
comprehensively ascertain the ancestry bias in method development in statistical genetics. Its

aim is rather to provide a snapshot of common practices of the field at the time of this study.
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99 Summary Statistics

100 GWAS of hematological traits originate from the Chen et al paper [19] and were downloaded

101 from the GWAS Catalog (https://www.ebi.ac.uk/gwas/publications/32888493#study panel).

102  We analyzed 15 quantitative hematological traits in 740,292 participants from four ancestries:
103 563 946 Europeans, 151,807 East Asians, 9,368 Admixed Americans and 15 171 Africans
104 (Table S2). GWAS of glycemic traits come from the [18] study downloadable from GWAS

105 Catalog (https://www.ebi.ac.uk/gwas/publications/34059833). We analyzed four glycemic

106 traits in 281,416 individuals without diabetes from European, East Asian, Admixed American
107 and African American or Afro-Caribbean (African population) populations (Table S2). Links
108 towards harmonized, imputed, and curated summary statistics using the JASS pipeline are

109 provided in the “Availability of data and material” section.

110 Data preprocessing

111  We leveraged our previously published method, JASS[16,17], to harmonize data of each
112  ancestry for multi-trait GWAS. Briefly, the JASS pipeline is implemented in nextflow and
113  proceeds through four preprocessing steps: i) mapping and alignment on the reference panel,
114 i) harmonization of the sample size, iii) computation of the genetic covariance matrices using
115 the LDScore regression and, iv) imputation. In addition to summary statistics, the pipeline
116  requires the following input for each ancestry: a reference panel, a file indicating LD
117  independent regions, LD matrices for imputation (using Robust and Accurate imputation from
118 Summary Statistics, RAISS) and input files for the LDSC regression[20].

119

120 Input files for the JASS pipeline were prepared for the five ancestries. A reference panel for
121 common SNPs (MAF > 1%) was built from 1000 Genomes consortium[21] phase 3 data (hg38
122  build). When absent in 1000G, an rsid identifier was retrieved from all germline variations listed
123 in Ensembl (http://ftp.ensembl.org/pub/release-105/variation/gvf/homo_sapiens). LD score

124  files were computed using the Idsc.py script available at https://github.com/bulik/Idsc with the



https://www.sciencedirect.com/science/article/pii/S0092867420308229?via%3Dihub
https://www.zotero.org/google-docs/?f68bwC
https://www.ebi.ac.uk/gwas/publications/32888493#study_panel
https://www.zotero.org/google-docs/?S1MIfx
https://www.ebi.ac.uk/gwas/publications/34059833
https://www.zotero.org/google-docs/?O8QwJS
https://www.zotero.org/google-docs/?MpAj3B
https://www.zotero.org/google-docs/?xK8MCB
https://github.com/bulik/ldsc
https://doi.org/10.1101/2023.06.23.546248
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.23.546248; this version posted December 19, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

125 following inline options: --12 --ld-wind-kb 1000. LD matrices for imputation were generated
126 using the generate_genome_matrices function from the RAISS python package (see

127 https://statistical-genetics.pages.pasteur.fr/raiss/#precomputation-of-ld-correlation).

128

129 RAISS Imputation parameters were chosen to ensure high accuracy for all traits and
130 ancestries as described in the documentation (https://statistical-
131 genetics.pages.pasteur.fr/raiss/#optimizing-raiss-parameters-for-your-data). We
132  systematically assessed RAISS accuracy for all traits and ancestries on chr22. We set RAISS
133  key parameters to --R2-threshold 0.6, --minimum-Id 5 and --eigen-threshold 0.05 and report
134  corresponding accuracies in Table S3. The correlations between the imputed and initial values

135 range from 0.93 to 0.99.

136 Links towards the JASS pipeline and associated computational tools are provided in the

137  “Availability of data and material” section.

138 LD independent regions

139 For each ancestry, we computed LD independent regions using the R package bigsnpr [22]
140 designed for massive analysis of SNP arrays. The function snp_ldsplit splits a correlation
141  matrix in quasi-independent blocks using dynamic programming [23]. We optimized settings
142  to reach a tradeoff between the sum of squared correlations outside the blocks (cost) and the
143  number of regions found in a chromosome (n_block). On the chromosome 22 of each
144  ancestry, we have varied the minimum number of variants in each block (min_size) between
145 250 and 10 000, the maximum number of variants in each block (max_size) between 1000
146  and 50 000, and the threshold under which squared correlations are ignored (thr_r2) between
147  0.005 and 0.4. By analyzing the results, we selected thr_r2 = 0.05, min_size = 4000, max_size
148 =5000, max_K = 400 as it provides a balance between the cost and the number of regions

149  for all chromosomes of all ancestry (Figure S1).
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150 The omnibus multi-trait test and contrast with univariate GWAS

151 To perform the omnibus multi-trait tests, JASS relies on a theoretical framework and a
152  software architecture described in [16,17]. Briefly, assuming an infinitesimal model and under

153 the null hypothesis of no genetic effects, the statistic of the omnibus test (equation 1) follows

154 a X% distribution where k denotes the number of traits considered in the study. The omnibus
155 test statistic is defined as:

156 .

157 Tomni = 2 @ % (equation 1)
158

159  where z is the vector of the z-score across traits and €2 is the residual z-score covariance

160 under the null hypothesis. As derived in [20], for a pair of traits i and j the expected covariance

n

Qij = pij ——
161 under the null hypothesis is equal to VM) where Pij is the total covariance
162  between traits 7 and j, T¢ is the number of samples shared between studies ¢ and j, and 1

163  and ™ are the sample sizes of studies i and J.
164  Validation of the estimation of £2by the LDscore regression in non-European ancestries

165 To ensure that the 2 parameter of the omnibus test is correctly estimated in non-European
166  ancestries, we compared the direct estimate of Pij computed in UK Biobank and an indirect
167  estimate derived from the LDscore regression applied to GWAS summary statistics. We used
168 the ancestry segmentation presented in [4] and worked with the Indian (equivalent to SAS),
169 Nigerian (equivalent to AFR), and Caribbean (equivalent to AFR with admixture with EUR)
170 individuals. We restricted our analysis to complete cases (Sample sizes of 5565, 3427, and

171 1959 for Indian, Nigerian, and Caribbean individuals respectively) for hematological traits so

ns

172 h
the term N

equals 1. For each population, we derived a direct estimate of £ij by computing

173  the Pearson correlation between hematological traits in UK BioBank. We then derived LDscore

174  estimates by: i) computing univariate GWAS on each trait using plink, ii) applying the JASS
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175 pipeline on the resulting summary statistics. To compute the LDscore for each variant, we
176  used the SAS 1000G reference panel for the Indian population and the AFR 1000G reference

177  panel for the Caribbean and Nigerian populations (Availability of data and material).
178 Characterization of new genetic associations

179 JASS identifies significant genetic variants using a two step procedure. First, large LD
180 independent regions (see paragraph above for region computation) are scanned for new
181 associations. For each LD independent region, the minimum association p-value for the
182  univariate test across traits and for the joint test are retrieved. In regions containing significant
183  association for JASS, we searched for potential additional lead SNPs using the PLINK clump
184  function [24] with the following parameters: a significance threshold equal or greater than 5.10
185 & (--clump-p1l), a significance threshold for other SNPs in the clump equal or greater than 5.10
186 4 (--clump-p2) and a linkage disequilibrium of 7%=0.2 (--clump-r2). We filtered out isolated lead
187  SNPs (clumps containing only the lead SNPs) to remove poor quality associations. A lead
188 SNPs is considered as a new association if the p-value of the omnibus test is significant while
189 the minimum univariate test p-value across traits is not. Note that we choose to apply no multi
190 testing correction to the minimum univariate p-value as we wish to contrast JASS results with
191 all associations reported previously in the literature.

192

193  Trans ancestry meta analysis

194

195 We performed a trans ancestry multi-trait GWAS by adapting the omnibus test to the trans

196  ancestry setting. Under the null hypothesis, the omnibus statistic follows a Xz(k) distribution
197  with k degree of freedom where k denotes the number of traits considered. As a cohort of a
198 given ancestry is independent from cohorts of other ancestries, the sum of the omnibus
199  statistics across all ancestries, A = {AFR; EUR; EAS; AMR}, follows a chi-square

200 with k % (#ancestries) degree of freedom.
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201

202  For a given SNPs:

Z zaﬂglzzw Z xz(ka)

acA acA
Z zaﬂglzfz ~ Xz( Z ka)
203 acA acA

204  where z is the vector of z-scores across traits, Ais the ancestry considered and €24 is the
205 residual covariance between Z-score under the null for the ancestry A.

206

207 To contrast the multi-trait trans ancestry analysis against univariate meta-analysis we
208 performed a meta-analysis on Z-score (assuming fixed genetic effects) and retrieved the
209  minimum p-value across traits.

210 For agiven trait, we computed the trans ancestry meta analysis Z-score as:

7 ZaEA mﬂzﬂ
meta —
211 V2 aca Na

212

213 As LD independent regions cannot be defined across ancestries, we define regions as 1Mbp

214  blocks and select one lead SNPs per block as the one with a minimum p-value.

215 Simulating a smaller sample size for European data

216  To simulate a diminished sample size for the European data, we scaled down Z-scores of

217  lead SNPs with the following formula:

218
LN,
Zsimulated = —=— X V Nsimulated
219 Niotar
220

221  Once scaled down, new p-values for the univariate test and the omnibus test were computed.
222  We varied the simulated sample size from a fraction of 0 to 100% of the initial sample by

223 increments of 1%.
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224 Functional annotation

225 We mapped lead SNPs to genes through positional mapping and eQTLs (expression
226  Quantitative Trait Loci) using Functional Mapping and Annotation of Genome-Wide
227  Association Studies (FUMA GWAS) [25]. For position based mapping, SNPs were mapped to
228  their nearest gene if the distance was under 10kb. For eQTL mapping, we selected blood and
229 immune system tissues (eQTL catalog (BLUEPRINT monocyte, BLUEPRINT neutrophil,
230 BLUEPRINT T-cell, CEDAR platelet, CEDAR T-cell CD4, CEDAR T-cell CD8, GENCORD T-
231  cell, Kasela 2017 T-cell CD4, Kasela 2017 T-cell CD8, Lepik 2017 blood, Naranbhai 2015
232  neutrophil CD16), van der Wijst et al. scRNA eQTLs (B cells, Dendritic cells, Natural Killer
233  cells, Monocytes, Classical Monocyte, Non-classical Monocytes, CD4 T cells, CD8 T cells,
234  PBMC), DICE (Naive B cells, Naive CD4 T cells, Naive (activated) CD4 T cells, Naive CD8 T
235 cells, Naive (activated) CD8 T cells, Classical Monocytes, Non-classical Monocytes, Natural
236 Killer cells, TFH CD4 T cells, TH1 CD4 T cells, TH17 CD4 T cells, TH1-17 CD4 T cells, TH2
237 CD4 T cells, Memory TREG CD4 T cells, Naive TREG CD4 T cells), Blood eQTLs (Westra et
238 al. (2013) BIOS QTL Browser), GTEx v8 Blood Vessel (GTEx Cells EBV-transformed

239  lymphocytes, GTEx Whole Blood)).

240  To compute the genomic distance between novel associations mapped to the same genes in
241 the EUR and EAS ancestries, we retrieved genes linked by significant eQTLs to SNPs
242  discovered by JASS exclusively in each ancestry. Then, using the intersection of EAS and
243  EUR genes, we computed the genomic distance between the linked SNP in EAS and the
244 linked SNP in EUR for each gene. If a gene was linked to multiple SNPs, the pair of SNPs with

245  the smallest distance was retained.

246  For the investigation of newly detected genes in African ancestry, we focused on genes tied
247  to SNPs discovered by JASS exclusively and belonging to at least one GeneOntology (GO)
248  set. Then, we queried each of this gene function on The Human Gene Database GeneCards

249  (www.genecards.org, [26]).
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250 Results

251  Overview of the study

252  Our analysis focused on 15 hematological and four glycemic quantitative traits in five
253  superpopulations (Figure 1). We retrieve summary statistics from two large trans ancestry
254  meta-analyses each focusing either on hematological traits or on glycemic traits. Using a
255  single source for summary statistics by group of traits allows to minimize potential
256  discrepancies in data preprocessing across ancestries. It also allows for an increased sample
257 overlap between traits, which can be beneficial for the statistical power of the multi-trait
258  test[16,27,28]. Sample size varies widely between populations: GWAS on hematological
259  phenotypes studied 563,946 individuals from EUR ancestry, 151,807 for the EAS ancestry,
260 9,368 for AMR ancestry, 15,171 for AFR ancestry, and 8189 for SAS ancestry (Table S2).
261  While the sample size across hematological traits is relatively homogeneous, the sample size
262  in glycemic traits presents large discrepancies. For instance, in the AFR population, ten times
263  more individuals were analyzed for fasting glucose phenotype than for the two-hour glucose
264  tolerance test. We applied a previously developed pipeline [17] to: i) curate and harmonize
265 GWAS summary statistics, ii) impute missing statistics within each study using the RAISS
266  software (Robust and Accurate Imputation from Summary Statistics,[29]), and iii) compute
267  multi-trait GWAS. Entry files for the Nextflow pipeline were generated and made publicly
268 available to facilitate the analysis of summary statistics from all ancestries (Supplementary

269 Note 1 and Availability of data and material).

270  The median increase in the number of variants across traits after imputation is 6%, 13%, 22%,
271  21% and 27% for AFR, AMR, EUR, SAS and EAS ancestries, respectively (Table S2 and
272  Figure S2). The imputation method relies on the linkage disequilibrium (LD) structure; the
273 number of variant increases seems to reflect the differences in LD block length across
274  ancestry[8,21]. Imputation performances and the impact of imputation on the number of

275  significant loci with the univariate test are congruent with our previous observations [29] (Table
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276  S3). All traits available by ancestry were analyzed jointly using an omnibus test implemented
277 in JASS[16,17] (applied to association z-scores), grouping them by hematological traits and
278  glycemic traits. We used the LDscore regression [20] to estimate the covariance of z-scores
279  under the null hypothesis 2 (Table S4) — a required input for the omnibus test (Methods) —
280 along with heritabilities, and genetic correlation across all traits (Supplementary note 2,
281 Figure S3 and Table S5). The covariance of z-scores under the null (£2) hypothesis is a critical
282  parameter for the validity of the omnibus test. We previously validated its estimation by the
283  LDscore regression in the European population[16]. We reproduce a similar validation in non-
284  European ancestries present in UK biobank (namely the Indian, Nigerian and Caribbean
285  populations[4]). Briefly, when all samples are shared between phenotypes, £} is equal to the
286  Pearson correlation matrix of phenotypes. If one has access to individual level data, the
287  Pearson correlation matrix can be compared to its estimation by the LDscore regression
288  (Methods). Overall, LDscore estimates were accurate (mean absolute error = 0.03) even in
289 the Caribbean population, which is admixed between the European and African ancestries[4]

290 (Figure S4).

291  Overall, all analyses passed standard quality controls except for the SAS ancestry. More
292  precisely, we observed an inflation of the joint test statistics on hematological traits after
293 imputation. This limited robustness seems to arise from the higher collinearity of the residual
294  covariance matrix for this ancestry. We discuss this issue in depth in the supplementary
295 material (Supplementary note 3 and Figure S5). Because we cannot rule out additional
296  sources of biases, we decided to exclude both the multi-trait GWAS on hematological traits

297  and on glycemic traits for the SAS ancestry from subsequent analyses.

298  Using the intersection of available SNPs across ancestries, we first performed a trans-ancestry
299  multi-trait GWAS by summing the omnibus test statistics across ancestries and by contrasting
300 its results with a univariate trans-ancestry meta analysis (see Methods). For glycemic traits,
301 the set of SNPs available after performing the intersection was too small (#Nsnps = 8727).

302 Hence, the trans-ancestry GWAS was performed only on hematological traits. Focusing on
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hematological traits, we compared association positioning and features across ancestries, and
systematically studied to what extent loci are shared across ancestries. We assessed the
biological relevance of significant associations by annotating them with Functional Mapping
and Annotation of Genome-Wide Association Studies (FUMA GWAS,[25]) and The Human

Gene Database GeneCards (www.genecards.org,[26]).

19 GWAS Summary Statistics

for each ancestry Hematological traits
WBC : White blood cell count
RBC : Red blood cell count NEUT : Neutrophil &
) HGB : Hemoglobin MONO : Monocyte °
{_ . HCT : Hematocrit . . LYMPH : Lymphocyte % |
Glycemic traits :; MCV : Mean corpuscular volume BASO : Basophil
N N MCH : Mean corpuscular hemoglobin -® EO : Eosinophil
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GLUCOSE-TOLERANCE : Two-hour glucose RDW : Red blood cell distribution width MPV : Mean platelet count
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Figure 1. Overview of the study. After harmonization and imputation of GWAS summary
statistics, multi-traits GWAS were performed for the four ancestries on hematological and
glycemic phenotypes separately. We computed the heritability, genetic correlation and

association statistics covariance under the null for each ancestry. An additional trans-ancestry
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313  multi-trait GWAS was conducted for hematological traits. Significant hematological
314  associations were further analyzed through functional annotation and by comparing their
315 position and features across ancestries. *For the EAS ancestry, two traits are missing: mean

316 platelet count volume and red blood cell count distribution width.

317 New genetic associations

#Associations European | East Asian | African | Admixed [ Trans | Total by
found by American Test
Hematolo | joint test only 2,173 271 72 14 50 2,580
gical
traits -
univariate test and 14,153 981 875 43 1,457 | 17,509
joint test
univariate test only | 4,800 389 420 53 293 5,955
Total by ancestry 21,126 1,641 1367 110 1,800 | 26,044
Glycemic | joint test only 58 9 0 1 68
traits
univariate test and 371 32 0 8 411
joint test
univariate test only | 89 6 1 0 96
Total by ancestry 518 47 1 9 575

318

319 Table 1. Independent genetic associations detected with the JASS omnibus test using
320 the standard p-value threshold of 5.10®. Number of associations found for 15 blood and
321  four glycemic traits in four different populations with the joint test and the univariate tests.
322  Associations that are significant only with the joint test (new associations) are distinguished
323  from associations that are significant with univariate tests.

324

325  We report 2,648 new independent associations (Table 1, Tables S6-S10, Figures S6-S10).
326  Genomic inflation factors are congruent with an adequate control of the type 1 error ranging

327  from 0.99 for the AMR ancestry to 1.23 for the European ancestry (Figures S11-S13). New
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328 associations are LD-independent associations significant exclusively for the joint test
329 (Methods). The univariate p-value is defined as the minimum p-value of univariate tests
330 across traits. Although this choice leads to an inflation of the univariate p-value, it allows for
331 the inclusion of all associations previously reported in the literature and provides a stringent
332  definition of new associations detected by JASS. For the TRANS ancestry analysis, we
333 derived a TRANS ancestry multi-trait association statistic by calculating the sum of the

334  omnibus test statistics across ancestries. Since samples are independent from one ancestry

335 to another, the obtained statistic follows a X% with degrees of freedom equal to the number of
336  ancestries times the number of traits (Methods). To contrast this TRANS ancestry multi-trait
337 analysis with a univariate approach, we computed a standard meta-analysis for each trait,
338 assuming fixed genetic effects across ancestries (Methods).

339 New associations represent 10%, 17%, 5%, 13%, and 2.8% of associations detected by the
340 joint test in the EUR, EAS, AFR, AMR and TRANS GWAS, respectively. The vast majority of
341  associations are associated with hematological traits (97%), following the same trend as
342  univariate association (97.5% of univariate associations are also associated with
343  hematological traits). JASS identified new genetic associations in modest sample size cohorts
344  (i.e 9,368 individuals for AMR) on hematological traits emphasizing the interest in using non-
345 European data when conducting secondary analyses even when they are seemingly
346  underpowered [10]. Concerning glycemic traits, the very modest number of new signals for
347 AFR and AMR might be explained by the low coverage of glycemic summary statistics for
348 these ancestries (Table S2). Indeed, for these two ancestries, the approximate number of
349  SNPs available for glycemic traits is 2 million whereas more than 8 million SNPs were available
350 for hematological traits. Here, we chose to report all associations below the standard p-value
351 threshold of 5108 for completeness. However, a stricter choice would have been to apply a
352  Bonferroni correction taking into account the number of multi-trait GWAS performed in the

353  current report (11). When applying a Bonferroni correction, the number of new associations is
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354 41, 6, 169, 1479 and 36 in the AFR, AMR, EAS, EUR and TRANS ancestry analyses
355  respectively.

356

357  Focusing on hematological trait associations, 38% of new associations detected in the African
358 population arise from absent or rare variants (minor allele frequency [MAF] < 1%) in other
359  studied populations (Table S11). In contrast, 4% and none of the new associations detected
360 in the East Asian or European populations were rare or absent in all other populations. The
361  African population's unique allele diversity appears to be a key factor in explaining the number

362  of associations discovered in this population.

363 Shared loci across ancestries for hematological traits

364 We compared association loci across populations to assess the extent of their potential
365 overlap across ancestries. To this end, the genome was segmented into non-overlapping
366 regions of 1 Mbp that were considered detected in one ancestry if the region contained at least
367  a significant association (joint or univariate). We represented (Figure 2A) the overlap of loci
368 across populations with an UpSetR plot — an improved Venn diagram for the visualization of
369 numerous set intersections. When including several ancestries, we considered the
370 intersection as newly discovered if at least one of the genetic associations was found by the
371 joint test only (Figure 2A). The joint test increased the discovery of non-European ancestry
372  specific loci by over 33% (from 10 regions to 15 regions). Of these specific loci, 12 regions on
373 15 were detected in the AFR ancestry and 4 of those associations were discovered exclusively
374 by the joint test. This result is in line with previous reports that African cohorts tend to yield
375 more associations by sample than European cohorts [8]. The large number of specific loci
376  detected in European ancestry samples likely reflects the larger sample size of the European
377  cohorts. Specific loci in the European population tended to have a weaker signal (i.e., higher
378  p-value) than those shared by at least one other ancestry (rank test p-value = 0.008, Figure
379 S14). These weaker signals might be detected in other ancestries when reaching an

380 equivalent sample size. To test this hypothesis, we artificially weakened the signal of lead
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381  SNPs detected in the European population to simulate a range of diminished sample sizes
382 (Methods) and computed the fraction of 1 Mbp loci that remained specific to European
383 ancestry (Figure S15). When the sample sizes were similar in the pair of ancestries, the
384  fraction of loci specific to European ancestry ranged from O (when compared to AMR) to ~15%
385 (when compared to EAS). This observation is in line with most genetic associations sharing
386  the same region within different populations as observed in previous studies [30-32].

387

388  Performing the multi-trait GWAS increased the proportion of significant associations detected
389 in the trans-ancestry and European GWAS that were also found in hon-European ancestries
390 by 15% (Figure 2A, 430 regions were replicated with the univariate test, 495 regions were
391 replicated when considering both tests). A substantial number (367) of loci were shared by the
392  European, Asian and trans-ancestry analyses and 10% of those shared associations are
393  detected by the joint test. Multi-trait GWAS can increase the number of replicated associations

394  with no additional samples.
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397  Figure 2. Genetic signal similarity across 4 superpopulations. A) Overlapping loci across

398 four superpopulations. Shows shared and specific loci in the studied populations for
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399 hematological traits, B) lllustration of the comparison of multi-trait signals across ancestries.
400 For shared loci a correlation between the vectors of the genetic signal is computed. The
401 squared Pearson correlation gives an indication of how much the multi-trait signal is
402  conserved. C) Histogram of multi-trait genetic signal similarity (R? Pearson correlation) for

403  pairs of lead SNPs located in a shared region. Each panel corresponds to one ancestry pair.

404  Similarity of the multi-trait signal between ancestry pairs

405 To quantify whether ancestries had similar multi-trait association patterns in overlapping
406  significant loci, we compared multi-trait vectors of genetic effects in shared loci across all pairs
407  of ancestry, measured as the squared correlation (R?) of genetic effects across traits (Figures
408 2B-C). Multi-trait effect size vectors were strikingly similar between the EUR and EAS
409  superpopulations with 75% of SNP pairs in shared loci having a correlation across traits higher
410 than 0.8 (Figure 2C, Figure S14). At first glance, the similarity between the EUR and AFR
411  superpopulations seemed lessened. However most of the low correlation SNPs pairs (80% of
412  the shared loci with a rho <0.8) were located on chromosome 1 near the ACKR1 (Figure 3)
413  locus (Chromosome 1: 159,204,875-159,206,500 forward strand), which is known to be
414  adaptive to overcome the p.vivax induced malaria[8,33]. After accounting for the ACKR1 locus
415  the median of correlation between EUR and AFR significant loci was 0.87. Overall, except for

416  the ACKR1 locus, multi-trait patterns were shared between ancestries for hematological traits.
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418  Figure 3. Examples of adiverging multi-trait signal: the ACKR1 locus. For each ancestry,
419 Manhattan plot and corresponding multi-trait signal heatmap for hematological traits at the
420 ACKR1 locus. Under each Manhattan plot, the normalized SNP genetic effects (z-scores) are
421  reported through a heatmap. Colors represent the value of the Z-scores. hematological traits
422  order: LYMPH, NEUT, MCV, EO, MONO, RBC, HGB, MCH, HCT, WBC, BASO, MCHC, PLT,

423  MPV, RDW.

424  Functional annotation for hematological trait GWAS

425  To validate the biological relevance of associations found by the joint test, and in particular
426  novel associations, we focused our functional analysis on hematological traits. Indeed, for
427  hematological traits, the joint test detected enough associations in all ancestries to allow for a
428 comparison of the relevance of the functional enrichment across ancestries. Briefly, we
429  mapped lead SNPs using a combination of positional and eQTLs mapping (Table S12 reports
430 the number of genes mapped by each method). Lead SNPs were mapped to their nearest

431  genes if their distance was less than 10kb. For eQTLs mapping, we selected eQTLs detected
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432  in the immune system and blood cells (Methods), which corresponds to the trait assessed in
433 the GWAS. To characterize genes found by the annotation step, we looked in which tissue the
434  genes were differentially expressed (Figure S17). For each population, we represented the
435 five first tissues with the highest p-value for upregulated genes (Figure 4A). Blood was

436  significantly enriched for the four populations.

437  To further analyze the annotation of the associations discovered by the joint test, we selected
438 genes linked to a SNP significant for the joint test. We then selected genes annotated in GO
439  (Gene Ontology) term sets [34] (Methods, Tables S13-S16). For European ancestry, 3 342
440  genes were identified, 388 genes for the EAS population and 49 genes for the AFR population.
441  For the Admixed American population, there were no genes related to the genetic associations

442  found by the joint test only.
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444  Figure 4. Shared functional features across ancestries. A) Top five tissues with the highest
445  p-value for upregulated genes for the four populations. Stars show significant enrichments
446  (Poon < 0.05). B) Histogram of the difference between the top SNPs positions in European and
447  East Asian populations. SNP difference positions between European and East Asian

448  populations for 177 genes shared by these two populations.
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449  We then investigated whether newly detected signals corresponded to the same regulatory
450 regions across ancestries by computing the position shift between European and East Asian
451  populations for SNPs regulating the same gene. (i.e., SNPs that are eQTLs for the same gene,
452 Methods, Table S17). Here, we focused on the European and East Asian ancestries because
453  the two ancestries share enough significant loci (433, Figure 1A) to assess whether these loci
454  systematically regulate the same genes. A total of 177 genes were shared in both ancestries
455  (i.e., associated with a lead SNP through a significant eQTL). When there were several SNPs
456  in one ancestry for one gene, we kept those with the closest pair between populations. The
457  median distance was 86 kb and for 90% of the SNPs, the distance was under 481 kbp (see
458  Figure 4B). This suggests that the same regulatory regions are involved in gene regulation in

459  both populations.

460 Because of the relatively high proportion of newly associated variants specific to the African
461  ancestry population, we conducted a targeted functional analysis to validate genes associated
462  with newly identified SNPs in that population. 49 genes were associated with a significant lead
463  SNP inthe AFR population. Each of those genes was looked up in The Human Gene Database

464  GeneCards (www.genecards.org, [26]) (Table S17). Five genes mapped to hemoglobin

465  subunits (HBG1, HBG2, HBE1, HBB and HBD) involved in beta thalassemia and fetal
466  hemoglobin quantitative trait locus 1 diseases. Eight genes mapped to other blood-related
467  pathways like Tubulin Beta 1 Class VI (TUBB1) expressed in platelets and CD36 molecule
468 (CD36), a gene protein located at the platelet surface. Five genes mapped to immune system-
469 related pathways. 20 genes mapped to the olfactory receptor family. This overrepresentation
470  of Olfactory receptors reflects probably more the close proximity of these genes along the
471 genome rather than a genuine functional enrichment. Indeed, 15 SNPs mapping to an
472  olfactory receptor family gene are located in a 1 Mbp region (chrl1:4.449.477 bp to
473  chrl1:5.539.485 bp). For African ancestry, 37% of associations that were discovered by the

474  joint test and annotated with GO term genes mapped to relevant blood pathways.
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475 Discussion

476 In this study, we applied JASS, a multi-trait analysis pipeline previously developed and tested
477  on European ancestry to four non-European ancestries. On three (AMR, EAS and AFR) out
478  of four ancestries, our pipeline generalized without barriers and allowed for the detection of
479  new associations while controlling for the genomic inflation factor. We also designed a Trans-
480 ancestry extension of the omnibus test. Altogether, single population and trans-ancestry,
481  omnibus tests identified 367 new associations in non-European ancestry. For hematological
482  traits, these new associations were linked with genes upregulated in blood, a relevant tissue,
483 in all ancestries. Notably for AFR ancestry, a fine analysis of new associations pointed toward
484  Dblood and immune pathways in 37% of annotated genes. Overall, this study highlights that
485  imputation followed by multi-trait testing can be a valuable tool set for non-European ancestry

486  analysis.

487  Our extension of the omnibus test to perform trans-ancestry GWAS is an elegant and
488 computationally efficient way to perform trans-ancestry GWAS without assuming
489  homogeneous effects across ancestries. Indeed, the trans-ancestry omnibus test relies on the
490 independence of the chi-squares derived in each ancestry to aggregate them in an unique chi-
491  square test. Hence, in each ancestry, the genetic signals can deviate from the null hypothesis
492  in different directions and contribute to the test statistic. However, our trans-ancestry analysis
493 detected only a handful of new signals, suggesting that the additional degree of freedom in
494  the expected distribution under the null hypothesis dilutes the signal and leads to a lack of
495  statistical power. Incorporating LD local structure of each ancestry into the multi-trait test, as
496  has been done for univariate GWAS[35], might enable us to further improve our trans-ancestry

497 multi-trait tests.

498  Further improvements of JASS could include a better adaptation to admixed populations.
499  Here, we validated the use of the JASS pipeline for admixed ancestries by showing that the

500 omnibus test is not inflated for Admixed Americans (Figures S10 and S11), and by assessing
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501 the accuracy of our estimate of the distribution of Z-scores under the null in the Caribbean
502 population (Figure S4), which is admixed between the African and European ancestries[4].
503  Although our current approach appears valid and was able to detect 15 new associations in
504 the Admixed Americans, it may not be optimal in terms of statistical power or may be biased
505 for higher degrees of admixture. We recommend a careful inspection of the genomic inflation
506 factor when using JASS on admixed populations. Further development of the method may
507 allow JASS to leverage local ancestry in admixed populations to boost GWAS statistical power

508 as previously done on individual level data [36].

509 We encountered an unforeseen pitfall with the SAS ancestry: the imputation led to an
510 implausible increase in the number of associations for the joint test. After an investigation, this
511 inflation was due to collinearity of traits investigated coupled to a high sample overlap. This
512  specific set of conditions leads to an increased condition number for covariance under the null,
513 or more plainly said, to a null hypothesis that lacks robustness (Supplementary Note 3).
514  Hence, we do not recommend using the omnibus test in this specific setting. We will further
515 investigate the robustness of the omnibus test on SAS data to confirm that this inflation is not

516 related to other specificities of this population.

517 A large fraction of new genetic associations matched significant eQTL: 80% (1729/2173) for
518 the European, 60% (163/271) for the East Asian and 82% (59/72) for the African population.
519  However, for the AMR population, functional annotation was less informative suggesting a
520 lower multi-trait or eQTLs annotation signal quality (only 1.9% of sampled individuals in GTEX
521  self-reported as hispanic [37]). Only six significant SNPs out of 57 were eQTLs for a gene.
522  This observation underlines the importance of representing a diverse population not only in

523 GWAS sampling but also in other genomic assays.

524  Our assessment of multi-trait genetic signal similarity across ancestries demonstrates that the
525  omnibus test allowed for an increased replication of loci detected in European ancestry in non-

526  European ancestries. We mapped associated SNPs to genes through eQTLs and observed
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527 that genes share the same regulatory regions in the EUR and EAS ancestries. We reported a
528  systematic comparison of multi-trait genetic signals in shared loci. We observe strikingly
529  similar multi-trait patterns (with the median of the genetic signal squared correlation at variant
530 pairs being above 0.8) except in ACKR1 locus which is tied to an adaptation specific to African

531 ancestries protective for p.vivax parasites.

532  Our observations suggest an overall stability of the sign of genetic effects except in the ACKR1
533 loci and are consistent with previous reports that genetic effects are consistent across
534  ancestries [30,38,39]. Other reports nuance the extent of this similarity by noting that genetic
535 correlations across ancestries are often significantly lower than 1 [12,40-42], and loci
536 replication can be lower for specific traits with culturally dependent definition, such as
537  depression (only 11% of European lead SNPs for depression are replicated East Asian
538 ancestry [41]). Hematological traits — continuous traits with an objective definition — can be a

539 good setting to assess replication with less confounding.

540  Our observation at the ACKR1 loci suggests that modification of multi-trait genetic effects is
541  associated with evolutionary forces. We hypothesize that divergences in multi-trait effects are
542  more striking and more telling functionally than a difference in mean between univariate effect
543  sizes. A systematic investigation coupling trans-ancestry multi-trait genetics and evolutionary
544  pressure measures could highlight how recent evolutionary events in the human population
545  transformed genetic effects. In short, through our multi-trait and trans ancestry GWAS we
546  detected relevant new associations and highlighted the similarity of multi-trait genetics across
547  ancestry. We argue that a computationally efficient pipeline such as the JASS pipeline could
548 Dbe a tool of choice to investigate a multi-trait genetic pattern across ancestries and their

549  potential coupling with evolutionary forces.
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550 Conclusion

551 By conducting multi-trait GWAS on 93 summary statistics originating from five ancestries, we
552  detected 367 new genome-wide significant associations in non-European populations (15 in
553 AMR, 72 in AFR and 280 in EAS), which represents respectively 7%, 25% and 21% of all
554  associations in the AFR, AMR and EAS populations. Overall, multi-trait testing increases the
555  replication of European associated loci in non-European ancestry by 15%. Pleiotropic effects
556  were highly similar at significant loci across ancestries (e.g. the mean correlation between
557  multi-trait genetic effect of EUR and EAS was 0.88). For hematological traits, strong
558 discrepancies in pleiotropic effects are tied to known evolutionary divergences: the ARKC1
559 loci which is adaptive to overcome the p.vivax induced malaria. Altogether these analyses
560 suggest that multi-trait GWAS methods can be a valuable tool to narrow the genetic knowledge
561 gap between European and non-European populations.To facilitate multi-trait GWAS on non
562  European ancestries, we distribute publicly (Availability of data and material section) the
563  JASS pipeline, and curated entry files (summary statistics, Reference panel) issued from this

564  study.
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578  Genetics group of the Institut Pasteur:

579 - JASS pipeline: https://gitlab.pasteur.fr/statistical-genetics/jass _suite pipeline

580 — RAISS: https://gitlab.pasteur.fr/statistical-genetics/raiss

581 - JASS: https://gitlab.pasteur.fr/statistical-genetics/jass

582 - JASS preprocessing https://gitlab.pasteur.fr/statistical-genetics/jass _preprocessing

583  Reference panels used in this study can be downloaded at https://gitlab.pasteur.fr/statistical-

584  genetics/jass suite pipeline/-/tree/master/Ref Panel

585 LDscores for the five ancestries can be download at:

586 https://doi.org/10.5281/zenodo.8096588

587 Linkage disequilibrium matrices for the five ancestries can be downloaded at:

588 https://doi.org/10.5281/zenodo.10391372

589  Summary statistics imputed and harmonized by the JASS pipeline can be downloaded on
590 the Zenodo platform for each ancestry under the following doi:

591 AFR - https://doi.org/10.5281/zenodo.8060264

592 EAS - https://doi.org/10.5281/zenodo.8068881

593 AMR - https://doi.org/10.5281/zenodo.8068935

594 EUR - https://doi.org/10.5281/zenodo0.8068972

595 TRANS - https://doi.org/10.5281/zenodo0.10213745

596  Script and data to reproduce Figures presented in this manuscript:

597 https://zenodo.org/records/10299388
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