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Abstract

Fetal MRI is widely used for quantitative brain volumetry studies. However, currently, there is a lack of universally
accepted protocols for fetal brain parcellation and segmentation. Published clinical studies tend to use different segmen-
tation approaches that also reportedly require significant amounts of time-consuming manual refinement. In this work,
we propose to address this challenge by developing a new robust deep learning-based fetal brain segmentation pipeline
for 3D T2w motion corrected brain images. At first, we defined a new refined brain tissue parcellation protocol with 19
regions-of-interest using the new fetal brain MRI atlas from the Developing Human Connectome Project. This protocol
design was based on evidence from histological brain atlases, clear visibility of the structures in individual subject 3D
T2w images and the clinical relevance to quantitative studies. It was then used as a basis for developing an automated
deep learning brain tissue parcellation pipeline trained on 360 fetal MRI datasets with different acquisition parameters
using semi-supervised approach with manually refined labels propagated from the atlas. The pipeline demonstrated
robust performance for different acquisition protocols and GA ranges. Analysis of tissue volumetry for 390 normal par-
ticipants (21-38 weeks gestational age range), scanned with three different acquisition protocols, did not reveal significant
differences for major structures in the growth charts. Only minor errors were present in < 15% of cases thus significantly
reducing the need for manual refinement. In addition, quantitative comparison between 65 fetuses with ventriculomegaly
and 60 normal control cases were in agreement with the findings reported in our earlier work based on manual segmenta-
tions. These preliminary results support the feasibility of the proposed atlas-based deep learning approach for large-scale
volumetric analysis. The created fetal brain volumetry centiles and a docker with the proposed pipeline are publicly
available online at https://hub.docker.com/r/fetalsvrtk/segmentation (tag brain bounti tissue).

Keywords: Fetal MRI, Brain development, Tissue parcellation, Automated segmentation, Growth charts

1. Introduction

Fetal MRI provides complementary diagnostic infor-
mation to antenatal ultrasound (Rutherford et al. (2008))
and allows detailed characterisation of normal and abnor-
mal patterns of fetal brain development based on both5

visual analysis and quantitative metrics. Dedicated acqui-
sition protocols for structural fetal MRI such as single shot
turbo spin echo (SSTSE) and recent developments in ret-
rospective motion correction methods such as 3D slice-to-
volume registration (SVR) have lead to the generation of10

high-resolution 3D isotropic images Prayer et al. (2017);
Aertsen et al. (2020)Gholipour et al. (2010); Kuklisova-
Murgasova et al. (2012); Ebner et al. (2020)Uus et al.
(2022). The continuity of these images in 3D space allows
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for accurate 3D segmentation and volumetry of individ-15

ual brain Regions-of-Interests (ROIs) or tissue compart-
ments. The protocols for measurements and segmenta-
tion of brain structures (relevant to a specific study) have
been commonly defined in a reference space represented by
either individual subject datasets at different gestational20

ages (GA) or population-averaged atlases Gholipour et al.
(2017).

In fetal MRI studies, manual brain segmentations are
conventionally performed in 2D planes on 3D T2w SVR-
reconstructed images. This is a time consuming process25

and manual labels are generally prone to errors including
inconsistencies in through plane views, missing finer parts
of large region of interest (ROIs) (e.g., cortex) and over-
or underestimation at tissue interfaces.

The classical automated brain parcellation methods30

widely used for fetal MRI rely on simple single or multi-
atlas registration-guided label propagation with probabilis-
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Figure 1: The main steps of the proposed solution for implementation of a deep learning pipeline for 3D brain tissue parcellation for motion-
corrected 3D fetal MRI.

tic label fusion. However, these methods are notably prone
to significant under- / over-estimations at tissue interfaces
due to limits of registration (especially for the cortex). As35

a result, the most recent volumetric fetal brain studies
Story et al. (2021); Rollins et al. (2021); Machado-Rivas
et al. (2021); Vasung et al. (2022) reported the need for
substantial manual refinement of segmentations produced
by automated atlas-based methods.40

In contrast, the results of the recent FETA fetal MRI
challenge Payette et al. (2021) suggest that deep learning
provides robust performance for multi-label segmentation
in T2w 3D SVR images. Here, commonly used baseline
models included conventional 2D and 3D UNet convolu-45

tional neural networks (CNN) Ronneberger et al. (2015);
Özgün Çiçek et al. (2016), as well as use of the more
recent advanced nnUNet Isensee et al. (2021). Khalili
et al. (2019) proposed one of the first works that used
2D UNet for brain tissue parcellation in 2D fetal MRI50

slices. Since then, a number of works focused on differ-
ent challenges specific to fetal MRI. For example, Fidon
et al. (2021a) introduced label-set loss functions for cases
with partial input annotations, and Fidon et al. (2021b)
proposed distributionally robust optimisation to improve55

generalisation for unseen abnormal cases with anatomical
variabilities. Other works by Li et al. (2021); Pei et al.
(2021) used anatomical priors to train conditional atlases
and increase performance. Deep attentive modules Dou
et al. (2021) and incorporation of additional topological60

information de Dumast et al. (2021); Li et al. (2022) were
used to improve cortical segmentation. Recently, Karimi
et al. (2023) also reported a significant improvement of
segmentation results based on training on smoothed noisy
segmentations of globally refined propagated atlas labels65

Gholipour et al. (2017).
One of the remaining major challenges is caused by

the lack of established high quality ground truth segmen-
tations. Even with advanced deep learning methods, use
of low quality training labels is generally expected to prop-70

agate systematic errors to the predicted segmentation and
volumetry outputs. This is made more challenging, since
there is still no universally accepted reference parcella-
tion protocol for fetal brain anatomy. Recent quantitative
studies relied either on publicly available atlas parcellation75

maps Gholipour et al. (2017) or internal fetal MRI exper-
tise. Reliability if further affected by different acquisition

parameters, image quality and anatomical variations.

2. Contributions

In this work, we propose a new refined protocol for par-80

cellation of fetal brain tissue in 3D T2w SVR-reconstructed
fetal brain images. It is defined a set of labels for the
T2w channel of the new publicly available 21-36 GA fe-
tal brain MRI atlas Uus et al. (2023) from the develop-
ing Human Connectome Project (dHCP). This protocol85

is then used as a basis for semi-supervised training of a
dedicated deep learning segmentation pipeline (BOUNTI)
for 3D T2w SVR-reconstructed images. The training of
networks is based a large set of high-quality brain segmen-
tations created by thorough manual refinement of labels90

propagated from the GA-matched atlases. In addition,
the feasibility of the pipeline is assessed by comparison
of brain tissue volumetry growth charts created from seg-
mentations of 390 3D T2w brain images from three nor-
mal cohorts, acquired with different acquisition protocols,95

and quantitative volumetric comparison between 60 nor-
mal control and 65 ventriculomegaly cases.

3. Methods

This work proposes a practical deep learning segmenta-
tion solution for 3D T2w fetal brain images for automated100

volumetric analysis of large cohorts that would minimise
the need for excessive manual editing. Fig. 1 summarises
the main components of implementation of the proposed
pipeline. At first, we define a new refined brain tissue par-
cellation protocol in the dHCP fetal atlas space. The atlas105

label propagation in combination with thorough manual
refinement is then used to generate a large consistent set
of high quality segmentations of 3D SVR fetal brain im-
ages from cohorts with different acquisition protocols. The
brain segmentation networks are trained in several itera-110

tions based on semi-supervised approach.

3.1. Cohorts, datasets and preprocessing

The fetal brain T2w SSTSE MRI datasets used in this
work were acquired as part of different studies at Kings
College London with different acquisition protocols. These115

included:
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Figure 2: Proposed BOUNTI pipeline for automated brain tissue parcellation for 3D T2w fetal MRI (A) and preparation of labels for semi-
supervised training (B).

• 302 fetal participants from the developing Human
Connectom Project - dHCP (REC 14/Lo/1169) project
acquired on 3T Philips Achieva MRI system with
a 32-channel cardiac coil using a dedicated dHCP120

fetal acquisition protocol Price et al. (2019) with
TE=250ms, acquisition resolution 1.1 x 1.1mm, slice
thickness 2.2mm, -1.1mm gap and 6 stacks;

• 55 fetal participants from the Intelligent Fetal Imag-
ing and Diagnosis - iFIND (REC 14/LO/1806) project125

acquired on 1.5T Philips Ingenia MRI system using
28-channel torso coil with TE=80ms and TE=180ms,
acquisition resolution 1.25x1.25mm, slice thickness
2.5, -1.25mm gap and 9-11 stacks;

• 85 fetal participants with cardiac anomalies from the130

fetal CMR service at Evelina London Children’s Hos-
pital (REC 07/H0707/105) acquired on 1.5T Philips
Ingenia MRI system using 28-channel torso coil with
TE=80ms, acquisition resolution 1.25 x 1.25mm, slice
thickness 2.5, -1.25mm gap and 9-11 stacks;135

• 91 fetal participants from the Placental Imaging Project
- PiP (REC 16/LO/1573) and Individualised Risk
prediction of adverse neonatal outcome in pregnan-
cies that deliver preterm using advanced MRI tech-
niques and machine learning study (REC 21/SS/0082),140

on 3T Philips Achieva MRI system using a 32-channel
cardiac coil with TE=180ms, acquisition resolution
1.25 x 1.25mm, slice thickness 2.5, -1.5mm gap and
5-6 stacks;

• 55 fetal participants from the CARP (REC 19/LO/0852)145

and Placental Imaging Project -PiP (REC 16/LO/1573)
projects acquired on 1.5T Philips Ingenia MRI sys-
tem using 28-channel torso coil with TE=180ms, ac-

quisition resolution 1.25 x 1.25mm, slice thickness
2.5, -1.25mm gap, and 4-5 stacks;150

• 125 fetal participants from the Quantification of fe-
tal growth and development using magnetic reso-
nance imaging study (REC 07/H0707/105) acquired
on 1.5T Philips Achieva MRI system using 32-channel
cardiac coil with TE= 160ms, acquisition resolution155

1.25 x 1.25mm, slice thickness 2.5, -1.5mm gap and
8 stacks.

The cohort includes both normal control and a subset
of cases with abnormal findings but without extreme de-
viations in their anatomy (presence and preserved global160

shape of all brain regions and absence of lesions). The GA
of participants varies within 20-38 weeks range.

All 3D brain images were reconstructed using fully
automated SVR motion-corrected pipelines. The dHCP
datasets were reconstructed using the dedicated dHCP165

SVR method Cordero-Grande1 et al. (2019) to 0.5mm res-
olution and reoriented Wright et al. (2018) to the standard
radiological space. The rest of the datasets were recon-
structed based on the Kuklisova-Murgasova et al. (2012)
SVR method to 0.75-0.8mm isotropic resolution using the170

automated version2 that also includes automatic reorien-
tation to the standard space. We used only acceptable
quality datasets with sufficient visibility of all brain struc-
tures and anatomical features. SVR reconstructions with
intensity artifacts or failed motion correction (that on av-175

erage tend to be present in approximately 10-15% of all
cases) were not included in this study.

2SVRTK docker (auto-2.00): https://hub.docker.com/r/

fetalsvrtk/svrtk, https://github.com/SVRTK/SVRTK
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3.2. Proposed brain tissue parcellation protocol

Currently, there is no established consensus in the ex-
isting fetal brain manual annotation protocols (e.g., Gholipour180

et al. (2017); Kyriakopoulou et al. (2017); Khalili et al.
(2019); Payette et al. (2021)). This is further complicated
by the difference between the fetal and neonatal anatomy
and lower image resolution of fetal MRI (e.g., DRAW-EM
Makropoulos et al. (2018)) relative to the size of the fetal185

brain. Therefore, we formalised a new brain tissue seg-
mentation protocol that is defined as a set of labels in the
new fetal brain MRI dHCP atlas (Uus et al. (2023)) space
using the T2w channel and 16 timepoints from 21 to 36
weeks.190

The inclusion and definition criteria for individual tis-
sue structures were based on the clinical relevance to quan-
titative studies, evidence from the anatomy histology at-
lases Bayer and Altman (2003, 2005) and the clear visi-
bility of the structures in individual subject 3D T2w SVR195

MRI images. At first, we used the optimised neonatal
dHCP DRAW-EM pipeline Makropoulos et al. (2018) to
create an initial set of segmentations of the major tis-
sue structures. Next, a clinical researcher (VK), with
more than 10 years experience in fetal MRI, manually re-200

fined and subdivided (when relevant) the labels to 19 ROIs
using ITK-SNAP3 including cortical grey matter (GM),
white matter (WM), cerebrospinal fluid (CSF), deep GM
(DGM), ventricles, cavum, brainstem and cerebellum ROIs.
The refinement was based on the fetal brain anatomy guide-205

books Bayer and Altman (2003, 2005) and performed for
3 atlas timepoints: 25, 30 and 36 weeks GA. This was
followed by left/right separation of all paired structures.
These preliminary parcellation maps were propagated to
the rest of the atlas timepoints using nonlinear registra-210

tion from MIRTK4 and manually refined, when required.
These parcellations were then used to generate the ground
truth labels for training of the proposed BOUNTI segmen-
tation network described in the next section. The final set
of atlas parcellation maps was created by using the final215

version of the trained BOUNTI segmentation pipeline (de-
scribed in Sec. 3.3). This was done to reduce any partial
volume effects at the cortex interface or inconsistencies in
manual segmentations.

The atlas along with the proposed tissue parcellation220

maps is publicly available at the online Centre for the De-
veloping Brain (CDB) data repository 5.

3.3. Automated parcellation of the fetal brain

BOUNTI segmentation pipeline

The proposed pipeline for ”Brain vOlumetry and aU-225

tomated parcellatioN for 3D feTal MRI” (BOUNTI) is
summarised in Fig. 2.A. It consists of two main steps.

3ITK-SNAP tool: http://www.itksnap.org/
4MIRTK toolbox: https://github.com/BioMedIA/MIRTK
5dHCP fetal brain MRI atlas repository: https://gin.g-node.

org/kcl_cdb/fetal_brain_mri_atlas

Initially, a 3D CNN module is used for global localisa-
tion of the brain in order to remove any present external
background ROI. This also increases robustness to vari-230

ations in formats of outputs of different SVR methods
(e.g., with or without masking and padding). Next, the
cropped, masked and bias corrected 3D brain ROI is seg-
mented using a multi-label 3D CNN module trained on
datasets with manually refined labels propagated from the235

atlas using registration. Taking into account the large
number of datasets required for training, as well as the
time-consuming nature of the manual refinement process,
we employed a semi-supervised approach with several it-
erations. At each iteration, a preliminary version of a pre-240

trained network is used for generation of a larger dataset
followed by manual fine-editing of labels for the final train-
ing stage.

Selected deep learning models

For the segmentation pipeline, we chose to use a com-245

bination of a classical 3D UNet Özgün Çiçek et al. (2016)
and an attention UNet Oktay et al. (2018) architectures
for both CNN modules for brain extraction and tissue par-
cellation. While 3D UNet is a robust and well established
tool widely used in 3D fetal MRI Payette et al. (2021), at-250

tention UNet reportedly improves prediction performance
by focusing on important structures of varying shapes.

We used the standard MONAI Cardoso et al. (2022)
3D UNet and Attention-UNet implementations with five
and four encoder-decoder blocks (output channels 32, 64,255

128, 256 and 512), correspondingly, convolution and up-
sampling kernel size of 3, ReLU activation, dropout ratio
of 0.5. We employed AdamW optimiser with a linearly
decaying learning rate, initialised at 1 × 10−3, default β
parameters and weight decay=1× 10−5. The input image260

dimensions are 128x128x128 and 256x256x256 and the out-
puts have 2 and 20 channels (with background) for global
localisation and tissue parcellation networks, correspond-
ingly. At inference, the predictions (per tissue ROI) of 3D
UNet and Attention-UNet networks are averaged at the265

output before softmax. In addition, in order to improve
robustness of the pipeline and limit any possible bias in
segmentation of the left and right structures, the images
are passed through the network twice, in the original ori-
entation and flipped along Y-axis. The second prediction270

is then flipped to the original orientation, and order of the
output channels is updated. The two segmentations are
then averaged to produce the final output.

Selected datasets for training and testing

The training for both brain extraction and tissue par-275

cellation was performed on datasets with different acqui-
sition protocols and SVR reconstruction methods. The
summary is provided in Tab. 1. The GA range of the par-
ticipants varies within the 21-38 weeks GA range. The
testing dataset includes 40 randomly selected (not used in280

training) 3D T2w SVR reconstructed images from 4 dif-
ferent acquisition protocols.

4

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 27, 2023. ; https://doi.org/10.1101/2023.04.18.537347doi: bioRxiv preprint 

http://www.itksnap.org/
https://github.com/BioMedIA/MIRTK
https://gin.g-node.org/kcl_cdb/fetal_brain_mri_atlas
https://gin.g-node.org/kcl_cdb/fetal_brain_mri_atlas
https://doi.org/10.1101/2023.04.18.537347
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1: Summary information about training and testing datasets.

Cohort Acquisition 3D SVR reconstruction
Training datasets

190 (normal and abnormal) 3T, TE=250ms Cordero-Grande1 et al. (2019))
120 (normal and abnormal) 1.5T, TE=80ms Kuklisova-Murgasova et al. (2012))
70 (normal and ventriculomegaly) 1.5T, TE=160/180ms Kuklisova-Murgasova et al. (2012))

Testing datasets
10 (normal and abnormal) 3T, TE=250ms Cordero-Grande1 et al. (2019))
10 (normal and abnormal) 1.5T, TE=80ms Kuklisova-Murgasova et al. (2012))
10 (normal and abnormal) 1.5T, TE=180ms Kuklisova-Murgasova et al. (2012))
10 (normal and abnormal) 3T, TE=180ms Kuklisova-Murgasova et al. (2012))

Image preprocessing

Taking into account the varying size, resolution and
intensity ranges of input SVR reconstructions, the gen-285

eral preprocessing steps for all images in both steps of
the pipeline included: transformation to the standard ra-
diological space coordinate system, cropping of the back-
ground, resampling with padding to the required input
grid size and rescaling to 0-1 range. For the brain tissue290

segmentation step, the brain images were also masked and
cropped with the dilated (2 iterations) global brain masks
obtained from the first step of the BOUNTI pipeline. All
preprocessing steps were implemented based on MIRTK
toolbox.295

Preparation of training datasets

For both CNN steps of the pipeline, training was per-
formed in three stages. In this case, a version of the net-
work pretrained on a small number of cases (from the pre-
vious iteration) was used for segmentation of the main300

training dataset. This strategy was selected for both prac-
tical reasons and required accuracy and consistency of the
ground truth labels.

For the brain extraction CNN step, we used an al-
ready existing network (3D UNet in MONAI pretrained on305

datasets from other research projects at our institution) to
segment all SVR brain reconstructions with different back-
ground coverage and masking. The output segmentations
were inspected and manually refined (at every stage), when
required, resulting in 380 images for final training. We310

augmented the training dataset by allowing image mask-
ing to be performed with a varying degree of dilation (2 to
18 iterations) of the brain mask and background padding.

For the first stage of training of the brain tissue par-
cellation CNN, we generated labels via registration-guided315

atlas propagation n (19 ROIs) for a preliminary set of 200
fetal brain from dHCP and iFIND/fCMR cohorts covering
20-38 weeks GA range. Image registration was run with
multi-channel (T2w and cortex generated by an existing
in-house 3D UNet trained on Draw-EM cortical segmen-320

tations for dHCP cohort) nonlinear MIRTK registration
Rueckert et al. (1999) with LNCC metric and 6mm win-
dow size. After visual inspection, 100 images (distributed
across the whole GA range) with the minimal/average

amount of errors (based on visual assessment of cortical325

interface) were selected and semi-manually refined by re-
searchers (AU, DC, AD) trained in fetal MRI (Fig. 2.B).
The refinement included editing of the cortex, WM, CSF,
deep GM and cerebellum ROIs using the user-guided ac-
tive contour segmentation tool Yushkevich et al. (2006) in330

ITK-SNAP, followed by local manual editing of individual
tissue labels. In general, label propagation worked well for
21-31 weeks GA range with only minimal editing required
(mainly for low image quality or cases with abnormal find-
ings). For late GA (>34 weeks) cases, refinement required335

approximately 1-2 hours per case, primarily focusing on
the cortex ROI. Notably, even after refinement the cor-
tex labels were not smooth and had minor discontinuities
/ overlap between WM/GM/CSF ROIs. In addition, the
training dataset was extended by flipping of the brain in340

a left/right direction (with corresponding changes of the
label numbers) and histogram matching to different TE
references (e.g., from TE=250ms to TE=80ms) as aug-
mentation for the flipped versions.

This first version of the refined datasets was used for345

preliminary training of a 3D UNet. The network was then
used to segment all 380 fetal brain images from a mixture
of the available cohorts (including the originally refined)
with more early (<22 weeks) and late (>34) participants
to balance the extreme anatomy differences. All labels350

were reviewed in terms of errors and 200 images were se-
lected for further training. The output CNN labels for the
selected images were again edited in ITK-SNAP (using
active contours and manual refinement), when required.
The new training dataset was then used to train the net-355

work with the same data augmentation strategy followed
by segmenting, review and editing of the next part of 3D
brain images. This procedure was repeated for a second
time. The final training dataset consisted of 380 images
(doubled by flipping augmentation).360

Training of the networks

Training of all networks was performed in MONAI frame-
work using soft Dice and cross entropy loss and AdamW
optimiser. The final training stage of the brain extraction
3D UNet and Attention-UNet was performed on 360 train-365

ing and 20 validation datasets for 20000 and 50000 iter-
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ations, correspondingly. The networks were trained sepa-
rately. The final training of the brain tissue parcellation
3D UNet and Attention-UNet was performed on 360 train-
ing and 20 validation datasets for 150000 and 300000 it-370

erations, correspondingly. We used standard MONAI aug-
mentation including: bias field, affine rotations, Gaussian
noise and blurring.

Docker for the brain segmentation pipeline

The proposed fetal brain segmentation pipeline with375

trained networks is publicly available as a standalone docker
application6 at SVRTK fetal segmentation repository. In
order to ensure high segmentation quality, the main input
requirements to 3D fetal MRI SVR reconstructed images
include: T2w contrast (1.5/3T, TE=80-250ms), orienta-380

tion in the standard radiological space, 21-38 weeks GA
range, no extreme structural anomalies, sufficient image
quality (in terms of clear visibility and definition of the
brain structures) and no extreme SNR loss or shading ar-
tifacts.385

3.4. Growth charts of the fetal brain development

In order to assess the practical application of the pro-
posed dHCP brain parcellation protocol and segmentation
pipeline, we used the BOUNTI pipeline for segmentation
of 244 normal control fetuses from the dHCP project (185390

of these datasets were used during the training stage) and
146 normal participants from two other cohorts (1.5T,
TE=180ms and 3T, TE=180) with different MRI acquisi-
tion parameters from 21 to 38 weeks GA range and single-
ton pregnancies (these datasets were not used in training).395

All images were resampled to 0.5mm isotropic resolution.
All segmentations were reviewed and manually fine-edited,
if required, in order to ensure reliability of nomograms and
assess the impact on global trends.

The label volumetry was used to create growth charts400

(mean, 5th and 95th centiles) for brain development of
9 structures (combined right/left and associated ROIs)
based on the guidelines from Royston and Wright (1998).
The output table-format centile calculator for all individ-
ual structures is available at the atlas repository. The405

statistical difference between the cohorts was assessed for
the main solid tissue structures (WM, cortical GM, deep
GM) using ANCOVA analysis (volume measurements were
converted to log format, when relevant).

Comparison of normal control and VM cohorts410

In addition, to test the performance of the BOUNTI
pipeline we utilised imaging data from our previously pub-
lished study Kyriakopoulou et al. (2017) and compared the
volumetric results. We run BOUNTI on a cohort of fetuses
with ventriculomegaly (65) and a normal control (60) co-415

hort. All 125 fetal MRI datasets were reconstructed us-
ing the classical SVR method Kuklisova-Murgasova et al.

6BOUNTI automated segmentation docker: https://hub.

docker.com/r/fetalsvrtk/segmentation tag brain bounti tissue

(2012), reoriented to the standard space and resampled to
0.5 mm resolution. The 3D brain images were segmented
using the BOUNTI pipeline and visually inspected and420

manually refined, when required. The volume of the to-
tal lateral ventricles and suprantentorial brain tissue was
compared between the cohorts using ANOVA with and
without manual refinement.

4. Results and experiments425

4.1. Proposed tissue parcellation protocol

The proposed multi-tissue parcellation protocol defined
for the dHCP fetal brain MRI atlas7 is shown in Fig. 3. It
includes 19 major brain tissue ROI labels: cortical GM, fe-
tal WM, external CS, lateral ventricles, cavum, thalamus,430

basal ganglia, brainstem, cerebellum, vermis, 3rd and 4th
ventricles, with left/right separation of paired structures.
Fig. 4 demonstrates parcellation maps at 21, 26, 31 and
36 weeks that reflect the expected changes during nor-
mal brain development such as cortical folding and shape435

of the ventricles. Rendered cortical GM and WM have
smooth boundaries without gaps and with well defined cor-
tical folds. The cortical ribbon parcellation is thin without
partial volume effect in WM.

4.2. Automated parcellation of the fetal brain440

Comparison with semi-manual GT segmentations

The results of testing of the BOUNTI pipeline on 40
T2w SVR brain images from 4 different acquisition pro-
tocols and 21-38 weeks GA range (Tab. 2) showed robust
performance for all tissue ROIs. In all 40 test cases, all445

structures were correctly globally detected in all BOUNTI
segmentations (100 % detection rate). The relatively high
Dice values are expected due to the high quality and con-
sistency of training datasets generated by label propaga-
tion and thorough manual refinement. There were no sys-450

tematic differences in the method performance for different
test groups apart from slightly higher Dice values for the
dHCP cohort (3T, TE=250ms). This potentially is due to
higher tissue contrast and spatial resolution of the images,
as well as similarity to the atlas. The relative volume dif-455

ferences are within the generally acceptable range. Even
after manual and active contour refinement, the classical
registration-based LP is prone to minor inconsistencies for
the cortex ROI especially at late GA due to complex fold-
ing patterns. Fig. 5 demonstrates that BOUNTI corrected460

overestimation of CSF and cortical GM that were present
in the semi-manual ground LP labels. The CNN outputs
have significantly smoother cortex boundaries and less er-
rors at different tissue interfaces than the ground truth
LP. This is in agreement with the previously reported suc-465

cessful CNN performance in the recent FETA brain MRI
challenge Payette et al. (2021).

7dCHP fetal brain MRI atlas repository: https://gin.g-node.

org/kcl_cdb/fetal_brain_mri_atlas
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Figure 3: Proposed tissue parcellation protocol defined in the dHCP fetal brain MRI atlas.

Impact of GA at scan

Fig. 6 shows BOUNTI segmentation results for test
cases at different GA ranges. In general, the network per-470

formed better for the early and medium GA ranges. Sev-
eral minor errors were present at the back of the cortex
ROI in 6 late GA cases ≥ 35 weeks. This suggests the
further need for incorporation of topological information
Li et al. (2022) to ensure spatial continuity of individual475

structures, which will be especially relevant for surface-
based analysis as well as late GA cases.

Impact of acquisition and SVR reconstruction parameters

The examples of the segmentation results for all four
acquisition protocols with 1.5T and 3T field strength and480

80, 180 and 250ms echo time in Fig. 6 show clearly differ-
ent tissue contrasts and different image quality in terms
of definition of the finer features (due to SNR levels and
blurring). In addition to the quantitative analysis (Tab. 2),
visual assessment of all test cases did not reveal distinct485

differences in terms of the network performance. This is
also in agreement with the experiments in Payette et al.
(2020) that the choice of SVR methods does not signif-
icantly affect segmentation performance (excluding cases
with failed reconstruction).490

Impact of image quality and artifacts

Similarly to acquisition parameters, intensity artifacts
or low SNR alter tissue contrast and visibility of structures,
which in turn tend to affect accuracy and certainty of seg-
mentations. The examples in Fig. 7.A show the results of495

BOUNTI segmentation pipeline for previously unseen sub-
optimal image quality cases. While the network seemed
to produce relatively stable results for low SNR regions, it
failed in the cortex ROI with severe B1 shading (that could
not be resolved by N4). This suggests that the degree of500

MONAI bias field augmentation used during the training
was not sufficient, and more severe simulated shading ar-
tifacts (or more advanced bias field correction approach)
would be required to address this issue. However, vol-
umetry derived from low image quality datasets cannot be505

considered reliable by definition. Therefore, clinical trans-
lation of the pipeline would require a detailed specification
of the image quality requirements and an additional step
for automated assessment of expected segmentation cer-
tainty.510

Impact of anomalies

Two examples of BOUNTI segmentations for the pre-
viously unseen abnormal cases from the FETA challenge
Payette et al. (2021) are shown in Fig. 7.B. Since the
training dataset included abnormal cases with ventricu-515

lomegaly, visual analysis confirms that the network per-
formance was relatively acceptable for cases with slightly
enlarged ventricles. However, as expected, the network
produces various errors for anomalies with significant al-
ternations in the brain anatomy such as extreme ventricu-520

lomegaly. The optimal solution would require further train-
ing on large abnormal cohorts (e.g., similarly to Fidon
et al. (2021b)) along with possible introduction of clas-
sification step and optimisation of the network architec-
ture and parcellation protocol. Notably, the best reported525
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Figure 4: Proposed multi-tissue brain parcellation maps at 21, 26, 31 and 36 weeks GA timepoints of the dHCP fetal brain MRI atlas.

performances in terms of average Dice from the FETA
segmentation challenge Payette et al. (2022) vary within
0.78-0.79 range (vs. 0.87-0.90 for BOUNTI performance
Tab. 2), which highlights the advantages of using high
quality consistent ground truth labels for training.530

4.2.1. Alternative fetal brain segmentation methods

Taking into account the intrinsic differences in parcel-
lation protocols (e.g., different exclusion / inclusion strate-
gies for cortical and deep grey matter ROIs), the outputs
of BOUNTI cannot be directly quantitatively compared535

to alternative segmentation methods. The example of vi-
sual comparison with a classical 3D UNet trained on the

original FETA Payette et al. (2021) datasets (7 ROIs)
and label propagation from a GA-matched alternative at-
las Gholipour et al. (2017) (27 ROIs) is shown in Fig. 8.540

These two datasets at 24 and 35 weeks GA are from 3T,
TE=180ms cohort. In general, BOUNTI provides more
robust performance for the cortex ROI with thinner and
smoother cortical ribbon and smaller amount of errors in
comparison the other methods. This is caused by failed545

registration or inconsistencies in training datasets.

4.3. Growth charts of normal fetal brain development

In order to assess the general applicability of the pro-
posed brain atlas parcellation protocol and BOUNTI pipeline,
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Table 2: Quantitative comparison of BOUNTI segmentation results with semi-manual (label propagation with manual refinement) ground
truth labels: average Dice, recall and precision. The datasets include 40 cases from 21-38 weeks GA range from 4 different acquisition
protocols. Note: the labels for pair/related structures were combined.

ROI 3T, TE=250ms 3T, TE=180ms 1.5T, TE=180ms 1.5T, TE=80ms
Dice

External CSF 0.90± 0.02 0.89± 0.02 0.89± 0.03 0.89± 0.02
Cortical GM 0.87± 0.01 0.85± 0.02 0.87± 0.02 0.86± 0.03
Total WM 0.94± 0.02 0.94± 0.02 0.95± 0.02 0.95± 0.01
Deep GM 0.93± 0.01 0.93± 0.01 0.93± 0.01 0.93± 0.01
Lateral ventricles 0.90± 0.03 0.87± 0.03 0.87± 000 0.89± 0.03
3rd and 4th ventricles 0.82± 0.02 0.82± 0.03 0.81± 0.03 0.81± 0.01
Cavum 0.87± 0.05 0.86± 0.04 0.86± 0.03 0.83± 0.04
Cerebellum and vermis 0.93± 0.01 0.94± 0.01 0.93± 0.01 0.92± 0.01
Brainstem 0.93± 0.02 0.93± 0.02 0.93± 0.01 0.93± 0.01

Precision
External CSF 0.91± 0.03 0.93± 0.02 0.91± 0.03 0.91± 0.02
Cortical GM 0.85± 0.05 0.83± 0.06 0.86± 0.03 0.87± 0.06
Total WM 0.96± 0.01 0.94± 0.02 0.95± 0.02 0.95± 0.02
Deep GM 0.93± 0.01 0.93± 0.03 0.93± 0.01 0.93± 0.02
Lateral ventricles 0.93± 0.04 0.92± 0.07 0.87± 0.07 0.92± 0.04
3rd and 4th ventricles 0.84± 0.04 0.84± 0.05 0.82± 0.04 0.83± 0.02
Cavum 0.84± 0.09 0.82± 0.08 0.83± 0.08 0.79± 0.06
Cerebellum and vermis 0.96± 0.02 0.96± 0.01 0.96± 0.01 0.96± 0.02
Brainstem 0.91± 0.04 0.90± 0.04 0.91± 0.03 0.91± 0.02

Recall
External CSF 0.88± 0.03 0.85± 0.05 0.87± 0.03 0.87± 0.04
Cortical GM 0.89± 0.04 0.88± 0.03 0.88± 0.04 0.85± 0.07
Total WM 0.93± 0.03 0.94± 0.03 0.95± 0.02 0.95± 0.03
Deep GM 0.94± 0.01 0.93± 0.01 0.94± 0.02 0.94± 0.02
Lateral ventricles 0.88± 0.02 0.83± 0.04 0.87± 0.04 0.87± 0.04
3rd and 4th ventricles 0.82± 0.05 0.79± 0.06 0.81± 0.04 0.78± 0.05
Cavum 0.91± 0.03 0.90± 0.06 0.90± 0.04 0.93± 0.03
Cerebellum and vermis 0.93± 0.02 0.94± 0.02 0.93± 0.02 0.92± 0.02
Brainstem 0.96± 0.02 0.96± 0.02 0.96± 0.01 0.96± 0.02

Relative volume difference
External CSF 5.31± 4.07% 6.77± 4.10% 4.36± 2.64% 5.04± 5.19%
Cortical GM 8.77± 6.15% 9.11± 4.79% 5.55± 4.98% 7.59± 7.35%
Total WM 3.73± 3.55% 1.67± 1.36% 0.86± 0.62% 4.43± 2.65%
Deep GM 2.01± 1.34% 2.68± 1.79% 1.53± 1.16% 4.27± 2.33%
Lateral ventricles 5.81± 3.82% 10.44± 5.44% 6.01± 5.03% 6.08± 5.05%
3rd and 4th ventricles 6.66± 6.01% 8.50± 6.50% 6.62± 4.59% 7.84± 3.30%
Cavum 10.74± 12.30% 13.68± 10.46% 11.83± 9.10% 13.39± 11.25%
Cerebellum and vermis 3.83± 3.53% 3.85± 3.49% 3.98± 2.46% 5.27± 2.80%
Brainstem 6.06± 4.66% 6.28± 5.13% 6.00± 3.72% 5.08± 2.77%

we used it to create volumetry growth charts (Fig. 9) of550

the typical fetal brain development during 21 to 38 weeks
GA range based on healthy control datasets from four
studies with different acquisition protocols. It includes:
55 cases with 1.5T, TE=180ms (PiP, CARP); 91 cases
3T, TE=180ms (PiP, PRESTO) and 244 cases with 3T,555

TE=250ms (dHCP). Only cases without reported anoma-
lies and with good quality images were selected. In order
to ensure the validity of nomograms all segmentations gen-
erated by the BOUNTI pipeline were visually inspected.

Only minor refinements at the cortex interface were re-560

quired for 6 early (<23 weeks) and 38 late (>35 weeks)
GA cases due to either suboptimal regional image quality
or complex cortical patterns. Notably, the refinements did
not produce significant changes in volumetry results (not
exceeding 5% for individual labels volumes) and, on av-565

erage, required less than 1-5 minutes per case of manual
editing. This is a significant improvement in comparison to
the previously reported required time-consuming extensive
manual refinement (e.g., 1-3 hours per case in Story et al.
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Figure 5: An example of comparison of BOUNTI segmentation results vs. the original and manually refined (ground truth) label propagation:
late GA test case from dHCP cohort (3T, TE=250ms).

(2021)). This further emphasises that results of any auto-570

mated segmentation methods should always be inspected
and confirmed before any quantitative analysis. Further
development of the BOUNTI pipeline would also require
integration of automated image and segmentation quality
control steps as well definition of what constitutes a cor-575

rect segmentation and the acceptable levels of accuracy.
The trends for all structures demonstrate the expected

increase in volume with GA Kyriakopoulou et al. (2017);
Machado-Rivas et al. (2021) with higher variability for ex-
ternal CSF and lateral ventricle volumes. There are no vis-580

ible systematic deviations in the trends for different field
strength and echo time. This was further confirmed by
ANCOVA analysis that showed no significant differences
in volumetry for the major solid tissue structures. These
preliminary results show general feasibility of automated585

CNN solution for the accurate brain volumetry, even in the
presence of acquisition differences. However, any quanti-
tative volumetry analysis of datasets from different studies
would still require careful analysis of systematic differences
and implementation of a dedicated harmonisation solution.590

4.4. Comparison on normal control and VM cohorts

Following visual inspection of the 125 datasets for any
miss-labelled voxels, 6 out of the 125 cases required man-
ual refinement in the lateral ventricle and cortical ROIs.
The graphs in Fig. 10 demonstrate the volumetric compar-595

ison between the ventriculomegaly (65) and normal con-
trol (60) fetal MRI datasets (without manual editing). For
this study, manual editing in the ventricle and cortex ROIs
was required for 6 cases. Prior to manual editing, there is
a significant difference between the cohorts, with higher600

supratentorial brain (p < 0.0001) and lateral ventricle
(p < 0.0001) volumes in the VM cohort. The statistical
significant difference in both the lateral ventricular vol-
ume (p < 0.0001) and supratentorial brain (p < 0.0001)

remained following manual editing of the 6 cases. This is605

also in agreement with the originally reported results that
were based on exclusively manually performed segmenta-
tions Kyriakopoulou et al. (2017).

5. Discussion

The main aim of the new dHCP tissue T2w parcellation610

protocol and training of the ”BOUNTI” pipeline was im-
plementation of a foundation automated multi-label seg-
mentation tool suitable for robust and practical volumetric
analysis at wide GA ranges and different acquisition pro-
tocols that would minimise required manual refinement.615

First, we defined a new protocol for brain tissue parcel-
lation in the fetal MRI dHCP atlas space for 21-36 weeks
GA timepoints. The proposed parcellation map includes
19 tissue ROIs defined in the atlas space.

The CNN pipeline (based on combination of 3D At-620

tention and classical UNet) was trained on 360 T2w 3D
SVR-reconstructed brain images from 6 studies with dif-
ferent acquisition protocols and SVR reconstruction meth-
ods. In order to generate a high quality training dataset,
we used a semi-supervised approach based on several it-625

erations of manual refinement of atlas label propagations
and outputs of the pretrained network. The results of test-
ing on 40 images from different cohorts showed consistent
performance for the whole GA range and varying image
contrast. The predicted segmentations have a well defined630

cortex interface with only minor errors present in a small
proportion of late GA cases. This significantly minimises
required manual editing in comparison to the alternative
solutions. Furthermore, BOUNTI segmentation is signif-
icantly faster (1-5 minutes per case depending on system635

configuration and image parameters) than the alternative
classical methods such as Draw-EM or label propagation.
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Figure 6: Examples of the outputs of segmentation pipeline for the test cases with different acquisition protocols and gestational ages.

The BOUNTI pipeline was then used to segment 390
3D T2w fetal brain images of the normal participants from
the dCHP and two other cohorts acquired at different field640

strength and with different echo time. Notably, only mi-
nor manual editing was required in < 15% of all cases
without significant changes in volumetric measurements.
The corresponding generated growth charts showed no sig-
nificant differences in trends of the main solid brain tis-645

sue ROIs for different acquisition parameters. Further-
more, comparison of BOUNTI label volumes between the
normal and cases with VM from our earlier study Kyri-

akopoulou et al. (2014) showed similar significant differ-
ences. These preliminary results potentially suggest the650

suitability of using one universal network for segmenta-
tion of datasets with different acquisition protocols. The
good quality of BOUNTI cortical segmentations also sug-
gests that they can be used for automated surface-based
analysis Makropoulos et al. (2018). However, any quanti-655

tative volumetry analysis of datasets from different studies
will still require implementation of a dedicated harmonisa-
tion solution. The BOUNTI segmentation pipeline docker
is publicly available online.
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Figure 7: Examples of BOUNTI segmentation results for suboptimal image quality (A) and abnormal Payette et al. (2021) (B) cases.

Figure 8: Examples of visual comparison of BOUNTI results with classical 3D UNet trained on the original FETA Payette et al. (2021)
datasets with manual labels (7 ROIs) and label propagation from an alternative atlasGholipour et al. (2017) (27 ROIs): two datasets at 24
and 35 weeks GA are from 3T, TE=180ms cohort. Note: the label colours were adapted for optimal comparison.

Limitations and future work660

In terms of the limitations, unlike the previously pre-
sented fetal brain atlas parcellation map in Gholipour et al.

(2017), the current version of the BOUNTI pipeline in-
cludes only global tissue segmentation protocol with 19
ROIs without further subdivision into standard anatom-665
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Figure 9: Growth charts: volumetry of the major brain structures for normal fetal cohorts from fetal MRI research studies with different
acquisition parameters: 1.5T, TE=180ms (blue, 55 participants); 3T, TE=180ms (red, 91 participants); 3T, TE=250ms (lilac, 244 partici-
pants). Note: the left and right labels for pair structures were combined.

ical regions (e.g., frontal lobe). We are planning to fur-
ther extend the parcellation map by separating the tis-
sue compartments into anatomical ROIs and transient fe-
tal compartments at the next stage of optimisation of the

BOUNTI pipeline.670

Any large scale application of the pipeline will also
require retraining on a wider range of anomalies Fidon
et al. (2021b) with potential optimisation of the parcella-
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Figure 10: Comparison of the VM (65) and normal control (60) fetal MRI cases from Kyriakopoulou et al. (2014) study based on the new set
of unedited parcellations from BOUNTI: lateral ventricle and supratentorial brain volumes. Note: the left and right labels for pair structures
were combined.

tion protocol (e.g., for agenesis of the corpus callosum).
Moreover, while this work provides a baseline pipeline675

for further development, we did not perform any quan-
titative investigations of the impact of changes in inten-
sity or image quality (i.e., definition of features) on seg-
mentation results. Application of deep learning segmenta-
tion for multi-centre/scanner quantitative volumetry stud-680

ies would require careful analysis of harmonisation require-
ments and potential optimisation of the networks.

Integration of data harmonisation Grigorescu et al. (2021)
for different acquisition parameters and suboptimal image
quality is one of the planned future steps along with in-685

corporation of additional topological cortical constrains.
Further development of the BOUNTI pipeline would also
require integration of automated image and segmentation
quality control steps as well definition of what constitutes a
correct segmentation and the acceptable levels of accuracy.690

This will also include a comprehensive quantitative evalu-
ation of feasibility of using BOUNTI pipeline for analysis
of different cohorts.

6. Conclusions

In this work, we formalised the new refined brain tissue695

protocol for 3D motion-corrected T2w fetal MRI in the
spatiotemporal fetal atlas from the dHCP project. This
protocol was used as a basis for training a deep learning
BOUNTI pipeline for automated fetal brain segmentation
on 360 fetal MRI datasets with different acquisition pa-700

rameters. We used a semi-supervised approach for gener-

ation of the training datasets with manually refined labels
propagated from the atlas. The pipeline showed robust
performance across 21 - 36 weeks GA range and with dif-
ferent acquisition protocols.705

The BOUNTI pipeline was then used to segment 390
normal control cases from 3 different cohorts with differ-
ent acquisition parameters. Only minor errors in < 15%
of cases thus significantly reducing the need for manual
refinement. A preliminary analysis of the growth charts710

(21-38 weeks GA range) revealed no significant differences
in the major solid tissue structures between the cohorts.
In addition, comparison between 65 cases with ventricu-
lomegaly and 60 normal control cases was in agreement
with the findings reported in our earlier work using man-715

ual segmentationKyriakopoulou et al. (2014). These initial
results suggest the general feasibility of using this pipeline
as a basis for further development of fetal brain MRI par-
cellation tools and large-scale volumetric analysis.

The BOUNTI pipeline docker is publicly available on-720

line at SVRTK fetal segmentation repository8.
Our future work will focus on further extension of the

anatomical parcellation map and optimisation of the BOUNTI
pipeline for a wider range of brain anomalies as well as har-
monisation, advanced cortex segmentation and segmenta-725

tion quality control.

8BOUNTI automated segmentation docker: https://hub.

docker.com/r/fetalsvrtk/segmentation tag brain bounti tissue
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