

1 The Primacy of Temporal Dynamics in Driving Spatial Self-organization of Soil
2 Redox Patterns

3
4 Xiaoli Dong¹, Daniel de Richter², Aaron Thompson³, and Junna Wang¹
5

6 1. Department of Environmental Science and Policy, University of California, Davis,
7 California, 95616, U.S.
8 2. Nicholas School of the Environment, Duke University, Durham, North Carolina, 27708, U.S.
9 3. Department of Crop and Soil Sciences, University of Georgia, Athens, Georgia 30602, U.S.

10
11
12
13
14 **Classification:**

15 Physical Science + Earth, Atmospheric, and Planetary Science
16 Biological Science + Ecology

17
18
19
20 **Keywords:** Environmental Variability; Iron Dynamics; Pattern Formation; Redox Oscillations; Soil
21 Mottles; Turing Instability

23 Abstract

24 In this study, we investigate mechanisms that generate regularly-spaced, iron banding in upland soils.
25 These redoximorphic features appear in soils worldwide, but their genesis has been heretofore unresolved.
26 Upland soils are highly redox dynamic, with significant redox fluctuations driven by rainfall, groundwater
27 changes, or irrigation. Pattern formation in these highly dynamic systems provides an opportunity to
28 investigate the temporal dimension of spatial self-organization, which is not often explored. By
29 comparing multiple alternative mechanisms, we find that regular redox patterns in upland soils are formed
30 by coupling two sets of scale-dependent feedbacks (SDF), the general framework underlying Turing
31 instability. The first set of SDF is based on clay aggregation and disaggregation. The second set is
32 realized by threshold-dependent, negative root responses to aggregated crystalline Fe(III). The former
33 SDF amplifies Fe(III) aggregation and crystallinity to trigger the latter SDF. Neither set of SDF alone is
34 sufficient to reproduce observed patterns. Redox oscillations driven by environmental variability play an
35 indispensable role in pattern formation. Environmental variability creates a range of conditions at the
36 same site for various processes in SDF to occur, albeit in different temporal windows of differing
37 durations. In effect, environmental variability determines mean rates of pattern-forming processes over
38 the timescale relevant to pattern formation and modifies the likelihood that pattern formation will occur.
39 As such, projected climate change might significantly alter many self-organized systems, as well as the
40 ecological consequences associated with the striking patterns they present. This temporal dimension of
41 pattern formation is previously unreported and merits close attention.

42

43 Statement of Significance

44 Iron reactions create redox features in soils around the world. This study investigates mechanisms
45 forming regularly-spaced iron stripes in upland soils. Upland soil redox conditions, driven by
46 environmental variability, are highly dynamic. We show that two sets of scale-dependent feedbacks are
47 coupled to form redox patterns and environmental variability plays a critical role in both. Significantly,
48 environmental variability creates opportunities for various pattern-forming processes to occur at the same
49 site in different temporal windows and determines mean process rates over the timescale relevant to
50 pattern formation. Hence, environmental variability dictates the likelihood of pattern formation. Such a
51 critical role of the temporal dimension in spatial self-organization has rarely been reported and has great
52 potential for application in other self-organized ecosystems.

53 1. Introduction

54 Redoximorphic features are observed in soils worldwide (1, 2). During anoxic periods, reduced iron
55 $[\text{Fe}(\text{II})]$ moves in soil pore water and when oxidized, forms redoximorphic features often characterized by
56 the distinct presence (orange) or absence (gray) of Fe (3) (Fig. 1). While redoximorphic features mostly
57 occur in soils that are frequently flooded, in drier upland soils, striking tiger-stripe-like patterns,
58 alternating between Fe-depleted gray bands and Fe-oxide-rich orange bands, have been reported (4–6)
59 (Fig. 1A; Table S1). The mechanism responsible for these regular patterns remains unknown; however,
60 similar patterns are commonplace across a range of natural systems and several theories have emerged to
61 explain them (7–10). Most notably, regular patterns in animal skin were first explained mathematically by
62 Turing in the 1950s (11), and are thus called ‘Turing patterns’ or ‘Turing instability’. The general theory
63 of spatial self-organization explains a broad range of patterns, e.g., vegetation patterns in drylands (12–
64 14), regular spaced fairy circles in Namibian and Australian grasslands (10, 15, 16), patterned grounds
65 with sorted stone and fine-grained soils in cold regions (17–19), and labyrinthine mussel beds (9, 20) and
66 wetlands (21, 22). We investigated this a yet unexplained mechanism of redox pattern formation, a
67 phenomenon reported in soils around the world (4–6).

68 In contrast to most of the self-organized systems studied so far, temporal dynamics of upland soils are
69 highly complex. Upland soils undergo significant redox fluctuations driven by rainfall, groundwater table
70 changes, or agricultural irrigation (23, 24) and redox conditions dictate soil biogeochemical processes.
71 Environmental variability, therefore, provides opportunities for distinct processes to occur. Over the
72 timescales relevant for pattern formation, constituent processes required for pattern formation might be
73 able to occur at the same site, although in different temporal windows. Environmental variability further
74 determines the duration of various processes; hence it controls the *mean rates* of pattern-forming
75 processes over the relevant timescale. Since pattern formation requires specific configuration of relative
76 process rates (11, 12), environmental variability may significantly alter both the occurrence and shape of
77 patterns formed. The temporal dimension of pattern formation is thus crucial but has been heretofore
78 rarely, if at all, investigated.

79 Turing instability involves a reaction-diffusion system incorporating fast-moving inhibitors and slow-
80 moving activators, forming scale-dependent feedbacks (SDF)—short-ranged positive feedbacks and long-
81 ranged negative feedbacks. SDF has recently been used to describe the emergence of regular vegetation
82 patterns in drylands (12–14), where vegetation patches enhance water retention locally (short-ranged
83 feedback), but dry out the adjacent zones (long-ranged feedback) to establish repeating spatial patterns.
84 Soil redox oscillations appear to also provide a basis for SDF. In soils, during anoxic episodes, reductive
85 dissolution releases micronutrients, stimulating root growth (23, 25). The resultant accumulation of

86 organic matter (a strong reductant) from root exudates or root death reinforces reductive reactions that
87 further release micronutrients in the rhizosphere. This forms the *short-ranged positive feedback* for root
88 growth and expansion. The *long-ranged negative feedback* begins with Fe(II) diffusing away from the
89 rhizosphere and, during oxic episodes, oxidizing to Fe(III). Repeated redox oscillations promote
90 precipitation of Fe(III) of increasing crystallinity (26), which further cements into plinthite-like material
91 (27–29). Crystalline Fe(III) weakens soil aggregation (30), which reduces soil water and nutrient retention
92 (31, 32). Furthermore, hard and brittle plinthite-like material forms a barrier to roots (33), especially
93 during dry periods when resistance to root penetration increases markedly (34). Together these processes
94 form the *long-range negative feedback* that inhibit root expansion. Processes involved in the hypothesized
95 SDF occur under different redox conditions; hence, at different times and durations during the year. For
96 example, reductive dissolution is limited to (near) anoxic conditions, which are rare for upland soils,
97 while root growth and expansion occur year around, subject to either stimulatory or inhibitory effect from
98 the environment. How does such a temporal separation of processes affect pattern formation?

99 Functional forms of feedbacks further affect Turing instability (35, 36). For example, the effect of
100 resources on root growth is often assumed to be monotonic—high resource concentration simulates
101 growth while low concentration negatively affects growth; however, biological responses can also be non-
102 monotonic. This is especially true of inhibitors, e.g., the negative effect of Fe(III) on root growth may not
103 operate until a threshold degree of crystallinity or aggregated hardness (plinthite) is reached. A threshold
104 dependent response requires processes that can generate and aggregate the inhibitor to trigger Turing
105 instability (Fig. 2). Redox oscillations might further provide a mechanism to trigger the inhibitory effect
106 of Fe(III) on root growth. Rapid pH shifts accompanying redox oscillations can enhance clay
107 disintegration and coagulation (37). During a reducing episode, increased pH markedly disperses mineral
108 and organic colloids (37). Soil microsites of relatively higher clay content exhibit higher water holding
109 capacity. As a consequence, as soils dry, microsites with higher clay will be relatively wetter, with
110 accelerated Fe(III) reductive dissolution (38). This further increases pH and enhances disintegration of
111 silt-sized kaolinite colloids, resulting in even higher clay content. These processes form a *local positive*
112 *feedback* (Fig. 2A). The large amount of Fe(II) produced in high-clay microsites diffuses to adjacent
113 microsites and precipitates in microsites of relatively low clay (Fig. 3B), as low-clay microsites are more
114 likely to have oxic conditions given their lower water holding capacity. In low-clay microsites, Fe(II)
115 oxidative precipitation produces protons that lower pH and can maintain the same kaolinite colloids in
116 silt-sized aggregates (39), decreasing the functional clay content for the already low clay microsites. This
117 forms the *long-range negative feedback*. These processes amplify the spatial heterogeneity of Fe(III) and
118 clay content (Fig. 3B). With repeated redox oscillations, crystallinity of aggregated Fe(III) may eventually
119 reach a threshold at which root growth begins to be suppressed, marking the onset of SDF realized via

120 negative root responses to crystalline Fe(III) (Fig. 2). However, since the processes that amplify Fe(III)
121 aggregation form SDF by themselves, is clay-mediated SDF alone sufficient to form regular redox
122 patterns? Or are both sets of SDFs required? If both, how do they interact during the pattern formation
123 process?

124 In this paper, we investigate mechanisms of redox pattern formation using a reactive transport model that
125 couples chemical reactions, soil water dynamics, evolution of soil texture, and root growth. Our study site
126 is at the Calhoun Experimental Forest, South Carolina, U.S.A. At this site, coarse-textured and porous A
127 and E horizons overlie kandic Bt-horizons that are dominated by kaolinite and Fe and Al oxides. The area
128 receives an annual rainfall of ~ 1,270 mm. Rainfall periodically exceeds evapotranspiration (ET) and
129 leads to low oxygen diffusivity, especially in B horizons, where a perched water table can emerge during
130 winter and early spring months. When sufficient organic reductants are present, microbial decomposition
131 consumes all of the oxygen and can switch to Fe(III) reduction as an alternative electron acceptor and
132 mobilize Fe(II) via reductive dissolution (4, 40). At the Calhoun site, a pattern of alternating gray and
133 orange bands, with band width of ~ 1.6 cm (Fig. 1A and D), is located between the soil depths of 1.0 and
134 1.8 m (B horizons). Gray layers are low in Fe(III) but are rich in clay-sized minerals (kaolinite) and soil
135 organic carbon (SOC) (although not higher than nearby sites without redox patterns) (Table S2). Gray
136 layers harbor abundant fine roots and hyphal networks of mycorrhizal fungi. In contrast, orange layers are
137 high in Fe(III) and low in clay-size particles and SOC, with no signs of root growth or ectomycorrhizal
138 hyphae. Fe(III) crystallinity in orange layers is much higher than that in gray layers, with Fe_o/Fe_d
139 (ammonium-oxalate extractable Fe and dithionite-extractable Fe) ratio falling within the range for
140 plinthite and ironstone concretions. A thorough description of physical and geochemical properties of
141 redox patterns at our study site is provided elsewhere (4). In this study, we compare multiple, alternative
142 mechanisms for pattern formation (Table S3). We will show that regular patterns in upland soils are
143 generated by coupling two sets of SDFs—SDF based on clay dynamics and threshold-dependent SDF
144 based on negative root responses to crystalline/plinthic Fe(III), with the former SDF amplifying Fe(III)
145 aggregation and crystallinity to trigger the latter SDF. Temporal redox oscillations driven by
146 environmental variability play an indispensable role in the formation of these banded redox patterns.

147
148 2. Results

149 2.1. Mechanisms of Pattern Formation

150 To sort among alternative mechanisms for patterns observed in the field, we examined three classes of
151 mechanisms (in total five mechanisms/hypotheses; Table S3): (a) SDF with the negative feedback
152 realized by *threshold-dependent* root responses to Fe(III), coupled with amplifying SDF mediated by clay

153 dynamics (Video 1). This is our “baseline model.” Within this category of mechanism, we further
154 investigated whether each set of SDF *alone* can give rise to the pattern (Video 2 and Video 3); (b) SDF
155 with the negative feedback realized by *monotonic* root responses to water limitation (Video 4); and (c)
156 template effect of pre-existing root structure determining the redox pattern (Video 5). Model simulated
157 patterns are compared with empirically observed patterns to determine the most likely mechanism.

158 **Pattern Set by Preexisting Root Structure**—The most parsimonious mechanism to explain pattern
159 formation is that the redox pattern is a manifestation of the pre-existing root spatial structure (Fig. 3A;
160 Table S3). High SOM in the rhizosphere reduces Fe(III) to Fe(II), which diffuses away from rhizosphere,
161 creating a gray zone surrounding the fine roots (Figs. 1G and 3A) and an orange zone surrounding the
162 gray rhizosphere caused by enhanced deposit of Fe(III). If fine roots are already regularly spaced
163 vertically, these processes can result in regularly spaced alternating gray–orange banded patterns. Using
164 the evenly spaced root biomass as model initial condition, the steady-state redox pattern follows exactly
165 root spatial distribution of the initial condition (Figs. S1 and S2). However, for redox patterns to follow
166 the preexisting root distribution, it is required that roots do not expand into new regions (layers) of the
167 soil (the diffusion coefficient of root biomass must be zero, $D_b = 0$ in *Eq. 8*; Table S3) to allow a
168 relatively stable template for redox patterns to form. Model simulations indicate that this mechanism
169 would generate the banded pattern in ~ 200 years.

170 **Pattern Self-organized by Amplifying SDF alone**—During redox oscillations, Fe(III) heterogeneity is
171 amplified via clay-mediated SDF. Soil microsites of higher clay content retain higher moisture during
172 dry-down and hence are more likely to be anoxic (Fig. 3B), leading to more Fe(III) reduction in clay-rich
173 microsites. Increases in pH during Fe(III) reduction enhance disintegration of silt-sized kaolinite clay
174 colloids, resulting in even higher clay content in high-clay microsites. Meanwhile, Fe(II) diffuses to
175 nearby microsites of lower clay content that experience shorter periods of anoxia. In these low-clay
176 microsites, Fe(II) oxidizes and precipitates as Fe oxyhydroxides and the lower pH associated with this
177 process promotes clay coagulation and aggregation. Consequently, functional clay content declines in
178 already low-clay microsites where Fe(III) continues to aggregate, while clay content increases in already
179 high-clay microsites where Fe(III) continues to decline (*Eq. 17*). These processes amplify the pre-existing
180 degree of heterogeneity of clay and Fe in soils.

181 While serving as an amplifier, we found that clay mediated SDF can also give rise to regular patterning
182 (Fig. S1; Table S3); however, under the rainfall regime at our study site, formation of regular patterning
183 by this mechanism requires a very slow rate of bulk clay diffusion. Clay disintegration (short-range
184 positive feedback in SDF) and coagulation (long-range negative feedback) in this model only occur under
185 anoxic conditions and only for a few days after soil anoxia begins. This is a very brief period over the

186 course of several years. In contrast, clay diffusion occurs year around (Fig. 2B). A large clay diffusion
187 coefficient (D_c) would smooth out clay heterogeneity, preventing pattern formation. Under the climatic
188 regime of our study site, only when D_c is $< 2.5 \times 10^{-16} \text{ m}^2 \text{ s}^{-1}$, can regular patterns arise; however, the
189 emergent banding width is only $\sim 1/3$ of the width observed in the field. While it is possible to obtain
190 banding widths comparable to the observed width by increasing D_c , for patterns to still form under a
191 larger D_c , a much wetter climate is required, allowing for more frequent or longer anoxic conditions.
192 Longer or more frequent anoxic conditions increase *mean annual* rates of Fe(III) reduction and oxidation;
193 that is, greater clay disintegration and coagulation are required to counteract the smoothing caused by
194 year-round diffusion.

195 Under the climatic condition of our study site, the formation of narrow banding requires $\sim 7,000$ years, an
196 order of magnitude longer than the estimated time required by other mechanisms (Table S3). Long pattern
197 formation time is caused by the amplifying SDF being weak and slow (Fig. S3). The nature of the
198 amplifying effect is differential soil moisture content (Se in *Eq. 4*) in gray and orange layers. This results
199 in distinct clay dynamics—clay disintegration dominating in gray layers and clay coagulation in orange
200 layers. Larger differences in soil moisture content between orange and grey layers create stronger
201 amplifying effects. However, the key process underlying the amplifying SDF, Fe(III) reduction, requires
202 anoxic conditions, which are not common in upland soils (Fig. S4). More importantly, when the anoxic
203 requirement is finally met in (nearly) saturated soils ($DO < 0.02 \text{ mol m}^{-3}$), values of soil moisture in
204 orange and gray layers are similar (Fig. S3); i.e., all layers are close to saturation. These conditions dictate
205 that the amplifying effects that enhance Fe(III) aggregation and crystallinity are weak.

206 Furthermore, with amplifying SDF alone, simulated OM content is slightly higher in the orange layers
207 than in the gray layers (Fig. S1-C5), contrary to the observed (field) pattern showing significantly lower
208 OM in orange layers. Under oxic conditions, a similar amount of OM is oxidized by DO in both orange
209 and gray layers. Under anoxic conditions, slightly more OM is oxidized by Fe(III) in gray layers where
210 normalized soil water content (Se in *Eq. 4*) is higher. Without a negative effect on root growth by resource
211 limitation or inhibitors, as hypothesized in other mechanisms, a similar amount of OM is produced in
212 both orange and gray layers. As a result, lower OM consumption in orange layers generates slightly
213 higher OM in orange layers, a pattern inconsistent with that observed in the field (Fig. S1; Table S3).
214 Because multiple aspects of model results (band width and OM pattern) contradict field-observed
215 patterns, amplifying SDF alone are unlikely to be the mechanism responsible for formation of the
216 observed banded redox patterns.

217 **Pattern Self-organized by Threshold-dependent SDF Coupled with Amplifying SDF**—Amplifying
218 SDF described above increase heterogeneity of Fe(III). Over repeated redox oscillations, Fe(III)

219 aggregation and crystallinity intensify and eventually reach a threshold when an array of changes occurs
220 and the negative effects on root growth begin. This triggers the second set of Turing instability (Fig. 2A).
221 Soils with more crystalline Fe(III) or plinthic-like horizons often have diminished nutrient and water
222 retention properties (31, 32, 41) and these can limit root growth. Additionally, highly crystalline Fe(III)—
223 plinthite, often observed in soil redoximorphic features, is hard and brittle, forming a barrier to root
224 penetration (27, 33). When lower crystallinity Fe(III) dominates the Fe pool, roots usually can effectively
225 penetrate soils by various morphological and chemical adaptations (42, 43). At our study site, goethite is
226 present in both gray and orange layers; however, its crystallinity is significantly higher in orange layers
227 (44), and thus fine roots grow exclusively in gray layers (4). Such a root growth pattern is found in other
228 places with similar redox banding (5). Radiocarbon dating at our study site shows that SOM in gray
229 layers is significantly younger than that in orange layers, indicating lack of recent root growth in orange
230 layers (4). Based on these lines of evidence, we used a threshold-dependent function (*Eqs. 10 & 11; Table*
231 *S3*) to describe the effect of Fe(III) on root growth. Fe(III) is a surrogate for an array of changes occurring
232 in soils as Fe(III) aggregation and crystallinity both increase over repeated redox oscillations.

233 Slow diffusion (expansion) of roots (an activator in the Turing instability framework) and rapid diffusion
234 of Fe(II) (an inhibitor of root expansion in oxidized form) give rise to the regular pattern. Once triggered,
235 the threshold dependent SDF coarsens the narrow banding formed by the amplifying SDF, generating
236 banding widths similar to observed values. The model that couples the two sets of SDFs reproduces *all*
237 aspects of spatial patterns in the field (Figs. 4 and S1; Tables S2 and S3), and ~ 900 years is required for
238 patterns to form. This is the most likely explanation for redox patterning observed at our study site (Table
239 S3). When the amplifying SDF is turned off in the model simulation, leaving threshold dependent SDF to
240 operate alone, no banded patterns arise (Fig. S1; Table S3).

241 **Pattern Self-organized by Monotonic SDF alone**—We further tested the hypothesis of a *monotonic*
242 relationship between root growth and resource level, specifically of soil water. That is, higher water
243 content stimulates root growth while lower water content restricts growth (Table S3). Unlike the
244 mechanism of threshold-dependent inhibitory effects of Fe(III) on roots, the model variant with this
245 mechanism (monotonic responses of root growth to soil moisture) can reproduce regular patterns *without*
246 amplifying SDF (Fig. S1; Table S3). During anoxic episodes, in microsites of high OM, a large amount of
247 Fe(III) is reduced, with marked clay disintegration, increasing clay content and soil water holding
248 capacity, which in turn stimulates root growth (Fig. 3C). More root growth leads to more SOM
249 accumulation, accompanied by Fe(III) depletion during subsequent anoxic periods. Meanwhile, Fe(II)
250 from these microsites diffuses and is oxidized to Fe(III) in nearby orange layers during oxic episodes.
251 Oxidative precipitation facilitates clay coagulation, reducing clay content when Fe(III) precipitates. In

252 microsites of low clay, soil water content is relatively low and can limit root growth (Fig. 3C). The model
253 with this mechanism can reproduce Fe(III) and clay patterns; however, the model predicts much higher
254 SOM in gray layers than is observed in the field (Fig. S1), resulting from positive root responses to the
255 relatively high-water content in clay-enriched gray layers. At our study site, SOM content in gray layers is
256 not higher than it is in those nearby sites without pattern formation (indicative of background level; Fig.
257 S1). This suggests a minimal to non-existent stimulating effect on root growth in gray layers. Pattern
258 formation occurs in ~ 900 years when this mechanism applies.

259 2.2. Conditions for Pattern Formation

260 One of the most important conditions for pattern formation is redox fluctuations, which is largely
261 determined by climate and soil conditions (texture and labile carbon availability). Regular patterns are
262 more likely to form in relatively dry conditions and in soils with an intermediate clay content (Fig. 5).
263 Under the parameterization of our model, regular patterns are likely to emerge when precipitation is <
264 3,500 mm yr⁻¹ and clay content is between 40% and 80%. Both wet conditions and high clay content can
265 enhance Fe leaching, reducing the likelihood of patterning. While soils of high clay content increase
266 leaching, soils of low clay content feature high hydraulic conductivity and low water retention capacity
267 (Figs. S5 and S6), often resulting in well-oxygenated soils, limiting the soil anoxia needed for pattern
268 formation. Furthermore, when annual precipitation increases, the pattern-forming range of clay content
269 narrows and lowers (Fig. 5), suggesting a compensatory effect of a higher clay content for a drier climate.
270 Such a compensatory pattern is also observed empirically in data from sites in different parts of the world
271 (Fig. 5).

272 The upper and lower boundaries of the pattern formation zone are determined by the vertical distributions
273 of clay, Fe(III), and OM in the soil. Regular patterning starts at 40 – 50 cm below the location where clay
274 content begins to rapidly increase (Figs. 4 and S7D). This is the soil depth where anoxic conditions are
275 more likely due to subsoil water perching (Figs. 4 and S4) and high Fe(III) (Fig. S7C). Soils above this
276 zone are sandy and almost always oxic (Figs. S7), except in the early spring when high OM
277 decomposition limits O₂ diffusion (45). At deeper soil depths (> 2.5 m), OM becomes too low for the
278 Fe(III) reduction required for pattern formation. Sensitivity of the Fe(III) reduction rate to soil water
279 content also affects the upper and lower boundaries of the pattern formation zone (Fig. S3). When
280 sensitivity is low, only the region with relatively high Fe(III) can reach the threshold of negative
281 feedbacks, resulting in narrow pattern formation zones (Fig. S8). In contrast, if the rate of Fe(III)
282 reduction is highly sensitive to soil water content, the pattern formation zone expands. The width of
283 pattern elements (banding) is primarily controlled by the two diffusion coefficients, i.e., the diffusion
284 coefficient for Fe(II) (D_{10} in Eq. 7) and for root biomass (D_b in Eq. 8) (Fig. 6). Banding width increases

285 with diffusion. Our models suggest that for a pattern to emerge, D_b must be at least three orders of
286 magnitude smaller than D_{l0} . Further, the clay diffusion coefficient D_c (Eq. 17) must be even smaller than
287 D_b .

288 The time required for patterns to form is highly dependent on climate. In our study system, the anoxic
289 period occurs in winter and spring, when evaporation rate is relatively low (Fig. 7) (45). Our baseline
290 model (the model coupling two sets of SDFs; Table S3) estimates that ~ 900 years is required for regular
291 patterns to form. Given that the annual precipitation regime imposed on the model is approximately at the
292 4-year recurrence interval, the actual pattern formation time is near ~ 3,600 years. A much longer time is
293 required for patterns to form in drier areas because the likelihood of wet conditions that induce soil anoxia
294 is much lower. In fact, we found that with a decline in annual precipitation, required pattern formation
295 time increases *exponentially* (Fig. S9). The time required for patterns to form is further affected by the
296 rate of Fe(III) reduction in an approximately linear fashion (Fig. S9).

297 2.3. Consequences of Pattern Formation for Soil Carbon

298 Since pattern formation involves root dynamics, redox patterning might affect soil organic carbon (SOC),
299 both in terms of its storage capacity and flux. At our study site, orange layers are ~ 2/3 the width of the
300 gray layers, and SOC content in the orange layers is ~ 40% of that in gray layers. If we use SOC in gray
301 layers—which is similar to SOC content in nearby sites without regular patterns—as the background level
302 for the region, formation of orange layers results in a 24% reduction in SOC storage within the pattern
303 formation zone (1.0-1.8 m). Our model reproduced this amount of carbon storage reduction by pattern
304 formation (Fig. 7). The initial amplifying SDF has little effect on soil carbon storage, but when crystalline
305 Fe(III) starts to exert a negative effect on root growth, carbon storage is reduced. At our study site, SOC
306 in the pattern-forming zone accounts for ~ 20% of total SOC in the top 4 m of soils (model domain). This
307 means that pattern formation reduced the carbon storage capacity of the top 4 m of soils by 4.8%. For the
308 total SOM oxidized each year, 10 – 50% is oxidized by Fe(III), and the remainder by O₂ (Fig. 7B). Fe(III)
309 serves as an important electron accepter between December and May, the period of low evaporation,
310 although precipitation is not high during that time of a year (Fig. 7A). As a result of the spatial
311 segregation of OM and Fe(III) in the gray and orange layers created by pattern formation, a potential
312 capacity of ~ 0.86 t C ha⁻¹ mineralization by Fe(III) is lost (estimated from (46)).

313 3. Discussion

314 **Mechanism of Pattern Formation.** Turing instability forms regular patterns under conditions of
315 environmental fluctuation. However, some inhibitors may need to reach a certain level or state (e.g., a
316 plinthite-like form of Fe(III)) to achieve Turing instability. This makes the inhibitory feedback threshold-

318 dependent. Threshold-dependent responses are common in nature (47–49); however, their effects on
319 Turing morphogenesis have seldom been investigated. The most plausible mechanism of redox patterning
320 in upland soils is the coupling of two sets of SDFs—clay-mediated SDF amplifies Fe(III) aggregation and
321 crystallinity to the state that suppresses root growth. This then triggers the second set of SDF. Plants
322 develop different approaches to improve their root penetration in soils (42, 43). It is not until Fe(III)
323 increases in crystallinity and forms plinthite-like aggregates, that these approaches would become
324 ineffective, triggering negative growth responses. In the orange layers where SOM is low, Fe(II) can
325 promote the structural transformation of weakly crystalline Fe(III) into more crystalline and
326 thermodynamically stable phases of Fe(III) (50, 51), which can then serve as a template for greater
327 precipitation of crystalline-Fe(III) (52). Experiments using soils from our study site with high native
328 Fe(III) crystallinity and depleted SOM produced goethite with exceptionally high crystallinity (52). In
329 contrast, in gray layers, enriched SOM inhibited the transformation of weakly crystalline Fe(III) into a
330 more crystalline form (50). At our study site, goethite in SOM-enriched gray layers has a much lower
331 crystallinity than it does in the SOM-depleted orange layers (44). Coupled SDFs are likely generalizable
332 to many self-organized systems where SDF are threshold dependent, a functional form common in nature
333 (47–49).

334 The nature of processes that trigger negative growth responses is SDF as well. These can give rise to
335 regular patterns by themselves. However, amplifying SDF is weak (Fig. S3), resulting in an order of
336 magnitude longer time for patterns to form by this mechanism alone (Table S3). Importantly, because the
337 amplifying SDF is relatively weak, they do not strongly interfere with the second set of SDF, which set
338 the characteristic band width. Otherwise, the pattern will not be regularly spaced, with different band
339 widths set by different sets of SDFs. SDF based on *monotonic* root responses to soil water content can
340 give rise to patterning even without the amplifying phase. As monotonic growth responses to soil water
341 content assume a positive root response to high water content, the simulated SOM in gray layers becomes
342 much higher than field observations suggest (Fig. S1-E4). Previous studies have shown that positive
343 feedbacks in SDF are not a necessary condition for pattern formation (53). Therefore, long-range negative
344 feedback alone would produce patterns that match field observation, if the negative feedback can be
345 effective at the initial condition, i.e., the initial soil moisture is low enough to suppress root growth.
346 However, soil moisture at our study site is high overall, averaging ~ 38% to 43% at 0.5 m depth year
347 around (Fig. S4) and root growth is not likely to be suppressed at such a high moisture level (54). In that
348 case, for the negative feedback alone to create the pattern, additional processes that can amplify the
349 spatial heterogeneity of soil moisture are required so that local moisture can be sufficiently low to
350 suppress root growth. This moisture mediated monotonic SDF might contribute to redox pattern

351 formation in much drier soils. Monotonic plant growth responses to water availability has explained
352 regular vegetation patterns in drylands around the world (53, 55).

353 The root template hypothesis—that redox patterns are determined by the pre-existing root structure—is
354 also unlikely to explain observed patterns. If soil redox patterns are a mere reflection of preexisting root
355 structure, this mechanism would require (I) a regularly spaced lateral root system; and (II) the same root
356 spatial structure persisting for a long enough time to allow pattern formation. Neither condition is likely.
357 Observations of root distributions do not show a regular structure that mirrors the observed redox patterns
358 (Fig. S10). Even if such regular structure exists, fine roots are deciduous (56) and are highly dynamic in
359 time so as to allow plants to rapidly adjust root structure to compete for limiting resources (57).
360 Furthermore, while the same loblolly pine species dominates most of the study area, regular patterns are
361 very patchy, indicating other drivers than plants are important. Nevertheless, many irregular
362 redoximorphic features in soils follow exactly the root structure, showing an iron-depleted gray
363 rhizosphere in upland soils (Fig. 1G) and an iron-concentrated orange rhizosphere in hydric soils
364 (“mottles”) (Fig. 1F) (4, 5, 58).

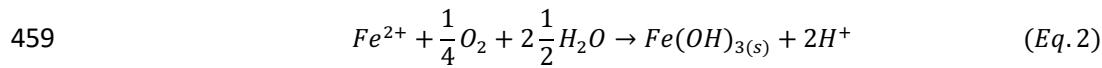
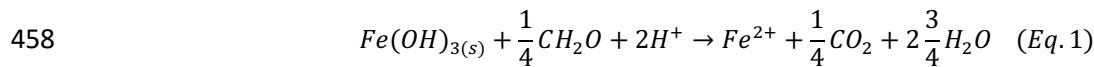
365 Beside SDF, phase separation can also drive spatial self-organization (9, 19). When a binary mixture is
366 subject to periodic forcing, e.g., freeze-thaw cycles in cold regions, particles autogenically separate and
367 form distinct spatial patterns (19, 59). The concentration-dependent movement feedback—switching from
368 dispersion to aggregation as local concentration increases—is central to the phase separation principle and
369 subsequent pattern generation. For example, mussels move at a high speed to form clusters when they are
370 at low density and once incorporated in clusters, they decrease their speed of movement. This density-
371 dependent movement feedback generates the diverse self-organized patterns of mussel beds (9, 60). In our
372 case, although redox cycles lead to local aggregation of clay, this does not occur through concentration-
373 dependent clay movement. Instead, clay aggregation occurs by disintegration in microsites locally,
374 without translocation (37).

375 **Why Regular Redox Patterning might be Rare?** While redoximorphic features are common in
376 soils, rhythmic redox banding is rare. This likely has to do with the intricate coordination of climatic, soil,
377 and biological conditions required for redox pattern formation. Upland soils are often well-aerated. In
378 subtropical forests, such as Calhoun in the Southeastern U.S. Piedmont, the marked seasonality of
379 rainfall, transpiration, and temperature restricts anoxic conditions to only short periods within wet years
380 (45, 46) (Figs. 7 and S4). Soil moisture can be further modified by local factors, e.g., land management
381 and topography. As such, even on the same landscape, regular patterns can be highly patchy. For instance,
382 no redoximorphic features appear in a soil pit only 400 m from our study site. Another pit ~4,000 m
383 away shows sparse, irregular patterns (Fig. 1). While anoxic conditions are more likely in wetter

384 environments, soil stability declines in wetter environments (61). As pattern formation likely requires
385 thousands of years, the likelihood of pattern formation is reduced when soil stability is low. In addition,
386 prolonged anoxic periods in wet environments can accelerate Fe leaching, especially in soils with
387 abundant organic acids (62), reducing the likelihood of pattern formation (Fig. 5). Eventually inundation
388 can be detrimental to upland plants (63). Plants that adapt to extended inundation, e.g., wetland plants,
389 can transport O₂ to their roots. A proportion of O₂ diffuses to the rhizosphere, forming iron plaque on the
390 root surface by oxidative precipitation (64, 65) (Fig. 1F). This is in contrast to the iron depleted gray
391 rhizosphere of upland plants created by reductive dissolution (5) (Fig. 1G). If the wetland soil contains a
392 reservoir of Fe(II), regular banding of Fe(III) precipitate might emerge via the same mechanism that
393 forms Liesegang bands in rocks. A classic Liesegang mechanism involves a dissolved reactant diffusing
394 from a system's boundary into a reservoir of another reactant. Subsequent precipitate banding forms in
395 the wake of a propagating reaction front (66). Roots however represent distributed O₂ sources, and disrupt
396 the operation of self-organization. We speculate that redoximorphic features in wetlands are in fact likely
397 set by the root template.

398 Formation of rhythmic redox patterns requires the spatial alignment of vertical distributions of root
399 growth, clay, and Fe(III). Pattern formation occurs in zones of high clay and Fe(III) (Fig. S7). Clay
400 accumulations in soils often occur between 0.3 and 3 m depths (67), a range determined by parent
401 material, soil developmental stage, hydrologic regime, land use, etc. (68–70). Similar to clay-enriched
402 horizons, Fe profiles are also sensitive to many factors, e.g., groundwater table, topography-driven
403 surface flow (71). Furthermore, pattern formation requires fine root proliferation at relatively deep soil
404 layers, overlapping vertically with the high-clay, high-Fe subsoils. At our study site, fine roots of the
405 dominant species, loblolly pine, are present even at 4-m depth (68). B horizons, characterized by high
406 clay and Fe, are the most likely zone for pattern formation. Reported regular redox banding from different
407 regions of the world all occur in B horizons (4–6) (Table S1).

408 **Temporal Variability in Pattern Formation.** Environmental variability is an essential feature of
409 many ecosystems around the world; however, the general role of environmental variability on ecosystem
410 pattern formation is so far been under-studied. In cold environments, freeze-thaw cycles create feedbacks
411 essential for the mechanism of phase separation, producing self-organized sorted circles (17, 19, 59). For
412 spatial self-organization by Turing instability, redox patterns in the upland soils studied here exemplify
413 the significance of temporal dynamics. Environmental variability produces diverse conditions that allow
414 various processes required for pattern formation to occur at the same site, although in different temporal
415 windows orchestrating over the timescale relevant for pattern formation. Temporal oscillation itself
416 constitutes a unique condition that allows certain processes to occur. For example, repeated redox changes



417 induce clay disintegration/coagulation and enhance phases of Fe(III) crystallinity (26, 37, 51). Redox
418 variability plays an indispensable role in both sets of SDFs that give rise to soil redox patterns (Fig. 2).
419 Environmental variability further affects mean process rates over timescales relevant to pattern formation.
420 Turing morphogenesis requires the inhibitor to diffuse faster than the activator (Fig. 2A), allowing the
421 resultant long-distance negative feedback to suppress the expansion of the activator (11, 53). However,
422 what is important is their *mean* rates over timescales relevant to pattern formation. Pattern formation in
423 upland soils couples chemical, physical, and biological processes at distinct timescales. Some processes
424 operate for only a brief period over a span of a few years, while others operate continuously. Temporal
425 intermittency of SDF processes, driven by environmental variability, significantly alter mean annual
426 process rates, thereby modifying the likelihood of pattern formation. In our study, roots act as the
427 activator and expand throughout the year. However, Fe(III) reductive dissolution, Fe(II) transport, and
428 oxidative precipitation occur intermittently, perhaps for only a few days or weeks over several years in
429 upland soils (Fig. 2B); that is, the diffusion of the inhibitor, Fe(II), operates for a much shorter period
430 than the activator (roots). Under the climatic regime of our system, for regular patterns to form, we find
431 that root diffusion must be at least three orders of magnitude slower than Fe(II) diffusion (Fig. 6). When
432 the environment is drier, an even smaller rate of root diffusion is requisite. Fine root extension of the
433 dominant species *Pinus taeda* at our study site is slow compared to many other common subtropical trees
434 (72). The root diffusion coefficient of *P. taeda* is $\sim 1.8 \times 10^{-11} \text{ m}^2 \text{ s}^{-1}$, estimated by the method in (73) using
435 empirical *P. taeda* fine root extension rates (74). This is surprisingly close to our model-calibrated value
436 (Table S4). Similarly, in the amplifying SDF, clay disintegration and coagulation, and the transport of
437 inhibitor (Fe(II)) occur for only brief periods over one or several years; however, clay diffusion runs
438 continuously. As diffusion smooths out heterogeneity, clay diffusion rate must be very low for effective
439 amplification. The calibrated clay diffusion coefficient, comparable to experimental measurements (75),
440 is several orders of magnitude lower than that of root diffusion (Table S4).
441 This study illustrates the critical role played by environmental variability in forming soil redox patterns.
442 Environmental variability prevails in ecosystems worldwide, directly controlling the operation of a wide
443 range of chemical and physical processes and the timing and rates of many biological processes (e.g.,
444 phenology, life cycle). Given the significant role of temporal dynamics in pattern formation, projected
445 changes in climatic variability might substantially alter many self-organized systems, including important
446 ecological consequences associated with the striking patterns they display.

447

448 **METHODS**

449 **Modeling Redox Reactions in Upland Soils.** We constructed a reactive transport model coupling soil
450 water dynamics and iron redox reactions to investigate the mechanism of redox pattern formation. The
451 spatial domain of the model extends from the soil-air boundary to 4 m soil depth. Model spatial resolution
452 is 2 mm with a time step of 1 hour, to capture the fine-scale spatial pattern and rapid chemical processes
453 respectively. The part of the model describing soil redox reactions includes six state variables, oxidized
454 iron Fe(III), reduced iron Fe(II), root biomass B , organic matter OM , clay, and oxygen concentrations,
455 including dissolved oxygen O_{2L} and gaseous oxygen O_{2G} . Model parameters, their definitions,
456 dimensions, and choice of values are provided in Table S4.

457 Fe(III) reductive dissolution and oxidative precipitation can be described by the following reactions:

460 Therefore, the change of Fe(III) concentration (mol m^{-3}) is expressed as follows:

$$461 \frac{d[Fe(III)]}{dt} = -R_{Fe(III)} + R_{Fe(II)} \quad (Eq. 3)$$

462 where $R_{Fe(III)}$ ($\text{mol m}^{-3} \text{ d}^{-1}$) is the rate of Fe(III) reductive dissolution (Eq. 1) and $R_{Fe(II)}$ ($\text{mol m}^{-3} \text{ d}^{-1}$) is
463 the reaction rate of Fe(II) oxidative precipitation (Eq. 2). We assume the rate of Fe(III) reductive
464 dissolution is controlled by concentrations of O_{2L} , OM , Fe(III) and soil water content (76–78). When soil
465 O_{2L} is high, reductive dissolution is negligible (79). Reductive dissolution of Fe(III) becomes significant
466 when O_{2L} reaches a very low level (0.02 mol m^{-3}). Fe reduction is further positively affected by soil water
467 content, which determines the amount of low-oxygen microsites available in soil matrix (38) (Fig. S11).

468 Rate of Fe(III) reductive dissolution is described as:

$$469 R_{Fe(III)} = 4k_1[OM] \frac{[Fe(III)]}{[Fe(III)] + H_{sFe3}} \frac{H_{so2}}{[O_{2L}] + H_{so2}} Se^\varphi \quad (Eq. 4)$$

470 where $[OM]$ is the concentration of SOC (mol m^{-3}), $[O_{2L}]$ is the concentration of O_{2L} (mol m^{-3}), $[Fe(III)]$ is
471 the concentration of Fe(III) (mol m^{-3}), and k_1 is the constant of the first-order organic matter reductive rate
472 (d^{-1}). H_{sFe3} (mol m^{-3}) is the half saturation constant regulating the effect of Fe(III) on the reduction rate,
473 and H_{so2} (mol m^{-3}) is the half-saturation constant regulating the effect of O_{2L} . Se is normalized volumetric
474 water content, which varies in space and time. Dynamics of Se is described in Eq. 19 in Section “Soil
475 water dynamics” below. φ is a constant describing the sensitivity of the rate of Fe(III) reduction to Se .

476 The rate of Fe(II) oxidative precipitation $R_{Fe(II)}$ ($\text{mol m}^{-3} \text{ d}^{-1}$) can be described as:

477
$$R_{Fe(II)} = k_{app}[Fe(II)] \frac{[O_{2L}]}{[O_{2L}] + H_{SO2}} \quad (Eq. 5)$$

478 where $[Fe(II)]$ is the concentration of Fe(II) (mol m^{-3}); k_{app} is the constant of Fe(II) oxidation rate (d^{-1}).
479 Fe(II) is affected by chemical reactions, advection, and diffusion:

480
$$\frac{\partial [Fe(II)]}{\partial t} = R_{Fe(III)} - R_{Fe(II)} + \frac{\partial (q_L[Fe(II)])}{\partial z} + D_1 \frac{\partial^2 [Fe(II)]}{\partial z^2} \quad (Eq. 6)$$

481
$$D_1 = D_{10} \frac{\theta_L^{7/3}}{\theta_s^2} \quad (Eq. 7)$$

482 where q_L is soil water flux (m d^{-1}) and D_1 is the diffusion coefficient ($\text{m}^2 \text{ d}^{-1}$) of Fe(II) in soil, which varies
483 with soil water content as described in Eq. 7 (80). D_{10} is the molecular diffusivity of Fe(II). θ_L is soil
484 water content. Note that θ_L changes in space and time, whose dynamics is modeled in the Section “Soil
485 Water Dynamics” below.

486 Change of root biomass density $[B]$ (g m^{-3}) is affected by (1) root growth, G_B , (2) root respiration, R_B , and
487 (3) root decay, M_B . In addition to root growth, which describes biomass increases in a given location,
488 roots can also expand to neighboring locations. Root expansion in space is commonly approximated by a
489 diffusion term (55, 73):

490
$$\frac{\partial [B]}{\partial t} = G_B - R_B - M_B + D_b \frac{\partial^2 [B]}{\partial z^2} \quad (Eq. 8)$$

491 where D_b is the diffusion coefficient ($\text{m}^2 \text{ d}^{-1}$) of root biomass. Root respiration R_B ($\text{g m}^{-3} \text{ d}^{-1}$) is influenced
492 by root biomass density and soil oxygen concentration:

493
$$R_B = k_r[B] \frac{[O_{2L}]}{[O_{2L}] + H_{BO2}} \quad (Eq. 9)$$

494 where k_r is root respiration rate constant (d^{-1}). H_{BO2} is half-saturation constant to regulate the effect of O_{2L}
495 on root respiration (mol m^{-3}). Root growth could be influenced by an array of factors, such as soil water
496 content, nutrients and oxygen availability, and mechanical impedance (81, 82). We describe root growth
497 G_B ($\text{g m}^{-3} \text{ d}^{-1}$) as follows:

498
$$G_B = \left(k_0 + k_g \frac{[O_{2L}]}{[O_{2L}] + H_{BO2}} \right) [B] f_{Fe(III)} \quad (Eq. 10)$$

499
$$f_{Fe(III)} = \begin{cases} 1, & [Fe(III)] \leq [Fe(III)]_{ng} \\ \frac{H_{BO2}^2}{H_{BO2}^2 + ([Fe(III)] - [Fe(III)]_{ng})^2}, & [Fe(III)] > [Fe(III)]_{ng} \end{cases} \quad (Eq. 11)$$

500 where k_0 (d^{-1}) is the root growth rate constant, and k_g (d^{-1}) is that part of root growth affected by oxygen.
501 $f_{Fe(III)}$ is a scalar, describing the effect of Fe(III) on root growth, ranging between 0 and 1. We use
502 Fe(III) as a surrogate to describe integrated effects of multiple environmental factors associated with

503 Fe(III) aggregation on root growth. While high Fe(III) concentrations do not lead to increases in
 504 crystallinity *per se*, under repeated redox oscillations over time, increases in Fe(III) aggregation and in the
 505 crystallinity of Fe(III) usually coincide (26, 83). Aggregated Fe(III) precipitates can lead to coarse soil
 506 texture, low soil water content, and low nutrient availability, and highly crystalline Fe(III) aggregates
 507 (e.g., plinthitic material) create high mechanical impedance for root growth (4, 32, 33, 84). $[Fe(III)]_{ng}$
 508 denotes the threshold Fe(III) concentration (mol m^{-3}), above which Fe(III) will negatively affect root
 509 growth. H_{BFe} is the half-saturation constant regulating the effect of Fe(III) on root growth (mol m^{-3}).

510 Root decay, M_B ($\text{g m}^{-3} \text{ d}^{-1}$), is assumed to be a second-order function of biomass (84):

$$511 \quad M_B = \frac{k_d[B]^2}{K_B} \quad (\text{Eq. 12})$$

512 where k_d is root decay constant (d^{-1}), and K_B (g m^{-3}) is the carrying capacity of root biomass density,
 513 which decreases exponentially with soil depth (Table S4; Fig. S10). We assume that root decay is the
 514 primary source of SOM and SOM is oxidized by O_2 or Fe(III). We note that the root biomass, B , is a
 515 lumped variable including roots, mycorrhizal fungal symbionts, and microbes, all contributing to the
 516 SOM pool (85). The change of SOM is described as:

$$517 \quad \frac{d[OM]}{dt} = \frac{M_B}{M_{om}} - R_{OMO} - \frac{1}{4}R_{Fe(III)} \quad (\text{Eq. 13})$$

518 where M_{om} is molar mass of SOM, assuming 30 g mol^{-1} for the generic formula of CH_2O . Rate of SOM
 519 oxidation by O_2 , R_{OMO} ($\text{mol m}^{-3} \text{ d}^{-1}$), is described as follows:

$$520 \quad R_{OMO} = k_1[OM] \frac{[O_{2L}]}{[O_{2L}] + H_{so2}} \quad (\text{Eq. 14})$$

521 Total soil O_2 includes O_2 in dissolved form (O_{2L}) (mol O_2 per m^3 soil water) and in gaseous form (O_{2G})
 522 (mol O_2 per m^3 soil void space). Soil O_2 is influenced by O_2 diffusion in gas form and in dissolved form,
 523 advection of dissolved O_2 , root respiration, oxidation of SOM and Fe(II). Dynamics of O_2 are expressed
 524 as:

$$525 \quad \frac{\partial(\theta_L[O_{2L}] + \theta_G[O_{2G}])}{\partial t} = \\ 526 \quad = \theta_L \frac{\partial}{\partial z} \left(D_{1L} \frac{\partial [O_{2L}]}{\partial z} \right) + \theta_G \frac{\partial}{\partial z} \left(D_{1G} \frac{\partial [O_{2G}]}{\partial z} \right) - \theta_L \frac{\partial}{\partial z} q_L [O_{2L}] - \frac{R_B}{M_{om}} - R_{OMO} \\ 527 \quad - \frac{1}{4}R_{Fe(II)} \quad (\text{Eq. 15})$$

$$528 \quad D_{1L} = D_{1L0} \frac{\theta_L^{7/3}}{\theta_s^{2/3}} \quad (\text{Eq. 16})$$

529 where D_{1L} and D_{1G} are diffusion coefficients ($\text{m}^2 \text{ s}^{-1}$) of O_{2L} and O_{2G} . D_{1L} varies with soil water content
 530 (*Eq. 16*). θ_G represents soil gas content ($\text{m}^3 \text{ m}^{-3}$). θ_G changes in space and time, whose dynamics is

531 modeled in the Section “*Soil Water Dynamics*” below. D_{IL0} is the molecular diffusivity of O_2 in the
532 dissolved phase. At 25°C, $[O_{2L}] = 0.0318 [O_{2G}]$, according to Henry’s law.

533 Clays, in addition to diffusion, are subject to disintegration and dispersion during Fe-C redox cycles,
534 especially during Fe(III) reductive dissolution, when a large amount of colloids are markedly dispersed
535 (37). We modeled clay changes with an empirical relationship determined at our study site, which shows
536 that a decrease of 1 mol m⁻³ Fe(III) increases clay content by 0.0566% (Fig. S12). Similar negative
537 associations between changes in clay content and in Fe(III) concentrations in regular redox patterns have
538 been reported elsewhere (5).

$$539 \frac{d[CC]}{dt} = -0.0566 \frac{d[Fe(III)]}{dt} + D_c \frac{\partial^2 [CC]}{\partial z^2} \quad (Eq. 17)$$

540 where D_c is the clay diffusion coefficient (m² s⁻¹).

541 **Initial Conditions, Boundary Conditions, and Numerical Solutions.** For model initial conditions, it is
542 not feasible to obtain the state of system before the redox patterns emerged. We assume that soil
543 conditions in our study area without regular redox patterns provide a good proxy for the initial condition.
544 We used empirical measurements from nearby sites without redox patterns to initialize the model. Initial
545 conditions for SOM are described by an exponential decay function of soil depth parameterized by field
546 observations (Figs. S7 and S10):

$$547 [OM](z)_{init} = 775e^{-0.849z}(1 + r\beta) \quad (Eq. 18)$$

548 where r is a random number between -0.5 and 0.5 and β controls the magnitude of biomass fluctuations.
549 We assume that OM at our study site consists of 5% living (root biomass, B) and 95% non-living parts
550 (soil organic matter, OM)—that is, B is a linear function of OM . Initial Fe(II) was set to be zero
551 everywhere in the model domain. Initial O_{2L} is 0.273 mol m⁻³ everywhere in the soil profile, in
552 equilibrium with the atmospheric O_2 . The initial condition of Fe(III) and clay concentrations follow an
553 empirical hump shaped function with its peak at depth ~ 1.2 m, informed by field measurements (Fig.
554 S7). Fe(III) is at ~ 45 mol m⁻³ in shallow soil layers (< 0.4 m), and between 438 and 500 mol m⁻³ in mid-
555 layer soils (0.6 m ≤ depth < 1.5m). Between 0.4 and 0.6 m and below 1.5 m soil depth, Fe(III) is at the
556 intermediate level (Fig. S7). In natural environments, the structure, solubility, and reactivity of Fe(III)
557 minerals vary greatly (52, 86), and the same is true for OM (87). For the purpose of our study, our model
558 describes general Fe chemical reactions in soils, without considering the heterogeneous reaction rates of
559 diverse forms of Fe(III) and OM. As such, in the model, Fe(III) and OM can be depleted to zero via
560 chemical reactions (Eq. 1).

561 For the upper boundary at the soil-air interface, we set a constant 0.273 mol m⁻³ for O_{2L} , and a constant 0
562 for Fe(II), as we assume that Fe(II) is instantaneously oxidized by atmospheric O₂. A constant of 1,162 g
563 m⁻³ for root biomass density (B) was used for the upper boundary according to the empirical observation
564 at the soil surface (4). The regional groundwater table is > 5 m and regular spatial patterns usually occur
565 at soil depth < 2 m, below which are relatively homogenous Fe(III) distributions. As such, we set the
566 lower boundary of the model at the soil depth of 4 m. We assume that root biomass is a constant zero at
567 the lower boundary based on field observations (Fig. S10). For Fe(II) and O_{2L} , we used a constant zero
568 flux as the lower boundary. The model is solved by the implicit finite difference method, with the
569 diffusion terms differentiated by the central difference scheme. An iterative method is used to address
570 nonlinear model dynamics (79).

571 **Soil Water Dynamics.** We modeled soil water flux (q_L) and water content (θ_L) dynamics by numerically
572 solving the unsaturated flow equation—the mixed form Richards equation:

$$573 \quad \frac{\partial \theta_L}{\partial t} = \frac{\partial}{\partial z} \left[K(h) \left(\frac{\partial h}{\partial z} + 1 \right) \right] \quad (Eq. 19)$$

574 where h is pressure head (m), and K is hydraulic conductivity (m s⁻¹). K is estimated following (88):

$$575 \quad K(h) = K_s S_e(h)^l \left[1 - \left(1 - S_e(h)^{\frac{1}{m}} \right)^{m-2} \right] \quad (Eq. 20)$$

$$576 \quad S_e(h) = (1 + |\alpha h|^n)^{-m} \quad (Eq. 21)$$

577 where K_s is saturated hydraulic conductivity (m s⁻¹), l is a pore connectivity parameter established to be
578 0.5 (89), α , m and n are semi-empirical fitting parameters of soil water retention curve ($m = 1-1/n$). K_s , α
579 and n are sensitive to soil texture. Redox oscillation modifies soil texture by its effect on clay
580 disintegration, dispersion, and coagulation, thus soil texture, K_s , α and n are dynamic in time and space.
581 We allow K_s , α and n to be a function of clay content (Supplementary Text S1), which evolves over time
582 (Eq. 17); therefore, our model captures the evolution of soil texture over time, which directly affects soil
583 water content and flux.

584 The Richards equation was solved using a mass-conservative finite difference method (90, 91). Due to the
585 nonlinear nature of this equation, we employed Picard iteration and dynamic time step to ensure
586 convergence of the solution at every time step. We applied daily rainfall and evapotranspiration observed
587 between July 1, 2018 and July 1, 2019 at our study site as the climatic forcing (Fig. 7). While field
588 measurements of O₂, CO₂, and soil volumetric water between 2016 and 2020 are available, the year 2018-
589 2019 was chosen as the climatic forcing for the model because anoxic conditions were observed only
590 during this year (Fig. S4). The same rainfall and evapotranspiration rates were repeated yearly in our
591 model simulations, imposed as the dynamic upper boundary (soil-air interface). The upper boundary
592 condition is either a prescribed flux or a prescribed head. By default, a prescribed flux equal to the

593 observed evapotranspiration minus rainfall depth is used. However, when the calculated head (h) at the
594 soil-air interface is > 0 , the model assumes the existence of surface runoff during heavy rainfall periods,
595 in which case, the upper boundary switches from the prescribed flux to a constant head of 0. We used free
596 drainage (i.e., $\partial h / \partial z = 0$) for the lower boundary condition (at the soil depth of 4 m), and $h = -1$ m as the
597 initial condition.

598 Solution of this model describes dynamic pressure head h of each computational grid. We used *Eqs.* 21
599 and 22 to calculate dynamic S_e and θ_L respectively. Darcy's law was used to estimate spatially and
600 temporally varying q_L :

601
$$\theta_L = \theta_r + (\theta_s - \theta_r)S_e \quad (Eq. 22)$$

602
$$q_L = -K \left(\frac{\partial h}{\partial z} + 1 \right) \quad (Eq. 23)$$

603 where θ_r is residual water content of soils. θ_r and θ_s vary with soil texture—in our study, the temporal
604 evolution of clay content (Supplementary Text S1).

605 **Numerical Experiments and Model Analysis.** To distinguish among alternative hypotheses of pattern
606 formation, we tested the following model variants (Table S3). (1) To test the mechanism of coupled
607 amplifying SDF with threshold dependent SDF based on root responses to Fe(III), we ran the full baseline
608 model described above. (2) To test whether the amplifying SDF realized by clay dynamics *alone* can
609 generate regular patterns, we switched off processes associated with SDF based on root responses to
610 Fe(III), by setting $f_{Fe(III)}$ in *Eq.* 10 to be 1 (Table S3); that is, plant growth is no longer affected by Fe(III).
611 (3) To test whether the threshold dependent SDF based on root responses to Fe(III) *alone* can produce
612 regular patterns, we switched off the amplifying SDF by removing the term Se^φ in *Eq.* 4 (Table S3); (4)
613 To investigate the mechanism of monotonic SDF based on root responses to water limitation, we turned
614 off the amplifying SDF and threshold dependent SDF. It is realized by setting $f_{Fe(III)}$ in *Eq.* 10 to be 1 and
615 removing the term Se^φ in *Eq.* 4. The effect of soil water content on root growth is incorporated in the root
616 growth equation by adding Se^2 to *Eq.* 10 (Table S3). Lastly, (5) to test the hypothesis that the observed
617 redox pattern is caused by a preexisting regularly distributed root structure, we prescribed regularly
618 distributed root biomass and SOM as model initial conditions (Fig. S2). Meanwhile, the carrying capacity
619 K_B is set to equal the initial-condition distribution of SOM (Table S3). This allows the root biomass to
620 maintain the same regular patterning over time. All SDFs were switched off in the model and the root
621 diffusion term was removed from the biomass change function (*Eq.* 8; Table S3). Patterns—including
622 vertical concentration distributions of Fe(III) and OM (biomass B is a linear function of OM)—generated
623 by different model variants are compared with the patterns observed in the field to determine the most
624 plausible mechanism.

625 We investigated the effect of climatic, soil, and biological variables on emergence of regular patterns,
626 characteristics of patterning (e.g., patterning range, banding width), and the time it required for patterns to
627 form. Pattern formation time is defined as the time it requires for the patterns to statistically stabilize *and*
628 for Fe(III) to reach 138 mol m⁻³, the observed Fe(III) concentration in gray layers (Table S2) at our study
629 site (4). To test the effect of climatic condition and soil texture, we manipulated annual precipitation
630 regime and soil clay content, respectively (Supplementary Text S2). The effect of diffusion rates on the
631 banding width is tested by varying D_b (biomass diffusion; *Eq. 8*) and D_I (Fe(II) diffusion; *Eq. 7*).

632 **Estimating the Effect of Pattern Formation on Soil Carbon Storage.** We assessed consequences of
633 redox pattern formation on soil carbon storage. We first digitized photos of empirical patterns in the
634 pattern formation zone of our study site (Fig. 1D) to quantify the width of gray and of orange layers. We
635 then calculated the total carbon storage in the pattern formation zone (between 1.0 m and 1.8 m) by
636 multiplying the width by measured layer-specific SOC content. This calculated carbon storage value was
637 compared with the carbon storage in the same zone from a nearby site without regular patterning. This
638 comparison allows us to infer the percent reduction in carbon storage capacity attributable to pattern
639 formation. Furthermore, with the model, we compared the difference of total carbon in the initial
640 condition and in the steady state condition after the pattern is formed. This allows us to calculate the
641 percent change in soil carbon storage over the period of pattern formation. Since we used the SOC profile
642 measured at the site without patterning as the model initial condition, we expect that the percent change of
643 carbon storage from the initial condition to the steady state to be the statistically similar to the percent
644 difference between the sites with and without patterning.

645 **Evaluating Model Performance.** The baseline model captured the overall vertical profiles of Fe(III) and
646 OM, as well as O₂ profiles during relatively dry periods of soil oxic conditions and during wet, anoxic
647 conditions (Fig. 4). In addition to the overall profiles, the model reproduced the distinctive concentration
648 contrast of Fe(III), OM, root biomass, clay, and soil water content between gray and orange layers (Fig.
649 4). The model slightly overestimated Fe(III) in orange layers and underestimated OM there (Fig. 4; Table
650 S2). This is likely because with the increase of Fe(III) in orange layers, the diffusion coefficient of Fe(II)
651 can become much smaller, but such an effect was not fully incorporated in our model, due to lack of
652 experimental data. Furthermore, the model faithfully reproduced time-series of O₂ and soil volumetric
653 water content (Fig. S5). Finally, the model reproduced spatial patterns that are statistically the same as
654 observed patterns, including both the spatial extent (depth of upper and lower boundaries of patterned
655 section), width of orange and gray layers, and their spatial regularity (Fig. 4).

656

657

658 **Acknowledgement**

659 We thank Stuart G. Fisher for discussions that significantly improved this paper.

660 References

- 661 1. L. E. Moody, R. C. Graham, Geomorphic and pedogenic evolution in coastal sediments, central California. *Geoderma* **67**, 181–201 (1995).
- 662 2. S. K. Gangopadhyay, T. Bhattacharyya, D. Sarkar, Hydromorphic soils of Tripura: Their pedogenesis and characteristics. *Curr. Sci.* **108**, 984–993 (2015).
- 663 3. M. J. Vepraskas, J. L. Richardson, “Morphological features of seasonally reduced soils” in *Wetland Soils: Genesis, Hydrology, Landscapes, and Classification*, (2001), pp. 163–182.
- 664 4. R. L. Fimmen, *et al.*, Fe-C redox cycling: a hypothetical Rhizogenic that drives crustal mechanism biogeochemical in upland soils eathering. *Biogeochemistry* **87**, 127–141 (2008).
- 665 5. M. Schulz, *et al.*, Structured Heterogeneity in a Marine Terrace Chronosequence: Upland Mottling. *Vadose Zo. J.* **15**, 1–14 (2016).
- 666 6. R. MacEwan, P. Dahlhaus, J. Fawcett, “Hydropedology, Geomorphology, and Groundwater Processes in Land Degradation: Case Studies in South West Victoria, Australia” in *Hydropedology*, (2012), pp. 449–481.
- 667 7. M. Rietkerk, S. C. Dekker, P. C. de Ruiter, J. van de Koppel, Self-Organized Patchiness and Catastrophic Shifts in Ecosystems. *Science* **305**, 1926–1929 (2004).
- 668 8. M. Rietkerk, *et al.*, Evasion of tipping in complex systems through spatial pattern formation. *Science* **374** (2021).
- 669 9. Q.-X. Liu, *et al.*, Phase separation explains a new class of self-organized spatial patterns in ecological systems. *Proc. Natl. Acad. Sci.* **110**, 11905–11910 (2013).
- 670 10. C. E. Tarnita, *et al.*, A theoretical foundation for multi-scale regular vegetation patterns. *Nature* **541**, 398–401 (2017).
- 671 11. A. M. Turing, The Chemical Basis of Morphogenesis. *Philos. Trans. R. Soc. Lond. B. Biol. Sci.* **237**, 37–72 (1952).
- 672 12. M. Rietkerk, J. van de Koppel, Regular pattern formation in real ecosystems. *Trends Ecol. Evol.* **23**, 169–175 (2008).
- 673 13. M. Rietkerk, S. C. Dekker, P. C. de Ruiter, J. van de Koppel, Self-organized patchiness and catastrophic shifts in ecosystems. *Science (80-.)* **305**, 1926–9 (2004).
- 674 14. C. A. Klausmeier, Regular and Irregular Patterns in Semiarid Vegetation. *Science (80-.)* **284**, 1826–1828 (1999).
- 675 15. S. Getzin, *et al.*, Discovery of fairy circles in Australia supports self-organization theory. *Proc. Natl. Acad. Sci.* **113**, 3551–3556 (2016).
- 676 16. S. Getzin, *et al.*, Discovery of fairy circles in Australia supports self-organization theory. *Proc. Natl. Acad. Sci. U. S. A.* **113**, 3551–3556 (2016).
- 677 17. M. A. Kessler, A. B. Murray, B. T. Werner, B. Hallet, A model for sorted circles as self-organized patterns. *J. Geophys. Res. Solid Earth* **106**, 13287–13306 (2001).
- 678 18. M. A. Kessler, B. T. Werner, Self-organization of sorted patterned ground. *Science (80-.)* **299**, 380–383 (2003).
- 679 19. A. Li, *et al.*, Ice needles weave patterns of stones in freezing landscapes. *Proc. Natl. Acad. Sci.* **118**, e2110670118 (2021).
- 680 20. Q. X. Liu, *et al.*, Pattern formation at multiple spatial scales drives the resilience of mussel bed ecosystems. *Nat. Commun.* **5**, 1–7 (2014).

701 21. L. G. Larsen, J. W. Harvey, J. P. Crimaldi, A delicate balance: Ecohydrological feedbacks governing
702 landscape morphology in a lotic peatland. *Ecol. Monogr.* **77**, 591–614 (2007).

703 22. M. B. Eppinga, P. C. de Ruiter, M. J. Wassen, M. Rietkerk, Nutrients and hydrology indicate the driving
704 mechanisms of peatland surface patterning. *Am. Nat.* **173**, 803–818 (2009).

705 23. L. Cheng, *et al.*, Atmospheric CO₂ enrichment facilitates cation release from soil. *Ecol. Lett.* **13**, 284–291
706 (2010).

707 24. C. S. O'Connell, L. Ruan, W. L. Silver, Drought drives rapid shifts in tropical rainforest soil
708 biogeochemistry and greenhouse gas emissions. *Nat. Commun.* **9** (2018).

709 25. S. S. Dhaliwal, R. K. Naresh, A. Mandal, R. Singh, M. K. Dhaliwal, Dynamics and transformations of
710 micronutrients in agricultural soils as influenced by organic matter build-up: A review. *Environ. Sustain.
711 Indic.* **1–2** (2019).

712 26. A. Thompson, O. A. Chadwick, D. G. Rancourt, J. Chorover, Iron-oxide crystallinity increases during soil
713 redox oscillations. *Geochim. Cosmochim. Acta* **70**, 1710–1727 (2006).

714 27. H. Eswaran, F. De Coninck, T. Varghese, Role of Plinthite and Related Forms in Soil Degradation. *Adv. Soil
715 Sci.*, 109–127 (1990).

716 28. L. Zhao, *et al.*, Formation of plinthite mediated by redox fluctuations and chemical weathering intensity in a
717 Quaternary red soil, southern China. *Geoderma* **386**, 114924 (2021).

718 29. M. Aide, Z. Pavich, M. E. Lilly, R. Thornton, W. Kingery, Plinthite formation in the coastal plain region of
719 Mississippi. *Soil Sci.* **169**, 613–623 (2004).

720 30. S. W. Duiker, F. E. Rhoton, J. Torrent, N. E. Smeck, R. Lal, Iron (hydr)Oxide Crystallinity Effects on Soil
721 Aggregation. *Soil Sci. Soc. Am. J.* **67**, 606–611 (2003).

722 31. J. W. Crawford, The relationship between structure and the hydraulic conductivity of soil. *Eur. J. Soil Sci.*
723 **45**, 493–502 (1994).

724 32. X. Wang, *et al.*, Effect of ferrihydrite crystallite size on phosphate adsorption reactivity. *Environ. Sci.
725 Technol.* **47**, 10322–10331 (2013).

726 33. C. W. Childs, R. W. P. Palmer, C. W. Ross, Thick iron oxide pans in soils of Taranaki, New Zealand. *Aust.
727 J. Soil Res.* **28**, 245–257 (1990).

728 34. J. E. Cairns, A. Audebert, J. Townend, A. H. Price, C. E. Mullins, Effect of soil mechanical impedance on
729 root growth of two rice varieties under field drought stress. *Plant Soil* **267**, 309–318 (2004).

730 35. Z. Xie, Turing instability in a coupled predator-prey model with different Holling type functional responses.
731 *Discret. Contin. Dyn. Syst. - Ser. S* **4**, 1621–1628 (2011).

732 36. W. Wang, L. Zhang, H. Wang, Z. Li, Pattern formation of a predator-prey system with Ivlev-type functional
733 response. *Ecol. Modell.* **221**, 131–140 (2010).

734 37. A. Thompson, O. A. Chadwick, S. Boman, J. Chorover, Colloid Mobilization During Soil Iron Redox
735 Oscillations. *Environ. Sci. Technol.*, 5743–5749 (2006).

736 38. C. Hodges, E. King, J. Pett-Ridge, A. Thompson, Potential for Iron Reduction Increases with Rainfall in
737 Montane Basaltic Soils of Hawaii. *Soil Sci. Soc. Am. J.* **82**, 176–185 (2018).

738 39. P. Komadel, J. Madejová, *Acid activation of clay minerals*, 2nd Ed. (Elsevier Ltd., 2013).

739 40. D. Richter, N. Oh, R. Fimmen, J. Jackson, The Rhizosphere and soil formation. 179–200 (2007).

740 41. N. A. Kulikova, *et al.*, Key Roles of Size and Crystallinity of Nanosized Iron Hydr(oxides) Stabilized by
741 Humic Substances in Iron Bioavailability to Plants. *J. Agric. Food Chem.* **65**, 11157–11169 (2017).

742 42. R. E. Haling, *et al.*, Root hairs improve root penetration, root-soil contact, and phosphorus acquisition in
743 soils of different strength. *J. Exp. Bot.* **64**, 3711–3721 (2013).

744 43. E. Oleghe, M. Naveed, E. M. Baggs, P. D. Hallett, Plant exudates improve the mechanical conditions for
745 root penetration through compacted soils. *Plant Soil* **421**, 19–30 (2017).

746 44. C. Chen, A. Thompson, The influence of native soil organic matter and minerals on ferrous iron oxidation.
747 *Geochim. Cosmochim. Acta* **292**, 254–270 (2021).

748 45. C. Hodges, J. Mallard, D. Markewitz, D. Barcellos, A. Thompson, Seasonal and spatial variation in the
749 potential for iron reduction in soils of the Southeastern Piedmont of the US. *Catena* **180**, 32–40 (2019).

750 46. S. Calabrese, D. Barcellos, A. Thompson, A. Porporato, Theoretical Constraints on Fe Reduction Rates in
751 Upland Soils as a Function of Hydroclimatic Conditions. *J. Geophys. Res. Biogeosciences* **125**, 1–18 (2020).

752 47. M. A. Gil, Unity through nonlinearity: A unimodal coral-nutrient interaction. *Ecology* **94**, 1871–1877
753 (2013).

754 48. J. S. Rosenfeld, Developing flow–ecology relationships: Implications of nonlinear biological responses for
755 water management. *Freshw. Biol.* **62**, 1305–1324 (2017).

756 49. A. Pervez, P. P. Singh, H. Bozdoğan, Ecological perspective of the diversity of functional responses. *Eur. J.
757 Environ. Sci.* **8**, 97–101 (2018).

758 50. A. M. Jones, R. N. Collins, J. Rose, T. D. Waite, The effect of silica and natural organic matter on the
759 Fe(II)-catalysed transformation and reactivity of Fe(III) minerals. *Geochim. Cosmochim. Acta* **73**, 4409–
760 4422 (2009).

761 51. V. Vogelsang, K. Kaiser, F. E. Wagner, R. Jahn, S. Fiedler, Transformation of clay-sized minerals in soils
762 exposed to prolonged regular alternation of redox conditions. *Geoderma* **278**, 40–48 (2016).

763 52. C. Chen, A. Thompson, The influence of native soil organic matter and minerals on ferrous iron oxidation.
764 *Geochim. Cosmochim. Acta* **292**, 254–270 (2021).

765 53. M. Rietkerk, J. van de Koppel, Regular pattern formation in real ecosystems. *Trends Ecol. Evol.* **23**, 169–
766 175 (2008).

767 54. E. I. Vanguelova, S. Nortcliff, A. J. Moffat, F. Kennedy, Morphology, biomass and nutrient status of fine
768 roots of Scots pine (*Pinus sylvestris*) as influenced by seasonal fluctuations in soil moisture and soil solution
769 chemistry. *Plant Soil* **270**, 233–247 (2005).

770 55. M. Rietkerk, *et al.*, Self-Organization of Vegetation in Arid Ecosystems. *Am. Nat.* **160**, 524–530 (2002).

771 56. K. S. Pregitzer, *et al.*, Fine root architecture of nine North American trees. *Ecol. Monogr.* **72**, 293–309
772 (2002).

773 57. C. J. Bilbrough, M. M. Caldwell, The effects of shading and N status on root proliferation in nutrient
774 patches by the perennial grass *Agropyron desertorum* in the field. *Oecologia* **103**, 10–16 (1995).

775 58. M. J. Vepraskas, J. L. Richardson, J. P. Tandarich, Dynamics of redoximorphic feature formation under
776 controlled ponding in a created riverine wetland. *Wetlands* **26**, 486–496 (2006).

777 59. M. A. Kessler, B. T. Werner, Self-organization of sorted patterned ground. *Science* **299**, 380–383 (2003).

778 60. Q.-X. Liu, E. J. Weerman, P. M. J. Herman, H. Olff, J. van de Koppel, Alternative mechanisms alter the
779 emergent properties of self-organization in mussel beds. *Proc. R. Soc. B Biol. Sci.* **279**, 2744–2753 (2012).

780 61. R. L. Ray, J. M. Jacobs, Relationships among remotely sensed soil moisture, precipitation and landslide
781 events. *Nat. Hazards* **43**, 211–222 (2007).

782 62. C. Colombo, G. Palumbo, J. Z. He, R. Pinton, S. Cesco, Review on iron availability in soil: Interaction of Fe
783 minerals, plants, and microbes. *J. Soils Sediments* **14**, 538–548 (2014).

784 63. M. S. Mielke, B. Schaffer, Photosynthetic and growth responses of *Eugenia uniflora* L. seedlings to soil
785 flooding and light intensity. *Environ. Exp. Bot.* **68**, 113–121 (2010).

786 64. J. Liu, X. Leng, M. Wang, Z. Zhu, Q. Dai, Iron plaque formation on roots of different rice cultivars and the
787 relation with lead uptake. *Ecotoxicol. Environ. Saf.* **74**, 1304–1309 (2011).

788 65. T. Matsui, T. Tsuchiya, A method to estimate practical radial oxygen loss of wetland plant roots. *Plant Soil*
789 **279**, 119–128 (2006).

790 66. I. L'Heureux, Self-organized rhythmic patterns in geochemical systems. *Philos. Trans. R. Soc. A Math.*
791 *Phys. Eng. Sci.* **371** (2013).

792 67. H. O. BUCKMAN, N. C. BRADY, The Nature and Properties of Soils. *Soil Sci.* **90**, 212 (1960).

793 68. D. D. Richter, D. Markewitz, How Deep Is Soil? *Bioscience* **45**, 600–609 (1995).

794 69. S. Calabrese, D. D. Richter, A. Porporato, The Formation of Clay-Enriched Horizons by Lessivage.
795 *Geophys. Res. Lett.* **45**, 7588–7595 (2018).

796 70. R. C. Ryland, A. Thompson, L. A. Sutter, D. Markewitz, Mapping depth to the argillic horizon on
797 historically farmed soil currently under forests. *Geoderma* **369** (2020).

798 71. Z. Fekiacova, S. Pichat, S. Cornu, J. Balesdent, Inferences from the vertical distribution of Fe isotopic
799 compositions on pedogenetic processes in soils. *Geoderma* **209–210**, 110–118 (2013).

800 72. O. J. Valverde-Barrantes, J. W. Raich, A. E. Russell, Fine-root mass, growth and nitrogen content for six
801 tropical tree species. *Plant Soil* **290**, 357–370 (2007).

802 73. M. L. Cain, Models of clonal growth in *Solidago altissima*. *J. Ecol.* **78**, 27–46 (1990).

803 74. J. S. King, *et al.*, Below-ground carbon input to soil is controlled by nutrient availability and fine root
804 dynamics in loblolly pine. *New Phytol.* **154**, 389–398 (2002).

805 75. J. Zhuang, Y. Jin, M. Flury, Comparison of Hanford Colloids and Kaolinite Transport in Porous Media.
806 *Vadose Zo. J.* **3**, 395–402 (2004).

807 76. E. E. Roden, R. G. Wetzel, Kinetics of microbial Fe (III) oxide reduction in freshwater wetland sediments.
808 *Limnol. Oceanogr.* **47**, 198–211 (2002).

809 77. B. Ginn, C. Meile, J. Wilmoth, Y. Tang, A. Thompson, Rapid Iron Reduction Rates Are Stimulated by
810 High-Amplitude Redox Fluctuations in a Tropical Forest Soil. *Environ. Sci. Technol.* **51**, 3250–3259 (2017).

811 78. S. J. Hall, W. H. McDowell, W. L. Silver, When Wet Gets Wetter: Decoupling of Moisture, Redox
812 Biogeochemistry, and Greenhouse Gas Fluxes in a Humid Tropical Forest Soil. *Ecosystems* **16**, 576–589
813 (2013).

814 79. P. Van Cappellen, Y. Wang, Cycling of iron and manganese in surface sediments: A general theory for the
815 coupled transport and reaction of carbon, oxygen, nitrogen, sulfur, iron, and manganese. *Am. J. Sci.* **296**,
816 197–243 (1996).

817 80. R. J. Millington, J. P. Quirk, Permeability of porous solids. *Trans. Faraday Soc.* **57**, 1200–1207 (1961).

818 81. H. Lu, W. Yuan, X. Chen, A Processes-Based Dynamic Root Growth Model Integrated Into the Ecosystem
819 Model. *J. Adv. Model. Earth Syst.* **11**, 4614–4628 (2019).

820 82. A. G. Bengough, B. M. McKenzie, P. D. Hallett, T. A. Valentine, Root elongation, water stress, and
821 mechanical impedance: A review of limiting stresses and beneficial root tip traits. *J. Exp. Bot.* **62**, 59–68
822 (2011).

823 83. C. Chen, D. Barcellos, D. D. Richter, P. A. Schroeder, A. Thompson, Redoximorphic Bt horizons of the
824 Calhoun CZO soils exhibit depth-dependent iron-oxide crystallinity. *J. Soils Sediments*, 1–13 (2018).

825 84. N. F. Pelak, A. J. Parolari, A. Porporato, Bistable plant–soil dynamics and biogenic controls on the soil
826 production function. *Earth Surf. Process. Landforms* **41**, 1011–1017 (2016).

827 85. D. L. Godbold, *et al.*, Mycorrhizal hyphal turnover as a dominant process for carbon input into soil organic
828 matter. *Plant Soil* **281**, 15–24 (2006).

829 86. R. M. Cornell, U. Schwertmann, *The iron oxides: structure, properties, reactions, occurrences, and uses*
830 (Weinheim, 2003).

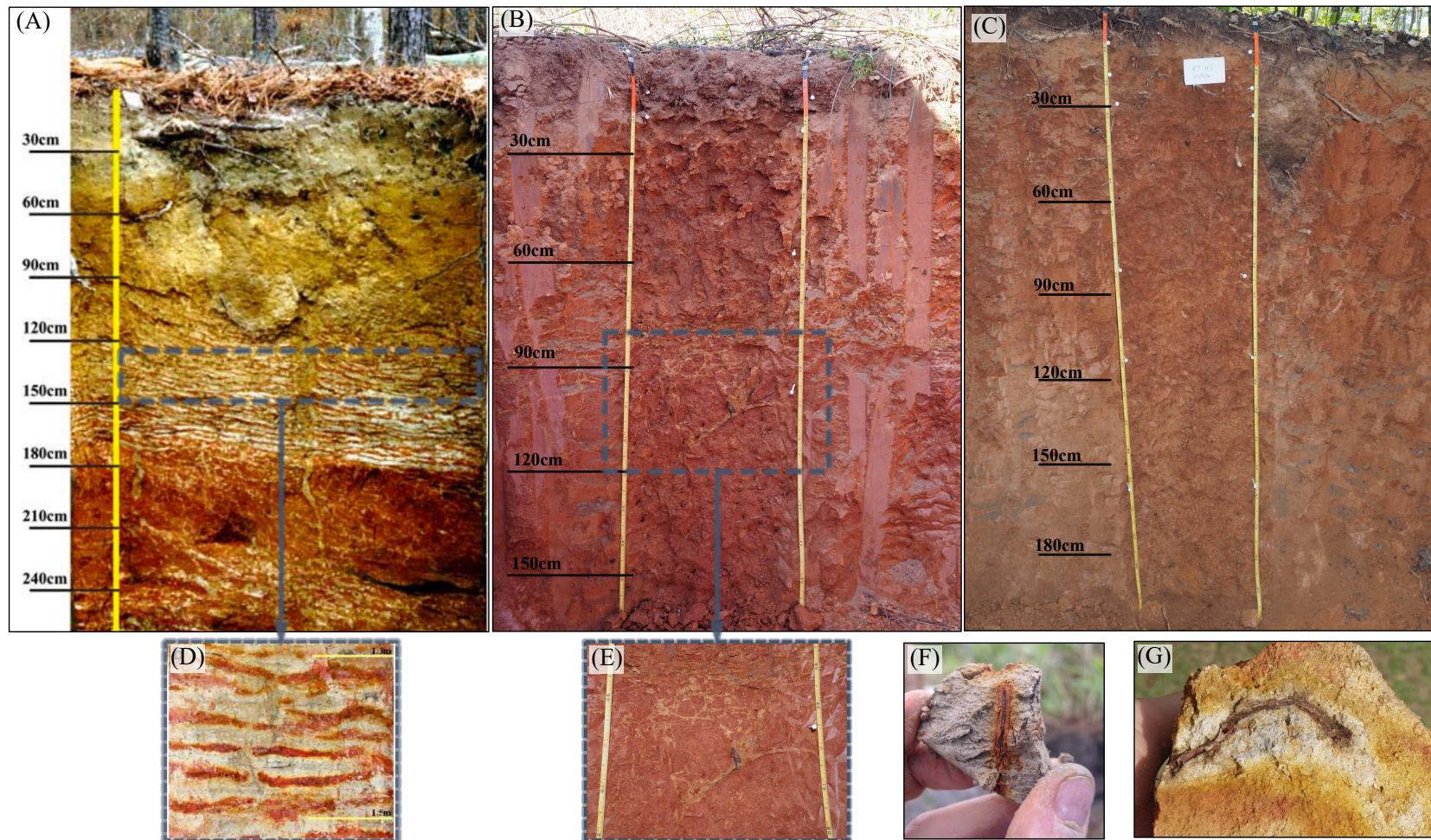
831 87. J. Chen, B. Gu, R. A. Royer, W. D. Burgos, The roles of natural organic matter in chemical and microbial
832 reduction of ferric iron. *Sci. Total Environ.* **307**, 167–178 (2003).

833 88. M. T. van Genuchten, A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated
834 Soils. *Soil Sci. Soc. Am. J.* **44**, 892 (1980).

835 89. Y. Mualem, A new model for predicting the hydraulic conductivity of unsaturated porous media. *Water
836 Resour. Res.* **12**, 513–522 (1976).

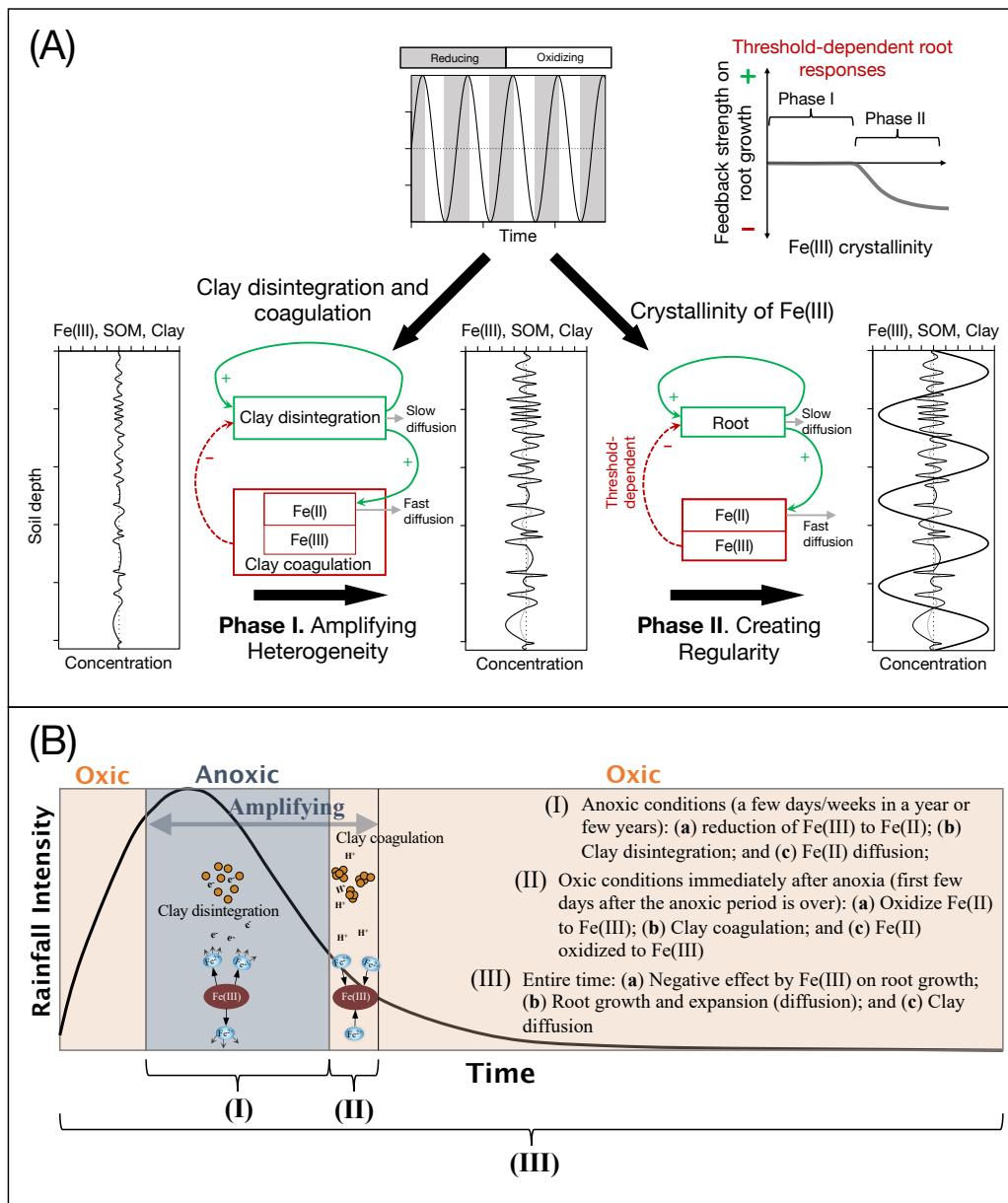
837 90. M. A. Celia, E. T. Bouloutas, R. L. Zarba, A general mass-conservative numerical solution for the
838 unsaturated flow equation. *Water Resour. Res.* **26**, 1483–1496 (1990).

839 91. J. Simunek, M. T. Van Genuchten, M. Sejna, The HYDRUS-1D software package for simulating the one-
840 dimensional movement of water, heat, and multiple solutes in variably-saturated media. *Univ. California-
841 Riverside Res. Reports* **3**, 1–240 (2005).


842

843

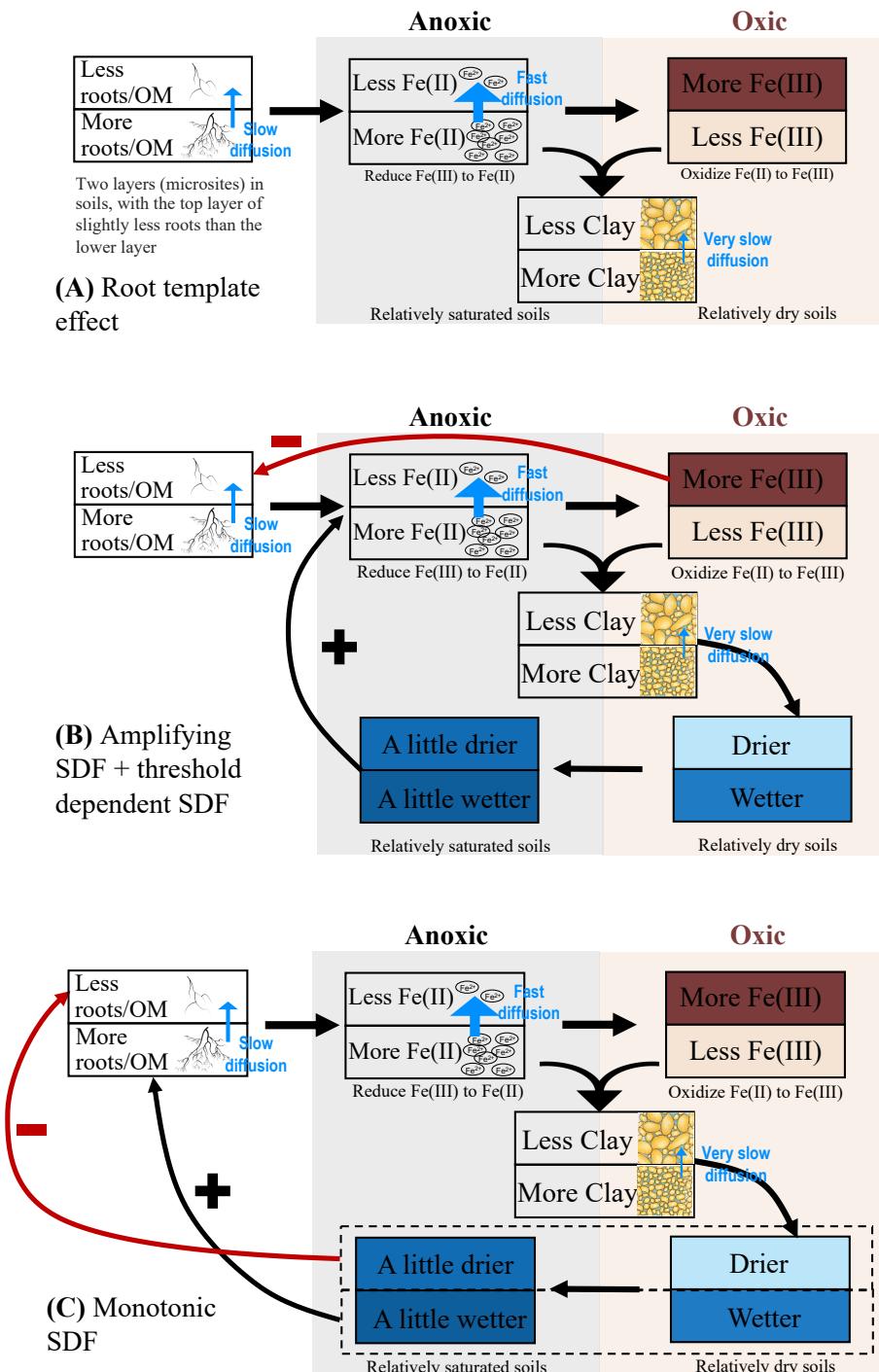
844


845

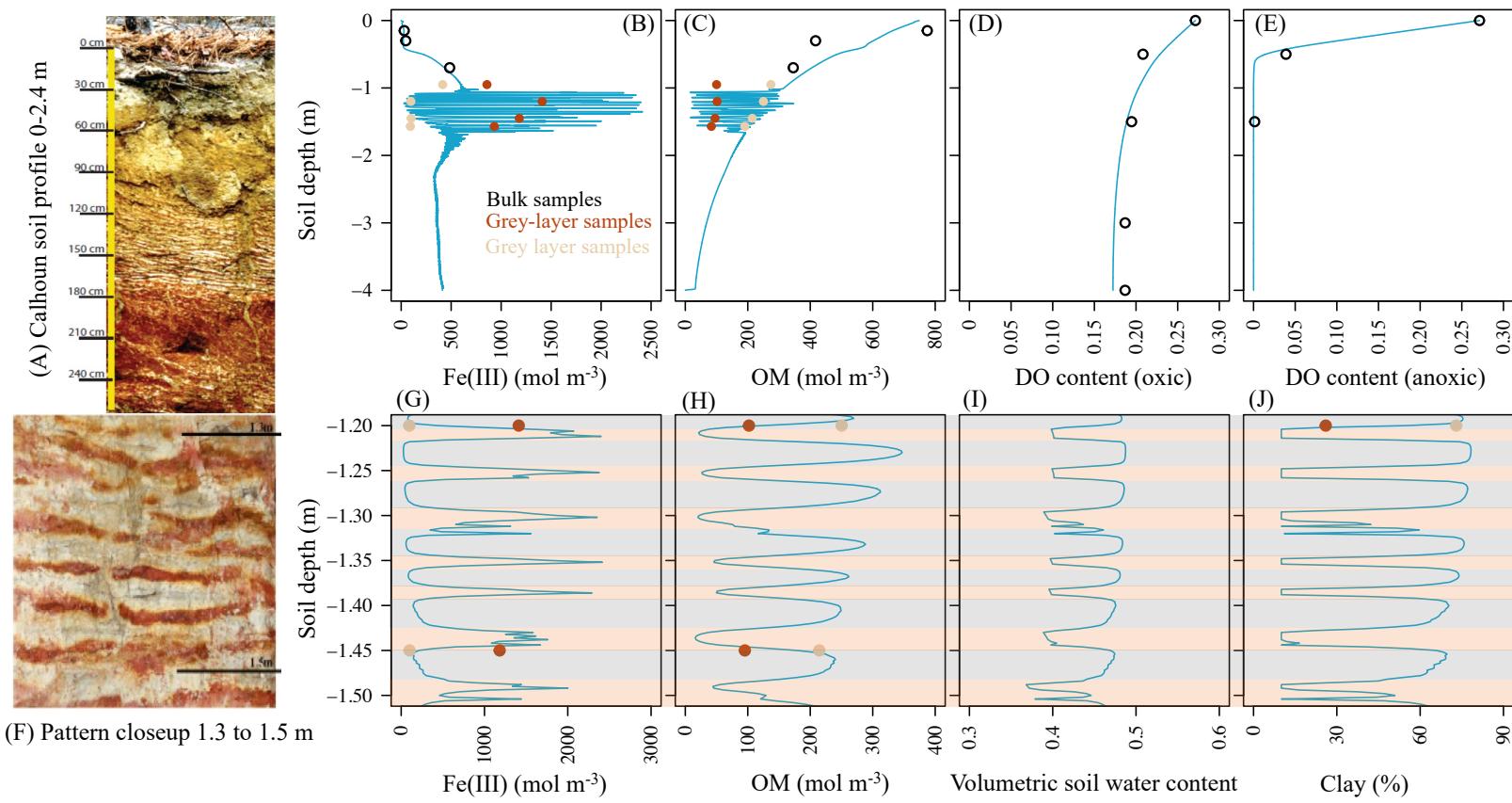
846 Figure 1. Variations of iron redox patterns in soils. (A) Our study site with extensive regular patterns, zooming into the pattern formation zone (D).
 847 (B) A site nearby (~ 4,000 m) our study site showing narrow, irregular redox patterns, with the pattern zone zooming in (E); (C) A site nearby
 848 (~ 400 m) our study site without any patterning; (F) rhizosphere creates an oxidized orange zone in wetland soils, while (G) rhizosphere
 849 creates a reduced gray zone in upland soils experiencing periodic inundation. Patterns shown in (A) – (E) are all from Calhoun Long-term soil
 850 experiment forests in South Carolina (U.S.).

851

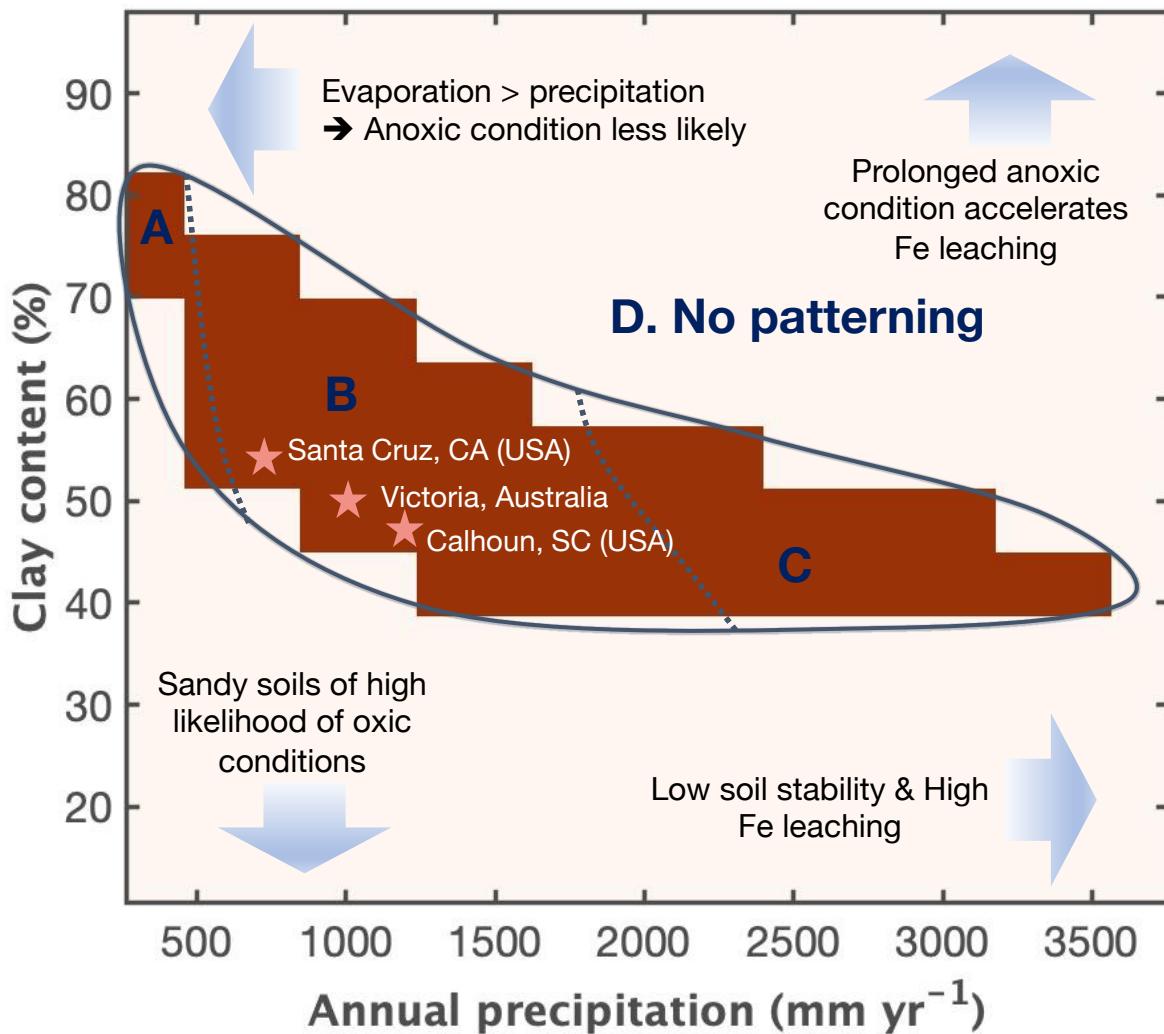
852 Figure 2. (A) Schematic of the two-phase mechanism underlying redox pattern formation in upland
 853 soils—the initial amplifying scale dependent feedbacks (SDF) phase and later threshold dependent
 854 SDF phase. Soil redox oscillations play an indispensable role in both phases. (B) Distinct timescales
 855 of key processes of SDF in soil redox pattern formation.



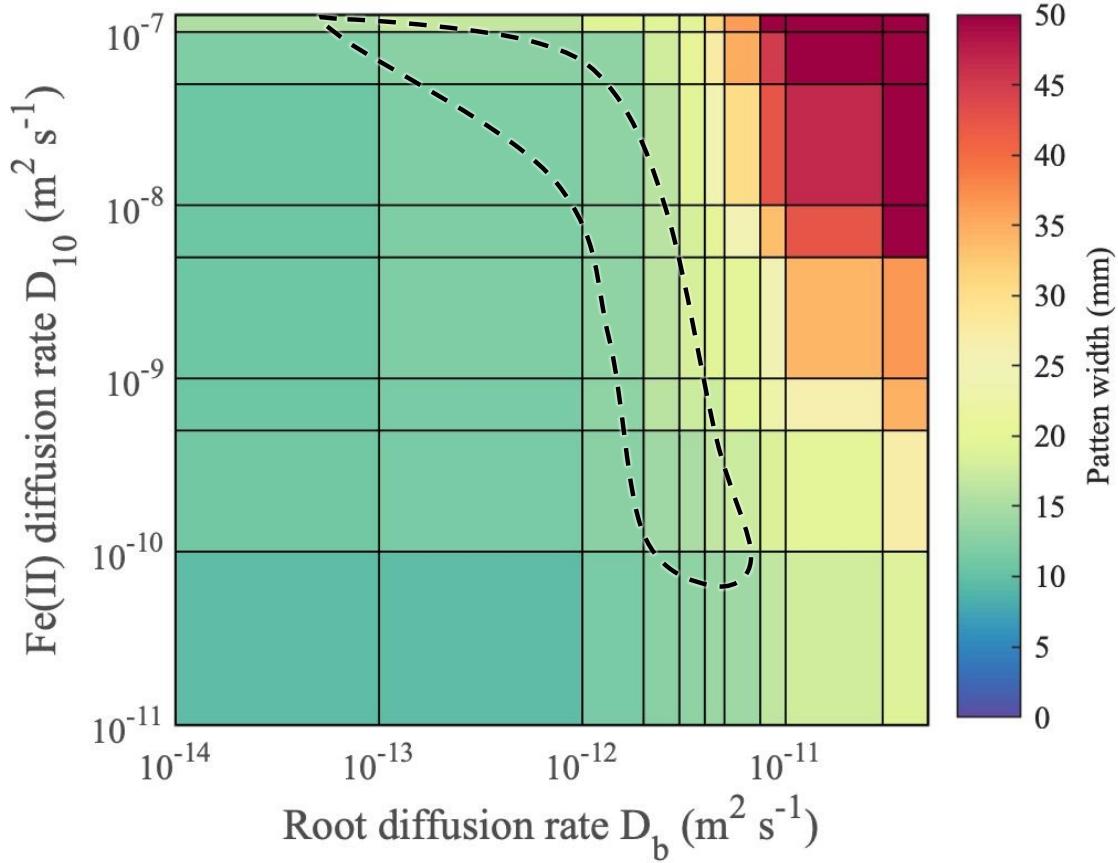
856


857

858

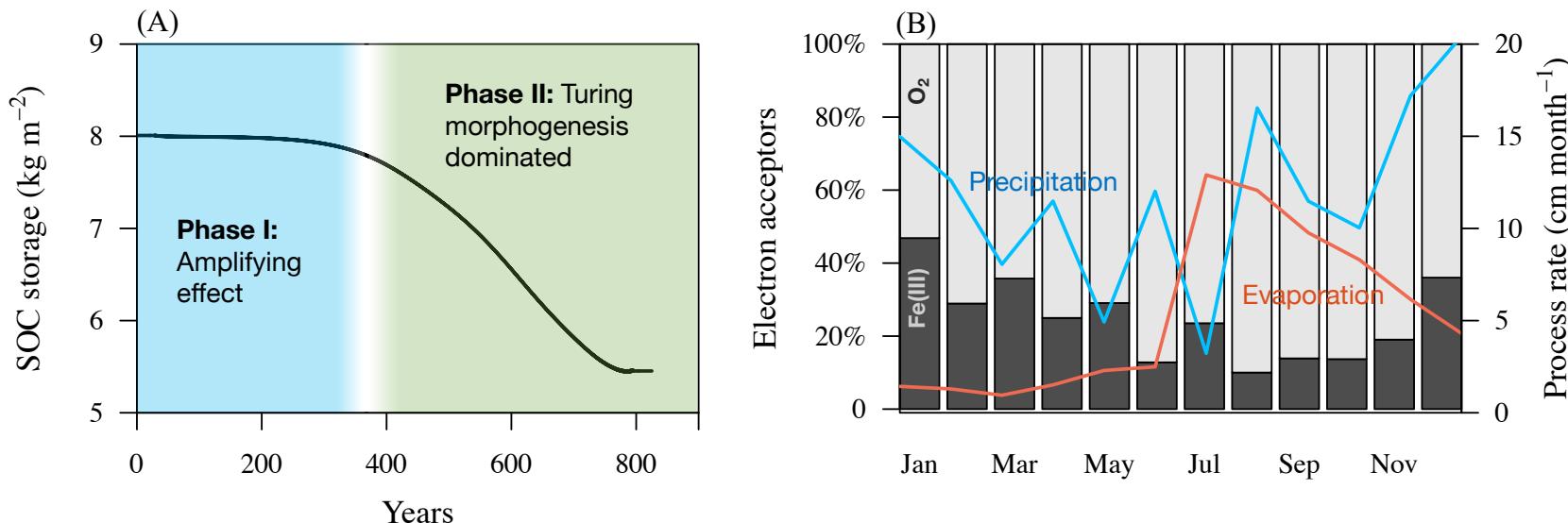

859 Figure 3. Three categories of hypothesized mechanisms giving rise to the regular redox patterns in upland
 860 soils. (A) Redox patterns formed as a reflection of the pre-existing root spatial structure. (B) Redox
 861 patterns formed as a coupling between amplifying SDF and threshold dependent SDF realized via a
 862 negative response of root growth to highly crystalline Fe(III). (C) Redox patterns formed by
 863 monotonic SDF mediated by root growth responses to soil water. Two stacked boxes represent two
 864 layers (microsites) of soils in the vertical direction, starting with the upper layer containing slightly
 865 less organic matter (OM), the lower layer containing slightly more OM, as the initial condition.

867 Figure 4. Comparison between modeled and observed soil redox patterns. (A) Photo shows the regular iron banding at the study site at the Calhoun
 868 Experimental Forest, with the close-up view of the redox pattern between 1.3 and 1.5 m soil depth (F). (B)-(E) blue lines show model
 869 simulated Fe(III) concentration (B), OM concentration (C), dissolved oxygen (DO) content under oxic condition (D) and DO content under
 870 anoxic condition (E). Points in each plot denotes measurements from the study site, with dark brown representing samples from orange
 871 layers, and light-yellow representing samples from gray layers. Open black circles represent bulk samples. (G) – (J) are close-up view
 872 between 1.2 and 1.5 m soil depth of the model simulated patterns of Fe(III) concentration (G), OM concentration (H), soil volumetric water
 873 content (I), and clay content (J). (G)-(J) show that layers of high Fe(III) show low OM, low soil water, and low clay content, while layers of
 874 low Fe(III) show high OM, high soil water, and high clay content. The DO profile in oxic condition (D) and volumetric water content (I) is
 875 model result after 30 days of exposure to aerobic conditions.



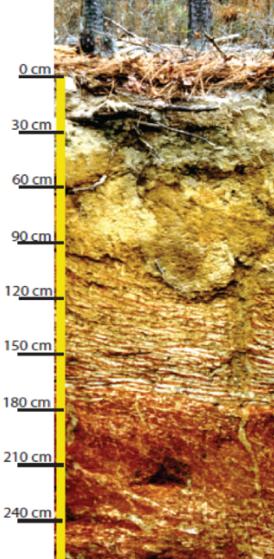
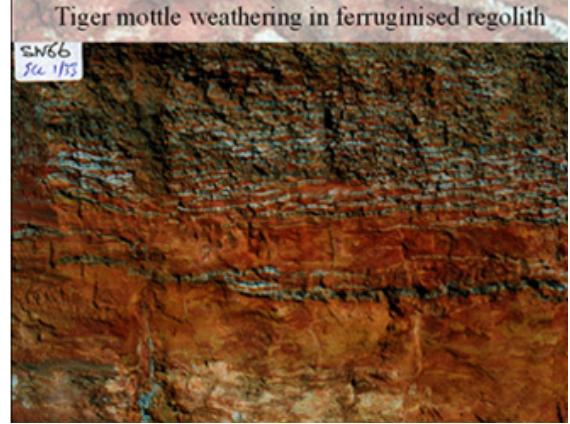
877 Figure 5. The domain of soil texture and annual precipitation where regular redox patterns are likely to
 878 emerge in upland soils. The solid line polygon delineates the domain predicted by the model where
 879 regular redox patterning will form. Zone D depicts the domain without patterning. Within the solid-
 880 line polygon, we expect pattern formation is most likely to occur in Zone B. The model
 881 manipulates different levels of annual precipitations but assumes same evaporation rate. If
 882 temperature increases in more arid zones, regular patterns are unlikely to emerge in Zone A. The
 883 model does not consider soil stability; however, if soils become less stable in wetter regions, it is
 884 unlikely to form regular redox patterns (Zone C). The stars indicate the condition of soil and
 885 precipitation at three sites where regular redox patterns have been reported (Table S3).

886


887 Figure 6. The effect of diffusion coefficients of root biomass (D_b) and diffusion coefficient of Fe^{2+} in soil
888 water (D_{10}) on the width of the regular redox patterns in soil. The dash-line polygon delineates the
889 area where pattern width (average width of an orange layer or a gray layer, ~ 1.6 cm) is
890 representative of that at our study site.

891
892
893
894

895 Figure 7. (A) A reduction of ~30% in the soil organic carbon (SOC) storage capacity in the pattern formation zone (between 1.0-1.8 m of soil
896 depths) over the 900-year pattern forming period. (B) Percent of SOC oxidized by O_2 vs. by Fe(III) by month in the model parameterized
897 by the environmental conditions of our study site in a representative wet year at the Calhoun Experimental Forest (South Carolina, U.S.).
898 Data of monthly rainfall and evaporation rate (cm per month) are aggregated from the daily rate monitored at the study site between July
899 1, 2018 to June 30, 2019.

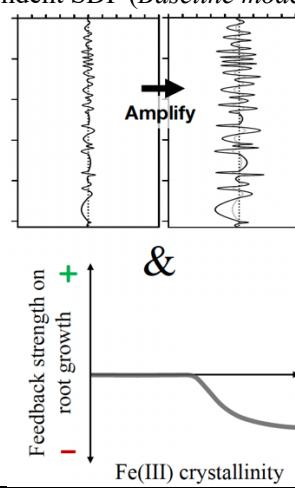
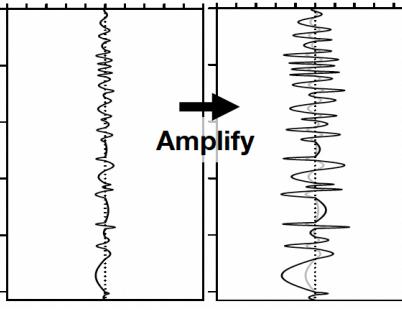


900

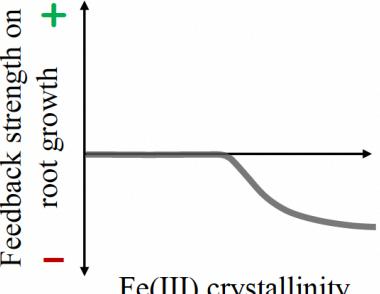
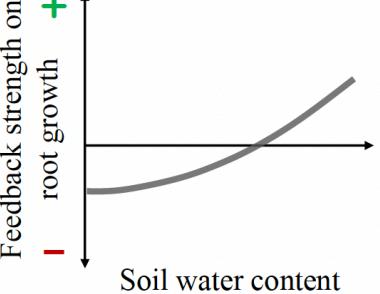
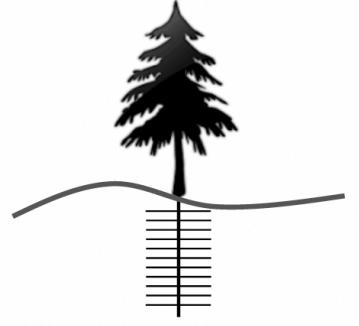
901

902

903 **Table S1.** Climatic and soil conditions of sites where regular iron redox patterns in soils have been reported. Note that we only collected papers
 904 that explicitly describe that the redox pattern is regular or show images of regular patterns.

Location	Calhoun, SC, U.S. (Fimmen et al. 2008)	Santa Cruz, CA, U.S. (Schulz et al. 2016)	Southwest Victoria, Australia (MacEwan, Dahlhaus, and Fawcett 2012)
Photo of the pattern			
Pattern formation soil depth	1.2-1.8 m depth	0.8-1.35 m depth	1.8-2.1 m depth
Width	Orange: 1.28 cm; Grey: 1.92 cm	Orange: 2.8 cm; Grey: 2.8 cm	Orange: 2.0 cm; Grey: 1.0 cm
Mean annual temperature (°C)	16.9	13.2	14.8
Annual precipitation (mm yr ⁻¹)	1,270	730	1,092
Clay content (orange layer)	26.6%	24%	—
Clay content (grey layer)	73%	56%	—
Background clay content	44.5%	51%	48%
SOC (orange layer)	0.08%	0.062 – 0.19%	—
SOC (grey layer)	0.2%	0.17% – 0.28%	—



906 **Table S2.** Comparison between the measured and modeled Fe(III) concentration, OM content, and clay content in the gray layers and in the
 907 orange layers of the formed pattern at our study site.




908

909

	Grey (rhizosphere) microsites			Orange (iron-rich) microsites		
	Measured	Modeled	Relative error	Measured	Modeled	Relative error
Fe(III) (mol m ⁻³)	137.9	150.06	+8.8%	961.9	1368.94	+42.3%
OM (%)	0.50	0.51	+1.9%	0.203	0.149	-26.5%
Clay (%)	73	70.67	-3.2%	26.6	18.4	-30.8%

Table S3. The major hypothesized mechanisms, their corresponding model representations, and differences in their model predictions of redox patterns. The terms that are modified for each hypothesis are highlighted in gray.

Mechanisms	Modifications to the Baseline Model	Distinguish among alternative mechanisms
<p>Amplifying SDF + threshold dependent SDF (<i>Baseline model</i>)</p> <p>&</p>	$R_{Fe(III)} = 4k_1[OM] \frac{[Fe(III)]}{[Fe(III)] + H_{sFe3}} \frac{H_{FeO2}}{[O_{2L}] + H_{sO2}} Se^\varphi \quad (Eq. 4)$ $G_B = \left(k_0 + k_g \frac{[O_{2L}]}{[O_{2L}] + H_{BO2}} \right) [B] f_{Fe(III)} \quad (Eq. 10)$ $f_{Fe(III)} = \begin{cases} 1, & [Fe(III)] \leq [Fe(III)]_{ng} \\ \frac{H_{BFe}^2}{H_{BFe}^2 + ([Fe(III)] - [Fe(III)]_{ng})^2}, & [Fe(III)] > [Fe(III)]_{ng} \end{cases} \quad (Eq. 11)$	<ul style="list-style-type: none"> Pattern: Modeled patterns of both OM and Fe(III) match the observed pattern. Time: ~ 900 years required to form patterns Assessment: The most plausible mechanism Video 1
<p>Amplifying SDF only</p>	$G_B = \left(k_0 + k_g \frac{[O_{2L}]}{[O_{2L}] + H_{BO2}} \right) [B] f_{Fe(III)} \quad (Eq. 10)$ <p>**** Set $f_{Fe(III)} = 1$</p>	<ul style="list-style-type: none"> Pattern: Modeled patterns of OM and Fe(III) do not match observed pattern: (a) banding width much thinner; (b) layers of high (low) Fe(III) show high (low) OM matter, opposite of observations. Time: ~7,000 years required to form patterns Assessment: Unlikely to be the mechanism Video 2

<p>Threshold-dependent SDF only</p>	$R_{Fe(III)} = 4k_1[OM] \frac{[Fe(III)]}{[Fe(III)] + H_{sFe3}} \frac{H_{FeO2}}{[O_{2L}] + H_{sO2}} Se^\varphi \quad (Eq. 4)$ <p>**** Set $Se^\varphi = 1$</p>	<ul style="list-style-type: none"> Pattern: No patterns form Assessment: Unlikely to be the mechanism Video 3
<p>Monotonic SDF only</p>	$R_{Fe(III)} = 4k_1[OM] \frac{[Fe(III)]}{[Fe(III)] + H_{sFe3}} \frac{H_{FeO2}}{[O_{2L}] + H_{sO2}} Se^\varphi \quad (Eq. 4)$ <p>**** Set $Se^\varphi = 1$</p> $G_B = \left(k_0 + k_g \frac{[O_{2L}]}{[O_{2L}] + H_{BO2}} \right) [B] f_{Fe(III)} \quad (Eq. 10)$ <p>**** Replace $f_{Fe(III)}$ with Se^2 (Calabrese et al. 2020)</p>	<ul style="list-style-type: none"> Pattern: OM content much higher than the observation in gray layers is predicted by the model. Time: ~ 900 years required to form patterns Assessment: Not likely for our study site, but likely in dry environments and/or sandy soils Video 4
<p>Root template effect</p>	$D_b = 0 \quad (Eq. 7)$ $R_{Fe(III)} = 4k_1[OM] \frac{[Fe(III)]}{[Fe(III)] + H_{sFe3}} \frac{H_{FeO2}}{[O_{2L}] + H_{sO2}} Se^\varphi \quad (Eq. 4)$ <p>**** Set $Se^\varphi = 1$</p> $G_B = \left(k_0 + k_g \frac{[O_{2L}]}{[O_{2L}] + H_{BO2}} \right) [B] f_{Fe(III)} \quad (Eq. 10)$ <p>**** Set the regular root template in the initial condition (Fig. S2) and impose the same regular pattern on the root carrying capacity, K_B (Eq. 12)</p>	<ul style="list-style-type: none"> Pattern: Modeled patterns of both OM and Fe(III) match the observed pattern. Time: ~ 200 years required to form patterns. Assessment: Unlikely to be the mechanism. Video 5

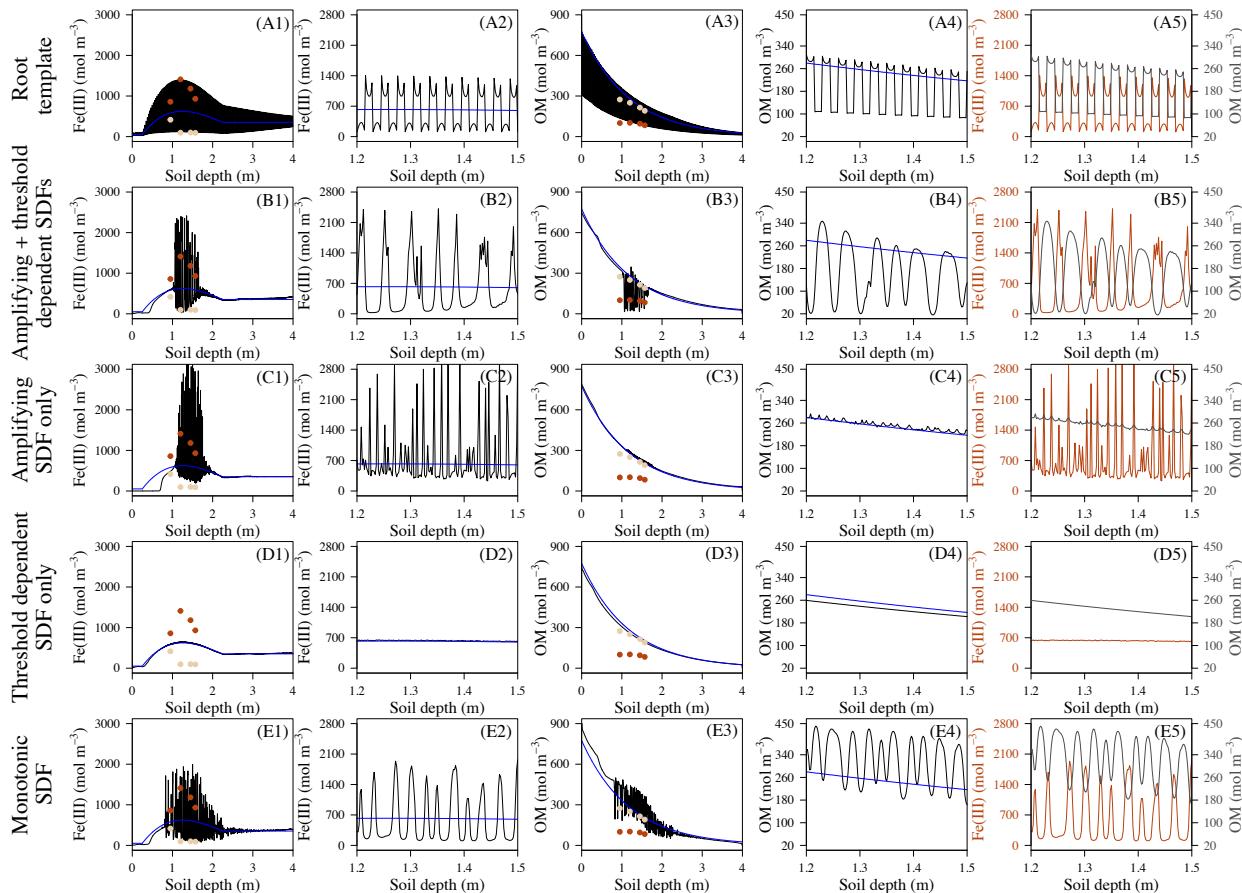
Table S4. Definition, notations, and values of model parameters.

Parameters	Definition and unit	Values	References
k_I	First-order Fe(III) reductive rate by organic matter (d ⁻¹)	0.000274	(Chen et al., 2018)
k_{app}	The pH-dependent Fe(II) oxidation rate constant (d ⁻¹)	21.6	(Chen et al., 2018) (Chen et al., 2003)
H_{so2}	Half-saturation constant regulating the effect of dissolved oxygen concentration on Fe(III) reduction, Fe(II) oxidation, and root respiration (mol m ⁻³)	0.02	(Van Cappellen and Wang 1996)
H_{sFe3}	Half-saturation constant regulating the effect of Fe(III) concentration on Fe(III) reduction (mol m ⁻³)	100	(Roden and Wetzel 2002)
k_r	Root respiration rate constant (d ⁻¹)	8.64 x 10 ⁻⁵	(Dong et al. 2018)
k_d	Root decay rate constant (d ⁻¹)	0.0053	Calibrated
k_0	Root growth rate constant (d ⁻¹)	0.0053	Calibrated
k_g	Root growth rate constant affected by oxygen availability (d ⁻¹)	8.64 x 10 ⁻⁵	Calibrated
K_B	Carrying capacity of root biomass, which decreases exponentially with soil depth (g m ⁻³)	1162e ^{-0.849depth}	Fitted with field observations
H_{BFe}	Half-saturation constant for the effect of Fe(III) on root growth (mol m ⁻³)	200	Calibrated
$[Fe(III)]_{ng}$	Threshold Fe(III) concentration, above which Fe(III) imposes a negative effect on root growth (mol m ⁻³)	650	Calibrated
M_{om}	Molar mass of organic matter (g mol ⁻¹)	30	Represented by the generic form of CH ₂ O
D_{10}	Diffusion coefficient of Fe ²⁺ in soil water (m ² d ⁻¹)	8.64 x 10 ⁻⁵	(Kappler et al. 2005)
D_{1L0}	Diffusion coefficient of dissolved O ₂ in soil water (m ² d ⁻¹)	1.9 x 10 ⁻⁴	(Aachib, Mbonimpa, and Aubertin 2004)
D_{1G}	Diffusion coefficient of gas O ₂ (m ² d ⁻¹)	1.754	(Aachib, Mbonimpa, and Aubertin 2004)
D_b	Diffusion coefficient of root biomass (m ² d ⁻¹)	8.64 x 10 ⁻⁸	Calibrated
D_c	Diffusion coefficient of clay (m ² d ⁻¹)	8.64 x 10 ⁻¹²	Calibrated
l	Pore connectivity parameter	0.5	(Mualem 1976)
β	Parameter controlling magnitude of fluctuation in the initial condition of root biomass density	0.5	Derived from field measurements (Fig. S3)
φ	Exponent controlling the effect size of normalized volumetric water content Se	1.0	Calibrated

915 Video 1: Formation of redox patterns in upland soils by the mechanism coupling threshold-
916 dependent SDF and amplifying SDF. The first row of plots shows profiles of the various
917 chemical concentrations in the entire model domain (0-to-4-meter soil depth),
918 including—from left to right—dissolved O₂ concentration (%), dissolved Fe(II) (mol m⁻³),
919 Fe(III) deposit (mol m⁻³), and organic matter (mol m⁻³). The second row of plots shows
920 the pattern in the zone between 1.2 and 1.5 m soil depth. From left to right: soil
921 volumetric water content, concentration of Fe(III) deposit (mol m⁻³), clay content (%),
922 and organic matter content (mol m⁻³). The simulation shows a time interval of 1 year over
923 ~ 800 years.
924

925 Video 2: Formation of redox patterns in the upland soils by the mechanism of amplifying SDF alone. The
926 first row of plots shows profiles of the various chemical concentrations in the entire model
927 domain (0-to-4-meter soil depth), including—from left to right—dissolved O₂ concentration (%),
928 dissolved Fe(II) (mol m⁻³), Fe(III) deposit (mol m⁻³), and organic matter (mol m⁻³). The second
929 row of plots shows the pattern in the zone between 1.2 and 1.5 m soil depth. From left to right:
930 soil volumetric water content, concentration of Fe(III) deposit (mol m⁻³), clay content (%), and
931 organic matter content (mol m⁻³). The simulation shows a time interval of 10 year over ~ 4,000
932 years.
933

934 Video 3: Formation of redox patterns in the upland soils by the mechanism of threshold-dependent SDF
935 alone. The first row of plots shows profiles of the various chemical concentrations in the entire
936 model domain (0-to-4-meter soil depth), including—from left to right—dissolved O₂
937 concentration (%), dissolved Fe(II) (mol m⁻³), Fe(III) deposit (mol m⁻³), and organic matter (mol
938 m⁻³). The second row of plots shows the pattern in the zone between 1.2 and 1.5 m soil depth.
939 From left to right: soil volumetric water content, concentration of Fe(III) deposit (mol m⁻³), clay
940 content (%), and organic matter content (mol m⁻³). The simulation shows a time interval of 1 year
941 over ~ 1,000 years.
942


943 Video 4: Formation of redox patterns in the upland soils by the mechanism of monotonic SDF. The first
944 row of plots shows profiles of the various chemical concentrations in the entire model domain (0-
945 to-4-meter soil depth), including—from left to right—dissolved O₂ concentration (%), dissolved
946 Fe(II) (mol m⁻³), Fe(III) deposit (mol m⁻³), and organic matter (mol m⁻³). The second row of plots
947 shows the pattern in the zone between 1.2 and 1.5 m soil depth. From left to right: soil volumetric
948 water content, concentration of Fe(III) deposit (mol m⁻³), clay content (%), and organic matter
949 content (mol m⁻³). The simulation shows a time interval of 1 year over ~ 1,000 years.
950

951 Video 5: Formation of redox patterns in the upland soils by the mechanism of pre-existing root template.
952 The first row of plots shows profiles of the various chemical concentrations in the entire model
953 domain (0-to-4-meter soil depth), including—from left to right—dissolved O₂ concentration (%),
954 dissolved Fe(II) (mol m⁻³), Fe(III) deposit (mol m⁻³), and organic matter (mol m⁻³). The second
955 row of plots shows the pattern in the zone between 1.2 and 1.5 m soil depth. From left to right:

956 soil volumetric water content, concentration of Fe(III) deposit (mol m^{-3}), clay content (%), and
957 organic matter content (mol m^{-3}). The simulation shows a time interval of 1 year over 180 years.

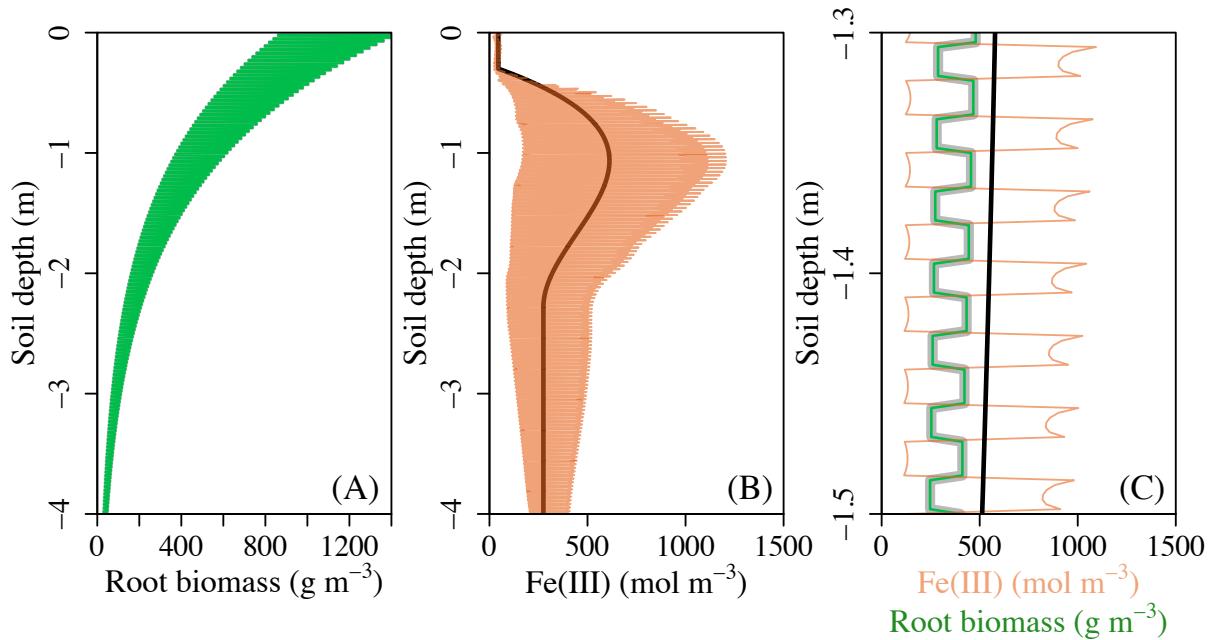
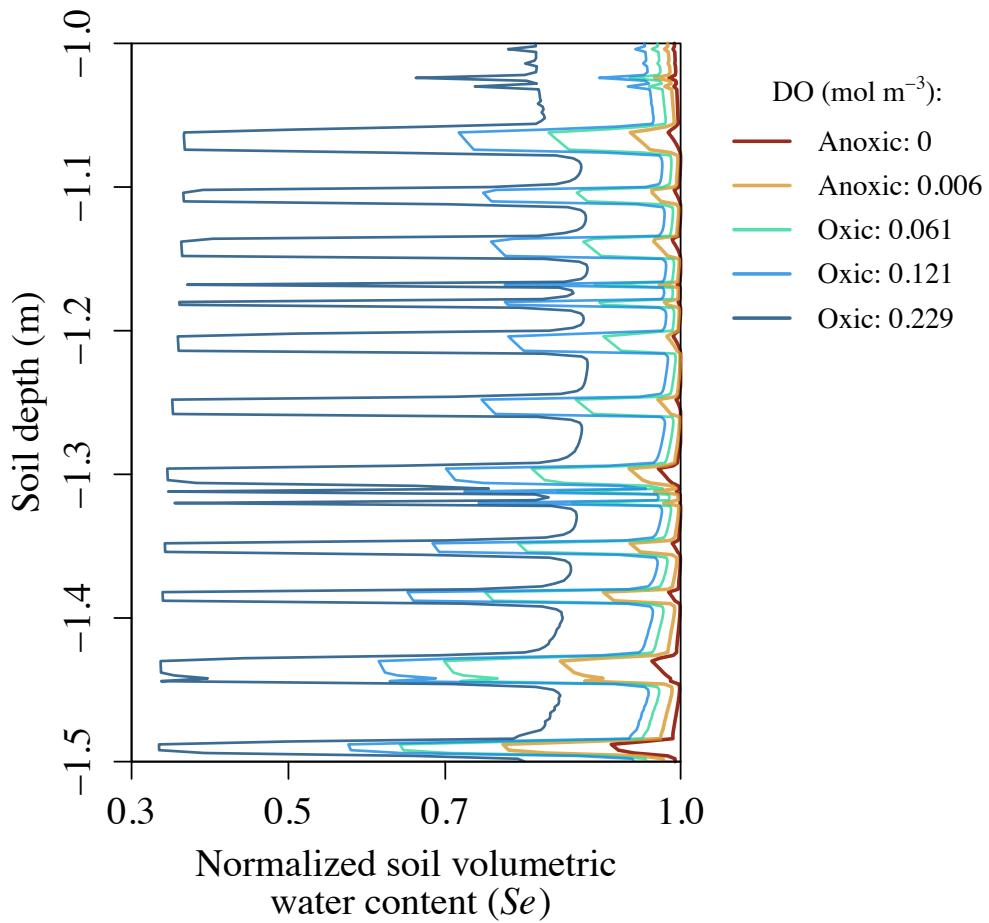
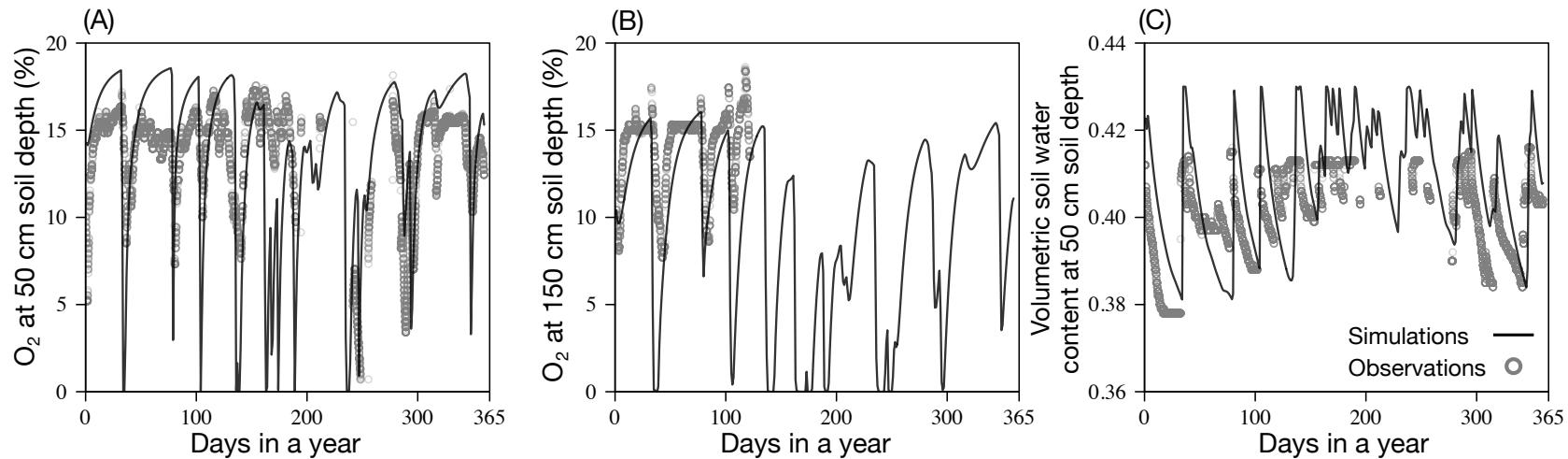

958
959
960
961
962
963
964
965

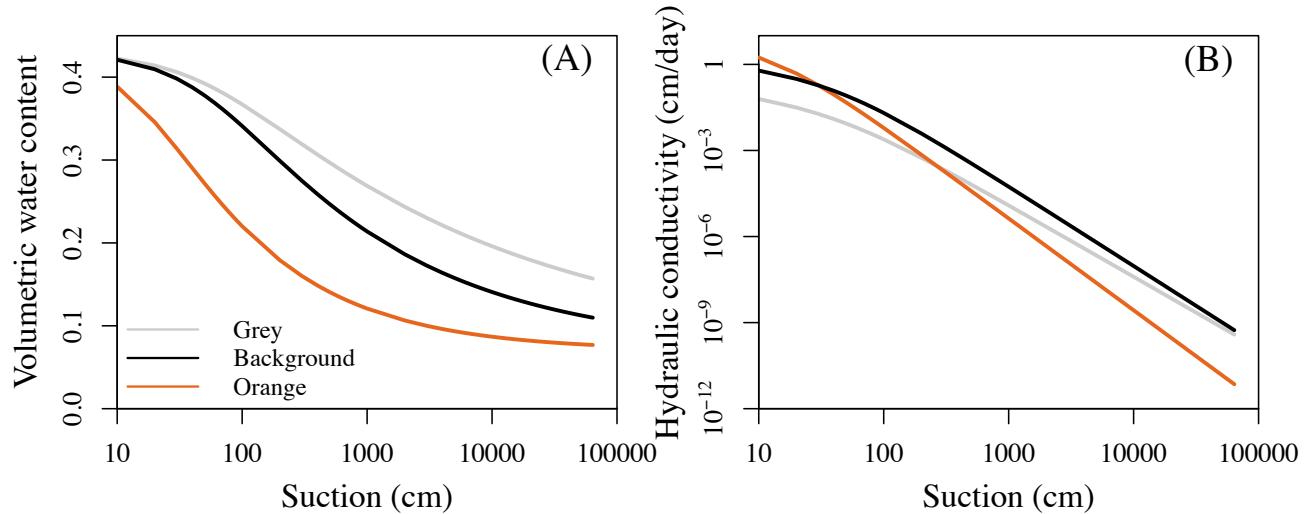
Figure S1. Model simulated patterns with five hypothesized mechanisms: Patterns formed by root template effect (A1-5); by coupling the amplifying SDF with threshold dependent SDF based on negative root responses to Fe(III) (B1-5); by the amplifying SDF alone (C1-5); by the threshold dependent SDF based on negative root responses to Fe(III) alone (D1-5); and by the monotonic SDF based on root responses to soil water content (E1-5). Blue lines in each plot show the observed background concentrations, represented by the data from nearby sites without patterning. Red points are empirical measurements from the Fe(III) concentrated orange layers at our study site, and the light-yellow points are empirical measurements from the Fe(III) depleted gray layers. The first column describes the modeled Fe(III); the second column is a close-up view of the Fe(III) in the pattern formation zone between 1.2 and 1.5 m soil depth; the third column describes the modeled organic matter (OM); the fourth column is a close-up view of OM in the pattern formation zone; and the last one is overlapping Fe(III) and OM profiles to show their spatial relationships of high and low.


966

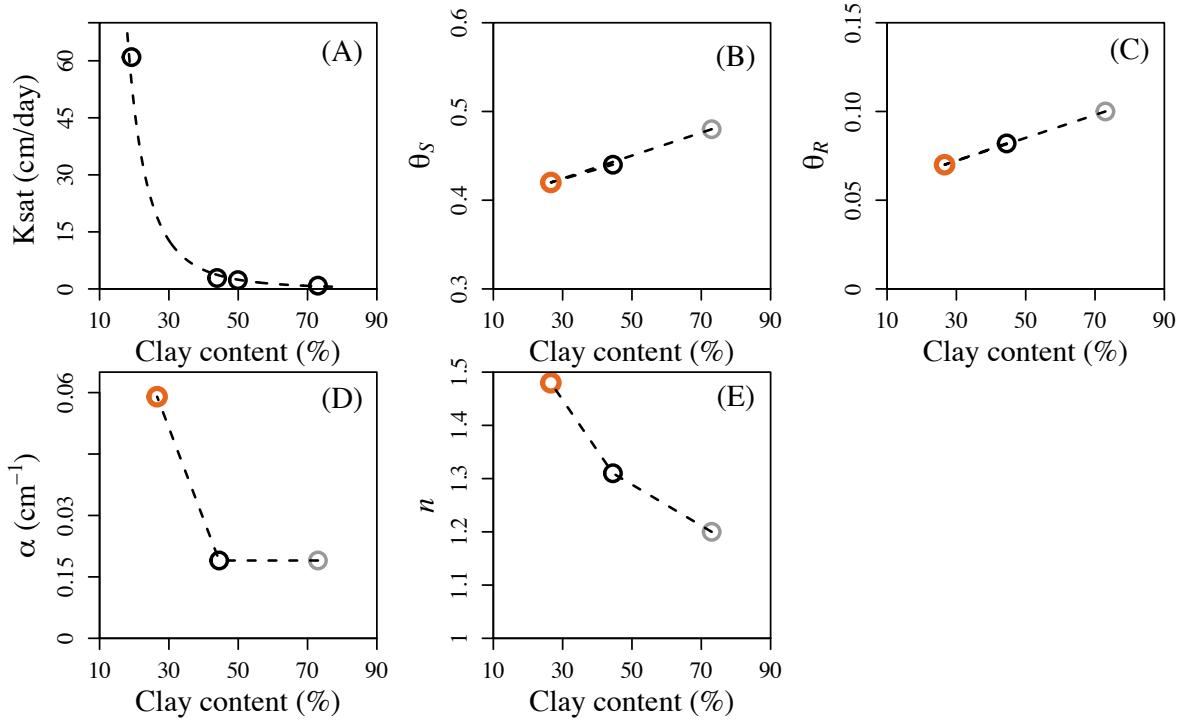
967 **Figure S2.** Redox patterns follow the *exact* pattern set by the root biomass in the initial condition. (A)
968 shows the root biomass in the steady state (green) and in the initial condition (gray; as it overlaps
969 exactly with steady-state distribution, gray line is not visible); (B) shows the Fe(III) profile in the
970 steady state (orange) and in the initial condition (black); and (C) zooms in to the soil depth
971 between 1.3 m and 1.5 m showing that root biomass in the initial condition (thick gray line) and
972 in the steady state (green) and the initial-state (thick black line) and steady-state (orange) Fe(III)
973 concentration distribution.


974

975 **Figure S3.** Difference of soil water content between orange and grey layers along the anoxic-oxic
 976 gradient, represented by the modeled soil water content in the pattern formation zone between 1.0
 977 and 1.5 m soil depth. When soil is under anoxic condition, the difference of water soil content
 978 between orange and gray layers is small, resulting in weak amplifying effect. As soil gets drier
 979 and becomes more oxic, the soil water content between orange and gray layers becomes large,
 980 allowing a relatively strong amplifying effect occur. However, under oxic conditions, reductive
 981 dissolution of Fe(III) is suppressed. As a result, the amplifying effect is again limited. DO
 982 concentrations represent the average concentration between the soil depths of 1.0 and 1.5 m.


983
 984
 985

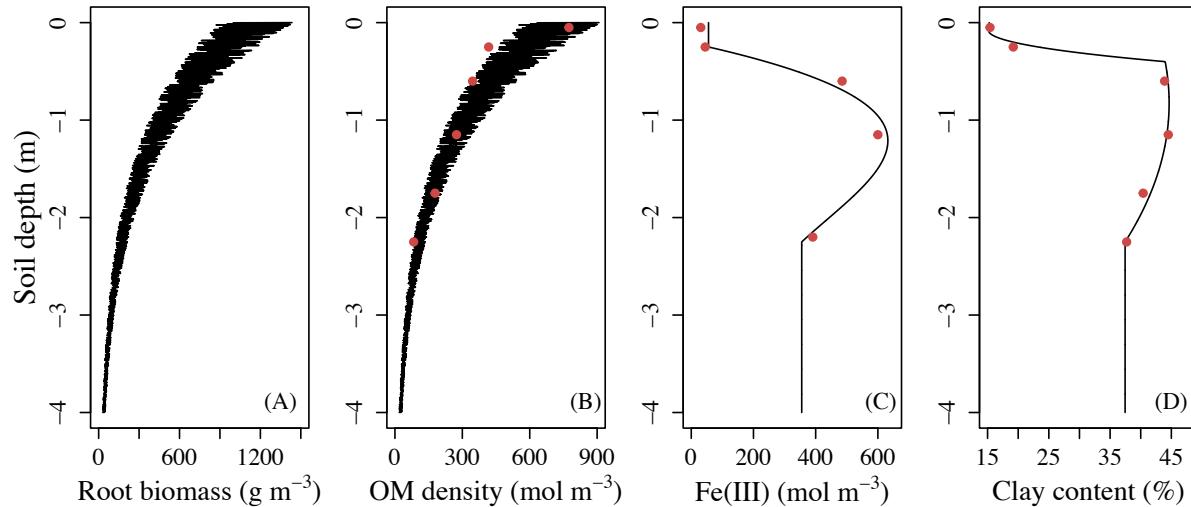
986 **Figure S4.** Comparison of the observed (between July 1, 2018 and July 1, 2019) and modeled O₂ concentrations at 50 cm (A) and 150 cm (B) soil
987 depth and soil volumetric water content (C). Our model provides a good fit to the empirical data.


988

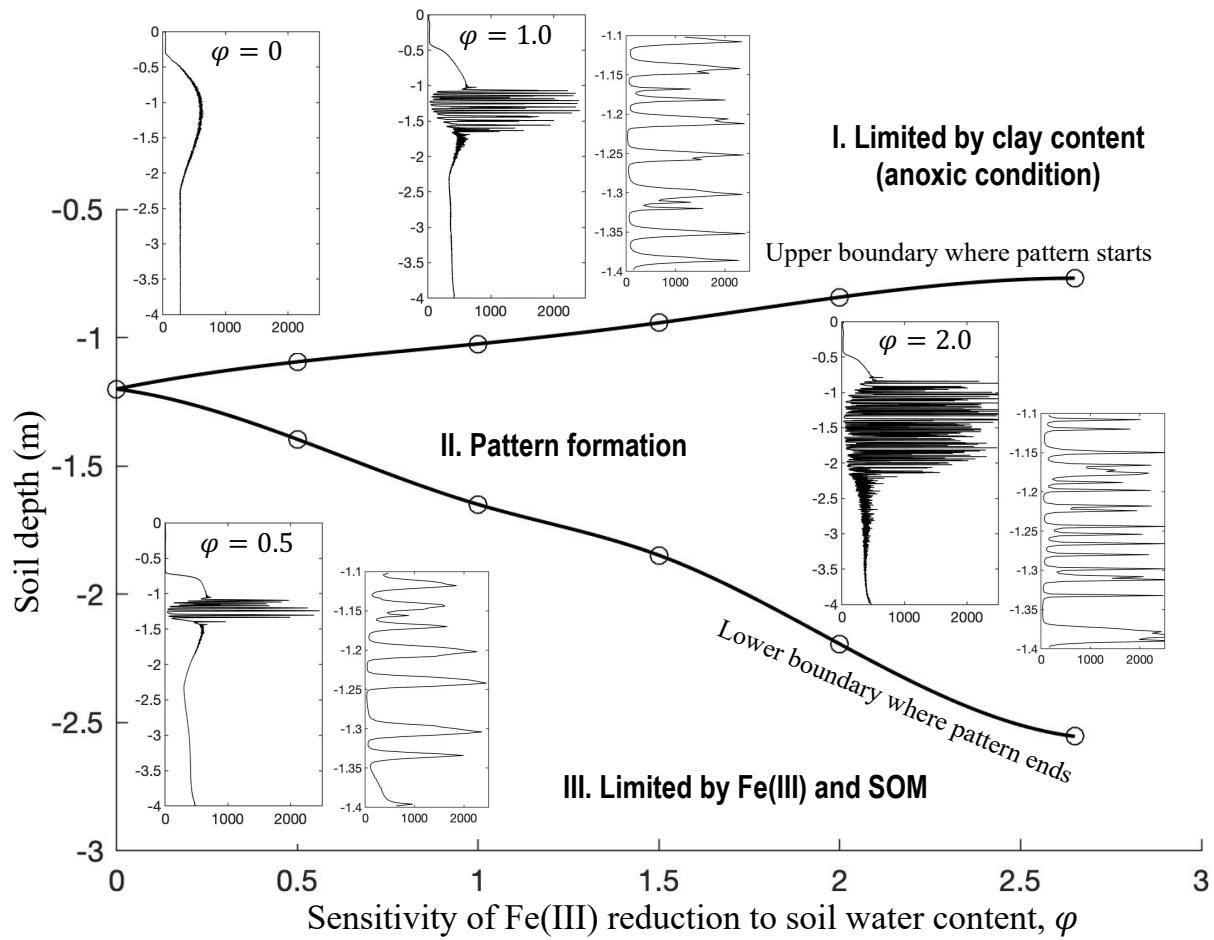
989 **Figure S5.** Modeled water retention curve and hydraulic conductivity curve for the soil texture in the
990 background condition and for the contrasting soil textures in gray layers and orange microsites in
991 regular redox patterns (Table S5 in Supplementary Text provides descriptions of characteristics of
992 these three types of soil texture). Suction = 0 – pressure head, h .

993

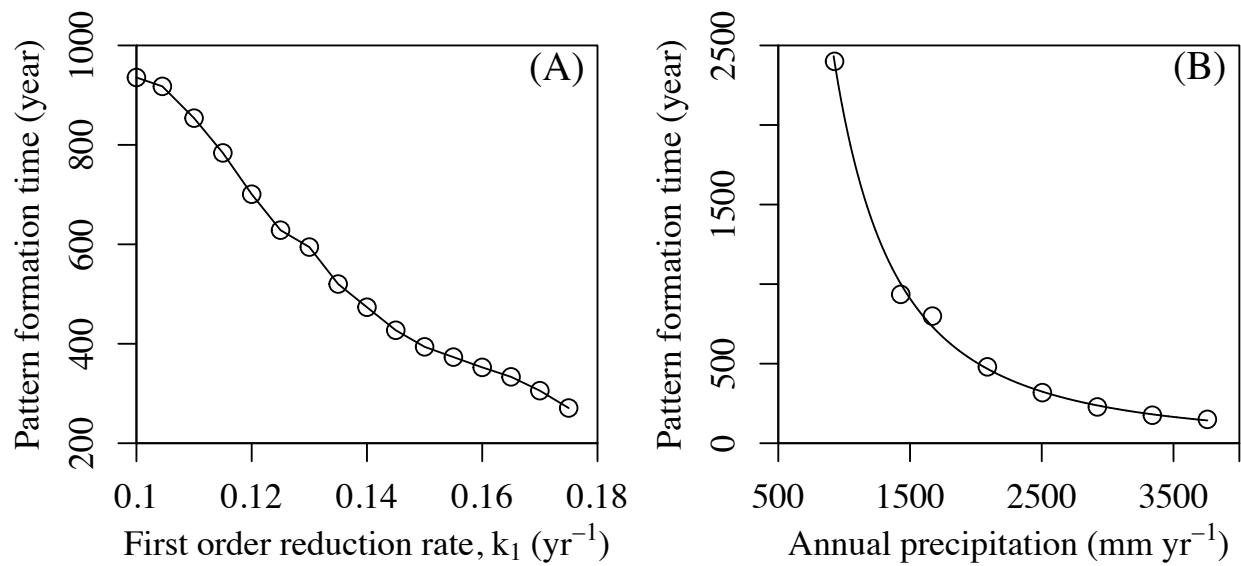
994 **Figure S6.** Empirical relationships between five hydraulic parameters (Table S5; Text S1) and clay
 995 content used in the model: (A) saturated hydraulic conductivity, K_s , (B) saturated soil water
 996 content, θ_s , (C) residual soil water content, θ_r , (D) fitting parameter, α (Eq. 19) (E) fitting
 997 parameter, n (Eq. 19). In (B)-(E): orange circles represent samples from orange layers of redox
 998 patterns at our study site, gray circles represent samples from gray layers, and black circles
 999 represent samples from bulk samples, as background level. Piecewise linear regressions were
 1000 used to represent the relationship between the four hydraulic parameters and clay content (B-E),
 1001 and a fitted exponential relationship, $K_s = 807241x$ (clay content) $^{-3.24991}$, was used for the
 1002 relationship between K_{sat} and clay content (A). These empirical relationships were used to model
 1003 soil water dynamics.


1004

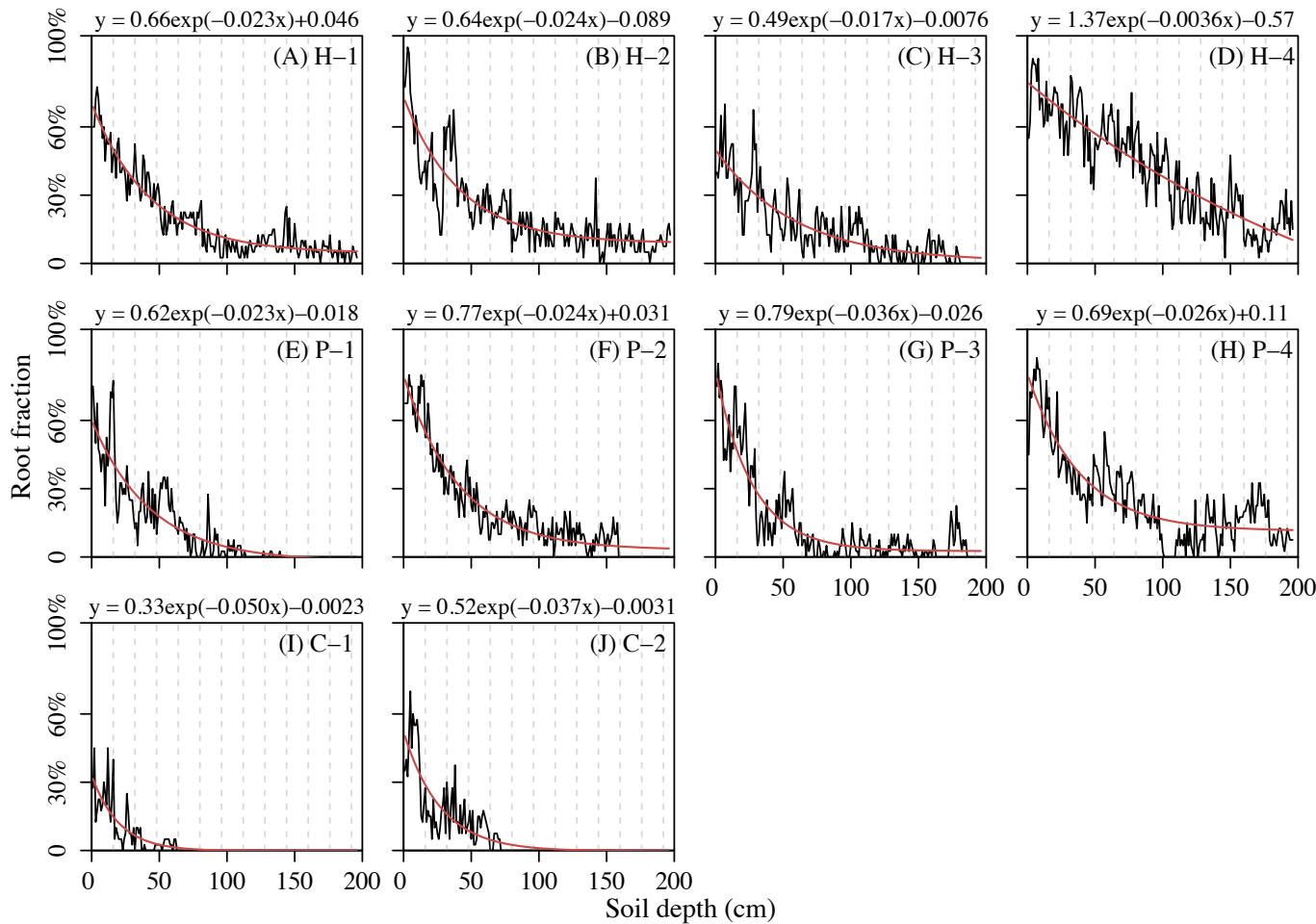
1005
1006


Figure S7. Initial conditions used in the model for (A) soil vertical profiles of root biomass, (B) organic matter concentration (OM), (C) Fe(III) concentration, and (D) clay content. The initial conditions are informed by observed patterns (red points) at nearby sites without patterns.

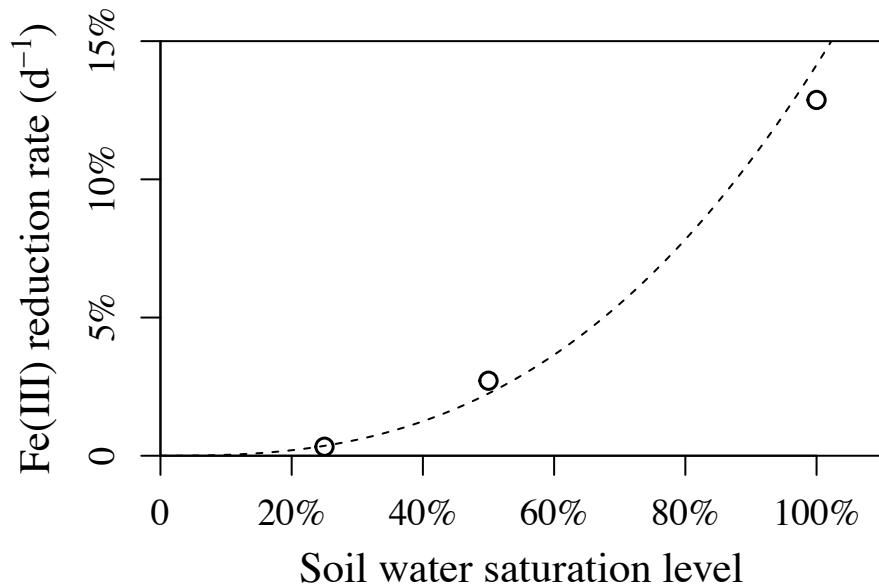
1007


1008

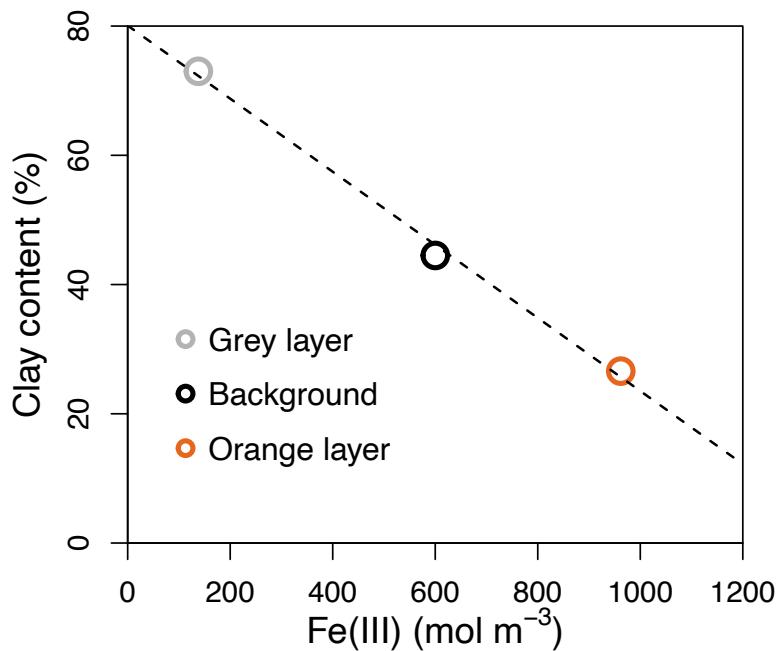
1009 **Figure S8.** Sensitivity of Fe(III) reduction rate to soil water content (φ in Eq. 4) affecting the spatial extent
 1010 of pattern formation zone in the soil profile.



1012 **Figure S9.** Time required for redox pattern formation in upland soils affected by first order Fe(III)
1013 reduction coefficient by soil organic matter, k_1 (A) and by annual precipitation (B). Pattern
1014 formation time changes linearly with k_1 , but exponentially with precipitation ($R^2 > 0.99$).


1015

1016 **Figure S10.** Measured (at every 1 cm) fine root distribution at ten different sites of the Calhoun Experimental Forest (South Carolina, U.S.) with
 1017 best fit exponential decay functions. Dominant plant species varies among sites: hardwood trees ("H"), pine trees ("P"), and cottons ("C").
 1018 Biomass of cotton roots declines more rapidly than that of hardwood trees or pine trees. The dashed lines in each plot are 1.6 cm apart, the
 1019 average width of an orange or gray layer in the regular redox patterns in our study site. Roots do not show regularly spaced (at 1.6 cm
 1020 interval) biomass distribution (as in Figure S2).


1021

1022 **Figure S11.** The effect of soil water content on the rate of Fe(III) reduction. The data are extracted from
1023 Figure 2 of the paper by Hodges et al. (2018). Fe(III) reduction rate represents the fraction of
1024 Fe(III) removed by reductive dissolution after two weeks of lab experiments, controlled at
1025 different levels of soil water saturation.

1026

1027 **Figure S12.** Empirical relationship between Fe(III) concentration and clay content with data from the
1028 Calhoun Experimental Forest (South Carolina, U.S.). This suggests the effects of iron redox
1029 reactions on clay disintegration and coagulation. Different colors represent the source of the data:
1030 Data from orange and gray layers in the regular redox patterns are in orange and gray circles,
1031 respectively; and data from sites without redox patterns, representing the background condition,
1032 are in black.

1033
1034
1035
1036
1037

Supplementary Text S1

Relationships between soil hydraulic parameters and clay content in soils

The progression of iron redox reactions continuously modifies clay content in soils, hence changing soil texture. Soil texture has a significant effect on water content and water flux, which in turn feeds back to affect soil redox dynamics and iron chemical reactions. To capture such feedbacks, we modeled the dynamics of soil hydraulic parameters based on empirical measurements in our study site and model calibration. We considered the impact of clay concentration on the five hydraulic parameters in *Eqs.* 19-21: saturated hydraulic conductivity (K_s), fitting parameters α and n , saturated water content (θ_s), and residual water content (θ_r). As clay concentration increases, soil texture becomes finer, water permeability decreases, i.e., lower K_s , α and n , and water retention capacity increases, i.e., higher θ_s and θ_r (Simunek, Van Genuchten, and Sejna 2005; Brogowski, Kwasowski, and Madyniak 2014). To represent these dynamics in the model, we compiled the soil texture data measured at gray layers and orange layers in the pattern formation zone in our study site. Since it is not feasible to have reliable information on soil texture in the initial condition before the regular redox patterns were formed, we used soil texture data collected at a nearby site without regular patterns (defined as “background” level in this study) to represent the soil texture in the initial condition. The soil texture data and hydraulic parameters were extracted from (Fimmen et al. 2008) and shown in Table S5.

Table S5. Soil texture and hydraulic parameters for the grey and the orange layers and proxy of the initial condition with data collected from a nearby site without redox patterning (“background”).

Sites	Clay (%)	Silt (%)	Sand (%)	Soil texture	θ_s	θ_r	α (1/cm)	n
Gray	73	10.3	16.6	clay	0.48	0.10	0.019	1.2
Orange	26.6	20.3	53.1	Sandy clay loam	0.42	0.07	0.059	1.48
Background	44.5	-	-	clay	0.44	0.082	0.019	1.31

Note: ‘-’ means no data available.

When percent of clay is known, θ_s is estimated following the method by (Brogowski, Kwasowski, and Madyniak 2014). We inferred values of θ_r , α , and n using Rosetta, a computer program to estimate soil hydraulic parameters for a given soil texture (Schaap, Leij, and Van Genuchten 2001). The four hydraulic parameters at a given clay concentration were estimated using a piece-wise linear interpolation (Vogel, Cislerova, and Hopmans 1991) (Fig. S11B-E). K_s values for soils of different clay contents were directly measured in the field. Based on the observed K_s and clay content relationship, we fitted an exponential relationship (Fig. S11A). This fitted function is used in the model to inform K_s under any given clay content. Our model simulated spatially and temporally varying clay content (*Eq.* 17). At each step, with the evolution of clay content, the values of these five parameters also change as a function of clay content according to the relationships in Fig. S11. Taking these steps, the model reproduced soil water content and oxygen dynamics reasonably well with field observations (Fig. S5).

Supplementary Text S2

Manipulate precipitation regime and soil clay content in numerical experiments

To test the effect of precipitation regime on pattern formation, we first downloaded daily precipitation and evaporation rate between 1950 and 2021 at the weather station in the Union County, S.C. (U.S.A.) from National Centers for Environmental Information at NOAA (<https://www.ncdc.noaa.gov/cdo-web/datasets>). We picked four typical years representing wet (1971), normal (1990), dry (1952), and very dry (2007) conditions with an annual precipitation of 1,669.8 (100% quantile), 1,313.2 (74% quantile), 927.1 (20% quantile), and 528.6 mm yr⁻¹ (20% quantile), respectively. To consider a wider range of precipitation regime, we multiple the daily mean precipitation in the wet year of 1972 by a factor of 2.25, 2.0, 1.75, 1.5, and 1.25 two create five very wet scenarios (i.e., highest annual precipitation = 1,669.8 x 2.25 = 3,757.1 mm yr⁻¹). We also expanded the degree of dry conditions by divided the precipitation in the very year of 2007 by 2 (i.e., lowest annual precipitation = 528.6/2 = 264.3 mm yr⁻¹). In total, we created 10 precipitation scenarios, with annual precipitation ranging from 264.3 to 3,757.1 mm yr⁻¹. These precipitation scenarios were imposed on the model to investigate its effect on the presence/absence of regular patterns and the time it required for patterns to form.

1088 To test the effect of soil clay content on pattern formation, we used the observed clay profile as the
1089 baseline (Fig. S6D). We multiplied a constant to this clay content vertical distribution to create new
1090 scenarios. The constant ranges from 0.1 to 2.2 with an increment of 0.14. This creates a total of 16
1091 scenarios of clay profiles, with the mean clay content between the soil depth between 1.0 and 1.5 m (the
1092 likely pattern formation zone) varying from 4.45% to 97.9%.

1093

1094 References Cited in Supplementary Materials

1095 Aachib, M, M Mbonimpa, and M Aubertin. 2004. "MEASUREMENT AND PREDICTION OF THE
1096 OXYGEN DIFFUSION COEFFICIENT IN UNSATURATED MEDIA, WITH APPLICATIONS
1097 TO SOIL COVERS." *Water, Air, and Soil Pollution* 156: 163–93.

1098 Brogowski, Zygmunt, Wojciech Kwasowski, and Renata Madyniak. 2014. "Calculating Particle Density,
1099 Bulk Density, and Total Porosity of Soil Based on Its Texture." *Soil Science Annual* 65 (4): 139–49.
1100 <https://doi.org/10.1515/ssa-2015-0007>.

1101 Calabrese, Salvatore, Diego Barcellos, Aaron Thompson, and Amilcare Porporato. 2020. "Theoretical
1102 Constraints on Fe Reduction Rates in Upland Soils as a Function of Hydroclimatic Conditions."
1103 *Journal of Geophysical Research: Biogeosciences* 125 (12): 1–18.
1104 <https://doi.org/10.1029/2020JG005894>.

1105 Cappellen, Philippe Van, and Yifeng Wang. 1996. "Cycling of Iron and Manganese in Surface Sediments:
1106 A General Theory for the Coupled Transport and Reaction of Carbon, Oxygen, Nitrogen, Sulfur,
1107 Iron, and Manganese." *American Journal of Science* 296 (3): 197–243.
1108 <https://doi.org/10.2475/ajs.296.3.197>.

1109 Chen, Chunmei, Christof Meile, Jared Wilmoth, Diego Barcellos, and Aaron Thompson. 2018. "Influence
1110 of PO₂ on Iron Redox Cycling and Anaerobic Organic Carbon Mineralization in a Humid Tropical
1111 Forest Soil." *Environmental Science and Technology* 52 (14): 7709–19.
1112 <https://doi.org/10.1021/acs.est.8b01368>.

1113 Chen, Jie, Baohua Gu, Richard A. Royer, and William D. Burgos. 2003. "The Roles of Natural Organic
1114 Matter in Chemical and Microbial Reduction of Ferric Iron." *Science of the Total Environment* 307
1115 (1–3): 167–78. [https://doi.org/10.1016/S0048-9697\(02\)00538-7](https://doi.org/10.1016/S0048-9697(02)00538-7).

1116 Dong, Xiaoli, Matthew J. Cohen, Jonathan B. Martin, Daniel L. McLaughlin, A. Brad Murray, Nicholas
1117 D. Ward, Madison K. Flint, and James B. Heffernan. 2018. "Ecohydrologic Processes and Soil
1118 Thickness Feedbacks Control Limestone-Weathering Rates in a Karst Landscape." *Chemical
1119 Geology* 527 (May): 118774. <https://doi.org/10.1016/j.chemgeo.2018.05.021>.

1120 Fimmen, Ryan L, Richter Jr, Dharni Vasudevan, Mark A Williams, Larry T West, Ryan L Fimmen,
1121 Richter Jr, and Larry T West. 2008. "Fe-C Redox Cycling: A Hypothetical Rhizogenic That Drives
1122 Crustal Mechanism Biogeochemical in Upland Soils Eathering." *Biogeochemistry* 87 (2): 127–41.

1123 Hodges, C., E. King, J. Pett-Ridge, and A. Thompson. 2018. "Potential for Iron Reduction Increases with
1124 Rainfall in Montane Basaltic Soils of Hawaii." *Soil Science Society of America Journal* 82 (1): 176–
1125 85. <https://doi.org/10.2136/sssaj2017.06.0193>.

1126 Kappler, Andreas, Claudia Pasquero, Kurt O. Konhauser, and Dianne K. Newman. 2005. "Deposition of
1127 Banded Iron Formations by Anoxygenic Phototrophic Fe (II)-Oxidizing Bacteria." *Geology*, no. 11:
1128 865–68. <https://doi.org/10.1130/G21658.1>.

1129 MacEwan, Richard, Peter Dahlhaus, and Jonathon Fawcett. 2012. "Hydropedology, Geomorphology, and
1130 Groundwater Processes in Land Degradation: Case Studies in South West Victoria, Australia." In
1131 *Hydropedology*, 449–81. <https://doi.org/10.1016/B978-0-12-386941-8.00014-9>.

1132 Mualem, Yechezkel. 1976. "A New Model for Predicting the Hydraulic Conductivity of Unsaturated
1133 Porous Media." *Water Resources Research* 12 (3): 513–22.

1134 https://doi.org/10.1029/WR012i003p00513.

1135 Roden, Eric E, and Robert G Wetzel. 2002. "Kinetics of Microbial Fe (III) Oxide Reduction in
1136 Freshwater Wetland Sediments." *Limnology and Oceanography* 47 (1): 198–211.

1137 Ryan, Michael G, Robert M Hubbard, Silvia Pongracic, R J Raison, and Ross E M C Murtrie. 1996.
1138 "Foliage, Fine-Root, Woody-Tissue and Stand Respiration in *Pinus Radiata* in Relation to Nitrogen
1139 Status." *Tree Physiology* 16: 333–43.

1140 Schaap, Marcel G., Feike J. Leij, and Martinus Th Van Genuchten. 2001. "Rosetta: A Computer Program
1141 for Estimating Soil Hydraulic Parameters with Hierarchical Pedotransfer Functions." *Journal of
1142 Hydrology* 251 (3–4): 163–76. https://doi.org/10.1016/S0022-1694(01)00466-8.

1143 Schulz, Marjorie, Dave Stonestrom, Corey Lawrence, Tom Bullen, John Fitzpatrick, Emily Kyker-
1144 Snowman, Jane Manning, and Meagan Mnich. 2016. "Structured Heterogeneity in a Marine Terrace
1145 Chronosequence: Upland Mottling." *Vadose Zone Journal* 15 (2): 1–14.
1146 https://doi.org/10.2136/vzj2015.07.0102.

1147 Simunek, Jirka, M. Th Van Genuchten, and M. Sejna. 2005. "The HYDRUS-1D Software Package for
1148 Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-
1149 Saturated Media." *University of California-Riverside Research Reports* 3: 1–240.

1150 Vogel, T., M. Cislerova, and J. W. Hopmans. 1991. "Porous Media With Linearly Variable Hydraulic
1151 Properties." *Water Resources Research* 27 (10): 2735–41. https://doi.org/10.1029/91WR01676.

1152

1153

1154

1155

1156

1157

1158