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Abstract

We present a new approach to segment and classify bacterial spore layers from

Transmission Electron Microscopy (TEM) images using a hybrid Convolutional Neural

Network (CNN) and Random Forest (RF) classifier algorithm. This approach utilizes

deep learning, with the CNN extracting features from images, and the RF classifier

using those features for classification. The proposed model achieved 73% accuracy, 64%

precision, 46% sensitivity, and 47% F1-score with test data. Compared to other

classifiers such as AdaBoost, XGBoost, and SVM, our proposed model demonstrates

greater robustness and higher generalization ability for non-linear segmentation. Our

model is also able to identify spores with a damaged core as verified using TEMs of

chemically exposed spores. Therefore, the proposed method will be valuable for

identifying and characterizing spore features in TEM images, reducing labor-intensive

work as well as human bias.

Introduction 1

Bacterial spores, also known as endospores, are dormant forms of sporulating bacteria 2

that exhibit no cellular activity [1]. Spores are exceptionally resilient to external 3

stressors such as temperature, humidity, radiation, and chemical exposure [2]. Due to 4
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their inherent resilience and ability to germinate back into bacteria when returned to 5

more favorable conditions, spores from pathogenic bacteria pose a significant problem in 6

many areas of society, including healthcare, food production, and homeland 7

security [3–5]. Therefore, studying spores are important for developing new sterilization 8

and detection strategies. To study spores and determine morphology, size, 9

ultrastructure, topography, and structural features, Transmission Electron Microscopy 10

(TEM) can provide valuable information. In particular, TEM enables high-resolution 11

visualization of all the layers within a spore, which for example can provide important 12

clues of the mode of action of light or disinfection chemicals [6, 7]. 13

Spores are complex structures made up of several layers, including the core, cortex, 14

coat, interspace, and exosporium [8]. Some species also express surface filaments as a 15

”fluffy” layer or long fibers [9], as shown in Fig 1. These layers are all important 16

components of bacterial spores and they have separate functions. The core is located in 17

the center of the spore and contains the bacterium’s genetic material and cellular 18

machinery, surrounded by protective chemicals such as dipicolinic acid (DPA). In 19

addition, the core is covered by a membrane and cell wall that form the outer layers of 20

the spore. The cortex, made up of peptidoglycan, surrounds the core, maintains the 21

shape of the spore, and provides the initial energy source for the spore during 22

germination. The spore coat, composed primarily of tightly packed protein layers, 23

further surrounds the cortex. Finally, the interspace is mostly empty surrounding the 24

coat, and is delimited by the thin exosporium layer consisting of proteins and 25

lipopolysaccharides [10]. 26

When spores are exposed to various decontamination agents, for example, sodium 27

hypochlorite and peracetic acid, these agents change the spore’s structural composition. 28

These changes the chemical and layer integrity of the spore, as observed using TEM [11]. 29

Although useful in describing qualitative changes in the spore layer structure, these 30

TEM observations are unsuitable for large quantitative evaluations since it is a very 31

time-consuming process to analyze many spores. The analysis is, in addition, prone to 32

human error by its nature. 33

One way to efficiently analyze a large number of TEM images, and avoid human bias 34

during the assessment, is by using computerized methods like machine learning (ML) 35

and deep learning (DL). ML is an automatic tool requiring little human input that can 36
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be trained to automate spore segmentation. ML methods have been applied in a variety 37

of fields, such as healthcare [12], speech recognition [13], agriculture [14], and business 38

forecasting [15], to improve the efficiency of a wide variety of processes. In particular, 39

DL, a subset of ML, has been successfully applied in areas such as object segmentation, 40

classification [16,17], image recognition [18], autonomous vehicles [19], pattern 41

recognition [20], etc. However, DL requires a very large amount of data to create 42

reliable models and is, as such, limited in its applicability. 43

Over the years, ML methods have been developed to automate the identification and 44

classification of microorganisms based on microscopic images. Li and colleagues [21] 45

provided a comprehensive review of various analysis methods for content-based 46

microscopic image analysis (CBMIA), including pre-processing, feature extraction, 47

post-processing, and classification. Similarly, Kulwa and colleagues evaluated image 48

processing and ML methods designed for segmenting microorganisms in images [22], 49

while Li and colleagues reviewed clustering methods for analyzing microorganism 50

images [23]. Additionally, Vikrant and colleagues presented an approach for microscopic 51

image classification that combined guided image filtering, Otsu thresholding, and 52

scale-invariant feature transform [24]. Ma and colleagues conducted a review of 53

microorganism image analysis, exploring traditional image processing and traditional 54

ML as well as DL methods for microorganism detection [25]. These related works 55

primarily focus on ML approaches for microbiological image recognition, using either 56

traditional ML or DL. While ML works well with limited data, DL requires a 57

substantial amount of data but provides excellent performance. As a result, using a 58

hybrid learning method that combines both traditional ML and DL approaches has the 59

potential to achieve the benefits of both. 60

In this work, we develop an automated algorithm for segmenting and classifying 61

layers in spore TEM images. The proposed algorithm combines a CNN for feature 62

extraction and an RF classifier for pixel classification. We train the CNN with image 63

data and use its predictions as input features to decision trees in the RF algorithm. 64

Thus, the CNN converts high-dimension 2D TEM images into low-dimension features 65

that preserve the locality of pixels and reduce the curse of dimensionality for accurate 66

prediction through the RF classifier. Evaluation of the proposed CNN-RF algorithm 67

shows that it performs better than other state-of-the-art algorithms and can both 68
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Fig 1. TEM micrograph (A) and structure model (B) showing the layer structure of bacterial spores. From the central
spore core, the layers are in ascending order; cortex, coat, interspace, exosporium, and nap. The nap is the fluffy layer
consisting of thin surface polymers (pili).

accurately and efficiently analyze large amounts of spores in TEM images. 69

Theoretical background and definitions 70

Convolutional Neural Networks 71

Convolutional Neural Network, introduced in 1989, is a method inspired by how the 72

human visual cortex in the brain processes visual inputs into information [26]. In a CNN, 73

convolutional layers are the fundamental building blocks [27]. A convolutional layer 74

performs a set of convolution operations on the input data, which are a combination of 75

element-wise multiplications and summations. The convolution operation is performed 76

between the input data and a set of filters, also known as kernels or weights, that are 77

learned in the training process. The filters slide across the input, computing a dot 78

product between the filter and the input data [28]. The number of filters determines the 79

number of feature maps that are generated by the convolutional layer, each capturing 80

different features or aspects of the input data, which for this work are 2D TEM images. 81
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Another important component of CNNs is pooling layers. These down-samples the 82

input data and reduce its spatial dimensions [29]. Downsampling is useful for two 83

reasons, to reduce the computational cost of the network, as the amount of data to be 84

processed is reduced, and to make the representations learned by the network more 85

invariant to small translations of the input data. This thereby controls overfitting by 86

reducing the number of parameters. Overfitting occurs when a model starts to memorize 87

the characteristics of the training data and, in turn, loses its ability to generalize. To 88

also increase non-linearity in the network an activation function can be used for the 89

feature maps. As activation function, the rectified linear unit (ReLU) is commonly used, 90

which is then applied to the output of each neuron in the network to learn a wider range 91

of complex representations and to improve the ability to classify images [30]. The ReLU 92

function returns the same input for positive values and returns 0 for all negative [31]. 93

Decision Tree 94

In applications where the aim is to classify items into classes, decision tree algorithms

are often used. It works by building a tree-like model of decisions based on feature

values. The tree is constructed and uses an algorithmic approach that searches for

features that group the data more homogeneously [32]. A decision tree thereby predicts

the class label of each pixel in the image. To determine how the features should be

optimally split into nodes in the tree, the Gini impurity measure can be used. The Gini

impurity thus measures misclassification of randomly drawn samples from each node.

The Gini impurity decreases as nodes are added to the tree and when the Gini impurity

is zero, the node is not expanded. The Gini impurity of a node n is calculated as,

Gini = 1−
n∑

i=1

p2i ,

where n is the number of classes and pi is the probability of node n in class i. In a 95

decision tree, an input sample is thereby checked against each of the conditions at each 96

node, and a node’s offspring is selected depending on whether the condition is True or 97

False. 98
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Random Forest 99

Random forest is an ensemble approach that contains multiple decision trees to make 100

predictions from data [33,34]. The decision trees in a RF are trained using a process 101

called bootstrapping, which involves sampling the data with replacement. This implies 102

that some data points may be included in the training set more than once, while others 103

may not be included at all. Each decision tree in the RF makes predictions based on the 104

features in the data, and the majority voting calculates the final prediction, which is 105

based on individual decision trees’ output. By using multiple decision trees, the risk of 106

overfitting is reduced compared to using a single decision tree. Thus, each tree 107

randomly selects a subset of features from the whole data set. With this method, 108

training results are obtained based on different feature sets, and sampling with return 109

ensures that training results are valid and reliable. 110

Design of the CNN-RF algorithm 111

We design our algorithm as a CNN-RF algorithm to optimally segment spores and 112

classify layers. The CNN is first trained on image data to convert high-dimensional 2D 113

TEM images into vectors of real values, which are then used as input features for 114

decision trees in the RF algorithm. By preserving the inter-pixel relationships in the 115

image, the features extracted from the CNN architecture enhance the accuracy of the 116

prediction, while also reducing the dimensionality of the features [35]. The CNN thereby 117

serves as the feature generation step, which is followed by the RF classifier for precise 118

classification. 119

Spore preparation and TEM image acquisition 120

Bacillus thuringiensis ATCC 35646 cells were grown on BBLK agar (210912, BD) plates 121

and set to incubate at 30◦C overnight. These cells were collected by scraping them off 122

the agar and transferring them to a 1.5 ml Eppendorf tube, after which they were 123

centrifuged to remove leftover growth media. To allow sporulation, the cells were stored 124

at 4◦C overnight. Before use, the sporulated suspension was rinsed five times by 125

centrifuging in deionised water for 5 minutes at 5000 G. 126
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To prepare spores for TEM the suspensions were fixed with 2.5 % Glutaraldehyde 127

(TAAB Laboratories, Aldermaston, England) in 0.1 M PHEM buffer and further 128

postfixed in 1 % aqueous osmium tetroxide. The spores were then further dehydrated in 129

ethanol, acetone and finally embedded in Spurr’s resin (TAAB Laboratories, 130

Aldermaston, England). 70 nm ultrathin sections were then post contrasted in uranyl 131

acetate and Reynolds lead citrate. Spores were imaged using a Talos L120C (FEI, 132

Eindhoven, The Netherlands) operating at 120kV. Micrographs were acquired with a 133

Ceta 16M CCD camera (FEI, Eindhoven, The Netherlands) using TEM Image and 134

Analysis software ver. 4.17 (FEI, Eindhoven, The Netherlands). 135

Annotation of TEM images 136

Accurate and detailed annotation of TEM images provides important context for 137

understanding the features and regions within the image, and serves as the ground truth 138

for ML training. We labeled eight distinct categories within a TEM image of a spore, 139

”coat”, ”core”, ”cortex”, ”exosporium”, ”interspace”, ”nap”, and ”background”. For 140

areas of the image that were not part of the spore or background, like debris, and for 141

areas of the spore that were smeared or otherwise could not be resolved due to poor 142

sectioning or overlapping areas, we used the label ”bad region”. We used APEER 143

(APEER by Zeiss, 2022) for annotation [36] to easily and efficiently label the TEM 144

images with the different categories. This web client software provides a user-friendly 145

interface with tools for creating labels, selecting the appropriate category for each region, 146

and saving the annotations in a format compatible with ML algorithms. This ensures 147

that the annotations are accurate, reproducible, and can be used for future analysis. 148

Data preprocessing, training and testing data 149

Before feeding the TEM image data into the model, we employed some necessary steps 150

to ensure better model performance. First, we resized all training images from 151

3000x2500 to 2048x1664 pixels and normalized the data between 0 and 1. This resizing 152

and normalization process was essential for improving the model’s performance, as it 153

ensured that all the extracted features had the same value range. Second, we used a 154

data augmentation technique to expand the number of images in the data set. By 155
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applying various image transformations, such as rotation, scaling, and flipping, to the 156

images in the training set, we were able to increase the diversity of the training data and 157

reduce the risk of overfitting. This augmentation technique proved highly effective, as it 158

helped the model learn more robust features that generalize well to new images. We 159

augmented 64 images from the training data to create 384 new images. During training, 160

we passed augmented data to the CNN to extract abstract features from the data set, 161

and these features were sent to the RF classifier. The CNN model used a series of 162

convolutional layers to learn the relevant features from the input images, while the RF 163

classifier was used to classify the spore classes. After training a model on a set of 164

images, it is crucial to evaluate its performance on unseen data to determine its efficacy 165

in real-world scenarios. To achieve this, we created a testing data set comprising 50 166

images that were distinct from the training data set. The trained model was then 167

applied to this testing data, and its performance was evaluated by comparing the 168

predicted spore class against the actual spore class. This allowed us to determine the 169

accuracy and reliability of the model in predicting spore classes for previously unseen 170

data. The results obtained from this evaluation helped fine-tune the model further to 171

improve its performance. Overall, the approach employed during the model training 172

helped in creating a robust and reliable model for predicting spore classes from images. 173

The model was trained on a computer with an Intel Core i9 processor, 32 GB of 174

RAM, and an NVIDIA GeForce GTX 1600 SUPER graphics card. The training was 175

performed using Python programming language, with the TensorFlow and Keras 176

libraries [37,38] for DL and scikit-learn library [39] for RF classifier. The total time 177

taken to train the model was approximately 8 hours. This duration includes the time 178

taken for data preprocessing, model training, and evaluation. During this time, the 179

model was trained on a total of 384 images. The training was performed using the 180

n estimator value of 300 and a single decision tree was built with 25 features in RF. 181

Model Architecture and data description 182

Our proposed architecture for spore segmentation is illustrated in Fig 2. The source 183

code for the model implementation is available for access and download [40]. A 184

step-by-step guide on how to install packages and run the model is provided in the 185
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Fig 2. Proposed combined approach of CNN and RF. The CNN extract features from the data and RF classifies data based
on a large number of decision trees.

supporting information. The CNN in our architecture employs 15 convolutional layers 186

with ReLU layers and 5 max-pooling layers. The convolutional layers generate low-level 187

features at the beginning and high-level features towards the end of the architecture, 188

while the max-pooling layers help reduce the dimensionality of the extracted 189

convolutional features. By utilizing a large number of convolutional layers, rectified 190

linear unit layers, and max-pooling layers, the CNN can generate a high-dimensional 191

feature space, and the RF classifier combines these features to make the final decision. 192

The input image size used is 2048x1664x3, with 32 kernels of size 3x3 and stride 1 193

applied to each input image. The resulting 32 output feature maps are passed through 194

the first block, which generates 64 features. Subsequently, each consecutive block 195

generates 32 x 2n features, where n = 2, 3, 4, or 5. Finally, the CNN predicts 1024 196

features of size 128x104. 197

During training, the model uses a three-fold cross-validation approach, where each 198

fold k = 1, 2, 3 uses two-thirds of the whole data set for training. The remaining data is 199

used as the test set. In each iteration, the CNN is trained on the sub-training data (tk – 200
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tki) and validated on the subset tki. This approach enables the model to learn from 201

different variations of the data and ensures that the model generalizes well to unseen 202

data. 203

Once the CNN is trained, the decision tree predicts the spore classes based on the 204

CNN features. To improve the robustness of the model and reduce the impact of errors 205

made by individual decision trees, the majority voting approach is used to make the 206

final prediction using the results from all decision trees. Finally, the performance of the 207

trained model is evaluated on the test set to measure the model’s performance on 208

unseen data. 209

Algorithm 1 Proposed Approach Pseudo code

Input: TEM Spore Images, CNN, number of folds k, Decision tree

1. Augmented data set to increase the number of samples.

2. Normalized data set to ensure that the features have similar scales.

3. D1, D2, D3 = Divide data set D into k subsets

4. For 1 to k do:

(a) tk = D −Dk

(b) CNN is trained on the training set.

(c) Features are aggregated from the predictions of the CNN.

5. Built a decision tree with different chunks of features using the whole set of
predicted features.

6. Final prediction is obtained by using majority voting on the results of individual
decision trees.

Output: Final Prediction

The proposed method is presented in Algorithm 1 in pseudo-code form. To increase 210

the data sample and ensure that the features are on the same scale, augmentation and 211

normalization are applied in lines 1-2. The three-fold validation process begins by 212

dividing the data into three subsets. In line 4, these subsets are used to train the CNN, 213

which then predicts features and aggregates them into numerical vectors. In line 5, 214

decision trees are built using different chunks of features. The majority voting approach 215

is used to obtain the final prediction. Therefore, the algorithm follows a straightforward 216

process of data preprocessing, three-fold validation, training the CNN, building decision 217

trees, and making predictions using the majority voting approach. 218
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Statistical metrics used for evaluation 219

In ML, evaluating the performance of a classification model is essential. Therefore, it is 220

important to choose the right evaluation metric for the specific problem being solved 221

because it significantly affects the results. We used four metrics to evaluate the 222

performance of the proposed model: accuracy, precision, sensitivity, and F1-score. 223

These metrics are commonly used for image classification and segmentation tasks, and 224

they are calculated based on the number of true positive (TP), true negative (TN), false 225

positive (FP), as well as false negative (FN) predictions made by the model [41]. 226

Accuracy is the number of correct predictions made by the model divided by the

total number of predictions. It is a simple and straightforward metric that provides a

general understanding of how well the model is performing. However, it can be

misleading in cases where the data is imbalanced, implying that one class has

significantly more samples than the other. In these cases, a model that always predicts

the majority class will have high accuracy, even though it is not making any useful

predictions for the minority class. The accuracy is defined as,

Accuracy = (TP + TN)/(TP + TN + FP + FN).

Precision is the number of TP predictions divided by the sum of the number of TP

and FP predictions. Precision is a measure of how many of the positive predictions

made by the model are actually correct. A high precision indicates that the model is not

making many FP predictions, but it does not tell us anything about the FN predictions.

The precision is defined as,

Precision = TP/(TP + FP ).

Sensitivity is the number of TP predictions divided by the number of TP and FN

predictions. Sensitivity is a measure of how many of the actual positive samples are

correctly identified by the model. A high sensitivity indicates that the model is not

making many FN predictions, but it does not tell us anything regarding the FP
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predictions. The sensitivity is defined as,

Sensitivity = TP/(TP + FN).

The F1-score is the harmonic mean of precision and sensitivity. It is a good metric

to use when the data is imbalanced, as it takes into account both precision and

sensitivity. The F1-score provides a balanced view of the model’s performance, as it

considers both the FP and FN predictions. The F1-score is defined as,

F1− score = 2 ∗ TP/(2 ∗ TP + FP + FN).

The final statistical metric is the support value in the confusion matrix. The support 227

values represent the number of samples in the data set that belong to each class. It is 228

the total number of instances that belong to a particular class and is often listed along 229

the diagonal of the confusion matrix. The support value is important because it 230

provides information about the distribution of the classes in the data set, which helps in 231

evaluating the performance of a classification model more accurately. For instance, 232

accuracy can be misleading if the data set is imbalanced. The support value helps to 233

address this issue and allows for a more nuanced evaluation of the model’s performance, 234

taking into account the distribution of the classes in the data set. 235

Comparative statistics for chemically treated spores 236

The different spore samples treated with hypochlorite and with peracetic acid were 237

compared to the untreated spores in their relative spore content (core, cortex, coat). We 238

used Prism 9.3 (GraphPad Software) for statistical evaluation. The samples were 239

compared overall using ANOVA and individual comparisons to respective controls were 240

done using Dunn’s multiple comparisons tests. 241

Results 242

To evaluate the proposed model for spore segmentation in TEM images, we employed a 243

variety of metrics such as accuracy, precision, sensitivity, and F1-score as defined in the 244
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SupportF1 ScoreSensitivityPrecisionClass
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9 5240.000.001.00
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Fig 3. Classification performance for different spore layers based on the testing data set (A). Each cell shows the number of
classified instances by the model, as compared to ground truth data. The diagonal cells show the correctly classified instances
for a class. From this we evaluated the precision, sensitivity, and F1-score for each individual class (B).

previous section. These metrics provide an effective means of assessing the performance 245

of the model from different perspectives. For example, precision serves as a measure of 246

the classifier’s exactness, and a low precision suggests a high number of FP. In contrast, 247

sensitivity serves as a measure of the classifier’s completeness, where a low sensitivity 248

implies a high number of FN. The F1-score considers both precision and recall 249

(memory) and is considered to be most accurate when it is equal to 1, and least 250

accurate when equal to 0. Furthermore, we used the trained model to classify individual 251

images from the training and testing data sets and then calculated the accuracy of the 252

predictions. To do this, we passed each image as input into the model, in which the 253

model provided outputs as a prediction for the class of the image. After that, we 254

compared this prediction to the true class of the image. We stored the accuracy of 255

one-by-one images in an array and found the average performance on training and 256

testing data sets. It gave an overall estimate of how well the model was able to classify 257

the images in the data set. By finding the average accuracy, we also got a sense of how 258

well the model was able to generalize to new, unseen images. Additionally, this 259
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approach also allowed us to inspect the model’s performance on specific images, and 260

identify any images that the model may have struggled with. 261

Classification accuracy assessment using a confusion matrix 262

We classified spore bodies into eight distinct categories: ”Badreg”, ”coat”, ”core”, 263

”cortex”, ”exosporium”, ”interspace”, ”nap”, and ”background”. ”Badreg” (bad region) 264

is related to regions not part of a spore. To evaluate the accuracy of our model, we 265

employed a confusion matrix, which provides a visual representation of the number of 266

TP, FP, FN, and TN predictions for each class, see Fig 3. The confusion matrix shows 267

metrics for the proposed method based on test data. Fig 3(A) represents the number of 268

instances in each cell belonging to each class. The diagonal cell of the confusion matrix 269

represents the correctly classified instances for a class. By using the confusion matrix 270

we could identify the strengths and weaknesses of our proposed model. 271

Using the confusion matrix, we calculated the Precision, Sensitivity, F1-Score, and 272

Support for each class in the data set, see Fig 3(B). Based on these metrics, we found 273

that the proposed model performed well in predicting the different types of spore classes 274

in terms of precision, sensitivity, and F1-score, particularly for ”core,” ”cortex,” and 275

”background”. However, the model did not perform equally well when predicting the 276

”exosporium” and ”nap” classes. This likely originates from the close pixel values of the 277

”interspace” class. 278

Table 1. Comparing results for spore segmentation using different classifiers.

Model Accuracy (%) Precision (%) Sensitivity (%) F1-Score (%) Support

Training Data

CNN-AdaBoost 64 57 43 44

965 653
CNN-XGBoost 74 71 60 63

CNN-SVM 81 86 56 58

Proposed Work 100 100 100 100

Testing Data

CNN-AdaBoost 64 56 41 44

407 819
CNN-XGBoost 71 62 45 46

CNN-SVM 62 63 37 42

Proposed Work 73 64 46 47

Comparison with other classifiers 279

We used a RF classifier in our proposed model as the primary method for classification. 280

To determine the effectiveness of the proposed RF classifier, we compared it with three 281
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other classifiers: AdaBoost (CNN-AdaBoost), XGBoost (CNN-XGBoost), and SVM 282

(CNN-SVM). We evaluated the classifiers based on the same metrics as before. The 283

results show that the proposed model, which used the RF classifier, achieved 100% 284

accuracy, precision, sensitivity, and F1-score when trained on the data. This indicates 285

that the RF classifier is capable of accurately classifying data with high consistency. 286

The second-best performer among the other classifiers was the CNN-SVM model, 287

which achieved 81% accuracy, 86% precision, 56% sensitivity, and 58% F1-score. The 288

support value of 965 693 was associated with different classes of training data. 289

During the testing phase, the proposed model using the RF classifier achieved 73% 290

accuracy, 64% precision, 46% sensitivity, and 47% F1-score. These results indicate that 291

the model performed well on the test data, although there was a decrease in 292

performance compared to the training data. The second-best performer among the other 293

classifiers during testing was the CNN-XGBoost model, which achieved 71% accuracy, 294

62% precision, 45% sensitivity, and 46% F1-score. The support value was 407 819. 295

Our experimental results suggest that the proposed model has stronger robustness 296

and higher generalization ability compared to other classifiers for the non-linear 297

problem of spore segmentation. The results of all classifiers are listed in Table 1. 298

Accuracy during training and testing 299

In Fig 4, a histogram illustrates the distribution of the model’s accuracy across 300

individual images in both the training and testing data to identify areas for 301

improvement. The x-axis represents the range of accuracy values from 0-100%, while 302

the y-axis represents the number of images in each accuracy range. The histogram 303

indicates that the model achieves an average accuracy of 95.6% on the training images 304

and 73.7% on the testing data. Most of the images in both data sets have accuracy 305

values that fall within a narrow range, indicating the model’s consistent performance. 306

The high average accuracy on the training data suggests that the model has learned to 307

segment spores accurately. Nevertheless, the testing data shows a slightly lower average 308

accuracy, suggesting that there may be opportunities for enhancement and additional 309

optimization. 310
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Fig 4. Distribution of the accuracy for the model when analysing all the individual images. (A) shows the distribution for the
training data and (B) the testing data.

Quantification of spore layers 311

Examples of TEMs, CNN feature extraction, and RF prediction are shown in Fig 5. 312

The top 8 features at layers 4 and 10 are shown in supporting Fig S1. As mentioned in 313

the method section, the CNN extract features from TEMs that represent spore layers, 314

edges, and shapes by employing a series of convolutional layers. The dimensionality of 315

the features is reduced using pooling, and the outcome of this process is a set of 316

high-level features that represent the image. After this, the RF algorithm, uses these 317

high-level features generated by the CNN to predict the segmentation of spore layers in 318

the sample. The algorithm performs a pixel-wise classification of the image using the 319

extracted features, and the output is a 128x104 matrix, with each entry representing a 320

pixel in the spore sample. The value assigned to each entry in the matrix ranges from 321

1-8 and indicates whether a pixel is part of a spore layer. The individual classes’ 322

segmented pixels can be seen on the right side of Fig 5. 323
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Image CNN feature RF prediction Layers’ quantification (px)
Fig 5. A sample of TEMs, CNN features, and RF predictions. The final segmentation map is a 128x104 matrix, with each
entry representing a pixel in the spore sample. Right-side matrix shows segmentation for each individual class. The color
coding for classification is ”Badreg (dark blue),” ”coat (blue),” ”core (light blue),” ”cortex (green),” ”exosporium (yellow),”
”interspace (orange),” ”nap (red),” and ”background (violet).”

Visualize spore segmentation and classification in TEMs 324

We show in Fig 6 examples of spore segmentation and layer classification in TEM 325

images using the proposed model. Original images are shown on the left, with manually 326

labeled images in the middle. Ten more examples are shown in supporting Fig S2. On 327

the right, the model’s prediction for the images is displayed with its corresponding 328

accuracy. Note that the model can accurately identify the edges and boundaries of the 329

objects in the image. As seen in the image, the model’s prediction closely aligns with 330

the edges and boundaries of the labeled object, making it highly accurate in detecting 331

objects within the image. Overall the results show that the model performed well and 332

achieved an overall accuracy of 73% on the test data. 333
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Fig 6. Comparative image showing TEM images of two spores, their respective layers as labeled, and their layers as predicted
by our model.

Analysing spore damage after chemical exposure 334

To also assess if the model could predict spore damage, we examined spores that were 335

treated with a 0.5 % solution of sodium hypochlorite (commonly known as bleach) with 336

a pH level of 11.55, and spores exposed to 1 % peracetic acid. These particular 337

concentrations have been reported previously as being effective in killing spores [42,43]. 338

Sodium hypochlorite is a readily available and cost-effective decontaminant compound 339

that acts by catalyzing several chemical reactions, such as saponification of fatty acids, 340

neutralization, and chloramination of amino acids, thereby decomposing organic 341

matter [44]. Hypochlorite-induced oxidative damage has been demonstrated to affect 342

lipids, proteins, and DNA, as evidenced by previous studies using TEM [6]. For instance, 343

the research showed that hypochlorite-treated spores underwent structural changes 344

resulting in loss of integrity and discoloration of the core while exhibiting decomposition 345

of the cortex, spore coat, and exosporium, ranging from defined structural traits to faint 346

outlines with unstained content. On the other hand, peracetic acid is a type of 347

disinfectant that can disable microorganisms through the oxidation of sulfhydryl and 348

sulfur bonds, resulting in protein, enzyme, and metabolite denaturation [45]. However, 349

unlike hypochlorite, its impact on spore integrity is less pronounced [6]. 350
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We analyzed TEM images to assess spore layer integrity after exposure to sodium 351

hypochlorite and to peracetic acid. An example of a spore that lost the core integrity 352

after sodium hypochlorite exposure is shown in Fig 7A, with the model’s pixel 353

prediction in Fig 7B. This pixel-wise classification allows for a detailed and nuanced 354

analysis of the spore layers. By breaking down the image into individual pixels and 355

analyzing each one, the algorithm detects and classifies different types of spore classes 356

based on their specific characteristics and features. 357

We found that the algorithm correctly predicts most of the regions as background 358

class, as in the original image. However, since the spores are damaged, the algorithm 359

also predicts this damage. This is a significant finding since the algorithm was trained 360

using a dataset that did not include images of sodium hypochlorite or peracetic acid. 361

We also quantified the number of pixels classified as coat, core, and cortex for control 362

spores (unexposed), and chemically exposed spores, Fig 7C. The model clearly identifies 363

that the core integrity of chemically exposed spores is damaged by significantly 364

overestimating the core ratio in comparison to the control. In addition, this 365

overestimation reduces the cortex ratio for hypochlorite exposed spores. Thus, by 366

assessing these two specific spore layers, it is possible to use our model to predict if the 367

core of spores has been damaged by a chemical agent. Thus, we conclude that the 368

algorithm is able to accurately analyze if the spore core has been damaged, indicating 369

that our model has the potential to be used in real-world applications. 370

A B C

Coat Ratio Core Ratio Cortex Ratio
0.0

0.2

0.4

0.6

0.8

1.0

 Control
 Peracetic acid
 Hypochlorite

ns

ns

**
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ns

Fig 7. Assessing the spore layers integrity of sodium hypochlorite and peracetic acid exposed spores. A TEM image of a
sodium hypochlorite exposed spore is shown in (A). The model’s classification is shown in (B). Coat, core, and cortex ratio for
control spores, and hypochlorite as well as peracetic acid exposed spores. (C) shows the relative areas of the spore coat (n=33),
core (n=22), and cortex (n=21). There was no significant difference in the coat ratio across the samples (indicated with ”ns”),
however, the hypochlorite-treated samples showed a significantly different core ratio (p=0.0014) and cortex ratio (p=0.0095).
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Discussion 371

TEM imaging is a powerful approach when assessing the features of micron-scaled 372

objects including bacterial spores. Nevertheless, this approach can be time-consuming 373

and susceptible to human bias, especially when dealing with low-contrast images. To 374

address these challenges, we develop in this work a CNN-RF algorithm optimized for 375

segmenting and classifying spore layers in TEM images. To evaluate the performance of 376

our algorithm, we conducted a comparative analysis against some commonly used 377

classification algorithms, that is, Adaboost, Xgboost, and SVM. These methods have 378

proven successful in various applications. Adaboost is a technique that combines 379

multiple weak classifiers to create a more robust classifier. XGBoost is a 380

gradient-boosting algorithm that is particularly effective for analyzing structured data, 381

and SVM is designed to find the optimal hyperplane that maximally separates the 382

different classes of image data in a high-dimensional feature space. 383

To achieve good performance our model utilizes a CNN to extract 1024 features from 384

a single image while preserving the pixel locality, ensuring accurate prediction. 385

Conversely, feeding TEM spore images directly at the pixel level violates this locality 386

and leads to the curse of dimensions, which can have a negative impact on algorithm 387

performance. However, the proposed RF performed well in their presence, whereas 388

Adaboost, Xgboost, and SVM algorithms struggled when faced with irrelevant features 389

in the data. The assessment of all methods on a test data set shows that our proposed 390

model was better in all compared metrics. 391

To reduce the risk of overfitting and to handle imbalanced data, our method 392

combines the strengths of both CNN and RF. The CNN handles imbalanced data by 393

learning features that capture relevant patterns in the data. In contrast, RF provides a 394

robust and accurate method for classifying data using multiple decision trees. And 395

finally, RF allows assigning higher weights to minority classes during training, 396

facilitating learning patterns in these classes. 397

Spore images will have a lot of internal variation, even within an image set, with 398

some spores having larger, smaller, or out-of-focus layers. For spore segmentation, it 399

means that data can be imbalanced, and some spore classes may be under-represented, 400

leading to bias in the computed results. However, our proposed method resulted in a 401
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more balanced prediction with improved performance for these underclasses. Notably, 402

this algorithm is computationally efficient and requires less computational power than 403

other algorithms, making it well-suited for deployment in real-world applications. 404

Finally, it is worth noting that there are both advantages and disadvantages to the 405

proposed method, which we will outline here. 406

• The use of CNN ensures that extracted features preserve pixel locality and reduce 407

the curse of dimensionality. 408

• Automatic feature extraction by CNN eliminates the need to design handcrafted 409

features, improving the method’s generalizability. 410

• Random forest classification enhances prediction accuracy by combining multiple 411

decision trees and using majority voting for the final decision. 412

• The proposed method can be applied to solve any image-based classification and 413

segmentation problem since CNN can learn from any image dataset. 414

While the proposed method has its benefits, there are also some challenges that need 415

to be considered: 416

• For more complex tasks, additional features may be necessary to achieve 417

acceptable accuracy, increasing training time and computational power. 418

• TEM images for the data set were obtained from two institutions. Testing the 419

model with more data sets would be beneficial. 420

Conclusion 421

This paper presents a novel method for spore segmentation utilizing Convolutional 422

Neural Networks (CNN) and Random Forest (RF) decision trees. We employ multiple 423

decision trees of a RF to enhance the classification power of the proposed method. The 424

CNN in the proposed method employs 15 convolutional layers, ReLU layers, and 5 425

max-pooling layers and extracts features in TEM images and uses those features during 426

the process of making a decision tree. The experimental results show that the method 427

achieves good segmentation results for spores by effectively learning features. As a 428
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demonstration of the feasibility of our model, we conducted an assessment of spores that 429

were exposed to chemical exposure. Our findings indicate the successful ability of the 430

model to detect spores with damaged cores. 431

Supporting information 432

S1 Fig. The CNN algorithm automatically extracts features from images 433

that can be used for downstream tasks. To visualize this, we passed an input 434

image (A) through the CNN and extracted the top 8 features from layer 4 435

(B) and layer 10 (C), respectively. As can be seen, each layer in a CNN 436

learns to extract different types of features from the input image and as we 437

move deeper into the network, the features become more complex and 438

abstract. 439

S2 Fig. Figure S2. Example images showing TEM images (left), labeled 440

images (middle), and predicted classification (right). 441

S3 Fig. Figure S3. Example images showing TEM images (left) and 442

predicted classification (right) for sodium hypochlorite-treated spores. 443

S4 Fig. Figure S4. Example images showing TEM images (left) and 444

predicted classification (right) for sodium peracetic acid-treated spores.. 445
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