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Abstract

We present a new approach to segment and classify bacterial spore layers from
Transmission Electron Microscopy (TEM) images using a hybrid Convolutional Neural
Network (CNN) and Random Forest (RF) classifier algorithm. This approach utilizes
deep learning, with the CNN extracting features from images, and the RF classifier
using those features for classification. The proposed model achieved 73% accuracy, 64%
precision, 46% sensitivity, and 47% F1-score with test data. Compared to other
classifiers such as AdaBoost, XGBoost, and SVM, our proposed model demonstrates
greater robustness and higher generalization ability for non-linear segmentation. Our
model is also able to identify spores with a damaged core as verified using TEMs of
chemically exposed spores. Therefore, the proposed method will be valuable for
identifying and characterizing spore features in TEM images, reducing labor-intensive

work as well as human bias.

Introduction

Bacterial spores, also known as endospores, are dormant forms of sporulating bacteria
that exhibit no cellular activity [1]. Spores are exceptionally resilient to external

stressors such as temperature, humidity, radiation, and chemical exposure |2]. Due to

March 31, 2023

Ve


https://doi.org/10.1101/2023.04.03.535316
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.03.535316; this version posted April 4, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

their inherent resilience and ability to germinate back into bacteria when returned to
more favorable conditions, spores from pathogenic bacteria pose a significant problem in
many areas of society, including healthcare, food production, and homeland

security [3H5]. Therefore, studying spores are important for developing new sterilization
and detection strategies. To study spores and determine morphology, size,
ultrastructure, topography, and structural features, Transmission Electron Microscopy
(TEM) can provide valuable information. In particular, TEM enables high-resolution
visualization of all the layers within a spore, which for example can provide important
clues of the mode of action of light or disinfection chemicals [6,7].

Spores are complex structures made up of several layers, including the core, cortex,
coat, interspace, and exosporium [8]. Some species also express surface filaments as a
" fluffy” layer or long fibers 9], as shown in Fig These layers are all important
components of bacterial spores and they have separate functions. The core is located in
the center of the spore and contains the bacterium’s genetic material and cellular
machinery, surrounded by protective chemicals such as dipicolinic acid (DPA). In
addition, the core is covered by a membrane and cell wall that form the outer layers of
the spore. The cortex, made up of peptidoglycan, surrounds the core, maintains the
shape of the spore, and provides the initial energy source for the spore during
germination. The spore coat, composed primarily of tightly packed protein layers,
further surrounds the cortex. Finally, the interspace is mostly empty surrounding the
coat, and is delimited by the thin exosporium layer consisting of proteins and
lipopolysaccharides [10].

When spores are exposed to various decontamination agents, for example, sodium

hypochlorite and peracetic acid, these agents change the spore’s structural composition.

These changes the chemical and layer integrity of the spore, as observed using TEM [11].

Although useful in describing qualitative changes in the spore layer structure, these
TEM observations are unsuitable for large quantitative evaluations since it is a very
time-consuming process to analyze many spores. The analysis is, in addition, prone to
human error by its nature.

One way to efficiently analyze a large number of TEM images, and avoid human bias
during the assessment, is by using computerized methods like machine learning (ML)

and deep learning (DL). ML is an automatic tool requiring little human input that can
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be trained to automate spore segmentation. ML methods have been applied in a variety
of fields, such as healthcare |12], speech recognition [13|, agriculture [14], and business
forecasting [15], to improve the efficiency of a wide variety of processes. In particular,
DL, a subset of ML, has been successfully applied in areas such as object segmentation,
classification |16,/17], image recognition [18], autonomous vehicles [19], pattern
recognition [20], etc. However, DL requires a very large amount of data to create
reliable models and is, as such, limited in its applicability.

Over the years, ML. methods have been developed to automate the identification and
classification of microorganisms based on microscopic images. Li and colleagues [21]
provided a comprehensive review of various analysis methods for content-based
microscopic image analysis (CBMIA), including pre-processing, feature extraction,
post-processing, and classification. Similarly, Kulwa and colleagues evaluated image
processing and ML methods designed for segmenting microorganisms in images [22],
while Li and colleagues reviewed clustering methods for analyzing microorganism
images [23]. Additionally, Vikrant and colleagues presented an approach for microscopic
image classification that combined guided image filtering, Otsu thresholding, and
scale-invariant feature transform [24]. Ma and colleagues conducted a review of
microorganism image analysis, exploring traditional image processing and traditional
ML as well as DL methods for microorganism detection [25]. These related works
primarily focus on ML approaches for microbiological image recognition, using either
traditional ML or DL. While ML works well with limited data, DL requires a
substantial amount of data but provides excellent performance. As a result, using a
hybrid learning method that combines both traditional ML and DL approaches has the
potential to achieve the benefits of both.

In this work, we develop an automated algorithm for segmenting and classifying
layers in spore TEM images. The proposed algorithm combines a CNN for feature
extraction and an RF classifier for pixel classification. We train the CNN with image
data and use its predictions as input features to decision trees in the RF algorithm.
Thus, the CNN converts high-dimension 2D TEM images into low-dimension features
that preserve the locality of pixels and reduce the curse of dimensionality for accurate
prediction through the RF classifier. Evaluation of the proposed CNN-RF algorithm

shows that it performs better than other state-of-the-art algorithms and can both
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Fig 1. TEM micrograph (A) and structure model (B) showing the layer structure of bacterial spores. From the central
spore core, the layers are in ascending order; cortex, coat, interspace, exosporium, and nap. The nap is the fluffy layer
consisting of thin surface polymers (pili).

accurately and efficiently analyze large amounts of spores in TEM images. 69
Theoretical background and definitions 0
Convolutional Neural Networks 7
Convolutional Neural Network, introduced in 1989, is a method inspired by how the 7

human visual cortex in the brain processes visual inputs into information . Ina CNN,
convolutional layers are the fundamental building blocks . A convolutional layer 7
performs a set of convolution operations on the input data, which are a combination of
element-wise multiplications and summations. The convolution operation is performed 7
between the input data and a set of filters, also known as kernels or weights, that are 7
learned in the training process. The filters slide across the input, computing a dot 78
product between the filter and the input data . The number of filters determines the 7
number of feature maps that are generated by the convolutional layer, each capturing 80

different features or aspects of the input data, which for this work are 2D TEM images. &
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Another important component of CNNs is pooling layers. These down-samples the
input data and reduce its spatial dimensions [29]. Downsampling is useful for two
reasons, to reduce the computational cost of the network, as the amount of data to be
processed is reduced, and to make the representations learned by the network more
invariant to small translations of the input data. This thereby controls overfitting by
reducing the number of parameters. Overfitting occurs when a model starts to memorize
the characteristics of the training data and, in turn, loses its ability to generalize. To
also increase non-linearity in the network an activation function can be used for the
feature maps. As activation function, the rectified linear unit (ReLU) is commonly used,
which is then applied to the output of each neuron in the network to learn a wider range
of complex representations and to improve the ability to classify images [30]. The ReL.U

function returns the same input for positive values and returns 0 for all negative |31].

Decision Tree

In applications where the aim is to classify items into classes, decision tree algorithms
are often used. It works by building a tree-like model of decisions based on feature
values. The tree is constructed and uses an algorithmic approach that searches for
features that group the data more homogeneously [32]. A decision tree thereby predicts
the class label of each pixel in the image. To determine how the features should be
optimally split into nodes in the tree, the Gini impurity measure can be used. The Gini
impurity thus measures misclassification of randomly drawn samples from each node.
The Gini impurity decreases as nodes are added to the tree and when the Gini impurity

is zero, the node is not expanded. The Gini impurity of a node n is calculated as,

n
Gini=1— pr,
i=1

where n is the number of classes and p; is the probability of node n in class i. In a
decision tree, an input sample is thereby checked against each of the conditions at each
node, and a node’s offspring is selected depending on whether the condition is True or

False.
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Random Forest

Random forest is an ensemble approach that contains multiple decision trees to make
predictions from data [33}[34]. The decision trees in a RF are trained using a process
called bootstrapping, which involves sampling the data with replacement. This implies
that some data points may be included in the training set more than once, while others
may not be included at all. Each decision tree in the RF makes predictions based on the
features in the data, and the majority voting calculates the final prediction, which is
based on individual decision trees’ output. By using multiple decision trees, the risk of
overfitting is reduced compared to using a single decision tree. Thus, each tree
randomly selects a subset of features from the whole data set. With this method,
training results are obtained based on different feature sets, and sampling with return

ensures that training results are valid and reliable.

Design of the CNN-RF algorithm

We design our algorithm as a CNN-RF algorithm to optimally segment spores and
classify layers. The CNN is first trained on image data to convert high-dimensional 2D
TEM images into vectors of real values, which are then used as input features for
decision trees in the RF algorithm. By preserving the inter-pixel relationships in the
image, the features extracted from the CNN architecture enhance the accuracy of the
prediction, while also reducing the dimensionality of the features [35]. The CNN thereby
serves as the feature generation step, which is followed by the RF classifier for precise

classification.

Spore preparation and TEM image acquisition

Bacillus thuringiensis ATCC 35646 cells were grown on BBLK agar (210912, BD) plates
and set to incubate at 30°C overnight. These cells were collected by scraping them off
the agar and transferring them to a 1.5 ml Eppendorf tube, after which they were
centrifuged to remove leftover growth media. To allow sporulation, the cells were stored
at 4°C overnight. Before use, the sporulated suspension was rinsed five times by

centrifuging in deionised water for 5 minutes at 5000 G.
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To prepare spores for TEM the suspensions were fixed with 2.5 % Glutaraldehyde
(TAAB Laboratories, Aldermaston, England) in 0.1 M PHEM buffer and further
postfixed in 1 % aqueous osmium tetroxide. The spores were then further dehydrated in
ethanol, acetone and finally embedded in Spurr’s resin (TAAB Laboratories,
Aldermaston, England). 70 nm ultrathin sections were then post contrasted in uranyl
acetate and Reynolds lead citrate. Spores were imaged using a Talos L120C (FEI,
Eindhoven, The Netherlands) operating at 120kV. Micrographs were acquired with a
Ceta 16M CCD camera (FEI, Eindhoven, The Netherlands) using TEM Image and
Analysis software ver. 4.17 (FEI, Eindhoven, The Netherlands).

Annotation of TEM images

Accurate and detailed annotation of TEM images provides important context for
understanding the features and regions within the image, and serves as the ground truth
for ML training. We labeled eight distinct categories within a TEM image of a spore,
”coat”, ”core”, ”cortex”, ”exosporium”, ”interspace”, "nap”, and ”background”. For
areas of the image that were not part of the spore or background, like debris, and for
areas of the spore that were smeared or otherwise could not be resolved due to poor
sectioning or overlapping areas, we used the label "bad region”. We used APEER
(APEER by Zeiss, 2022) for annotation [36] to easily and efficiently label the TEM
images with the different categories. This web client software provides a user-friendly
interface with tools for creating labels, selecting the appropriate category for each region,

and saving the annotations in a format compatible with ML algorithms. This ensures

that the annotations are accurate, reproducible, and can be used for future analysis.

Data preprocessing, training and testing data

Before feeding the TEM image data into the model, we employed some necessary steps
to ensure better model performance. First, we resized all training images from
3000x2500 to 2048x1664 pixels and normalized the data between 0 and 1. This resizing
and normalization process was essential for improving the model’s performance, as it
ensured that all the extracted features had the same value range. Second, we used a

data augmentation technique to expand the number of images in the data set. By
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applying various image transformations, such as rotation, scaling, and flipping, to the
images in the training set, we were able to increase the diversity of the training data and
reduce the risk of overfitting. This augmentation technique proved highly effective, as it
helped the model learn more robust features that generalize well to new images. We
augmented 64 images from the training data to create 384 new images. During training,
we passed augmented data to the CNN to extract abstract features from the data set,
and these features were sent to the RF classifier. The CNN model used a series of
convolutional layers to learn the relevant features from the input images, while the RF
classifier was used to classify the spore classes. After training a model on a set of
images, it is crucial to evaluate its performance on unseen data to determine its efficacy
in real-world scenarios. To achieve this, we created a testing data set comprising 50
images that were distinct from the training data set. The trained model was then
applied to this testing data, and its performance was evaluated by comparing the
predicted spore class against the actual spore class. This allowed us to determine the
accuracy and reliability of the model in predicting spore classes for previously unseen
data. The results obtained from this evaluation helped fine-tune the model further to

improve its performance. Overall, the approach employed during the model training

helped in creating a robust and reliable model for predicting spore classes from images.

The model was trained on a computer with an Intel Core i9 processor, 32 GB of
RAM, and an NVIDIA GeForce GTX 1600 SUPER graphics card. The training was
performed using Python programming language, with the TensorFlow and Keras
libraries [37,/38] for DL and scikit-learn library [39] for RF classifier. The total time
taken to train the model was approximately 8 hours. This duration includes the time
taken for data preprocessing, model training, and evaluation. During this time, the
model was trained on a total of 384 images. The training was performed using the

n_estimator value of 300 and a single decision tree was built with 25 features in RF.

Model Architecture and data description

Our proposed architecture for spore segmentation is illustrated in Fig[2l The source
code for the model implementation is available for access and download [40]. A

step-by-step guide on how to install packages and run the model is provided in the
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Fig 2. Proposed combined approach of CNN and RF. The CNN extract features from the data and RF classifies data based

on a large number of decision trees.

supporting information. The CNN in our architecture employs 15 convolutional layers
with ReLU layers and 5 max-pooling layers. The convolutional layers generate low-level
features at the beginning and high-level features towards the end of the architecture,
while the max-pooling layers help reduce the dimensionality of the extracted
convolutional features. By utilizing a large number of convolutional layers, rectified
linear unit layers, and max-pooling layers, the CNN can generate a high-dimensional
feature space, and the RF classifier combines these features to make the final decision.
The input image size used is 2048x1664x3, with 32 kernels of size 3x3 and stride 1
applied to each input image. The resulting 32 output feature maps are passed through
the first block, which generates 64 features. Subsequently, each consecutive block
generates 32 x 2" features, where n = 2, 3, 4, or 5. Finally, the CNN predicts 1024
features of size 128x104.

During training, the model uses a three-fold cross-validation approach, where each
fold k = 1,2, 3 uses two-thirds of the whole data set for training. The remaining data is

used as the test set. In each iteration, the CNN is trained on the sub-training data (t; —
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tri) and validated on the subset tg;. This approach enables the model to learn from
different variations of the data and ensures that the model generalizes well to unseen
data.

Once the CNN is trained, the decision tree predicts the spore classes based on the
CNN features. To improve the robustness of the model and reduce the impact of errors
made by individual decision trees, the majority voting approach is used to make the
final prediction using the results from all decision trees. Finally, the performance of the
trained model is evaluated on the test set to measure the model’s performance on

unseen data.

Algorithm 1 Proposed Approach Pseudo code
Input: TEM Spore Images, CNN, number of folds k, Decision tree

1. Augmented data set to increase the number of samples.

2. Normalized data set to ensure that the features have similar scales.
3. D1, D2, D3 = Divide data set D into k subsets

4. For 1 to k do:

(a) t, =D — Dy,
(b) CNN is trained on the training set.
(¢) Features are aggregated from the predictions of the CNN.

5. Built a decision tree with different chunks of features using the whole set of
predicted features.

6. Final prediction is obtained by using majority voting on the results of individual
decision trees.

Output: Final Prediction

The proposed method is presented in Algorithm [I] in pseudo-code form. To increase
the data sample and ensure that the features are on the same scale, augmentation and
normalization are applied in lines 1-2. The three-fold validation process begins by
dividing the data into three subsets. In line 4, these subsets are used to train the CNN,
which then predicts features and aggregates them into numerical vectors. In line 5,
decision trees are built using different chunks of features. The majority voting approach
is used to obtain the final prediction. Therefore, the algorithm follows a straightforward
process of data preprocessing, three-fold validation, training the CNN, building decision

trees, and making predictions using the majority voting approach.
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Statistical metrics used for evaluation

In ML, evaluating the performance of a classification model is essential. Therefore, it is
important to choose the right evaluation metric for the specific problem being solved
because it significantly affects the results. We used four metrics to evaluate the
performance of the proposed model: accuracy, precision, sensitivity, and F1-score.
These metrics are commonly used for image classification and segmentation tasks, and
they are calculated based on the number of true positive (TP), true negative (TN), false
positive (FP), as well as false negative (FN) predictions made by the model [41].
Accuracy is the number of correct predictions made by the model divided by the
total number of predictions. It is a simple and straightforward metric that provides a
general understanding of how well the model is performing. However, it can be
misleading in cases where the data is imbalanced, implying that one class has
significantly more samples than the other. In these cases, a model that always predicts
the majority class will have high accuracy, even though it is not making any useful

predictions for the minority class. The accuracy is defined as,

Accuracy = (TP+TN)/(TP+TN + FP + FN).

Precision is the number of TP predictions divided by the sum of the number of TP
and FP predictions. Precision is a measure of how many of the positive predictions

made by the model are actually correct. A high precision indicates that the model is not

making many FP predictions, but it does not tell us anything about the FN predictions.

The precision is defined as,

Precision =TP/(TP + FP).

Sensitivity is the number of TP predictions divided by the number of TP and FN
predictions. Sensitivity is a measure of how many of the actual positive samples are
correctly identified by the model. A high sensitivity indicates that the model is not

making many FN predictions, but it does not tell us anything regarding the FP

March 31, 2023

117

219

220

221

222

223

224

225

226


https://doi.org/10.1101/2023.04.03.535316
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.03.535316; this version posted April 4, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

predictions. The sensitivity is defined as,

Sensitivity = TP/(TP + FN).

The F1-score is the harmonic mean of precision and sensitivity. It is a good metric
to use when the data is imbalanced, as it takes into account both precision and
sensitivity. The Fl-score provides a balanced view of the model’s performance, as it

considers both the FP and FN predictions. The F1-score is defined as,

F1—score=2xTP/(2+« TP+ FP+ FN).

The final statistical metric is the support value in the confusion matrix. The support
values represent the number of samples in the data set that belong to each class. It is
the total number of instances that belong to a particular class and is often listed along
the diagonal of the confusion matrix. The support value is important because it
provides information about the distribution of the classes in the data set, which helps in
evaluating the performance of a classification model more accurately. For instance,
accuracy can be misleading if the data set is imbalanced. The support value helps to
address this issue and allows for a more nuanced evaluation of the model’s performance,

taking into account the distribution of the classes in the data set.

Comparative statistics for chemically treated spores

The different spore samples treated with hypochlorite and with peracetic acid were
compared to the untreated spores in their relative spore content (core, cortex, coat). We
used Prism 9.3 (GraphPad Software) for statistical evaluation. The samples were
compared overall using ANOVA and individual comparisons to respective controls were

done using Dunn’s multiple comparisons tests.

Results

To evaluate the proposed model for spore segmentation in TEM images, we employed a

variety of metrics such as accuracy, precision, sensitivity, and F1-score as defined in the
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Fig 3. Classification performance for different spore layers based on the testing data set (A). Each cell shows the number of

classified instances by the model, as compared to ground truth data. The diagonal cells show the correctly classified instances
for a class. From this we evaluated the precision, sensitivity, and F1-score for each individual class (B).

previous section. These metrics provide an effective means of assessing the performance
of the model from different perspectives. For example, precision serves as a measure of
the classifier’s exactness, and a low precision suggests a high number of FP. In contrast,
sensitivity serves as a measure of the classifier’s completeness, where a low sensitivity
implies a high number of FN. The F1-score considers both precision and recall
(memory) and is considered to be most accurate when it is equal to 1, and least
accurate when equal to 0. Furthermore, we used the trained model to classify individual
images from the training and testing data sets and then calculated the accuracy of the
predictions. To do this, we passed each image as input into the model, in which the
model provided outputs as a prediction for the class of the image. After that, we
compared this prediction to the true class of the image. We stored the accuracy of
one-by-one images in an array and found the average performance on training and
testing data sets. It gave an overall estimate of how well the model was able to classify
the images in the data set. By finding the average accuracy, we also got a sense of how

well the model was able to generalize to new, unseen images. Additionally, this
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approach also allowed us to inspect the model’s performance on specific images, and

identify any images that the model may have struggled with.

Classification accuracy assessment using a confusion matrix

We classified spore bodies into eight distinct categories: ”Badreg”, ”coat”, ”core”,
”cortex”, ”exosporium”, ”interspace”, "nap”, and "background”. ?Badreg” (bad region)
is related to regions not part of a spore. To evaluate the accuracy of our model, we
employed a confusion matrix, which provides a visual representation of the number of
TP, FP, FN, and TN predictions for each class, see Fig |3l The confusion matrix shows
metrics for the proposed method based on test data. Fig A) represents the number of
instances in each cell belonging to each class. The diagonal cell of the confusion matrix
represents the correctly classified instances for a class. By using the confusion matrix
we could identify the strengths and weaknesses of our proposed model.

Using the confusion matrix, we calculated the Precision, Sensitivity, F1-Score, and
Support for each class in the data set, see Fig (B) Based on these metrics, we found
that the proposed model performed well in predicting the different types of spore classes

” N

in terms of precision, sensitivity, and F1-score, particularly for ”core,” ”cortex,” and
"background”. However, the model did not perform equally well when predicting the
”exosporium” and "nap” classes. This likely originates from the close pixel values of the

”interspace” class.

Table 1. Comparing results for spore segmentation using different classifiers.

Model Accuracy (%) | Precision (%) | Sensitivity (%) | F1-Score (%) | Support

CNN-AdaBoost 64 57 43 44

. CNN-XGBoost 4 71 60 63
Training Data 965 653

CNN-SVM 81 86 56 58

Proposed Work 100 100 100 100

CNN-AdaBoost 64 56 41 44

. CNN-XGBoost 71 62 45 46
Testing Data 407 819

CNN-SVM 62 63 37 42

Proposed Work 73 64 46 47

Comparison with other classifiers

We used a RF classifier in our proposed model as the primary method for classification.

To determine the effectiveness of the proposed RF classifier, we compared it with three
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other classifiers: AdaBoost (CNN-AdaBoost), XGBoost (CNN-XGBoost), and SVM
(CNN-SVM). We evaluated the classifiers based on the same metrics as before. The
results show that the proposed model, which used the RF classifier, achieved 100%
accuracy, precision, sensitivity, and F1-score when trained on the data. This indicates
that the RF classifier is capable of accurately classifying data with high consistency.

The second-best performer among the other classifiers was the CNN-SVM model,
which achieved 81% accuracy, 86% precision, 56% sensitivity, and 58% F1-score. The
support value of 965 693 was associated with different classes of training data.

During the testing phase, the proposed model using the RF classifier achieved 73%
accuracy, 64% precision, 46% sensitivity, and 47% F1l-score. These results indicate that
the model performed well on the test data, although there was a decrease in
performance compared to the training data. The second-best performer among the other
classifiers during testing was the CNN-XGBoost model, which achieved 71% accuracy,
62% precision, 45% sensitivity, and 46% F1-score. The support value was 407 819.

Our experimental results suggest that the proposed model has stronger robustness
and higher generalization ability compared to other classifiers for the non-linear

problem of spore segmentation. The results of all classifiers are listed in Table [T}

Accuracy during training and testing

In Fig[] a histogram illustrates the distribution of the model’s accuracy across
individual images in both the training and testing data to identify areas for
improvement. The x-axis represents the range of accuracy values from 0-100%, while
the y-axis represents the number of images in each accuracy range. The histogram
indicates that the model achieves an average accuracy of 95.6% on the training images
and 73.7% on the testing data. Most of the images in both data sets have accuracy
values that fall within a narrow range, indicating the model’s consistent performance.
The high average accuracy on the training data suggests that the model has learned to
segment spores accurately. Nevertheless, the testing data shows a slightly lower average
accuracy, suggesting that there may be opportunities for enhancement and additional

optimization.
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Fig 4. Distribution of the accuracy for the model when analysing all the individual images. (A) shows the distribution for the
training data and (B) the testing data.

Quantification of spore layers

Examples of TEMs, CNN feature extraction, and RF prediction are shown in Fig[5]
The top 8 features at layers 4 and 10 are shown in supporting Fig S1. As mentioned in
the method section, the CNN extract features from TEMs that represent spore layers,
edges, and shapes by employing a series of convolutional layers. The dimensionality of
the features is reduced using pooling, and the outcome of this process is a set of
high-level features that represent the image. After this, the RF algorithm, uses these
high-level features generated by the CNN to predict the segmentation of spore layers in
the sample. The algorithm performs a pixel-wise classification of the image using the
extracted features, and the output is a 128x104 matrix, with each entry representing a
pixel in the spore sample. The value assigned to each entry in the matrix ranges from
1-8 and indicates whether a pixel is part of a spore layer. The individual classes’

segmented pixels can be seen on the right side of Fig
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Image

coding for classification is ”"Badreg (dark blue),

”interspace (orange),

M9

CNN feature RF prediction

M9

nap (red),” and "background (violet).”

Background 7024
Badregion 2 060
Interspace 1092
Core 1088
Cortex 960
Exosporium 476
Coat 428
Nap 184
Background 1428
Badregion 208
Interspace 2944
Core 3544
Cortex 2992
Exosporium 336
Coat 1484
Nap 376

coat (blue),” ”core (light blue),” ”cortex (green),

Layers’ quantification (px)
Fig 5. A sample of TEMs, CNN features, and RF predictions. The final segmentation map is a 128x104 matrix, with each
entry representing a pixel in the spore sample. Right-side matrix shows segmentation for each individual class. The color

M9

Visualize spore segmentation and classification in TEMs

exosporium (yellow),”

We show in Fig [f] examples of spore segmentation and layer classification in TEM

images using the proposed model. Original images are shown on the left, with manually

labeled images in the middle. Ten more examples are shown in supporting Fig S2. On

the right, the model’s prediction for the images is displayed with its corresponding

accuracy. Note that the model can accurately identify the edges and boundaries of the

objects in the image. As seen in the image, the model’s prediction closely aligns with

the edges and boundaries of the labeled object, making it highly accurate in detecting

objects within the image. Overall the results show that the model performed well and

achieved an overall accuracy of 73% on the test data.
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86%

82%

Prediction

Fig 6. Comparative image showing TEM images of two spores, their respective layers as labeled, and their layers as predicted

by our model.

Analysing spore damage after chemical exposure

To also assess if the model could predict spore damage, we examined spores that were
treated with a 0.5 % solution of sodium hypochlorite (commonly known as bleach) with

a pH level of 11.55, and spores exposed to 1 % peracetic acid. These particular

concentrations have been reported previously as being effective in killing spores [42}[43].

Sodium hypochlorite is a readily available and cost-effective decontaminant compound
that acts by catalyzing several chemical reactions, such as saponification of fatty acids,
neutralization, and chloramination of amino acids, thereby decomposing organic
matter . Hypochlorite-induced oxidative damage has been demonstrated to affect
lipids, proteins, and DNA, as evidenced by previous studies using TEM @ For instance,
the research showed that hypochlorite-treated spores underwent structural changes
resulting in loss of integrity and discoloration of the core while exhibiting decomposition
of the cortex, spore coat, and exosporium, ranging from defined structural traits to faint
outlines with unstained content. On the other hand, peracetic acid is a type of
disinfectant that can disable microorganisms through the oxidation of sulfhydryl and
sulfur bonds, resulting in protein, enzyme, and metabolite denaturation . However,

unlike hypochlorite, its impact on spore integrity is less pronounced @
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We analyzed TEM images to assess spore layer integrity after exposure to sodium
hypochlorite and to peracetic acid. An example of a spore that lost the core integrity
after sodium hypochlorite exposure is shown in Fig[7]A, with the model’s pixel
prediction in Fig[7B. This pixel-wise classification allows for a detailed and nuanced
analysis of the spore layers. By breaking down the image into individual pixels and
analyzing each one, the algorithm detects and classifies different types of spore classes
based on their specific characteristics and features.

We found that the algorithm correctly predicts most of the regions as background
class, as in the original image. However, since the spores are damaged, the algorithm
also predicts this damage. This is a significant finding since the algorithm was trained
using a dataset that did not include images of sodium hypochlorite or peracetic acid.
We also quantified the number of pixels classified as coat, core, and cortex for control
spores (unexposed), and chemically exposed spores, Fig Ep The model clearly identifies
that the core integrity of chemically exposed spores is damaged by significantly
overestimating the core ratio in comparison to the control. In addition, this
overestimation reduces the cortex ratio for hypochlorite exposed spores. Thus, by
assessing these two specific spore layers, it is possible to use our model to predict if the
core of spores has been damaged by a chemical agent. Thus, we conclude that the
algorithm is able to accurately analyze if the spore core has been damaged, indicating
that our model has the potential to be used in real-world applications.

ONOR Tt P ()l ]'4” Y [ control
B g [% Cc " Il Peracetic acid
1.0

ns
I Hypochlorite

I q

0.0 -

T
Coat Ratlo Core Ratlo Cortex Ratio

Flg 7. Assessing the spore layers integrity of sodium hypochlorite and peracetic acid exposed spores. A TEM image of a

sodium hypochlorite exposed spore is shown in (A). The model’s classification is shown in (B). Coat, core, and cortex ratio for
control spores, and hypochlorite as well as peracetic acid exposed spores. (C) shows the relative areas of the spore coat (n=33),
core (n=22), and cortex (n=21). There was no significant difference in the coat ratio across the samples (indicated with "ns”),
however, the hypochlorite-treated samples showed a significantly different core ratio (p=0.0014) and cortex ratio (p=0.0095).
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Discussion

TEM imaging is a powerful approach when assessing the features of micron-scaled
objects including bacterial spores. Nevertheless, this approach can be time-consuming
and susceptible to human bias, especially when dealing with low-contrast images. To
address these challenges, we develop in this work a CNN-RF algorithm optimized for
segmenting and classifying spore layers in TEM images. To evaluate the performance of
our algorithm, we conducted a comparative analysis against some commonly used
classification algorithms, that is, Adaboost, Xgboost, and SVM. These methods have
proven successful in various applications. Adaboost is a technique that combines
multiple weak classifiers to create a more robust classifier. XGBoost is a
gradient-boosting algorithm that is particularly effective for analyzing structured data,
and SVM is designed to find the optimal hyperplane that maximally separates the
different classes of image data in a high-dimensional feature space.

To achieve good performance our model utilizes a CNN to extract 1024 features from
a single image while preserving the pixel locality, ensuring accurate prediction.
Conversely, feeding TEM spore images directly at the pixel level violates this locality
and leads to the curse of dimensions, which can have a negative impact on algorithm
performance. However, the proposed RF performed well in their presence, whereas
Adaboost, Xgboost, and SVM algorithms struggled when faced with irrelevant features
in the data. The assessment of all methods on a test data set shows that our proposed
model was better in all compared metrics.

To reduce the risk of overfitting and to handle imbalanced data, our method
combines the strengths of both CNN and RF. The CNN handles imbalanced data by
learning features that capture relevant patterns in the data. In contrast, RF provides a
robust and accurate method for classifying data using multiple decision trees. And
finally, RF allows assigning higher weights to minority classes during training,
facilitating learning patterns in these classes.

Spore images will have a lot of internal variation, even within an image set, with
some spores having larger, smaller, or out-of-focus layers. For spore segmentation, it
means that data can be imbalanced, and some spore classes may be under-represented,

leading to bias in the computed results. However, our proposed method resulted in a
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more balanced prediction with improved performance for these underclasses. Notably,

this algorithm is computationally efficient and requires less computational power than

other algorithms, making it well-suited for deployment in real-world applications.
Finally, it is worth noting that there are both advantages and disadvantages to the

proposed method, which we will outline here.

e The use of CNN ensures that extracted features preserve pixel locality and reduce

the curse of dimensionality.

e Automatic feature extraction by CNN eliminates the need to design handcrafted

features, improving the method’s generalizability.

e Random forest classification enhances prediction accuracy by combining multiple

decision trees and using majority voting for the final decision.

e The proposed method can be applied to solve any image-based classification and

segmentation problem since CNN can learn from any image dataset.

While the proposed method has its benefits, there are also some challenges that need

to be considered:

e For more complex tasks, additional features may be necessary to achieve

acceptable accuracy, increasing training time and computational power.

e TEM images for the data set were obtained from two institutions. Testing the

model with more data sets would be beneficial.

Conclusion

This paper presents a novel method for spore segmentation utilizing Convolutional
Neural Networks (CNN) and Random Forest (RF) decision trees. We employ multiple
decision trees of a RF to enhance the classification power of the proposed method. The
CNN in the proposed method employs 15 convolutional layers, ReLU layers, and 5
max-pooling layers and extracts features in TEM images and uses those features during
the process of making a decision tree. The experimental results show that the method

achieves good segmentation results for spores by effectively learning features. As a
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demonstration of the feasibility of our model, we conducted an assessment of spores that o
were exposed to chemical exposure. Our findings indicate the successful ability of the 43

model to detect spores with damaged cores. e

Supporting information @

S1 Fig. The CNN algorithm automatically extracts features from images 433
that can be used for downstream tasks. To visualize this, we passed an input
image (A) through the CNN and extracted the top 8 features from layer 4 s
(B) and layer 10 (C), respectively. As can be seen, each layer in a CNN 436
learns to extract different types of features from the input image and as we 4
move deeper into the network, the features become more complex and 438

abstract. 430

S2 Fig. Figure S2. Example images showing TEM images (left), labeled 440

images (middle), and predicted classification (right). a1
S3 Fig. Figure S3. Example images showing TEM images (left) and 442
predicted classification (right) for sodium hypochlorite-treated spores. 443
S4 Fig. Figure S4. Example images showing TEM images (left) and o
predicted classification (right) for sodium peracetic acid-treated spores.. a5
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