

A hybrid CNN-Random Forest algorithm for bacterial spore segmentation and classification in TEM images

Saqib Qamar¹, Rasmus Öberg¹, Dmitry Malyshev¹, Magnus Andersson^{1,2,*}

¹Department of Physics, Umeå University, Umeå, Sweden

²Umeå Center for Microbial Research (UCMR), Umeå University, Sweden

*Corresponding author: magnus.andersson@umu.se

Abstract

We present a new approach to segment and classify bacterial spore layers from Transmission Electron Microscopy (TEM) images using a hybrid Convolutional Neural Network (CNN) and Random Forest (RF) classifier algorithm. This approach utilizes deep learning, with the CNN extracting features from images, and the RF classifier using those features for classification. The proposed model achieved 73% accuracy, 64% precision, 46% sensitivity, and 47% F1-score with test data. Compared to other classifiers such as AdaBoost, XGBoost, and SVM, our proposed model demonstrates greater robustness and higher generalization ability for non-linear segmentation. Our model is also able to identify spores with a damaged core as verified using TEMs of chemically exposed spores. Therefore, the proposed method will be valuable for identifying and characterizing spore features in TEM images, reducing labor-intensive work as well as human bias.

Introduction

Bacterial spores, also known as endospores, are dormant forms of sporulating bacteria that exhibit no cellular activity [1]. Spores are exceptionally resilient to external stressors such as temperature, humidity, radiation, and chemical exposure [2]. Due to

their inherent resilience and ability to germinate back into bacteria when returned to
5 more favorable conditions, spores from pathogenic bacteria pose a significant problem in
6 many areas of society, including healthcare, food production, and homeland
7 security [3–5]. Therefore, studying spores are important for developing new sterilization
8 and detection strategies. To study spores and determine morphology, size,
9 ultrastructure, topography, and structural features, Transmission Electron Microscopy
10 (TEM) can provide valuable information. In particular, TEM enables high-resolution
11 visualization of all the layers within a spore, which for example can provide important
12 clues of the mode of action of light or disinfection chemicals [6, 7].
13

Spores are complex structures made up of several layers, including the core, cortex,
14 coat, interspace, and exosporium [8]. Some species also express surface filaments as a
15 "fluffy" layer or long fibers [9], as shown in Fig 1. These layers are all important
16 components of bacterial spores and they have separate functions. The core is located in
17 the center of the spore and contains the bacterium's genetic material and cellular
18 machinery, surrounded by protective chemicals such as dipicolinic acid (DPA). In
19 addition, the core is covered by a membrane and cell wall that form the outer layers of
20 the spore. The cortex, made up of peptidoglycan, surrounds the core, maintains the
21 shape of the spore, and provides the initial energy source for the spore during
22 germination. The spore coat, composed primarily of tightly packed protein layers,
23 further surrounds the cortex. Finally, the interspace is mostly empty surrounding the
24 coat, and is delimited by the thin exosporium layer consisting of proteins and
25 lipopolysaccharides [10].
26

When spores are exposed to various decontamination agents, for example, sodium
27 hypochlorite and peracetic acid, these agents change the spore's structural composition.
28 These changes the chemical and layer integrity of the spore, as observed using TEM [11].
29 Although useful in describing qualitative changes in the spore layer structure, these
30 TEM observations are unsuitable for large quantitative evaluations since it is a very
31 time-consuming process to analyze many spores. The analysis is, in addition, prone to
32 human error by its nature.
33

One way to efficiently analyze a large number of TEM images, and avoid human bias
34 during the assessment, is by using computerized methods like machine learning (ML)
35 and deep learning (DL). ML is an automatic tool requiring little human input that can
36

37 be trained to automate spore segmentation. ML methods have been applied in a variety
38 of fields, such as healthcare [12], speech recognition [13], agriculture [14], and business
39 forecasting [15], to improve the efficiency of a wide variety of processes. In particular,
40 DL, a subset of ML, has been successfully applied in areas such as object segmentation,
41 classification [16,17], image recognition [18], autonomous vehicles [19], pattern
42 recognition [20], etc. However, DL requires a very large amount of data to create
43 reliable models and is, as such, limited in its applicability.

44 Over the years, ML methods have been developed to automate the identification and
45 classification of microorganisms based on microscopic images. Li and colleagues [21]
46 provided a comprehensive review of various analysis methods for content-based
47 microscopic image analysis (CBMIA), including pre-processing, feature extraction,
48 post-processing, and classification. Similarly, Kulwa and colleagues evaluated image
49 processing and ML methods designed for segmenting microorganisms in images [22],
50 while Li and colleagues reviewed clustering methods for analyzing microorganism
51 images [23]. Additionally, Vikrant and colleagues presented an approach for microscopic
52 image classification that combined guided image filtering, Otsu thresholding, and
53 scale-invariant feature transform [24]. Ma and colleagues conducted a review of
54 microorganism image analysis, exploring traditional image processing and traditional
55 ML as well as DL methods for microorganism detection [25]. These related works
56 primarily focus on ML approaches for microbiological image recognition, using either
57 traditional ML or DL. While ML works well with limited data, DL requires a
58 substantial amount of data but provides excellent performance. As a result, using a
59 hybrid learning method that combines both traditional ML and DL approaches has the
60 potential to achieve the benefits of both.

61 In this work, we develop an automated algorithm for segmenting and classifying
62 layers in spore TEM images. The proposed algorithm combines a CNN for feature
63 extraction and an RF classifier for pixel classification. We train the CNN with image
64 data and use its predictions as input features to decision trees in the RF algorithm.
65 Thus, the CNN converts high-dimension 2D TEM images into low-dimension features
66 that preserve the locality of pixels and reduce the curse of dimensionality for accurate
67 prediction through the RF classifier. Evaluation of the proposed CNN-RF algorithm
68 shows that it performs better than other state-of-the-art algorithms and can both

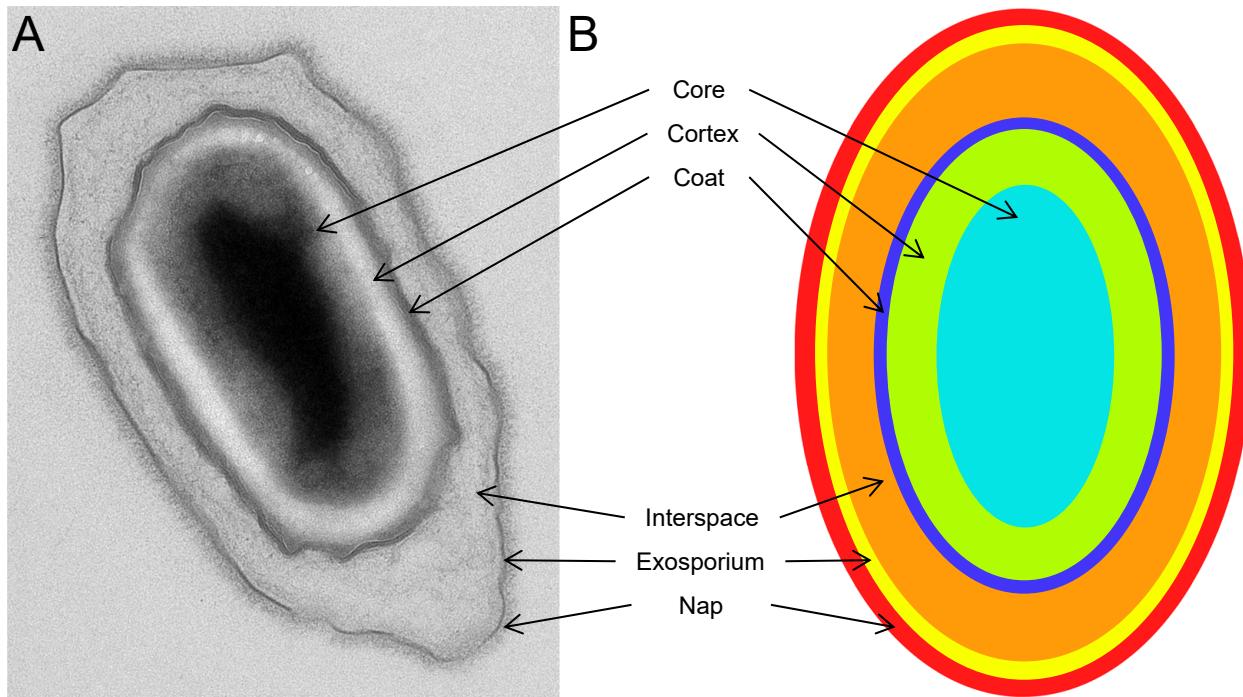


Fig 1. TEM micrograph (A) and structure model (B) showing the layer structure of bacterial spores. From the central spore core, the layers are in ascending order; cortex, coat, interspace, exosporium, and nap. The nap is the fluffy layer consisting of thin surface polymers (pili).

accurately and efficiently analyze large amounts of spores in TEM images. 69

Theoretical background and definitions 70

Convolutional Neural Networks 71

Convolutional Neural Network, introduced in 1989, is a method inspired by how the 72 human visual cortex in the brain processes visual inputs into information [26]. In a CNN, 73 convolutional layers are the fundamental building blocks [27]. A convolutional layer 74 performs a set of convolution operations on the input data, which are a combination of 75 element-wise multiplications and summations. The convolution operation is performed 76 between the input data and a set of filters, also known as kernels or weights, that are 77 learned in the training process. The filters slide across the input, computing a dot 78 product between the filter and the input data [28]. The number of filters determines the 79 number of feature maps that are generated by the convolutional layer, each capturing 80 different features or aspects of the input data, which for this work are 2D TEM images. 81

Another important component of CNNs is pooling layers. These down-samples the input data and reduce its spatial dimensions [29]. Downsampling is useful for two reasons, to reduce the computational cost of the network, as the amount of data to be processed is reduced, and to make the representations learned by the network more invariant to small translations of the input data. This thereby controls overfitting by reducing the number of parameters. Overfitting occurs when a model starts to memorize the characteristics of the training data and, in turn, loses its ability to generalize. To also increase non-linearity in the network an activation function can be used for the feature maps. As activation function, the rectified linear unit (ReLU) is commonly used, which is then applied to the output of each neuron in the network to learn a wider range of complex representations and to improve the ability to classify images [30]. The ReLU function returns the same input for positive values and returns 0 for all negative [31].

Decision Tree

In applications where the aim is to classify items into classes, decision tree algorithms are often used. It works by building a tree-like model of decisions based on feature values. The tree is constructed and uses an algorithmic approach that searches for features that group the data more homogeneously [32]. A decision tree thereby predicts the class label of each pixel in the image. To determine how the features should be optimally split into nodes in the tree, the Gini impurity measure can be used. The Gini impurity thus measures misclassification of randomly drawn samples from each node. The Gini impurity decreases as nodes are added to the tree and when the Gini impurity is zero, the node is not expanded. The Gini impurity of a node n is calculated as,

$$Gini = 1 - \sum_{i=1}^n p_i^2,$$

where n is the number of classes and p_i is the probability of node n in class i . In a decision tree, an input sample is thereby checked against each of the conditions at each node, and a node's offspring is selected depending on whether the condition is True or False.

Random Forest

Random forest is an ensemble approach that contains multiple decision trees to make predictions from data [33, 34]. The decision trees in a RF are trained using a process called bootstrapping, which involves sampling the data with replacement. This implies that some data points may be included in the training set more than once, while others may not be included at all. Each decision tree in the RF makes predictions based on the features in the data, and the majority voting calculates the final prediction, which is based on individual decision trees' output. By using multiple decision trees, the risk of overfitting is reduced compared to using a single decision tree. Thus, each tree randomly selects a subset of features from the whole data set. With this method, training results are obtained based on different feature sets, and sampling with return ensures that training results are valid and reliable.

Design of the CNN-RF algorithm

We design our algorithm as a CNN-RF algorithm to optimally segment spores and classify layers. The CNN is first trained on image data to convert high-dimensional 2D TEM images into vectors of real values, which are then used as input features for decision trees in the RF algorithm. By preserving the inter-pixel relationships in the image, the features extracted from the CNN architecture enhance the accuracy of the prediction, while also reducing the dimensionality of the features [35]. The CNN thereby serves as the feature generation step, which is followed by the RF classifier for precise classification.

Spore preparation and TEM image acquisition

Bacillus thuringiensis ATCC 35646 cells were grown on BBLK agar (210912, BD) plates and set to incubate at 30°C overnight. These cells were collected by scraping them off the agar and transferring them to a 1.5 ml Eppendorf tube, after which they were centrifuged to remove leftover growth media. To allow sporulation, the cells were stored at 4°C overnight. Before use, the sporulated suspension was rinsed five times by centrifuging in deionised water for 5 minutes at 5000 G.

To prepare spores for TEM the suspensions were fixed with 2.5 % Glutaraldehyde 127 (TAAB Laboratories, Aldermaston, England) in 0.1 M PHEM buffer and further 128 postfixed in 1 % aqueous osmium tetroxide. The spores were then further dehydrated in 129 ethanol, acetone and finally embedded in Spurr's resin (TAAB Laboratories, 130 Aldermaston, England). 70 nm ultrathin sections were then post contrasted in uranyl 131 acetate and Reynolds lead citrate. Spores were imaged using a Talos L120C (FEI, 132 Eindhoven, The Netherlands) operating at 120kV. Micrographs were acquired with a 133 Ceta 16M CCD camera (FEI, Eindhoven, The Netherlands) using TEM Image and 134 Analysis software ver. 4.17 (FEI, Eindhoven, The Netherlands). 135

Annotation of TEM images 136

Accurate and detailed annotation of TEM images provides important context for 137 understanding the features and regions within the image, and serves as the ground truth 138 for ML training. We labeled eight distinct categories within a TEM image of a spore, 139 "coat", "core", "cortex", "exosporium", "interspace", "nap", and "background". For 140 areas of the image that were not part of the spore or background, like debris, and for 141 areas of the spore that were smeared or otherwise could not be resolved due to poor 142 sectioning or overlapping areas, we used the label "bad region". We used APEER 143 (APEER by Zeiss, 2022) for annotation [36] to easily and efficiently label the TEM 144 images with the different categories. This web client software provides a user-friendly 145 interface with tools for creating labels, selecting the appropriate category for each region, 146 and saving the annotations in a format compatible with ML algorithms. This ensures 147 that the annotations are accurate, reproducible, and can be used for future analysis. 148

Data preprocessing, training and testing data 149

Before feeding the TEM image data into the model, we employed some necessary steps 150 to ensure better model performance. First, we resized all training images from 151 3000x2500 to 2048x1664 pixels and normalized the data between 0 and 1. This resizing 152 and normalization process was essential for improving the model's performance, as it 153 ensured that all the extracted features had the same value range. Second, we used a 154 data augmentation technique to expand the number of images in the data set. By 155

156 applying various image transformations, such as rotation, scaling, and flipping, to the
157 images in the training set, we were able to increase the diversity of the training data and
158 reduce the risk of overfitting. This augmentation technique proved highly effective, as it
159 helped the model learn more robust features that generalize well to new images. We
160 augmented 64 images from the training data to create 384 new images. During training,
161 we passed augmented data to the CNN to extract abstract features from the data set,
162 and these features were sent to the RF classifier. The CNN model used a series of
163 convolutional layers to learn the relevant features from the input images, while the RF
164 classifier was used to classify the spore classes. After training a model on a set of
165 images, it is crucial to evaluate its performance on unseen data to determine its efficacy
166 in real-world scenarios. To achieve this, we created a testing data set comprising 50
167 images that were distinct from the training data set. The trained model was then
168 applied to this testing data, and its performance was evaluated by comparing the
169 predicted spore class against the actual spore class. This allowed us to determine the
170 accuracy and reliability of the model in predicting spore classes for previously unseen
171 data. The results obtained from this evaluation helped fine-tune the model further to
172 improve its performance. Overall, the approach employed during the model training
173 helped in creating a robust and reliable model for predicting spore classes from images.

174 The model was trained on a computer with an Intel Core i9 processor, 32 GB of
175 RAM, and an NVIDIA GeForce GTX 1600 SUPER graphics card. The training was
176 performed using Python programming language, with the TensorFlow and Keras
177 libraries [37, 38] for DL and scikit-learn library [39] for RF classifier. The total time
178 taken to train the model was approximately 8 hours. This duration includes the time
179 taken for data preprocessing, model training, and evaluation. During this time, the
180 model was trained on a total of 384 images. The training was performed using the
181 n_estimators value of 300 and a single decision tree was built with 25 features in RF.

182 Model Architecture and data description

183 Our proposed architecture for spore segmentation is illustrated in Fig 2. The source
184 code for the model implementation is available for access and download [40]. A
185 step-by-step guide on how to install packages and run the model is provided in the

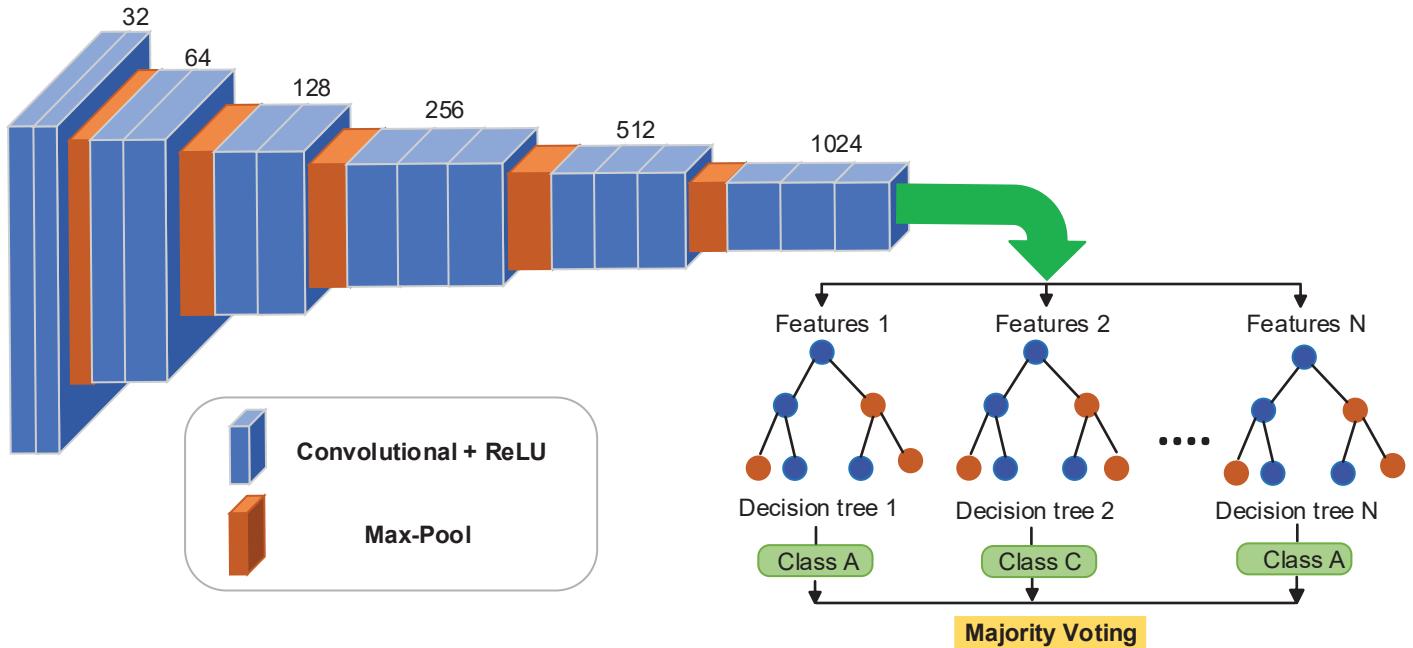


Fig 2. Proposed combined approach of CNN and RF. The CNN extract features from the data and RF classifies data based on a large number of decision trees.

supporting information. The CNN in our architecture employs 15 convolutional layers with ReLU layers and 5 max-pooling layers. The convolutional layers generate low-level features at the beginning and high-level features towards the end of the architecture, while the max-pooling layers help reduce the dimensionality of the extracted convolutional features. By utilizing a large number of convolutional layers, rectified linear unit layers, and max-pooling layers, the CNN can generate a high-dimensional feature space, and the RF classifier combines these features to make the final decision. The input image size used is 2048x1664x3, with 32 kernels of size 3x3 and stride 1 applied to each input image. The resulting 32 output feature maps are passed through the first block, which generates 64 features. Subsequently, each consecutive block generates 32×2^n features, where $n = 2, 3, 4$, or 5. Finally, the CNN predicts 1024 features of size 128x104.

During training, the model uses a three-fold cross-validation approach, where each fold $k = 1, 2, 3$ uses two-thirds of the whole data set for training. The remaining data is used as the test set. In each iteration, the CNN is trained on the sub-training data ($t_k -$

t_{ki}) and validated on the subset *t_{ki}*. This approach enables the model to learn from 201 different variations of the data and ensures that the model generalizes well to unseen 202 data. 203

Once the CNN is trained, the decision tree predicts the spore classes based on the 204 CNN features. To improve the robustness of the model and reduce the impact of errors 205 made by individual decision trees, the majority voting approach is used to make the 206 final prediction using the results from all decision trees. Finally, the performance of the 207 trained model is evaluated on the test set to measure the model's performance on 208 unseen data. 209

Algorithm 1 Proposed Approach Pseudo code

Input: TEM Spore Images, CNN, number of folds *k*, Decision tree

1. Augmented data set to increase the number of samples.
2. Normalized data set to ensure that the features have similar scales.
3. D1, D2, D3 = Divide data set D into *k* subsets
4. **For** 1 to *k* **do:**
 - (a) $t_k = D - D_k$
 - (b) CNN is trained on the training set.
 - (c) Features are aggregated from the predictions of the CNN.
5. Built a decision tree with different chunks of features using the whole set of predicted features.
6. Final prediction is obtained by using majority voting on the results of individual decision trees.

Output: Final Prediction

The proposed method is presented in Algorithm 1 in pseudo-code form. To increase 210 the data sample and ensure that the features are on the same scale, augmentation and 211 normalization are applied in lines 1-2. The three-fold validation process begins by 212 dividing the data into three subsets. In line 4, these subsets are used to train the CNN, 213 which then predicts features and aggregates them into numerical vectors. In line 5, 214 decision trees are built using different chunks of features. The majority voting approach 215 is used to obtain the final prediction. Therefore, the algorithm follows a straightforward 216 process of data preprocessing, three-fold validation, training the CNN, building decision 217 trees, and making predictions using the majority voting approach. 218

Statistical metrics used for evaluation

219

In ML, evaluating the performance of a classification model is essential. Therefore, it is
220
important to choose the right evaluation metric for the specific problem being solved
221
because it significantly affects the results. We used four metrics to evaluate the
222
performance of the proposed model: accuracy, precision, sensitivity, and F1-score.
223
These metrics are commonly used for image classification and segmentation tasks, and
224
they are calculated based on the number of true positive (TP), true negative (TN), false
225
positive (FP), as well as false negative (FN) predictions made by the model [41].
226

Accuracy is the number of correct predictions made by the model divided by the
227
total number of predictions. It is a simple and straightforward metric that provides a
228
general understanding of how well the model is performing. However, it can be
229
misleading in cases where the data is imbalanced, implying that one class has
230
significantly more samples than the other. In these cases, a model that always predicts
231
the majority class will have high accuracy, even though it is not making any useful
232
predictions for the minority class. The accuracy is defined as,

$$\text{Accuracy} = (TP + TN) / (TP + TN + FP + FN).$$

Precision is the number of TP predictions divided by the sum of the number of TP
233
and FP predictions. Precision is a measure of how many of the positive predictions
234
made by the model are actually correct. A high precision indicates that the model is not
235
making many FP predictions, but it does not tell us anything about the FN predictions.
236
The precision is defined as,

$$\text{Precision} = TP / (TP + FP).$$

Sensitivity is the number of TP predictions divided by the number of TP and FN
237
predictions. Sensitivity is a measure of how many of the actual positive samples are
238
correctly identified by the model. A high sensitivity indicates that the model is not
239
making many FN predictions, but it does not tell us anything regarding the FP

predictions. The sensitivity is defined as,

$$Sensitivity = TP / (TP + FN).$$

The F1-score is the harmonic mean of precision and sensitivity. It is a good metric to use when the data is imbalanced, as it takes into account both precision and sensitivity. The F1-score provides a balanced view of the model's performance, as it considers both the FP and FN predictions. The F1-score is defined as,

$$F1-score = 2 * TP / (2 * TP + FP + FN).$$

The final statistical metric is the support value in the confusion matrix. The support values represent the number of samples in the data set that belong to each class. It is the total number of instances that belong to a particular class and is often listed along the diagonal of the confusion matrix. The support value is important because it provides information about the distribution of the classes in the data set, which helps in evaluating the performance of a classification model more accurately. For instance, accuracy can be misleading if the data set is imbalanced. The support value helps to address this issue and allows for a more nuanced evaluation of the model's performance, taking into account the distribution of the classes in the data set.

Comparative statistics for chemically treated spores

The different spore samples treated with hypochlorite and with peracetic acid were compared to the untreated spores in their relative spore content (core, cortex, coat). We used Prism 9.3 (GraphPad Software) for statistical evaluation. The samples were compared overall using ANOVA and individual comparisons to respective controls were done using Dunn's multiple comparisons tests.

Results

To evaluate the proposed model for spore segmentation in TEM images, we employed a variety of metrics such as accuracy, precision, sensitivity, and F1-score as defined in the

Actual		Prediction								B				
		Badreg	Coat	Core	Cortex	Exosp	Inters	Nap	Backgr	Class	Precision	Sensitivity	F1 Score	Support
Badreg	Badreg	7950	288	622	679	40	452	0	4838	Badreg	0.24	0.53	0.33	14 869
	Coat	3921	7262	1769	1492	68	534	0	941	Coat	0.46	0.45	0.47	15 987
	Core	1396	915	34258	3946	6	1485	0	392	Core	0.85	0.81	0.85	42 398
	Cortex	2001	1262	2241	16769	8	4367	0	1732	Cortex	0.46	0.59	0.50	28 380
	Exosp	2334	2250	262	449	926	629	0	4345	Exosp	0.67	0.08	0.15	11 195
	Inters	4858	1656	1341	6234	57	14467	0	16926	Inters	0.56	0.32	0.48	45 539
	Nap	1368	796	131	1001	64	1459	1	4704	Nap	1.00	0.00	0.00	9 524
	Backgr	1294	7	693	7746	254	4043	0	212346	Backgr	0.88	0.89	0.89	239 927

Fig 3. Classification performance for different spore layers based on the testing data set (A). Each cell shows the number of classified instances by the model, as compared to ground truth data. The diagonal cells show the correctly classified instances for a class. From this we evaluated the precision, sensitivity, and F1-score for each individual class (B).

previous section. These metrics provide an effective means of assessing the performance of the model from different perspectives. For example, precision serves as a measure of the classifier's exactness, and a low precision suggests a high number of FP. In contrast, sensitivity serves as a measure of the classifier's completeness, where a low sensitivity implies a high number of FN. The F1-score considers both precision and recall (memory) and is considered to be most accurate when it is equal to 1, and least accurate when equal to 0. Furthermore, we used the trained model to classify individual images from the training and testing data sets and then calculated the accuracy of the predictions. To do this, we passed each image as input into the model, in which the model provided outputs as a prediction for the class of the image. After that, we compared this prediction to the true class of the image. We stored the accuracy of one-by-one images in an array and found the average performance on training and testing data sets. It gave an overall estimate of how well the model was able to classify the images in the data set. By finding the average accuracy, we also got a sense of how well the model was able to generalize to new, unseen images. Additionally, this

approach also allowed us to inspect the model's performance on specific images, and
260
identify any images that the model may have struggled with.
261

Classification accuracy assessment using a confusion matrix 262

We classified spore bodies into eight distinct categories: "Badreg", "coat", "core",
263
"cortex", "exosporium", "interspace", "nap", and "background". "Badreg" (bad region)
264
is related to regions not part of a spore. To evaluate the accuracy of our model, we
265
employed a confusion matrix, which provides a visual representation of the number of
266
TP, FP, FN, and TN predictions for each class, see Fig 3. The confusion matrix shows
267
metrics for the proposed method based on test data. Fig 3(A) represents the number of
268
instances in each cell belonging to each class. The diagonal cell of the confusion matrix
269
represents the correctly classified instances for a class. By using the confusion matrix
270
we could identify the strengths and weaknesses of our proposed model.
271

Using the confusion matrix, we calculated the Precision, Sensitivity, F1-Score, and
272
Support for each class in the data set, see Fig 3(B). Based on these metrics, we found
273
that the proposed model performed well in predicting the different types of spore classes
274
in terms of precision, sensitivity, and F1-score, particularly for "core," "cortex," and
275
"background". However, the model did not perform equally well when predicting the
276
"exosporium" and "nap" classes. This likely originates from the close pixel values of the
277
"interspace" class.
278

Table 1. Comparing results for spore segmentation using different classifiers.

	Model	Accuracy (%)	Precision (%)	Sensitivity (%)	F1-Score (%)	Support
Training Data	CNN-AdaBoost	64	57	43	44	965 653
	CNN-XGBoost	74	71	60	63	
	CNN-SVM	81	86	56	58	
	Proposed Work	100	100	100	100	
Testing Data	CNN-AdaBoost	64	56	41	44	407 819
	CNN-XGBoost	71	62	45	46	
	CNN-SVM	62	63	37	42	
	Proposed Work	73	64	46	47	

Comparison with other classifiers 279

We used a RF classifier in our proposed model as the primary method for classification.
280
To determine the effectiveness of the proposed RF classifier, we compared it with three
281

other classifiers: AdaBoost (CNN-AdaBoost), XGBoost (CNN-XGBoost), and SVM (CNN-SVM). We evaluated the classifiers based on the same metrics as before. The results show that the proposed model, which used the RF classifier, achieved 100% accuracy, precision, sensitivity, and F1-score when trained on the data. This indicates that the RF classifier is capable of accurately classifying data with high consistency.

The second-best performer among the other classifiers was the CNN-SVM model, which achieved 81% accuracy, 86% precision, 56% sensitivity, and 58% F1-score. The support value of 965 693 was associated with different classes of training data.

During the testing phase, the proposed model using the RF classifier achieved 73% accuracy, 64% precision, 46% sensitivity, and 47% F1-score. These results indicate that the model performed well on the test data, although there was a decrease in performance compared to the training data. The second-best performer among the other classifiers during testing was the CNN-XGBoost model, which achieved 71% accuracy, 62% precision, 45% sensitivity, and 46% F1-score. The support value was 407 819.

Our experimental results suggest that the proposed model has stronger robustness and higher generalization ability compared to other classifiers for the non-linear problem of spore segmentation. The results of all classifiers are listed in Table 1.

Accuracy during training and testing

In Fig 4, a histogram illustrates the distribution of the model's accuracy across individual images in both the training and testing data to identify areas for improvement. The x-axis represents the range of accuracy values from 0-100%, while the y-axis represents the number of images in each accuracy range. The histogram indicates that the model achieves an average accuracy of 95.6% on the training images and 73.7% on the testing data. Most of the images in both data sets have accuracy values that fall within a narrow range, indicating the model's consistent performance. The high average accuracy on the training data suggests that the model has learned to segment spores accurately. Nevertheless, the testing data shows a slightly lower average accuracy, suggesting that there may be opportunities for enhancement and additional optimization.

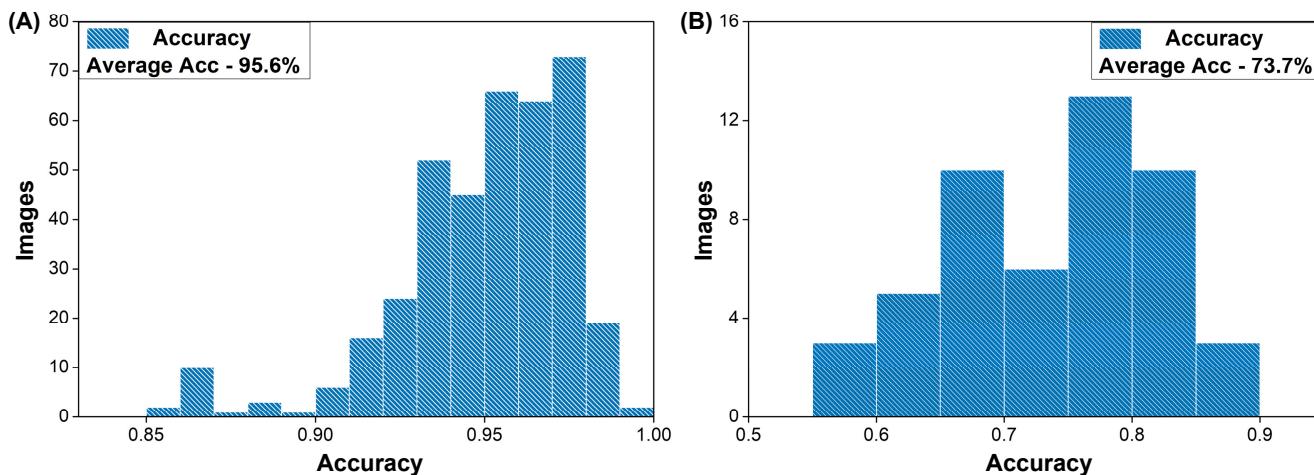


Fig 4. Distribution of the accuracy for the model when analysing all the individual images. (A) shows the distribution for the training data and (B) the testing data.

Quantification of spore layers

Examples of TEMs, CNN feature extraction, and RF prediction are shown in Fig 5. 311

The top 8 features at layers 4 and 10 are shown in supporting Fig S1. As mentioned in 312
the method section, the CNN extract features from TEMs that represent spore layers, 313
edges, and shapes by employing a series of convolutional layers. The dimensionality of 314
the features is reduced using pooling, and the outcome of this process is a set of 315
high-level features that represent the image. After this, the RF algorithm, uses these 316
high-level features generated by the CNN to predict the segmentation of spore layers in 317
the sample. The algorithm performs a pixel-wise classification of the image using the 318
extracted features, and the output is a 128x104 matrix, with each entry representing a 319
pixel in the spore sample. The value assigned to each entry in the matrix ranges from 320
1-8 and indicates whether a pixel is part of a spore layer. The individual classes' 321
segmented pixels can be seen on the right side of Fig 5. 322

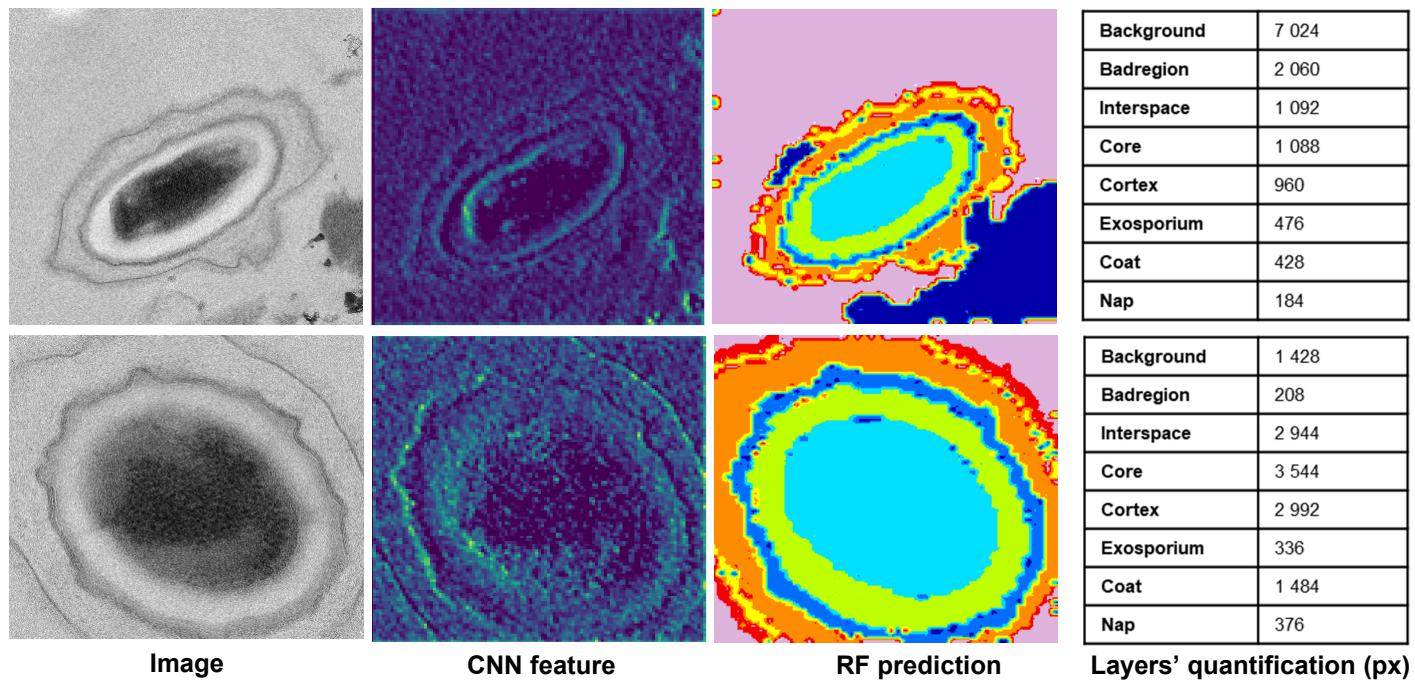


Fig 5. A sample of TEMs, CNN features, and RF predictions. The final segmentation map is a 128x104 matrix, with each entry representing a pixel in the spore sample. Right-side matrix shows segmentation for each individual class. The color coding for classification is "Badreg (dark blue)," "coat (blue)," "core (light blue)," "cortex (green)," "exosporium (yellow)," "interspace (orange)," "nap (red)," and "background (violet)."

Visualize spore segmentation and classification in TEMs

We show in Fig 6 examples of spore segmentation and layer classification in TEM images using the proposed model. Original images are shown on the left, with manually labeled images in the middle. Ten more examples are shown in supporting Fig S2. On the right, the model's prediction for the images is displayed with its corresponding accuracy. Note that the model can accurately identify the edges and boundaries of the objects in the image. As seen in the image, the model's prediction closely aligns with the edges and boundaries of the labeled object, making it highly accurate in detecting objects within the image. Overall the results show that the model performed well and achieved an overall accuracy of 73% on the test data.

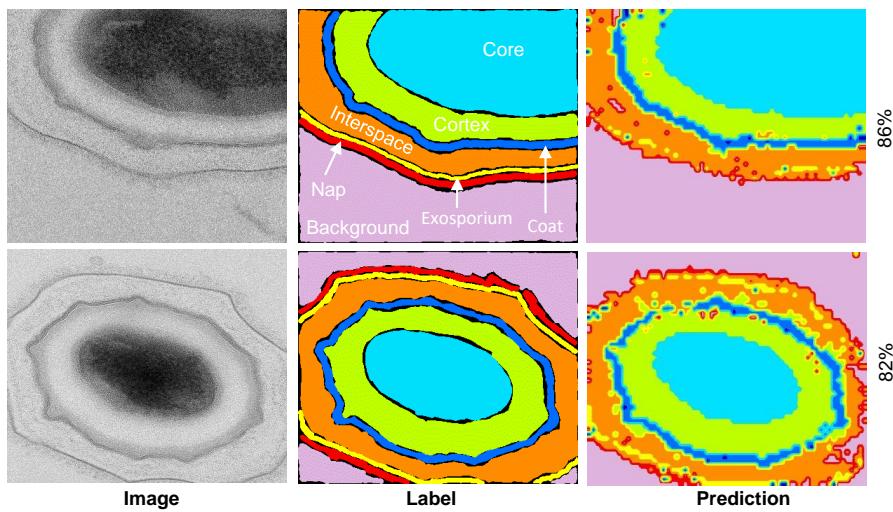


Fig 6. Comparative image showing TEM images of two spores, their respective layers as labeled, and their layers as predicted by our model.

Analysing spore damage after chemical exposure

To also assess if the model could predict spore damage, we examined spores that were treated with a 0.5 % solution of sodium hypochlorite (commonly known as bleach) with a pH level of 11.55, and spores exposed to 1 % peracetic acid. These particular concentrations have been reported previously as being effective in killing spores [42, 43]. Sodium hypochlorite is a readily available and cost-effective decontaminant compound that acts by catalyzing several chemical reactions, such as saponification of fatty acids, neutralization, and chloramination of amino acids, thereby decomposing organic matter [44]. Hypochlorite-induced oxidative damage has been demonstrated to affect lipids, proteins, and DNA, as evidenced by previous studies using TEM [6]. For instance, the research showed that hypochlorite-treated spores underwent structural changes resulting in loss of integrity and discoloration of the core while exhibiting decomposition of the cortex, spore coat, and exosporium, ranging from defined structural traits to faint outlines with unstained content. On the other hand, peracetic acid is a type of disinfectant that can disable microorganisms through the oxidation of sulfhydryl and sulfur bonds, resulting in protein, enzyme, and metabolite denaturation [45]. However, unlike hypochlorite, its impact on spore integrity is less pronounced [6].

We analyzed TEM images to assess spore layer integrity after exposure to sodium hypochlorite and to peracetic acid. An example of a spore that lost the core integrity after sodium hypochlorite exposure is shown in Fig 7A, with the model's pixel prediction in Fig 7B. This pixel-wise classification allows for a detailed and nuanced analysis of the spore layers. By breaking down the image into individual pixels and analyzing each one, the algorithm detects and classifies different types of spore classes based on their specific characteristics and features.

We found that the algorithm correctly predicts most of the regions as background class, as in the original image. However, since the spores are damaged, the algorithm also predicts this damage. This is a significant finding since the algorithm was trained using a dataset that did not include images of sodium hypochlorite or peracetic acid. We also quantified the number of pixels classified as coat, core, and cortex for control spores (unexposed), and chemically exposed spores, Fig 7C. The model clearly identifies that the core integrity of chemically exposed spores is damaged by significantly overestimating the core ratio in comparison to the control. In addition, this overestimation reduces the cortex ratio for hypochlorite exposed spores. Thus, by assessing these two specific spore layers, it is possible to use our model to predict if the core of spores has been damaged by a chemical agent. Thus, we conclude that the algorithm is able to accurately analyze if the spore core has been damaged, indicating that our model has the potential to be used in real-world applications.

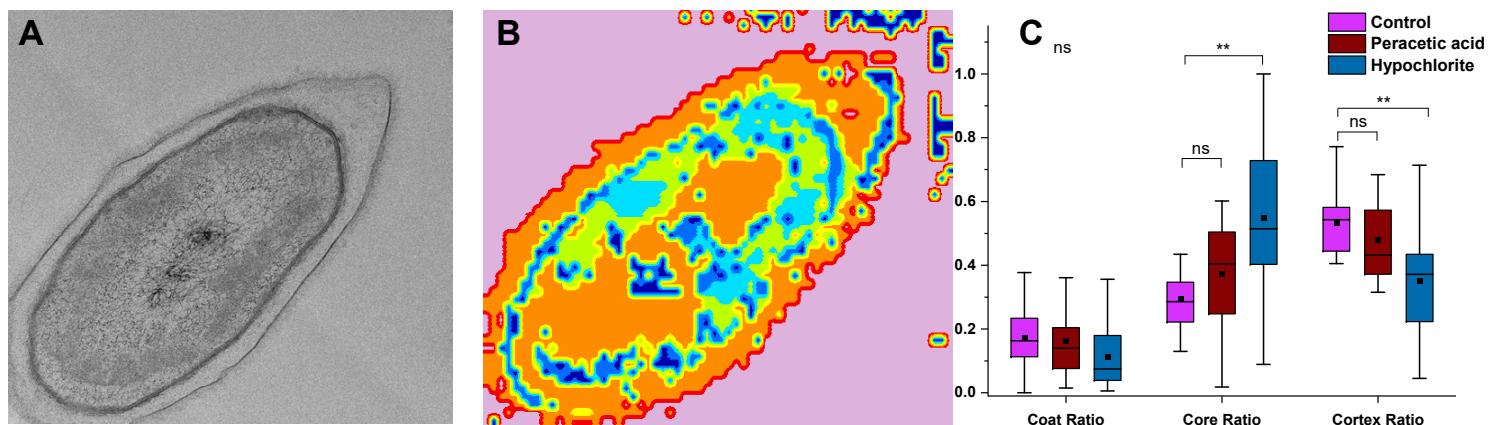


Fig 7. Assessing the spore layers integrity of sodium hypochlorite and peracetic acid exposed spores. A TEM image of a sodium hypochlorite exposed spore is shown in (A). The model's classification is shown in (B). Coat, core, and cortex ratio for control spores, and hypochlorite as well as peracetic acid exposed spores. (C) shows the relative areas of the spore coat (n=33), core (n=22), and cortex (n=21). There was no significant difference in the coat ratio across the samples (indicated with "ns"), however, the hypochlorite-treated samples showed a significantly different core ratio ($p=0.0014$) and cortex ratio ($p=0.0095$).

Discussion

371

TEM imaging is a powerful approach when assessing the features of micron-scaled
372 objects including bacterial spores. Nevertheless, this approach can be time-consuming
373 and susceptible to human bias, especially when dealing with low-contrast images. To
374 address these challenges, we develop in this work a CNN-RF algorithm optimized for
375 segmenting and classifying spore layers in TEM images. To evaluate the performance of
376 our algorithm, we conducted a comparative analysis against some commonly used
377 classification algorithms, that is, Adaboost, Xgboost, and SVM. These methods have
378 proven successful in various applications. Adaboost is a technique that combines
379 multiple weak classifiers to create a more robust classifier. XGBoost is a
380 gradient-boosting algorithm that is particularly effective for analyzing structured data,
381 and SVM is designed to find the optimal hyperplane that maximally separates the
382 different classes of image data in a high-dimensional feature space.
383

384

To achieve good performance our model utilizes a CNN to extract 1024 features from
385 a single image while preserving the pixel locality, ensuring accurate prediction.
386 Conversely, feeding TEM spore images directly at the pixel level violates this locality
387 and leads to the curse of dimensions, which can have a negative impact on algorithm
388 performance. However, the proposed RF performed well in their presence, whereas
389 Adaboost, Xgboost, and SVM algorithms struggled when faced with irrelevant features
390 in the data. The assessment of all methods on a test data set shows that our proposed
391 model was better in all compared metrics.
392

393

To reduce the risk of overfitting and to handle imbalanced data, our method
394 combines the strengths of both CNN and RF. The CNN handles imbalanced data by
395 learning features that capture relevant patterns in the data. In contrast, RF provides a
396 robust and accurate method for classifying data using multiple decision trees. And
397 finally, RF allows assigning higher weights to minority classes during training,
398 facilitating learning patterns in these classes.
399

400

Spore images will have a lot of internal variation, even within an image set, with
401 some spores having larger, smaller, or out-of-focus layers. For spore segmentation, it
402 means that data can be imbalanced, and some spore classes may be under-represented,
403 leading to bias in the computed results. However, our proposed method resulted in a
404

more balanced prediction with improved performance for these underclasses. Notably, 402
this algorithm is computationally efficient and requires less computational power than 403
other algorithms, making it well-suited for deployment in real-world applications. 404

Finally, it is worth noting that there are both advantages and disadvantages to the 405
proposed method, which we will outline here. 406

- The use of CNN ensures that extracted features preserve pixel locality and reduce 407
the curse of dimensionality. 408
- Automatic feature extraction by CNN eliminates the need to design handcrafted 409
features, improving the method's generalizability. 410
- Random forest classification enhances prediction accuracy by combining multiple 411
decision trees and using majority voting for the final decision. 412
- The proposed method can be applied to solve any image-based classification and 413
segmentation problem since CNN can learn from any image dataset. 414

While the proposed method has its benefits, there are also some challenges that need 415
to be considered: 416

- For more complex tasks, additional features may be necessary to achieve 417
acceptable accuracy, increasing training time and computational power. 418
- TEM images for the data set were obtained from two institutions. Testing the 419
model with more data sets would be beneficial. 420

Conclusion 421

This paper presents a novel method for spore segmentation utilizing Convolutional 422
Neural Networks (CNN) and Random Forest (RF) decision trees. We employ multiple 423
decision trees of a RF to enhance the classification power of the proposed method. The 424
CNN in the proposed method employs 15 convolutional layers, ReLU layers, and 5 425
max-pooling layers and extracts features in TEM images and uses those features during 426
the process of making a decision tree. The experimental results show that the method 427
achieves good segmentation results for spores by effectively learning features. As a 428

demonstration of the feasibility of our model, we conducted an assessment of spores that
429
were exposed to chemical exposure. Our findings indicate the successful ability of the
430
model to detect spores with damaged cores.
431

Supporting information

S1 Fig. The CNN algorithm automatically extracts features from images
432
that can be used for downstream tasks. To visualize this, we passed an input
433
image (A) through the CNN and extracted the top 8 features from layer 4
434
(B) and layer 10 (C), respectively. As can be seen, each layer in a CNN
435
learns to extract different types of features from the input image and as we
436
move deeper into the network, the features become more complex and
437
abstract.
438

S2 Fig. Figure S2. Example images showing TEM images (left), labeled
439
images (middle), and predicted classification (right).
440

S3 Fig. Figure S3. Example images showing TEM images (left) and
441
predicted classification (right) for sodium hypochlorite-treated spores.
442

S4 Fig. Figure S4. Example images showing TEM images (left) and
443
predicted classification (right) for sodium peracetic acid-treated spores..
444

Acknowledgments

This work was supported by the Swedish Research Council (2019-04016); the Umeå
445
University Industrial Doctoral School (IDS); Kempestiftelserna (JCK-2129.3).
446

The authors acknowledge the facilities and technical assistance of the Umeå Core
447
Facility for Electron Microscopy (UCEM) at the Chemical Biological Centre (KBC),
448
Umeå University, a part of the National Microscopy Infrastructure NMI (VR-RFI
449
2016-00968).
450

References

1. Driks A. The dynamic spore. *Proceedings of the National Academy of Sciences*. 2003;100(6):3007–3009. doi:10.1073/pnas.0730807100.
2. Setlow P. Spores of *Bacillus subtilis*: their resistance to and killing by radiation, heat and chemicals. *Journal of applied microbiology*. 2006;101(3):514–525.
3. Magill SS, O’Leary E, Janelle SJ, Thompson DL, Dumyati G, Nadle J, et al. Changes in prevalence of health care-associated infections in US hospitals. *New England Journal of Medicine*. 2018;379(18):1732–1744.
4. Andersson A, Granum PE, Rönner U. The adhesion of *Bacillus cereus* spores to epithelial cells might be an additional virulence mechanism. *International journal of food microbiology*. 1998;39(1-2):93–99.
5. Manchee RJ, Broster M, Anderson IS, Henstridge R, Melling J. Decontamination of *Bacillus anthracis* on Gruinard Island? *Nature*. 1983;303(5914):239–240.
6. Malyshev D, Öberg R, Dahlberg T, Wiklund K, Landström L, Andersson PO, et al. Laser induced degradation of bacterial spores during micro-Raman spectroscopy. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*. 2022;265:120381. doi:10.1016/j.saa.2021.120381.
7. Malyshev D, Jones IA, McKracken M, Öberg R, Harper G, Joshi LT, et al. Hypervirulent R20291 *Clostridioides difficile* spores show disinfection resilience to sodium hypochlorite despite structural changes. *BMC Microbiology*. 2023;In press. doi:10.1186/s12866-023-02787-z.
8. Leggett MJ, McDonnell G, Denyer SP, Setlow P, Maillard JY. Bacterial spore structures and their protective role in biocide resistance. *Journal of Applied Microbiology*. 2012;113(3):485–498. doi:10.1111/j.1365-2672.2012.05336.x.
9. Henriques AO, Moran CP Jr. Structure, Assembly, and Function of the Spore Surface Layers. *Annual Review of Microbiology*. 2007;61(1):555–588. doi:10.1146/annurev.micro.61.080706.093224.

10. Driks A. *Bacillus subtilis* spore coat. *Microbiology and Molecular Biology Reviews*. 1999;63(1):1–20.
11. Malyshev D, Dahlberg T, Wiklund K, Andersson PO, Henriksson S, Andersson M. Mode of action of disinfection chemicals on the bacterial spore structure and their Raman spectra. *Analytical chemistry*. 2021;93(6):3146–3153.
12. Yan J, Liu F, Wang W. Scalable skin lesion multi-classification recognition system. *Computers, Materials & Continua*. 2020;62(2):801–816.
13. Londhe N, Ahirwal M, Lodha P. Machine learning paradigms for speech recognition of an Indian dialect. In: 2016 international conference on communication and signal processing (ICCP). IEEE; 2016. p. 0780–0786.
14. Pandith V, Kour H, Singh S, Manhas J, Sharma V. Performance evaluation of machine learning techniques for mustard crop yield prediction from soil analysis. *Journal of scientific research*. 2020;64(2):394–398.
15. Rajab S, Sharma V. Performance evaluation of ANN and Neuro-fuzzy system in business forecasting. In: 2015 2nd international conference on computing for sustainable global development (INDIACoM). IEEE; 2015. p. 749–754.
16. Wu H, Liu Q, Liu X. A review on deep learning approaches to image classification and object segmentation. *Computers, Materials & Continua*. 2019;60(2).
17. Qamar S, Ahmad P, Shen L. HI-Net: Hyperdense Inception 3D UNet for Brain Tumor Segmentation. In: Crimi A, Bakas S, editors. *Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries*. Cham: Springer International Publishing; 2021. p. 50–57.
18. Chen R, Pan L, Li C, Zhou Y, Chen A, Beckman E, et al. An improved deep fusion CNN for image recognition. *Computers, Materials & Continua*. 2020;65(2):1691–1706.
19. Cao W, Wu Y, Chakraborty C, Li D, Zhao L, Ghosh SK. Sustainable and Transferable Traffic Sign Recognition for Intelligent Transportation Systems. *IEEE Transactions on Intelligent Transportation Systems*. 2022;.

20. Ameri A, Akhaee MA, Scheme E, Englehart K. A deep transfer learning approach to reducing the effect of electrode shift in EMG pattern recognition-based control. *IEEE Transactions on Neural Systems and Rehabilitation Engineering*. 2019;28(2):370–379.
21. Li C, Wang K, Xu N. A survey for the applications of content-based microscopic image analysis in microorganism classification domains. *Artificial Intelligence Review*. 2017;51:577 – 646.
22. Kulwa F, Li C, Zhao X, Cai B, Xu N, Qi S, et al. A State-of-the-Art Survey for Microorganism Image Segmentation Methods and Future Potential. *IEEE Access*. 2019;7:100243–100269. doi:10.1109/ACCESS.2019.2930111.
23. Li C, Kulwa F, Zhang J, Li Z, Xu H, Zhao X. In: Pietka E, Badura P, Kawa J, Wieclawek W, editors. A Review of Clustering Methods in Microorganism Image Analysis. Cham: Springer International Publishing; 2021. p. 13–25. Available from: https://doi.org/10.1007/978-3-030-49666-1_2.
24. Bhateja V, Singh D, Yadav A. Guided Image Filter and SVM-Based Automated Classification of Microscopy Images. In: Intelligent System Design: Proceedings of INDIA 2022. Springer; 2022. p. 365–372.
25. Ma P, Li C, Rahaman MM, Yao Y, Zhang J, Zou S, et al. A state-of-the-art survey of object detection techniques in microorganism image analysis: from classical methods to deep learning approaches. *Artificial Intelligence Review*. 2022; p. 1–72.
26. Le Cun Y, Jackel LD, Boser B, Denker JS, Graf HP, Guyon I, et al. Handwritten digit recognition: Applications of neural network chips and automatic learning. *IEEE Communications Magazine*. 1989;27(11):41–46.
27. LeCun Y, Bengio Y, Hinton G. Deep learning. *nature*. 2015;521(7553):436–444.
28. Gite S, Mishra A, Kotecha K. Enhanced lung image segmentation using deep learning. *Neural Computing and Applications*. 2022; p. 1–15.

29. Melanthota SK, Gopal D, Chakrabarti S, Kashyap AA, Radhakrishnan R, Mazumder N. Deep learning-based image processing in optical microscopy. *Biophysical Reviews*. 2022; p. 1–19.
30. Groschner CK, Choi C, Scott MC. Machine learning pipeline for segmentation and defect identification from high-resolution transmission electron microscopy data. *Microscopy and Microanalysis*. 2021;27(3):549–556.
31. Agarap AF. Deep Learning using Rectified Linear Units (ReLU). *ArXiv*. 2018, Accessed 2023-03-03;abs/1803.08375.
32. Groschner CK, Choi C, Scott MC. Machine learning pipeline for segmentation and defect identification from high-resolution transmission electron microscopy data. *Microscopy and Microanalysis*. 2021;27(3):549–556.
33. Mirmohammadi P, Ameri M, Shalbaf A. Recognition of acute lymphoblastic leukemia and lymphocytes cell subtypes in microscopic images using random forest classifier. *Physical and Engineering Sciences in Medicine*. 2021;44(2):433–441.
34. Ren Q, Cheng H, Han H. Research on machine learning framework based on random forest algorithm. In: *AIP Conference Proceedings*. vol. 1820; 2017.
35. Mo Y, Wu Y, Yang X, Liu F, Liao Y. Review the state-of-the-art technologies of semantic segmentation based on deep learning. *Neurocomputing*. 2022;493:626–646.
36. ZEISS. APEER annotate; 2017, Accessed 2023-03-0. <https://www.apeer.com/>.
37. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, et al. Tensorflow: a system for large-scale machine learning. In: *Osdi*. vol. 16. Savannah, GA, USA; 2016. p. 265–283.
38. Chollet F, et al.. Keras; 2015, Accessed 2023-03-03. <https://github.com/fchollet/keras>.
39. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. *Journal of Machine Learning Research*. 2011;12:2825–2830.

40. Qamar S. Model code; Accessed 2023-03-03.
<https://github.com/sqbqamar/Spore-Segmentation>.
41. Vujović Ž, et al. Classification model evaluation metrics. International Journal of Advanced Computer Science and Applications. 2021;12(6):599–606.
42. Omidbakhsh N. Evaluation of sporicidal activities of selected environmental surface disinfectants: carrier tests with the spores of *Clostridium difficile* and its surrogates. Am J Infect Control. 2010;38(9):718–722.
43. Leggett MJ, Spencer Schwarz J, Burke PA, McDonnell G, Denyer SP, Maillard JY. Mechanism of sporicidal activity for the synergistic combination of peracetic acid and hydrogen peroxide. Applied and Environmental Microbiology. 2016;82(4):1035–1039. doi:10.1128/AEM.03010-15.
44. Estrela C, Estrela CR, Barbin EL, Spanó JCE, Marchesan MA, Pécora JD. Mechanism of action of sodium hypochlorite. Braz Dent J. 2002;13(2):113–117.
45. McDonnell G, Russell A, Denver. Antiseptics and Disinfectants: Activity, Action, and Resistance. Clinical microbiology reviews. 1999;12(1):147–179.