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 2 

Abstract 1 

The integration of cell transcriptomics and spatial coordinates to organize differentiation 2 

trajectories remains a challenge. Here we introduce spaTrack, a trajectory inference method 3 

using optimal transport to incorporate both transcriptomics and distance of spatial 4 

transcriptomics sequencing data into transition costs. spaTrack could construct fine spatial 5 

trajectories reflecting the true differentiation topology, as well as trace cell dynamics across 6 

multiple samples with temporal intervals. To capture the dynamic drivers, spaTrack models the 7 

cell fate as a function of expression profile along temporal intervals driven by transcription 8 

factors. Applying spaTrack, we successfully disentangle spatiotemporal trajectories of axolotl 9 

telencephalon regeneration and mouse midbrain development. Furthermore, we uncover 10 

diverse malignant lineages expanding in a primary tumor. One of the lineages with upregulated 11 

extracellular matrix organization implants to the metastatic site and subsequently colonizes to 12 

a secondary tumor. Overall, spaTrack greatly facilitates trajectory inference from spatial 13 

transcriptomics, providing insights in cell differentiation of broad areas. 14 

  15 
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 3 

Introductions 1 

Trajectory inference (TI) provides important insights in cell differentiation and biological 2 

process. Currently, there are numerous TI methods available, but most of them are designed for 3 

single cell RNA sequencing (SC) data and challenged by complex topologies. Frequently 4 

applied TI methods for SC data, e.g., Monocle2/3 (Cao et al., 2019; Qiu et al., 2017), PAGA 5 

(Wolf et al., 2019), Slingshot (Street et al., 2018), stemID (Grün et al., 2016), Tscan (Ji and Ji, 6 

2016), URD (Farrell et al., 2018) et al. usually construct a skeleton frame of cell differentiation 7 

averaged or optimally extracted from a SC data embedding generated by dimension reduction 8 

(DR) such as PCA, ICA, UMAP (McInnes et al., 2018), Diffusion Map (Haghverdi et al., 2015) 9 

and ForceAtlas2 (Jacomy et al., 2014). Many of the existing approaches are limited to simple 10 

linear or branched topologies and overlook morphometric space. However, the dynamics of 11 

biological systems, such as embryonic development or tumor progression, are often complex 12 

and strictly spatially organized. Cell transition is spatially heterogenous due to their location 13 

and surrounding environment. Recent advances in spatial transcriptomics sequencing (ST) 14 

technologies provide an opportunity to simultaneously reveal both transcriptomic and spatial 15 

patterns of development, which the SC is unable to capture. Trajectories generated from SC 16 

data and their methods are uncapable to uncover the spatial details of differentiation, and 17 

discrete trajectories are often compelled to be continuous in the SC manner, conflicting with 18 

the true topology. 19 

To capture the single cell dynamics, RNA velocity has introduced alternative ways to study 20 

cellular differentiation of SC data (Bergen et al., 2020; Chen et al., 2022c; La Manno et al., 21 

2018; Qiu et al., 2022). It describes the rate of transcriptional dynamics for an individual gene 22 

at a given time point based on the ratio of its spliced and unspliced messenger RNA (mRNA). 23 

Great efforts have been made to develop various TI methods based on RNA velocity. However, 24 

estimation of RNA velocity is often found to be less robust for indicating cellular transitions 25 

due to several fundamental limitations. There are low contents of unspliced RNAs in SC data 26 

and intronic regions could not be fully captured; Conventional RNA-velocity methods assume 27 

constant transcription rates but the cell population/states are heterogeneous which usually leads 28 

to nonsensical backward trajectories. Metabolic-labeling data has been explored in velocity 29 

estimate, which measures the synthesis and degradation of labeled RNA within a known period 30 

of time directly and overcomes some drawbacks of conventional RNA-velocity methods (Qiu 31 

et al., 2022). However, the metabolic-labeling data is not always available in studies. In addition, 32 

most RNA-velocity methods do not reconcile the physical proximity of cells into trajectory 33 
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inference. Besides, estimating RNA-splicing rate involves mapping BAM file which can be 1 

computationally time-consuming and require significant computational resources. Thus, there 2 

is a strong need for an alternative approach to efficiently generate single-cell spatial trajectories. 3 

Optimal transport (OT) is a method to find least-cost schemes of coupling distributions and 4 

provide intuitively quantifications of their distance between multiple datasets or samples 5 

represented as distributions (Villani, 2009). OT has recently been used for transcriptomic data 6 

analysis, including cell-cell communication inference (Cang and Nie, 2020; Cang et al., 2023), 7 

lineage study of hematogenesis (Schiebinger et al., 2019) and annotation of ST data (Cang and 8 

Nie, 2020; Nitzan et al., 2019). With the natural advantage of OT, it is capable to conveniently 9 

incorporate the profile of both gene expression and transition distance of cells into the cost 10 

matrix to solve the OT problem. A fully captured cell to cell transition matrix will facilitate the 11 

construction of trajectories with fine local details.  12 

In this study, we introduced an efficient method, namely spaTrack, to construct cell 13 

trajectory at single cell resolution of spatial context, which utilizes OT frameworks and 14 

sensitively reconciles both gene expression and physical distance. When dealing with multiple 15 

samples from a time series, spaTrack can construct a dynamic map of cell migration and 16 

differentiation across all tissue sections, providing a comprehensive view of transition behavior 17 

over time. In our study, spaTrack performs reliably in various scenarios of SC and ST data. We 18 

have successfully applied spaTrack to reconstruct cell trajectories in spatial manners for various 19 

biological systems, including regeneration of injured axolotl telencephalon, development of 20 

dorsal midbrain of mouse embryo, and tumor expansion and metastasis. Our approach has 21 

significantly facilitated the study of cell kinetics of ST data in a wide range of cases. 22 

 23 

Results  24 

Inferring cell trajectories from single ST data 25 

spaTrack utilizes optimal transport (OT) as a foundation to infer the transition probability 26 

between cells of ST data in a single sample, by incorporating both gene expression profiles and 27 

cell location information. Cells that are distant from each other in expression level and physical 28 

space will have higher transfer costs, which indicates a lower transition probability or longer 29 

time interval in the biological process. The schematics of the algorithm and workflow of 30 

spaTrack in solving the TI problem in single ST data are demonstrated in Figure 1A, which 31 

include 1) scaling both gene expression and physical distance into a cost matrix; 2) solving the 32 

OT problem by incorporating an entropy term; 3) constructing the vector field of cell velocity 33 
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 5 

from transferring probability; 4) organizing spatial trajectories from the vector field of cell 1 

velocity; 5) optimizing the path between a starting cell and corresponding ending cell using the 2 

least action path method; 6) identifying pseudotime-dependent genes using a generalized 3 

additive model (GAM) to fit the dynamics of gene expression along a trajectory. 4 

The cost matrix consists of two components: expression difference and physical distance, 5 

both of which employ Euclidean distance as the metric. The algorithm performs dimension 6 

reduction from original features and the Euclidean distance in the embedding space is used as 7 

the measurement of the difference of expression profile. By appropriately scaling these two 8 

distance measurements, we fine-tuned the relative importance of each one by adjusting the 9 

weight parameters of 𝛼!	and 𝛼". The algorithm maximizes the distance of a cell to itself to 10 

prevent self-transitions. To solve the OT problem using the cost matrix generated above, an 11 

entropic regularization term is introduced. This term helps to produce a smooth probability 12 

distribution (Cuturi, 2013). The resulting OT probability matrix displays the likelihood of each 13 

cell being transferred to other cells with the minimum cost incorporating both expression profile 14 

and spatial coordinates (Figure S1A and S1B). spaTrack makes the assumption that cells with 15 

higher transferring probabilities are more closely related during the development. Assigning the 16 

starting cells, the algorithm can reorder all other cells according to their transferring 17 

probabilities relative to the starting cells (see Methods). Subsequently, spaTrack creates a vector 18 

field of the cell velocity averaged from the transferring probabilities and directions of all cells 19 

in the neighborhood. Streamlines of the vector field are finally organized and smoothed as the 20 

spatial trajectories. Furthermore, we adapted the least action path (LAP) algorithm(Qiu et al., 21 

2022) to construct the optimal path of differentiation between a starting cell and an ending cell. 22 

Specifically, the vector field of cell velocity of the transition probability in a spatial 23 

neighborhood is computed to replace the RNA-splicing velocity. A set of neighboring cells are 24 

mapped to the inferred optimal path to determine cell orders and pseudotimes along the 25 

differentiation. The arc length between the mapped anchor point and the starting cell is 26 

normalized as the pseudotime of a cell. 27 

Sometimes, ST data from single sample will not capture all cell states of a complete 28 

biological process, especially when the process is time coordinated. However, integrating 29 

multiple samples will lose the spatial coordinates of each tissue section. spaTrack provides an 30 

integrating strategy to accommodate this situation. spaTrack separately computes the transition 31 

probability and cell velocity for each ST data; And then integrates the vector fields of all 32 

datasets to organize the overall trajectories in an UMAP embedding. This allows for a more 33 

accurate and complete representation of the cell trajectories without losing the spatial 34 
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coordinates of each data. 1 

 2 

Tracing cells across multiple ST data of a time series 3 

Multiple ST data sampled from a time series will provide a spatiotemporal transcriptomic view 4 

of biological systems. In order to align cells and generate trajectories across samples of different 5 

time intervals, spaTrack adapts an unbalanced and structured OT algorithm considering the 6 

uneven expression mass and distributions of samples. ST data of different time intervals are 7 

treated as different distributions (Figure 1B). The optimization problem of this OT includes 8 

three terms: a measure of the expression profile differences between cells of the two samples; 9 

a measure of the spatial distance differences between paired-cells of the two samples; and a 10 

measure of the KL divergence (see Methods). spaTrack extends a distance consideration in the 11 

optimization problem: If a pair of cells (𝑖, 𝑘) in time 𝑡! is mapped to a pair of cells (𝑗, 𝑙) in 12 

the next time 𝑡!"# with high probability, the distance between cells 𝑖 and 𝑘 in the time 𝑡! is 13 

close to the distance between cells 𝑗 and 𝑙 in the next time 𝑡!"#. Therefore, three matrices are 14 

included in spaTrack to solve the optimization problem: a gene expression dissimilarity matrix, 15 

a spatial distance matrix for cells at time 𝑡! , and a spatial distance matrix for cells at the next 16 

time 𝑡!"#. The resulting transport plan depicts the transition probabilities of individual cells 17 

across ST samples. 18 

After computing transport maps between two adjacent time points, the next step is to extend 19 

the transitions to the next time interval. To achieve this, we adopt the Markov assumption that 20 

the developmental process follows a memoryless property. Therefore, the long-range transitions 21 

could be inferred by composing transport maps using matrix multiplication (see Methods). At 22 

each time point, we start from the cells transported from the previous time point and infer their 23 

subsequent transitions. This progressive method has the advantage of avoiding direct inference 24 

of cell transition over long time intervals, and producing more coherent and credible results. 25 

Following this approach, spaTrack is able to establish a long-term and continuous transition 26 

map of cell trajectory.  27 

 28 

Modeling dynamic driven factors 29 

spaTrack explores the driven factors regulating cell trajectories, which helps to construct 30 

the regulatory network underlying cell differentiation. spaTrack establishes a global regulatory 31 

network to interpret the connection between the expression profiles of transcription factors (TFs) 32 

at current time and of targeted genes at later time. We propose to set up a regression model to 33 
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 7 

learn the linear continuous function, representing the relationship between TFs and the dynamic 1 

change of genes (Figure 1C). A weight matrix is optimized to present the importance of TFs 2 

and their genes. This regression model works for both data of discrete time points when the 3 

transport map has been constructed, and data of single sample assigned with continuous 4 

pseudotime (see Methods). To examine the inferred regulatory network of TFs and targeted 5 

genes, we extracted TF-target pairs with top weights and examined their relationship of 6 

expression profiles across cells along time. As expected, correlations were observed for those 7 

TF-target pairs with top weights (Figure S1C). 8 

 9 

spaTrack constructs reliable spatial trajectories over multiple scenarios 10 

spaTrack provides reliable performance in simulation data where various topologies of 11 

differentiation are considered, and quantitative evaluations demonstrate superior performance 12 

from spaTrack over existing methods. We designed seven various scenarios in organizing cells 13 

temporally and spatially during differentiation (Figure 2A): (1) Continuous differentiation from 14 

one core, expanding outwards in an orderly manner; (2) Nonlinear spreading, with faster speed 15 

at earlier stage and slowing down later; (3) Fluctuant coordinates, cell expanding to surrounding 16 

space with high fluctuation; (4) Discrete differentiation in different niches; (5) Branched 17 

lineages in space; (6) Branched lineages without spatial information or of totally infiltrated cells, 18 

which is treated as the SC data manner; (7) Multiple samples with time intervals. We applied a 19 

lineage-imbedded SC data simulator to generate differentiating cells followed by a spatial 20 

assignment according to the seven scenarios (see Methods).  21 

Based on hundreds of repeats for each scenario, we observed that spaTrack constructs 22 

reliable spatial trajectories over multiple scenarios (Figure 2A and 2B). spaTrack presents 23 

several advantageous properties in these validations: Firstly, spaTrack captures local details of 24 

cell differentiation with spatial trajectories reflecting the true topology. Secondly, spaTrack 25 

achieves high consistence with preset cell orders and accuracy even for those scenarios of low 26 

space and transcriptome correlation (Nonlinear or Fluctuant scenarios), because both gene 27 

expression and spatial coordinates will contribute to the computation of cell transition, making 28 

the results robust. Thirdly, for spatially discrete and branched lineages, spaTrack precisely 29 

depicts each lineage avoiding interference from each other as the spatial gap depresses their 30 

transition probabilities (Discrete or Branched scenarios). Fourthly, spaTrack is totally 31 

compatible with SC data when the spatial coordinates are missing or cells are infiltrated without 32 

spatial organization (Branched-SC scenario). At last, spaTrack could directly trace cell 33 

trajectories of multiple samples of a time series (Multisample scenario), the fine consistence 34 
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 8 

and accuracy making it applicable to trace cells in a wide range of developmental questions 1 

such as embryonic development and tumor metastasis, where cells are spatially and temporally 2 

organized. 3 

Comparing spaTrack with currently widely-used TI methods for expression data, spaTrack 4 

presents superior performance over other methods (Figure 2C). Integrating spatial information 5 

adds accuracy of spaTrack comparing with those SC methods without spatial consideration. For 6 

the Branched-SC scenario, spaTrack provides closed performance with SC methods since the 7 

spatial coordinates are missing. The RNA-velocity based methods are not applicable for the 8 

simulated expression matrix. Their performance on ST and SC data will be compared with 9 

spaTrack for empirical data in the Discussion section. 10 

 11 

According to the highlighted features of the algorithm and the performance evaluated in 12 

various scenarios, spaTrack provides several advantageous functions in TI. Firstly, spaTrack 13 

could accurately uncover local details of spatial trajectory. Secondly, a single sample may not 14 

capture all cell states involved in the complete developmental process. To overcome this 15 

limitation, spaTrack could generate and extend the complete trajectories by integrating the 16 

transition matrix of multiple samples, without losing their spatial information. Thirdly, direct 17 

cell mapping across multiple sections could vividly depict cell trajectories along a time series. 18 

Fourthly, spaTrack captures potential driven factors and networks along the time intervals 19 

underlying cell differentiation. Furthermore, spaTrack exhibits low resource requirements in 20 

terms of both power consumption and computing memory while maintaining a high processing 21 

speed (Figure S1D). Specifically, the generation of trajectories using 5k cells with 20,000 22 

features can be accomplished within one minute, while utilizing a modest memory allocation 23 

of 6.9 GB. 24 

 25 

spaTrack constructs fine local trajectories of axolotl telencephalon regeneration 26 

We applied spaTrack to reconstruct the spatially detailed trajectories of the regeneration of 27 

axolotl telencephalon after injury. Brain regeneration requires the coordination of complex 28 

responses in time and region-specific manners. Taking the spatial coordinates of cells into 29 

consideration, spaTrack can capture local details of cell trajectory that may be discontinuous in 30 

space. Axolotl is a model for studying brain regeneration as its ability to regenerate lost cortical 31 

cells after injury. We collected ST data of axolotl samples from a time series after injury(Wei et 32 

al., 2022),  including samples of 5 days (D5), 10 days (D10), 15 days (D15), and 20 days (D20) 33 
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 9 

(Figure 3A, Figure S2A and S2B), to uncover the regeneration process in space. 1 

D15 shows wound closure with enriched cell types of progenitors and immature neuron 2 

cells, including ependymoglial cells (EGC), ractive EGC (reaEGC), immature neuron (IMN), 3 

regeneration intermediate progenitor cell (rIPC) and nptx+ lateral pallium excitatory neuron 4 

(nptxEX) (Figure 3B). reaEGC responses to injury and starts the tissue repair suggested by 5 

previous studies(Lust et al., 2022; Wei et al., 2022), which presents high proliferative activity 6 

(Figure S2C and S2D). Adjacent layers of intermediated cells were observed between reaEGC 7 

and nptxEX across the wound area, indicating their transitions during regeneration. spaTrack 8 

constructed the local details of regeneration, generating the probability, vector field, and 9 

streamlines of cell transition (Figure 3C-3E), uncovering the three spatial lineages of cell 10 

differentiation of D15 (Figure 3F). Lineage 1 ranged from wound center to the right-edge of 11 

telencephalon, which was reaEGC - rIPC - IMN – nptxEX axis. Lineage 2 was the regeneration 12 

of wound area on the dorsal region, which described the complex transitions between reaEGC 13 

and IMN, rIPC, and dorsal palliumexcitatory neuron (dpEX). Lineage 3 presented the normal 14 

development from Wnt+EGC (wntEGC) to medial pallium excitatory neurons (mpEX). These 15 

results depicted the differentiation from reaEGC to intermediate and mature neurons during 16 

regeneration after injury, which were consistent with previous reports(Lust et al., 2022; Wei et 17 

al., 2022). Importantly, spaTrack explored cell differentiations that were temporally and 18 

spatially discontinuous. The trajectory of lineage 2 in the wound area was discrete with the 19 

normal trajectory of lineage 3, which were separate processes in development and regeneration. 20 

Single sample presents only a subset of cell types involved in the regeneration process, 21 

with sparse cell population and continuity (Figure 3G, Figure S2E). However, integrating all 22 

ST samples of D5, D10, D15 and D20 will lose the spatial coordinates of each axolotl tissue 23 

section. To address this issue, spaTrack implements an integrating framework to separately 24 

calculate cell-transition probability of each sample, and next integrate all transition matrix for 25 

the inference of complete trajectory. From an integrated probability matrix (Figure 3H), 26 

spaTrack generated the complete trajectories of regeneration and visualized on their UMAP 27 

embeddings (Figure 3I). Abundant intermediated cells rIPC and IMN were fully captured 28 

showing better continuity than only one sample (Figure S2E and S2F).  29 

 30 

Tracing neuron cells across mouse embryos of a time series 31 

spaTrack provides a novel strategy to trace cells across multiple ST samples by direct mapping 32 

cells via an unbalanced OT strategy. Development of mouse embryos requires strict spatial-33 
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temporal organization. To probe the dynamics of early neurogenesis, we applied spaTrack on 1 

the ST data of developing dorsal midbrain of mouse embryos at day 12.5 (E12.5), 14.5 (E14.5), 2 

and 16.5 (E16.5) (Figure 4A, Figure S3A and S3B). Radial glia cells (RGC) are reported as the 3 

progenitors of both neuroblasts (NeuB) and glioblasts (GlioB)(Chen et al., 2022a), but their 4 

spatial-temporal transitions are not well characterized. RGC decreases from E12.5 to E14.5 and 5 

E16.5, while NeuB and GlioB expand in E14.5 and E16.5, and are not evenly distributed along 6 

the spatial axis (Figure 4A). spaTrack optimally transported cells from E12.5 to E14.5, and 7 

subsequently to E16.5 (Figure 4B), tracing their dynamic differentiation across time. At E14.5, 8 

81% of the successfully transported NeuB cells were found originating from RGC of E12.5, 9 

while the corresponding number for GlioB was 74%. Subsequently, at E16.5, 51% of the 10 

successfully transported NeuB and 42% of GlioB were transported from RGC of stage E14.5, 11 

indicating the RGC is the main source of NeuB and GlioB (Figure 4B). Visualizing these 12 

mappings in space, we directly observed the coordinately organization of differentiation in each 13 

time point (Figure 4C and 4D, Figure S3E). Differentiations of RGC-NeuB and RGC-GlioB 14 

were restricted to different regions and embryonic stages. RGC in the rostral axis mainly 15 

differentiated into NeuB, and RGC in the dorsal and caudal regions differentiated into GlioB. 16 

RGC-NeuB differentiation mainly occurred from E12.5-E14.5, while RGC-GlioB arose 17 

between E14.5-E16.5. All of these results of spaTrack suggested neurogenesis and gliogenesis 18 

were asynchronous and spatially heterogeneous, consistent with previous findings (Chen et al., 19 

2022a).  20 

 Furthermore, driven factors of the neuron differentiation were investigated by a regression 21 

model in spaTrack. A regulatory network was built to present the connection between TFs and 22 

targets along the temporal intervals (Figure 4E). Several TFs were highlighted by our method. 23 

Ybx1 reported as a crucial factor for forebrain specification and restricting mid-hindbrain 24 

growth in mouse embryo, fine-tunes the spatiotemporal expression of neurodevelopmental 25 

genes (Evans et al., 2020). Another TF Sox11 is required in embryonic neurogenesis and Sox11-26 

depleted embryos develop small and disorganized brains, accompanied by transient deficits in 27 

neural progenitor cells (Wang et al., 2013). Therefore, spaTrack could provide valuable 28 

reference and methodological support for the advancement of the neuroscience field.  29 

 30 

Recovering the diverse trajectories of tumor expansion 31 

Intratumoral heterogeneity manifests as spatial heterogeneity, which describes the uneven 32 

distribution of diverse malignant subclones within tumor, and as temporal heterogeneity, 33 
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referring dynamic variations in tumor populations and molecules over time (Dagogo-Jack and 1 

Shaw, 2018; Hausser and Alon, 2020). Tumor heterogeneity drives tumor progress and drug 2 

resistance, creating the need to quantitatively investigate tumor subclones and dynamics over 3 

space and time.  4 

We collected ST data from a primary tumor section of intrahepatic cholangiocarcinoma 5 

(ICC) (Wu et al., 2023), covering the regions of both intratumor and boundary (Figure 5A, 6 

Figure S4A-S4C). Previous study(Wu et al., 2023) detected strong immunosuppression and 7 

metabolic reprogramming in the invasive zone of tumor boundary, suggesting the spatially 8 

diversity of tumor progress. Eight subclones were identified in the primary ICC tumor (P0-P7) 9 

(Figure 5B), with P0 showed pronounced expression of stemness markers and cell cycling genes 10 

(Figure 5C and 5D, Figure S4D). Applying spaTrack to reconstruct cell trajectory of malignant 11 

cells assigning P0 as starting cells (Figure 5E), we identified three diverse lineages starting 12 

from P0 and spanning the tumor space in three directions (Figure 5E and 5F). Lineage 1 (P0-13 

P1-P2-P7) expanded to the border region between tumor and hepatic cells. Lineage 2 (P0-P3-14 

P4) extended to the tumor bottom and lineage 3 (P0-P5-P6) elongated along the top area. To 15 

determine biological difference among the three lineages, we identified trajectory-depended 16 

genes by fitting a generalized additive model between the pseudotime and gene expression 17 

along the optimal path, inferred using the LAP method (Figure 5G and 5H, Figure S4E and 18 

S4F). In the associated genes of lineage 1, COL1A1 is a major component of the tumor 19 

extracellular matrix related with tumor development and immune profile(Chen et al., 2022b). 20 

SAA1 and SAA2 lead to recruitment and polarization of macrophages, promoting local 21 

immunosuppression (Wu et al., 2023). Annotating associated genes of lineage 1, we observed 22 

significant enrichment of ECM organization and regulation of platelet and neutrophils (Figure 23 

5I), which involve in tumor migration, metastasis, and immunosuppression(Winkler et al., 2020; 24 

Wu et al., 2023). The GSEA scores of ECM and EMT pathways further indicated the metastatic 25 

potential of lineage 1 (Figure 5J and 5K). Additionally, spaTrack constructed the regulatory 26 

network underlying lineage 1 (Figure S4G), capturing the TFs and targets of tumor growth and 27 

metastasis, e.g. KLF7 (Gupta et al., 2020) and ETS2 (Zhang et al., 2021). All these characters 28 

were not observed in the other two lineages, indicating the spatial heterogeneity of tumor 29 

progress. 30 

 31 

Tracing tumor metastasis 32 

spaTrack provides the ability to trace cells across tissues of different time/conditions and 33 
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therefore could reconstruct the trajectory of tumor metastasis. Tumor metastasis refers to the 1 

process by which cancer cells detach from the primary tumor and spread through the 2 

bloodstream or lymphatic system to colonize distant organs (de Visser and Joyce, 2023). 3 

Understanding the origins and colonizing process of tumor metastasis, provides important 4 

insights in developing effective strategies to target metastatic relapse and improve patient 5 

outcomes (Ganesh and Massague, 2021). 6 

We collected a metastatic tumor (Figure 6A, Figure S5A and S5B) from the lymph node 7 

corresponding with the primary ICC tumor (Figure 5A) in the same patient (Wu et al., 2023). 8 

Malignant cells at the metastatic site were categorized into four major clusters (M0-M3) (Figure 9 

6B), forming a layered structure. M0 located at the core site of the tumor; M1 lied in the middle 10 

layer; M2 and M3 covered the outer layer. We applied spaTrack to optimally transport the 11 

malignant cells from the primary tumor to the metastatic tumor. M3 showed numerous 12 

successful transports from P0/P1, which was significantly higher than any other pairs of clusters 13 

(Figure 6C). By plotting the successful transports between the primary and metastatic tumors 14 

(Figure 6D), we observed malignant cells of the primary tumor (mainly from P0-P1) implanted 15 

to the bottom axis of the metastatic tumor, belonging to subclone M3, from where the metastatic 16 

cells putatively expanded to a new tumor. To further investigate the origins and colonization of 17 

metastatic cells, we inferred and compared the genetic variants (SNP) of the malignant cells 18 

from both tumors. P0-P1 shares more variants with M3, than any other pairs of subclones after 19 

adjusting the population size (Figure 6E), confirming the metastatic connection inferred by 20 

spaTrack. Furthermore, integrating the ST data of the primary and metastatic tumors in the SC 21 

manner, M3 approximated with P0 and P1 in the UMAP embedding space (Figure S5C), which 22 

was consistent with the results of spaTrack. Constructing the regulatory network between the 23 

primary tumor and the metastatic tumor, we observed HMGA1, ID2, and CEBPG as the key 24 

factors driving the metastatic dynamics, all of which play important roles in tumor progression 25 

and metastasis (Huang et al., 2020; Sgubin et al., 2022; Sikder et al., 2003) (Figure 6F). 26 

We subsequently examined the stemness and cell cycling of metastatic cells, both of which 27 

indicated M3 presenting the activation of proliferation and expansion in the metastatic site 28 

(Figure 6G, Figure S5D and S5E). We applied spaTrack to generate trajectories of the metastatic 29 

cells, assigning the successfully transported cells of M3 as starting cells (Figure 6H). It appeared 30 

that M3 initiated the colonization along the bottom axis and subsequently progressed to M2 31 

where they formed the outer layer. Both M3 and M2 expanded towards the middle layer (M1) 32 

and formed the core site. Overall, spaTrack vividly described the dynamic process of tumor 33 

metastasis including origination, colonization, and expansion (Figure 6I). This comprehensive 34 
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analysis would certainly provide us valuable insights of tumor metastasis. 1 

 2 

Discussion 3 

Development of biological systems commonly requires strict spatial-temporal organization. 4 

Spatial coordinates and experimental time might be leveraged as important constraints 5 

supplementing to transcriptomic profiles in the TI work. spaTrack, presented as an innovative 6 

algorithm that uses the mathematical concept of OT, generates accurate and informative spatial 7 

trajectories by incorporating both gene expression profiles and spatial-temporal information 8 

from ST data. According to the highlighted features of the algorithm (Figure 1A-1C), spaTrack 9 

could (1) reconstruct fine local trajectory from ST data; (2) integrate spatial transition matrix 10 

of multiple samples to generate complete trajectories; (3) trace cell trajectory across temporal 11 

samples via direct OT mappings; (4) capture developmental driven factors by modelling a 12 

function of predicting gene profile at later time by TF expression at current time. 13 

spaTrack has been undergone extensive testing on both ST data and SC data of simulated 14 

scenarios, comparing with currently widely used TI methods for expression data (Fig 2A-2C). 15 

OT framework has the natural advantage of incorporating spatial distance into the cost measure 16 

of cell transition and therefore captures local details and generate spatial disconnected 17 

trajectories. Moreover, to compare spaTrack with RNA-velocity based methods, we applied 18 

spaTrack, scVelo, and Dynamo, which could directly generate trajectories in spatial coordinates, 19 

on the ST data of axolotl telencephalon regeneration (Figure S6A and S6B), which is a 20 

comprehensively studied model. As we described before, spaTrack uncovered three spatial 21 

trajectories reflecting the true regenerative process. Regeneration trajectories in the wound area 22 

are disconnected with those in normal tissue. scVelo presented confusing trajectories with 23 

multiple starting spots, which could not be adjusted by simply reversing the velocity direction. 24 

Dynamo performed well in most regions, but showed continuity between lineages of temporally 25 

disconnected. Comparatively, Monocle3, showed a skeleton along the data shape, without 26 

single cell trajectories (Figure S6B), which is a typical result of SC methods using expression 27 

data. 28 

Furthermore, we tested and compared the performance of spaTrack and other methods on 29 

a complex topology of SC data of primary human hematopoietic stem and progenitor cells 30 

(HSPCs) (Qin et al., 2021) (Figure S6C). Human hematopoiesis is a continuously hierarchical 31 

process and is comprehensively investigated by previous studies (Buenrostro et al., 2018; 32 

Ranzoni et al., 2021). The development of HSPCs follows a branched structure with HSC as 33 
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the root. spaTrack successfully reconstructed the trajectories that closely recapitulate the 1 

established knowledge of hematopoiesis (Figure S6D). In comparison, scVelo generated several 2 

nonsensical reversing trajectories, starting from intermediated cell types of active cell-cycling 3 

states (e.g., erythrocyte progenitor (pro-ery), B cell progenitors (proB), and granulocyte and 4 

monocyte progenitor (GMP)). Without metabolic labels, Dynamo also showed reverse 5 

streamlines in erythrocyte and myeloid trajectories. Monocle3 generated a proper skeleton of 6 

hematopoiesis but missing the single cell details. 7 

At last, spaTrack requires feasible computing power and memory (Figure S1D), making it 8 

a fast and effective option for TI study of ST data. Under a standard CPU thread (Intel(R) 9 

Xeon(R) CPU E5-2650 v4 @ 2.20GHz), spaTrack requires only minutes to finish the 10 

computation of 5k – 400k cells (with 20,000 features). The memory load depends seriously on 11 

the population size, which follows an exponential growth with 6.9 GB for 5k cells.  12 

 13 
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 18 

Data resources 19 

The public ST data and SC data used in this study were collected as follows: ST data of Stereo-20 

seq of axolotl telencephalon after injury was obtained from China National GeneBank DataBase 21 

(CNGBdb) with accession number CNP0002068. We selected four samples of 5, 10, 15, and 20 22 

days after injury. ST data (Stereo-seq) of mouse midbrain development were collected from 23 

CNGBdb with accession number CNP0001543. Three ST samples (Stereo-seq) of mouse 24 

embryo sections at 12.5 day, 14.5 day, and 16.5 day were downloaded from CNGB with 25 

accession number CNP0002199, including one primary tumor of intrahepatic 26 

cholangiocarcinoma (ICC), and one corresponding metastatic tumor. One SC sample (10x 27 

genomics) of human hematopoietic stem and progenitor cells (HSPCs) were downloaded from 28 

the Genome Sequence Archive of CNCB-NGDC (National Genomics Data Center of China 29 

National Center for Bioinformation), with accession number HRA000084. 30 

 31 

Code availability 32 

The open-source software spaTrack is available at https://github.com/yzf072/spaTrack. The 33 

tutorial of spaTrack is deposited at https://spatrack.readthedocs.io/en/latest/index.html. 34 

 35 

Methods 36 
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Inferring cell trajectories from single ST data 1 

Construction of cost matrix 2 

To reduce computational burden, we perform Principal Component Analysis (PCA) to reduce 3 

the dimensionality of the data. Subsequently, we select the top 10 PCA components (defaulting 4 

to 30) for downstream analysis. To construct the cost matrix, we incorporate both gene 5 

expression profiles and physical distances. Differences in gene expression profile and cell 6 

coordinates are quantified using Euclidean distance. For cell i and cell j, the Euclidean distances 7 

of gene expression (𝑔#$) and physical distance (𝑑#$) are calculated as follows: 8 

𝑔#$ = -.𝑥!$ − 𝑥!#1
"
+ .𝑥"$ − 𝑥"#1

"
+⋯+ .𝑥%$ − 𝑥%#1

"
,

𝑑#$ = -.𝑥# − 𝑥$1
" + .𝑦# − 𝑦$1

"	
 (1) 9 

Where n represents the number of principal components selected in the previous step of PCA.  10 

To balance the contributions of the two distance measurements, we first normalize the 11 

distances. We then integrate the normalized gene expression distance 𝑔#$ and normalize spatial 12 

distance 𝑑#$ by scaling factors 𝛼! and 𝛼" to compute the cost matrix 𝐶#$ of cell transition. 13 

These factors control the relative importance of each distance measurement, with suggesting 14 

values for 𝛼! and 𝛼" are between 0 and 1. To prevent self-transitions, the cost matrix is re-15 

defined. When 𝑖 = 𝑗, we set the cost to the maximum of 𝐶#$ times 10⁷, so that the cost of a 16 

self-transition is maximized: 17 

 18 

𝐶#$ = 6
𝛼! ⋅

&!"
∑&!"	

+ 𝛼" ⋅
)!"
∑)!"	

	for	𝑖 ≠ 𝑗

Max.𝐶#$1 × 10* 	for	𝑖 = 𝑗
  (2) 19 

 20 

Transition probability between cells 21 

Adapting the concept of optimal transport (OT), we calculate the transition matrix by solving 22 

the following optimization problem: 23 

 24 

𝛾 = argmin
+

⟨𝛾,𝐌⟩, + reg ⋅ Ω(𝛾)

																																									s.t.	𝛾𝟏 = 𝐚
																																													𝛾-𝟏 = 𝐛
																																																		𝛾 ≥ 0

  (3) 25 
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Where M is the cost matrix calculated above, 𝛀 is the entropic regularization term Ω(𝛾) =1 

∑ 𝛾#,$ log.𝛾#,$1#,$ , a and b are source and target weights (both sum to 1). 2 

 3 

Cell order assignment 4 

To utilize spaTrack for cell trajectory analysis, we specify the starting cells as ancestral cells. 5 

This can be achieved through various means including importing cell coordinates, cell type, or 6 

by manual selection using the interactive user interface to create lasso spots. Once the starting 7 

cells are defined, spaTrack will assign cell orders or directions relative to the starting cells for 8 

other cells in the dataset. This can be achieved by calculating the transferring probability of 9 

each cell to the starting cells. The probability can be determined by summing the transition 10 

probabilities of the cell to each of the starting cells. 11 

Let cell1, cell2, … cells as starting spots, for celli, the sum of transition probabilities is 12 

calculated as:  13 

𝑃# = 𝑝!,# 	+ 𝑝",# 	+ ⋯+ 𝑝/,# 	 (4) 14 

Where the 𝑃# is the probability of starting spots transferred to cell i. We assign a cell order to 15 

each cell by assuming that cells with a higher probability of transferring to their ancestors are 16 

closer to the ancestors in the trajectory. The probabilities of starting cells transferring to each 17 

cell were ranked ascending as:  18 

𝑟# = 𝑅(1!)  (5) 19 

Assuming the same interval, cell orders are normalized using the following formula: 20 

𝑅i	 =
4!5!
6

  (6) 21 

Where N is the total cell number. 22 

 23 

Cell velocity and organizing trajectory 24 

Cell velocity is defined as the overall transition probability and direction from a cell to its 25 

neighbors. Before calculating cell velocity, the neighboring cells are determined using their 26 

spatial coordinates and their cell PCA embedding matrix. Users are allowed to choose the 27 

number of neighboring cells to consider. The spatial neighbors are identified using the K nearest 28 

neighbors (KNN) algorithm, while the PCA matrix neighbors are determined using Euclidean 29 

distance between cells. The final set of neighboring cells is obtained by taking the intersection 30 

of the two sets of neighbors. 31 
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For each cell i, the n neighbors are selected. The velocity between cell i and cell j (j ≤ n) is 1 

defined as following: 2 

𝑣#$ = [
𝑝#,$ 	for	𝑅#	 > 𝑅j	
−𝑝#,$ 	for		𝑅i	 < 𝑅j	

  (7) 3 

Then the final velocity of cell i is calculated by averaging the velocities of cell i in its 4 

neighborhood: 5 

𝑉# =
∑8!"
%

  (8) 6 

The trajectory is organized from the vector field of cell velocities, which is adapted from sctour 7 

19. Briefly, the optimal transition probability matrix is used as weights to calculate the unitary 8 

displacement vector for each cell. Only n KNNs of each cell are considered (n = [total spot 9 

number/50]):  10 

Δ𝑢 = ∑$9#  b𝑝#$ −
!
%
c :"5:!
∥∥:"5:!∥∥

  (9) 11 

Where 𝑢# and 𝑢$ were the coordinates of cell i and j.  12 

 13 

Optimal path between two cells and pseudotime calculation. 14 

To study the differentiation trajectory between two cells over space, we adapt the least action 15 

path (LAP) algorithm (Qiu et al., 2022) to construct the optimal path between a starting spot 16 

and ending spot. Firstly, we construct a vector field of cell velocity from transition probability 17 

instead of RNA velocity, as described in Formula 7 and 8, which enables the estimation of cell 18 

velocity at any coordinate point. Secondly, given a starting cell and an ending cell, the initial 19 

path will be a line connecting the two points. The path is adjusted according to the cell velocity 20 

following the LAP algorithm. We will get an optimal path that best fits the transition between 21 

the two cells. Afterwards, we need to map all the cells around the optimal path to assign cell 22 

orders and pseudotimes along the differentiation. We use the k-Nearest Neighbor (KNN) 23 

method to search cells spatially around the path. The neighboring cells are vertically mapped 24 

to the optimal path, and the order of the cells is determined according to the mapped anchor 25 

point relative to the starting cell. Pseudotimes are defined as arc length between the mapped 26 

anchor point and the starting cell. Pseudotimes are normalized to a 0-1 range by dividing the 27 

total length of the path.  28 

 29 

Tracing cells across multiple ST data with time-intervals 30 
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Unbalanced transport across multiple ST data 1 

To compute the transport map between cells at time	 𝑡# and 𝑡#<!, assuming that there are 𝑚 2 

cells at time 𝑡# and 𝑛  cells at time 	𝑡#<!, we solve the following optimization problem:	3 

argmin
𝝅∈ℝ#$×&

[(1 − 𝛼)⟨𝝅,𝐌⟩@

	+𝛼∑#,$,A,B𝑫.𝐝!(𝑖, 𝑘), 𝐝"(𝑗, 𝑙)1𝝅#,A𝝅$,B
+𝜆!KL(𝝅𝟏C ∣∣ 𝑝! ) + 𝜆"KL(𝝅-𝟏% ∣∣ 𝑝" )]

  (10) 4 

Where 𝐌 ∈ ℝ%×C measures the gene expression dissimilarity between cells of two samples, 5 

and ⟨𝐴, B⟩@ denotes Frobenius inner product of matrices 𝐴 and	 𝐵, and 𝐝!(𝑖, 𝑘), 𝐝"(𝑗, 𝑙) are 6 

the spatial distances between cells 𝑖, 𝑘 and their corresponding cells 𝑗, 𝑙 at different times 7 

respectively, and 𝑫 measures the difference between scaled distances (Euclidean norm ∥⋅∥"). 8 

In addition, 𝜆! and 𝜆" are regularization parameters and 	𝑝! and 𝑝"	are weight vectors of 9 

each cell. By default,	 𝑝! =
!
C
⋅ 𝟏C, 𝑝" =

!
%
⋅ 𝟏%,where𝟏C, 𝟏%denotes a column vector of length 10 

𝑚, 𝑛 containing all ones. The transport problem is solved with following considerations: 11 

1. If cell 𝑖 in time 𝑡# is mapped to cell 𝑗 in the next time 𝑡#<! with a high weight 𝝅#E, then 12 

the expression profile 𝑥# of cell 𝑖 is similar to the expression profile 𝑥$ of cell 𝑗.  13 

2. If a pair of cells (𝑖, 𝑘) in time 𝑡# is mapped to a pair of cells (𝑗, 𝑙) in the next time 𝑡#<! 14 

with high weights 𝝅#E and 𝝅AF, then the distance 𝒅𝟏(𝑖, 𝑘) between cells 𝑖 and 𝑘 in the 15 

first time 𝑡# is close to the distance 𝒅𝟐(𝑗, 𝑙) between cells 𝑗 and 𝑙 in the next time 𝑡#<!. 16 

3. Unbalanced optimal transport (Chizat et al., 2018), is with a more realistic approach to 17 

solving practical problems, for instance, it is suitable for scenarios where batch effects are 18 

present at different time points or when investigating the impact of the varying numbers of 19 

cells with value-added differentiation.  20 

The sum of the first two terms in Formula 10 represents a classic Fused Gromov-Wasserstein 21 

algorithm(Titouan et al., 2019). By introducing the last term, we extend the structured transport 22 

to handle unbalanced transport problems, where the equality constraints are relaxed to impose 23 

bounds on the marginals of the transport plan using of KL-divergence measure. 24 

 25 

Computing trajectories of interest cells 26 

At a given time point, a collection of starting cells can represent a specific cell type or any 27 

region of interest in space. Then the distribution of descendant cells at the next time point 𝑡#<! 28 
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can be calculated based on the transition matrix, 1 

𝑝I!(𝑥) = [
!
|K|

𝑥 ∈ 𝑆
0 otherwise	

  (11) 2 

In which S is the set of starting cells. The descendant distribution can be calculated as following  3 

𝑝I!#'
- = 𝑝I!

-𝝅I!,I!#'  (12) 4 

where 𝝅I!,I!#' is the optimal transport map between 𝑡# and 𝑡#<! calculating from (10). 5 

 6 

Learning gene regulatory models 7 

OT has the capability to capture potential driven dynamics. We interpret the vector field as a 8 

model of gene regulation, which establishes functional relationships between the expression of 9 

transcription factors (TFs) at current time point and the expression of genes in a period of time. 10 

We propose to set up a regression model to learn the positive/negative regulation of genes by 11 

TFs. For ST data of two time points, we sample pairs of cells with expression (𝑋# , 𝑋#<!) from 12 

the transport map and calculate gene changes ∆#: 13 

∆#= 𝑋#<! − 𝑋#  (13) 14 

Then, we extract TF expression from time 𝑖 + 1 and construct the following regression:	15 

𝑓:	𝑅C → 𝑅I ,	16 

	 𝑓(∆#) = 𝑌#<!,	17 

min
L∈M(×&

!
%
∑ ‖𝑌#<! − ∆#𝑊-‖"%
#N!   (14)	18 

 19 

where 𝑌#<! = 𝑋#<!𝑇 ,	 𝑋# ∈ 𝑅!×C , 𝑋#<! ∈ 𝑅!×C  denotes the gene expression of pairwise 20 

mapped cells at two time points with m genes,	 𝑓 is the learned linear continuous function, 21 

representing the relationship between genes and TFs, 𝑊 ∈ 𝑅I×C denotes weight matrix with 22 

TFs and genes, 𝑇 ∈ 𝑚 × 𝑡 stands for one-hot encoding matrix of TFs and genes. Here, we 23 

perform min-max normalization for gene changes and TF expression respectively and put data 24 

into the regression model to get weights.  25 

For ST data of a single tissue section, we format the data to adapt the regression model. 26 

Cells are sorted according to their inferred pseudotime and are averagely grouped according to 27 

the setting bins. Then, cells of each pair of adjacent bins could be inputted to the model, which 28 

are processed in the same way. 29 
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To solve the problems of sparse data and reduce slow convergence, we used a meta-analysis 1 

method. We repeatedly select random cells and calculate the mean expression as new data, to 2 

improve data quality and increase sample size. To avoid the instability caused by random 3 

initialization of the model, we take the average of ten random training as the final result. Finally, 4 

top positive/negative correlation weight pairs are sorted from high to low and stored in data 5 

frame format. The regulatory network of TFs and genes can be displayed visually. 6 

 7 

Simulations of ST data. 8 

We applied a lineage-imbedded SC data simulator, Splatter (Zappia et al., 2017), to generate 9 

differentiating cells followed by a spatial assignment according to various scenarios. Basic 10 

parameters to restrain the expression of single cells in the simulator were assigned as 11 

nGenes=3000, batchCells=3000, mean.shape=0.6, mean.rate=0.3, bcv.common=0.2, 12 

dropout.mid=0, dropout.shape=-1, out.prob=0.05, de.prob=1; Lineage parameters were 13 

assigned according to the topologies: method = "paths", path.length= from 60 to 100, 14 

path.skew= from 0.2 to 0.5, path.nonlinearProb=0.1. After the simulations of expression matrix 15 

of SC, we assigned the 3000 cells of each simulation to a 5000 μm × 5000 μm square, assuming 16 

each cell taking up a 50 μm × 50 μm spot. For a spatial assignment, cells were organized 17 

according to their preset steps expanding from the center, with a fluctuation of a normal 18 

distribution 𝜇 = 0, 𝜎 = 3	𝑡𝑜	6 . For each scenario, simulations were repeated 100 times. 19 

Consistence and accuracy were evaluated from all these batches. Accuracy was estimated as 20 

the fraction of consistent cell orders of any random cell pairs compared to the preset orders.  21 

 22 

Processing of raw data of ICC and its metastatic tumor  23 

We downloaded the Stereo-seq GEM file of the primary tumor of ICC and its metastatic tumor 24 

from a previous study22. The GEM file includes the DNB coordinates and gene UMI counts in 25 

each DNB (220 nm). It was difficult to segment cells of tumor tissue and assemble the reads of 26 

single cells. We therefore merged 100 × 100 DNBs into a single informative ‘bin’ as a pseudo-27 

cell (50 μm × 50 μm in square). To remove low-quality data, cells with expressed genes number 28 

< 500, expressed genes UMI <500 and a proportion of mitochondrial UMI > 20% were removed 29 

from downstream analysis. Finally, we obtained a total of 19908 and 28609 cells for the primary 30 

tumor and metastatic tumor respectively. The quality details of the data showed by violin and 31 

heatmap plots were presented in Figure S4A and S4B, Figure S5A and S5B. 32 

 33 
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Cell type deconvolution of ST data and identification of malignant cells 1 

ST data were deconvoluted using the seeded NMF method implemented in SPOTlight v0.17 27. 2 

SC data were used as references to infer the composition of each ST bin 22. A default threshold 3 

of 0.08 was applied to filter the composition of cell type. The distribution of malignant cells 4 

was further examined by marker genes. We removed bins with high expression of marker genes 5 

relating with T cell, B cell, macrophage, fibroblast and endothelia cells. Finally, we obtained a 6 

total of 6,470 and 7,927 malignant cells of the primary tumor and metastatic tumor respectively. 7 

BayesSpace28 was performed to cluster cells with spatial coordinate. 8 

 9 

Identifying the genetic variants in ST data   10 

In order to reliably detect single-cell expressed variants, we pooled all reads of tumor cells 11 

together to call variants (SNP). Tumor cells were determined by annotation of SPOTlight. Both 12 

Samtools (Li et al., 2009)(v1.16) and Strelka (Saunders et al., 2012) are applied to call the 13 

variants. Successful callings from both methods were used for downstream analysis. Due to the 14 

sparsity of the ST data, we used following criteria of filtration to reduce the artifacts and false 15 

positives: variants covered by at least 70 reads; reads with alternative variant take up >5% of 16 

all reads; variants observed in at least 3 tumor cells. 17 

 Shared SNPs between clusters of the primary tumor and the metastatic tumor were 18 

calculated. To yield more dependable comparisons, we performed 30 repetitions of counting of 19 

shared SNPs by random cell sampling from clusters. For each counting and comparison, cells 20 

of clusters were sampled to equal population size. 21 

 22 

Identifying pseudotime-dependent genes 23 

spaTrack applies generalized additive model to fit the dynamics of gene expression along a 24 

trajectory. For each gene, spaTrack fits the expression changes and the corresponding 25 

pseudotime value of cells using the generalized additive model in pyGAM package. The 26 

formula of the model is as: 27 

𝑔		~	𝑠(𝑡, 𝑘)  (15) 28 

Where 𝑔 represents the gene expression in cells; 𝑡 denotes pseudotime value of all cells 29 

along a trajectory; The function k is a spline function used as a piecewise polynomial to fit 30 

smooth curves. P-values are adjusted for multiple testing using the BH method.  31 

To determine whether the dynamics of gene expression across trajectory is decreasing or 32 
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increasing, spaTrack calculates JS score between actual expression and standard 1 

downward/upward trends using following formula: 2 

𝑀 = !
"
(𝐺 + 𝑆)  (16)	3 

𝐽𝑆(𝑃||𝑆) = !
"
𝐾𝐿(𝐺||𝑀) + !

"
𝐾𝐿(𝑆||𝑀)  (17)	4 

Where, G represents predicted gene expression from the model, S represents a set of standard 5 

downward- or upward-trend values. KL is calculated by python SciPy packages. 6 

 7 
 8 
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 1 

Figure 1 Frameworks of spaTrack. 2 

A. Construct cell trajectories from ST data. In brief, we scale the gene expression difference 3 

𝑔!"  and spatial distance 𝑑!"  to construct the cost matrix of cell transition 𝐶!" . The 4 

transition probabilities are estimated by solving the optimal transport problem; Cells are 5 

ranked according to their transition probabilities relative to the starting cells; A vector field 6 

of cell velocity is built to organize the optimal trajectories; The optimal path between a 7 

starting cell and an ending cell is constructed using the least action path method; To 8 

identifying pseudotime-dependent genes, we use a generalized additive model (GAM) to 9 

fit the dynamics of gene expression along a trajectory. 10 

B. Trace cells across multiple samples of a time series. To compute the transport map between 11 

cells at time	 𝑡!  and 𝑡" , we solve the unbalanced optimal transport (uOT) problem by 12 
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adapting the Fused Gromov-Wasserstein (FGW) algorithm. 𝑑#(𝑖, 𝑘) , 𝑑$(𝑗, 𝑙)	are the 1 

spatial distances between any pair of cells 𝑖, 𝑘 at 𝑡%, and their corresponding cells 𝑗, 𝑙 2 

at 𝑡#; 𝐷 measures the scaled difference of 𝑑# and 𝑑$. 3 

C. Capture dynamic driven factors. A neural network framework is implanted in the algorithm, 4 

with expression profile of genes at 𝑡# time as input layer, prediction of TF expression of 5 

𝑡% time as output layer. TF-gene pairs with high weights are screened to build regulatory 6 

network. 7 

  8 
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 1 

Figure 2 spaTrack constructs reliable spatial trajectories in multiple scenarios 2 

A. spaTrack constructs reliable spatial trajectories in seven scenarios of organizing cells 3 
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temporally and spatially during differentiation. There are scenarios (rows) of Continuous, 1 

Nonlinear, Fluctuant, Discrete, Branched, Branched_SC, and Multisamples. All topologies 2 

are spatially organized except for Branched_SC, which is SC data and mapped in UMAP 3 

embeddings. The first column is the topology of each scenario in space or UMAP, colors 4 

present different cell types; The second column is the heatmap of preset cell orders in 5 

simulations; The third column is inferred trajectories from spaTrack; The fourth column is 6 

the consistence between inferred pseudotime and preset cell orders, in which cells are 7 

randomly sampled from 100 repeats of each scenario. For the spatial scenarios, each ST 8 

sample takes a 5000 μm × 5000 μm square in space. 9 

B. Accuracy of inferred cell orders in the seven scenarios. The accuracy was calculated from 10 

100 repeats of each scenario. 11 

C. Comparison between spaTrack and other commonly used methods applicable for 12 

expression matrix. 13 

  14 
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 1 

Figure 3 Fine local trajectories of axolotl telencephalon regeneration 2 

A. Collections of the ST data of regenerative stages after injury of axolotl telencephalon at 5 3 

days (D5), 10 days (D10), 15 days (D15), and 20 days (D20). 4 

B. Spatial distribution of cell types in regenerative stage of D15. 5 

C. Heatmap of transition probability relative to starting cells. 6 

D. Vector field of cell velocity, reflecting the direction and potential of transition. 7 

E. Regenerative trajectories of D15 inferred by spaTrack. 8 
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F. Three major lineages of regenerative trajectories, and the optimal path of each lineage.  1 

G. Spatial distribution of regeneration-related cell types in the ST data of D5, D10, D15, and 2 

D20. 3 

H. Integration of transition matrixes from multiple ST samples. 4 

I. The complete regenerative trajectories integrating from multiple samples. 5 

  6 
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 1 

Figure 4 Tracing neuron cells across mouse embryos of a time series 2 

A. ST data of dorsal midbrain regions of mouse embryo at day 12.5 (E12.5), 14.5 (E14.5), 3 

and 16.5 (E16.5). Spatial distribution of radial glia cells (RGC), neuroblasts (NeuB), and 4 

glioblasts (GlioB) are plotted.  5 

B. Sankey diagram of cell tracing across temporal sections. Blue segment represents RGC, 6 

brown for NeuB, red for GlioB. Percentage of RGC-derived cells in all successfully 7 

transported cells of each type is labeled.   8 

C. Tracing the transition of RGC in E12.5 (left) to E14.5 (middle) and E16.5 (right). 9 

Probabilities of successfully transported cells are plotted. 10 

D. Visualization of the transition trajectories of RGC across samples of different time. 11 

E. Regulatory network underlying the RGC differentiation over time. 12 
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 1 

Figure 5 Recovering the diverse trajectories of tumor expansion 2 

A. A ST sample of primary tumor of intrahepatic cholangiocarcinoma (ICC). H&E staining 3 

(left), and distribution of malignant cells (right) are plotted. 4 

B. Spatial distribution of tumor subclones. 5 

C. Spatial expression of cancer stem cell markers. Expression of gene CD44, ID1, CDH1, and 6 

FOSL1 are summed up. 7 

D. The G2M score of tumor subclones. 8 

E. Trajectories of tumor expansion. The transition probability relative to starting cells (left 9 
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top) and vector field of transition velocity (left bottom) are visualized. 1 

F. Three lineages of tumor trajectories in space. 2 

G. The optimal path of the lineage 1 (P0-P1-P2-P7). 3 

H. Pseudotime-dependent genes of lineage 1, screened by fitting a generalized additive model. 4 

Only top 10 significant genes are labeled. 5 

I. Functional annotation of pseudotime-dependent genes of the three lineages. 6 

J. Gene score of ECM pathway. Gene score is calculated as the averaged expression of the 7 

genes in each pathway. 8 

K. Gene score of EMT pathway. 9 
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 1 
Figure 6 Tracing tumor metastasis 2 

A. A ST sample of metastatic tumor in lymph node, corresponding with the primary tumor of 3 

ICC in Figure 5A. H&E staining (left) of tissue, and distribution of malignant cells (right) 4 

are plotted. 5 

B. Spatial distribution of subclones in the metastatic tumor. 6 

C. Counts of optimally transported cells from primary tumor to metastatic tumor. The 7 

successful transports were determined by their transition probability. 8 

D. Tracing the successful transports between primary tumor and metastatic tumor. 9 

E. Expression variants (SNP) shared between primary tumor and metastatic tumor. The 10 

number of shared variants is adjusted by population size of clusters. The sharing numbers 11 

are significantly higher between P0-P1 and M3 than any other pair of clusters (p<0.05 in 12 
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one sample t-test). 1 

F. Regulatory network underlying the metastasis between the two tumors. 2 

G. The expression of stemness markers and G2M scores in subclones of metastatic tumor. 3 

H. Trajectories of tumor colonization in the metastatic site. The transition probability relative 4 

to start cells (left top) and vector field of transition velocity (left bottom) are visualized. 5 

I. A model of the tumor metastasis uncovered by spaTrack. 6 
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