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Abstract

The integration of cell transcriptomics and spatial coordinates to organize differentiation
trajectories remains a challenge. Here we introduce spaTrack, a trajectory inference method
using optimal transport to incorporate both transcriptomics and distance of spatial
transcriptomics sequencing data into transition costs. spaTrack could construct fine spatial
trajectories reflecting the true differentiation topology, as well as trace cell dynamics across
multiple samples with temporal intervals. To capture the dynamic drivers, spaTrack models the
cell fate as a function of expression profile along temporal intervals driven by transcription
factors. Applying spaTrack, we successfully disentangle spatiotemporal trajectories of axolotl
telencephalon regeneration and mouse midbrain development. Furthermore, we uncover
diverse malignant lineages expanding in a primary tumor. One of the lineages with upregulated
extracellular matrix organization implants to the metastatic site and subsequently colonizes to
a secondary tumor. Overall, spaTrack greatly facilitates trajectory inference from spatial

transcriptomics, providing insights in cell differentiation of broad areas.
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Introductions

Trajectory inference (TI) provides important insights in cell differentiation and biological
process. Currently, there are numerous TI methods available, but most of them are designed for
single cell RNA sequencing (SC) data and challenged by complex topologies. Frequently
applied TI methods for SC data, e.g., Monocle2/3 (Cao et al., 2019; Qiu et al., 2017), PAGA
(Wolf et al., 2019), Slingshot (Street et al., 2018), stemID (Griin et al., 2016), Tscan (Ji and Ji,
2016), URD (Farrell et al., 2018) et al. usually construct a skeleton frame of cell differentiation
averaged or optimally extracted from a SC data embedding generated by dimension reduction
(DR) such as PCA, ICA, UMAP (Mclnnes et al., 2018), Diffusion Map (Haghverdi et al., 2015)
and ForceAtlas2 (Jacomy et al., 2014). Many of the existing approaches are limited to simple
linear or branched topologies and overlook morphometric space. However, the dynamics of
biological systems, such as embryonic development or tumor progression, are often complex
and strictly spatially organized. Cell transition is spatially heterogenous due to their location
and surrounding environment. Recent advances in spatial transcriptomics sequencing (ST)
technologies provide an opportunity to simultaneously reveal both transcriptomic and spatial
patterns of development, which the SC is unable to capture. Trajectories generated from SC
data and their methods are uncapable to uncover the spatial details of differentiation, and
discrete trajectories are often compelled to be continuous in the SC manner, conflicting with

the true topology.

To capture the single cell dynamics, RNA velocity has introduced alternative ways to study
cellular differentiation of SC data (Bergen et al., 2020; Chen et al., 2022¢; La Manno et al.,
2018; Qiu et al., 2022). It describes the rate of transcriptional dynamics for an individual gene
at a given time point based on the ratio of its spliced and unspliced messenger RNA (mRNA).
Great efforts have been made to develop various TI methods based on RNA velocity. However,
estimation of RNA velocity is often found to be less robust for indicating cellular transitions
due to several fundamental limitations. There are low contents of unspliced RNAs in SC data
and intronic regions could not be fully captured; Conventional RNA-velocity methods assume
constant transcription rates but the cell population/states are heterogeneous which usually leads
to nonsensical backward trajectories. Metabolic-labeling data has been explored in velocity
estimate, which measures the synthesis and degradation of labeled RNA within a known period
of time directly and overcomes some drawbacks of conventional RNA-velocity methods (Qiu
etal., 2022). However, the metabolic-labeling data is not always available in studies. In addition,

most RNA-velocity methods do not reconcile the physical proximity of cells into trajectory
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inference. Besides, estimating RNA-splicing rate involves mapping BAM file which can be
computationally time-consuming and require significant computational resources. Thus, there

is a strong need for an alternative approach to efficiently generate single-cell spatial trajectories.

Optimal transport (OT) is a method to find least-cost schemes of coupling distributions and
provide intuitively quantifications of their distance between multiple datasets or samples
represented as distributions (Villani, 2009). OT has recently been used for transcriptomic data
analysis, including cell-cell communication inference (Cang and Nie, 2020; Cang et al., 2023),
lineage study of hematogenesis (Schiebinger et al., 2019) and annotation of ST data (Cang and
Nie, 2020; Nitzan et al., 2019). With the natural advantage of OT, it is capable to conveniently
incorporate the profile of both gene expression and transition distance of cells into the cost
matrix to solve the OT problem. A fully captured cell to cell transition matrix will facilitate the

construction of trajectories with fine local details.

In this study, we introduced an efficient method, namely spaTrack, to construct cell
trajectory at single cell resolution of spatial context, which utilizes OT frameworks and
sensitively reconciles both gene expression and physical distance. When dealing with multiple
samples from a time series, spaTrack can construct a dynamic map of cell migration and
differentiation across all tissue sections, providing a comprehensive view of transition behavior
over time. In our study, spaTrack performs reliably in various scenarios of SC and ST data. We
have successfully applied spaTrack to reconstruct cell trajectories in spatial manners for various
biological systems, including regeneration of injured axolotl telencephalon, development of
dorsal midbrain of mouse embryo, and tumor expansion and metastasis. Our approach has

significantly facilitated the study of cell kinetics of ST data in a wide range of cases.

Results

Inferring cell trajectories from single ST data

spaTrack utilizes optimal transport (OT) as a foundation to infer the transition probability
between cells of ST data in a single sample, by incorporating both gene expression profiles and
cell location information. Cells that are distant from each other in expression level and physical
space will have higher transfer costs, which indicates a lower transition probability or longer
time interval in the biological process. The schematics of the algorithm and workflow of
spaTrack in solving the TI problem in single ST data are demonstrated in Figure 1A, which
include 1) scaling both gene expression and physical distance into a cost matrix; 2) solving the

OT problem by incorporating an entropy term; 3) constructing the vector field of cell velocity
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from transferring probability; 4) organizing spatial trajectories from the vector field of cell
velocity; 5) optimizing the path between a starting cell and corresponding ending cell using the
least action path method; 6) identifying pseudotime-dependent genes using a generalized

additive model (GAM) to fit the dynamics of gene expression along a trajectory.

The cost matrix consists of two components: expression difference and physical distance,
both of which employ Euclidean distance as the metric. The algorithm performs dimension
reduction from original features and the Euclidean distance in the embedding space is used as
the measurement of the difference of expression profile. By appropriately scaling these two
distance measurements, we fine-tuned the relative importance of each one by adjusting the
weight parameters of @ and a,. The algorithm maximizes the distance of a cell to itself to
prevent self-transitions. To solve the OT problem using the cost matrix generated above, an
entropic regularization term is introduced. This term helps to produce a smooth probability
distribution (Cuturi, 2013). The resulting OT probability matrix displays the likelihood of each
cell being transferred to other cells with the minimum cost incorporating both expression profile
and spatial coordinates (Figure S1A and S1B). spaTrack makes the assumption that cells with
higher transferring probabilities are more closely related during the development. Assigning the
starting cells, the algorithm can reorder all other cells according to their transferring
probabilities relative to the starting cells (see Methods). Subsequently, spaTrack creates a vector
field of the cell velocity averaged from the transferring probabilities and directions of all cells
in the neighborhood. Streamlines of the vector field are finally organized and smoothed as the
spatial trajectories. Furthermore, we adapted the least action path (LAP) algorithm(Qiu et al.,
2022) to construct the optimal path of differentiation between a starting cell and an ending cell.
Specifically, the vector field of cell velocity of the transition probability in a spatial
neighborhood is computed to replace the RNA-splicing velocity. A set of neighboring cells are
mapped to the inferred optimal path to determine cell orders and pseudotimes along the
differentiation. The arc length between the mapped anchor point and the starting cell is
normalized as the pseudotime of a cell.

Sometimes, ST data from single sample will not capture all cell states of a complete
biological process, especially when the process is time coordinated. However, integrating
multiple samples will lose the spatial coordinates of each tissue section. spaTrack provides an
integrating strategy to accommodate this situation. spaTrack separately computes the transition
probability and cell velocity for each ST data; And then integrates the vector fields of all
datasets to organize the overall trajectories in an UMAP embedding. This allows for a more

accurate and complete representation of the cell trajectories without losing the spatial
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coordinates of each data.

Tracing cells across multiple ST data of a time series

Multiple ST data sampled from a time series will provide a spatiotemporal transcriptomic view
of biological systems. In order to align cells and generate trajectories across samples of different
time intervals, spaTrack adapts an unbalanced and structured OT algorithm considering the
uneven expression mass and distributions of samples. ST data of different time intervals are
treated as different distributions (Figure 1B). The optimization problem of this OT includes
three terms: a measure of the expression profile differences between cells of the two samples;
a measure of the spatial distance differences between paired-cells of the two samples; and a
measure of the KL divergence (see Methods). spaTrack extends a distance consideration in the
optimization problem: If a pair of cells (i, k) intime ¢; is mapped to a pair of cells (j,1) in
the next time t;,; with high probability, the distance between cells i and k in the time t; is
close to the distance between cells j and [ in the next time t;,,. Therefore, three matrices are
included in spaTrack to solve the optimization problem: a gene expression dissimilarity matrix,
a spatial distance matrix for cells at time t; , and a spatial distance matrix for cells at the next
time t;.;. The resulting transport plan depicts the transition probabilities of individual cells
across ST samples.

After computing transport maps between two adjacent time points, the next step is to extend
the transitions to the next time interval. To achieve this, we adopt the Markov assumption that
the developmental process follows a memoryless property. Therefore, the long-range transitions
could be inferred by composing transport maps using matrix multiplication (see Methods). At
each time point, we start from the cells transported from the previous time point and infer their
subsequent transitions. This progressive method has the advantage of avoiding direct inference
of cell transition over long time intervals, and producing more coherent and credible results.
Following this approach, spaTrack is able to establish a long-term and continuous transition

map of cell trajectory.

Modeling dynamic driven factors

spaTrack explores the driven factors regulating cell trajectories, which helps to construct
the regulatory network underlying cell differentiation. spaTrack establishes a global regulatory
network to interpret the connection between the expression profiles of transcription factors (TFs)

at current time and of targeted genes at later time. We propose to set up a regression model to
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learn the linear continuous function, representing the relationship between TFs and the dynamic
change of genes (Figure 1C). A weight matrix is optimized to present the importance of TFs
and their genes. This regression model works for both data of discrete time points when the
transport map has been constructed, and data of single sample assigned with continuous
pseudotime (see Methods). To examine the inferred regulatory network of TFs and targeted
genes, we extracted TF-target pairs with top weights and examined their relationship of
expression profiles across cells along time. As expected, correlations were observed for those

TF-target pairs with top weights (Figure S1C).

spaTrack constructs reliable spatial trajectories over multiple scenarios

spaTrack provides reliable performance in simulation data where various topologies of
differentiation are considered, and quantitative evaluations demonstrate superior performance
from spaTrack over existing methods. We designed seven various scenarios in organizing cells
temporally and spatially during differentiation (Figure 2A): (1) Continuous differentiation from
one core, expanding outwards in an orderly manner; (2) Nonlinear spreading, with faster speed
at earlier stage and slowing down later; (3) Fluctuant coordinates, cell expanding to surrounding
space with high fluctuation; (4) Discrete differentiation in different niches; (5) Branched
lineages in space; (6) Branched lineages without spatial information or of totally infiltrated cells,
which is treated as the SC data manner; (7) Multiple samples with time intervals. We applied a
lineage-imbedded SC data simulator to generate differentiating cells followed by a spatial
assignment according to the seven scenarios (see Methods).

Based on hundreds of repeats for each scenario, we observed that spaTrack constructs
reliable spatial trajectories over multiple scenarios (Figure 2A and 2B). spaTrack presents
several advantageous properties in these validations: Firstly, spaTrack captures local details of
cell differentiation with spatial trajectories reflecting the true topology. Secondly, spaTrack
achieves high consistence with preset cell orders and accuracy even for those scenarios of low
space and transcriptome correlation (Nonlinear or Fluctuant scenarios), because both gene
expression and spatial coordinates will contribute to the computation of cell transition, making
the results robust. Thirdly, for spatially discrete and branched lineages, spaTrack precisely
depicts each lineage avoiding interference from each other as the spatial gap depresses their
transition probabilities (Discrete or Branched scenarios). Fourthly, spaTrack is totally
compatible with SC data when the spatial coordinates are missing or cells are infiltrated without
spatial organization (Branched-SC scenario). At last, spaTrack could directly trace cell

trajectories of multiple samples of a time series (Multisample scenario), the fine consistence
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and accuracy making it applicable to trace cells in a wide range of developmental questions
such as embryonic development and tumor metastasis, where cells are spatially and temporally
organized.

Comparing spaTrack with currently widely-used TI methods for expression data, spaTrack
presents superior performance over other methods (Figure 2C). Integrating spatial information
adds accuracy of spaTrack comparing with those SC methods without spatial consideration. For
the Branched-SC scenario, spaTrack provides closed performance with SC methods since the
spatial coordinates are missing. The RNA-velocity based methods are not applicable for the
simulated expression matrix. Their performance on ST and SC data will be compared with

spaTrack for empirical data in the Discussion section.

According to the highlighted features of the algorithm and the performance evaluated in
various scenarios, spaTrack provides several advantageous functions in TI. Firstly, spaTrack
could accurately uncover local details of spatial trajectory. Secondly, a single sample may not
capture all cell states involved in the complete developmental process. To overcome this
limitation, spaTrack could generate and extend the complete trajectories by integrating the
transition matrix of multiple samples, without losing their spatial information. Thirdly, direct
cell mapping across multiple sections could vividly depict cell trajectories along a time series.
Fourthly, spaTrack captures potential driven factors and networks along the time intervals
underlying cell differentiation. Furthermore, spaTrack exhibits low resource requirements in
terms of both power consumption and computing memory while maintaining a high processing
speed (Figure S1D). Specifically, the generation of trajectories using Sk cells with 20,000
features can be accomplished within one minute, while utilizing a modest memory allocation

of 6.9 GB.

spaTrack constructs fine local trajectories of axolotl telencephalon regeneration

We applied spaTrack to reconstruct the spatially detailed trajectories of the regeneration of
axolotl telencephalon after injury. Brain regeneration requires the coordination of complex
responses in time and region-specific manners. Taking the spatial coordinates of cells into
consideration, spaTrack can capture local details of cell trajectory that may be discontinuous in
space. Axolotl is a model for studying brain regeneration as its ability to regenerate lost cortical
cells after injury. We collected ST data of axolotl samples from a time series after injury(Wei et

al.,2022), including samples of 5 days (D5), 10 days (D10), 15 days (D15), and 20 days (D20)
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(Figure 3A, Figure S2A and S2B), to uncover the regeneration process in space.

D15 shows wound closure with enriched cell types of progenitors and immature neuron
cells, including ependymoglial cells (EGC), ractive EGC (reaEGC), immature neuron (IMN),
regeneration intermediate progenitor cell (rIPC) and nptx” lateral pallium excitatory neuron
(nptxEX) (Figure 3B). reaEGC responses to injury and starts the tissue repair suggested by
previous studies(Lust et al., 2022; Wei et al., 2022), which presents high proliferative activity
(Figure S2C and S2D). Adjacent layers of intermediated cells were observed between reaEGC
and nptxEX across the wound area, indicating their transitions during regeneration. spaTrack
constructed the local details of regeneration, generating the probability, vector field, and
streamlines of cell transition (Figure 3C-3E), uncovering the three spatial lineages of cell
differentiation of D15 (Figure 3F). Lineage 1 ranged from wound center to the right-edge of
telencephalon, which was reaEGC - rIPC - IMN — nptxEX axis. Lineage 2 was the regeneration
of wound area on the dorsal region, which described the complex transitions between reaEGC
and IMN, rIPC, and dorsal palliumexcitatory neuron (dpEX). Lineage 3 presented the normal
development from Wnt"EGC (wntEGC) to medial pallium excitatory neurons (mpEX). These
results depicted the differentiation from reaEGC to intermediate and mature neurons during
regeneration after injury, which were consistent with previous reports(Lust et al., 2022; Wei et
al., 2022). Importantly, spaTrack explored cell differentiations that were temporally and
spatially discontinuous. The trajectory of lineage 2 in the wound area was discrete with the

normal trajectory of lineage 3, which were separate processes in development and regeneration.

Single sample presents only a subset of cell types involved in the regeneration process,
with sparse cell population and continuity (Figure 3G, Figure S2E). However, integrating all
ST samples of D5, D10, D15 and D20 will lose the spatial coordinates of each axolotl tissue
section. To address this issue, spaTrack implements an integrating framework to separately
calculate cell-transition probability of each sample, and next integrate all transition matrix for
the inference of complete trajectory. From an integrated probability matrix (Figure 3H),
spaTrack generated the complete trajectories of regeneration and visualized on their UMAP
embeddings (Figure 3I). Abundant intermediated cells r[PC and IMN were fully captured
showing better continuity than only one sample (Figure S2E and S2F).

Tracing neuron cells across mouse embryos of a time series

spaTrack provides a novel strategy to trace cells across multiple ST samples by direct mapping

cells via an unbalanced OT strategy. Development of mouse embryos requires strict spatial-
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temporal organization. To probe the dynamics of early neurogenesis, we applied spaTrack on
the ST data of developing dorsal midbrain of mouse embryos at day 12.5 (E12.5), 14.5 (E14.5),
and 16.5 (E16.5) (Figure 4A, Figure S3A and S3B). Radial glia cells (RGC) are reported as the
progenitors of both neuroblasts (NeuB) and glioblasts (GlioB)(Chen et al., 2022a), but their
spatial-temporal transitions are not well characterized. RGC decreases from E12.5 to E14.5 and
E16.5, while NeuB and GlioB expand in E14.5 and E16.5, and are not evenly distributed along
the spatial axis (Figure 4A). spaTrack optimally transported cells from E12.5 to E14.5, and
subsequently to E16.5 (Figure 4B), tracing their dynamic differentiation across time. At E14.5,
81% of the successfully transported NeuB cells were found originating from RGC of E12.5,
while the corresponding number for GlioB was 74%. Subsequently, at E16.5, 51% of the
successfully transported NeuB and 42% of GlioB were transported from RGC of stage E14.5,
indicating the RGC is the main source of NeuB and GlioB (Figure 4B). Visualizing these
mappings in space, we directly observed the coordinately organization of differentiation in each
time point (Figure 4C and 4D, Figure S3E). Differentiations of RGC-NeuB and RGC-GlioB
were restricted to different regions and embryonic stages. RGC in the rostral axis mainly
differentiated into NeuB, and RGC in the dorsal and caudal regions differentiated into GlioB.
RGC-NeuB differentiation mainly occurred from E12.5-E14.5, while RGC-GlioB arose
between E14.5-E16.5. All of these results of spaTrack suggested neurogenesis and gliogenesis
were asynchronous and spatially heterogeneous, consistent with previous findings (Chen et al.,

2022a).

Furthermore, driven factors of the neuron differentiation were investigated by a regression
model in spaTrack. A regulatory network was built to present the connection between TFs and
targets along the temporal intervals (Figure 4E). Several TFs were highlighted by our method.
YbxI reported as a crucial factor for forebrain specification and restricting mid-hindbrain
growth in mouse embryo, fine-tunes the spatiotemporal expression of neurodevelopmental
genes (Evans et al., 2020). Another TF Sox ! is required in embryonic neurogenesis and Sox/!-
depleted embryos develop small and disorganized brains, accompanied by transient deficits in
neural progenitor cells (Wang et al., 2013). Therefore, spaTrack could provide valuable

reference and methodological support for the advancement of the neuroscience field.

Recovering the diverse trajectories of tumor expansion

Intratumoral heterogeneity manifests as spatial heterogeneity, which describes the uneven

distribution of diverse malignant subclones within tumor, and as temporal heterogeneity,

10
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referring dynamic variations in tumor populations and molecules over time (Dagogo-Jack and
Shaw, 2018; Hausser and Alon, 2020). Tumor heterogeneity drives tumor progress and drug
resistance, creating the need to quantitatively investigate tumor subclones and dynamics over

space and time.

We collected ST data from a primary tumor section of intrahepatic cholangiocarcinoma
(ICC) (Wu et al., 2023), covering the regions of both intratumor and boundary (Figure 5A,
Figure S4A-S4C). Previous study(Wu et al., 2023) detected strong immunosuppression and
metabolic reprogramming in the invasive zone of tumor boundary, suggesting the spatially
diversity of tumor progress. Eight subclones were identified in the primary ICC tumor (P0-P7)
(Figure 5B), with PO showed pronounced expression of stemness markers and cell cycling genes
(Figure 5C and 5D, Figure S4D). Applying spaTrack to reconstruct cell trajectory of malignant
cells assigning PO as starting cells (Figure 5E), we identified three diverse lineages starting
from PO and spanning the tumor space in three directions (Figure 5E and 5F). Lineage 1 (PO-
P1-P2-P7) expanded to the border region between tumor and hepatic cells. Lineage 2 (PO-P3-
P4) extended to the tumor bottom and lineage 3 (P0-P5-P6) elongated along the top area. To
determine biological difference among the three lineages, we identified trajectory-depended
genes by fitting a generalized additive model between the pseudotime and gene expression
along the optimal path, inferred using the LAP method (Figure 5G and 5H, Figure S4E and
S4F). In the associated genes of lineage 1, COLIAI is a major component of the tumor
extracellular matrix related with tumor development and immune profile(Chen et al., 2022b).
SAAI and SAA2 lead to recruitment and polarization of macrophages, promoting local
immunosuppression (Wu et al., 2023). Annotating associated genes of lineage 1, we observed
significant enrichment of ECM organization and regulation of platelet and neutrophils (Figure
51), which involve in tumor migration, metastasis, and immunosuppression(Winkler et al., 2020;
Wu et al., 2023). The GSEA scores of ECM and EMT pathways further indicated the metastatic
potential of lineage 1 (Figure 5J and 5K). Additionally, spaTrack constructed the regulatory
network underlying lineage 1 (Figure S4G), capturing the TFs and targets of tumor growth and
metastasis, e.g. KLF7 (Gupta et al., 2020) and E7S2 (Zhang et al., 2021). All these characters
were not observed in the other two lineages, indicating the spatial heterogeneity of tumor

progress.

Tracing tumor metastasis

spaTrack provides the ability to trace cells across tissues of different time/conditions and

11


https://doi.org/10.1101/2023.09.04.556175
http://creativecommons.org/licenses/by-nc-nd/4.0/

D oA N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27
28
29
30
31
32
33
34

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.04.556175; this version posted December 24, 2023. The copyright holder for this

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

therefore could reconstruct the trajectory of tumor metastasis. Tumor metastasis refers to the
process by which cancer cells detach from the primary tumor and spread through the
bloodstream or lymphatic system to colonize distant organs (de Visser and Joyce, 2023).
Understanding the origins and colonizing process of tumor metastasis, provides important
insights in developing effective strategies to target metastatic relapse and improve patient

outcomes (Ganesh and Massague, 2021).

We collected a metastatic tumor (Figure 6A, Figure S5A and S5B) from the lymph node
corresponding with the primary ICC tumor (Figure 5A) in the same patient (Wu et al., 2023).
Malignant cells at the metastatic site were categorized into four major clusters (M0-M3) (Figure
6B), forming a layered structure. MO located at the core site of the tumor; M1 lied in the middle
layer; M2 and M3 covered the outer layer. We applied spaTrack to optimally transport the
malignant cells from the primary tumor to the metastatic tumor. M3 showed numerous
successful transports from PO/P1, which was significantly higher than any other pairs of clusters
(Figure 6C). By plotting the successful transports between the primary and metastatic tumors
(Figure 6D), we observed malignant cells of the primary tumor (mainly from P0O-P1) implanted
to the bottom axis of the metastatic tumor, belonging to subclone M3, from where the metastatic
cells putatively expanded to a new tumor. To further investigate the origins and colonization of
metastatic cells, we inferred and compared the genetic variants (SNP) of the malignant cells
from both tumors. PO-P1 shares more variants with M3, than any other pairs of subclones after
adjusting the population size (Figure 6E), confirming the metastatic connection inferred by
spaTrack. Furthermore, integrating the ST data of the primary and metastatic tumors in the SC
manner, M3 approximated with PO and P1 in the UMAP embedding space (Figure S5C), which
was consistent with the results of spaTrack. Constructing the regulatory network between the
primary tumor and the metastatic tumor, we observed HMGA1, ID2, and CEBPG as the key
factors driving the metastatic dynamics, all of which play important roles in tumor progression

and metastasis (Huang et al., 2020; Sgubin et al., 2022; Sikder et al., 2003) (Figure 6F).

We subsequently examined the stemness and cell cycling of metastatic cells, both of which
indicated M3 presenting the activation of proliferation and expansion in the metastatic site
(Figure 6G, Figure S5D and S5E). We applied spaTrack to generate trajectories of the metastatic
cells, assigning the successfully transported cells of M3 as starting cells (Figure 6H). It appeared
that M3 initiated the colonization along the bottom axis and subsequently progressed to M2
where they formed the outer layer. Both M3 and M2 expanded towards the middle layer (M1)
and formed the core site. Overall, spaTrack vividly described the dynamic process of tumor

metastasis including origination, colonization, and expansion (Figure 6I). This comprehensive
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analysis would certainly provide us valuable insights of tumor metastasis.

Discussion

Development of biological systems commonly requires strict spatial-temporal organization.
Spatial coordinates and experimental time might be leveraged as important constraints
supplementing to transcriptomic profiles in the TT work. spaTrack, presented as an innovative
algorithm that uses the mathematical concept of OT, generates accurate and informative spatial
trajectories by incorporating both gene expression profiles and spatial-temporal information
from ST data. According to the highlighted features of the algorithm (Figure 1 A-1C), spaTrack
could (1) reconstruct fine local trajectory from ST data; (2) integrate spatial transition matrix
of multiple samples to generate complete trajectories; (3) trace cell trajectory across temporal
samples via direct OT mappings; (4) capture developmental driven factors by modelling a

function of predicting gene profile at later time by TF expression at current time.

spaTrack has been undergone extensive testing on both ST data and SC data of simulated
scenarios, comparing with currently widely used TI methods for expression data (Fig 2A-2C).
OT framework has the natural advantage of incorporating spatial distance into the cost measure
of cell transition and therefore captures local details and generate spatial disconnected
trajectories. Moreover, to compare spalrack with RNA-velocity based methods, we applied
spaTrack, scVelo, and Dynamo, which could directly generate trajectories in spatial coordinates,
on the ST data of axolotl telencephalon regeneration (Figure S6A and S6B), which is a
comprehensively studied model. As we described before, spaTrack uncovered three spatial
trajectories reflecting the true regenerative process. Regeneration trajectories in the wound area
are disconnected with those in normal tissue. scVelo presented confusing trajectories with
multiple starting spots, which could not be adjusted by simply reversing the velocity direction.
Dynamo performed well in most regions, but showed continuity between lineages of temporally
disconnected. Comparatively, Monocle3, showed a skeleton along the data shape, without
single cell trajectories (Figure S6B), which is a typical result of SC methods using expression

data.

Furthermore, we tested and compared the performance of spaTrack and other methods on
a complex topology of SC data of primary human hematopoietic stem and progenitor cells
(HSPCs) (Qin et al., 2021) (Figure S6C). Human hematopoiesis is a continuously hierarchical
process and is comprehensively investigated by previous studies (Buenrostro et al., 2018;

Ranzoni et al., 2021). The development of HSPCs follows a branched structure with HSC as

13


https://doi.org/10.1101/2023.09.04.556175
http://creativecommons.org/licenses/by-nc-nd/4.0/

~N oo o B~ W N

10
11
12

13
14

15
16
17
18

19

20

21
22
23
24
25

26

27

28

29

30

31
32

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.04.556175; this version posted December 24, 2023. The copyright holder for this

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

the root. spaTrack successfully reconstructed the trajectories that closely recapitulate the
established knowledge of hematopoiesis (Figure S6D). In comparison, scVelo generated several
nonsensical reversing trajectories, starting from intermediated cell types of active cell-cycling
states (e.g., erythrocyte progenitor (pro-ery), B cell progenitors (proB), and granulocyte and
monocyte progenitor (GMP)). Without metabolic labels, Dynamo also showed reverse
streamlines in erythrocyte and myeloid trajectories. Monocle3 generated a proper skeleton of
hematopoiesis but missing the single cell details.

At last, spaTrack requires feasible computing power and memory (Figure S1D), making it
a fast and effective option for TI study of ST data. Under a standard CPU thread (Intel(R)
Xeon(R) CPU ES5-2650 v4 @ 2.20GHz), spaTrack requires only minutes to finish the
computation of 5k — 400k cells (with 20,000 features). The memory load depends seriously on

the population size, which follows an exponential growth with 6.9 GB for 5k cells.
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Data resources

The public ST data and SC data used in this study were collected as follows: ST data of Stereo-
seq of axolotl telencephalon after injury was obtained from China National GeneBank DataBase
(CNGBdb) with accession number CNP0002068. We selected four samples of 5, 10, 15, and 20
days after injury. ST data (Stereo-seq) of mouse midbrain development were collected from
CNGBdb with accession number CNP0001543. Three ST samples (Stereo-seq) of mouse
embryo sections at 12.5 day, 14.5 day, and 16.5 day were downloaded from CNGB with
accession number CNP0002199, including one primary tumor of intrahepatic
cholangiocarcinoma (ICC), and one corresponding metastatic tumor. One SC sample (10x
genomics) of human hematopoietic stem and progenitor cells (HSPCs) were downloaded from
the Genome Sequence Archive of CNCB-NGDC (National Genomics Data Center of China

National Center for Bioinformation), with accession number HRA000084.

Code availability

The open-source software spaTrack is available at https://github.com/yzf072/spaTrack. The
tutorial of spaTrack is deposited at https://spatrack.readthedocs.io/en/latest/index.html.
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Inferring cell trajectories from single ST data
Construction of cost matrix

To reduce computational burden, we perform Principal Component Analysis (PCA) to reduce
the dimensionality of the data. Subsequently, we select the top 10 PCA components (defaulting
to 30) for downstream analysis. To construct the cost matrix, we incorporate both gene
expression profiles and physical distances. Differences in gene expression profile and cell
coordinates are quantified using Euclidean distance. For cell i and cell j, the Euclidean distances

of gene expression (g;;) and physical distance (d;;) are calculated as follows:

gij = \[(xu - x1i)2 + (x5 — xzi)z + o (2 — xni)z;

dij = \/(xi - xj)z + (i - 3’1)2

Where n represents the number of principal components selected in the previous step of PCA.

(1)

To balance the contributions of the two distance measurements, we first normalize the
distances. We then integrate the normalized gene expression distance g;; and normalize spatial
distance d;; by scaling factors a; and a, to compute the cost matrix C;; of cell transition.
These factors control the relative importance of each distance measurement, with suggesting
values for a; and a, are between 0 and 1. To prevent self-transitions, the cost matrix is re-
defined. When i = j, we set the cost to the maximum of C;; times 107, so that the cost of a

self-transition is maximized:

gij dij . ,
aq - +a,- fori #+
Ci=14 = Zay ° Ldy J )
Max(C;;) x 107 fori=j

Transition probability between cells

Adapting the concept of optimal transport (OT), we calculate the transition matrix by solving

the following optimization problem:

y = argmin (y, M)p + reg- Q(y)
4

st.yl=a 3)
yT1=b
y=0
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Where M is the cost matrix calculated above, Q is the entropic regularization term Q(y) =

XijYij log(yi, j), a and b are source and target weights (both sum to 1).

Cell order assignment

To utilize spaTrack for cell trajectory analysis, we specify the starting cells as ancestral cells.
This can be achieved through various means including importing cell coordinates, cell type, or
by manual selection using the interactive user interface to create lasso spots. Once the starting
cells are defined, spaTrack will assign cell orders or directions relative to the starting cells for
other cells in the dataset. This can be achieved by calculating the transferring probability of
each cell to the starting cells. The probability can be determined by summing the transition

probabilities of the cell to each of the starting cells.

Let cell, celly, ... cells as starting spots, for celli, the sum of transition probabilities is

calculated as:

Pi=pi; + D2 ++psi (4)
Where the P; is the probability of starting spots transferred to cell i. We assign a cell order to
each cell by assuming that cells with a higher probability of transferring to their ancestors are

closer to the ancestors in the trajectory. The probabilities of starting cells transferring to each

cell were ranked ascending as:

= R(Pi) (5)

Assuming the same interval, cell orders are normalized using the following formula:

R =" (6)

N

Where N is the total cell number.

Cell velocity and organizing trajectory

Cell velocity is defined as the overall transition probability and direction from a cell to its
neighbors. Before calculating cell velocity, the neighboring cells are determined using their
spatial coordinates and their cell PCA embedding matrix. Users are allowed to choose the
number of neighboring cells to consider. The spatial neighbors are identified using the K nearest
neighbors (KNN) algorithm, while the PCA matrix neighbors are determined using Euclidean
distance between cells. The final set of neighboring cells is obtained by taking the intersection

of the two sets of neighbors.
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For each cell 1, the n neighbors are selected. The velocity between cell i and cell j (j <n) is
defined as following:

- pi,j for Ri > R] (7)
H —p;; for Ry <R,

Then the final velocity of cell i is calculated by averaging the velocities of cell i in its

neighborhood:

V=21 @)

n

The trajectory is organized from the vector field of cell velocities, which is adapted from sctour
19 Briefly, the optimal transition probability matrix is used as weights to calculate the unitary
displacement vector for each cell. Only n KNNs of each cell are considered (n = [total spot

number/50]):

Au =Y u (Pij - l) L (9)

nJ Jluj—uil

Where u; and u; were the coordinates of cell i and j.

Optimal path between two cells and pseudotime calculation.

To study the differentiation trajectory between two cells over space, we adapt the least action
path (LAP) algorithm (Qiu et al., 2022) to construct the optimal path between a starting spot
and ending spot. Firstly, we construct a vector field of cell velocity from transition probability
instead of RNA velocity, as described in Formula 7 and 8, which enables the estimation of cell
velocity at any coordinate point. Secondly, given a starting cell and an ending cell, the initial
path will be a line connecting the two points. The path is adjusted according to the cell velocity
following the LAP algorithm. We will get an optimal path that best fits the transition between
the two cells. Afterwards, we need to map all the cells around the optimal path to assign cell
orders and pseudotimes along the differentiation. We use the k-Nearest Neighbor (KNN)
method to search cells spatially around the path. The neighboring cells are vertically mapped
to the optimal path, and the order of the cells is determined according to the mapped anchor
point relative to the starting cell. Pseudotimes are defined as arc length between the mapped
anchor point and the starting cell. Pseudotimes are normalized to a 0-1 range by dividing the

total length of the path.

Tracing cells across multiple ST data with time-intervals

20


https://doi.org/10.1101/2023.09.04.556175
http://creativecommons.org/licenses/by-nc-nd/4.0/

© 0 ~N o o

10

11

12
13

14
15

16

17
18
19
20

21
22
23
24
25
26

27
28

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.04.556175; this version posted December 24, 2023. The copyright holder for this

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Unbalanced transport across multiple ST data

To compute the transport map between cells at time t; and ¢;,, assuming that there are m

cellsattime t; and n cells at time t;,, we solve the following optimization problem:

argmin[(1 — a)(m, M)

mERP™
+aY i D(dy (i, k), dy(j, D)1y 7 (10)
+A4KL(m1™ | p;) + ALKL(w"1" | p,)]

Where M € R™™ measures the gene expression dissimilarity between cells of two samples,
and (A, B)r denotes Frobenius inner product of matrices A and B, and d,(i,k),d,(j, 1) are
the spatial distances between cells i, k and their corresponding cells j, [ at different times
respectively, and D measures the difference between scaled distances (Euclidean norm [|-]1?).

In addition, 4; and A, are regularization parameters and p; and p, are weight vectors of

each cell. By default, p; = % 1M, p, = % - 1™ where1™, 1" denotes a column vector of length

m,n containing all ones. The transport problem is solved with following considerations:

1. Ifcell i intime ¢; is mapped to cell j in the next time t;,, witha high weight 7;;, then

the expression profile x; of cell i is similar to the expression profile x; of cell j.

2. Ifapairof cells (i,k) intime t; is mapped to a pair of cells (j,1) in the next time t;;
with high weights m;; and my,, then the distance dq(i, k) between cells i and k in the

first time t; is close to the distance d,(j,1) between cells j and [ in the nexttime t; ;.

3. Unbalanced optimal transport (Chizat et al., 2018), is with a more realistic approach to
solving practical problems, for instance, it is suitable for scenarios where batch effects are
present at different time points or when investigating the impact of the varying numbers of

cells with value-added differentiation.

The sum of the first two terms in Formula 10 represents a classic Fused Gromov-Wasserstein
algorithm(Titouan et al., 2019). By introducing the last term, we extend the structured transport
to handle unbalanced transport problems, where the equality constraints are relaxed to impose

bounds on the marginals of the transport plan using of KL-divergence measure.

Computing trajectories of interest cells

At a given time point, a collection of starting cells can represent a specific cell type or any

region of interest in space. Then the distribution of descendant cells at the next time point t;,4
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can be calculated based on the transition matrix,

1
pe (%) = {E x€s (11)

0 otherwise

In which S is the set of starting cells. The descendant distribution can be calculated as following

pg’+1 = pzinti'ti+1 (12)

where 7 ., is the optimal transport map between t; and t;,, calculating from (10).

Learning gene regulatory models

OT has the capability to capture potential driven dynamics. We interpret the vector field as a
model of gene regulation, which establishes functional relationships between the expression of
transcription factors (TFs) at current time point and the expression of genes in a period of time.
We propose to set up a regression model to learn the positive/negative regulation of genes by
TFs. For ST data of two time points, we sample pairs of cells with expression (X;, X;,;) from

the transport map and calculate gene changes A;:
A= Xy — X (13)

Then, we extract TF expression from time i + 1 and construct the following regression:

f:R™ —> RY,
f(Al) = Yi+1'
. 1
min =Y ||V, —AWT? (14)

WeRtxmn

where Y., = X;.1T, X; € R¥"™ X,,; € R™ denotes the gene expression of pairwise
mapped cells at two time points with m genes, f is the learned linear continuous function,
representing the relationship between genes and TFs, W € R™™ denotes weight matrix with
TFs and genes, T € m X t stands for one-hot encoding matrix of TFs and genes. Here, we
perform min-max normalization for gene changes and TF expression respectively and put data

into the regression model to get weights.

For ST data of a single tissue section, we format the data to adapt the regression model.
Cells are sorted according to their inferred pseudotime and are averagely grouped according to
the setting bins. Then, cells of each pair of adjacent bins could be inputted to the model, which

are processed in the same way.
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To solve the problems of sparse data and reduce slow convergence, we used a meta-analysis
method. We repeatedly select random cells and calculate the mean expression as new data, to
improve data quality and increase sample size. To avoid the instability caused by random
initialization of the model, we take the average of ten random training as the final result. Finally,
top positive/negative correlation weight pairs are sorted from high to low and stored in data

frame format. The regulatory network of TFs and genes can be displayed visually.

Simulations of ST data.

We applied a lineage-imbedded SC data simulator, Splatter (Zappia et al., 2017), to generate
differentiating cells followed by a spatial assignment according to various scenarios. Basic
parameters to restrain the expression of single cells in the simulator were assigned as
nGenes=3000, batchCells=3000, mean.shape=0.6, mean.rate=0.3, bcv.common=0.2,
dropout.mid=0, dropout.shape=-1, out.prob=0.05, de.prob=1; Lineage parameters were
assigned according to the topologies: method = "paths", path.length= from 60 to 100,
path.skew= from 0.2 to 0.5, path.nonlinearProb=0.1. After the simulations of expression matrix
of SC, we assigned the 3000 cells of each simulation to a 5000 pm x 5000 um square, assuming
each cell taking up a 50 um x 50 um spot. For a spatial assignment, cells were organized
according to their preset steps expanding from the center, with a fluctuation of a normal
distribution yu = 0,0 = 3to 6. For each scenario, simulations were repeated 100 times.
Consistence and accuracy were evaluated from all these batches. Accuracy was estimated as

the fraction of consistent cell orders of any random cell pairs compared to the preset orders.

Processing of raw data of ICC and its metastatic tumor

We downloaded the Stereo-seq GEM file of the primary tumor of ICC and its metastatic tumor
from a previous study??. The GEM file includes the DNB coordinates and gene UMI counts in
each DNB (220 nm). It was difficult to segment cells of tumor tissue and assemble the reads of
single cells. We therefore merged 100 x 100 DNBs into a single informative ‘bin’ as a pseudo-
cell (50 um x 50 um in square). To remove low-quality data, cells with expressed genes number
<500, expressed genes UMI <500 and a proportion of mitochondrial UMI > 20% were removed
from downstream analysis. Finally, we obtained a total of 19908 and 28609 cells for the primary
tumor and metastatic tumor respectively. The quality details of the data showed by violin and

heatmap plots were presented in Figure S4A and S4B, Figure S5A and S5B.
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Cell type deconvolution of ST data and identification of malignant cells

ST data were deconvoluted using the seeded NMF method implemented in SPOTlight v0.17 %7.
SC data were used as references to infer the composition of each ST bin 22, A default threshold
of 0.08 was applied to filter the composition of cell type. The distribution of malignant cells
was further examined by marker genes. We removed bins with high expression of marker genes
relating with T cell, B cell, macrophage, fibroblast and endothelia cells. Finally, we obtained a
total of 6,470 and 7,927 malignant cells of the primary tumor and metastatic tumor respectively.

BayesSpace?® was performed to cluster cells with spatial coordinate.

Identifying the genetic variants in ST data

In order to reliably detect single-cell expressed variants, we pooled all reads of tumor cells
together to call variants (SNP). Tumor cells were determined by annotation of SPOTlight. Both
Samtools (Li et al., 2009)(v1.16) and Strelka (Saunders et al., 2012) are applied to call the
variants. Successful callings from both methods were used for downstream analysis. Due to the
sparsity of the ST data, we used following criteria of filtration to reduce the artifacts and false
positives: variants covered by at least 70 reads; reads with alternative variant take up >5% of

all reads; variants observed in at least 3 tumor cells.

Shared SNPs between clusters of the primary tumor and the metastatic tumor were
calculated. To yield more dependable comparisons, we performed 30 repetitions of counting of
shared SNPs by random cell sampling from clusters. For each counting and comparison, cells

of clusters were sampled to equal population size.

Identifying pseudotime-dependent genes

spaTrack applies generalized additive model to fit the dynamics of gene expression along a
trajectory. For each gene, spaTrack fits the expression changes and the corresponding
pseudotime value of cells using the generalized additive model in pyGAM package. The

formula of the model is as:

g ~s(t, k) (15)

Where g represents the gene expression in cells; t denotes pseudotime value of all cells
along a trajectory; The function k is a spline function used as a piecewise polynomial to fit

smooth curves. P-values are adjusted for multiple testing using the BH method.

To determine whether the dynamics of gene expression across trajectory is decreasing or
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increasing, spaTrack calculates JS score between actual expression and standard

downward/upward trends using following formula:

M=§(G+5) (16)
JS(PIIS) = S KL(G|IM) + 5 KL(S|[M) (17)

Where, G represents predicted gene expression from the model, S represents a set of standard

downward- or upward-trend values. KL is calculated by python SciPy packages.
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Figure 1 Frameworks of spaTrack.

A. Construct cell trajectories from ST data. In brief, we scale the gene expression difference
g;j and spatial distance d;; to construct the cost matrix of cell transition C;;. The
transition probabilities are estimated by solving the optimal transport problem; Cells are
ranked according to their transition probabilities relative to the starting cells; A vector field
of cell velocity is built to organize the optimal trajectories; The optimal path between a

starting cell and an ending cell is constructed using the least action path method; To

© o ~N o o~ W N

I
N R O

identifying pseudotime-dependent genes, we use a generalized additive model (GAM) to
fit the dynamics of gene expression along a trajectory.
Trace cells across multiple samples of a time series. To compute the transport map between

cells at time t, and t;, we solve the unbalanced optimal transport (uOT) problem by
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adapting the Fused Gromov-Wasserstein (FGW) algorithm. d4(i, k), d,(j, 1) are the
spatial distances between any pair of cells i, k at t,, and their corresponding cells j, [
at t;; D measures the scaled difference of d; and d,.

C. Capture dynamic driven factors. A neural network framework is implanted in the algorithm,
with expression profile of genes at t; time as input layer, prediction of TF expression of
to time as output layer. TF-gene pairs with high weights are screened to build regulatory

network.
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Figure 2 spaTrack constructs reliable spatial trajectories in multiple scenarios

A.

spaTrack constructs reliable spatial trajectories in seven scenarios of organizing cells
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temporally and spatially during differentiation. There are scenarios (rows) of Continuous,
Nonlinear, Fluctuant, Discrete, Branched, Branched SC, and Multisamples. All topologies
are spatially organized except for Branched SC, which is SC data and mapped in UMAP
embeddings. The first column is the topology of each scenario in space or UMAP, colors
present different cell types; The second column is the heatmap of preset cell orders in
simulations; The third column is inferred trajectories from spaTrack; The fourth column is
the consistence between inferred pseudotime and preset cell orders, in which cells are
randomly sampled from 100 repeats of each scenario. For the spatial scenarios, each ST
sample takes a 5000 pm x 5000 um square in space.

Accuracy of inferred cell orders in the seven scenarios. The accuracy was calculated from
100 repeats of each scenario.

Comparison between spaTrack and other commonly used methods applicable for

expression matrix.


https://doi.org/10.1101/2023.09.04.556175
http://creativecommons.org/licenses/by-nc-nd/4.0/

0 N o o B~ w N -

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.04.556175; this version posted December 24, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Telencephalon sections after injury
D5 D10 D15 D20 Cell types of D15
® reaEGC @ npyIN
riPC1 scgniIN
@ rIPc2 @ sfrpEGC
. ® IMN ® sstIN
he * " ® nptxEX ® VLMC
e ¥ wntEGC © mpEX
) ® CP ® MSN
injufy : - ..®  ® dpEX
lineage 1
lineage 2 lineage 3
D5 D10 D15 D20
_.'-; ® reaEGC
& ’ riPC
R e ® IMN
- @ nptxEX
H ANINIE
i
@ ® reaEGC
b rlPC
\& ® IMN
® nptxEX
%

Integrated transition matrix

Figure 3 Fine local trajectories of axolotl telencephalon regeneration

A.

m o 0w

Collections of the ST data of regenerative stages after injury of axolotl telencephalon at 5
days (D5), 10 days (D10), 15 days (D15), and 20 days (D20).

Spatial distribution of cell types in regenerative stage of D15.

Heatmap of transition probability relative to starting cells.

Vector field of cell velocity, reflecting the direction and potential of transition.

Regenerative trajectories of D15 inferred by spaTrack.
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F. Three major lineages of regenerative trajectories, and the optimal path of each lineage.
Spatial distribution of regeneration-related cell types in the ST data of D5, D10, D15, and
D20.

H. Integration of transition matrixes from multiple ST samples.

I.  The complete regenerative trajectories integrating from multiple samples.
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Figure 4 Tracing neuron cells across mouse embryos of a time series

A. ST data of dorsal midbrain regions of mouse embryo at day 12.5 (E12.5), 14.5 (E14.5),
and 16.5 (E16.5). Spatial distribution of radial glia cells (RGC), neuroblasts (NeuB), and
glioblasts (GlioB) are plotted.

B. Sankey diagram of cell tracing across temporal sections. Blue segment represents RGC,
brown for NeuB, red for GlioB. Percentage of RGC-derived cells in all successfully
transported cells of each type is labeled.

C. Tracing the transition of RGC in E12.5 (left) to E14.5 (middle) and E16.5 (right).
Probabilities of successfully transported cells are plotted.

Visualization of the transition trajectories of RGC across samples of different time.

E. Regulatory network underlying the RGC differentiation over time.
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Figure 5 Recovering the diverse trajectories of tumor expansion

A. A ST sample of primary tumor of intrahepatic cholangiocarcinoma (ICC). H&E staining
(left), and distribution of malignant cells (right) are plotted.

B. Spatial distribution of tumor subclones.

C. Spatial expression of cancer stem cell markers. Expression of gene CD44, ID1, CDHI, and
FOSL1 are summed up.

D. The G2M score of tumor subclones.

E. Trajectories of tumor expansion. The transition probability relative to starting cells (left
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top) and vector field of transition velocity (left bottom) are visualized.

F. Three lineages of tumor trajectories in space.
The optimal path of the lineage 1 (P0-P1-P2-P7).

H. Pseudotime-dependent genes of lineage 1, screened by fitting a generalized additive model.
Only top 10 significant genes are labeled.

I.  Functional annotation of pseudotime-dependent genes of the three lineages.

J. Gene score of ECM pathway. Gene score is calculated as the averaged expression of the
genes in each pathway.

K. Gene score of EMT pathway.
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Figure 6 Tracing tumor metastasis

A. A ST sample of metastatic tumor in lymph node, corresponding with the primary tumor of
ICC in Figure 5A. H&E staining (left) of tissue, and distribution of malignant cells (right)
are plotted.

B. Spatial distribution of subclones in the metastatic tumor.

C. Counts of optimally transported cells from primary tumor to metastatic tumor. The
successful transports were determined by their transition probability.

D. Tracing the successful transports between primary tumor and metastatic tumor.

E. Expression variants (SNP) shared between primary tumor and metastatic tumor. The
number of shared variants is adjusted by population size of clusters. The sharing numbers

are significantly higher between PO-P1 and M3 than any other pair of clusters (p<0.05 in
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one sample t-test).

F. Regulatory network underlying the metastasis between the two tumors.
The expression of stemness markers and G2M scores in subclones of metastatic tumor.

H. Trajectories of tumor colonization in the metastatic site. The transition probability relative
to start cells (left top) and vector field of transition velocity (left bottom) are visualized.

I. A model of the tumor metastasis uncovered by spaTrack.
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