

1 Metagenomic analysis of individual mosquitos 2 reveals the ecology of insect viruses

3

4 Yuan-fei Pan^{1,2,3*}, Hailong Zhao^{4,5*}, Qin-yu Gou^{1,3*}, Pei-bo Shi^{4,5,6}, Jun-hua
5 Tian⁷, Yun Feng⁸, Kun Li⁹, Wei-hong Yang⁸, De Wu¹⁰, Guangpeng Tang¹¹, Bing
6 Zhang¹², Zirui Ren^{4,5}, Shiqin Peng^{4,5}, Geng-yan Luo^{1,3}, Shi-jia Le^{1,3}, Gen-yang
7 Xin^{1,3}, Jing Wang^{1,3}, Xin Hou^{1,3}, Min-wu Peng^{1,3}, Jian-bin Kong^{1,3}, Xin-xin
8 Chen^{1,3}, Chun-hui Yang^{1,3}, Shi-qiang Mei^{1,3}, Yu-qi Liao^{1,3}, Jing-xia Cheng^{1,3},
9 Juan Wang⁸, Chaolemen¹³, Yu-hui Wu¹³, Jian-bo Wang¹⁴, Tongqing An¹⁵, Xinyi
10 Huang¹⁵, John-Sebastian Eden^{16,17}, Jun Li¹⁸, Deyin Guo^{1,19}, Guodong Liang²⁰,
11 Xin Jin⁴, Edward C. Holmes¹⁷, Bo Li^{2,21#}, Daxi Wang^{4,5#}, Junhua Li^{4,5#},
12 Wei-chen Wu^{1,3#}, Mang Shi^{1,3#}

13

- 14 1. State Key Laboratory for Biocontrol, School of Medicine, Shenzhen
15 Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen
16 518107, China
- 17 2. Ministry of Education Key Laboratory of Biodiversity Science and
18 Ecological Engineering, School of Life Sciences, Fudan University,
19 Shanghai 200438, China
- 20 3. Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases,
21 Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University,
22 Shenzhen 518107, China
- 23 4. BGI Research, Shenzhen 518083, China
- 24 5. Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI
25 Research, Shenzhen 518083, China
- 26 6. BGI Education Center, University of Chinese Academy of Sciences,
27 Shenzhen 518083, China
- 28 7. Wuhan Center for Disease Control and Prevention, Wuhan 430024, China
- 29 8. Department of Viral and Rickettsial Disease Control, Yunnan Provincial Key
30 Laboratory for Zoonosis Control and Prevention, Yunnan Institute of
31 Endemic Disease Control and Prevention, Dali 671099, China
- 32 9. National Key Laboratory of Intelligent Tracking and Forecasting for
33 Infectious Diseases, National Institute for Communicable Disease Control
34 and Prevention, Chinese Center for Disease Control and Prevention,
35 Beijing 102206, China
- 36 10. Guangdong Provincial Center for Disease Control and Prevention,

37 Guangzhou 511430, China
38 11. Guizhou Center for Disease Control and Prevention, Guiyang 550004,
39 China
40 12. Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases,
41 School of Basic Medical Sciences Xinjiang Medical University, Urumqi
42 830011, China
43 13. Old Barag Banner Center for Disease Control and Prevention, Hulunbuir
44 021500, China
45 14. Hulunbuir Center for Disease Control and Prevention, Hulunbuir
46 021008, China
47 15. State Key Laboratory of Animal Disease Control and Prevention, Harbin
48 Veterinary Research Institute, Chinese Academy of Agricultural Sciences,
49 Harbin 150069, China
50 16. Centre for Virus Research, Westmead Institute for Medical Research,
51 Westmead, NSW 2145, Australia
52 17. Sydney Institute for Infectious Diseases, School of Medical Sciences, The
53 University of Sydney, Sydney, NSW 2006, Australia
54 18. Department of Infectious Diseases and Public Health, Jockey Club College
55 of Veterinary Medicine and Life Sciences, City University of Hong Kong,
56 Hong Kong, China
57 19. Guangzhou National Laboratory, Guangzhou International Bio-Island,
58 Guangzhou 510000, China
59 20. State Key Laboratory of Infectious Disease Prevention and Control,
60 National Institute for Viral Disease Control and Prevention, Chinese Center
61 for Disease Control and Prevention, Beijing 102206, China
62 21. Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary
63 Ecology and Centre for Invasion Biology, School of Ecology and
64 Environmental Science, Yunnan University, Kunming 650504, China
65
66 *These authors contributed equally.
67

68 **#Corresponding authors:**

69 Bo Li: bool@fudan.edu.cn
70 Daxi Wang: wangdaxi@genomics.cn
71 Junhua Li: lijunhua@genomics.cn
72 Wei-chen Wu: wuweixiongde@126.com
73 Mang Shi: shim23@mail.sysu.edu.cn

74 **ABSTRACT**

75 Mosquito transmitted viruses are responsible for an increasing burden of
76 human disease. Despite this, little is known about the diversity and ecology of
77 viruses within individual mosquito hosts. Using a meta-transcriptomic
78 approach, we analysed the virome of 2,438 individual mosquitos (79 species),
79 spanning ~4000 km along latitudes and longitudes in China. From these data
80 we identified 393 core viral species associated with mosquitos, including
81 seven (putative) arbovirus species. We identified potential species and
82 geographic hotspots of viral richness and arbovirus occurrence, and
83 demonstrated that host phylogeny had a strong impact on the composition of
84 individual mosquito viromes. Our data revealed a large number of viruses
85 shared among mosquito species or genera, expanding our knowledge of host
86 specificity of insect-associated viruses. We also detected multiple virus
87 species that were widespread throughout the country, possibly facilitated by
88 long-distance mosquito migrations. Together, our results greatly expand the
89 known mosquito virome, linked the viral diversity at the scale of individual
90 insects to that at a country-wide scale, and offered unique insights into the
91 ecology of viruses of insect vectors.

92 **Keywords**

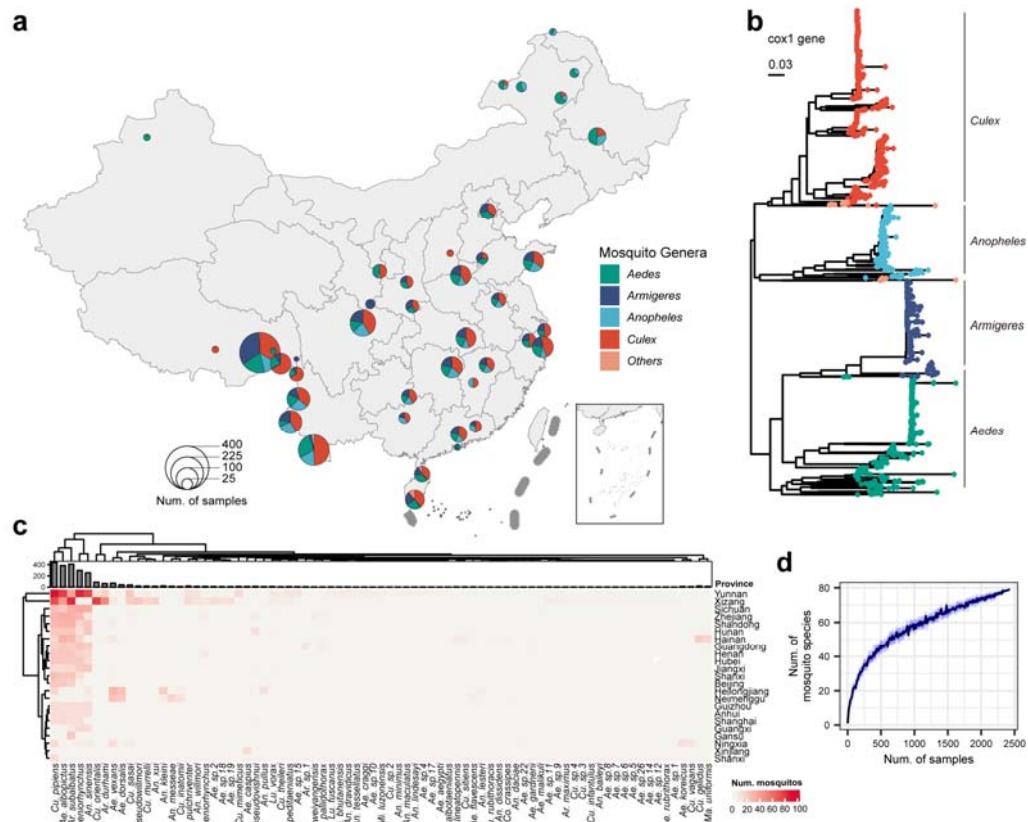
93 Metagenomics; RNA virus; vector-borne disease; biogeography

94 **INTRODUCTION**

95 Mosquitos (Diptera: Culicidae) are vectors for various arthropod-borne
96 viruses that infect humans and other animals, including dengue virus,
97 Chikungunya virus, and Zika virus¹. In addition to their role in disease
98 transmission, mosquitos also harbour a highly diverse virome, encompassing
99 many "insect-specific" viruses that are not associated with the infection of
100 vertebrates^{2,3}. Although these insect-specific viruses do not directly impact
101 public health, some are known to influence the transmission of arboviruses⁴.
102 Despite this, we lack key epidemiological and ecological information on the
103 viruses associated with insect vectors in general, including their distribution,
104 prevalence, co-infection, transmission, and host specificity.

105 Metagenomic studies of individual insects are necessary to reveal the
106 epidemiology and ecology of viruses without *a priori* knowledge of which
107 viruses may be present⁵. Individual animal virome data sets are also valuable
108 for investigating both virus-virus and virus-host interactions^{4,6}. Many
109 metagenomics studies have pooled individual insects by species or sampling
110 location⁷⁻¹⁰. Although pooling is an efficient means to explore viral diversity, it
111 inevitably hinders mechanistic insights into the viral ecology and evolution.
112 Only five studies to date have characterized the virome of individual
113 insects¹¹⁻¹⁵. While these studies have provided interesting insights into viral
114 prevalence, coinfection, and the drivers of virome compositions, it remains
115 uncertain whether the patterns and drivers revealed are generalizable due to
116 their small sample size and limited focus on specific areas and species. Hence
117 there is still an important need for virome data sets from individual insect
118 vectors.

119 It is also important to establish links between viral diversity at the scale of
120 individual animals and at larger scales, such as an entire country¹⁶⁻¹⁸. By
121 including insect individuals from different regions, a more generalizable
122 perspective of viral ecology may be obtained. In addition, collecting individual
123 insects in an unbiased manner from diverse climatic zones and habitats and
124 comparing their virome compositions is crucial for understanding the
125 biogeography of insect-associated viruses. Comparing the diversity and
126 prevalence of viruses among areas, especially arboviral species, could identify
127 potential hotspots for vector-borne diseases emergence^{19,20}. This information
128 could then guide disease surveillance. Such data is currently lacking²¹.

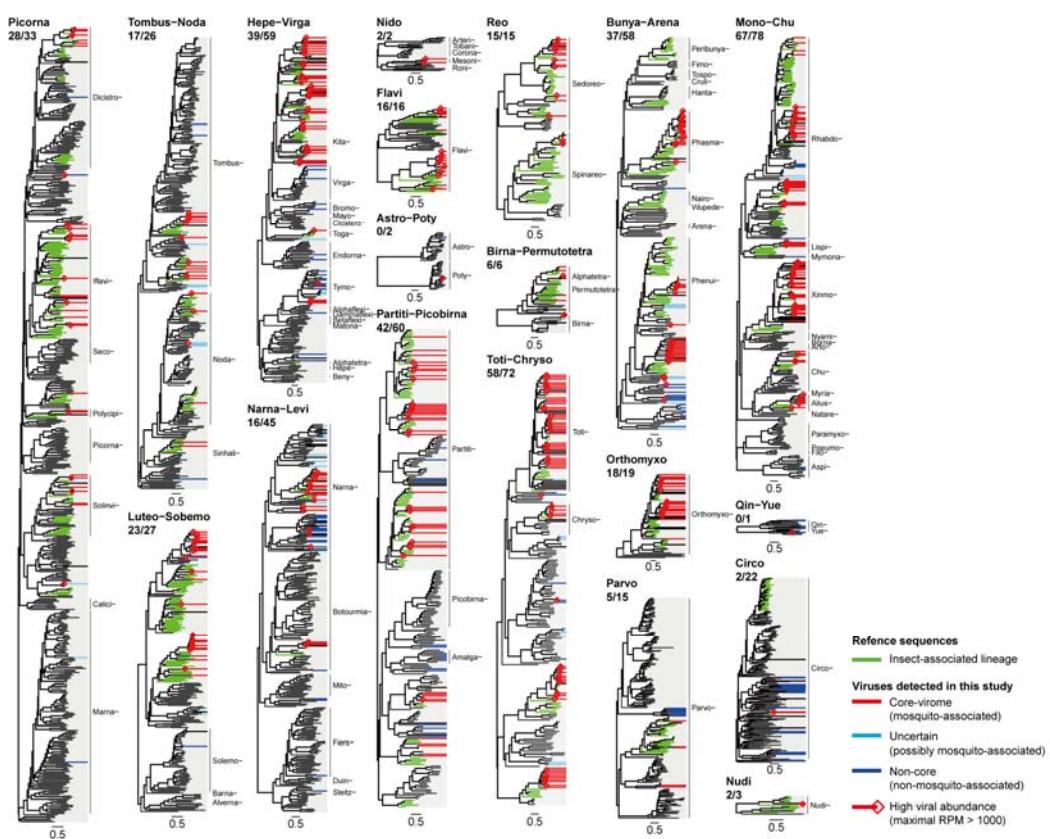

129 The present study addresses these substantive gaps by characterizing the
130 virome of 2,438 individual mosquitos from diverse habitats across China. We

131 aimed to reveal the patterns and drivers of viral diversity at both the finest (i.e.,
132 individual) scale, and more broadly across China, and determine the
133 ecological properties of mosquito-associated viruses. Specifically, we
134 examined the potential environmental (climate and land-use) and host
135 (mosquito species) drivers of virus diversity and identified potential diversity
136 hotspots. In addition, we investigated the effect of host phylogeny and spatial
137 distance on virus transmission, assessing the host specificity of
138 mosquito-associated viruses. Finally, we explored the biogeographic patterns
139 (distribution of viruses throughout the entire country) of mosquito-associated
140 viruses and investigated the role of mosquito movement in shaping virus
141 distribution.

142 **RESULTS**

143 **Characterisation of Individual Mosquito Viromes**

144 We conducted meta-transcriptomic (i.e., total RNA) sequencing of 2,438
145 individual mosquitos collected from diverse habitats across China between
146 2018 and 2021 (Fig. 1; Supplemental Data 1). This generated 9.8 billion
147 non-rRNA reads (3.6 million per sample on average), which were *de novo*
148 assembled into 67 million contigs for mosquito species identification and virus
149 discovery.

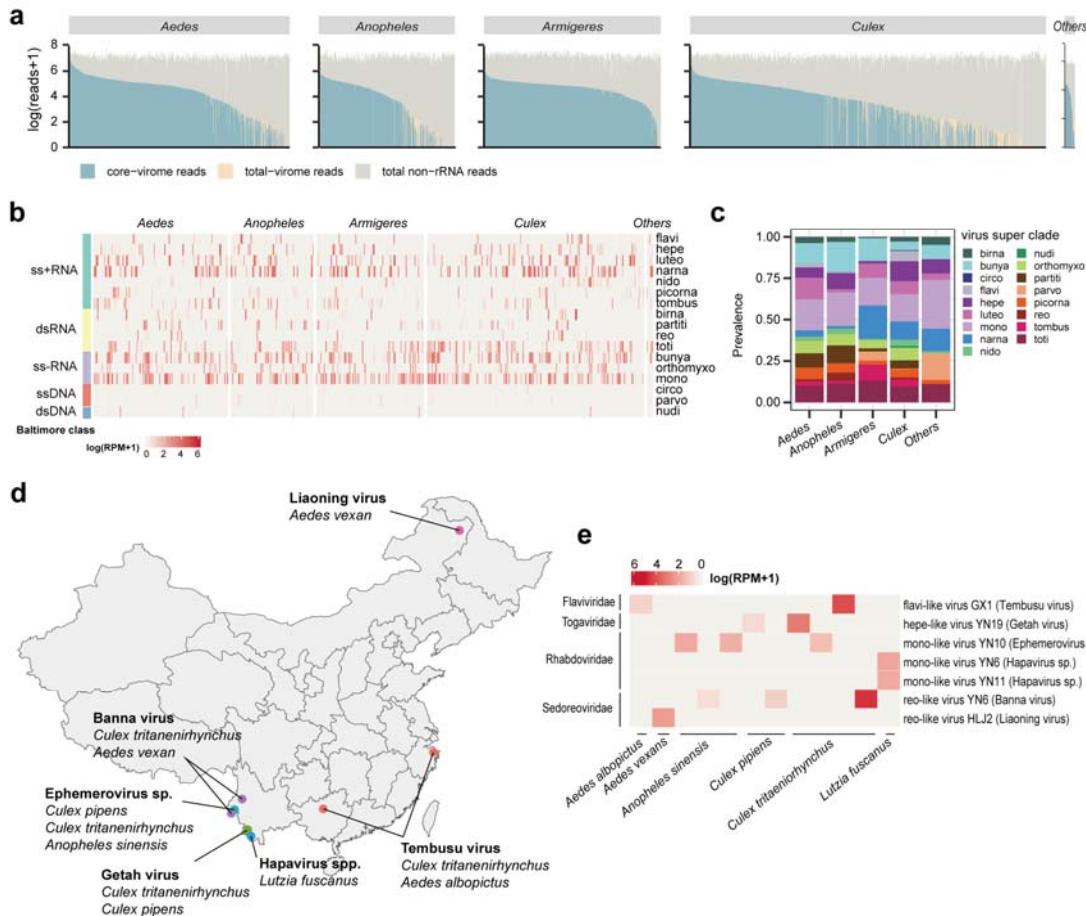


151 **Fig. 1 | Overview of the 2,438 mosquito individuals sampled across China. (a)** Sample
 152 overview, showcasing the mosquito genera composition at each location. The pie chart area
 153 represents the number of sampled mosquitos. **(b)** Maximum likelihood phylogenetic tree depicting
 154 the relationships among the 2,438 mosquito individuals, constructed using the *cox1* gene. **(c)** The
 155 composition of collected mosquito species in each province. **(d)** Rarefaction curve displaying
 156 the richness of mosquito species, with the blue area indicating the 95% confidence interval.

158 Mosquito species identification was performed based on the mitochondrial
159 gene *cox1*. This revealed 79 species belonging to eight genera (*Aedes*,
160 *Armigeres*, *Anopheles*, *Culex*, *Mansonia*, *Mimomyia*, *Coquillettidia*, and *Lutzia*)
161 (Fig. 1b). The most prevalent species includes well-known disease vectors:
162 *Aedes albopictus* (n=383), *Armigeres subalbatus* (n=408), *Anopheles sinensis*
163 (n=256), *Culex pipiens* (n=438), and *Culex tritaeniorhynchus* (n=298), which
164 accounted for 73.1% of the samples (Fig. 1c; Fig. S1). These dominant
165 species exhibited wide distribution across the country, spanning latitudes from
166 18° to 35° and longitudes from 26° to 35° (Fig. S2).

167 Viruses were identified using hallmark genes (e.g., the RNA-dependent
168 RNA polymerase (RdRp) for RNA viruses and DNA polymerase for DNA
169 viruses except the *Circoviridae* where Rep gene was used and the

170 *Parvoviridae* where NS1 gene was used), compared against the NCBI
171 non-redundant protein database. This process yielded a total of 205,032 viral
172 contigs. After excluding retrotransposons, endogenous virus elements, and
173 bacteriophage, we identified 564 distinct viral species (Supplemental Data 2).
174 Of these, 393 are likely to infect mosquitos in contrast to other host taxa, and
175 hereafter, define as being the core mosquito virome. The core virome, which
176 comprises arthropod-borne arboviruses which may cause diseases in humans
177 or other vertebrates (e.g., flaviviruses, alphaviruses, etc.), as well as
178 insect-specific viruses that may directly affect mosquitos, is most likely to have
179 a more important impact on human or animal (both vertebrates and
180 invertebrates). Identification of mosquito-associated viruses was based on
181 their close phylogenetic relationship to known mosquito-infecting viruses and
182 their high viral abundance and prevalence in mosquitos (Fig. 2, Fig. S3-5; see
183 also *Methods*). Through this process, viruses associated with other host taxa,
184 such as fungi, protists or nematodes (parasites inside mosquitos or reagent
185 contaminations), were excluded from downstream analyses.


187 **Fig. 2 | Phylogenetic diversity of the 564 viruses discovered in this study and identification of**
188 **the “core virome” of mosquitos.** The phylogenetic trees were estimated using “hallmark”
189 proteins of respective viral taxa. Trees of RNA viruses were estimated at the “super clade” level,

190 while those of DNA virus were constructed at family level. The hallmark proteins utilized were
191 the RNA-directed RNA replicase (RdRp) for all RNA viruses, Rep protein for the *Circoviridae*,
192 NS1 protein for the *Parvoviridae*, and DNA polymerase for other DNA viruses. The number of
193 mosquito-associated species (i.e., the core virome) and the total viral species of each viral super
194 clade is shown below the superclade names (in the form of number of mosquito-associated species
195 / total species). Viral families were shown indicated alongside the tree, and the suffix “-viridae” is
196 omitted.

197

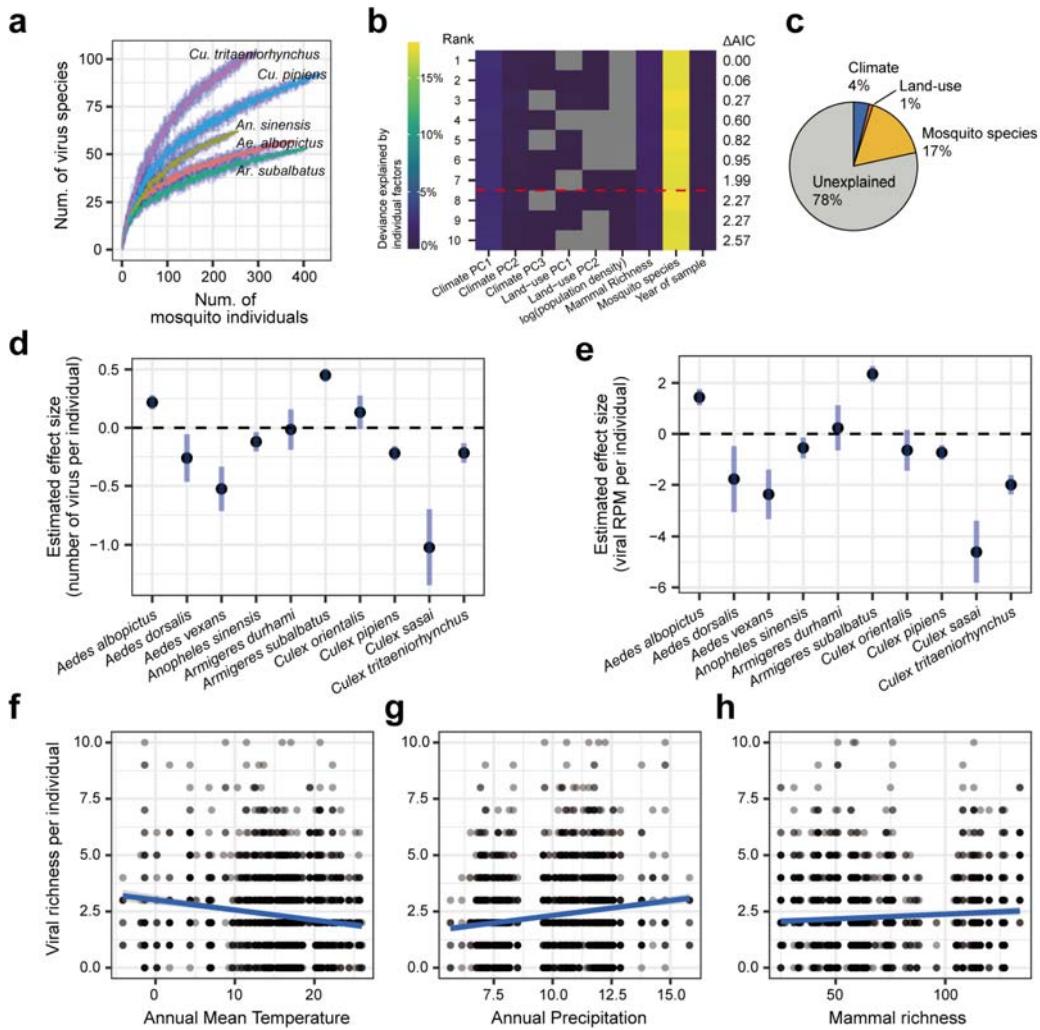
198 Our analysis revealed that individual mosquitos carried a median of two
199 mosquito-associated virus species, with an interquartile range (IQR) of three
200 and a maximum of 11. Viral RNA comprised $7.9 \times 10^{-6}\%-84.5\%$ of the total RNA
201 (rRNA removed) within an individual mosquito, with an IQR of 0.01%-1.8%. A
202 median of 85% of the total viral RNA within individuals belonged to
203 mosquito-associated viruses (Fig. 3a). Rarefaction analysis indicated that the
204 sequencing depth was adequate to reflect true diversity of viruses within
205 individual mosquitos (Fig. S6).

206 A majority of the core virome had RNA genomes (384/393 species, 97.7%),
207 which were classified into 16 previously established “super clades” that refer to
208 clusters of related RNA viruses situated around the taxonomic levels of class
209 or order⁸ (Fig. 2, Fig. 3b). Super clades were used because many of the
210 viruses identified here are likely to represent novel or uncharacterised viral
211 families, so that assignment of conventional taxonomic ranks may be
212 imprecise. Among the 393 viral species, 249 (63.3%) were putative novel viral
213 species, sharing less than 90% protein identity and 80% nucleotide identity
214 with known viruses. Viruses with positive and negative single strand RNA
215 genomes were the most prevalent (detected in 1370 (56.2%) and 1274 (52.3%)
216 individuals respectively), followed by double-strand RNA (892, 36.6%),
217 single-strand DNA (110, 4.5%), and double-strand DNA genomes (20, 0.8%)
218 (Fig. 3bc). As for single virus species, most species were only detected in a
219 few mosquito individuals (75% quantile: 12 individuals, 95% quantile: 59.35
220 individuals). In contrast, the top 2% prevalent virus species (such as Mosquito
221 narna-like virus SC1 and Mosquito bunya-like virus SHX1) could be detected
222 in more than 100 individuals, accounting for 40% ~ 70% of individuals of a
223 single mosquito species.

224

225 **Fig. 3 | Characterisation of individual mosquito viromes and the discovery of putative**
 226 **vertebrate-infecting arboviruses. (a)** Sequencing depth and total viral abundance for each
 227 **mosquito. (b)** Composition of individual mosquito viromes. **(c)** A comparison of the prevalence of
 228 **viral super clades within different mosquito genera. (d)** Distribution of seven (putative)
 229 **arboviruses. (e)** Abundance of (putative) arboviruses within individual mosquitoes.

230


231 Overall, we identified four known and three potential arboviruses (Fig. 3de; Fig. S7). The four known arboviruses were Getah virus (genus *Alphavirus*),
 232 Tembusu virus (*Flavivirus*), Banna virus (*Seadornavirus*) and Liaoning virus
 233 (*Seadornavirus*), while the three putative arboviruses were Mosquito mono-like
 234 virus YN6 and YN11 (*Hapavirus*) and Mosquito mono-like virus YN10
 235 (*Ephemerovirus*). The prevalence of these putative arboviruses was low, with
 236 detection only in 13 out of the 2,438 individuals. Most positive individuals were
 237 sampled in semi-natural habitats in southwestern China, where tropical forests
 238 were present (Fig. 3d). Despite of their low prevalence, these arboviruses can
 239 reach relatively high abundance within individuals (median RPM: 19 for
 240 arboviruses and 8.35 for all non-arboviruses), constituting up to 4.2% of the
 241 total non-ribosomal RNA and implying a high risk of transmission through a
 242

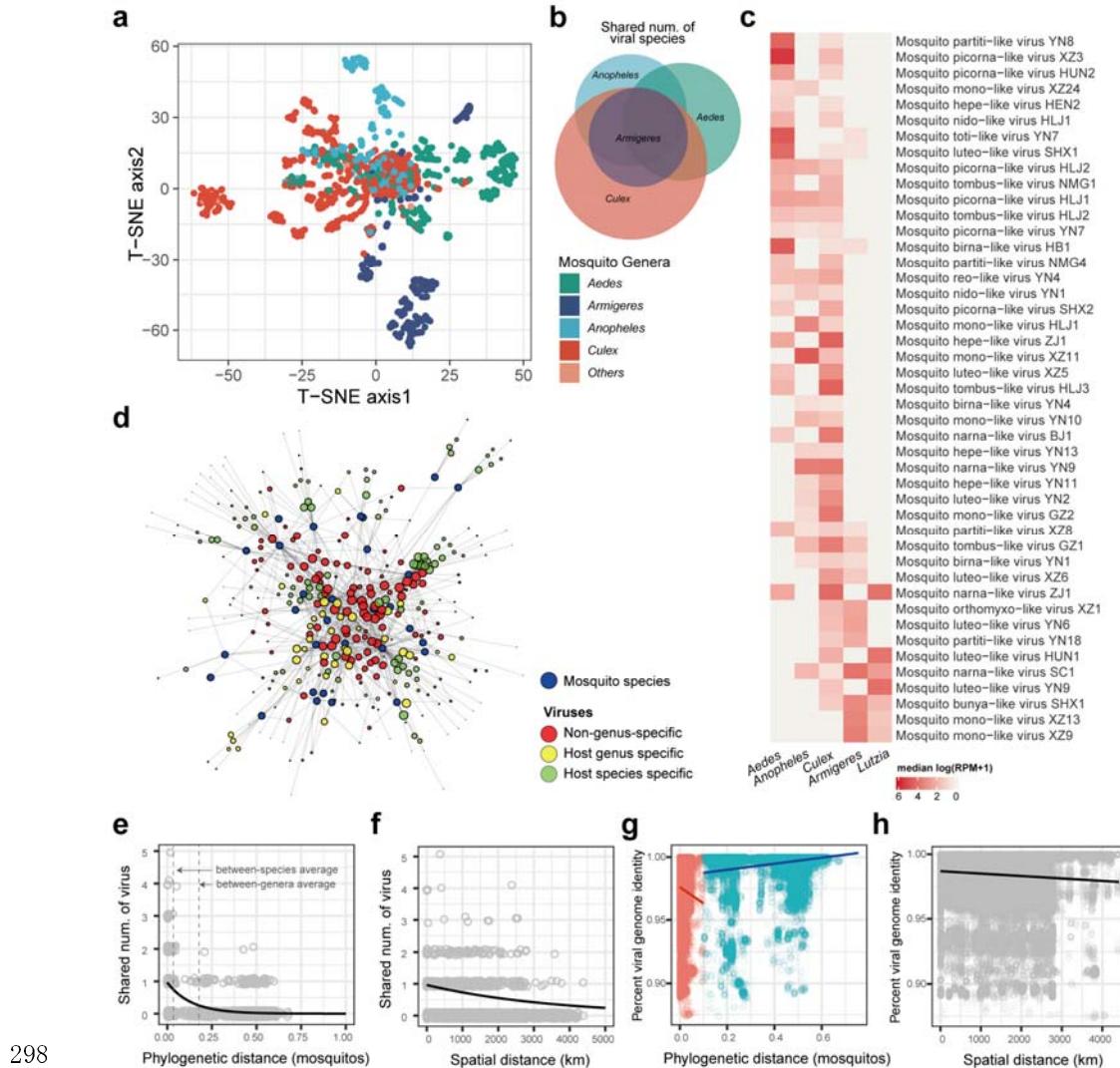
243 single bite (Fig. 3e).

244 **The Patterns and Drivers of Viral Diversity in Mosquitos**

245 To investigate the environmental and host factors that shape viral species
246 richness, we examined the effect of mosquito species identity, land-use
247 characteristics and various climatic variables using generalized linear models
248 (Fig. 4). The best model structures were selected by examining all
249 combinations of variables based on the AIC criterion. This revealed that for the
250 best model, mosquito species identity explained the most deviance (17%),
251 followed by climate (4%) then by land-use (1%). Most deviance remained
252 unexplained (78%) (Fig. 4c). As for individual variables, mosquito species
253 identity, mammal richness, and climate were consistently support by the seven
254 supported models ($\Delta\text{AIC}<2$) (Fig. 4b).

255 Notably, the distribution of viral richness was uneven among mosquito
256 species (Fig. 4d). As for the five dominant mosquito species, *Ar. subalbatus*
257 carried the highest number of viral species per individual (3.14 ± 1.63 species,
258 mean \pm S.D.), followed by *Ae. albopictus* (2.60 ± 1.76), *An. sinensis* (1.94 ± 1.78),
259 *Cu. pipiens* (1.84 ± 1.65) and *Cu. tritaeniorhynchus* (1.68 ± 1.61). The total viral
260 abundance within individual mosquitos also varied among mosquito species
261 (Fig. 4e). Viral species richness per individual mosquito was positively
262 associated with mammal species richness and mean annual precipitation,
263 while negatively associated with mean annual temperature (Fig. 4f-h). Similar
264 trends were observed for total viral species richness within mosquito
265 populations (Fig. S8; a population represents all individuals of a mosquito
266 species within 100 km diameter centred around a sample location).

267


268 **Fig. 4 | Environmental and host drivers of viral diversity.** (a) Rarefaction curves for viral
269 richness discovered in the five dominant mosquito species. The blue areas represent the 95% CI.
270 (b) Relative effects of mosquito species, climate, and land-use characteristics on viral richness per
271 individual mosquito. The relative effect of factors was quantified by explained deviance in
272 generalized linear models. The top ten models selected by Akaike information criterion (AIC) are
273 shown. The red dashed line indicates the four most supported models ($\Delta\text{AIC} < 2$). "PCs"
274 abbreviate principal components. (c) Relative contribution of mosquito species, climate, and
275 land-use characteristics to viral richness. (d) Model estimations of the effect of mosquito species
276 on viral richness per individual. Error bars indicate 95% confidence intervals (CI). (e) Model
277 estimations of the effect of mosquito species on total viral abundance per individual. Error bars
278 indicate 95% CI. (f) Relationship between mean annual temperature and viral richness per
279 individual. (g) Relationship between annual precipitation and viral richness per individual.
280 (h) Relationship between mammal richness and viral richness per individual.

281

282 **The Patterns and Drivers of Virome Composition in Mosquitos**

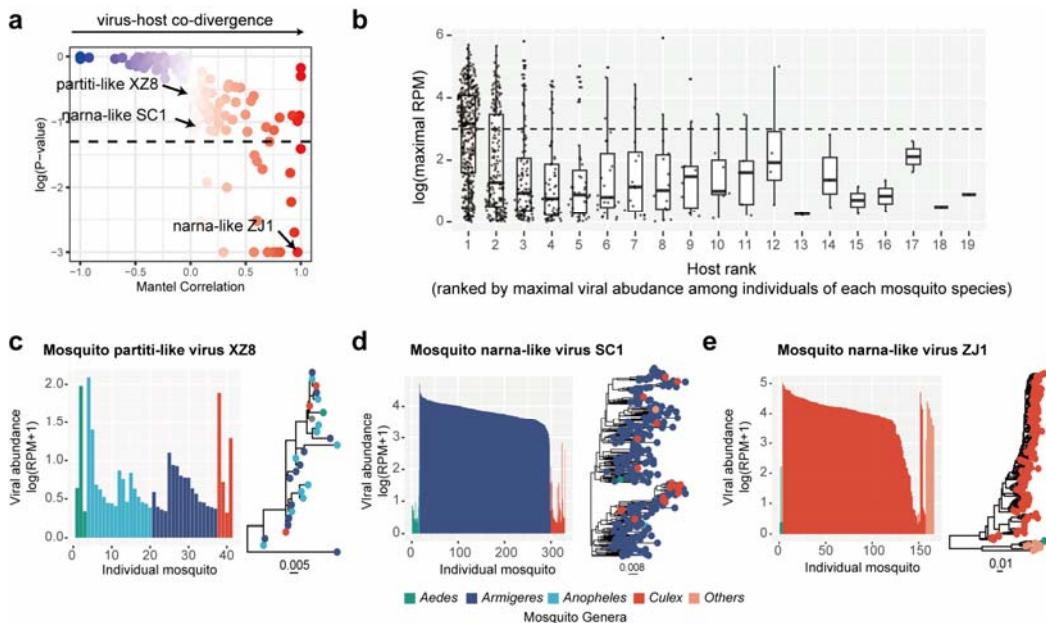
283 We next investigated the environmental and host factors that shape virome
284 composition at both individual and population scales using distance-based
285 redundancy analysis and forward model selection (Table S1). At the population
286 scale, model selection indicated mosquito species as the only significant factor
287 shaping virome composition, explaining 33.9% of the total variance. At the
288 individual scale, mosquito species remained the most important, explaining 11%
289 of the total variance, but was not the only factor shaping virome composition.
290 Climate (three climate principal components) and land-use (two anthrome
291 principal components and mammal richness) factors explained 2%, and the
292 rest part of variance (87%) remained unexplained.

293 These results indicate that the mosquito viromes were distinct among
294 different mosquito taxa at both individual and population scales, which was
295 then visualised using t-SNE (t-distributed stochastic neighbour embedding)
296 (Fig. 5a). Interestingly, 192 viral species were still shared among multiple
297 mosquito species, including 123 species shared among genera (Fig. 5b-d).

298

299 **Fig. 5 | The composition of individual mosquito viromes and the drivers of viral sharing**
300 **among mosquitoes.** (a) The t-SNE ordination of individual mosquito viromes. Colours represent
301 mosquito genera. (b) Venn diagram showing the number of shared and unique viral species
302 identified in each mosquito genus. (c) The abundance of viruses that were shared among different
303 genera. (d) The virus sharing network among mosquito species. For visual clarity, only the top 30
304 abundant mosquito species and their viromes were shown. (e) The effect of mosquito phylogeny
305 on viral sharing between pairs of mosquito individuals. The two dashed lines indicate average
306 phylogenetic distance between species and between genera respectively. (f) The effect of spatial
307 distance on viral sharing between pairs of mosquito individuals. (g) The relationship between
308 mosquito phylogeny and viral genome similarity. The two dashed lines indicate average
309 phylogenetic distance between species and between genera respectively. Smoothed lines are
310 interpolated using cubic splines. (h) Distance decay of viral genome similarity.

311


312 To disentangle the potential drivers of the prevalent virus sharing across
313 species and genera, we analysed the number of shared viral species between

314 each pair of mosquito individuals. Using a generalised linear model, we found
315 that the number of shared viral species decreased sharply with increasing
316 phylogenetic distance (branch length of the *cox1* gene phylogeny) between
317 individual mosquitos (Fig. 5e), after accounting for the effects of covariates
318 (sampling date and spatial distance). Interestingly, the decrease was less
319 pronounced with increasing spatial distance (Fig. 5f). Even when two individual
320 mosquitos were separated by distance of thousands of kilometres, they could
321 still share the same viral species (Fig. 5f).

322 We also analysed patterns of virus-sharing among mosquito individuals at
323 intra-specific scale of each virus species. We compared the genome identity of
324 variants from each viral species (Fig. 5gh). This revealed that the similarity
325 between viral genomes declined as the phylogenetic distance of mosquito
326 individuals increased if the phylogenetic distance was smaller than 0.167 (i.e.,
327 the average phylogenetic distance between mosquito genera), indicative of
328 co-divergence between viruses and their hosts. However, if the phylogenetic
329 distance exceeded 0.167, the similarity between viral genomes remained high
330 (95% quantile: 95.7%) and displayed no significant trends with phylogenetic
331 distance of mosquito individuals. This suggests that mechanisms of host
332 adaptation may differ when a virus is transmitted within the same host species
333 compared to the case when it is transmitted among different species or
334 genera.

335 **Host Specificity of Mosquito-Associated Viruses**

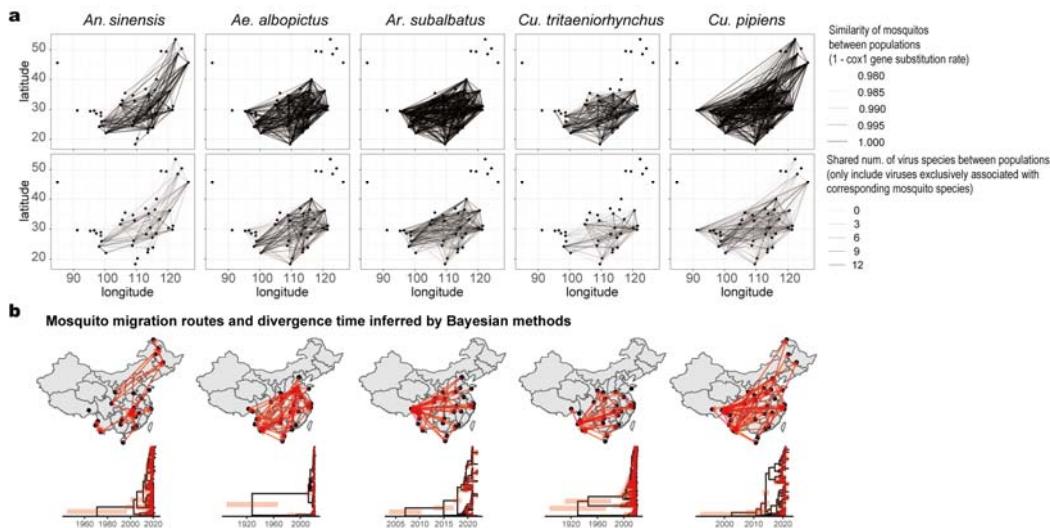
336 Based on these data, we hypothesized that mosquitos harbour both
337 generalist and specialist viruses. Although some viruses can be detected in
338 multiple host species, the viral abundance can be low in these cases,
339 suggesting transient spillover (Fig. 6b). To examine host specificity more
340 robustly we quantified the degree of virus-host co-divergence by correlating
341 phylogenetic distance (i.e., the sum of branch lengths on the maximum
342 likelihood phylogenetic trees) among variants of each viral species with that of
343 their hosts, using partial Mantel tests (the effects of spatial distance among
344 hosts were considered simultaneously). Only viruses detected in more than
345 five individuals were included. This analysis revealed a spectrum of host
346 generalist to specialist viruses (Fig. 6). In particular, 23 of 237
347 mosquito-associated virus species exhibited significant co-divergence with
348 their hosts after removal of the effect of spatial distance (partial Mantel tests, $r >$
349 0 and $p < 0.05$).

350

351 **Fig. 6 | Host specificity of mosquito-associated viruses.** (a). The degree of virus-host
352 co-divergence was measured using the Mantel correlation (Spearman) between the phylogenetic
353 distance matrix of viruses and their corresponding mosquito hosts. Colours indicate correlation
354 coefficient (the same as the X axis). (b) Comparison of the viral abundance of each viral species in
355 its major and minor hosts (ranked by maximal viral abundance among all individuals of a
356 mosquito species). The dashed line marks the position where RPM=1000, indicating high viral
357 abundance. (c, d and e) Abundance of three example viral species Mosquito partiti-like virus XZ8,
358 Mosquito narna-like virus SC1 and Mosquito narna-like virus ZJ1 within individual mosquitos,
359 along with their respective phylogenetic trees. Phylogenetic trees were estimated using whole
360 genome sequences and the maximal-likelihood method.

361

362 The differences in host specificity are illustrated by three examples. The
363 first – Mosquito partiti-like virus XZ8 – appeared to be a generalist virus as it
364 was found in four different mosquito genera and did not exhibit co-divergence
365 with its host species (Fig. 6c). In addition, its abundance within each host was
366 relatively low. In contrast, Mosquito narna-like virus ZJ1 appeared to be a
367 specialist virus. Although it was detected in three genera, it showed significant
368 co-divergence with its hosts. Each host genus formed a monophyletic group,
369 and the viral abundance was high (Fig. 6e). Similarly, Mosquito narna-like virus
370 SC1 seemed to be a specialist virus associated with the mosquito genus
371 *Armigeres*, although strains infecting other host genera were observed in the
372 *Armigeres*-infecting clade, suggesting frequent host jumping events (Fig. 6d).
373 Thus, the host specificity of viruses is likely to be a continuum from generalist
374 to specialist.


375 **Linking Virus Biogeography with Mosquito Phylogeography**

376 Our results revealed that even when two individual mosquitos were
377 separated by thousands of kilometres, they could still share the same viral
378 species, indicative of wide distribution of some viral species (Fig. 5f). For
379 example, 76 of the 393 mosquito-associated viruses were widespread across
380 China (median distance between positive individuals >1000km, indicating
381 large spatial converge), with the remainder being more localised (median
382 distance <1000km) (Supplementary Data 2). Viruses detected in multiple host
383 species have a wider distribution range compared to those associated with a
384 single mosquito species, after the effect of sample size bias (i.e., number of
385 positive individuals of each virus may vary) was considered using multiple
386 linear regression (Fig. S9).

387 We next explored the intra-specific genetic structure of each virus species
388 throughout space. We quantified how viruses diverged as spatial distance
389 increases, by correlating phylogenetic distance among variants of each virus
390 species with the spatial distance between them, using partial Mantel tests (to
391 remove the effect of host phylogeny). This analysis revealed 79 virus species
392 that displayed significant genetic structure in space (partial Mantel test, $r > 0$
393 and $p < 0.05$; Fig. S10, Supplemental Data 2). Viruses that were genetically
394 divergent in space did not necessarily co-diverge with their hosts (χ^2 test, p
395 =0.003; Fig. S10), such that the spatial structure of viruses was unlikely to be
396 driven by co-divergence with their hosts. Of note, 65 of the 76 viruses
397 considered to be widespread did not show significant spatial genetic structure.
398 In addition, genetic divergence of those viruses remained low across long
399 distances (whole genome substitution rate was 0.025 on median, IQR=0.027,
400 inferred from maximal likelihood tree), tentatively suggesting rapid spread in
401 their recent history.

402 To determine how the dispersal of mosquitos contributed to the
403 biogeographic patterns observed in mosquito viromes we correlated the
404 number of shared virus species between mosquito populations with the
405 phylogenetic distance of mosquitos among populations and spatial distance
406 (Fig. 7a). The results indicated that the number of shared viruses between
407 populations declined sharply with minimal *cox1* distance among host
408 populations. In contrast, there was a much weaker correlation with spatial
409 distance (Fig. S11). This can be visualised by comparing the networks of
410 shared number of viruses among populations to the networks of host similarity
411 (Fig. 7a). Although some mosquito populations are spatially close, the number
412 of shared viruses between them is primarily determined by the genetic
413 distance of mosquitos, suggesting the potential importance of long-range host

414 migrations to virus dispersal.

415

416 **Fig. 7 | Linking virus biogeography with mosquito phyogeography.** (a) The networks of
417 similarity of mosquitos and virome connectivity among mosquito populations. The first row
418 visualises the minimal phylogenetic distance among mosquitos between pairs of mosquito
419 populations. The darker lines indicate lower phylogenetic distance. The second row visualises the
420 connectivity of virome between pairs of mosquito populations. The darker lines indicates that
421 more virus species are shared. (b) The migration routes and divergence time estimated by
422 Bayesian methods. The first row displays the reconstructed routes of historical migration of
423 mosquitos. All shown routes were supported by the Bayesian stochastic search variable selection
424 (BSSVS), with Bayes Factors (BF) greater than three. The second row shows the estimated
425 divergence time of mosquitos. Molecular clocks were calibrated using four internal calibration
426 points based on fossil records of oldest Diptera species (calibration point: Diptera), the earliest
427 fossil mosquito (Culicidae) and the earliest Culicinae subfamily record. Red bars represent 95%
428 HPD.

429

430 To analyse this further, we inferred the phylogeographic history of the five
431 most dominant mosquito species using the *cox1* gene. Migration routes were
432 then inferred using a Bayesian stochastic search variable selection (BSSVS)
433 process, and divergence times were estimated using a molecular clock
434 calibrated using fossil evidence²²⁻²⁴ (Table S3). These data showed that the
435 divergence and migration of mosquitos across the country likely only occurred
436 recently (Fig. 7b). Together, these results suggest that the long-distance
437 dispersal of mosquitos may have contributed to the formation of large-scale
438 biogeography of mosquito viromes.

439 DISCUSSION

440 We collected 2,438 individual mosquitos from diverse habitats across

441 China and characterized the virome of individual mosquitos by
442 meta-transcriptomic sequencing. To the best of our knowledge, there have
443 been only five studies that have characterised the virome of individual
444 insects¹¹⁻¹⁵, all restricted to small areas and involved limited individuals. Other
445 metagenomic studies, in which samples were pooled by species or locations,
446 were unable to reveal the patterns and drivers of viral diversity at individual
447 scale⁷⁻¹⁰. Our expansive data set of individual viromes of over 2,000 mosquitos
448 linked the viral diversity within individual insects with total diversity at country
449 scale, providing unique insights into the general ecology of the viromes of
450 insect vectors (e.g., virus prevalence, distribution, drivers of virome
451 composition, host specificity).

452 Our results revealed a very low prevalence of vertebrate-associated
453 arboviruses within mosquitos. By sequencing over 2,000 mosquito individuals
454 in the most populated areas of China, we only detected 13 individual
455 mosquitos that were positive for any known or putative arboviruses. This is
456 despite the fact that we studied well-known disease vectors such as *Ae. albopictus* (Asian tiger mosquito) and *Cu. pipiens* (common house mosquito),
457 and the corresponding sample size for these species are large (383 and 438
458 individuals respectively). This result generally aligns with findings of previous
459 metagenomic studies of vector arthropods, such as mosquitos¹¹ and ticks⁷.

461 Notably, the arboviruses detected were concentrated in semi-natural
462 habitats nearby forests, suggesting that their prevalence is uneven among
463 locations or habitats. While it is well-documented that the prevalence of
464 mosquitos can differ between regions or habitats in the case of some
465 arboviruses (such as West Nile virus^{25,26} and Japanese encephalitis virus²⁷),
466 such evidence is lacking for relatively understudied arboviruses, as well as for
467 newly discovered putative arboviruses. Our metagenomic data therefore
468 provides powerful new evidence to support an uneven prevalence of
469 arboviruses. Such distribution patterns also tentatively suggests that wild
470 animals might be involved in the transmission of these viruses. Many other
471 well-studied arboviruses are known to be maintained in populations of wild
472 animals through enzootic transmission cycles²⁸, including West Nile virus and
473 Japanese encephalitis virus. As such, these results highlight the importance of
474 intensifying pathogen surveillance efforts in these semi-natural habitats, as
475 they may act as the frontline for the spillover of novel or
476 neglected/understudied arboviruses to humans.

477 We also identified hotspot species and locations of overall viral diversity,

478 which largely coincided with arbovirus hotspots. We detected significant
479 variation in the diversity of individual viromes across mosquito species. This
480 implies that there are hotspot species of viral diversity. Although previous
481 studies have also reported that the diversity and composition of virome differ
482 among mosquito species^{10,12}, they were unable to identify hotspot species due
483 to the insufficient sample size per species. Our results offer novel evidence for
484 the existence of diversity hotspot species. While comparative immunological
485 studies have associated various anti-virus immune genes with the vector
486 competence of a few well-studied arboviruses²⁹⁻³¹, it remains largely elusive
487 whether such immunologic variation will affect the total viral diversity. We
488 hypothesize that such variation among mosquito species reflects their carrying
489 capacity for viruses and is ultimately indicative of the total investment in
490 mosquito immunity. These differences could result in “hotspot” species that
491 harbour more viruses and exhibit higher viral loads, thereby potentially posing
492 a higher risk of arbovirus emergence.

493 Our findings also suggested that areas with high mammal richness,
494 relatively low temperatures, and high precipitation may act as hotspot areas for
495 viral diversity. These diversity hotspot areas correspond to previously
496 described distributions of arboviruses, further emphasizing the need for
497 surveillance efforts in these areas. Notably, a considerable portion of the
498 deviance in virus diversity remains unexplained. This could be due to
499 unmeasured environmental or host covariates or pure stochasticity³². For
500 example, intraspecific trait variations (e.g., immune phenotypes) among
501 mosquitos could be an important but unmeasured factor. Clearly, the relative
502 contribution of deterministic and stochastic processes in shaping the diversity
503 and composition of individual mosquito viromes remains unknown, and further
504 studies are warranted.

505 Remarkably, our data uncovered a substantial number of viruses that were
506 shared among different mosquito species or genera, broadening our
507 understanding of the host specificity of insect-associated viruses. While our
508 findings indicate that phylogenetic distance among mosquitos constrained
509 virus transmission, there are cases of generalist viruses that can infect multiple
510 mosquito species. Hence, counter to earlier ideas, virome compositions are
511 not completely distinct among insect species^{7,10,12}. Notably, our results also
512 imply that the host specificity of mosquito-associated viruses exists on a
513 spectrum rather than adhering to a rigid “generalist-specialist” dichotomy^{28,33}.
514 Some viruses appear to be predominantly associated with particular mosquito
515 species, although sporadic host switching events are frequent, such as the

516 case of Mosquito narna-like virus SC1. This phenomenon of frequent host
517 switching has also been observed in rabies viruses of bats³⁴, and in recent
518 metagenomics studies in mammals⁶ and ticks⁷. The frequent spillover events,
519 along with the frequent co-infection of viruses within individual mosquitos, are
520 likely to contribute to increased genetic diversity among viruses circulating in
521 mosquito communities. Furthermore, studying the differences in the
522 determinants of host competence between generalist and specialist viruses
523 holds considerable value. For example, some studies have suggested that
524 many arboviruses are generalist in nature^{7,28}, and understanding this may be
525 important for disease control. Therefore, understanding the general principles
526 underlying virus-host specificity and the determinants of host competence is a
527 promising avenue for arbovirus prevention.

528 We also detected a wide array of virus species that were widespread
529 across China as a whole, with highly similar genomes throughout. This
530 phenomenon may be attributed to recent long-distance dispersal events.
531 Although it is presumed that the rapid spread of pathogens through mosquito
532 flight should be limited due to the weak flight ability of mosquitos, our analyses
533 of cox1 gene similarity and phylogeographic reconstructions suggest that the
534 five dominant mosquito species have likely spread throughout the country in
535 recent history, which is consistent with some previous evidence³⁵. As a
536 consequence, the dispersal of mosquitos may be an important factor that
537 shapes the biogeography of mosquito-associated viruses. Previous studies
538 have highlighted infected travellers, rather than mosquitos themselves, as the
539 main driving force behind virus spread^{36,37}. Our results emphasizes that the
540 movement of mosquitos, potentially facilitated by human activities, should not
541 be overlooked. Human activities, such as transportation (e.g., the trade of used
542 tires, which was a major route for the spread of Asian tiger mosquitos³⁸), may
543 also facilitate mosquito dispersal. Previous studies have also indicated the
544 potential for wind-facilitated seasonal migration of mosquitos³⁹ and other
545 insects⁴⁰. For instance, *Anopheles* mosquitos in Africa are known to migrate
546 seasonally at high altitudes (>150m) by wind, rapidly transmitting malaria to
547 distant areas³⁹. When combined with our data, these suggest the importance
548 of mosquito spread in virus dissemination.

549 In summary, our unique data set of individual mosquito viromes provides
550 important insights into the micro- and macro-diversity of viromes associated
551 with vector insects. We identified potential hotspot locations and species of
552 viral diversity and potential vector-borne diseases. These findings highlight the
553 need for enhanced virus surveillance in these potential high-risk areas and

554 among these species. Additionally, we have demonstrated that the
555 composition of individual viromes is strongly influenced by host phylogeny,
556 although generalist viruses that are shared among different host
557 species/genera are prevalent. Finally, we have shown that the
558 often-overlooked long-range dispersal of insect host may play a crucial role in
559 shaping virus distribution, alerting us to consider pathways of vector insect
560 dispersal such as transportation and wind-facilitated spread.

561

562 **METHODS**

563 **Sample collection**

564 A total of 2438 adult mosquitos were collected between 2018 to 2021 in
565 China. The sample locations involved 23 Chinese provinces, including Tibet,
566 Xinjiang, Yunnan and Inner Mongolia Provinces, spanning approximately 4000
567 km both in latitude and longitude (Fig. 1; Supplemental Data S1). Mosquitos
568 were collected using CO₂ traps (dry ice) that were set at each location for
569 approximately 12 h overnight. Each trap was baited with dry ice to attract
570 mosquitos. Upon trap collection, the mosquitos were collected and preserve in
571 dry ice. Mosquitos were then placed in labelled vials and left on dry ice until
572 they were returned to the laboratory, where the samples were placed in a
573 -80°C freezer until RNA extraction. Mosquito species identification was initially
574 carried out by experienced field biologists using taxonomic keys and dissecting
575 microscopes on cold tables and was later verified by analysis of the
576 cytochrome c oxidase subunit I (cox1) gene (Fig. 1; Supplemental Data S1).

577 **Sample Processing and Sequencing**

578 RNA extraction and sequencing were carried out on each mosquito
579 individual (Supplemental Data S1). Prior to homogenization, each mosquito
580 pool was washed three times with 1 ml of a sterile RNA- and DNA-free
581 phosphate-buffered saline (PBS) solution (Gibco) to remove external microbes.
582 The samples were then homogenized in 600 μ l of lysis buffer by using a
583 TissueRuptor instrument (Qiagen). Total RNA was extracted by using a
584 RNeasy Plus minikit according to the manufacturer's instructions. The quality
585 of the extracted RNA was evaluated by using an Agilent 2100 bioanalyzer
586 (Agilent Technologies). All extractions performed in this study had an RNA
587 integrity number (RIN) of >8.7.

588 The sequencing libraries were prepared using the MGIeasy RNA Library

589 Prep Kit V3.0. Briefly, the RNA was fragmented, reverse transcribed and
590 synthesised into double-stranded cDNA. The Unique Dual Indexed cDNA was
591 circulated, and rolling-circle replicated into DNA nanoball (DNB)-based
592 libraries. The constructed libraries were sequenced on the DNBSEQ T series
593 platform (MGI, Shenzhen, China) to generate meta-transcriptomic data of
594 150-bp paired-end reads.

595 **Virus Discovery**

596 For each sample, reads from ribosomal RNA (rRNA) were removed using
597 URMAP⁴¹ (version 1.0.1480), and then by mapping quality-controlled raw
598 reads against the SILVA⁴² rRNA database with Bowtie2⁴³. Adapters and
599 low-quality reads were removed using fastp⁴⁴ (version 0.20.1). The reads with
600 duplicates and low complexity were removed using SOAPnuke⁴⁵ (version 2.1.5)
601 and PRINSEQ++⁴⁶ (version 1.2), respectively. The resulting clean non-rRNA
602 reads were assembled into contigs using MEGAHIT⁴⁷ (version 1.2.8). The
603 assembled contigs were searched against the NCBI nr database using
604 DIAMOND (version 2.0.15). The e-value was set at 1e-5 to achieve high
605 sensitivity while reducing false positives. We roughly classify the contigs by
606 kingdom based on the search, and we extracted all viral contigs. Viruses were
607 further confirmed by checking the existence of hallmark genes (i.e., RdRp for
608 RNA viruses, NS1 for *Parvoviridae*, and DNApol for other DNA viruses). We
609 removed viral contigs that were less than 600bp in length, and we also
610 checked the domain completeness for each RNA virus (at least one conserved
611 motif of RdRp should exist, checked manually by performing multi-sequence
612 alignments). Viral contigs with unassembled overlaps were merged using
613 SeqMan in the Lasergene software package (version 7.1). To confirm the
614 assembly results, reads were mapped back to the virus genomes with
615 Bowtie2.

616 **RNA Quantification**

617 To quantify the abundance of RNA genomes (RNA viruses) or transcripts
618 (DNA viruses), we estimated the percentage of total reads that mapped to
619 target genomes or genes. The sequences used for mapping involved viral
620 genomes and mosquito marker gene (cox1) mentioned above. Mapping was
621 performed using Bowtie2. We used number of reads mapped per million
622 non-rRNA reads (RPM) to represent viral abundance.

623 **Virus Discovery Quality Control**

624 To ensure that the viruses we detected in mosquito individuals were not

625 artifacts, we applied multiple quality control measures. First, we confirmed that
626 the individual mosquitos sequenced were not contaminated by other
627 individuals or species by examining the polymorphism of the mitochondrial
628 *cox1* gene. We mapped sequencing reads to the *cox1* gene and determined
629 whether there were polymorphic sites in the mapped regions. As there was
630 only one individual sequenced in each library, there should be no polymorphic
631 sites in the *cox1* gene (with the exception of sequencing error). We confirmed
632 that the frequency of single nucleotide substitution in the *cox1* gene was less
633 than 1% for each of the 2438 individuals, supporting that our samples and
634 sequencing process were not contaminated.

635 We then performed two rounds of filtrations based on viral abundance.
636 First, we removed false positives due to index-hopping that occurs during
637 high-throughput sequencing when reads from one sample are erroneously
638 assigned to another sample. We minimized the effect of index-hopping by
639 applying a read abundance threshold relative to the maximal read abundance
640 within each sequencing lane. If the total read count of a specific virus in a
641 specific library of is less than 0.1% of the highest read count for that virus
642 within the same sequencing lane, then it is considered as a false-positive due
643 to index-hopping. In addition, we excluded those viruses at very low
644 abundance (RPM < 1) and at low genome coverage (coverage < 300
645 base-pairs, i.e., the length of two reads), which were also likely to be
646 false-positives. These thresholds have been validated in our previous
647 publications deploying RT-PCR re-confirmation^{6,48}.

648 **Phylogenetic Analyses**

649 To determine the evolutionary history of the newly discovered viruses, we
650 estimated viral phylogenies using the amino acid sequences of the viral
651 hallmark proteins (i.e., RNA-dependent RNA polymerase for RNA viruses,
652 DNA polymerase for DNA viruses, except Rep protein for the *Circoviridae* and
653 NS1 protein for the *Parvoviridae*). For comparison, we included previously
654 reported viral hallmark protein of each relevant phylogenetic groups (RNA
655 viruses were grouped by super clades⁸, and DNA viruses were grouped by
656 viral families). This included all the previously described mosquito viruses
657 within these groups. Within each group, the hallmark proteins were aligned by
658 using the E-INS-i algorithm implemented in MAFFT⁴⁹ (version 7). Ambiguously
659 aligned regions were removed using TrimAl⁵⁰. The best-fit model of amino acid
660 substitutions was determined busing jModelTest⁵¹. Phylogenetic trees were
661 inferred by using the maximum likelihood (ML) method implemented in

662 PhyML⁵² version 3.0, utilizing the best-fit substitution model and the Subtree
663 Pruning and Refractoring (SPR) branch-swapping algorithm. Support for
664 individual nodes on the phylogenetic tree was assessed by using an
665 approximate likelihood ratio test (aLRT) with the Shimodaira-Hasegawa-like
666 procedure as implemented in PhyML.

667 **Identification of the Core Mosquito Virome**

668 The core virome in this study refers to viruses associated with mosquitos,
669 as distinguished from viruses associated with other host taxa such as protists,
670 nematodes, fungi, bacteria amongst others. The identification of the core
671 virome was based on four key aspects: (i) similarity to viruses known to infect
672 specific hosts, (ii) viral abundance within individual mosquitos, (iii)
673 phylogenetic position on the tree, and (iv) co-occurrence with other microbes
674 within the same individual. To accomplish this, we gathered genome/protein
675 sequences and corresponding host information for all viruses listed in the ICTV
676 master species list and the Virus-Host Database (Fig. S3-4). Using a BLASTP
677 search, we compared the hallmark proteins (RNA viruses: RdRp, *Circoviridae*:
678 Rep, *Parvoviridae*: NS1, other DNA viruses: DNAPol) of the viruses detected in
679 our study against these databases. We assigned host annotations to each
680 virus based on the best BLASTP hit, considering hits with an e-value greater
681 than 10^{-5} and a percentage identity above 40%. The thresholds were
682 benchmarked using the above two databases to have achieved low
683 false-positive rate and descent recall (Fig. S5).

684 In addition, viruses with a maximum abundance exceeding 1000 RPM
685 among all positive individuals were roughly categorized as
686 "mosquito-associated" (i.e., part of the core virome). We also manually
687 inspected the phylogenetic tree (see above, *Phylogenetic Analysis*) to
688 determine whether the viruses belonged to known mosquito or
689 insect-associated lineages. If a virus did not belong to any known
690 insect-associated lineages but co-occurred with microbes such as protists or
691 fungi in the corresponding individuals, we classified it as
692 non-mosquito-associated (i.e., non-core virome). In cases where a virus
693 showed distant evolutionary relationship to any known viruses, exhibited
694 paraphyly with known lineages, and had low abundance, we assigned it as
695 "uncertain".

696 **Inference of Mosquito Phylogeography**

697 The phylogeographic history of the five dominant mosquito species was

698 estimated using the BEAST⁵³ software (version 1.10.4). Accordingly, we
699 aligned the nucleotide sequences of the mitochondrial cox1 gene for each
700 mosquito species using MAFFT. The resulting alignment files were then
701 provided as inputs to BEAST. For the substitution model selection, we
702 employed jModelTest and determined that the GTR+I+F+G model was the
703 optimal choice. Two independent runs were conducted for each mosquito
704 species, consisting of 50 million steps, with the results from the two runs were
705 combined later. Sampling occurred every 1000 steps, with the initial 20% of
706 samples were discarded as burn-in. Coalescent tree priors were set to a
707 constant size model. To calibrate the molecular clock, we utilized three internal
708 calibration points based on fossil records (Table S3) and incorporated tip dates
709 as well. To account for rate variation among branches, we employed a relaxed
710 molecular clock with an uncorrelated lognormal distribution. Convergence of
711 the chains was assessed using TRACER⁵⁴ v1.7 to ensure that the effective
712 sample sizes (ESS) exceeded 200, indicating sufficient sampling. The
713 Bayesian stochastic search variable selection (BSSVS) procedure was applied
714 to estimate the historical migration of mosquitos among different sampling
715 locations. Transition rates among locations and Bayesian factors were
716 estimated, with transition rates supported by a Bayes factor (BF) greater than
717 3 considered to have significant support.

718 **Collection of Environmental Data**

719 To examine how the diversity and composition of mosquito viromes are
720 shaped by environmental factors, we collected climate and land-use data for
721 each sample location from open data sources. Climate data were collected
722 from the WorldClim2 database⁵⁵. We extracted all the 19 “bioclimatic variables”
723 commonly used in species distribution modeling and related ecological
724 modeling techniques⁵⁶. The definitions of these 19 variables can be found at
725 <https://www.worldclim.org/data/bioclim.html>. To deal with co-linearity between
726 climate variables, we conducted principal component analyses (PCA), and the
727 first three principal components (i.e., CPC1, 2, and 3) were used to represent
728 climate in all downstream statistical analyses. These principal components
729 explained 52.4%, 27.1%, and 10.2% of the total variance respectively (sum up
730 to 89.7%).

731 Land-use data were retrieved from the HYDE 3.2 database⁵⁷ (spatial
732 resolution: 5 arc minutes). We used the anthrome (i.e., anthropogenic biomes)
733 classification system (21 classes in total) for land-use characterization. For
734 robustness, we calculated the percentage of area classified as each class

735 within 100 km diameter centered around each sample location, instead of
736 using the anthrome classification exactly at each location. To remove
737 co-linearity, we also calculated principal components for all anthrome variables.
738 The first two components were used (referred to as APC1 and 2), and they
739 explained 56.8% and 43.2% of variance respectively (sum up to approximately
740 100%). We also included the human population density in the year of 2017
741 from HYDE 3.2 database, and we retrieved mammal richness data (spatial
742 resolution: 30*30 km) from the IUCN mammal richness database (version
743 2022-2).

744 **Statistical Methods**

745 All statistical analyses were conducted using R version 4.2.0.

746 *Estimating Alpha-Diversity in Individual Mosquito Viromes*

747 To examine the influence of environmental and host factors on viral
748 species richness, we employed generalized linear models with a Poisson
749 distribution and log link function. The factors investigated included mosquito
750 species identity, land-use characteristics, and climatic variables. Land-use
751 characteristics comprised two principal components (APC1 and 2),
752 log-transformed population density, and mammal richness. Climate conditions
753 were represented by three principal components (CPC1/2/3). Model selection
754 was based on the Akaike information criterion (AIC), assessing all
755 combinations of variables using the MuMIn package in R. The proportion of
756 deviance explained by each variable was estimated by comparing the
757 deviance explained by the full model to that explained by a model with the
758 specific variable removed.

759 *Composition and Connectivity of Individual Mosquito Viromes*

760 The composition of individual mosquito viromes was visualized using the
761 t-SNE method. We assessed the differences in virome compositions among
762 mosquito genera through permutational multivariate analysis of variance
763 (PERMANOVA) based on Jaccard distance. Additionally, the virus-sharing
764 network was visualized using the igraph package in R to illustrate virome
765 connectivity.

766 We also analyzed the effect of host phylogenetic distance and spatial
767 distance on the pattern of virus-sharing among individuals. We employed
768 generalized linear regression (Poisson regression) to examine the influence of
769 host phylogeny and spatial distance on the number of shared virus species

770 between pairs of mosquito individuals. To account for potential confounding
771 effects, sampling date was included as a covariate in the analysis. To support
772 the results of Poisson regression, we also conducted partial Mantel tests to
773 correlate the number of shared-virus with phylogenetic distance among hosts,
774 and spatial distance, while considering sampling date as a covariate. As the
775 variables were not normally distributed, Spearman correlation coefficient were
776 employed the partial Mantel tests.

777 *Analysis of Host Specificity of Mosquito-Associated Viruses*

778 We investigated the extent of co-divergence between viruses with their
779 mosquito hosts, as well as the degree of virus divergence with increasing
780 spatial distance. For each virus species detected in more than five positive
781 individuals, we obtained consensus sequences within each positive mosquito
782 individual by mapping RNA reads to its representative genome using bowtie2.
783 The genome sequences were aligned using MAFFT, using the L-INS-I
784 algorithm. Subsequently, we examined the correlation between the
785 phylogenetic distance (i.e., whole genome substitution rate) of virus strains
786 with spatial distance and the phylogenetic distance of their host individuals
787 (measured as the substitution rate of the cox1 gene) using partial Mantel tests.
788 Spearman correlation coefficients was employed in the partial Mantel tests. A
789 significant positive correlation (p value < 0.05) indicates virus-host
790 co-divergence or virus divergence through space.

791

792 **DATA AVAILABILITY**

793 The assembled viral genome sequences have been deposited in the CNGBdb
794 with the accession code N_AAACQU010000000-N_AAADM010000000 (see
795 Supplemental Data 2). The sample metadata and other materials required to
796 reproduce our computational and statistical results are provided in the GitHub
797 repository along with code and scripts (XXXXXX).

798 **CODE AVAILABILITY**

799 Code and scripts are provided in a GitHub repository (XXXXXX).

800

801 **REFERENCES**

802 1 Kilpatrick, A. M. & Randolph, S. E. Drivers, dynamics, and control of emerging
803 vector-borne zoonotic diseases. *The Lancet* **380**, 1946-1955 (2012).
804 [https://doi.org/10.1016/S0140-6736\(12\)61151-9](https://doi.org/10.1016/S0140-6736(12)61151-9)

805 2 Bolling, B. G., Weaver, S. C., Tesh, R. B. & Vasilakis, N. Insect-Specific Virus Discovery:
806 Significance for the Arbovirus Community. *Viruses* **7**, 4911-4928 (2015).

807 3 Vasilakis, N. & Tesh, R. B. Insect-specific viruses and their potential impact on arbovirus
808 transmission. *Current Opinion in Virology* **15**, 69-74 (2015).
<https://doi.org:https://doi.org/10.1016/j.coviro.2015.08.007>

810 4 Olmo, R. P. *et al.* Mosquito vector competence for dengue is modulated by insect-specific
811 viruses. *Nature Microbiology* **8**, 135-149 (2023).
<https://doi.org:10.1038/s41564-022-01289-4>

813 5 Zhang, Y. Z., Shi, M. & Holmes, E. C. Using Metagenomics to Characterize an Expanding
814 Virosphere. *Cell* **172**, 1168-1172 (2018). <https://doi.org:10.1016/j.cell.2018.02.043>

815 6 Wang, J. *et al.* Individual bat virome analysis reveals co-infection and spillover among bats
816 and virus zoonotic potential. *Nature Communications* **14**, 4079 (2023).
<https://doi.org:10.1038/s41467-023-39835-1>

818 7 Ni, X.-B. *et al.* Metavirome of 31 tick species provides a compendium of 1,801 RNA virus
819 genomes. *Nature Microbiology* **8**, 162-173 (2023).
<https://doi.org:10.1038/s41564-022-01275-w>

821 8 Shi, M. *et al.* Redefining the invertebrate RNA virosphere. *Nature* **540**, 539-543 (2016).
<https://doi.org:10.1038/nature20167>

823 9 Shi, M. *et al.* High-Resolution Metatranscriptomics Reveals the Ecological Dynamics of
824 Mosquito-Associated RNA Viruses in Western Australia. *Journal of Virology* **91**,
825 10.1128/jvi.00680-00617 (2017). <https://doi.org:doi:10.1128/jvi.00680-17>

826 10 Liu, Q. *et al.* Association of virome dynamics with mosquito species and environmental
827 factors. *Microbiome* **11**, 101 (2023). <https://doi.org:10.1186/s40168-023-01556-4>

828 11 Batson, J. *et al.* Single mosquito metatranscriptomics identifies vectors, emerging
829 pathogens and reservoirs in one assay. *eLife* **10**, e68353 (2021).
<https://doi.org:10.7554/eLife.68353>

831 12 Shi, C. *et al.* Stable distinct core eukaryotic viromes in different mosquito species from
832 Guadeloupe, using single mosquito viral metagenomics. *Microbiome* **7**, 121 (2019).
<https://doi.org:10.1186/s40168-019-0734-2>

834 13 Webster, J. P., Borlase, A. & Rudge, J. W. Who acquires infection from whom and how?
835 Disentangling multi-host and multi-mode transmission dynamics in the 'elimination' era.
836 *Philosophical Transactions of the Royal Society B: Biological Sciences* **372**, 20160091
837 (2017). <https://doi.org:10.1098/rstb.2016.0091>

838 14 Bigot, D. *et al.* Discovery of *Culex pipiens* associated tunisia virus: a new ssRNA(+) virus
839 representing a new insect associated virus family. *Virus Evolution* **4**, vex040 (2018).
<https://doi.org:10.1093/ve/vex040>

841 15 Chandler, J. A., Liu, R. M. & Bennett, S. N. RNA shotgun metagenomic sequencing of
842 northern California (USA) mosquitoes uncovers viruses, bacteria, and fungi. *Frontiers in*
843 *Microbiology* **6** (2015). <https://doi.org:10.3389/fmicb.2015.00185>

844 16 Seabloom, E. W. *et al.* The community ecology of pathogens: coinfection, coexistence and
845 community composition. *Ecol Lett* **18**, 401-415 (2015). <https://doi.org:10.1111/ele.12418>

846 17 Mihaljevic, J. R. Linking metacommunity theory and symbiont evolutionary ecology. *Trends*
847 *Ecol Evol* **27**, 323-329 (2012). <https://doi.org:10.1016/j.tree.2012.01.011>

848 18 Miller, E. T., Svanback, R. & Bohannan, B. J. M. Microbiomes as Metacommunities:

849 Understanding Host-Associated Microbes through Metacommunity Ecology. *Trends Ecol
850 Evol* **33**, 926-935 (2018). <https://doi.org/10.1016/j.tree.2018.09.002>

851 19 Jones, K. E. et al. Global trends in emerging infectious diseases. *Nature* **451**, 990-993
852 (2008). <https://doi.org/10.1038/nature06536>

853 20 Dzul-Manzanilla, F. et al. Identifying urban hotspots of dengue, chikungunya, and Zika
854 transmission in Mexico to support risk stratification efforts: a spatial analysis. *The Lancet
855 Planetary Health* **5**, e277-e285 (2021). [https://doi.org/10.1016/S2542-5196\(21\)00030-9](https://doi.org/10.1016/S2542-5196(21)00030-9)

856 21 Murray, K. A. et al. Global biogeography of human infectious diseases. *Proc Natl Acad Sci
857 U S A* **112**, 12746-12751 (2015). <https://doi.org/10.1073/pnas.1507442112>

858 22 Poinar, G. O., Zavortnik, T., Pike, T. & Johnston, P. Paleoculicis minututs (Diptera:
859 Culicidae) n. Gen., n. Sp., from Cretaceous Canadian amber, with a summary of described
860 fossil mosquitoes. *Acta Geologica Hispanica*, 119-130 (2000).

861 23 Krzeminski, W., Krzeminska, E. & Papier, F. Grauvogelia arzvilleriana sp. n.-the oldest
862 Diptera species [Lower-Middle Triassic of France]. *Acta zoologica cracoviensis* **37** (1994).

863 24 Borkent, A. & Grimaldi, D. A. The Earliest Fossil Mosquito (Diptera: Culicidae), in
864 Mid-Cretaceous Burmese Amber. *Annals of the Entomological Society of America* **97**,
865 882-888 (2004). [https://doi.org/10.1603/0013-8746\(2004\)097\[0882:TEFMDC\]2.0.CO;2](https://doi.org/10.1603/0013-8746(2004)097[0882:TEFMDC]2.0.CO;2)

866 25 Engler, O. et al. European Surveillance for West Nile Virus in Mosquito Populations.
867 *International Journal of Environmental Research and Public Health* **10**, 4869-4895 (2013).

868 26 Kilpatrick, A. M. & Pape, W. J. Predicting Human West Nile Virus Infections With Mosquito
869 Surveillance Data. *American Journal of Epidemiology* **178**, 829-835 (2013).
870 <https://doi.org/10.1093/aje/kwt046>

871 27 Kuwata, R. et al. Surveillance of Japanese Encephalitis Virus Infection in Mosquitoes in
872 Vietnam from 2006 to 2008. *The American Society of Tropical Medicine and Hygiene* **88**,
873 681-688 (2013). <https://doi.org/10.4269/ajtmh.12-0407>

874 28 Weaver, S. C. & Barrett, A. D. T. Transmission cycles, host range, evolution and
875 emergence of arboviral disease. *Nature Reviews Microbiology* **2**, 789-801 (2004).
876 <https://doi.org/10.1038/nrmicro1006>

877 29 Souza-Neto, J. A., Powell, J. R. & Bonizzoni, M. Aedes aegypti vector competence studies:
878 A review. *Infection, Genetics and Evolution* **67**, 191-209 (2019).
879 <https://doi.org/https://doi.org/10.1016/j.meegid.2018.11.009>

880 30 Bartholomay, L. C. & Michel, K. Mosquito Immunobiology: The Intersection of Vector
881 Health and Vector Competence. *Annual Review of Entomology* **63**, 145-167 (2018).
882 <https://doi.org/10.1146/annurev-ento-010715-023530>

883 31 Bartholomay, L. C. et al. Pathogenomics of *Culex quinquefasciatus* and Meta-Analysis of
884 Infection Responses to Diverse Pathogens. *Science* **330**, 88-90 (2010).
885 <https://doi.org/doi:10.1126/science.1193162>

886 32 Zhou, J. & Ning, D. Stochastic Community Assembly: Does It Matter in Microbial Ecology?
887 *Microbiol Mol Biol Rev* **81** (2017). <https://doi.org/10.1128/MMBR.00002-17>

888 33 Power, A. & Flecker, A. *The role of vector diversity in disease dynamics*. (Princeton, NJ:
889 Princeton University Press, 2008).

890 34 Streicker, D. G. et al. Host phylogeny constrains cross-species emergence and
891 establishment of rabies virus in bats. *Science* **329**, 676-679 (2010).
892 <https://doi.org/10.1126/science.1188836>

893 35 Gao, J. *et al.* Dispersal patterns and population genetic structure of *Aedes albopictus*
894 (Diptera: Culicidae) in three different climatic regions of China. *Parasites & Vectors* **14**, 12
895 (2021). <https://doi.org/10.1186/s13071-020-04521-4>

896 36 Weaver, S. C., Forrester, N. L., Liu, J. & Vasilakis, N. Population bottlenecks and founder
897 effects: implications for mosquito-borne arboviral emergence. *Nature Reviews
898 Microbiology* **19**, 184-195 (2021). <https://doi.org/10.1038/s41579-020-00482-8>

899 37 Baker, R. E. *et al.* Infectious disease in an era of global change. *Nature Reviews
900 Microbiology* **20**, 193-205 (2022). <https://doi.org/10.1038/s41579-021-00639-z>

901 38 Tatem, A. J., Rogers, D. J. & Hay, S. I. in *Advances in Parasitology* Vol. 62 (eds Simon I.
902 Hay, Alastair Graham, & David J. Rogers) 293-343 (Academic Press, 2006).

903 39 Huestis, D. L. *et al.* Windborne long-distance migration of malaria mosquitoes in the Sahel.
904 *Nature* **574**, 404-408 (2019). <https://doi.org/10.1038/s41586-019-1622-4>

905 40 Hu, G. *et al.* Mass seasonal bioflows of high-flying insect migrants. *Science* **354**,
906 1584-1587 (2016). <https://doi.org/10.1126/science.aah4379>

907 41 Edgar, R. URMAP, an ultra-fast read mapper. *PeerJ* **8**, e9338 (2020).
908 <https://doi.org/10.7717/peerj.9338>

909 42 Quast, C. *et al.* The SILVA ribosomal RNA gene database project: improved data
910 processing and web-based tools. *Nucleic Acids Research* **41**, D590-D596 (2013).
911 <https://doi.org/10.1093/nar/gks1219>

912 43 Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. *Nature
913 Methods* **9**, 357-359 (2012). <https://doi.org/10.1038/nmeth.1923>

914 44 Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor.
915 *Bioinformatics* **34**, i884-i890 (2018). <https://doi.org/10.1093/bioinformatics/bty560>

916 45 Chen, Y. *et al.* SOAPnuke: a MapReduce acceleration-supported software for integrated
917 quality control and preprocessing of high-throughput sequencing data. *GigaScience* **7**,
918 gix120 (2018). <https://doi.org/10.1093/gigascience/gix120>

919 46 Cantu, V. A., Sadural, J. & Edwards, R. PRINSEQ++, a multi-threaded tool for fast and
920 efficient quality control and preprocessing of sequencing datasets. *PeerJ Preprints* **7**,
921 e27553v27551 (2019). <https://doi.org/10.7287/peerj.preprints.27553v1>

922 47 Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node
923 solution for large and complex metagenomics assembly via succinct de Bruijn graph.
924 *Bioinformatics* **31**, 1674-1676 (2015). <https://doi.org/10.1093/bioinformatics/btv033>

925 48 Shi, M. *et al.* Total infectome characterization of respiratory infections in pre-COVID-19
926 Wuhan, China. *PLOS Pathogens* **18**, e1010259 (2022).
927 <https://doi.org/10.1371/journal.ppat.1010259>

928 49 Katoh, K. & Standley, D. M. MAFFT Multiple Sequence Alignment Software Version 7:
929 Improvements in Performance and Usability. *Molecular Biology and Evolution* **30**, 772-780
930 (2013). <https://doi.org/10.1093/molbev/mst010>

931 50 Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated
932 alignment trimming in large-scale phylogenetic analyses. *Bioinformatics* **25**, 1972-1973
933 (2009). <https://doi.org/10.1093/bioinformatics/btp348>

934 51 Posada, D. jModelTest: Phylogenetic Model Averaging. *Molecular Biology and Evolution*
935 **25**, 1253-1256 (2008). <https://doi.org/10.1093/molbev/msn083>

936 52 Guindon, S. *et al.* New Algorithms and Methods to Estimate Maximum-Likelihood

937 Phylogenies: Assessing the Performance of PhyML 3.0. *Systematic Biology* **59**, 307-321
938 (2010). <https://doi.org/10.1093/sysbio/syq010>

939 53 Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees.
940 *BMC Evolutionary Biology* **7**, 214 (2007). <https://doi.org/10.1186/1471-2148-7-214>

941 54 Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior
942 Summarization in Bayesian Phylogenetics Using Tracer 1.7. *Systematic Biology* **67**,
943 901-904 (2018). <https://doi.org/10.1093/sysbio/syy032>

944 55 Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for
945 global land areas. *International Journal of Climatology* **37**, 4302-4315 (2017).
946 <https://doi.org/https://doi.org/10.1002/joc.5086>

947 56 Lembrechts, J. J., Nijs, I. & Lenoir, J. Incorporating microclimate into species distribution
948 models. *Ecography* **42**, 1267-1279 (2019).
949 <https://doi.org/https://doi.org/10.1111/ecog.03947>

950 57 Klein Goldewijk, K., Beusen, A., Doelman, J. & Stehfest, E. Anthropogenic land use
951 estimates for the Holocene – HYDE 3.2. *Earth Syst. Sci. Data* **9**, 927-953 (2017).
952 <https://doi.org/10.5194/essd-9-927-2017>

953

954 ACKNOWLEDGMENTS

955 This study was funded by grants from the National Key R&D Program of China
956 (2021YFC2300900), National Natural Science Foundation of China
957 (32270160), Shenzhen Science and Technology Program
958 (JCYJ20210324124414040), and open project of BGI-Shenzhen Shenzhen
959 518000, China (BGIRSZ20210001). M. Shi was supported by Shenzhen
960 Science and Technology Program (KQTD20200820145822023), Guangdong
961 Province “Pearl River Talent Plan” Innovation, Entrepreneurship Team Project
962 (2019ZT08Y464), and the Fund of Shenzhen Key Laboratory
963 (ZDSYS20220606100803007). G. Liang was supported by the United States
964 National Institutes of Health U01 (AI151810). We gratefully acknowledge
965 colleagues at BGI-Shenzhen and China National Genebank (CNGB) for RNA
966 extraction, library construction and sequencing.

967

968 AUTHOR CONTRIBUTIONS

969 **Conceptualization**, DX Wang, JH Li, WC Wu and M Shi; **Methodology**, YF
970 Pan, HL Zhao, QY Gou, DX Wang, JH Li, WC Wu and M Shi; **Sample**
971 **Collection and Processing**, QY Gou, GY Luo, GY Xin, SJ Le, Jing Wang, X
972 Hou, CH Yang, JX Cheng, YQ Liao, MW Peng, SQ Mei, JB Kong, Juan Wang,
973 Chaolemen, YH Wu, JB Wang, TQ An, WC Wu; **Data analysis**, YF Pan, HL
974 Zhao, QY Gou, PB Shi, DX Wang, JH Li, WC Wu and M Shi; **Writing –**

975 **Original Draft**, YF Pan; **Writing – Review and Editing**, HL Zhao, QY Gou, ZR
976 Ren, SQ Peng, JS Eden, J Li, B Li, DY Guo, GD Liang, X Jin, EC Holmes, DX
977 Wang, JH Li, WC Wu, M Shi. **Funding Acquisition**, DX Wang, JH Li, WC Wu
978 and M Shi; **Resources (sampling)**, JH Tian, Y Feng, K Li, WH Yang, D Wu,
979 GP Tang, B Zhang, WC Wu; **Resources (computational)**, DX Wang, JH Li, M
980 Shi; **Supervision**, DX Wang, JH Li, WC Wu and M Shi.

981

982 **COMPETING INTERESTS**

983 The authors declare no competing interests.