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Abstract 28 

Background:  29 

Cerebral organoids simulate the structure and function of the developing human brain in vitro, 30 
offering a large potential for personalized therapeutic strategies. The enormous growth of this 31 
research area over the past decade with its capability for clinical translation makes a non-32 
invasive, automated analysis pipeline of organoids highly desirable. 33 

Purpose:  34 

This work presents the first application of magnetic resonance imaging (MRI) for the non-35 
invasive quantification and quality assessment of cerebral organoids using an automated 36 
analysis tool. Three specific objectives are addressed, namely organoid segmentation to 37 
investigate organoid development over time, global cysticity classification, and local cyst 38 
segmentation. 39 
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Methods:  41 

Nine wildtype cerebral organoids were imaged over nine weeks using high-field 9.4T MRI 42 
including a 3D T2*-w and 2D diffusion tensor imaging (DTI) sequence. This dataset was used 43 
to train a deep learning-based 3D U-Net for organoid and local cyst segmentation. For global 44 
cysticity classification, we developed a new metric, compactness, to separate low- and high-45 
quality organoids. 46 

Results:  47 

The 3D U-Net achieved a Dice score of 0.92±0.06 (mean ± SD) for organoid segmentation in 48 
the T2*-w sequence. For global cysticity classification, compactness separated low- and high-49 
quality organoids with high accuracy (ROC AUC 0.98). DTI showed that low-quality organoids 50 
have a significantly higher diffusion than high-quality organoids (p < .001). For local cyst 51 
segmentation in T2*-w, the 3D U-Net achieved a Dice score of 0.63±0.15 (mean ± SD). 52 

Conclusion:  53 

We present a novel non-invasive approach to monitor and analyze cerebral organoids over 54 

time using high-field MRI and state-of-the-art tools for automated image analysis, offering a 55 

comparative pipeline for personalized medicine. We show that organoid growth can be 56 

monitored reliably over time and low- and high-quality organoids can be separated with high 57 

accuracy. Local cyst segmentation is feasible but could be further improved in the future.  58 

 59 

1. Introduction 60 

Cerebral organoids are key models to study human brain tissue and probe pathophysiological 61 

processes with tremendous potential for tailored therapeutic strategies. They are patient-62 

derived miniature 3D tissue cultures that are grown from induced pluripotent stem cells. 63 

Cerebral organoids have been used to study a wide range of neurological disorders like 64 

microcephaly [1] or neurodegenerative diseases like Alzheimer’s [2] or Parkinson’s disease [3].  65 

The growing interest in organoid research over the past decade [4] results in an increasing 66 

amount of data and thus calls for automated analysis and quantification. However, current 67 

automated organoid analysis pipelines are limited to smaller, e.g. intestinal, organoids [5] or 68 

require organoid sacrifice [6]. Magnetic resonance imaging (MRI) allows for the generation of 69 

3D cerebral organoid time series due to its non-invasive imaging procedure. Furthermore, 70 

brain MRI is the gold standard for diagnosis, staging, and treatment guidance of various 71 

neurological disorders, thus highlighting its potential for imaging cerebral organoids, which has 72 

not yet been exploited.  73 

In the complex process of organoid cultivation, an important undesired route of organoid 74 

differentiation is marked by the occurrence of fluid-filled cavities (or ‘cysts’) [7, 8]. Thus, 75 

accurately and automatically estimating organoid cysticity would greatly contribute to organoid 76 

quality monitoring. So far, however, only an approach for automated segmentation of exophytic 77 

cysts in patients with polycystic kidney disease using MRI has been reported [9]. 78 

Here, we present the first application of MRI to human brain organoids using a neural network-79 

based approach to extract cerebral organoid volume and structural features. Specifically, we 80 

address three crucial tasks for organoid monitoring and quality assessment: organoid 81 

segmentation, global cysticity classification, and local cyst segmentation. 82 

 83 
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2. Results 84 

Organoid segmentation 85 

Organoid segmentation is essential to automatically extract features like organoid volume or 86 

structure. As shown in Figure 1a-b, the 3D U-Net reached an overall Dice score of 87 

0.92±0.06 (mean ± SD) for organoid segmentation. Even though the model performs very 88 

accurately overall, we investigated challenging samples to identify the model’s weaknesses. 89 

The model performs poorest for Organoid 3 on day 36 (Dice score of 0.59). For this organoid, 90 

the disruption of one or more cystic structures resulted in a reduced overall 91 

volume (Supplementary Figure 1) and a split of the organoid into multiple pieces (Figure 1c). 92 

These pieces stick to the Eppendorf tube wall which causes that part of the organoid border 93 

blurs with the MRI background. This biological outlier is unique in our dataset and was 94 

therefore difficult to be learned by the model. The analysis of other samples shows that the 95 

model captured the organoids very well (Figure 1d-e). 96 

 97 

Figure 1 Organoid segmentation. (a) - (b) Model performance. (c) - (e) Selected sagittal 98 
planes. (c) Organoid 3 (day 36): Dice score of 0.59. (d) Organoid 2 (day 42): Dice score of 99 
0.91. (e) Organoid 5 (day 26): Dice score of 0.95. Image: original image, GT: Image with 100 
ground truth organoid location (green), Prediction: image with predicted organoid location 101 
(orange). Selected sagittal planes (left to right): (c) 50, 47, 44 (d) 58, 50, 40 (e) 52, 40, 34. For 102 
better visibility, we cut the images to the Eppendorf tube boundaries. Scale bar: 400 µm. 103 

  104 
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Global cysticity classification 105 

Cyst formation is an undesired process during cerebral organoid cultivation [7]. Thus, 106 

accurately determining organoid cysticity can serve as a quality control tool. Separating low- 107 

and high-quality organoids using only their mean intensities resulted in a ROC AUC of only 108 

0.65. However, our metric compactness achieved a ROC AUC of 0.98 (Figure 2). 109 

 110 

Figure 2 Global cysticity classification. (a) Compactness separates high- and low-quality 111 
organoids. (b) - (e) Selected sagittal planes from two low- and two high-quality organoids. C = 112 
compactness. Selected sagittal planes (left to right): (b) 59, 60 (c) 41, 45 (d) 58, 61 (e) 36, 53. 113 
For better visibility, we cut the images to the Eppendorf tube boundaries. Scale bar: 400 µm. 114 
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Using diffusion tensor imaging (DTI), we observed that low-quality organoids have a 115 

significantly higher average diffusion than high-quality organoids (Figure 3a). As can be seen 116 

in Figure 3b-c, cysts have an increased diffusion compared to compact tissue. Analysis of other 117 

parameter maps are included in Supplementary Table 1. 118 

 119 

Figure 3 Diffusion tensor imaging (Trace map) shows different tissue characteristics of 120 
low- and high-quality organoids. (a) Trace of high- and low-quality organoids; p-value: two-121 
sided t-test, adjusted with Holm-Šídák for multiple hypothesis testing. (b) - (c) Selected coronal 122 
planes from one low- and one high-quality organoid; *[x10-3 mm2/s]. Selected coronal planes 123 
(left to right): (b) 1, 2 (c) 5, 6. For better visibility, we cut the images to the Eppendorf tube 124 
boundaries. Scale bar: 400 µm. 125 

Local cyst segmentation 126 

The good performance for global cysticity classification raises the question of whether cysts 127 

can be segmented locally – which would provide further insight into cyst distribution and 128 

location. For this task, the 3D U-Net achieved an overall Dice score of 0.63±0.15 (mean ± SD). 129 

As shown in Figure 4a-b, the Dice scores for individual samples showed a large variation with 130 

values ranging from 0.34 to 0.83. The analysis of weak and intermediate model predictions 131 

showed discrepancies between model predictions and ground truth especially for organoids 132 

with many small cysts (Figure 4c-d). The model performed especially well on images with large, 133 

clearly visible, and distinct cysts (Figure 4e). 134 
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 135 

Figure 4 Local cyst segmentation. (a) - (b) Model performance. (c) - (e) Selected sagittal 136 
planes for three organoids. (c) Organoid 1 (day 42): Dice score of 0.34. (d) Organoid 4 (day 137 
36): Dice score of 0.63. (e) Organoid 7 (day 26): Dice score of 0.83. Image: original image, 138 
GT: image with ground truth organoid location (green), Prediction: image with predicted 139 
organoid location (orange). For better visibility, we cut the images to the Eppendorf tube 140 
boundaries. Selected sagittal planes (left to right): (c) 60, 55, 51 (d) 52, 49, 42 (e) 63, 56, 49. 141 
Scale bar: 400 µm. 142 

 143 

3. Discussion 144 

In this study, we introduce high-field MRI for the non-invasive monitoring and analysis of 145 

cerebral organoids using a neural network-based approach. Since neither thresholding nor 146 

using a 2D U-Net resulted in convincing results for organoid segmentation (Supplementary 147 

Table 2), we used a 3D U-Net which achieved a mean Dice score of 0.92 for organoid 148 

segmentation. Comparable methods for MRI brain segmentation achieve Dice scores in the 149 

range of 0.72 and 0.93 [17-22]. Such a highly reliable automated analysis will represent a 150 

powerful tool to compare wild-type organoids with disease models associated with altered 151 

growth rate such as Zika-Virus disease [23] or microcephaly [24]. 152 

As the first step, reliable organoid segmentation paves the way for comprehensive quality 153 

monitoring including morphological and functional tissue parameters. The newly introduced 154 

metric compactness, inspired by the concept of signal-to-signal ratio [25, 26], assesses overall 155 

cysticity. It successfully separated high- and low-quality organoids at an outstanding ROC AUC 156 
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of 0.98, closely matching the phenotypical appearance of previously reported high- and low-157 

quality organoids [7, 8]. On a functional level, as expected, it was shown that low-quality 158 

organoids have a significantly higher diffusion than high-quality organoids most likely reflecting 159 

higher fluid content. 160 

Successful global cysticity assessment led to the question of whether cysts can be segmented 161 

locally to differentiate solid compartments from fluid-filled cavities. The 3D U-Net trained for 162 

local cyst segmentation reached a mean Dice score of 0.63 which indicates a challenging 163 

segmentation task. Other challenging segmentation tasks such as ischemic stroke lesion 164 

segmentation achieve even lower Dice scores of 0.37 in MRI [27, 28] and 0.54 in CT [27, 29]. 165 

Especially for organoids having many small cysts, correct local cyst segmentation appears to 166 

be a major challenge due to technical resolution and contrast-to-noise ratio limits. In such 167 

cases, global cysticity classification may thus capture more easily the fluent transition from 168 

compact to cystic organoids.  169 

Some limitations need to be taken into consideration. On the one hand, reliable organoid 170 

segmentation and global cysticity assessment could be achieved despite the relatively small 171 

dataset and heterogeneous organoid morphology. Thus, we do not expect a boost in 172 

performance here when extending the dataset. On the other hand, local cyst segmentation 173 

could probably benefit from a larger dataset. However, technical limitations of the image 174 

acquisition would most likely still impede segmentation performance in case of many small 175 

cysts due to uncertainty with respect to exact boundary detection for both human annotation 176 

and model prediction. 177 

Overall, this work presents the first application of MRI for the non-invasive analysis of cerebral 178 

organoids. It was shown that cerebral organoids can be accurately monitored over time and 179 

for quality assessment using state-of-the-art tools for automated image analysis. These results 180 

highlight the potential of our pipeline for clinical application to larger-scale comparative 181 

organoid analysis. 182 

 183 

4. Materials and Methods 184 

The code to reproduce the results is publicly available on GitHub 185 
(https://github.com/deiluca/cerebral_organoid_quant_mri). All MRI images and annotations for 186 
organoid segmentation, global cysticity classification, and local cyst segmentation generated 187 
for this work are publicly available on Zenodo (https://zenodo.org/record/7805426, DOI: 188 
10.5281/zenodo.7805426). 189 

Differentiation of cerebral organoids 190 

Organoids were generated according to [10] with minor modifications. Wildtype iPSCs were 191 

singled and seeded at a density of 8x104 cells/ml in a V-shaped 96 well plate in organoid 192 

formation medium (DMEM/F12, KnockOut Serum Replacement, NEAA, ß-mercaptoethanol) 193 

supplemented with 4ng/ml bFGF and Y-27632 (50µM) to induce embryoid body (EB) 194 

formation. The following day, the medium was exchanged to remove Y-27632 and lower the 195 

bFGF concentration to 2ng/ml. On day 5, neural induction was initiated by exchanging the 196 

medium to neural induction medium (DMEM/F12, N2 supplement, NEAA, glutamine, 1 µg/ml 197 

heparin) with a medium change on day 7. On day 9, EBs were embedded into Matrigel droplets 198 

and cultivated until day 13 in organoid differentiation medium (ODM) 1 199 

(DMEM/F12:Neurobasal medium 50:50, NEAA, glutamine, penicillin/streptomycin, N2 200 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 27, 2023. ; https://doi.org/10.1101/2023.04.07.535822doi: bioRxiv preprint 

https://github.com/deiluca/cerebral_organoid_quant_mri
https://zenodo.org/record/7805426
https://doi.org/10.1101/2023.04.07.535822
http://creativecommons.org/licenses/by-nc-nd/4.0/


supplement, B27 supplement w/o vitamin A, insulin, ß-mercaptoethanol). On day 13, organoids 201 

were excised from the droplets and transferred into a 12-well plate containing organoid 202 

differentiation medium 2 (DMEM/F12:Neurobasal medium 50:50, NEAA, glutamine, 203 

penicillin/streptomycin, N2 supplement, B27 supplement with vitamin A, insulin, ß-204 

mercaptoethanol) and placed on a shaker in the incubator with medium exchange every 2-3 205 

days. After imaging, the organoids were transferred back to the plate containing fresh medium 206 

and placed on the incubation shaker for further development.  207 

MRI 208 

For MR measurements, organoids were transferred to 1.5 ml Eppendorf tubes containing 209 

standard ODM (T2-time of ~64 ms in this experimental setting) and conveyed to the MRI using 210 

warming packs for temperature control. In total, nine organoids were scanned at varying time 211 

points over a period of 64 days, resulting in 45 individual samples. Three Eppendorf tubes 212 

were placed next to each other in a holder, thus allowing simultaneous imaging of three 213 

organoids (Supplementary Figure 2). Nine control organoids not undergoing MRI served as 214 

handling control. Before and after imaging, the medium was analyzed in both groups using a 215 

blood gas analyzer which showed that MRI had no specific negative effect on organoid 216 

health (Supplementary Table 3). 217 

MRI was performed at room temperature using a high-field 9.4 Tesla horizontal bore small 218 

animal experimental NMR scanner (BioSpec 94/20 USR, Bruker BioSpin GmbH, Ettlingen, 219 

Germany) equipped with a four-channel phased-array surface receiver coil. The MR protocol 220 

included the following sequences:  221 

1. High-resolution T2*-weighted gradient echo sequence: 3D sequence, echo time (TE): 222 

18 ms, repetition time (TR): 50 ms, 80 µm isotropic resolution, acquisition matrix: 400 223 

x 188 x 100, flip angle: 12˚, number of averages: 1, duration: 15 min 40 s. This 224 

sequence was chosen to allow for accurate isotropic imaging and to account for 225 

potential susceptibility effects caused by e.g. neuromelanin [11], cellular debris or 226 

calcifications. 227 

2. DTI-spin echo sequence: 2D sequence, TE: 18.1 ms, TR: 1200 ms, 100 µm in-plane 228 

resolution, acquisition matrix: 120 x 50, slice thickness: 1.5 mm, number of diffusion 229 

gradient directions: 18 + 5 A0 images, b-values: 0/650 s/mm², gradient duration: 2.5 230 

ms, gradient separation: 15.5 ms, flip angle: 130°, number of averages: 1, duration: 23 231 

min 05 s. This sequence was included to account for organoid inner structure including 232 

nerve fiber growth [12]. 233 

Organoid segmentation 234 

Organoid segmentation was performed to assign each image voxel to one of two categories: 235 

organoid or non-organoid. For this task, we used min-max normalized images from the T2*-w 236 

sequence. Since simpler methods like Multi-Otsu’s threshold [13] and a 2D U-Net [14] did not 237 

deliver convincing results (Supplementary Table 2), we used a 3D U-Net [15] for 238 

efficient (Supplementary Table 4) organoid segmentation. We trained the model with 239 

Adam (learning rate 1×10−3, weight decay 1×10−7) for 2,000 iterations with batch size 1 and a 240 

combination of binary cross entropy and Dice loss. 241 

For model evaluation, we used the Dice score, which is commonly used to quantify the 242 

performance of image segmentation methods. It is defined as two times the area of the 243 

intersection divided by the total number of voxels in the ground truth and predicted 244 

segmentation (Eq. 1). A perfect segmentation corresponds to a Dice score of 1. 245 
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𝐷𝑖𝑐𝑒 𝑠𝑐𝑜𝑟𝑒 =

2 ⋅ |A ∩ B|

|A| + |B|
 

Eq. 1 

To get an unbiased estimate of the model performance, we used organoid-wise Leave-One-246 

Out Cross-Validation (LOOCV). For each of the nine LOOCV splits, we used a random 80% 247 

training, 20% validation split for model selection. The Dice score in the Results section refers 248 

to the model performance on the LOOCV test set. 249 

Global cysticity classification 250 

Global cysticity classification aims at determining the overall organoid cysticity: cystic (low-251 

quality) or non-cystic (high-quality). To provide a reference ground truth based on the T2*-w 252 

sequence, an organoid was categorized as low-quality if a cystic structure was detected within 253 

the organoid, consistent with findings on brightfield imaging (Supplementary Figure 3) as 254 

previously reported [7, 8]. Otherwise, it was categorized as high-quality. 255 

For automatic classification, we constructed the simple metric compactness which serves as 256 

an environment-based estimator of organoid cysticity (Eq. 2). It is based on the idea that cysts 257 

are filled with similar fluid like the medium under the assumption of relative B1-homogeneity in 258 

a stereotyped region close to the surface coil. Therefore, the more similar the organoid 259 

intensities are to the medium intensities, the more cystic the organoid is. 260 

 

𝐶𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 ≔ 𝑎𝑏𝑠[μ(𝑖𝑛𝑡𝑜𝑟𝑔) − μ(𝑖𝑛𝑡𝑚𝑒𝑑𝑖𝑢𝑚)] 

𝜇(𝑋) ≔
1

|𝑋|
∑ 𝑥

𝑥∈𝑋

 

𝑎𝑏𝑠(𝑥) = {
𝑥    𝑖𝑓 𝑥 ≥  0

−𝑥 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

    A ∖ B = {x ∈ A: x ∉ B} 

𝑖𝑛𝑡𝑜𝑟𝑔 = {intensities of organoid voxels} 

𝑖𝑛𝑡𝑚𝑒𝑑𝑖𝑢𝑚 =  {intensities of medium voxels}\𝑖𝑛𝑡𝑜𝑟𝑔 

 

Eq. 2 

 

While intorg was derived from the ground truth organoid segmentations, intmedium was 261 

determined by applying Otsu’s threshold [16] 2D-wise along all organoid-containing coronal 262 

planes (Supplementary Figure 4). The first and last organoid-containing coronal planes were 263 

discarded to filter artifacts caused by noisy medium intensities. 264 

For the evaluation of compactness, we used the area under the Receiver Operator 265 

Characteristic curve (ROC AUC). ROC AUC is a common metric for the evaluation of binary 266 

classification problems; a perfect classifier achieves a ROC AUC of 1. 267 

To further probe tissue characteristics of low- and high-quality organoids, parameter 268 

maps (Trace; FA; 1st, 2nd
, and 3rd Eigenvalues) were extracted from the DTI sequence using 269 

the built-in analysis tool (Paravision 6.0, Bruker BioSpin GmbH, Ettlingen, Germany). We used 270 

a two-sided T-test to test for significantly different average diffusion and used Holm-Šídák to 271 

adjust for multiple testing.  272 

Local cyst segmentation 273 

Local cyst segmentation aims at localizing cysts. For this task, we used the T2*-w sequence 274 

and manually annotated cysts. Due to the low-resolution images, especially smaller cysts are 275 

difficult to annotate. Therefore, we excluded organoids with less than 1,000 voxels (0.51 mm3) 276 

in cysts and included 34 samples in total. For segmentation, we trained and evaluated a 277 

3D U-Net [15] as for organoid segmentation but with 5,000 training iterations. 278 
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Supplementary Figures 358 

 359 

Supplementary Figure 1 Organoid growth over time. The organoid volume in voxels (1 voxel 360 
= 5.12 x 10-4 mm3) is based on the ground truth organoid annotation in the T2*-w sequence. 361 
Organoid 3 (day 36) has a sudden drop in volume which is due to the disruption of one or more 362 
cystic structures. Exemplary planes of this organoid are shown and discussed in the main text.  363 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 27, 2023. ; https://doi.org/10.1101/2023.04.07.535822doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.07.535822
http://creativecommons.org/licenses/by-nc-nd/4.0/


 364 

Supplementary Figure 2 Experimental setup and data acquisition. For MRI, three Eppendorf 365 
tubes were placed next to each other in a holder. Subsequently, the images were cut in silico 366 
to derive one image per organoid. Image dimensions shown in 3) are according to the T2*-w 367 
sequence.  368 
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 369 

Supplementary Figure 3 Microscopy images of two high-quality (non-cystic) and two low-370 
quality (cystic) organoids on day 14 of organoid differentiation. The low-quality organoids 371 
show fluid-filled cavities (or “cysts”) and therefore resemble the same phenotype as reported 372 
in [7, 8].373 
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 374 

Supplementary Figure 4 Concept of medium intensity determination for global cysticity 375 
classification. Otsu’s mask, organoid location and medium mask are binary masks. The white 376 
pixels of the medium mask belong to the medium. This example is based on Organoid 1 (day 377 
14), coronal plane 60.  To determine the medium intensities for one organoid, this procedure 378 
is applied to all organoid-containing coronal planes. For better visibility in this figure, we cut 379 
the coronal plane to the Eppendorf tube boundaries.  380 
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Supplementary Tables 381 

Supplementary Table 1 ROC AUCs and adjusted p-values for separation of low- and high-382 
quality organoids for selected DTI parameter maps. 383 

DTI parameter map ROC AUC P-value 

Trace 0.91 1.1 × 10-5 

3rd Eigenvalue 0.86 6.2 × 10-4 

2nd Eigenvalue 0.91 1.2 × 10-5 

1st Eigenvalue 0.93 2.1 × 10-5 

Fractional Anisotropy (FA) 0.63 9.9 × 10-1 

 384 

Supplementary Table 2 Organoid segmentation performance of Multi-Otsu’s threshold [13] 385 
and 2D U-Net [14] in the T2*-w sequence. Multi-Otsu’s threshold was applied in 3D for the 386 
three classes MRI background, Eppendorf tube, and organoid using the Python package scikit-387 
image. For the 2D U-Net, the images were extracted along the coronal axis. For 2D U-Net 388 
training and evaluation, the implementation from https://github.com/milesial/Pytorch-UNet was 389 
utilized. 2D U-Net: binary semantic segmentation; 200 epochs; batch size 1; learning rate 390 
0.00001; loss: binary cross entropy + Dice loss (weighted 1:10), weight decay: 0.001; 391 
augmentation: random rotation (probability 0.75). 392 

Method Dice score (mean ± SD) 

Multi-Otsu’s threshold 0.08±0.09 

2D U-Net 0.58±0.43 

 393 

Supplementary Table 3 Blood gas analysis shows no specific negative effect of MRI on 394 
organoids. Median differences of all pre- and post-MRI measurements for medium control w/o 395 
organoid (’Medium’), MRI organoids (OrgMRI), and control organoids (Orgcontrol). Cells are 396 
colored according to measurement increase or decrease. 397 

Measurement Medium OrgMRI Orgcontrol 

pH Medium 0.02 -0.29 -0.31 

pCO2 [mmHg] -0.65 14.30 15.70 

pO2 [mmHg] -4.10 2.30 -6.40 

HCO3- act [mmol/l] -0.35 -2.60 -2.50 

HCO3- std [mmol/l] 0.50 -7.20 -7.50 

Glucose [mg/dl] -7.00 -22.00 -24.00 

Na+ [mmol/l] 0.20 1.10 1.70 

K+ [mmol/l] 0.00 0.02 0.04 

Ca2+ [mmol/l] -0.01 0.00 -0.01 

Cl- [mmol/l] 0.00 1.00 1.00 

  398 
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Supplementary Table 4 Efficient 3D U-Net training and inference for organoid segmentation. 399 
For application to larger-scale experiments, it is important that the model training and 400 
especially inference time are in a practical range. The 3D U-Net requires less than an hour for 401 
training on MRI organoid segmentation using the T2*-w sequence. Inferring the model 402 
predictions is in the range of two seconds per sample. The times were measured using one 403 
NVIDIA GeForce RTX 3090 (24 GB) graphics card. 404 

Model Training time (s) Inference time (s) 

Per iteration Total Per sample Total 

3D U-Net 1.11 2,220 1.97 88.6 

 405 
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