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Abstract
Background:

Cerebral organoids simulate the structure and function of the developing human brain in vitro,
offering a large potential for personalized therapeutic strategies. The enormous growth of this
research area over the past decade with its capability for clinical translation makes a non-
invasive, automated analysis pipeline of organoids highly desirable.

Purpose:

This work presents the first application of magnetic resonance imaging (MRI) for the non-
invasive quantification and quality assessment of cerebral organoids using an automated
analysis tool. Three specific objectives are addressed, namely organoid segmentation to
investigate organoid development over time, global cysticity classification, and local cyst
segmentation.
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Methods:

Nine wildtype cerebral organoids were imaged over nine weeks using high-field 9.4T MRI
including a 3D T2*-w and 2D diffusion tensor imaging (DTI) sequence. This dataset was used
to train a deep learning-based 3D U-Net for organoid and local cyst segmentation. For global
cysticity classification, we developed a new metric, compactness, to separate low- and high-
guality organoids.

Results:

The 3D U-Net achieved a Dice score of 0.92+0.06 (mean + SD) for organoid segmentation in
the T2*-w sequence. For global cysticity classification, compactness separated low- and high-
quality organoids with high accuracy (ROC AUC 0.98). DTI showed that low-quality organoids
have a significantly higher diffusion than high-quality organoids (p <.001). For local cyst
segmentation in T2*-w, the 3D U-Net achieved a Dice score of 0.63+0.15 (mean + SD).

Conclusion:

We present a novel non-invasive approach to monitor and analyze cerebral organoids over
time using high-field MRI and state-of-the-art tools for automated image analysis, offering a
comparative pipeline for personalized medicine. We show that organoid growth can be
monitored reliably over time and low- and high-quality organoids can be separated with high
accuracy. Local cyst segmentation is feasible but could be further improved in the future.

1. Introduction

Cerebral organoids are key models to study human brain tissue and probe pathophysiological
processes with tremendous potential for tailored therapeutic strategies. They are patient-
derived miniature 3D tissue cultures that are grown from induced pluripotent stem cells.
Cerebral organoids have been used to study a wide range of neurological disorders like
microcephaly [1] or neurodegenerative diseases like Alzheimer’s [2] or Parkinson’s disease [3].

The growing interest in organoid research over the past decade [4] results in an increasing
amount of data and thus calls for automated analysis and quantification. However, current
automated organoid analysis pipelines are limited to smaller, e.g. intestinal, organoids [5] or
require organoid sacrifice [6]. Magnetic resonance imaging (MRI) allows for the generation of
3D cerebral organoid time series due to its non-invasive imaging procedure. Furthermore,
brain MRI is the gold standard for diagnosis, staging, and treatment guidance of various
neurological disorders, thus highlighting its potential for imaging cerebral organoids, which has
not yet been exploited.

In the complex process of organoid cultivation, an important undesired route of organoid
differentiation is marked by the occurrence of fluid-filled cavities (or ‘cysts’) [7, 8]. Thus,
accurately and automatically estimating organoid cysticity would greatly contribute to organoid
guality monitoring. So far, however, only an approach for automated segmentation of exophytic
cysts in patients with polycystic kidney disease using MRI has been reported [9].

Here, we present the first application of MRI to human brain organoids using a neural network-
based approach to extract cerebral organoid volume and structural features. Specifically, we
address three crucial tasks for organoid monitoring and quality assessment: organoid
segmentation, global cysticity classification, and local cyst segmentation.
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84 2. Results

85 Organoid segmentation

86  Organoid segmentation is essential to automatically extract features like organoid volume or
87  structure. As shown in Figure la-b, the 3D U-Net reached an overall Dice score of
88  0.92+0.06 (mean £ SD) for organoid segmentation. Even though the model performs very
89 accurately overall, we investigated challenging samples to identify the model’s weaknesses.
90 The model performs poorest for Organoid 3 on day 36 (Dice score of 0.59). For this organoid,
91 the disruption of one or more cystic structures resulted in a reduced overall
92  volume (Supplementary Figure 1) and a split of the organoid into multiple pieces (Figure 1c).
93  These pieces stick to the Eppendorf tube wall which causes that part of the organoid border
94  blurs with the MRI background. This biological outlier is unique in our dataset and was
95 therefore difficult to be learned by the model. The analysis of other samples shows that the
96 model captured the organoids very well (Figure 1d-e).
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97

98 Figure 1 Organoid segmentation. (a) - (b) Model performance. (c) - (e) Selected sagittal
99 planes. (c) Organoid 3 (day 36): Dice score of 0.59. (d) Organoid 2 (day 42): Dice score of
100 0.91. (e) Organoid 5 (day 26): Dice score of 0.95. Image: original image, GT: Image with
101  ground truth organoid location (green), Prediction: image with predicted organoid location
102  (orange). Selected sagittal planes (left to right): (c) 50, 47, 44 (d) 58, 50, 40 (e) 52, 40, 34. For
103  better visibility, we cut the images to the Eppendorf tube boundaries. Scale bar: 400 um.
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Global cysticity classification

Cyst formation is an undesired process during cerebral organoid cultivation [7]. Thus,
accurately determining organoid cysticity can serve as a quality control tool. Separating low-
and high-quality organoids using only their mean intensities resulted in a ROC AUC of only
0.65. However, our metric compactness achieved a ROC AUC of 0.98 (Figure 2).

ROC AUC: 0.98
o
50
A 40 ®
T 30 *
g 11 3
Lg) 20 o.?.oo
(0}
10 :'.'25:“
o )
High quality Low quality

Organoid quality

(a) Compactness of high- and low-quality organoids
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(c) Organoid 2 (day 14), C=34.3
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(e) Organoid 4 (day 36), C=11.2

Figure 2 Global cysticity classification. (a) Compactness separates high- and low-quality
organoids. (b) - (e) Selected sagittal planes from two low- and two high-quality organoids. C =
compactness. Selected sagittal planes (left to right): (b) 59, 60 (c) 41, 45 (d) 58, 61 (e) 36, 53.
For better visibility, we cut the images to the Eppendorf tube boundaries. Scale bar: 400 um.
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115 Using diffusion tensor imaging (DTI), we observed that low-quality organoids have a
116  significantly higher average diffusion than high-quality organoids (Figure 3a). As can be seen
117  in Figure 3b-c, cysts have an increased diffusion compared to compact tissue. Analysis of other
118  parameter maps are included in Supplementary Table 1.
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(a) High- and low-quality organoids in Trace map
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(b) Organoid 4 (day 14), Trace=1.16* (c) Organoid 2 (day 49), Trace=1.47*
119

120  Figure 3 Diffusion tensor imaging (Trace map) shows different tissue characteristics of
121 low- and high-quality organoids. (a) Trace of high- and low-quality organoids; p-value: two-
122 sided t-test, adjusted with Holm-Sidak for multiple hypothesis testing. (b) - (c) Selected coronal
123 planes from one low- and one high-quality organoid; *[x10® mm?/s]. Selected coronal planes
124 (left to right): (b) 1, 2 (c) 5, 6. For better visibility, we cut the images to the Eppendorf tube
125  boundaries. Scale bar: 400 pum.

126 Local cyst segmentation

127  The good performance for global cysticity classification raises the question of whether cysts
128 can be segmented locally — which would provide further insight into cyst distribution and
129  location. For this task, the 3D U-Net achieved an overall Dice score of 0.63+£0.15 (mean + SD).
130  As shown in Figure 4a-b, the Dice scores for individual samples showed a large variation with
131  values ranging from 0.34 to 0.83. The analysis of weak and intermediate model predictions
132 showed discrepancies between model predictions and ground truth especially for organoids
133 with many small cysts (Figure 4c-d). The model performed especially well on images with large,
134  clearly visible, and distinct cysts (Figure 4e).
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136 Figure 4 Local cyst segmentation. (a) - (b) Model performance. (c) - (e) Selected sagittal
137  planes for three organoids. (c) Organoid 1 (day 42): Dice score of 0.34. (d) Organoid 4 (day
138  36): Dice score of 0.63. (e) Organoid 7 (day 26): Dice score of 0.83. Image: original image,
139  GT: image with ground truth organoid location (green), Prediction: image with predicted
140 organoid location (orange). For better visibility, we cut the images to the Eppendorf tube
141  boundaries. Selected sagittal planes (left to right): (c) 60, 55, 51 (d) 52, 49, 42 (e) 63, 56, 49.
142  Scale bar: 400 pum.

143
144 3. Discussion

145 In this study, we introduce high-field MRI for the non-invasive monitoring and analysis of
146  cerebral organoids using a neural network-based approach. Since neither thresholding nor
147  using a 2D U-Net resulted in convincing results for organoid segmentation (Supplementary
148  Table 2), we used a 3D U-Net which achieved a mean Dice score of 0.92 for organoid
149  segmentation. Comparable methods for MRI brain segmentation achieve Dice scores in the
150 range of 0.72 and 0.93 [17-22]. Such a highly reliable automated analysis will represent a
151  powerful tool to compare wild-type organoids with disease models associated with altered
152  growth rate such as Zika-Virus disease [23] or microcephaly [24].

153  As the first step, reliable organoid segmentation paves the way for comprehensive quality
154  monitoring including morphological and functional tissue parameters. The newly introduced
155  metric compactness, inspired by the concept of signal-to-signal ratio [25, 26], assesses overall
156  cysticity. It successfully separated high- and low-quality organoids at an outstanding ROC AUC
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157  of 0.98, closely matching the phenotypical appearance of previously reported high- and low-
158 quality organoids [7, 8]. On a functional level, as expected, it was shown that low-quality
159  organoids have a significantly higher diffusion than high-quality organoids most likely reflecting
160  higher fluid content.

161  Successful global cysticity assessment led to the question of whether cysts can be segmented
162 locally to differentiate solid compartments from fluid-filled cavities. The 3D U-Net trained for
163  local cyst segmentation reached a mean Dice score of 0.63 which indicates a challenging
164  segmentation task. Other challenging segmentation tasks such as ischemic stroke lesion
165 segmentation achieve even lower Dice scores of 0.37 in MRI [27, 28] and 0.54 in CT [27, 29].
166  Especially for organoids having many small cysts, correct local cyst segmentation appears to
167 be a major challenge due to technical resolution and contrast-to-noise ratio limits. In such
168  cases, global cysticity classification may thus capture more easily the fluent transition from
169 compact to cystic organoids.

170  Some limitations need to be taken into consideration. On the one hand, reliable organoid
171  segmentation and global cysticity assessment could be achieved despite the relatively small
172  dataset and heterogeneous organoid morphology. Thus, we do not expect a boost in
173  performance here when extending the dataset. On the other hand, local cyst segmentation
174  could probably benefit from a larger dataset. However, technical limitations of the image
175  acquisition would most likely still impede segmentation performance in case of many small
176  cysts due to uncertainty with respect to exact boundary detection for both human annotation
177  and model prediction.

178  Overall, this work presents the first application of MRI for the non-invasive analysis of cerebral
179  organoids. It was shown that cerebral organoids can be accurately monitored over time and
180 for quality assessment using state-of-the-art tools for automated image analysis. These results
181  highlight the potential of our pipeline for clinical application to larger-scale comparative
182  organoid analysis.

183
184 4. Materials and Methods

185 The code to reproduce the results is publicly available on GitHub
186  (https://aithub.com/deiluca/cerebral organoid quant mri). All MRI images and annotations for
187  organoid segmentation, global cysticity classification, and local cyst segmentation generated
188  for this work are publicly available on Zenodo (https://zenodo.org/record/7805426, DOI:
189  10.5281/zenodo.7805426).

190 Differentiation of cerebral organoids

191  Organoids were generated according to [10] with minor modifications. Wildtype iPSCs were
192  singled and seeded at a density of 8x10* cells/ml in a V-shaped 96 well plate in organoid
193  formation medium (DMEM/F12, KnockOut Serum Replacement, NEAA, [3-mercaptoethanol)
194  supplemented with 4ng/ml bFGF and Y-27632 (50uM) to induce embryoid body (EB)
195 formation. The following day, the medium was exchanged to remove Y-27632 and lower the
196 bFGF concentration to 2ng/ml. On day 5, neural induction was initiated by exchanging the
197  medium to neural induction medium (DMEM/F12, N2 supplement, NEAA, glutamine, 1 pg/ml
198  heparin) with a medium change on day 7. On day 9, EBs were embedded into Matrigel droplets
199 and cultivated unti day 13 in organoid differentiation medium (ODM) 1
200 (DMEM/F12:Neurobasal medium 50:50, NEAA, glutamine, penicillin/streptomycin, N2
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201  supplement, B27 supplement w/o vitamin A, insulin, 3-mercaptoethanol). On day 13, organoids
202  were excised from the droplets and transferred into a 12-well plate containing organoid
203  differentiation medium 2 (DMEM/F12:Neurobasal medium 50:50, NEAA, glutamine,
204  penicillin/streptomycin, N2 supplement, B27 supplement with vitamin A, insulin, B3-
205 mercaptoethanol) and placed on a shaker in the incubator with medium exchange every 2-3
206  days. After imaging, the organoids were transferred back to the plate containing fresh medium
207  and placed on the incubation shaker for further development.

208 MRI

209 For MR measurements, organoids were transferred to 1.5 ml Eppendorf tubes containing
210  standard ODM (T2-time of ~64 ms in this experimental setting) and conveyed to the MRI using
211 warming packs for temperature control. In total, nine organoids were scanned at varying time
212 points over a period of 64 days, resulting in 45 individual samples. Three Eppendorf tubes
213 were placed next to each other in a holder, thus allowing simultaneous imaging of three
214  organoids (Supplementary Figure 2). Nine control organoids not undergoing MRI served as
215  handling control. Before and after imaging, the medium was analyzed in both groups using a
216  blood gas analyzer which showed that MRI had no specific negative effect on organoid
217  health (Supplementary Table 3).

218 MRI was performed at room temperature using a high-field 9.4 Tesla horizontal bore small
219  animal experimental NMR scanner (BioSpec 94/20 USR, Bruker BioSpin GmbH, Ettlingen,
220  Germany) equipped with a four-channel phased-array surface receiver coil. The MR protocol
221  included the following sequences:

222 1. High-resolution T2*-weighted gradient echo sequence: 3D sequence, echo time (TE):
223 18 ms, repetition time (TR): 50 ms, 80 um isotropic resolution, acquisition matrix: 400
224 x 188 x 100, flip angle: 12°, number of averages: 1, duration: 15 min 40 s. This
225 sequence was chosen to allow for accurate isotropic imaging and to account for
226 potential susceptibility effects caused by e.g. neuromelanin [11], cellular debris or
227 calcifications.

228 2. DTl-spin echo sequence: 2D sequence, TE: 18.1 ms, TR: 1200 ms, 100 um in-plane
229 resolution, acquisition matrix: 120 x 50, slice thickness: 1.5 mm, number of diffusion
230 gradient directions: 18 + 5 A0 images, b-values: 0/650 s/mmz2, gradient duration: 2.5
231 ms, gradient separation: 15.5 ms, flip angle: 130°, number of averages: 1, duration: 23
232 min 05 s. This sequence was included to account for organoid inner structure including
233 nerve fiber growth [12].

234  Organoid segmentation

235  Organoid segmentation was performed to assign each image voxel to one of two categories:
236  organoid or non-organoid. For this task, we used min-max normalized images from the T2*-w
237  sequence. Since simpler methods like Multi-Otsu’s threshold [13] and a 2D U-Net [14] did not
238 deliver convincing results (Supplementary Table 2), we used a 3D U-Net [15] for
239  efficient (Supplementary Table 4) organoid segmentation. We trained the model with
240  Adam (learning rate 1x1073, weight decay 1x1077) for 2,000 iterations with batch size 1 and a
241  combination of binary cross entropy and Dice loss.

242 For model evaluation, we used the Dice score, which is commonly used to quantify the
243  performance of image segmentation methods. It is defined as two times the area of the
244 intersection divided by the total number of voxels in the ground truth and predicted
245  segmentation (Eq. 1). A perfect segmentation corresponds to a Dice score of 1.
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2-|ANnB| Eq. 1

|Al + |B]

246  To get an unbiased estimate of the model performance, we used organoid-wise Leave-One-
247  Out Cross-Validation (LOOCV). For each of the nine LOOCYV splits, we used a random 80%
248  training, 20% validation split for model selection. The Dice score in the Results section refers
249  to the model performance on the LOOCYV test set.

Dice score =

250 Global cysticity classification

251  Global cysticity classification aims at determining the overall organoid cysticity: cystic (low-
252  quality) or non-cystic (high-quality). To provide a reference ground truth based on the T2*-w
253  sequence, an organoid was categorized as low-quality if a cystic structure was detected within
254  the organoid, consistent with findings on brightfield imaging (Supplementary Figure 3) as
255  previously reported [7, 8]. Otherwise, it was categorized as high-quality.

256  For automatic classification, we constructed the simple metric compactness which serves as
257  an environment-based estimator of organoid cysticity (Eq. 2). It is based on the idea that cysts
258  are filled with similar fluid like the medium under the assumption of relative B1-homogeneity in
259  a stereotyped region close to the surface coil. Therefore, the more similar the organoid
260 intensities are to the medium intensities, the more cystic the organoid is.

Compactness = abs[u(intyrg) — W(iNtmedium)]

1
u(X) ’ZWE"

] > Eq. 2
abs(x)={x lfx_.O a
—Xx otherwise
A\B={x€A:x ¢ B}
int,,g = {intensities of organoid voxels}
Ntmeqium = {intensities of medium voxels}\int,,,

261  While intoy was derived from the ground truth organoid segmentations, iNntmedium Was
262  determined by applying Otsu’s threshold [16] 2D-wise along all organoid-containing coronal
263  planes (Supplementary Figure 4). The first and last organoid-containing coronal planes were
264  discarded to filter artifacts caused by noisy medium intensities.

265 For the evaluation of compactness, we used the area under the Receiver Operator
266  Characteristic curve (ROC AUC). ROC AUC is a common metric for the evaluation of binary
267  classification problems; a perfect classifier achieves a ROC AUC of 1.

268 To further probe tissue characteristics of low- and high-quality organoids, parameter
269  maps (Trace; FA; 1%, 2" and 3™ Eigenvalues) were extracted from the DTI sequence using
270  the built-in analysis tool (Paravision 6.0, Bruker BioSpin GmbH, Ettlingen, Germany). We used
271  atwo-sided T-test to test for significantly different average diffusion and used Holm-Sidak to
272 adjust for multiple testing.

273 Local cyst segmentation

274  Local cyst segmentation aims at localizing cysts. For this task, we used the T2*-w sequence
275 and manually annotated cysts. Due to the low-resolution images, especially smaller cysts are
276  difficult to annotate. Therefore, we excluded organoids with less than 1,000 voxels (0.51 mm?3)
277  in cysts and included 34 samples in total. For segmentation, we trained and evaluated a
278 3D U-Net [15] as for organoid segmentation but with 5,000 training iterations.
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358  Supplementary Figures
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360 Supplementary Figure 1 Organoid growth over time. The organoid volume in voxels (1 voxel
361 =5.12 x 10* mm3) is based on the ground truth organoid annotation in the T2*-w sequence.
362  Organoid 3 (day 36) has a sudden drop in volume which is due to the disruption of one or more
363  cystic structures. Exemplary planes of this organoid are shown and discussed in the main text.
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Supplementary Figure 2 Experimental setup and data acquisition. For MRI, three Eppendorf
tubes were placed next to each other in a holder. Subsequently, the images were cut in silico
to derive one image per organoid. Image dimensions shown in 3) are according to the T2*-w

sequence.
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Supplementary Figure 3 Microscopy images of two high-quality (non-cystic) and two low-
guality (cystic) organoids on day 14 of organoid differentiation. The low-quality organoids
show fluid-filled cavities (or “cysts”) and therefore resemble the same phenotype as reported
in [7, 8].
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Supplementary Figure 4 Concept of medium intensity determination for global cysticity
classification. Otsu’s mask, organoid location and medium mask are binary masks. The white
pixels of the medium mask belong to the medium. This example is based on Organoid 1 (day
14), coronal plane 60. To determine the medium intensities for one organoid, this procedure
is applied to all organoid-containing coronal planes. For better visibility in this figure, we cut
the coronal plane to the Eppendorf tube boundaries.
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381 Supplementary Tables

382  Supplementary Table 1 ROC AUCs and adjusted p-values for separation of low- and high-
383  quality organoids for selected DTI parameter maps.

DTI parameter map ROC AUC P-value

Trace 0.91 1.1x10°
3rd Eigenvalue 0.86 6.2 x 10*
2nd Eigenvalue 0.91 1.2 x10°
1st Eigenvalue 0.93 2.1x10°
Fractional Anisotropy (FA) 0.63 9.9 x 101

384

385  Supplementary Table 2 Organoid segmentation performance of Multi-Otsu’s threshold [13]
386 and 2D U-Net [14] in the T2*-w sequence. Multi-Otsu’s threshold was applied in 3D for the
387 three classes MRI background, Eppendorf tube, and organoid using the Python package scikit-
388 image. For the 2D U-Net, the images were extracted along the coronal axis. For 2D U-Net
389 training and evaluation, the implementation from https://github.com/milesial/Pytorch-UNet was
390 utilized. 2D U-Net: binary semantic segmentation; 200 epochs; batch size 1; learning rate
391 0.00001; loss: binary cross entropy + Dice loss (weighted 1:10), weight decay: 0.001;
392  augmentation: random rotation (probability 0.75).

Method Dice score (mean = SD)
Multi-Otsu’s threshold 0.08+0.09
2D U-Net 0.58+0.43

393

394  Supplementary Table 3 Blood gas analysis shows no specific negative effect of MRI on
395 organoids. Median differences of all pre- and post-MRI measurements for medium control w/o
396  organoid (‘Medium’), MRI organoids (Orgmr)), and control organoids (Orgconro). Cells are
397 colored according to measurement increase or decrease.

Measurement Medium | Orgmri | Orgcontrol
pH Medium 0.02 -0.29 -0.31
pCO2 [mmHg] -0.65 14.30 15.70
pO2 [mmHg] -4.10 2.30 -6.40
HCO3- act [mmol/l] -0.35 -2.60 -2.50
HCO3- std [mmol/I] 0.50 -7.20 -7.50
Glucose [mg/dl] -7.00 | -22.00| -24.00
Na+ [mmol/l] 0.20 1.10 1.70
K+ [mmol/l] 0.00 0.02 0.04
Ca2+ [mmol/l] -0.01 0.00 -0.01
Cl- [mmol/l] 0.00 1.00 1.00

398
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Supplementary Table 4 Efficient 3D U-Net training and inference for organoid segmentation.
For application to larger-scale experiments, it is important that the model training and
especially inference time are in a practical range. The 3D U-Net requires less than an hour for
training on MRI organoid segmentation using the T2*w sequence. Inferring the model
predictions is in the range of two seconds per sample. The times were measured using one
NVIDIA GeForce RTX 3090 (24 GB) graphics card.

Model Training time (s) Inference time (s)
Per iteration Total Per sample Total
3D U-Net 111 2,220 1.97 88.6



https://doi.org/10.1101/2023.04.07.535822
http://creativecommons.org/licenses/by-nc-nd/4.0/

