

1 **An AI-based segmentation and analysis pipeline for high-field MR**
2 **monitoring of cerebral organoids**

3
4 Luca Deininger^{*12}, Sabine Jung-Klawitter^{*2}, Petra Richter², Manuel Fischer³, Kianush
5 Karimian-Jazi³, Michael O. Breckwoldt³, Martin Bendszus³, Sabine Heiland³, Jens
6 Kleesiek⁴⁵⁶, Ralf Mikut¹, Daniel Hübschmann⁵⁷⁸, Daniel Schwarz³

7
8 * These authors contributed equally to this work

9 Contact: luca.deininger@kit.edu

10
11
12 ¹ Group for Automated Image and Data Analysis, Institute for Automation and Applied
13 Informatics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany

14
15 ² Division of Neuropediatrics and Metabolic Medicine, Department of General Pediatrics,
16 University Children's Hospital Heidelberg, Heidelberg, Germany

17
18 ³ Department of Neuroradiology, Heidelberg University Hospital, INF 400, Heidelberg,
Germany

19
20 ⁴ Institute for Artificial Intelligence in Medicine (IKIM), University Hospital Essen, Essen,
Germany

21
22 ⁵ German Cancer Consortium (DKTK), Heidelberg, Germany

23
24 ⁶ Cancer Research Center Cologne Essen (CCCE), Essen, Germany

25
26 ⁷ Computational Oncology Group, Molecular Precision Oncology Program, National Center
for Tumor Diseases (NCT) Heidelberg, DKFZ, Heidelberg, Germany

27
28 ⁸ Pattern Recognition and Digital Medicine, Heidelberg Institute for Stem Cell Technology
and Experimental Medicine (HI-STEM), Heidelberg, Germany

29 **Abstract**

30 **Background:**

31 Cerebral organoids simulate the structure and function of the developing human brain *in vitro*,
32 offering a large potential for personalized therapeutic strategies. The enormous growth of this
33 research area over the past decade with its capability for clinical translation makes a non-
invasive, automated analysis pipeline of organoids highly desirable.

34 **Purpose:**

35 This work presents the first application of magnetic resonance imaging (MRI) for the non-
36 invasive quantification and quality assessment of cerebral organoids using an automated
37 analysis tool. Three specific objectives are addressed, namely organoid segmentation to
38 investigate organoid development over time, global cysticity classification, and local cyst
39 segmentation.

41 **Methods:**

42 Nine wildtype cerebral organoids were imaged over nine weeks using high-field 9.4T MRI
43 including a 3D T2*-w and 2D diffusion tensor imaging (DTI) sequence. This dataset was used
44 to train a deep learning-based 3D U-Net for organoid and local cyst segmentation. For global
45 cysticity classification, we developed a new metric, *compactness*, to separate low- and high-
46 quality organoids.

47 **Results:**

48 The 3D U-Net achieved a Dice score of 0.92 ± 0.06 (mean \pm SD) for organoid segmentation in
49 the T2*-w sequence. For global cysticity classification, *compactness* separated low- and high-
50 quality organoids with high accuracy (ROC AUC 0.98). DTI showed that low-quality organoids
51 have a significantly higher diffusion than high-quality organoids ($p < .001$). For local cyst
52 segmentation in T2*-w, the 3D U-Net achieved a Dice score of 0.63 ± 0.15 (mean \pm SD).

53 **Conclusion:**

54 We present a novel non-invasive approach to monitor and analyze cerebral organoids over
55 time using high-field MRI and state-of-the-art tools for automated image analysis, offering a
56 comparative pipeline for personalized medicine. We show that organoid growth can be
57 monitored reliably over time and low- and high-quality organoids can be separated with high
58 accuracy. Local cyst segmentation is feasible but could be further improved in the future.

59

60 **1. Introduction**

61 Cerebral organoids are key models to study human brain tissue and probe pathophysiological
62 processes with tremendous potential for tailored therapeutic strategies. They are patient-
63 derived miniature 3D tissue cultures that are grown from induced pluripotent stem cells.
64 Cerebral organoids have been used to study a wide range of neurological disorders like
65 microcephaly [1] or neurodegenerative diseases like Alzheimer's [2] or Parkinson's disease [3].

66 The growing interest in organoid research over the past decade [4] results in an increasing
67 amount of data and thus calls for automated analysis and quantification. However, current
68 automated organoid analysis pipelines are limited to smaller, e.g. intestinal, organoids [5] or
69 require organoid sacrifice [6]. Magnetic resonance imaging (MRI) allows for the generation of
70 3D cerebral organoid time series due to its non-invasive imaging procedure. Furthermore,
71 brain MRI is the gold standard for diagnosis, staging, and treatment guidance of various
72 neurological disorders, thus highlighting its potential for imaging cerebral organoids, which has
73 not yet been exploited.

74 In the complex process of organoid cultivation, an important undesired route of organoid
75 differentiation is marked by the occurrence of fluid-filled cavities (or 'cysts') [7, 8]. Thus,
76 accurately and automatically estimating organoid cysticity would greatly contribute to organoid
77 quality monitoring. So far, however, only an approach for automated segmentation of exophytic
78 cysts in patients with polycystic kidney disease using MRI has been reported [9].

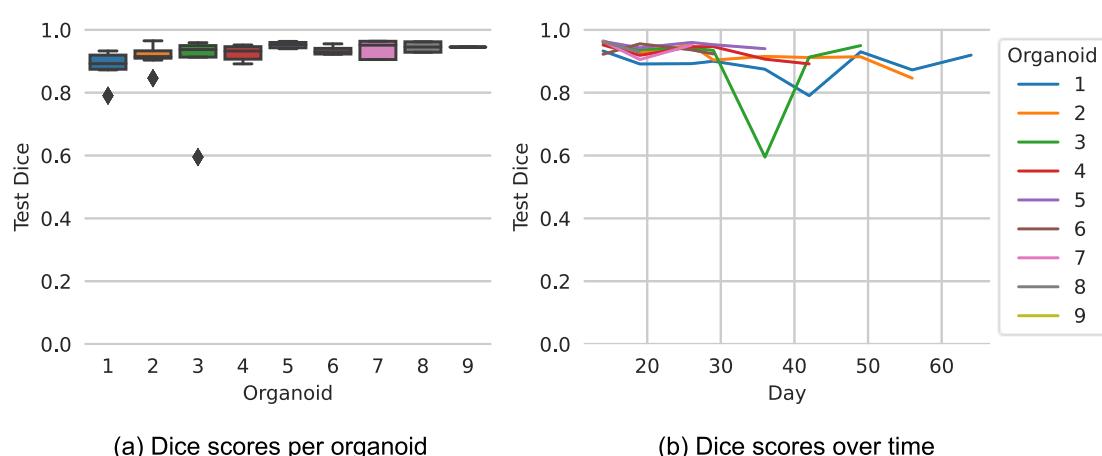
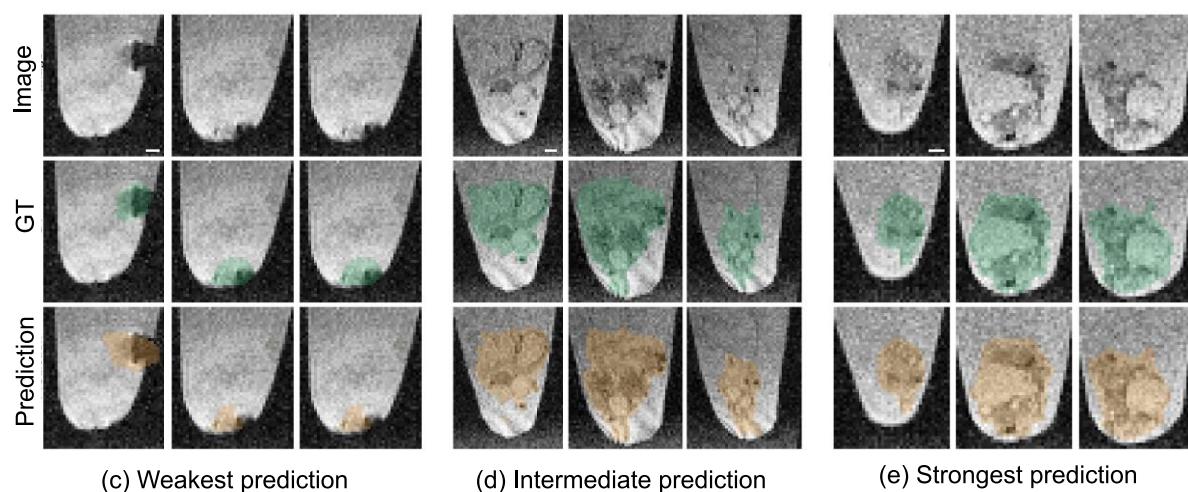
79 Here, we present the first application of MRI to human brain organoids using a neural network-
80 based approach to extract cerebral organoid volume and structural features. Specifically, we
81 address three crucial tasks for organoid monitoring and quality assessment: organoid
82 segmentation, global cysticity classification, and local cyst segmentation.

83

84 **2. Results**

85 **Organoid segmentation**

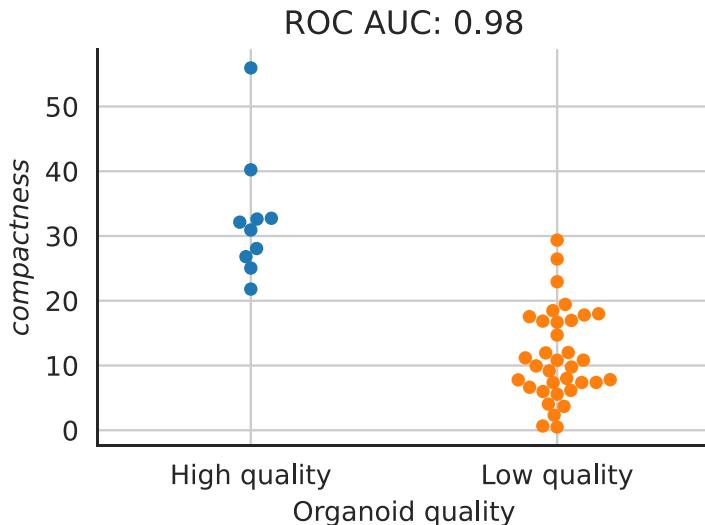
86 Organoid segmentation is essential to automatically extract features like organoid volume or
87 structure. As shown in Figure 1a-b, the 3D U-Net reached an overall Dice score of
88 0.92 ± 0.06 (mean \pm SD) for organoid segmentation. Even though the model performs very
89 accurately overall, we investigated challenging samples to identify the model's weaknesses.
90 The model performs poorest for Organoid 3 on day 36 (Dice score of 0.59). For this organoid,
91 the disruption of one or more cystic structures resulted in a reduced overall
92 volume (Supplementary Figure 1) and a split of the organoid into multiple pieces (Figure 1c).
93 These pieces stick to the Eppendorf tube wall which causes that part of the organoid border
94 blurs with the MRI background. This biological outlier is unique in our dataset and was
95 therefore difficult to be learned by the model. The analysis of other samples shows that the
96 model captured the organoids very well (Figure 1d-e).



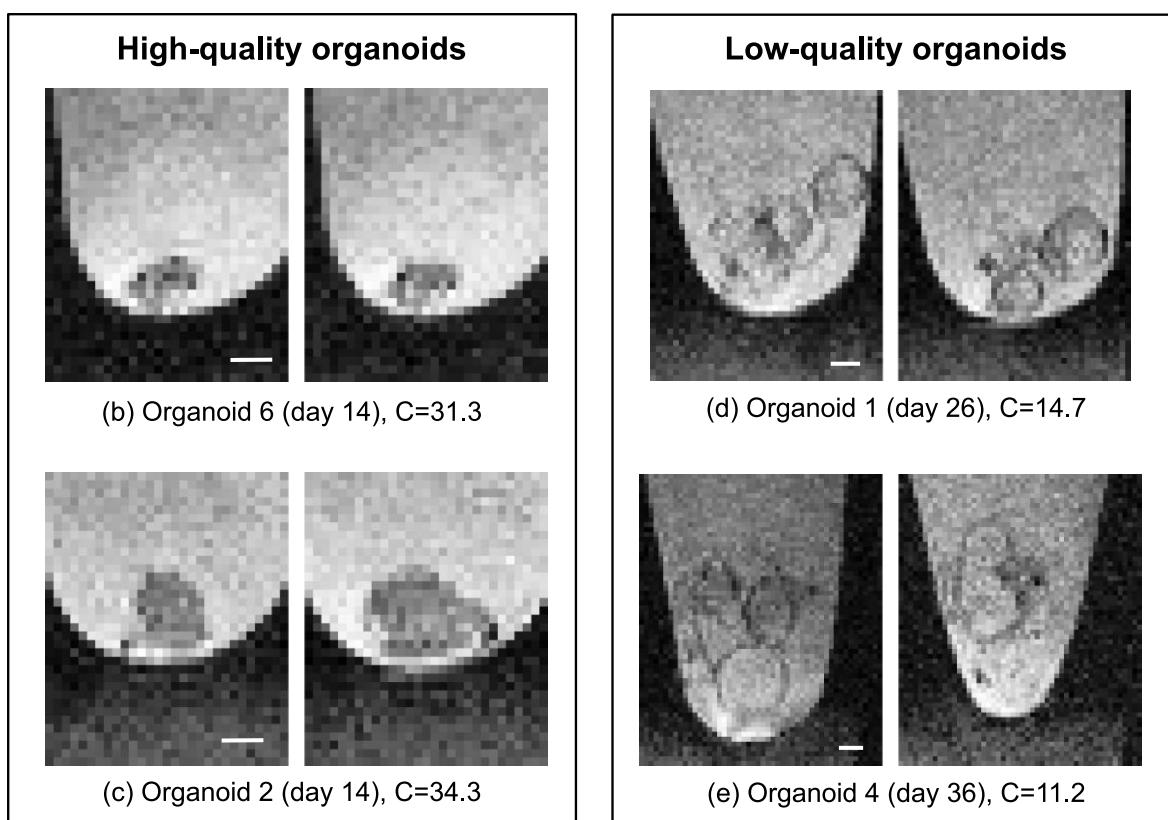
97 **Figure 1 Organoid segmentation.** (a) - (b) Model performance. (c) - (e) Selected sagittal
98 planes. (c) Organoid 3 (day 36): Dice score of 0.59. (d) Organoid 2 (day 42): Dice score of
99 0.91. (e) Organoid 5 (day 26): Dice score of 0.95. Image: original image, GT: Image with
100 ground truth organoid location (green), Prediction: image with predicted organoid location
101 (orange). Selected sagittal planes (left to right): (c) 50, 47, 44 (d) 58, 50, 40 (e) 52, 40, 34. For
102 better visibility, we cut the images to the Eppendorf tube boundaries. Scale bar: 400 μ m.
103

105 **Global cysticity classification**

106 Cyst formation is an undesired process during cerebral organoid cultivation [7]. Thus,
107 accurately determining organoid cysticity can serve as a quality control tool. Separating low-
108 and high-quality organoids using only their mean intensities resulted in a ROC AUC of only
109 0.65. However, our metric *compactness* achieved a ROC AUC of 0.98 (Figure 2).



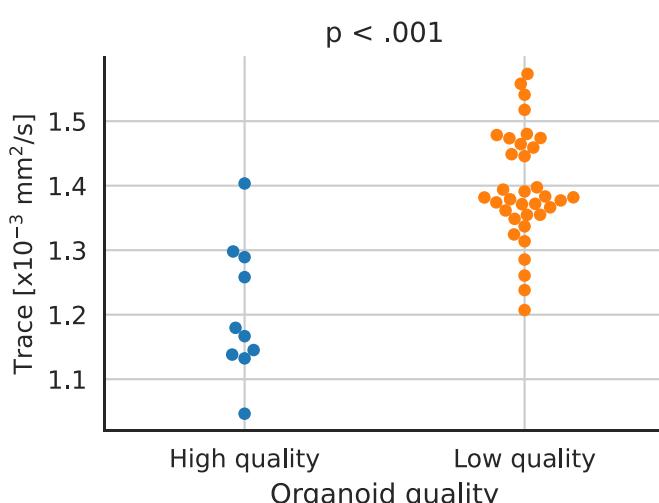
(a) *Compactness* of high- and low-quality organoids



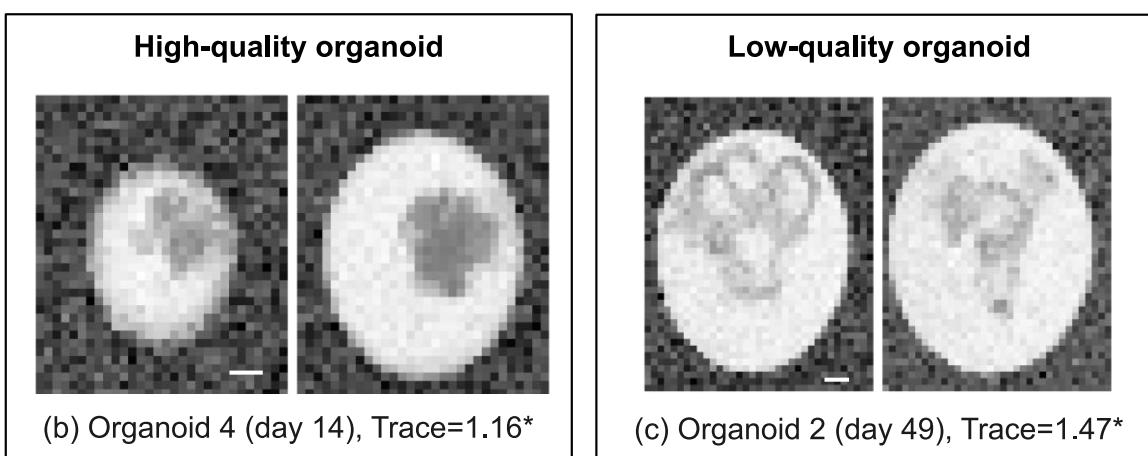
110

111 **Figure 2 Global cysticity classification.** (a) *Compactness* separates high- and low-quality
112 organoids. (b) - (e) Selected sagittal planes from two low- and two high-quality organoids. C =
113 *compactness*. Selected sagittal planes (left to right): (b) 59, 60 (c) 41, 45 (d) 58, 61 (e) 36, 53.
114 For better visibility, we cut the images to the Eppendorf tube boundaries. Scale bar: 400 μ m.

115 Using diffusion tensor imaging (DTI), we observed that low-quality organoids have a
116 significantly higher average diffusion than high-quality organoids (Figure 3a). As can be seen
117 in Figure 3b-c, cysts have an increased diffusion compared to compact tissue. Analysis of other
118 parameter maps are included in Supplementary Table 1.



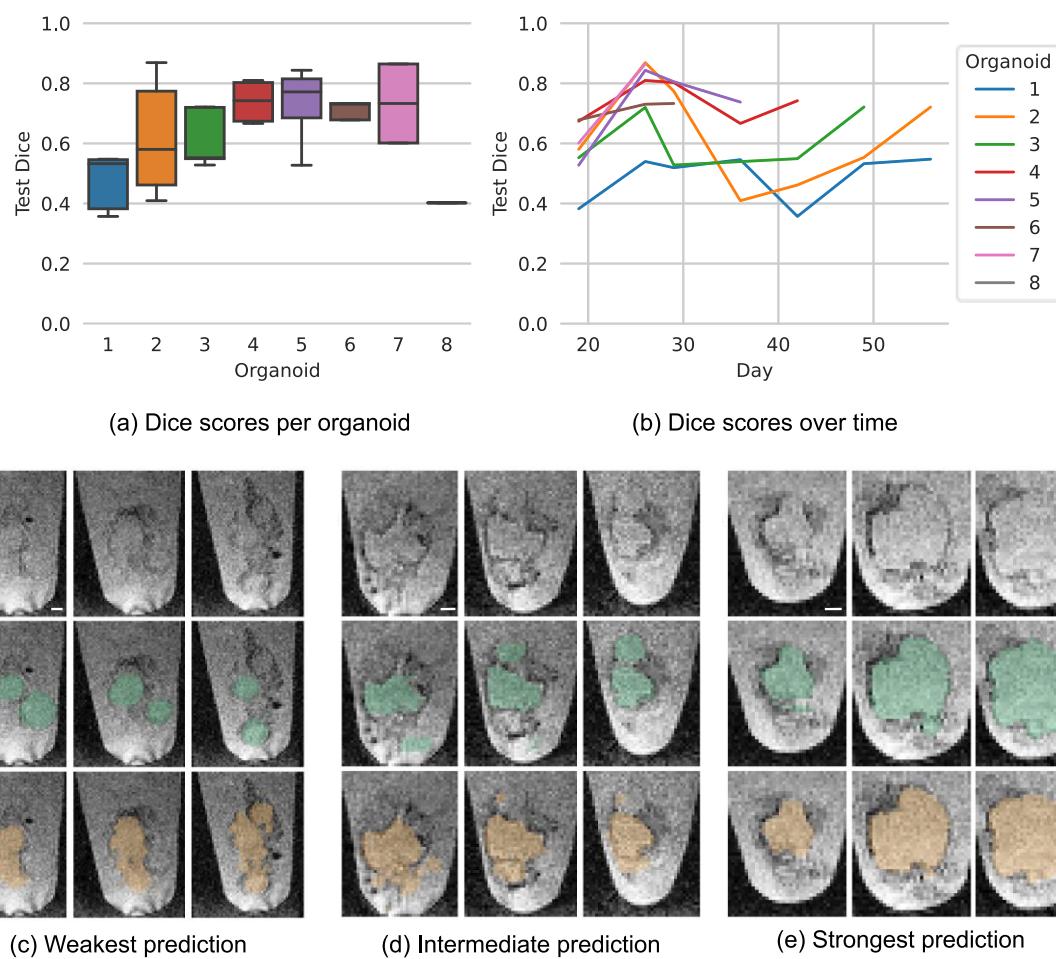
(a) High- and low-quality organoids in Trace map



119
120 **Figure 3 Diffusion tensor imaging (Trace map) shows different tissue characteristics of**
121 **low- and high-quality organoids.** (a) Trace of high- and low-quality organoids; p-value: two-
122 **sided t-test, adjusted with Holm-Šídák for multiple hypothesis testing.** (b) - (c) Selected coronal
123 **planes from one low- and one high-quality organoid; $^*[\times 10^3 \text{ mm}^2/\text{s}]$.** Selected coronal planes
124 **(left to right): (b) 1, 2 (c) 5, 6.** For better visibility, we cut the images to the Eppendorf tube
125 **boundaries. Scale bar: 400 μm .**

126 Local cyst segmentation

127 The good performance for global cysticity classification raises the question of whether cysts
128 can be segmented locally – which would provide further insight into cyst distribution and
129 location. For this task, the 3D U-Net achieved an overall Dice score of 0.63 ± 0.15 (mean \pm SD).
130 As shown in Figure 4a-b, the Dice scores for individual samples showed a large variation with
131 values ranging from 0.34 to 0.83. The analysis of weak and intermediate model predictions
132 showed discrepancies between model predictions and ground truth especially for organoids
133 with many small cysts (Figure 4c-d). The model performed especially well on images with large,
134 clearly visible, and distinct cysts (Figure 4e).



135 **Figure 4 Local cyst segmentation.** (a) - (b) Model performance. (c) - (e) Selected sagittal
136 planes for three organoids. (c) Organoid 1 (day 42): Dice score of 0.34. (d) Organoid 4 (day
137 36): Dice score of 0.63. (e) Organoid 7 (day 26): Dice score of 0.83. Image: original image,
138 GT: image with ground truth organoid location (green), Prediction: image with predicted
139 organoid location (orange). For better visibility, we cut the images to the Eppendorf tube
140 boundaries. Selected sagittal planes (left to right): (c) 60, 55, 51 (d) 52, 49, 42 (e) 63, 56, 49.
141 Scale bar: 400 μ m.
142

143
144 **3. Discussion**
145 In this study, we introduce high-field MRI for the non-invasive monitoring and analysis of
146 cerebral organoids using a neural network-based approach. Since neither thresholding nor
147 using a 2D U-Net resulted in convincing results for organoid segmentation (Supplementary
148 Table 2), we used a 3D U-Net which achieved a mean Dice score of 0.92 for organoid
149 segmentation. Comparable methods for MRI brain segmentation achieve Dice scores in the
150 range of 0.72 and 0.93 [17-22]. Such a highly reliable automated analysis will represent a
151 powerful tool to compare wild-type organoids with disease models associated with altered
152 growth rate such as Zika-Virus disease [23] or microcephaly [24].

153 As the first step, reliable organoid segmentation paves the way for comprehensive quality
154 monitoring including morphological and functional tissue parameters. The newly introduced
155 metric *compactness*, inspired by the concept of signal-to-signal ratio [25, 26], assesses overall
156 cysticity. It successfully separated high- and low-quality organoids at an outstanding ROC AUC

157 of 0.98, closely matching the phenotypical appearance of previously reported high- and low-
158 quality organoids [7, 8]. On a functional level, as expected, it was shown that low-quality
159 organoids have a significantly higher diffusion than high-quality organoids most likely reflecting
160 higher fluid content.

161 Successful global cysticity assessment led to the question of whether cysts can be segmented
162 locally to differentiate solid compartments from fluid-filled cavities. The 3D U-Net trained for
163 local cyst segmentation reached a mean Dice score of 0.63 which indicates a challenging
164 segmentation task. Other challenging segmentation tasks such as ischemic stroke lesion
165 segmentation achieve even lower Dice scores of 0.37 in MRI [27, 28] and 0.54 in CT [27, 29].
166 Especially for organoids having many small cysts, correct local cyst segmentation appears to
167 be a major challenge due to technical resolution and contrast-to-noise ratio limits. In such
168 cases, global cysticity classification may thus capture more easily the fluent transition from
169 compact to cystic organoids.

170 Some limitations need to be taken into consideration. On the one hand, reliable organoid
171 segmentation and global cysticity assessment could be achieved despite the relatively small
172 dataset and heterogeneous organoid morphology. Thus, we do not expect a boost in
173 performance here when extending the dataset. On the other hand, local cyst segmentation
174 could probably benefit from a larger dataset. However, technical limitations of the image
175 acquisition would most likely still impede segmentation performance in case of many small
176 cysts due to uncertainty with respect to exact boundary detection for both human annotation
177 and model prediction.

178 Overall, this work presents the first application of MRI for the non-invasive analysis of cerebral
179 organoids. It was shown that cerebral organoids can be accurately monitored over time and
180 for quality assessment using state-of-the-art tools for automated image analysis. These results
181 highlight the potential of our pipeline for clinical application to larger-scale comparative
182 organoid analysis.

183

184 **4. Materials and Methods**

185 The code to reproduce the results is publicly available on GitHub
186 (https://github.com/deiluca/cerebral_organoid_quant_mri). All MRI images and annotations for
187 organoid segmentation, global cysticity classification, and local cyst segmentation generated
188 for this work are publicly available on Zenodo (<https://zenodo.org/record/7805426>, DOI:
189 10.5281/zenodo.7805426).

190 **Differentiation of cerebral organoids**

191 Organoids were generated according to [10] with minor modifications. Wildtype iPSCs were
192 singled and seeded at a density of 8×10^4 cells/ml in a V-shaped 96 well plate in organoid
193 formation medium (DMEM/F12, KnockOut Serum Replacement, NEAA, β -mercaptoethanol)
194 supplemented with 4ng/ml bFGF and Y-27632 (50 μ M) to induce embryoid body (EB)
195 formation. The following day, the medium was exchanged to remove Y-27632 and lower the
196 bFGF concentration to 2ng/ml. On day 5, neural induction was initiated by exchanging the
197 medium to neural induction medium (DMEM/F12, N2 supplement, NEAA, glutamine, 1 μ g/ml
198 heparin) with a medium change on day 7. On day 9, EBs were embedded into Matrigel droplets
199 and cultivated until day 13 in organoid differentiation medium (ODM) 1
200 (DMEM/F12:Neurobasal medium 50:50, NEAA, glutamine, penicillin/streptomycin, N2

201 supplement, B27 supplement w/o vitamin A, insulin, β -mercaptoethanol). On day 13, organoids
202 were excised from the droplets and transferred into a 12-well plate containing organoid
203 differentiation medium 2 (DMEM/F12:Neurobasal medium 50:50, NEAA, glutamine,
204 penicillin/streptomycin, N2 supplement, B27 supplement with vitamin A, insulin, β -
205 mercaptoethanol) and placed on a shaker in the incubator with medium exchange every 2-3
206 days. After imaging, the organoids were transferred back to the plate containing fresh medium
207 and placed on the incubation shaker for further development.

208 **MRI**

209 For MR measurements, organoids were transferred to 1.5 ml Eppendorf tubes containing
210 standard ODM (T2-time of ~64 ms in this experimental setting) and conveyed to the MRI using
211 warming packs for temperature control. In total, nine organoids were scanned at varying time
212 points over a period of 64 days, resulting in 45 individual samples. Three Eppendorf tubes
213 were placed next to each other in a holder, thus allowing simultaneous imaging of three
214 organoids (Supplementary Figure 2). Nine control organoids not undergoing MRI served as
215 handling control. Before and after imaging, the medium was analyzed in both groups using a
216 blood gas analyzer which showed that MRI had no specific negative effect on organoid
217 health (Supplementary Table 3).

218 MRI was performed at room temperature using a high-field 9.4 Tesla horizontal bore small
219 animal experimental NMR scanner (BioSpec 94/20 USR, Bruker BioSpin GmbH, Ettlingen,
220 Germany) equipped with a four-channel phased-array surface receiver coil. The MR protocol
221 included the following sequences:

- 222 1. High-resolution T2*-weighted gradient echo sequence: 3D sequence, echo time (TE):
223 18 ms, repetition time (TR): 50 ms, 80 μ m isotropic resolution, acquisition matrix: 400
224 x 188 x 100, flip angle: 12°, number of averages: 1, duration: 15 min 40 s. This
225 sequence was chosen to allow for accurate isotropic imaging and to account for
226 potential susceptibility effects caused by e.g. neuromelanin [11], cellular debris or
227 calcifications.
- 228 2. DTI-spin echo sequence: 2D sequence, TE: 18.1 ms, TR: 1200 ms, 100 μ m in-plane
229 resolution, acquisition matrix: 120 x 50, slice thickness: 1.5 mm, number of diffusion
230 gradient directions: 18 + 5 A0 images, b-values: 0/650 s/mm², gradient duration: 2.5
231 ms, gradient separation: 15.5 ms, flip angle: 130°, number of averages: 1, duration: 23
232 min 05 s. This sequence was included to account for organoid inner structure including
233 nerve fiber growth [12].

234 **Organoid segmentation**

235 Organoid segmentation was performed to assign each image voxel to one of two categories:
236 organoid or non-organoid. For this task, we used min-max normalized images from the T2*-w
237 sequence. Since simpler methods like Multi-Otsu's threshold [13] and a 2D U-Net [14] did not
238 deliver convincing results (Supplementary Table 2), we used a 3D U-Net [15] for
239 efficient (Supplementary Table 4) organoid segmentation. We trained the model with
240 Adam (learning rate 1×10^{-3} , weight decay 1×10^{-7}) for 2,000 iterations with batch size 1 and a
241 combination of binary cross entropy and Dice loss.

242 For model evaluation, we used the Dice score, which is commonly used to quantify the
243 performance of image segmentation methods. It is defined as two times the area of the
244 intersection divided by the total number of voxels in the ground truth and predicted
245 segmentation (Eq. 1). A perfect segmentation corresponds to a Dice score of 1.

$$Dice score = \frac{2 \cdot |A \cap B|}{|A| + |B|} \quad \text{Eq. 1}$$

246 To get an unbiased estimate of the model performance, we used organoid-wise Leave-One-
247 Out Cross-Validation (LOOCV). For each of the nine LOOCV splits, we used a random 80%
248 training, 20% validation split for model selection. The Dice score in the Results section refers
249 to the model performance on the LOOCV test set.

250 Global cysticity classification

251 Global cysticity classification aims at determining the overall organoid cysticity: cystic (low-
252 quality) or non-cystic (high-quality). To provide a reference ground truth based on the T2*-w
253 sequence, an organoid was categorized as low-quality if a cystic structure was detected within
254 the organoid, consistent with findings on brightfield imaging (Supplementary Figure 3) as
255 previously reported [7, 8]. Otherwise, it was categorized as high-quality.

256 For automatic classification, we constructed the simple metric *compactness* which serves as
257 an environment-based estimator of organoid cysticity (Eq. 2). It is based on the idea that cysts
258 are filled with similar fluid like the medium under the assumption of relative B1-homogeneity in
259 a stereotyped region close to the surface coil. Therefore, the more similar the organoid
260 intensities are to the medium intensities, the more cystic the organoid is.

$$\begin{aligned} \text{Compactness} &:= \text{abs}[\mu(\text{int}_{\text{org}}) - \mu(\text{int}_{\text{medium}})] \\ \mu(X) &:= \frac{1}{|X|} \sum_{x \in X} x \\ \text{abs}(x) &= \begin{cases} x & \text{if } x \geq 0 \\ -x & \text{otherwise} \end{cases} \\ A \setminus B &= \{x \in A: x \notin B\} \\ \text{int}_{\text{org}} &= \{\text{intensities of organoid voxels}\} \\ \text{int}_{\text{medium}} &= \{\text{intensities of medium voxels}\} \setminus \text{int}_{\text{org}} \end{aligned} \quad \text{Eq. 2}$$

261 While int_{org} was derived from the ground truth organoid segmentations, $\text{int}_{\text{medium}}$ was
262 determined by applying Otsu's threshold [16] 2D-wise along all organoid-containing coronal
263 planes (Supplementary Figure 4). The first and last organoid-containing coronal planes were
264 discarded to filter artifacts caused by noisy medium intensities.

265 For the evaluation of *compactness*, we used the area under the Receiver Operator
266 Characteristic curve (ROC AUC). ROC AUC is a common metric for the evaluation of binary
267 classification problems; a perfect classifier achieves a ROC AUC of 1.

268 To further probe tissue characteristics of low- and high-quality organoids, parameter
269 maps (Trace; FA; 1st, 2nd, and 3rd Eigenvalues) were extracted from the DTI sequence using
270 the built-in analysis tool (Paravision 6.0, Bruker BioSpin GmbH, Ettlingen, Germany). We used
271 a two-sided T-test to test for significantly different average diffusion and used Holm-Šídák to
272 adjust for multiple testing.

273 Local cyst segmentation

274 Local cyst segmentation aims at localizing cysts. For this task, we used the T2*-w sequence
275 and manually annotated cysts. Due to the low-resolution images, especially smaller cysts are
276 difficult to annotate. Therefore, we excluded organoids with less than 1,000 voxels (0.51 mm³)
277 in cysts and included 34 samples in total. For segmentation, we trained and evaluated a
278 3D U-Net [15] as for organoid segmentation but with 5,000 training iterations.

279 **References**

280 [1] Lancaster MA, Renner M, Martin C-A, Wenzel D, Bicknell LS, Hurles ME, Homfray T,
281 Penninger JM, Jackson AP, Knoblich JA. Cerebral organoids model human brain
282 development and microcephaly. *Nature*. 2013;501:373–379. .

283 [2] Raja WK, Mungenast AE, Lin Y-T, Ko T, Abdurrob F, Seo J, Tsai L-H. Self-organizing
284 3D human neural tissue derived from induced pluripotent stem cells recapitulate
285 alzheimer's disease phenotypes. *PLOS ONE*. 2016;11.

286 [3] Kim H, Park HJ, Choi H, Chang Y, Park H, Shin J, Kim J, Lengner CJ, Lee YK, Kim J.
287 Modeling g2019s-LRRK2 sporadic parkinson's disease in 3D midbrain organoids. *Stem
288 Cell Reports*. 2019;12:518–531.

289 [4] Huang Y, Huang Z, Tang Z, Chen Y, Huang M, Liu H, Huang W, Ye Q, Jia B. Research
290 progress, challenges, and breakthroughs of organoids as disease models. *Frontiers in
291 Cell and Developmental Biology*. 2021;9.

292 [5] Beghin A, Grenci G, Sahni G, Guo S, Rajendiran H, Delaire T, Mohamad Raffi SB,
293 Blanc D, de Mets R, Ong HT, Galindo X, Monet A, Acharya V, Racine V, Levet F,
294 Galland R, Sibarita J-B, Viasnoff V. Automated high-speed 3D imaging of organoid
295 cultures with multi-scale phenotypic quantification. *Nature Methods*. 2022;19:881–892.

296 [6] Albanese A, Swaney JM, Yun DH, Evans NB, Antonucci JM, Velasco S, Sohn CH,
297 Arlotta P, Gehrke L, Chung K. Multiscale 3D phenotyping of human cerebral organoids.
298 *Scientific Reports*. 2020;10.

299 [7] Lancaster MA & Knoblich JA Generation of cerebral organoids from human pluripotent
300 stem cells. *Nature Protocols* 9, 2329–2340 (2014).

301 [8] Pellegrini L et al. Human CNS barrier-forming organoids with cerebrospinal fluid
302 production. *Science* 369, (2020)

303 [9] Kim Y, Tao C, Kim H, Oh G-Y, Ko J, Bae KT. A deep learning approach for automated
304 segmentation of kidneys and exophytic cysts in individuals with autosomal dominant
305 polycystic kidney disease. *Journal of the American Society of Nephrology*.
306 2022;33:1581–1589.

307 [10] Sivitilli AA, Gosio JT, Ghoshal B, Evstratova A, Trcka D, Ghiasi P, Hernandez JJ,
308 Beaulieu JM, Wrana JL, Attisano L. Robust production of uniform human cerebral
309 organoids from Pluripotent Stem Cells. *Life Science Alliance*. 2020;3.

310 [11] Jo, J. et al. Midbrain-like organoids from human pluripotent stem cells contain
311 functional dopaminergic and neuromelanin-producing neurons. *Cell Stem Cell* 19, 248–
312 257 (2016).

313 [12] Lancaster, M. A. et al. Guided self-organization and cortical plate formation in human
314 brain organoids. *Nature Biotechnology* 35, 659–666 (2017).

315 [13] Liao PS, Chen TS. and Chung PC., “A fast algorithm for multilevel thresholding”,
316 *Journal of Information Science and Engineering* 17 (5): 713-727, 2001

317 [14] Ronneberger O, Fischer P, & Brox T. U-Net: Convolutional Networks for Biomedical
318 Image Segmentation. *Lecture Notes in Computer Science* 234–241 (2015).

319 [15] Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O. 3D U-Net: Learning
320 dense volumetric segmentation from sparse annotation. Medical Image Computing and
321 Computer-Assisted Intervention – MICCAI 2016. 2016;:424–432.

322 [16] Otsu N. A Threshold Selection Method from Gray-Level Histograms. IEEE
323 Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62-66, Jan. 1979

324 [17] Ramzan, F., Khan, M. U., Iqbal, S., Saba, T. & Rehman, A. Volumetric segmentation of
325 brain regions from MRI scans using 3D convolutional neural networks. IEEE Access 8,
326 103697–103709 (2020).

327 [18] Brebisson, A. & Montana, G. Deep Neural Networks for anatomical brain segmentation.
328 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops
329 (CVPRW) (2015). doi:10.1109/cvprw.2015.7301312

330 [19] Mehta, R., Majumdar, A. & Sivaswamy, J. BrainSegNet: A Convolutional Neural
331 Network Architecture for automated segmentation of Human Brain Structures. Journal
332 of Medical Imaging 4, 024003 (2017).

333 [20] Wachinger, C., Reuter, M. & Klein, T. DeepNAT: Deep Convolutional Neural Network
334 for segmenting neuroanatomy. NeuroImage 170, 434–445 (2018).

335 [21] Chen, C.-C. C. et al. An iterative mixed pixel classification for brain tissues and white
336 matter hyperintensity in Magnetic Resonance Imaging. IEEE Access 7, 124674–
337 124687 (2019).

338 [22] Bao, S. & Chung, A. C. Multi-scale structured CNN with label consistency for Brain Mr
339 Image segmentation. Computer Methods in Biomechanics and Biomedical
340 Engineering: Imaging & Visualization 6, 113–117 (2016).

341 [23] Garcez, P. P. et al. Zika virus impairs growth in human neurospheres and brain
342 organoids. Science 352, 816–818 (2016).

343 [24] Sun, N. et al. Applications of brain organoids in Neurodevelopment and neurological
344 diseases. Journal of Biomedical Science 28, (2021).

345 [25] Scheibel, M. et al. Structural integrity and clinical function of the subscapularis
346 musculotendinous unit after arthroscopic and open shoulder stabilization. The
347 American Journal of Sports Medicine 35, 1153–1161 (2007).

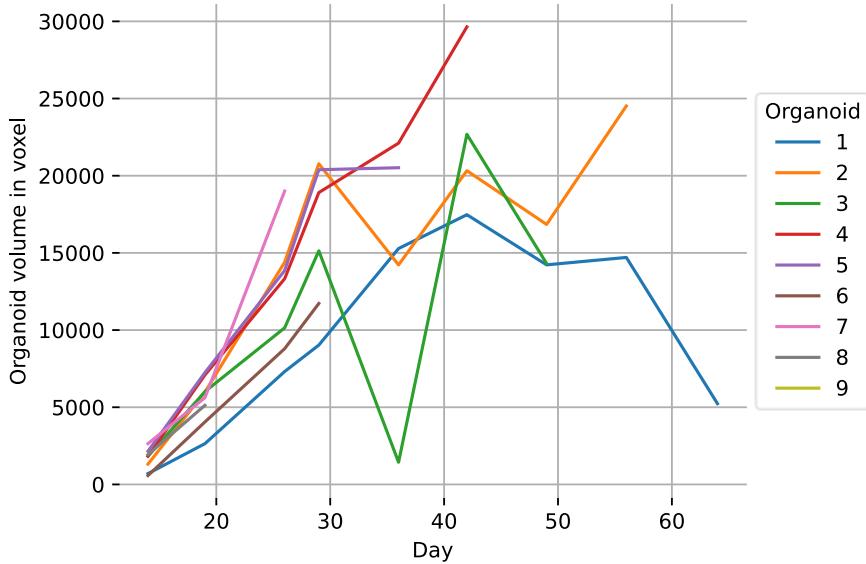
348 [26] Scheibel, M., Tsynman, A., Magosch, P., Schroeder, R. J. & Habermeyer, P.
349 Postoperative subscapularis muscle insufficiency after primary and revision open
350 shoulder stabilization. The American Journal of Sports Medicine 34, 1586–1593 (2006).

351 [27] Eelbode, T. et al. Optimization for medical image segmentation: Theory and practice
352 when evaluating with DICE score or Jaccard Index. IEEE Transactions on Medical
353 Imaging 39, 3679–3690 (2020).

354 [28] ISLES Challenge 2017. [Online]. Available: <http://www.isles-challenge.org/ISLES2017/> (accessed on April 5, 2023)

355 [29] ISLES Challenge 2018. [Online]. Available: <http://www.isles-challenge.org/ISLES2018/> (accessed on April 5, 2023)

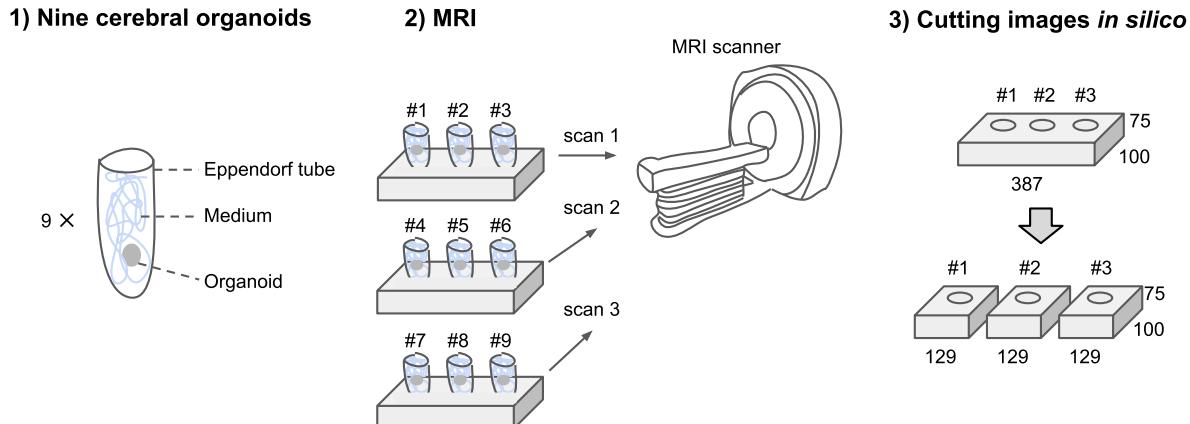
358 **Supplementary Figures**



359

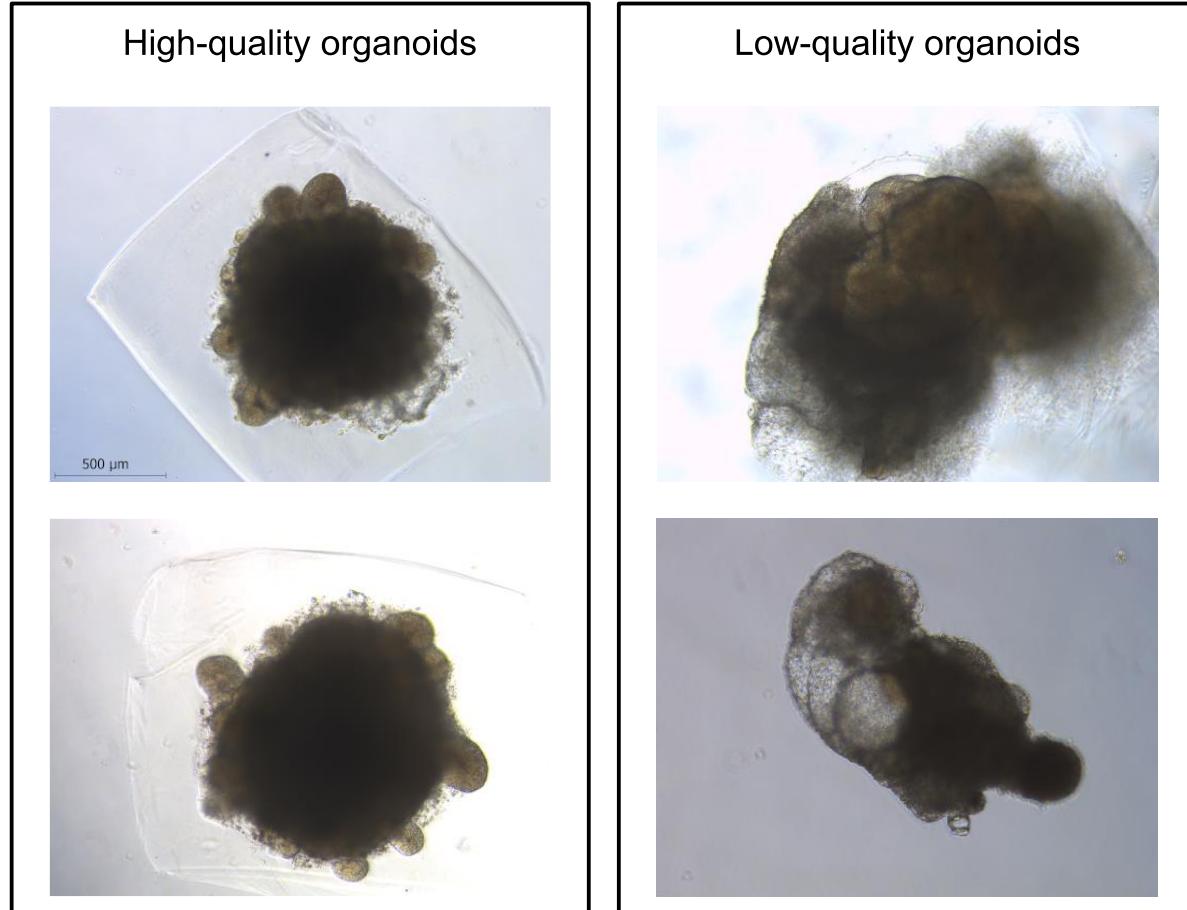
360 **Supplementary Figure 1** Organoid growth over time. The organoid volume in voxels (1 voxel
361 = $5.12 \times 10^{-4} \text{ mm}^3$) is based on the ground truth organoid annotation in the T2*-w sequence.
362 Organoid 3 (day 36) has a sudden drop in volume which is due to the disruption of one or more
363 cystic structures. Exemplary planes of this organoid are shown and discussed in the main text.

bioRxiv preprint doi: <https://doi.org/10.1101/2023.04.07.535822>; this version posted April 27, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

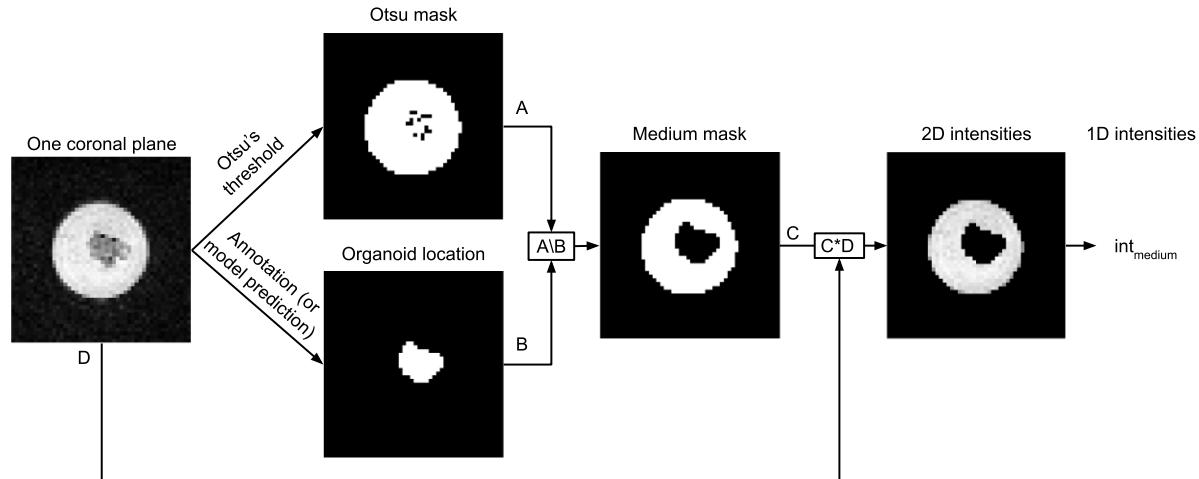


364

365 **Supplementary Figure 2** Experimental setup and data acquisition. For MRI, three Eppendorf
366 tubes were placed next to each other in a holder. Subsequently, the images were cut *in silico*
367 to derive one image per organoid. Image dimensions shown in 3) are according to the T2*-w
368 sequence.



370 **Supplementary Figure 3** Microscopy images of two high-quality (non-cystic) and two low-
371 quality (cystic) organoids on day 14 of organoid differentiation. The low-quality organoids
372 show fluid-filled cavities (or “cysts”) and therefore resemble the same phenotype as reported
373 in [7, 8].



374

375 **Supplementary Figure 4** Concept of medium intensity determination for global cysticity
376 classification. Otsu's mask, organoid location and medium mask are binary masks. The white
377 pixels of the medium mask belong to the medium. This example is based on Organoid 1 (day
378 14), coronal plane 60. To determine the medium intensities for one organoid, this procedure
379 is applied to all organoid-containing coronal planes. For better visibility in this figure, we cut
380 the coronal plane to the Eppendorf tube boundaries.

381 **Supplementary Tables**

382 **Supplementary Table 1** ROC AUCs and adjusted p-values for separation of low- and high-
383 quality organoids for selected DTI parameter maps.

DTI parameter map	ROC AUC	P-value
Trace	0.91	1.1×10^{-5}
3rd Eigenvalue	0.86	6.2×10^{-4}
2nd Eigenvalue	0.91	1.2×10^{-5}
1st Eigenvalue	0.93	2.1×10^{-5}
Fractional Anisotropy (FA)	0.63	9.9×10^{-1}

384

385 **Supplementary Table 2** Organoid segmentation performance of Multi-Otsu's threshold [13]
386 and 2D U-Net [14] in the T2*-w sequence. Multi-Otsu's threshold was applied in 3D for the
387 three classes MRI background, Eppendorf tube, and organoid using the Python package scikit-
388 image. For the 2D U-Net, the images were extracted along the coronal axis. For 2D U-Net
389 training and evaluation, the implementation from <https://github.com/milesial/Pytorch-UNet> was
390 utilized. 2D U-Net: binary semantic segmentation; 200 epochs; batch size 1; learning rate
391 0.00001; loss: binary cross entropy + Dice loss (weighted 1:10), weight decay: 0.001;
392 augmentation: random rotation (probability 0.75).

Method	Dice score (mean \pm SD)
Multi-Otsu's threshold	0.08 \pm 0.09
2D U-Net	0.58 \pm 0.43

393

394 **Supplementary Table 3** Blood gas analysis shows no specific negative effect of MRI on
395 organoids. Median differences of all pre- and post-MRI measurements for medium control w/o
396 organoid ('Medium'), MRI organoids (Org_{MRI}), and control organoids (Org_{control}). Cells are
397 colored according to measurement increase or decrease.

Measurement	Medium	Org _{MRI}	Org _{control}
pH Medium	0.02	-0.29	-0.31
pCO2 [mmHg]	-0.65	14.30	15.70
pO2 [mmHg]	-4.10	2.30	-6.40
HCO3- act [mmol/l]	-0.35	-2.60	-2.50
HCO3- std [mmol/l]	0.50	-7.20	-7.50
Glucose [mg/dl]	-7.00	-22.00	-24.00
Na+ [mmol/l]	0.20	1.10	1.70
K+ [mmol/l]	0.00	0.02	0.04
Ca2+ [mmol/l]	-0.01	0.00	-0.01
Cl- [mmol/l]	0.00	1.00	1.00

398

399 **Supplementary Table 4** Efficient 3D U-Net training and inference for organoid segmentation.
400 For application to larger-scale experiments, it is important that the model training and
401 especially inference time are in a practical range. The 3D U-Net requires less than an hour for
402 training on MRI organoid segmentation using the T2*-w sequence. Inferring the model
403 predictions is in the range of two seconds per sample. The times were measured using one
404 NVIDIA GeForce RTX 3090 (24 GB) graphics card.

Model	Training time (s)		Inference time (s)	
	Per iteration	Total	Per sample	Total
3D U-Net	1.11	2,220	1.97	88.6

405