

1 **Genome editing in the mouse brain with minimally immunogenic Cas9 RNPs**

2
3 Elizabeth C. Stahl¹⁻³, Jennifer K. Sabo^{1*}, Min Hyung Kang^{1,5}, Ryan Allen¹, Elizabeth Applegate¹,
4 Shin Eui Kim¹, Yoonjin Kwon^{1,3}, Anmol Seth^{1,3}, Nicholas Lemus^{1,3}, Viviana Salinas-Rios¹,
5 Katarzyna Soczek¹⁻³, Marena Trinidad¹, Linda T. Vo^{1#}, Chris Jeans², Anna Wozniak⁴, Timothy
6 Morris⁴, Athen Kimberlin⁴, Thomas Foti⁴, David F. Savage^{1,3,5} and Jennifer A. Doudna^{1-3,5-8†}

7
8
9 ¹Innovative Genomics Institute, University of California, Berkeley, California 94720, USA;

10 ²California Institute for Quantitative Biosciences (QB3), University of California, Berkeley,

11 California 94720, USA; ³Department of Molecular and Cell Biology, University of California,

12 Berkeley, California 94720, USA; ⁴Aldevron LLC, Madison, Wisconsin 53719, USA; ⁵Howard

13 Hughes Medical Institute, University of California, Berkeley, California 94720, USA; ⁶Department

14 of Chemistry, University of California, Berkeley, CA, USA 94720; ⁷MBIB Division, Lawrence

15 Berkeley National Laboratory, Berkeley, California 94720, USA; ⁸Gladstone Institutes, University

16 of California, San Francisco, CA 94114

17
18
19 †Correspondence: doudna@berkeley.edu

20

21 *Current address: Scribe Therapeutics Inc. Alameda, CA, 94501

22 #Current address: Third Rock Ventures, Boston, MA, 02116

23

24 **Abstract**

25 Transient delivery of CRISPR-Cas9 ribonucleoproteins (RNPs) into the central nervous
26 system (CNS) for therapeutic genome editing could avoid limitations of viral vector-based
27 delivery including cargo capacity, immunogenicity, and cost. Here we tested the ability of cell
28 penetrant Cas9 RNPs to edit the mouse striatum when introduced using a convection enhanced
29 delivery system. These transient Cas9 RNPs showed comparable editing of neurons and
30 reduced adaptive immune responses relative to one formulation of Cas9 delivered using AAV
31 serotype 9. The production of ultra-low-endotoxin Cas9 protein manufactured at scale further
32 improved innate immunity. We conclude that injection-based delivery of minimally immunogenic
33 CRISPR genome editing RNPs into the CNS provides a valuable alternative to virus-mediated
34 genome editing.

35

36 **Introduction**

37 Editing somatic cells directly *in vivo* is anticipated to be the next wave of therapeutics for
38 many genetic diseases, especially those affecting the central nervous system (CNS)^{1,2}.
39 Clustered regularly interspaced short palindromic repeats (CRISPR) is a revolutionary tool
40 adapted from bacterial immune systems for genome editing³⁻⁵. To achieve gene disruption, the
41 functional endonuclease, Cas9, is directed by a guide RNA to a target site in DNA to generate a
42 double strand break leading to insertions and deletions (indels). Unfortunately, despite many
43 genetic disease indications, the brain remains a challenging target for genome editing.

44 To circumvent the blood-brain barrier (BBB), most genomic medicines rely on direct
45 intracranial injection of viral vectors encoding the transgene of interest. Viral vectors, such as
46 recombinant adeno-associated virus (AAV), have had great success in gene therapy and are
47 less immunogenic than most viral vectors, however, they require re-manufacturing for each
48 target and are hindered by costly production scale up. Additionally, AAV has a limited DNA
49 packaging capacity, and is associated with immunogenicity in the brain from both the vector and
50 expression of foreign transgenes⁶⁻⁹. Although the brain has been considered an immune-
51 privileged site, green fluorescent protein can induce a strong inflammatory response and
52 neuronal cell death three weeks after injection with AAV serotype 9 has been reported⁶⁻⁹.
53 Additionally, Cas9-specific immune responses have been elicited following AAV delivery in
54 mice¹⁰⁻¹² and pre-existing cellular and humoral immunity to Cas9 and AAVs are documented in
55 humans¹³⁻¹⁸. Despite these drawbacks, AAVs are the most clinically relevant delivery systems
56 currently in use for the CNS.

57 The development of transient, non-viral delivery systems that can effectively edit
58 neurons throughout the brain with minimal immunogenicity would greatly facilitate future clinical
59 applications. Previously, we developed cell penetrating Cas9 ribonucleoproteins (RNPs)
60 capable of genome editing in mouse neurons both *in vitro* and *in vivo*¹⁹. To enable self-delivery
61 of the Cas9 RNPs, four repeats of the positively charged Simian vacuolating virus 40 nuclear

62 localization sequences (SV40-NLS) were fused to the N-terminus along with two repeats to the
63 C-terminus of Cas9, a strategy that was also reported to enable delivery of zinc-finger
64 nucleases²⁰. Using a single guide to turn on the tdTomato reporter from the lox-stop-lox (LSL-
65 Ai9²¹) mouse, we reported edited striatal volume of approximately 1.5mm³¹⁹.

66 Here we report further optimization of cell penetrant Cas9 RNPs, demonstrating efficacy
67 in human primary cells and improved editing of the mouse striatum using a convection
68 enhanced delivery (CED) system. We compared the transient RNP complexes to AAV serotype
69 9 for Cas9 delivery to the CNS, to measure both editing efficiency and the host immune
70 response. We found that the Cas9-AAV was able to better diffuse throughout the brain, leading
71 to distally edited cells; while the cell penetrant Cas9-RNPs edited significantly more neurons
72 within the region near the injection site. Both groups elicited humoral responses, but vehicle-
73 specific antibodies in the Cas9-AAV group persisted at high levels out to 90-days. Cas9-AAV
74 treated brains were also associated with significantly elevated *Cd3e* gene expression at four
75 weeks, suggesting an ongoing adaptive immune response. Cas9-RNP treated brains showed
76 acute microglial activation that was mitigated by reducing endotoxin levels during protein
77 manufacturing scale up. Taken together, Cas9 RNPs are a promising strategy for future
78 therapeutic intervention in neurological disorders to address current limitations of viral delivery.

79 **Results**

80 *Development of Cas9 cell penetrant RNP and AAV to measure genome editing with the*
81 *tdTomato reporter system*

82 Creating a large deletion in the lox-stop-lox cassette in Ai9 mice with a single guide RNA
83 (sgRNA) enables expression of tdTomato and efficient quantification of editing by fluorescent
84 read out (Figure S1A). Cas9 from *Streptococcus pyogenes* (engineered with four copies of
85 SV40 NLS on the N-terminus and two copies on the C-terminus (4x-SpyCas9-2x) to be cell
86 penetrant) was first produced from recombinant *E. coli* in a laboratory setting, using a low-
87 endotoxin method. Editing efficiency of the RNP was compared to Cas9 delivered by
88 recombinant adeno-associated virus (AAV) (Figure 1A-B). Since SpyCas9 cannot be packaged
89 within a single AAV with its guide RNA, we used clinically relevant AAV-SauCas9-sgRNA
90 (derived from *Staphylococcus aureus*)²²⁻²⁴. AAV serotype 9 was produced using a baculovirus
91 transfected into Sf9 insect cells^{25,26}. To control for differences in the Cas9 orthologs, cell
92 penetrant 4x-SauCas9-2x protein was also produced following the same expression and
93 purification methods as 4x-SpyCas9-2x. Due to differences in PAM requirements between the
94 two Cas9 orthologs (SpyCas9 NGG, SauCas9 NNGRRT), a new guide was designed for
95 SauCas9 to target the tdTomato locus (Figure S1B).

96 We confirmed editing in neural precursor cells (NPCs) isolated from embryonic day 13.5
97 Ai9 mice with all constructs *in vitro* (Figure S1). Addition of 4x-SauCas9-2x RNP into the cell
98 culture supernatant enabled editing of NPCs compared to 0x-SauCas9-2x RNPs, demonstrating
99 that the four SV40-NLS peptides can mediate delivery of additional Cas9 orthologs. 4x-
100 SauCas9-2x RNPs were slightly less efficacious than 4x-SpyCas9-2x RNPs, which could be
101 explained in part by differences in the guide RNAs (Figure S1A-B). We observed editing of
102 mouse NPCs with SauCas9 when delivered as both cell penetrant RNP (59 ± 6% tdTomato
103 cells⁺, Figure S1D) and AAV (42 ± 1% tdTomato cells⁺, Figure S1E). The same titer of AAV9-

104 CMV-GFP resulted in $96 \pm 2\%$ GFP⁺ cells, suggesting that editing lagged behind transduction;
105 and an increase in empty capsids in the AAV-CMV-SauCas9 group was noted (Figure S1F)^{27,28}.

106 To further examine the potential for cell penetrant Cas9 RNPs to edit difficult cells *in*
107 *vitro*, we tested delivery and editing with 4x-SpyCas9-2x in human neural precursor cells
108 derived from induced pluripotent stem cells (iPSCs)²⁹⁻³¹. Human NPCs were treated with pre-
109 formed RNPs using an established guide RNA targeting EMX1³². In human cells, we detected
110 10-fold higher rates of editing with 4x-SpyCas9-2x compared to standard RNPs (0x-SpyCas9-
111 2x) delivered with commercial transfection reagents (Figure S2A-B).

112

113 *Cas9 RNPs result in modest editing of brain parenchyma following delivery into cerebrospinal*
114 *fluid*

115 To determine the optimal route of delivery for Cas9 RNPs into the mouse CNS, we
116 tested intraparenchymal injections into the striatum, as well as injection into the cerebrospinal
117 fluid (CSF), including intrathecal (IT) and intracerebroventricular (ICV) routes. Following IT
118 injection of cell penetrant RNPs, we observed edited glial cells and neurons in the cortex and
119 striatum of one hemisphere, but no editing within the spinal cord (Figure S3A). Following ICV
120 injection of Cas9 RNPs in neonatal p0 mice, we observed tdTomato⁺ cells in the subventricular
121 zone and white matter, including glial cells and neural stem/progenitor cells expressing Ki67 and
122 DCX evaluated three weeks after delivery (Figure S3B-C). Editing post-ICV injection in adult
123 mice was restricted to the cells within the lateral ventricles, choroid plexus, subventricular zone,
124 and hippocampus in a subset of mice (Figure S3D-E). The total number of edited cells with RNP
125 delivery into the CSF was lower than with direct intraparenchymal injection (Figure S3F).

126 Therefore, we sought to further improve upon intraparenchymal injections using a
127 convection enhanced delivery system (CED), which generates a high-pressure gradient to aid in
128 biodistribution of macromolecules in the brain. CED has been used to increase the spread of
129 AAV in the brains of large animal models and humans by infusing relatively high injection

130 volumes at high rates^{33,34}. Additionally, we tested two needle designs to enable CED with Cas9-
131 RNPs. We found that the CED enabled robust editing in the mouse striatum (Figure S4B) and
132 the step-cannula reduced reflux of RNP from the needle-injection track, as reported previously³⁵
133 (Figure 1D). Furthermore, tdTomato⁺ neurons edited by Cas9-RNPs within the striatum were
134 observed to extend along the basal ganglia circuit into the globus pallidus and substantia nigra
135 along the anterior-posterior axis (Figure 1C-E).

136

137 *Convection enhanced delivery of Cas9 RNPs and AAVs mediates robust editing in the mouse*
138 *striatum*

139 Using bilateral CED injections into the striatum, we compared edited tissue volume with
140 the 4x-SpyCas9-2x RNP, 4x-SauCas9-2x RNP, and AAV9-SauCas9-sgRNA in adult Ai9 mice at
141 three weeks post-injection. Despite performing well *in vitro*, 4x-SauCas9-2x RNPs
142 underperformed *in vivo* when tested at two different doses and additional NLS configurations
143 (Figure S5A-G, S6D). Therefore, we performed our primary comparison with two orthologous
144 systems: 4x-SpyCas9-2x RNP (hereafter referred to as Cas9-RNP) and AAV9-SauCas9-sgRNA
145 (hereafter referred to as Cas9-AAV, which serves as a positive control, Figure 1F).

146 First, we tested Cas9-AAV injection with CED at two doses, 3×10^8 vg/ μ L and 3×10^9
147 vg/ μ L (1.5×10^9 - 1.5×10^{10} vg/hemisphere)³⁶, and proceeded with the higher dose for subsequent
148 studies *in vivo* (Figure S6A-B). We also tested several doses of Cas9-RNP ranging from 10 μ M
149 to 100 μ M (50-500 pmol/hemisphere). Interestingly, there was no significant difference in editing
150 when delivering RNPs in this concentration range (Figure 1H, Figure S6C). We chose the 25 μ M
151 RNP concentration (4.15 mg/mL or approximately 1.75 mg/kg Cas9) group for further study as it
152 had the highest maximal editing rate. Above 25 μ M in the RNP group, we observed a decrease
153 in NeuN staining and an increase in GFAP staining out to 90-days in the Cas9-RNP group,
154 suggesting dose-limiting effects (Figure 1G).

155 At both 21 and 90-days post-injection, the Cas9-AAV group outperformed the Cas9-RNP
156 group when quantifying total edited striatal volume (n=8 at 21-days, n=4 at 90-days, p<0.05,
157 Figure 1I). The volume of edited cells was relatively stable in the Cas9-AAV group between 21
158 and 90-days at approximately $47 \pm 3\%$ (covering approximately 13.4 mm^3 of striatum), while the
159 Cas9-RNP group had editing levels of $22 \pm 3\%$ (approximately 6.2 mm^3 of striatum) between 21
160 and 90-days (increased from previous report of editing 1.5 mm^3 striatal volume¹⁹). Edited cells
161 were observed further along the rostral-caudal axis in the Cas9-AAV group (-2.12 mm to 2.5
162 mm relative to Bregma), demonstrating better diffusion of the editor away from the injection site
163 (Figure S6E-F).

164 Since large deletions in the tdTomato locus make on-target editing difficult to assess
165 using short-read next-generation sequencing (NGS), we developed an NHEJ droplet digital
166 PCR assay (ddPCR) to measure drop-off of HEX-labeled probes over the cut sites, in relation to
167 distal reference FAM-labeled probes. Genomic DNA was isolated from 2-mm thick sections of
168 each injected hemisphere, covering multiple brain sub-structures. Loss of the HEX probe
169 reached $2 \pm 1\%$ in the Cas9-RNP group and $15 \pm 10\%$ in the Cas9-AAV group, indicating edited
170 alleles, when measured at 28-days (Figure S7).

171 We also quantified the percentage of edited NeuN⁺ neurons within the tdTomato⁺ region
172 of interest (ROI) per hemisphere between Cas9-AAV and Cas9-RNP at the 21-day timepoint.
173 We found that Cas9-RNP edited significantly more NeuN⁺ neurons per ROI ($36 \pm 10\%$)
174 compared to Cas9-AAV ($20 \pm 2\%$) (Figure 1J, n=6-8 injections, p<0.05). Within the ROI,
175 neurons were the most frequently edited cell type in both groups, including DARPP-32⁺ medium
176 spiny neurons (Figure S8). Additionally editing of ALDH1L1⁺ and OLIG2⁺ glial cells was noted in
177 both groups (approximately 2% of edited cells within the ROI in the Cas9-RNP group and 8% of
178 cells in the Cas9-AAV group). Therefore, Cas9-RNPs were able to edit comparable numbers of
179 neurons and glia as Cas9-AAVs in a given area of striatal tissue.

180

181 *Comparison of local and peripheral immune response between Cas9 RNPs and AAVs in the Ai9
182 reporter mouse*

183 We next examined the local and peripheral immune response following delivery of Cas9
184 RNPs and AAVs into the brain. Using immunofluorescent staining for Iba1 (Figure 2A), we
185 observed a significant increase in percent Iba1⁺ area in the 25 μ M Cas9-RNP group from sham-
186 treated animals (Figure 2B, n=6 replicates, p<0.05). Staining for CD45 showed dim expression
187 on Iba1⁺ microglia and high expression on CD3⁺ T-cells, which were slightly increased in the
188 25 μ M Cas9-RNP group compared to the sham and Cas9-AAV, but not significantly different, at
189 three weeks post-injection (Figure 2C-D, n=6-12 replicates).

190 In addition to the immune response at the local site of injection, circulating IgG
191 antibodies were measured at 28 and 90-days post-injection. We found that sham-treated
192 animals had no pre-existing antibodies to either SpyCas9, SauCas9, nor AAV9 capsids. At 28-
193 days following striatal injection, there was a 1.6e4-fold increase in anti-SpyCas9 IgG in the
194 25 μ M Cas9-RNP group, a 1.3e4-fold increase in anti-AAV9 capsid IgG in the Cas9-AAV group,
195 and an 8.9e1-fold increase in anti-SauCas9 IgG in the Cas9-AAV group (i.e., humoral response
196 against transgene) (Figure 2E, n=3-5 biological replicates). No cross-reactivity was observed
197 between ortholog RNPs, as described previously¹¹, nor were any anti-AAV capsid antibodies
198 detected in the RNP group. At 90-days, the levels of IgG fell to a 5.4e2-fold increase in the
199 25 μ M Cas9 RNP group and 1.2e4-fold increase in the Cas9 AAV group from the sham controls,
200 demonstrating greater maintenance of systemic antibodies against the capsid in the AAV group.

201 The cellular and humoral immune response to Cas9 RNPs was dose-dependent and a
202 significant increase in CD45⁺ cells was observed at the 100 μ M RNP dose compared to sham,
203 Cas9-AAV, and Cas9-RNP at 25 μ M (Figure S9). Cas9-reactive cells were also identified in the
204 spleen by interferon-gamma (IFN- γ) ELISpot assay (Figure S9E) at both 25 μ M and 100 μ M
205 doses of Cas9-RNPs, but not in sham treated animals.

206 Since the mice had no pre-existing antibodies to SpyCas9, we tested how the immune
207 response would differ in the RNP group by first exposing the mice to a single subcutaneous
208 injection of 4x-SpyCas9-2x protein and adjuvant (AddaVaxTM) four-weeks prior to stereotaxic
209 surgery with Cas9-RNPs. We found that pre-exposing the mice to Cas9 with adjuvant had a
210 synergistic effect on both serum IgG and activation of IFN- γ ⁺ cells in the spleen (Figure S9F-I).
211 Mice that received surgery maintained tdTomato⁺ cells in the brain to the measured time point.
212 Additional studies using this immunization strategy may help to further characterize the immune
213 response to Cas9-RNPs by modeling pre-existing immunity relevant to humans.

214 Finally, we measured gene expression changes near the injection site in mice that
215 received Cas9-RNP and AAV at 3 and 28-days post-injection using RT-qPCR. At three days,
216 the Cas9-AAV group had a modest but significant increase in *Fas* (1.19-fold) and *Fasl* (1.85-
217 fold) compared to the sham group (Figure 2F). At 28-days post-injection, both Cas9-RNP and -
218 AAV had a significant increase in *Fas* (1.61 and 1.89-fold respectively). In addition, the Cas9-
219 AAV group had a significant increase in *CD3e* gene expression (5.45-fold, n=4 replicates,
220 p<0.05), closely followed by *CD8a* (2.06-fold, ns, p=0.06), while Cas9-RNP had a slight but non-
221 significant increase in *CD3e* (2.15-fold, ns, p=0.06), compared to the sham group.

222 There were no detectable off-target editing events at 1 and 4-months post-injection in
223 any of the experimental groups at the evaluated sites (Figure S10A-C). In the Cas9-AAV group,
224 the Cas9 transgene was expressed in the brain out to 4-months, the last tested time point, as
225 expected (Figure S10D). Additionally, few genes were differentially expressed between the
226 groups at 4-months, except for *Fas* (1.54-fold, p<0.05), which was significantly elevated in the
227 Cas9-AAV group compared to the sham (Figure S10E-F). We used long read sequencing to
228 examine whether any fragments of the viral genome had been integrated near the cut site in the
229 tdTomato locus, as previously reported³⁷⁻⁴⁰. We also observed partial integrations of viral
230 fragments in our amplicon, although our *in vivo* editing rates and sequencing depth were
231 relatively low (Figure S11).

232 Overall, delivery of Cas9 by either AAV or RNP resulted in significant activation of
233 immune responses in the brain and periphery, although with generally small effect sizes
234 compared to sham injected mice. The increased Iba1⁺ cells near tdTomato⁺ cells in the striatum
235 of the 25 μ M Cas9-RNP group raised the question of whether the response was due to Cas9
236 itself or impurities within the protein product. We hypothesized that the local immune response
237 may be due to endotoxins from *E. coli* in the RNP complexes.

238

239 *Production and testing of ultra-low endotoxin 4x-SpyCas9-2x protein*

240 To examine the impact of endotoxin on the immune response to RNPs, we partnered
241 with a commercial producer of Cas9 protein and were able to significantly scale up
242 manufacturing to produce a large quantity of ultra-low endotoxin 4x-SpyCas9-2x protein using
243 an industrial tag-free expression and purification system (Figure 3A).

244 Using the limulus amebocyte lysate (LAL) assay, we measured an endotoxin
245 concentration of 0.035 EU/mg in the industrial-produced protein compared to 0.2 EU/mg in the
246 lab-produced protein (Figure S12A). Interestingly, using the same assay, we found that guide
247 RNA could be an unexpected source of endotoxin contamination. Endotoxin was present in at
248 least three unopened vials of lyophilized RNA that had been stored at -80°C from a 2018 lot, but
249 not in a more recently purchased lot from the same vendor when resuspended simultaneously
250 (Figure S12A-C). To rule out false positives due to reaction of LAL with beta-glucans, we
251 performed the Recombinant Factor C (rFC) assay. We measured a similar level of endotoxins in
252 the guides between the LAL and rFC assays, demonstrating the positive signal was from
253 contamination with endotoxin and not beta-glucans (Figure S12D-E).

254 To measure the physiological impact of endotoxin in our samples, we used HEK293
255 cells that were engineered to produce secreted embryonic alkaline phosphatase (SEAP)
256 downstream of NF- κ B activation resulting from human toll-like receptor 4 stimulation (hTLR4)

257 with endotoxin/lipopolysaccharide (LPS, Figure S13A-E). The lab-produced protein stimulated
258 NF- κ B in HEK293 cells significantly greater than the industrial produced protein ($p<0.01$,
259 unpaired t-test). Treatment with the industrially produced protein led to similar levels of SEAP
260 between hTLR4 cells and the parental cell line (Null2), demonstrating that most of the NF- κ B
261 stimulation was downstream of other pattern-recognition receptors (such as TLR3, TLR5, or
262 nucleotide-binding oligomerization domain-containing protein 1 (NOD-1) activation) and not due
263 to LPS signaling through hTLR4 (Figure S13A-E). When combined with sg298 from the 2018 or
264 2022 lot, absorbance levels of SEAP further increased in RNP complexes made with lab
265 produced protein, while the industrial protein with either guide did not induce a response (Figure
266 S13F). Furthermore, guide RNA alone did not stimulate NF- κ B in HEK293 cells (Figure S13D).

267 Finally, we measured endotoxins in the “optimized” formulation of RNPs, comprised of
268 the industrially produced 4x-SpyCas9-2x protein and 2022 sgRNA, using the LAL assay.
269 Estimating delivery of 10 μ L per mouse, the endotoxin burden was 0.44 EU/kg when RNPs were
270 formulated at 25 μ M. These data suggest that RNPs could be delivered below the 0.2 EU/kg
271 FDA threshold for intrathecal delivery⁴¹ when formulated at 10 μ M without significant loss of
272 editing (Figure 3B and Figure 1H).

273

274 *Optimized RNP formulation reduces immune response*

275 We performed CED bilateral intrastratial injections to test if reducing endotoxins would
276 improve the host immune response to RNPs *in vivo*. In this experiment, we compared the
277 optimized RNP formulation (industrially produced 4x-SpyCas9-2x NLS protein with sg298 2022)
278 to the standard formulation used in Figures 1 and 2 (laboratory produced 4x-SpyCas9-2x NLS
279 protein with sg298 2018) at 25 μ M. The standard RNP induced a significant increase in Iba1 $^{+}$
280 area, consistent with our previous measurements (Figure 3C and Figure 1A); however, the
281 optimized Cas9-RNP formulation did not induce microglial activation. Additionally, there was no

282 increase in CD45⁺ and CD3⁺ cells from the sham in the optimized RNP group (Figure 3D). Of
283 note, the standard RNP edited an average of 31 ± 3% striatal volume (greater than values
284 reported in Figure 1, possibly due to differences between protein lots or injections), while the
285 optimized RNP edited an average of 23 ± 8% striatal volume (Figure 3F). When tested *in vitro*,
286 the optimized RNP performed slightly better at direct delivery than nucleofection compared to
287 the standard formulation, which could explain in part the differences *in vivo* (Figure S14A).
288 Interestingly, the standard RNP also lead to significantly greater anti-Cas9 IgG responses at
289 three-weeks post-injection, possibly due to endotoxin boosting the adaptive immune response
290 (Figure 3G). Taken together, we found that reducing endotoxins in both the guide RNA and
291 protein components of the RNP leads to a reduced innate immune response, comparable to the
292 sham, while maintaining high on-target editing. Furthermore, cell penetrant Cas9 proteins are
293 amenable to expedited manufacturing of large quantities suitable for *in vivo* experiments.

294 In conclusion, our results establish complementary genome editing and immunogenicity
295 outcomes between the two tested Cas9 delivery strategies (Figure S14B). To enable high-levels
296 of editing in neurons within a localized brain region, minimizing adaptive immune responses,
297 and timely and affordable manufacturing scale up, the RNP offers an effective alternative
298 delivery system to viral vectors.

299

300 **Discussion**

301 In the present study, we demonstrate that cell penetrant Cas9 RNPs edit a significant
302 volume of the mouse striatum using convection enhanced delivery. Furthermore, the 4x-NLS
303 modification enables self-delivery of Cas9 orthologous proteins *in vitro* to both mouse and
304 human cells, demonstrating cross-species compatibility of the system for the first time. We also
305 show that Cas9 RNPs have dose-dependent effects on the immune response, which can be
306 mitigated by using ultra-low endotoxin protein produced in an industrial non-GMP setting. These

307 experiments are informative for the design of future therapeutic applications of Cas9 RNP
308 editors in mice and larger animal models.

309 Several studies have reported non-viral delivery of Cas9 into the mouse brain. The
310 “CRISPR-Gold” Cas9 nanoparticle delivery system induced 14% edited glial cells near the
311 injection site, sufficient to reduce repetitive behaviors in a mouse model of fragile X syndrome⁴².
312 Additionally, incubating RNPs with R7L10, an arginine and leucine rich cationic peptide, induced
313 45% indels in the CA3 region of the hippocampus, leading to behavioral improvements in an
314 Alzheimer’s disease mouse model⁴³. Efficient editing of DARPP-32 medium spiny neurons in
315 the striatum was achieved here and in recent work by others using RNPs packaged in
316 biodegradable PEGylated nanocapsules⁴⁴. Interestingly the PEGylated nanocapsules have a
317 neutral charge, while 4x-Cas9-2x NLS RNPs have a net-positive charge, suggesting the
318 mechanism of entry may differ between the two strategies. Systemic delivery of genome editors
319 with glucose-conjugated silica nanoparticles and AAV9 can also lead to modest levels of editing
320 in the brain, sufficient for therapeutic benefit^{45,46}. Despite the need for direct injection, the
321 simplicity of the 4x-Cas9-2x RNP makes it ideal from a manufacturing perspective compared to
322 other viral and nanoparticle formulations. The RNP formulation buffer could be further
323 supplemented with polymers, such as polyethylene glycol (PEG)^{47,48}, to possibly improve
324 biodistribution with CED in the future.

325 Several studies show correlation between editing at the tdTomato locus and subsequent
326 editing at endogenous sites^{42,49,45}. It is important to note that expression of the tdTomato protein
327 in the Ai9 mouse model underreports the actual genome editing efficiency, as double strand
328 breaks that result in indels and small deletions are not sufficient to turn on the reporter¹⁹. We
329 sought to further resolve editing outcomes with a ddPCR assay, since the tdTomato locus is too
330 large for Illumina-based NGS. In the ddPCR probe drop-off assay we detected approximately a
331 6-fold increase in editing with AAV compared to RNP (approximately 15% versus 2.5% indels),
332 whereas our immunofluorescent measurement showed a 2-fold increase. We speculate that the

333 difference in reported editing efficiency between the two assays is based on the sampling
334 methodology. The image analysis workflow quantified the volume of striatal tissue containing
335 edited cells (Figure 1I), where 20-36% of neurons were edited within 25-50% of the striatum
336 (Figure 1J). Therefore, the image quantification reflects the maximal biodistribution of edited
337 cells in the striatum. The ddPCR assay utilized genomic DNA from 2-mm thick tissues dissected
338 from the expected injection site including the striatum, as well as the cortex and corpus
339 callosum, which likely favors editing events in the Cas9-AAV group due to its enhanced diffusion
340 through the brain. While dose escalating the RNP did not improve editing levels, suggesting a
341 saturating dose was already achieved as measured by image quantification, editing at different
342 doses was not assessed using ddPCR. Furthermore, increasing the dose of Cas9-AAV may
343 have further increased editing levels. Studies suggest that correcting pathological mutations in
344 20-30% of striatal neurons expressing mutant huntingtin protein is sufficient to significantly
345 improve the disease pathology, therefore even modest editing levels in the striatum could
346 enable therapeutic benefit⁵⁰. Ultimately, behavioral assays are needed to further determine
347 therapeutic benefit of the RNP approach in a disease-relevant model.

348 We hypothesized that cell penetrant Cas9-RNPs would be less immunogenic than Cas9-
349 AAVs due to their transient expression. As the dose of 4x-SpyCas9-2x RNPs increased from
350 25 μ M to 100 μ M, there was an increase in CD45⁺ and GFAP⁺ cells, and a decrease in NeuN⁺
351 cells. As such, subsequent experiments were performed at 25 μ M, which was well-tolerated and
352 resulted in similar levels of editing as the higher dose. The 25 μ M Cas9-RNP led to lower levels
353 of vehicle-specific antibodies by 90-days post-injection compared to AAVs and did not
354 upregulate gene signatures of T-cells at 28-days as measured by RT-qPCR, supporting our
355 hypothesis. By 90 days, the levels of anti-Cas9 antibodies in the Cas9-AAV group were only
356 elevated in three out of five mice, demonstrating that the kinetics of Cas9 antibody persistence
357 were similar between RNPs and AAVs, despite stable, intracellular Cas9 expression. Reducing

358 endotoxin in both the Cas9 protein and guide RNA prevented microglial reactions and reduced
359 humoral responses at 21-days.

360 In the Cas9-AAV group, few immune cells (CD45, Iba1, or CD3) were observed in the
361 striatum by immunostaining, however *CD3e* gene expression was significantly upregulated in
362 explanted tissue, closely followed by an increase in *CD8a*. This finding could indicate
363 accumulation of cytotoxic T-cells trafficking into the parenchyma from the blood vessels or
364 ventricles. Additionally, no changes in NeuN, GFAP, and CD45 expression were observed in the
365 Cas9-AAV group out to 4 months, demonstrating that the AAV delivery strategy was well-
366 tolerated overall in naïve mice. A study by Li et al. found that mice immunized against SauCas9
367 with Freund's adjuvant one week prior to intravenous delivery of AAV8-SauCas9-sgRNA
368 resulted in accumulation of cytotoxic T-cells in the liver and subsequent removal of edited
369 hepatocytes¹². Therefore, the host immune response to Cas9-AAV in mice with pre-existing
370 immunity would likely be different than what we observed in naïve mice. In the Cas9-RNP
371 group, we found that pre-exposing mice to SpyCas9 protein with AddaVaxTM adjuvant 4 weeks
372 prior to stereotaxic surgery synergistically increased systemic adaptive immune responses.
373 Further studies are needed to assess the immune response to Cas9-AAV and RNP in models
374 with pre-existing immunity, but how well these immunized mouse models recapitulate pre-
375 existing immunity in humans is not clear. Furthermore, breakdown of the BBB in the context of
376 neurodegenerative disease or strong expression of the tdTomato fluorescent reporter could also
377 impact the host immune response^{51,52}.

378 In this study, we used a strong CMV-promoter to drive expression of SauCas9 from the
379 AAV, which allowed us to assess all subsets of edited cells in the striatum, in comparison to the
380 RNP, which is not inherently designed to be neuron-specific. Although the SauCas9 transgene
381 was still expressed 4-months post-delivery, editing at predicted off-target sites was not detected.
382 Further work to experimentally determine guide-specific off-target sites, such as Guide-Seq⁵³ or

383 Circle-Seq⁵⁴, was not performed. To prevent potential genotoxic side-effects due to long-term
384 Cas9 expression, we recommend applying additional safeguards, such as AAV self-inactivation
385 strategies and neuron-specific promoters, such as human synapsin 1 (hSyn), to increase cell
386 specificity^{55–57}. While self-inactivating AAVs may improve safety, they may not be sufficient to
387 reduce partial integration of the viral genome at the Cas9 cut site, which has been reported^{37–40}.
388 Strategies to mitigate the host response to genome editors include providing
389 immunosuppressants with CRISPR-Cas9 infusion and screening for pre-existing immunity prior
390 to dosing when translating *in vivo* editing to humans⁵⁸.

391 While SpyCas9 is generally the most efficacious and widely used Type II CRISPR
392 protein to date, it is too large to be packaged in a single AAV with sgRNA. Therefore, in this
393 study, we used AAV-CMV-SauCas9-U6-sgRNA as a positive control to benchmark delivery of
394 RNPs, as similar AAV constructs have been used extensively in the literature and in clinical
395 trials^{24,23,12,59}. *In vivo* delivery of 4x-SauCas9-2x RNP did not lead to significant editing, thus,
396 most comparisons were performed between two orthologous genome editors and delivery
397 systems with different NLS configurations, which may impact the interpretation of this work. *In*
398 *vivo* editing with 4x-SauCas9-2x RNP was possibly hindered by the reduced thermostability of
399 the protein, as reported previously⁶⁰. Employing Cas9 RNPs from a more thermostable
400 organism could be advantageous in the future. Since RNPs are not restricted by cargo
401 packaging, one advantage of the cell penetrant RNP technology is the ability to use SpyCas9
402 for future therapeutic applications in the brain.

403 In conclusion, the cell penetrant 4x-Cas9-2x NLS fusion protein enables simple and
404 effective delivery of Cas9 RNPs into neurons *in vitro* and *in vivo*. Our study is the first to
405 comprehensively profile the host immune response to Cas9 in the brain, benchmark an RNP
406 delivery strategy against the gold-standard for gene delivery in the CNS, and demonstrate
407 feasibility of large-scale manufacturing. Given that Cas9-RNPs excel at editing high levels of

408 neurons within a localized region of the brain, this is a promising modality to characterize
409 therapeutic benefit in disease models in the future.

410 **Materials & Methods**

411

412 *Plasmid construction*

413 Cloning of several spacers into a plasmid encoding SauCas9 was performed as
414 previously described. Oligonucleotides encoding sgRNAs were custom synthesized (Integrated
415 DNA Technologies; IDT, Coralville, IA) and phosphorylated by T4 polynucleotide kinase (New
416 England Biolabs; NEB, Ipswich, MA) for 30 min at 37°C. Oligonucleotides were annealed for 5
417 min at 95°C, cooled to room temperature and ligated into the BsmBI restriction sites of
418 pSTX8,pKLT7.1_SaCas9prot_SaCas9guide plasmid. The following 23nt spacer sequences
419 were cloned into the plasmid (spo 1: TGGTATGGCTGATTATGATCCTC; spo2:
420 TCCCCCTGAACCTGAAACATAAA; spo3: GATGAGTTGGACAAACCACAAC; spo4:
421 TCCAGACATGATAAGATAACATTG; spo5: CTCATCAATGTATCTTATCATGT), and plasmids
422 were used for editing in mouse neural precursor cells *in vitro*. The best performing SauCas9
423 spacer (spo4: TCCAGACATGATAAGATAACATTG) was then cloned into an AAV2 backbone
424 plasmid. pX601-AAV-CMV::NLS-SaCas9-NLS-3xHA-bGHPA;U6::Bsal-sgRNA was a gift from
425 Feng Zhang (Addgene plasmid # 61591 ; <http://n2t.net/addgene:61591> ;
426 RRID:Addgene_61591). Briefly, the plasmid was digested using BbsI and a pair of annealed
427 oligos were cloned into the guide RNA destination site by Golden Gate assembly. Correct
428 construction of all plasmids was verified by Sanger sequencing (UC Berkeley DNA Sequencing
429 Facility).

430

431 *Recombinant adeno-associated virus (AAV) Production*

432 The custom AAV9-CMV-61591-HA-Bgh vectors were produced at Virovek (Hayward,
433 CA) in insect Sf9 cells by dual infection with rBV-inCap9-inRep-hr2 and rBV-CMV-61591-HA-
434 Bgh. The AAV9-CMV-GFP vectors were produced by dual infection with rBVinCap9-inRep-hr2
435 and rBV-CMV-GFP. The vectors were purified through two rounds of cesium chloride (CsCl)

436 ultracentrifugation. The CsCl was removed through buffer exchange with two PD-10 desalting
437 columns. Viral titer (approximately 2e13 vg/mL) and purity were confirmed by nanodrop
438 spectrophotometer, real-time PCR, and SDS-PAGE protein gel analysis. The vectors were
439 passed through 0.2um sterilized filters, tested for endotoxins (< 0.6 EU/mL), as well as
440 baculovirus and Sf9 DNA contamination (not detected).

441

442 *Purification of low-endotoxin proteins in a laboratory setting*

443 Protein expression and purification was performed in the QB3 Macrolab at UC Berkeley
444 using a custom low-endotoxin workflow. Briefly, the plasmid, 4xNLS-pMJ915v2 (Addgene
445 plasmid # 88917; <http://n2t.net/addgene:88917>; RRID:Addgene_88917), was transformed into
446 *E. coli* Rosetta2(DE3)pLysS cells (Novagen) and an overnight culture was used to inoculate 1 L
447 flasks (12-24 L total per batch). Cells were grown for approximately 3 hours at 37°C then
448 cooled to 16°C. At OD 0.8-0.9, cells were induced and harvested after 16-18 hours growth.
449 Cells were lysed by homogenization in a buffer containing 1mM MgCl₂ and benzonase (1:1000)
450 to help reduce viscosity and centrifuged to remove insoluble material. Purification by Ni affinity
451 (10 mL Ni resin for every 6 L cell lysate) was performed, and the bound protein was washed
452 with 10 column volumes of buffer containing 0.1% Triton-X114 at 4°C to help reduce
453 endotoxins. Tag removal with TEV protease (1:100) was performed overnight at 4°C, then
454 heparin affinity was used to concentrate each batch of protein which was then flash frozen and
455 stored at -80°C. A Sephadryl S300 size-exclusion column (SEC) and flow path were sanitized
456 with 0.5 M NaOH overnight, then washed with up to 3 column volumes of buffer to rinse and
457 equilibrate the system. Frozen samples were thawed, combined, and adjusted to 4.5 mL, and
458 the S300 standard protocol was performed for size-exclusion. Samples were refrigerated
459 overnight, and sanitation and size-exclusion were repeated the next day to further reduce
460 endotoxin contamination. Peak fractions were pooled, concentrated to 40µM, aliquoted at 50µL,
461 flash frozen in liquid nitrogen, and stored at -80°C in sterile, endotoxin-free Buffer 1 (25 mM

462 NaP (pH 7.25), 300 mM NaCl, 200 mM trehalose (Sigma Aldrich #T5251, St. Louis, MO)). Final
463 average protein yield was 1 mg per 1 L cells. Plasmids for 2xNLS-SauCas9-2xNLS, 3xNLS-
464 SauCas9-2xNLS, and 4xNLS-SauCas9-2xNLS were created by deletion mutagenesis using the
465 existing 4xNLS construct as a template. The genes were fully sequenced to confirm no
466 additional mutations were introduced during the mutagenesis procedure.

467

468 *Purification of ultra-low endotoxin proteins in an industrial setting*

469 4x-SpyCas9-2x NLS protein was manufactured according to Aldevron proprietary
470 workflows for expression and purification of gene editing nucleases. Briefly, the gene for 4x-
471 SpyCas9-2x NLS was synthesized (ATUM Bio, Sunnyvale, CA) and cloned into a pD881
472 expression vector (ATUM). Expression-ready plasmid DNA was transformed into E. coli
473 BL21(DE3) (New England Biolabs) culture in animal-free TB media. At the appropriate OD600,
474 expression was induced with 2.0% (w/v) Rhamnose and growth culture was harvested by
475 centrifugation. Cells were lysed via dual-pass high-pressure homogenization and clarified via
476 centrifugation. The clarified lysate was purified via multi-step chromatography using
477 standard/commercially available resins. In the final chromatography step, the product is eluted
478 via step elution and pooled to maximize final protein purity and minimize endotoxin. Product was
479 dialyzed into the final formulation buffer, underwent three (3) exchanges of buffer, and was
480 pooled into a sterile vessel for final filtration and dispensing. Product was evaluated for key
481 quality attributes including endotoxin via PTS Endosafe assay (Charles River Labs, Cambridge,
482 MA).

483

484 *Quantification of endotoxins in Cas9 RNPs*

485 Proteins, guide RNAs, and pre-formed RNP complexes were subjected to several
486 assays to quantify endotoxin burden according to the manufacturer's instructions. All assays
487 were performed with autoclaved or certified pyrogen-free plasticware and endotoxin (ET)-free

488 water. The plate-reader based LAL assay was performed with the Endosafe Endochrome-K kit
489 (Charles River, #R1708K), where a control standard endotoxin (CSE) was diluted from 5 EU/mL
490 to 0.005 EU/mL. Samples were diluted 1:100 and plated in triplicate. An equal volume of LAL
491 was added to each well. A Tecan Spark plate reader (Tecan, #30086376, M $\ddot{\text{o}}$ nnendorf,
492 Switzerland) with SparkControl magellan V 2.2 software was used at 37°C to read absorbance
493 at 405nm every 30 seconds for 100 cycles. Time at which absorbance crossed optical density
494 (OD) of 0.1 was recorded and used to determine endotoxin levels.

495 The cartridge-based LAL assay was performed using an Endosafe nexgen-PTS machine
496 with R&D cartridges as recommended (Charles River, cat # PTS2005, 0.05 EU/mL sensitivity).
497 Briefly, samples were diluted 1:50 in a large volume of ET-free water, vortexed, and 25 μ L was
498 loaded into each of the four lanes of the cartridge, where two lanes contain CSE spike-in to
499 calculate efficiency of the assay, which is valid from 50%-200% recovery. The final valid ET
500 value was recorded from the duplicate measurement from a single cartridge.

501 The PyroGene Recombinant Factor C Endpoint Fluorescent Assay (Lonza, Walkersville,
502 MD, cat # 50-658U) was performed as recommended. Kit-supplied CSE was diluted from 5
503 EU/mL to 0.005 EU/mL and samples were diluted 1:100 in ET-free water and added to a plate in
504 triplicate. The plate was heated at 37°C for 10 minutes, then an equal volume of working
505 reagent was added to each well. Fluorescence was read immediately at time 0 and again after
506 incubating for 60 minutes. Relative fluorescence units (RFUs) of the ET-free water only blank
507 wells were subtracted from all measurements, then delta RFUs between the two time points
508 was calculated, and a linear regression was applied to the standard curve to calculate EUs in
509 the samples. Fluorescence measurements were performed on a Cytation5 with Gen 5 3.04
510 software (BioTek, Winooski, VT).

511 HEK-Blue cells (hTLR4 and Null2) were purchased from Invivogen (San Diego, CA) and
512 were grown under BSL2 conditions (37°C with 5% CO₂) to measure SEAP production
513 downstream of NF κ B activation following treatment with Cas9 proteins, guide RNAs, and

514 RNPs *in vitro* as recommended. Cells were grown in T-75 flasks with supplied antibiotic
515 selection markers and passaged at 70% confluency. Cells were detached with gentle scraping
516 in 1x PBS, centrifuged, counted, and plated for experiments in freshly prepared HEK-Blue
517 Detection Media at approximately 32,000 cells per well in a 96-well plate. 180 μ L of cell
518 suspension was plated directly into 20 μ L of diluted CSE (5 to 0.078 ng) or samples (diluted to
519 10 μ M) and incubated overnight at 37°C. Absorbance was read at 620nm in a Tecan Spark plate
520 reader (Tecan, #30086376, Mönndorf, Switzerland).

521

522 *Neural progenitor cell (NPC) line creation and culture*

523 Neural progenitor cells were isolated from Ai9-tdTomato homozygous mouse embryos
524 (day 13.5) by microdissection of cortical tissues into Hibernate E (#HECA, Brain Bits, LLC,
525 Springfield, IL) and processing with the Neural Dissociation Kit with papain (#130-092-628,
526 Miltenyi, Bergisch Gladbach, Germany) according to the manufacturer's instruction. Single cells
527 grew into non-adherent neurospheres, which were maintained in culture media (DMEM/F12
528 (ThermoFisher #10565-018, Waltham, MA), B-27 supplement (#12587-010), N-2 supplement
529 (#17502-048), MEM non-essential amino acids (#11140-050), 10 mM HEPES (#15630-080),
530 1000X 2-mercaptoethanol (#21985-023), 100X Pen/Strep (#15140-122)) supplemented with
531 growth factors (FGF-basic (Biolegend #579606) and EGF (ThermoFisher #PHG0311) to a final
532 concentration of 20 ng/mL in media. Neurospheres were passaged every six days using the
533 Neural Dissociation Kit to approximately 1.5 million cells per 10-cm dish and growth factors
534 were refreshed every 3 days. Cells were authenticated by immunofluorescent staining for Nestin
535 and GFAP, routinely tested for mycoplasma, and were used for experiments between passages
536 2 and 20. Dissociated cells were grown in monolayers in 96-well plates pre-coated with poly-DL-
537 ornithine (SigmaAldrich, #P8638), laminin (SigmaAldrich #11243217001) and fibronectin
538 (SigmaAldrich #F4759) at 10,000-30,000 cells per well for direct delivery and nucleofection
539 experiments.

540

541 *Human induced pluripotent stem cell differentiation into NPCs and culture*

542 MSC-iPSC1 cells were a generous gift from Boston Children's Hospital. iPSCs were
543 differentiated into NPCs based on dual SMAD inhibition as previously described. Briefly, iPSCs
544 were plated onto Matrigel in the presence of 10µM Y-27632 (Sigma #Y0503) at a density of
545 200,000 cells/cm². The next day (day 0) media was changed to KSR media (Knockout DMEM
546 (ThermoFisher #10829018), 15% Knockout serum replacement (ThermoFisher #10828010), L-
547 glutamine (1mM), 1% MEM Non-essential amino acids, and 0.1mM B-mercaptoethanol). Media
548 was changed daily during differentiation and gradually changed from KSR media to N2/B27
549 media (Neurobasal medium (ThermoFisher #21103049), GlutaMAX Supplement (ThermoFisher
550 #35050061), N-2 supplement (ThermoFisher #17502048) and B-27 supplement (ThermoFisher
551 #17504044)) by increasing N2/B27 media to 1/3 on day 4, 2/3 on day 6 and full N2/B27 media
552 on day 8. For the first 12 days of differentiation media was supplemented with 100nM
553 LDN193189 (Sigma #SML0559) and 10µM SB431542 (Tocris Bioscience #1614, Bristol,
554 England). For the first 4 days media was also supplemented with 2µM XAV939 (Tocris
555 Bioscience #3748). On day 19, NPCs were dissociated with StemPro Accutase (ThermoFisher
556 #A1110501) and replated onto Matrigel for expansion. NPCs were passaged every 6 days and
557 maintained in NPC media (DMEM/F12, N2 supplement, B27 supplement and 20ng/ml bFGF
558 (Corning, #354060, Corning, NY)) with media changes every other day. For direct delivery
559 experiments, 12,000 cells were seeded in Matrigel in a 96-well plate and treated in triplicate with
560 100pmol of 4xNLS-SpyCas9-2xNLS RNPs with the EMX1 guide RNA (spacer: 5'
561 GAGTCCGAGCAGAAGAAGAA) or non-targeting guide RNA (spacer: 5'
562 AACGACTAGTTAGGCGTGT). In the LipofectamineTM CRISPRmax group (ThermoFisher,
563 #CMAX00003), 3µg of 0xNLS-SpyCas9-2xNLS protein (18 pmol) was mixed with sgRNA (1:1
564 molar ratio) in 8µL OptiMEM with 6µL of Cas9 Plus Reagent (1 µg protein: 2µL reagent) and
565 was mixed with a second tube containing 3.6µL CRISPRmax reagent in 8µL OptiMEM,

566 incubated for at least 5 minutes and was immediately distributed to cells in triplicate (1 μ g RNP
567 per well), according to the manufacturer's recommendations.

568

569 *Cas9 ribonucleoprotein (RNP) assembly and delivery to cells*

570 For cell culture experiments, RNPs were prepared immediately before use at a 1.2:1
571 molar ratio of single guide RNA (Synthego, Redwood City, CA) to protein (QB3 Macrolab or
572 Aldevron). The solution was incubated for 5-10 minutes at room temperature. For nucleofection,
573 RNPs were formed at 10 μ M in 10 μ L of pre-supplemented buffer (Lonza P3 Primary Cell 96-well
574 Kit, #V4SP-3096). A 15 μ L suspension of 250,000 mouse NPCs was mixed with 10 μ L RNP
575 solution and added to the nucleofection cuvette. Nucleofection was performed using the 4D
576 Nucleofector X Unit (Lonza, #AAF-1003X) with pulse code EH-100 and cells were recovered
577 with 75 μ L media per well approximately 2 minutes post-nucleofection. Nucleofected cells were
578 then transferred to 100 μ L fresh media in 96-well plates in triplicate and allowed to grow for 5
579 days at 37°C before analysis by flow cytometry for tdTomato expression. For direct delivery,
580 RNPs were formed at 10 μ M in 10 μ L of sterile Buffer 1 (25 mM sodium phosphate pH (7.25),
581 100 mM NaCl, 200 mM trehalose). After NPCs were grown for two days in an adherent
582 monolayer, 10 μ L was added to cell monolayer ("direct delivery") for a final concentration of 1 μ M
583 (100pmol RNP/100 μ L media). Media was changed 48-hours post-treatment and cells were
584 collected 5 days post-treatment for analysis by flow cytometry for tdTomato expression or 4
585 days post-treatment for DNA sequencing.

586 For *in vivo* experiments, RNPs were prepared similarly at 10 μ M concentration in Buffer 1
587 and were incubated at 37°C for 10 minutes. RNPs were sterile filtered by centrifuging through
588 0.22 μ m Spin-X cellulose acetate membranes (Corning CoStar, #32119210) at 15,000xg for 1
589 minute at 4°C. RNPs were then concentrated using 100kDa Ultra-0.5 ml Centrifugal Filter Unit
590 (Amicon, #, Burlington, MA) at 14,000xg at 4°C until the final desired concentration was reached
591 (25-100 μ M, minimum 50 μ L volume) and collected by centrifuging at 1,000xg for 2 minutes.

592 RNPs were then divided into single-use 20 μ L aliquots, flash frozen in liquid nitrogen, and stored
593 at -80°C until the experiment. Prior to intracranial injection, RNPs were thawed, pipetted to mix,
594 loaded into a 25 μ L syringe (Hamilton, #7654-01, Reno, NV) and injected with custom 29-gauge
595 CED cannulas.

596

597 *AAV9 transduction*

598 A single 50 μ L aliquot of AAV9-CMV-SauCas9-U6-sgRNA or AAV9-CMV-GFP (Virovek)
599 was thawed from -80°C and stored at 4°C. AAV9 was diluted in 1x PBS without calcium or
600 magnesium to the desired concentration. For *in vivo* experiments, AAV was diluted on the day
601 of surgeries to 3e8-3e9 vg/ μ L and stored on ice until loaded into the syringe. 5 μ L was injected in
602 each hemisphere to a final dose of 1.5e9-1.5e10 vg per hemisphere using the CED. For cell
603 culture experiments, serial dilutions were performed from 1.6e9 vg/ μ L to 2e8 vg/ μ L (lowest MOI
604 = 200,000) and 10 μ L of each were added into 96-well plates in triplicate and maintained for 3
605 days or 9 days prior to flow cytometry for GFP expression (transduction) and tdTomato
606 expression (genome editing). AAV9 was added at the same time as NPC seeding for optimal
607 transduction.

608

609 *Empty capsid quantification by cryo-electron microscopy*

610 AAV samples were frozen using FEI Vitrobot Mark IV cooled down to 8°C at 100%
611 humidity. Briefly, 4 μ L of AAV9 capsids containing GFP or Cas9 cargo was deposited on 2/2 400
612 mesh C-flat grids (Electron Microscopy Sciences, Hatfield, PA, #CF224C-50), which were
613 previously glow discharged at 15 mA for 15 s on PELCO easyGLOW instrument. Grids were
614 blotted for 3 s with blot force 8 and wait time 2.5 s. Micrographs were collected manually on
615 Talos Arctica operated at 200 kV and magnification 36,000x (pixel size 1.14 Å/pix) using a
616 super-resolution camera setting (0.57 Å/pix) on K3 Direct Electron Detector. Micrographs were
617 collected using SerialEM v. 3.8.7 software. Capsids were counted manually by three blinded

618 reviewers for each image and the three counts were averaged and reported as percentage
619 empty capsids between the two groups.

620

621 *RNP size and aggregation measurement by dynamic light scattering (DLS)*

622 RNP s were prepared at 25 μ M, according to the methods described above for *in vivo*
623 experiments. Approximately 40 μ L of RNP was added to a disposable cuvette (ZEN0040) and
624 inserted into the Zetasizer Nano (ZSP, Malvern, United Kingdom) then 173° scattering angle
625 was measured at 25°C and again at 37°C after incubation for 30 minutes. Size distribution by
626 mass histograms are shown with estimated peak size in nanometers (nm). Each sample was
627 analyzed 3 times, resulting in a histogram generated from 10 individual measurements, for a
628 total protocol run time of approximately 10 minutes.

629

630 *Analysis of editing in vitro*

631 tdTomato positivity was assessed by flow cytometry using IGI facilities on the Attune
632 NxT (Thermo Fisher, AFC2). Briefly, mouse NPCs were washed once with 1x PBS, harvested
633 with 0.25% trypsin, neutralized with DMEM containing 10% FBS, and resuspended in 150 μ L of
634 1x PBS per well of a round-bottom 96-well plate for analysis. The percentage of tdTomato⁺ cells
635 from each well was recorded. For analysis of genomic DNA (gDNA), media was removed, cells
636 were rinsed once with 1X PBS, then incubated with 100 μ L QuickExtract solution (Lucigen
637 CorporationSupplier Diversity Partner QuickExtract DNA Extraction Solution 1.0, Fisher,
638 #QE09050) at 37°C for 5 minutes. The cell lysate was then moved to a thermal cycler and
639 incubated at 65°C for 20 minutes and 95°C for 20 minutes. gDNA was used in PCR reactions to
640 generate amplicons of approximately 150-300bp for Illumina sequencing. A list of primers used
641 for NGS is provided in Supplementary Table 1. Sequencing was performed with Illumina MiSeq

642 in the IGI Center for Translational Genomics and reads were analyzed in CRISPResso
643 (website).

644

645 *Stereotaxic infusion of Cas9 RNPs and AAVs*

646 Ai9 mice (Jackson Laboratory, #007909, Bar Harbor, ME) were group housed at the
647 University of California, Berkeley with a 12-hour light-dark cycle and allowed to feed and drink
648 *ad libitum*. Housing, maintenance, and experimentation of the mice were carried out with strict
649 adherence to ethical regulations set forth by the Animal Care and Use Committee (ACUC) at the
650 University of California, Berkeley. Cas9-RNP and AAVs were prepared on-site at the University
651 of California, Berkeley for injection into male and female *tdTomato* Ai9 mice between 2 to 5
652 months of age. All tools were autoclaved and injected materials were sterile. Mice anesthetized
653 with 2% isoflurane, given pre-emptive analgesics, and were arranged on Angle-two stereotactic
654 frame (Leica, Nussloch, Germany). The incision area was swabbed with three alternating wipes
655 of 70% ethanol and betadine scrub with sterile applicators prior to performing minimally
656 damaging craniotomies. The stereotaxic surgery coordinates used for targeting the striatum,
657 relative to bregma, were +0.74 mm anteroposterior, ± 1.90 mm mediolateral, -3.37 mm
658 dorsoventral. Bilateral CED infusion of Cas9 RNPs (10- 100 μ M) or Cas9 AAVs (3e8-3e9 vg/ μ L)
659 was performed with a syringe pump to deliver 5 μ L at 0.5 μ L per minute (Model 310 Plus, KD
660 Scientific, Holliston, MA) with a step or non-step cannula. For intracerebroventricular (ICV)
661 infusion of Cas9 RNPs, cannulas were placed at -0.7 mm anteroposterior, ± 1.2 mm
662 mediolateral, and -2.5 mm dorsoventral according to Paxinos atlas of the adult mouse. Post-
663 infusion, the syringes were left in position for 2 minutes before slow removal from the injection
664 site, which was then cleaned, sutured, and surgically glued. Throughout the procedure, mice
665 were kept at 37°C for warmth and Puralube Vet Ointment (Dechra, NDC #17033-211-38,
666 Northwich, England) was applied to the outside of the eyes. For ICV injection of p0 neonatal
667 mice, anesthesia was induced by hypothermia then 4 μ L of 100 μ M Cas9-RNP was injected with

668 a hand-held 33-gauge needle unilaterally with 10% Fast Green dye to visualize distribution from
669 one ventricle throughout the CNS. The needle was inserted 2 mm deep at a location
670 approximately 0.25 mm lateral to the sagittal suture and 0.50-0.75 mm rostral to the neonatal
671 coronal suture. RNP was slowly injected, then the needle was held in place for 15 seconds, and
672 mice were monitored until recovery. For intrathecal injection, anesthetized mice received a 5,
673 25, or 50 μ L bolus injection of Cas9 RNP at 300 μ M. The 29-gauge needle was inserted at the
674 L6-S1 vertebral junction and angled slightly rostrally for the injection. Mice were allowed to fully
675 recover before being transferred back to their housing. Recovery weight following all procedures
676 was monitored daily for one week and mice were housed without further disruption for various
677 time periods until tissue collection.

678

679 *Tissue collection and immunostaining*

680 At the defined study endpoints (3, 21, and 90-days post-injection), mice were placed
681 under anesthesia and tissues were perfused with 10mL of cold PBS and 5mL of 4%
682 paraformaldehyde (PFA, Electron Microscopy Sciences, #15710, Hatfield, PA). Brains were
683 post-fixed overnight in 4% PFA at 4°C, rinsed 3x with PBS, then cryoprotected in a 10% sucrose
684 in PBS solution for approximately 3 days. Brains were embedded in optimal cutting temperature
685 (OCT, Thermo Fisher, #23-730-571) media, and stored at -80°C. Brains were cut at 20-35 μ m-
686 thick sections using a cryostat (Leica CM3050S) and transferred to positively charged
687 microscope slides. For immunohistochemical analysis, tissues were blocked with solution (0.3%
688 TritonX-100, 1% bovine serum albumin (SigmaAldrich #A9418), 5% normal goat serum
689 (SigmaAldrich, #G9023)) before 4°C incubation overnight with primary antibody in blocking
690 solution. The next day, tissues were washed three times with PBS and incubated with
691 secondary antibodies for one hour at room temperature. After three PBS washes, samples were
692 incubated with DAPI solution (0.5 ug/mL, Roche LifeScience, Penzberg, Germany) as a DNA
693 fluorescence probe for 10 minutes, washed three times with PBS, submerged once in deionized

694 water, and mounted with glass coverslips in Fluoromount-G slide mounting medium
695 (SouthernBiotech, Birmingham, AL). Primary antibodies included rabbit polyclonal anti-S100 β
696 (1:500, Abcam, #ab41548, Cambridge, England), rabbit polyclonal anti-Olig-2 (1:250, Millipore
697 Sigma, #AB9610, Burlington, MA), rabbit polyclonal anti-doublecortin (1:800, Cell Signaling
698 Technology, #4604, Danvers, MA), rabbit polyclonal anti-Ki67 (1:100, Abcam, #ab15580),
699 mouse monoclonal anti-NeuN (1:500, Millipore Sigma, #MAB377), rabbit polyclonal anti-
700 DARPP-32 (1:100, Cell Signaling Technology, #2302), rabbit polyclonal anti-Iba1 (1:100, Wako
701 Chemicals, #019-19741, Richmond, VA), mouse monoclonal anti-glial fibrillary acidic protein
702 (1:1000, Millipore Sigma, #MAB3402), rat monoclonal anti-CD45 (1:200, Thermo Fisher, #RA3-
703 6B2), and rabbit polyclonal anti-CD3 (1:150, Abcam, #ab5690). Secondary antibodies included
704 donkey anti-rat 488 (1:500, Thermo Fisher, #A-21208), goat anti-rabbit 488 (1:500, Thermo
705 Fisher, #A32731), goat anti-rabbit 647 (1:500, Thermo Fisher, #A21245), and goat anti-mouse
706 IgG1 647 (1:500, Thermo Fisher, #A-21240).

707

708 *Fluorescent imaging and image quantification*

709 Whole brain sections were imaged and stitched using the automated AxioScanZ1 (Zeiss,
710 Oberkochen, Germany) with a 20x objective in the DAPI and tdTomato channels. Images
711 generated from slide scanning were viewed in ZenLite software (v 3.6 blue edition) as CZI files.
712 Images were then exported to FIJI (v1.53q), Imaris (v 9.9.1), or QuPath (v 0.3.2) for
713 quantification by authors blinded to the sample identity. The area of reflux from CED and blunt
714 needles was calculated directly in ZenLite using the shape and area analysis tools.
715 Immunostained cells and tissues were imaged on the Evos Revolve widefield microscope using
716 a 20x objective or Stellaris 5 confocal microscope (Leica) with a 10x or 25x water-immersion
717 objective to capture data in DAPI, FITC, tdTomato and CY5 channels. Approximately four
718 images were taken at 20-25x per hemisphere across multiple sections for image quantification
719 of CD45, Iba1, and CD3 (8-12 images quantified and averaged per injection). Approximately

720 four to six z-stack images were captured and stitched per hemisphere for qualitative images of
721 Iba1 and for quantification of NeuN, DARPP-32, ALDH1L1, and OLIG2 with tdTomato at
722 1024x1024 pixel resolution with a scanning speed of 100-200.

723 Measurements of striatal editing by volume were conducted using QuPath software
724 (version 0.3.2) from images obtained from the Zeiss AxioscanZ1. Briefly, regions of interest
725 (ROIs) were drawn to outline the border of each striatum and the inner area of tdTomato editing
726 using the polygon tool to create annotations. All coronal plane areas were automatically
727 calculated. Dorsoventral coordinates (relative to bregma) were then estimated in millimeters by
728 consulting the Mouse Brain Atlas (C57BL/6J Coronal). Approximate tissue volume was
729 calculated by averaging outlined areas between consecutive sections to represent the mean
730 area across a dorsoventral segment and multiplying by the difference in dorsoventral
731 coordinates. Edited striatal volumes were then divided by total striatal volumes to obtain percent
732 editing. Additional tdTomato⁺ cell count measurements were conducted in Imaris software
733 version 10.0 (Oxford Instruments, Abingdon, UK). Briefly, ROIs were drawn over each
734 hemisphere (including cells in all brain sub-structures) using the “Segment only a Region of
735 Interest” tool, and positive cells detected using the automated “Spots” tool to provide cell counts.
736 Positivity thresholds were adjusted for each image to accurately capture edited cells manually.
737 Counts of tdTomato cells on each image were then related back to approximate coordinates
738 relative to bregma using the Mouse Brain Atlas (C57BL/6J Coronal) to quantify the distribution
739 of edited cells.

740 Cell type specific measurements were conducted using QuPath software (version 0.3.2)
741 on images obtained from Stellaris 5 z-stack maximal projections. ROIs were again drawn
742 around areas of observed tdTomato editing, using the polygon tool to create a single annotation
743 per image. Cell count calculations were performed using the “Cell Detection” and “Positive Cell
744 Detection” tools, adjusting “Cell Mean” thresholds accordingly for each channel and image.
745 Percent area and intensity measurements were performed in Fiji/ImageJ software (version

746 2.1.0/1.53c). Images were converted to 32-bit, and thresholds were adjusted to detect the
747 corresponding stained area. Measurements were set to include area, minimum, maximum, and
748 mean gray value, and area fraction, as well as to limit to threshold. All image quantification was
749 performed on 2-5 serial sections with 3-10 independent injections per group for each analysis.
750 Cell counts, area, intensity, and volume measurements were in general averaged from serial
751 sections and were then grouped with other biological replicates, including independent
752 injections, to report the treatment group average with standard deviation displayed by bar graph
753 or box and whisker plot.

754

755 *Serum collection and ELISA*

756 Blood was collected from mice at the time of euthanasia, allowed to clot at room
757 temperature for 15-30 minutes, then centrifuged for 5 minutes at 2,000xg. Sera was collected
758 and placed immediately on dry ice then stored at -80°C. Enzyme-linked immunosorbent assays
759 were performed using the SeraCare Protein Detector™ HRP Microwell Anti-Mouse ELISA Kit,
760 #5110-0011 (54-62-18) according to the manufacturer's recommendations. First, 96-well plates
761 were coated with antigens of interest (0.5 µg protein per well for SauCas9 and SpyCas9 (4xNLS
762 protein variants) and approximately 1e9 empty AAV capsids per well) overnight at 4°C. Wells
763 were washed three times and blocked at room temperature for one hour. Serum samples were
764 then incubated in wells at varying concentrations (1:50 to 1:10,000 dilution) in 1X blocking buffer
765 for four hours at room temperature, along with monoclonal antibody controls to generate a
766 standard curve. Standards included CRISPR/Cas9 Monoclonal Antibody 7A9 (Epigentek, #A-
767 9000-050, Farmingdale, NY), GenCRISPR□□ SaCas9 Antibody 26H10 (GenScript, #A01952,
768 Piscataway, NJ), and Anti-Adeno-associated Virus 9 Antibody clone HL2374 (Millipore Sigma,
769 #MABF2326-25UG). Following three additional washes, the HRP secondary antibody was
770 added at 1:500 in 1x blocking buffer and incubated for one hour. Wells were then washed three
771 more times, and peroxidase substrate solutions were added. Absorbance was recorded at a

772 wavelength of 405nm with Cytaion5 plate reader with Gen 5 3.04 software (BioTek). Serum
773 antibody concentrations were calculated using five-parameter logistic curve (5PL) data analysis
774 at MyAssays.com and normalized to sham controls.

775

776 *Splenocyte collection and enzyme linked immunospot (ELISpot)*

777 Spleens were collected at the time of euthanasia and stored in media composed of
778 RPMI 1640 (ThermoFisher, #11875-119) with 10% FBS (VWR, #89510-186, Radnor, PA) and
779 1% P/S (ThermoFisher, #15140-122). Briefly, spleens were physically dissociated by forcing
780 through a 100 μ m cell strainer in 10mL of media then single cells were passed through a 70 μ m
781 strainer and centrifuged at 200xg for 5 minutes. Cells were resuspended in 5mL of 1x RBC
782 Lysis Buffer (Miltenyi # 130-094-183) for approximately 3 minutes, then centrifuged again and
783 resuspended in media for counting. The mouse interferon-gamma (IFN- γ) ELISpot kit (R&D
784 Systems, #EL485, Minneapolis, MN) was used according to the manufacturer's instructions to
785 assess activation of splenocytes, containing T-cells, in response to treatment with Cas9
786 proteins. Briefly, the plate was pre-washed and 200 μ L of media for at least 20 minutes in the
787 incubator, prior to adding cells at 300,000 per well in 100 μ L media. Treatments at 2x dose were
788 prepared in media and 100 μ L was added to wells in triplicate (final 5 μ g/mL concentration).
789 Plates were wrapped in foil and incubated for 48 hours without disturbing. Concanavalin A
790 (SigmaAldrich, #C5275) was used as a positive control for cell mediated IFN- γ production (final
791 4 μ g/mL concentration). After 48-hours, cells were removed and the secreted analyte was
792 detected with immunostaining using the kit-provided biotinylated monoclonal antibody specific
793 for mouse IFN- γ , streptavidin-conjugated alkaline phosphatase, and stabilized detection mixture
794 of 5-Bromo-4-Chloro-3'Indolylphosphate-p-Toluidine Salt (BCIP) and Nitro Blue Tetrazolium
795 Chloride (NBT). After staining, plates were dried overnight and spot forming units were imaged

796 and counted on the ImmunoSpot S6 Macro Analyzer (Cellular Technology Limited, Shaker
797 Heights, OH).

798

799 *Immunization of mice to Cas9 with adjuvant*

800 AddaVax™ (Invivogen, vac-adx-10), a squalene-based oil-in-water nano-emulsion, was
801 mixed with an equal volume containing 25 μ g of 4x-SpyCas9-2x protein diluted in sterile buffer at
802 room temperature for a final injection volume of 50 μ L. Mice received two 25 μ L subcutaneous
803 injections of the AddaVax:Cas9 mixture (immunized) or AddaVax:Buffer alone (sham) with a 30-
804 gauge insulin syringe into each flank. After four weeks, stereotaxic surgery with bilateral
805 injections of 5 μ L of 25 μ M Cas9-RNPs was performed in a subset of mice. Mice showed no
806 signs of pain or distress following treatment with AddaVax and no acute events were noted after
807 surgery. Mice that received AddaVax, with or without surgery, were euthanized 6-weeks post-
808 subcutaneous injections. Brains, serum, and spleens were collected for analysis of adaptive
809 immune responses against repeated exposure to Cas9.

810

811 *DNA/RNA extraction from brain tissue slices and quantitative RT-PCR, droplet digital PCR, and*
812 *long-read sequencing*

813 Brains were collected at 3, 14, and 28-days or 4-months for DNA and RNA analysis.
814 Briefly, mice were placed under anesthesia and perfused with cold PBS. Brains were harvested
815 and cut into 2-mm sections using a matrix around the injection site (Zivic Instruments,
816 Pittsburgh, PA). The slices were transferred onto chilled glass slides and further trimmed to
817 approximate 30mg tissue weight (1–1.25 mm wide \times 2 mm long). Tissues were flash frozen in
818 liquid nitrogen then stored at -80°C until processing. DNA and RNA were collected from tissues
819 using the AllPrep DNA/RNA Mini Kit (Qiagen, #80204, Venlo, Netherlands) according to the
820 manufacturer's instructions. Briefly, brains were homogenized in 1.5 mL tubes with a disposable
821 pestle directly in RLT lysis buffer supplemented with 2-mercaptoethanol, then passed through

822 Qiashredder columns to further homogenize prior to adding directly to the DNA and RNA
823 binding columns. DNA was eluted in 100µL of EB, and RNA was eluted in 40 µL RNase-free
824 water. Concentrations of nucleic acids were measured by nanodrop spectrophotometer and
825 samples were stored at -20°C.

826 Gene expression was quantified across multiple samples using a Custom RT² PCR
827 Array (Qiagen, #330171, CLAM45824) and analyzed using the RT² Profiler PCR Data Analysis
828 Tool on GeneGlobe (Qiagen). For reverse transcription, the RT² First Strand Kit (Qiagen,
829 #330404) was used according to the manufacturer's instructions. cDNA was diluted in water and
830 added to the RT² SYBR Green qPCR Mastermix (Qiagen, #330502) then distributed across the
831 24-wells containing verified assay primers and controls (PCR array reproducibility control,
832 reverse transcription efficiency control, genomic DNA contamination control, two house-keeping
833 genes, and 19 experimental genes). Quantitative real-time PCR was performed on the CFX96
834 Touch Real-Time PCR System (BioRad). cDNA was also used in a droplet digital PCR reaction
835 to measure SauCas9 expression at the 4-month time-point. qPCR assay IDs are included in
836 Tables S1 and S2.

837 DNA was also used for PCR amplicon sequencing of predicted off-target sites and for
838 droplet digital PCR (ddPCR). Off-target sites were predicted using Cas-OFFinder
839 (<http://www.rgenome.net/cas-offinder/>)⁶¹. Predicted off-targets are described further in Tables
840 S3 and S4. Primers were designed using NCBI Primer Blast with an amplicon size of 250-
841 300bp, listed in Table S1. Sequencing was performed with Illumina MiSeq in the IGI Center for
842 Translational Genomics and reads were analyzed in CRISPResso2
843 (<http://crispresso.pinellolab.org>)⁶².

844 For droplet digital PCR (ddPCR), a custom NHEJ ddPCR assays were generated using
845 the online Bio-Rad design tool (Table S2). Assays for SauCas9 and SpyCas9 contain both the
846 primers and probes (HEX-probe spanning the cut-site and a distal reference FAM-probe). To
847 prepare the reactions, 110 ng of gDNA was combined with the 20x assay, 2x ddPCR Supermix

848 for Probes (No dUTP), 1 μ L of of SmaI restriction enzyme (2 units per reaction), and water up to
849 22 μ L. Then 20 μ L of each reaction mix was added to DG8TM Cartridges (Bio-Rad #1864008,
850 Hercules, CA) followed by 70 μ L of Droplet Generation Oil for Probes (Bio-Rad #1863005) and
851 droplets were formed in the QX200 Droplet Generator. Droplets were then transferred to a 96-
852 well plate and thermal cycled according to the manufacturer's recommendation with a 3-minute
853 annealing/extension step. After thermal cycling, the sealed plate was placed in the QX200
854 Droplet Reader and data was acquired and analyzed in the QuantaSoft Analysis Pro Software
855 using the "Drop-Off" analysis, manually setting the thresholds for cluster calling (FAM+ only,
856 FAM+ HEX+ cluster, FAM-HEX- cluster), and exporting fractional abundance calculations.

857 Long-read sequencing of the tdTomato locus was performed on DNA isolated from the
858 treated mouse brains. Briefly, PCR amplicons were generated on 16 samples from the 4-month
859 treatment groups using primers with unique barcodes for sample de-multiplexing. The KAPA
860 HiFi Hotstart PCR Kit (Roche, KK2502) was used to amplify the 1100 bp product and reactions
861 were cleaned with AMPure XP magnetic beads (Beckman Coulter Inc., Brea, CA) prior to
862 analysis by Qubit and Bioanalyzer with the DNA 7500 Kit (Agilent, #5067-1506, Santa Clara,
863 CA). Samples were combined and 1 μ g of pooled amplicons and submitted (> 20ng/ μ L) for
864 sequencing with one PacBio Sequel 8M SMRT Cell at the QB3 Vincent Coates Genomic
865 Sequencing Lab, yielding approximately 110,000 reads per sample. Data were analyzed using a
866 custom pipeline to identify viral fragment trapping during DNA repair. Briefly, PacBio circular
867 consensus reads were trimmed with Cutadapt (Version 4.1)⁶³, then aligned to the AAV vector
868 using NGMLR (Version 0.2.7)⁶⁴ to generate BAM files. Soft-clipped regions of aligned reads
869 were extracted using PySam (Version 0.18.0, <https://github.com/pysam-developers/pysam>) to
870 parse CIGAR strings, then realigned to the tdTomato locus with NGMLR to verify integration
871 within 200 bp of the cut site. Confirmed integrations were visualized along the AAV genome
872 using pyGenomeTracks (Version 3.3) and coverage statistics were summarized using
873 PySam^{65,66}.

874

875 *Statistical analyses*

876 The data presented in bar graphs and box and whisker plots are averages across
877 multiple technical and biological replicates and error bars represent the standard deviation.
878 Sample sizes are indicated in the text and figure legends and generally refer to technical
879 injection replicates (two technical replicates, i.e., bilateral injections, per one biological
880 replicate). When comparing two groups with normal distribution, an unpaired student's t-test
881 was performed in Prism 9 (GraphPad Software version 9.4.1). When comparing multiple groups,
882 a one-way ANOVA with Tukey's multiple comparison test was performed in Prism 9 (GraphPad
883 Software version 9.4.1). The RT-qPCR experiments used Student's t-test of the experimental
884 group compared to the sham control (Qiagen GeneGlobe RT² Profiler PCR Data Analysis). $p \leq$
885 0.05 was considered significant

886

887 **Data Availability Statement**

888 Long-read sequencing (BAM files from PacBio circular consensus sequence, CCS) are
889 available in Sequence Read Archive (SRA). Accession number: [#]. All additional data is
890 available upon request.

891

892 **Acknowledgements**

893 Thank you to Netravathi Krishnappa and Christopher Hann-Soden for library preparation,
894 sequencing, and analysis at the IGI Center for Translational Genomics and the QB3 Vincent J.
895 Coates Genomics Sequencing Lab. Thank you to members of the Doudna lab at IGI, particularly
896 Drs. Matthew Kan, Jennifer Hamilton, Cole Urnes, and Talia Wenger, as well as Brett Staahl,
897 Ross Wilson, and Fyodor Urnov for intellectual contributions and support. Thank you to
898 Aldevron, LLC for collaboration on this effort, especially Samantha Foti, Allison Pappas, David

899 Yoder, and Max Sellman. Thank you to Denise Schichnes and Steven Ruzin at the CNR
900 Berkeley Imaging Facility at the University of California, Berkeley as well as Feather Ives, Anita
901 Flynn, and Holly Aaron at the CRL Microscopy Imaging Core (RRID:SCR_017852) at the
902 University of California, Berkeley. Thank you to Eva Harris and lab members for the use of the
903 ELISpot plate reader. Thank you to Kathy Snow and Ethan Saville at Jackson Laboratories for
904 discussion about QuPath image quantification software. Thank you to the Bankiewicz lab, in
905 particular Drs. Victor Van Laar, Lluis Samaranch, for discussion about CED. Thank you to Drs.
906 Greg Barton and David Raulet for intellectual discussions regarding endotoxins and immune
907 response. Thank you to Biogen Inc., especially Robin Kleinmen and Anirvan Ghosh, for funding
908 and intellectual contributions. Thank you to Ruth L. Kirschstein F32 NIGMS for funding (E.C.S.).
909

910 **Author Contributions**

911 E.C.S performed the experiments, analysis, and manuscript preparation and oversaw
912 contributions from researchers (R.A., E. A., S.E.K., A.S., N.L., Y.K.) who assisted with tissue
913 processing, cloning, ELISAs, immunohistochemistry, and image analysis. E.C.S., J.K.S., and
914 M.H.K. designed *in vivo* experiments, performed stereotaxic surgeries, confocal microscopy,
915 and quantitative PCR. M.T. performed long-read NGS sequencing analysis. E.C.S. performed
916 isolation and culture of mouse primary cells, flow cytometry, and ELISpot assays. K.S.
917 performed electron microscopy. V.S.R. and L.T.V. performed human stem cell culture and
918 differentiation. C.J., A.W., T.M., A.K., and T.F. performed custom low-endotoxin protein
919 expression and purification. D.F.S. and J.A.D. approved the experiments, provided intellectual
920 contributions, and co-wrote the manuscript.

921

922 **Declaration of Interests Statement**

923 J.A.D. is a cofounder of Caribou Biosciences, Editas Medicine, Scribe Therapeutics, Intellia
924 Therapeutics and Mammoth Biosciences. J.A.D. is a scientific advisory board member of

925 Vertex, Caribou Biosciences, Intellia Therapeutics, eFFECTOR Therapeutics, Scribe
926 Therapeutics, Mammoth Biosciences, Synthego, Algen Biotechnologies, Felix Biosciences, The
927 Column Group and Inari. J.A.D. is a Director at Johnson & Johnson and Tempus and has
928 research projects sponsored by Biogen, Pfizer, Apple Tree Partners and Roche. Patent
929 applications have been filed relating to the technologies described herein. The indicated authors
930 are employees of Aldevron, LLC, which offers proteins, pDNA, mRNA and reagents for sale
931 similar to some of the compounds described in this manuscript.

932

933 **Keywords (5-10)**

934 CRISPR-Cas9, Genome Editing, Viral Vectors, Non-viral Delivery, Mouse, Brain, Host Immune
935 Response, Neurons, Microglia, Endotoxin/LPS

936

937

938

939 **References**

940

941 1. Heidenreich, M., and Zhang, F. (2016). Applications of CRISPR–Cas systems in neuroscience.
942 *Nat Rev Neurosci* 17, 36–44. 10.1038/nrn.2015.2.

943 2. The SCGE Consortium, Saha, K., Sontheimer, E.J., Brooks, P.J., Dwinell, M.R., Gersbach, C.A.,
944 Liu, D.R., Murray, S.A., Tsai, S.Q., Wilson, R.C., et al. (2021). The NIH Somatic Cell Genome
945 Editing program. *Nature* 592, 195–204. 10.1038/s41586-021-03191-1.

946 3. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., and Charpentier, E. (2012). A
947 Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity.
948 *Science* 337, 816–821. 10.1126/science.1225829.

949 4. Jinek, M., East, A., Cheng, A., Lin, S., Ma, E., and Doudna, J. (2013). RNA-programmed
950 genome editing in human cells. *eLife* 2, e00471. 10.7554/eLife.00471.

951 5. Doudna, J.A. (2020). The promise and challenge of therapeutic genome editing. *Nature* 578,
952 229–236. 10.1038/s41586-020-1978-5.

953 6. Hadaczek, P., Forsayeth, J., Mirek, H., Munson, K., Bringas, J., Pivirotto, P., L McBride, J.,
954 Davidson, B.L., and Bankiewicz, K.S. (2009). Transduction of Nonhuman Primate Brain with
955 Adeno-Associated Virus Serotype 1: Vector Trafficking and Immune Response. *Human Gene
956 Therapy* 20, 225–237. 10.1089/hum.2008.151.

957 7. Ciesielska, A., Hadaczek, P., Mittermeyer, G., Zhou, S., Wright, J.F., Bankiewicz, K.S., and
958 Forsayeth, J. (2013). Cerebral Infusion of AAV9 Vector-encoding Non-self Proteins Can Elicit
959 Cell-mediated Immune Responses. *Molecular Therapy* 21, 158–166. 10.1038/mt.2012.167.

960 8. Samaranch, L., Sebastian, W.S., Kells, A.P., Salegio, E.A., Heller, G., Bringas, J.R., Pivirotto, P.,
961 DeArmond, S., Forsayeth, J., and Bankiewicz, K.S. (2014). AAV9-mediated Expression of a
962 Non-self Protein in Nonhuman Primate Central Nervous System Triggers Widespread
963 Neuroinflammation Driven by Antigen-presenting Cell Transduction. *Molecular Therapy* 22,
964 329–337. 10.1038/mt.2013.266.

965 9. Agustín-Pavón, C., Mielcarek, M., Garriga-Canut, M., and Isalan, M. (2016). Deimmunization
966 for gene therapy: host matching of synthetic zinc finger constructs enables long-term
967 mutant Huntingtin repression in mice. *Mol Neurodegeneration* 11, 64. 10.1186/s13024-
968 016-0128-x.

969 10. Chew, W.L., Tabebordbar, M., Cheng, J.K.W., Mali, P., Wu, E.Y., Ng, A.H.M., Zhu, K., Wagers,
970 A.J., and Church, G.M. (2016). A multifunctional AAV–CRISPR–Cas9 and its host response.
971 *Nat Methods* 13, 868–874. 10.1038/nmeth.3993.

972 11. Moreno, A.M., Palmer, N., Alemán, F., Chen, G., Pla, A., Jiang, N., Chew, W.L., Law, M., and
973 Mali, P. (2019). immune-orthogonal orthologues of AAV capsids and of Cas9 circumvent the

974 immune response to the administration of gene therapy. *Nat Biomed Eng* 3, 806–816.
975 10.1038/s41551-019-0431-2.

976 12. Li, A., Tanner, M.R., Lee, C.M., Hurley, A.E., De Giorgi, M., Jarrett, K.E., Davis, T.H., Doerfler,
977 A.M., Bao, G., Beeton, C., et al. (2020). AAV-CRISPR Gene Editing Is Negated by Pre-existing
978 Immunity to Cas9. *Molecular Therapy* 28, 1432–1441. 10.1016/j.ymthe.2020.04.017.

979 13. Simhadri, V.L., McGill, J., McMahon, S., Wang, J., Jiang, H., and Sauna, Z.E. (2018).
980 Prevalence of Pre-existing Antibodies to CRISPR-Associated Nuclease Cas9 in the USA
981 Population. *Molecular Therapy - Methods & Clinical Development* 10, 105–112.
982 10.1016/j.omtm.2018.06.006.

983 14. Charlesworth, C.T., Deshpande, P.S., Dever, D.P., Camarena, J., Lemgart, V.T., Cromer, M.K.,
984 Vakulskas, C.A., Collingwood, M.A., Zhang, L., Bode, N.M., et al. (2019). Identification of
985 preexisting adaptive immunity to Cas9 proteins in humans. *Nat Med* 25, 249–254.
986 10.1038/s41591-018-0326-x.

987 15. Wagner, D.L., Amini, L., Wendering, D.J., Burkhardt, L.-M., Akyüz, L., Reinke, P., Volk, H.-D.,
988 and Schmueck-Henneresse, M. (2019). High prevalence of *Streptococcus pyogenes* Cas9-
989 reactive T cells within the adult human population. *Nat Med* 25, 242–248. 10.1038/s41591-
990 018-0204-6.

991 16. Ferdosi, S.R., Ewaisha, R., Moghadam, F., Krishna, S., Park, J.G., Ebrahimkhani, M.R., Kiani,
992 S., and Anderson, K.S. (2019). Multifunctional CRISPR-Cas9 with engineered
993 immunosilenced human T cell epitopes. *Nat Commun* 10, 1842. 10.1038/s41467-019-
994 09693-x.

995 17. Tang, X.-Z.E., Tan, S.X., Hoon, S., and Yeo, G.W. (2022). Pre-existing adaptive immunity to
996 the RNA-editing enzyme Cas13d in humans. *Nat Med* 28, 1372–1376. 10.1038/s41591-022-
997 01848-6.

998 18. Migozzi, F., and High, K.A. (2013). Immune responses to AAV vectors: overcoming barriers
999 to successful gene therapy. *Blood* 122, 23–36. 10.1182/blood-2013-01-306647.

1000 19. Staahl, B.T., Benekareddy, M., Coulon-Bainier, C., Banfal, A.A., Floor, S.N., Sabo, J.K., Urnes,
1001 C., Munares, G.A., Ghosh, A., and Doudna, J.A. (2017). Efficient genome editing in the
1002 mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes. *Nat
1003 Biotechnol* 35, 431–434. 10.1038/nbt.3806.

1004 20. Liu, J., Gaj, T., Wallen, M.C., and Barbas, C.F. (2015). Improved Cell-Penetrating Zinc-Finger
1005 Nuclease Proteins for Precision Genome Engineering. *Molecular Therapy - Nucleic Acids* 4,
1006 e232. 10.1038/mtna.2015.6.

1007 21. Madisen, L., Zwingman, T.A., Sunkin, S.M., Oh, S.W., Zariwala, H.A., Gu, H., Ng, L.L.,
1008 Palmiter, R.D., Hawrylycz, M.J., Jones, A.R., et al. (2010). A robust and high-throughput Cre

1009 reporting and characterization system for the whole mouse brain. *Nat Neurosci* 13, 133–
1010 140. 10.1038/nn.2467.

1011 22. Ran, F.A., Cong, L., Yan, W.X., Scott, D.A., Gootenberg, J.S., Kriz, A.J., Zetsche, B., Shalem, O.,
1012 Wu, X., Makarova, K.S., et al. (2015). *In vivo* genome editing using *Staphylococcus aureus*
1013 Cas9. *Nature* 520, 186–191. 10.1038/nature14299.

1014 23. Maeder, M.L., Stefanidakis, M., Wilson, C.J., Baral, R., Barrera, L.A., Bounoutas, G.S.,
1015 Bumcrot, D., Chao, H., Ciulla, D.M., DaSilva, J.A., et al. (2019). Development of a gene-
1016 editing approach to restore vision loss in Leber congenital amaurosis type 10. *Nat Med* 25,
1017 229–233. 10.1038/s41591-018-0327-9.

1018 24. Yin, C., Zhang, T., Qu, X., Zhang, Y., Putatunda, R., Xiao, X., Li, F., Xiao, W., Zhao, H., Dai, S.,
1019 et al. (2017). *In Vivo* Excision of HIV-1 Proivirus by saCas9 and Multiplex Single-Guide RNAs
1020 in Animal Models. *Molecular Therapy* 25, 1168–1186. 10.1016/j.ymthe.2017.03.012.

1021 25. Gao, G., Vandenberghe, L.H., Alvira, M.R., Lu, Y., Calcedo, R., Zhou, X., and Wilson, J.M.
1022 (2004). Clades of Adeno-Associated Viruses Are Widely Disseminated in Human Tissues. *J
1023 Virol* 78, 6381–6388. 10.1128/JVI.78.12.6381-6388.2004.

1024 26. Smith, R.H., Levy, J.R., and Kotin, R.M. (2009). A Simplified Baculovirus-AAV Expression
1025 Vector System Coupled With One-step Affinity Purification Yields High-titer rAAV Stocks
1026 From Insect Cells. *Molecular Therapy* 17, 1888–1896. 10.1038/mt.2009.128.

1027 27. Chen, C., Akerstrom, V., Baus, J., Lan, M.S., and Breslin, M.B. (2013). Comparative analysis
1028 of the transduction efficiency of five adeno associated virus serotypes and VSV-G
1029 pseudotype lentiviral vector in lung cancer cells. *Virol J* 10, 86. 10.1186/1743-422X-10-86.

1030 28. Gaj, T., Staahl, B.T., Rodrigues, G.M.C., Limsirichai, P., Ekman, F.K., Doudna, J.A., and
1031 Schaffer, D.V. (2017). Targeted gene knock-in by homology-directed genome editing using
1032 Cas9 ribonucleoprotein and AAV donor delivery. *Nucleic Acids Research* 45, e98–e98.
1033 10.1093/nar/gkx154.

1034 29. Park, I.-H., Zhao, R., West, J.A., Yabuuchi, A., Huo, H., Ince, T.A., Lerou, P.H., Lensch, M.W.,
1035 and Daley, G.Q. (2008). Reprogramming of human somatic cells to pluripotency with
1036 defined factors. *Nature* 451, 141–146. 10.1038/nature06534.

1037 30. Qi, Y., Zhang, X.-J., Renier, N., Wu, Z., Atkin, T., Sun, Z., Ozair, M.Z., Tchieu, J., Zimmer, B.,
1038 Fattah, F., et al. (2017). Combined small-molecule inhibition accelerates the derivation of
1039 functional cortical neurons from human pluripotent stem cells. *Nat Biotechnol* 35, 154–163.
1040 10.1038/nbt.3777.

1041 31. Chambers, S.M., Fasano, C.A., Papapetrou, E.P., Tomishima, M., Sadelain, M., and Studer, L.
1042 (2009). Highly efficient neural conversion of human ES and iPS cells by dual inhibition of
1043 SMAD signaling. *Nat Biotechnol* 27, 275–280. 10.1038/nbt.1529.

1044 32. Fu, Y., Foden, J.A., Khayter, C., Maeder, M.L., Reyon, D., Joung, J.K., and Sander, J.D. (2013).
1045 High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells.
1046 *Nat Biotechnol* 31, 822–826. 10.1038/nbt.2623.

1047 33. Bobo, R.H., Laske, D.W., Akbasak, A., Morrison, P.F., Dedrick, R.L., and Oldfield, E.H. (1994).
1048 Convection-enhanced delivery of macromolecules in the brain. *Proc. Natl. Acad. Sci. U.S.A.*
1049 91, 2076–2080. 10.1073/pnas.91.6.2076.

1050 34. Hadaczek, P., Kohutnicka, M., Krauze, M.T., Bringas, J., Piviroto, P., Cunningham, J., and
1051 Bankiewicz, K. (2006). Convection-Enhanced Delivery of Adeno-Associated Virus Type 2
1052 (AAV2) into the Striatum and Transport of AAV2 Within Monkey Brain. *Human Gene*
1053 *Therapy* 17, 291–302. 10.1089/hum.2006.17.291.

1054 35. Krauze, M.T., Saito, R., Noble, C., Tamas, M., Bringas, J., Park, J.W., Berger, M.S., and
1055 Bankiewicz, K. (2005). Reflux-free cannula for convection-enhanced high-speed delivery of
1056 therapeutic agents: Technical note. *Journal of Neurosurgery* 103, 923–929.
1057 10.3171/jns.2005.103.5.0923.

1058 36. Aschauer, D.F., Kreuz, S., and Rumpel, S. (2013). Analysis of Transduction Efficiency,
1059 Tropism and Axonal Transport of AAV Serotypes 1, 2, 5, 6, 8 and 9 in the Mouse Brain. *PLoS*
1060 ONE 8, e76310. 10.1371/journal.pone.0076310.

1061 37. Hanlon, K.S., Kleinstiver, B.P., Garcia, S.P., Zaborowski, M.P., Volak, A., Spirig, S.E., Muller,
1062 A., Sousa, A.A., Tsai, S.Q., Bengtsson, N.E., et al. (2019). High levels of AAV vector
1063 integration into CRISPR-induced DNA breaks. *Nat Commun* 10, 4439. 10.1038/s41467-019-
1064 12449-2.

1065 38. Nelson, C.E., Wu, Y., Gemberling, M.P., Oliver, M.L., Waller, M.A., Bohning, J.D., Robinson-
1066 Hamm, J.N., Bulaklak, K., Castellanos Rivera, R.M., Collier, J.H., et al. (2019). Long-term
1067 evaluation of AAV-CRISPR genome editing for Duchenne muscular dystrophy. *Nat Med* 25,
1068 427–432. 10.1038/s41591-019-0344-3.

1069 39. Ferrari, S., Jacob, A., Cesana, D., Laugel, M., Beretta, S., Varesi, A., Unali, G., Conti, A.,
1070 Canarutto, D., Albano, L., et al. (2022). Choice of template delivery mitigates the genotoxic
1071 risk and adverse impact of editing in human hematopoietic stem cells. *Cell Stem Cell* 29,
1072 1428-1444.e9. 10.1016/j.stem.2022.09.001.

1073 40. Simpson, B.P., Yrigollen, C.M., Izda, A., and Davidson, B.L. (2023). Targeted long-read
1074 sequencing captures CRISPR editing and AAV integration outcomes in brain. *Molecular*
1075 *Therapy*, S1525001623000047. 10.1016/j.ymthe.2023.01.004.

1076 41. Zink McCullough, K. Calculating Endotoxin Limits for Drug Products (American
1077 Pharmaceutical Review).

1078 42. Lee, B., Lee, K., Panda, S., Gonzales-Rojas, R., Chong, A., Bugay, V., Park, H.M., Brenner, R.,
1079 Murthy, N., and Lee, H.Y. (2018). Nanoparticle delivery of CRISPR into the brain rescues a

1080 mouse model of fragile X syndrome from exaggerated repetitive behaviours. *Nat Biomed Eng* 2, 497–507. 10.1038/s41551-018-0252-8.

1081

1082 43. Park, H., Oh, J., Shim, G., Cho, B., Chang, Y., Kim, S., Baek, S., Kim, H., Shin, J., Choi, H., et al. (2019). *In vivo* neuronal gene editing via CRISPR–Cas9 amphiphilic nanocomplexes alleviates deficits in mouse models of Alzheimer’s disease. *Nat Neurosci* 22, 524–528. 10.1038/s41593-019-0352-0.

1083

1084

1085

1086 44. Metzger, J.M., Wang, Y., Neuman, S.S., Snow, K.J., Murray, S.A., Lutz, C.M., Bondarenko, V., Felton, J., Gimse, K., Xie, R., et al. (2023). Efficient *in vivo* neuronal genome editing in the mouse brain using nanocapsules containing CRISPR-Cas9 ribonucleoproteins. *Biomaterials* 293, 121959. 10.1016/j.biomaterials.2022.121959.

1087

1088

1089

1090 45. Wang, Y., Wang, X., Xie, R., Burger, J.C., Tong, Y., and Gong, S. (2022). Overcoming the Blood–Brain Barrier for Gene Therapy via Systemic Administration of GSH-Responsive Silica Nanocapsules. *Advanced Materials*, 2208018. 10.1002/adma.202208018.

1091

1092

1093 46. Yan, S., Zheng, X., Lin, Y., Li, C., Liu, Z., Li, J., Tu, Z., Zhao, Y., Huang, C., Chen, Y., et al. (2023). Cas9-mediated replacement of expanded CAG repeats in a pig model of Huntington’s disease. *Nat. Biomed. Eng.* 10.1038/s41551-023-01007-3.

1094

1095

1096 47. He, M., Li, J., Han, H., Borges, C.A., Neiman, G., Røise, J.J., Hadaczek, P., Mendonsa, R., Holm, V.R., Wilson, R.C., et al. (2020). A traceless linker for aliphatic amines that rapidly and quantitatively fragments after reduction. *Chem. Sci.* 11, 8973–8980. 10.1039/DOSC00929F.

1097

1098

1099 48. Saito, R., Krauze, M.T., Noble, C.O., Tamas, M., Drummond, D.C., Kirpotin, D.B., Berger, M.S., Park, J.W., and Bankiewicz, K.S. (2006). Tissue affinity of the infusate affects the distribution volume during convection-enhanced delivery into rodent brains: Implications for local drug delivery. *Journal of Neuroscience Methods* 154, 225–232. 10.1016/j.jneumeth.2005.12.027.

1100

1101

1102

1103

1104 49. Wei, T., Cheng, Q., Min, Y.-L., Olson, E.N., and Siegwart, D.J. (2020). Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing. *Nat Commun* 11, 3232. 10.1038/s41467-020-17029-3.

1105

1106

1107 50. Oura, S., Noda, T., Morimura, N., Hitoshi, S., Nishimasu, H., Nagai, Y., Nureki, O., and Ikawa, M. (2021). Precise CAG repeat contraction in a Huntington’s Disease mouse model is enabled by gene editing with SpCas9-NG. *Commun Biol* 4, 771. 10.1038/s42003-021-02304-w.

1108

1109

1110

1111 51. Sweeney, M.D., Sagare, A.P., and Zlokovic, B.V. (2018). Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. *Nat Rev Neurol* 14, 133–150. 10.1038/nrneurol.2017.188.

1112

1113

1114 52. Huang, L., Bommireddy, R., Munoz, L.E., Guin, R.N., Wei, C., Ruggieri, A., Menon, A.P., Li, X., Shanmugam, M., Owonikoko, T.K., et al. (2021). Expression of tdTomato and luciferase in a

1115

1116 murine lung cancer alters the growth and immune microenvironment of the tumor. PLoS
1117 ONE 16, e0254125. 10.1371/journal.pone.0254125.

1118 53. Tsai, S.Q., Zheng, Z., Nguyen, N.T., Liebers, M., Topkar, V.V., Thapar, V., Wyveldens, N.,
1119 Khayter, C., Iafrate, A.J., Le, L.P., et al. (2015). GUIDE-seq enables genome-wide profiling of
1120 off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 33, 187–197.
1121 10.1038/nbt.3117.

1122 54. Tsai, S.Q., Nguyen, N.T., Malagon-Lopez, J., Topkar, V.V., Aryee, M.J., and Joung, J.K. (2017).
1123 CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR–Cas9 nuclease off-
1124 targets. Nat Methods 14, 607–614. 10.1038/nmeth.4278.

1125 55. Ibraheim, R., Tai, P.W.L., Mir, A., Javeed, N., Wang, J., Rodríguez, T.C., Namkung, S., Nelson,
1126 S., Khokhar, E.S., Mintzer, E., et al. (2021). Self-inactivating, all-in-one AAV vectors for
1127 precision Cas9 genome editing via homology-directed repair in vivo. Nat Commun 12, 6267.
1128 10.1038/s41467-021-26518-y.

1129 56. Li, A., Lee, C.M., Hurley, A.E., Jarrett, K.E., De Giorgi, M., Lu, W., Balderrama, K.S., Doerfler,
1130 A.M., Deshmukh, H., Ray, A., et al. (2019). A Self-Deleting AAV-CRISPR System for In Vivo
1131 Genome Editing. Mol Ther Methods Clin Dev 12, 111–122. 10.1016/j.omtm.2018.11.009.

1132 57. Merienne, N., Vachey, G., de Longprez, L., Meunier, C., Zimmer, V., Perriard, G., Canales, M.,
1133 Mathias, A., Herrgott, L., Beltraminelli, T., et al. (2017). The Self-Inactivating KamiCas9
1134 System for the Editing of CNS Disease Genes. Cell Rep 20, 2980–2991.
1135 10.1016/j.celrep.2017.08.075.

1136 58. Ewaisha, R., and Anderson, K.S. (2023). Immunogenicity of CRISPR therapeutics—Critical
1137 considerations for clinical translation. Front. Bioeng. Biotechnol. 11, 1138596.
1138 10.3389/fbioe.2023.1138596.

1139 59. Mancuso, P., Chen, C., Kaminski, R., Gordon, J., Liao, S., Robinson, J.A., Smith, M.D., Liu, H.,
1140 Sariyer, I.K., Sariyer, R., et al. (2020). CRISPR based editing of SIV proviral DNA in ART
1141 treated non-human primates. Nat Commun 11, 6065. 10.1038/s41467-020-19821-7.

1142 60. Harrington, L.B., Paez-Espino, D., Staahl, B.T., Chen, J.S., Ma, E., Kyriakis, N.C., and Doudna,
1143 J.A. (2017). A thermostable Cas9 with increased lifetime in human plasma. Nat Commun 8,
1144 1424. 10.1038/s41467-017-01408-4.

1145 61. Bae, S., Park, J., and Kim, J.-S. (2014). Cas-OFFinder: a fast and versatile algorithm that
1146 searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics
1147 30, 1473–1475. 10.1093/bioinformatics/btu048.

1148 62. Clement, K., Rees, H., Canver, M.C., Gehrke, J.M., Farouni, R., Hsu, J.Y., Cole, M.A., Liu, D.R.,
1149 Joung, J.K., Bauer, D.E., et al. (2019). CRISPResso2 provides accurate and rapid genome
1150 editing sequence analysis. Nat Biotechnol 37, 224–226. 10.1038/s41587-019-0032-3.

1151 63. Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing
1152 reads. *EMBnet j.* **17**, 10. 10.14806/ej.17.1.200.

1153 64. Sedlazeck, F.J., Rescheneder, P., Smolka, M., Fang, H., Nattestad, M., von Haeseler, A., and
1154 Schatz, M.C. (2018). Accurate detection of complex structural variations using single-
1155 molecule sequencing. *Nat Methods* **15**, 461–468. 10.1038/s41592-018-0001-7.

1156 65. Ramírez, F., Bhardwaj, V., Arrigoni, L., Lam, K.C., Grüning, B.A., Villaveces, J., Habermann, B.,
1157 Akhtar, A., and Manke, T. (2018). High-resolution TADs reveal DNA sequences underlying
1158 genome organization in flies. *Nat Commun* **9**, 189. 10.1038/s41467-017-02525-w.

1159 66. Lopez-Delisle, L., Rabbani, L., Wolff, J., Bhardwaj, V., Backofen, R., Grüning, B., Ramírez, F.,
1160 and Manke, T. (2021). pyGenomeTracks: reproducible plots for multivariate genomic
1161 datasets. *Bioinformatics* **37**, 422–423. 10.1093/bioinformatics/btaa692.

1162

1163

1164 **Figure Legends**

1165

1166 **Figure 1. In vivo editing at tdTomato locus with viral and non-viral Cas9 delivery**

1167 **strategies.** (A) Schematic of 4x-SpyCas9-2x cell-penetrating protein expression and purification
1168 systems, (B) AAV9-SauCas9-sgRNA expression and purification systems, (C) and expected
1169 edited brain regions in the partial basal ganglia direct circuit shown in sagittal view (top) and
1170 coronal view (bottom). Neurons extend from the striatum into the globus pallidus (GP) and
1171 substantia nigra (SNr). Created with BioRender.com. (D) Comparison of convection enhanced
1172 delivery (CED) of cell-penetrant 4x-SpyCas9-2x RNP with step and non-step cannulas. The
1173 step-cannula significantly reduced reflux of material in the needle injection track (n=3-6
1174 injections per group, unpaired t-test, ** p<0.01.) Scale bar: 1 mm. (E) Serial sections of single
1175 hemisphere sagittal view of edited tdTomato+ cells in the basal ganglia circuit after injection of
1176 Cas9 RNP with CED into the striatum, with signal detected near the GP and SNr. Scale bar: 1
1177 mm. (F) Representative coronal section of the striatum of mice that received Cas9 RNPs and
1178 AAVs at 21 days post-injection, showing the distribution of tdTomato+ edited cells. Scale bar: 1
1179 mm. (G) Co-staining of tdTomato with NeuN and GFAP in the striatum at 90-days post-injection.
1180 Scale bar: 50 μ m. (H) Volume of edited striatal tissue as the concentration of injected Cas9
1181 RNPs was increased from 10 to 100 μ M (n=4-6 injections, one-way ANOVA, ns). (I)
1182 Quantification of editing following treatment with Cas9 AAV (3e9 vg/ μ L, 1.5e10 vg/hemisphere)
1183 and Cas9 RNPs (25 μ M, 125pmol/hemisphere) at 21 and 90-days (n=4-6 injections, one-way
1184 ANOVA, * p< 0.05). (J) Co-localization of tdTomato and NeuN quantified per regions of interest
1185 (ROI), e.g., edited area per hemisphere (n=4-6 injections, one-way ANOVA, ** p< 0.01). Scale
1186 bar: 250 μ m.

1187

1188 **Figure 2. Immune response following in vivo editing with viral and non-viral Cas9**

1189 **delivery strategies.** (A) Representative immunostaining of Iba1 (microglia, green) with

1190 tdTomato and DAPI using confocal microscopy. Scale bar: 50 μ m. (B) Quantification of Iba1⁺

1191 staining intensity and percent area (n=4-6 technical replicates, one-way ANOVA, *p<0.05). (C)

1192 Quantification of CD45⁺ and CD3⁺ cells per image (n=3-6 replicates, one-way ANOVA, ns). (D)

1193 Representative images of CD45, CD3, and Iba1 showing co-expression of CD45 (green) with

1194 both Iba1 (microglia, red) and CD3 (T-cells, red) cells and differential cell morphology. Merged

1195 images include DAPI (gray) and tdTomato (magenta). Scale bar: 50 μ m. (E) Quantification of

1196 IgG antibodies against Cas9 or AAV capsid proteins measured 28 and 90-days after bilateral

1197 intrastriatal injections by ELISA (n=3-5 biological replicates). (F) Heat map summarizing RT-

1198 qPCR results of gene expression from homogenized brain tissue near the injection site (striatum

1199 and cortex) at two time-points. *Ppih* was used as a housekeeping control for delta-delta Ct

1200 analysis and compared to the sham group using Qiagen analysis portal (n=4, *p < 0.05).

1201

1202 **Figure 3. Optimized, low-endotoxin RNP formulation reduces local immune response.** (A)

1203 Schematic of manufacturing scale up to produce industrial ultra-low endotoxin 4x-SpyCas9-2x

1204 protein using a tag-free expression and purification system. (B) Endotoxin levels calculated on a

1205 per mouse basis between the standard (laboratory 4x-SpyCas9-2x with sg298 2018) and

1206 optimized (industrial 4x-SpyCas9-2x protein with sg298 2022) RNP formulations at 25 μ M

1207 measured by LAL assay. The optimized RNP had a final endotoxin level of 0.44 EU/kg. Dotted

1208 line: FDA recommendation of 0.2 EU/kg/hr for drug products administered intrathecally in

1209 humans. (C) Quantification of Iba1⁺ staining intensity and percent area (n=6-10, one-way

1210 ANOVA, *p<0.05). (D) Quantification of CD45⁺ and (E) CD3⁺ cells per image (n=6-10, one-way

1211 ANOVA, ns). (F) Percent volume of edited striatal tissue for Cas9 RNPs injected at 25 μ M (n=6-

1212 10 injections). (G) Quantification of IgG antibodies against Cas9 or AAV capsid proteins
1213 measured 21-days after bilateral intrastriatal injections by ELISA (n=3-5 biological replicates).
1214

Figure 1. In vivo editing at tdTomato locus with viral and non-viral Cas9 delivery strategies

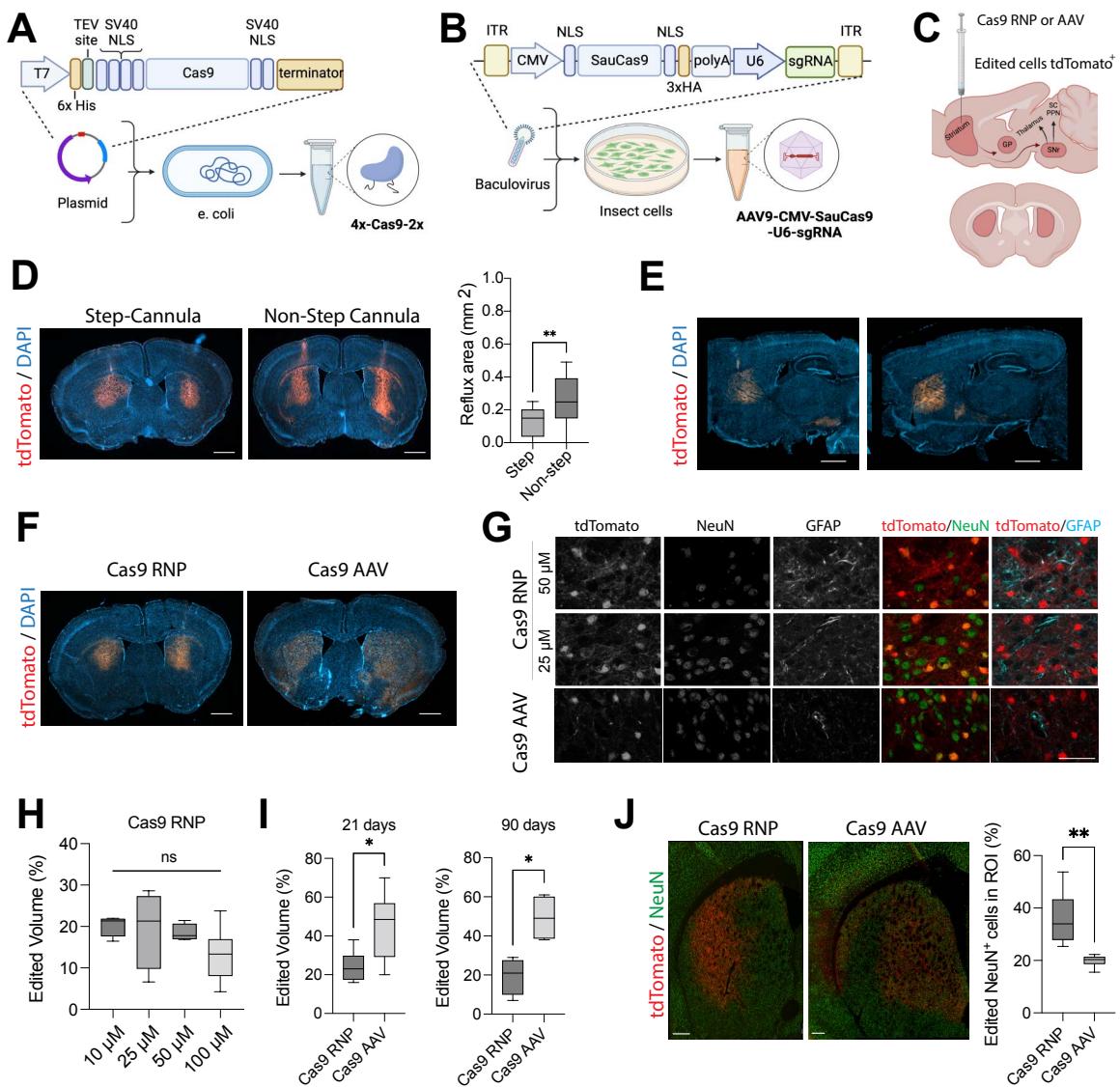


Figure 2. Immune response to in vivo editing with viral and non-viral Cas9 delivery strategies

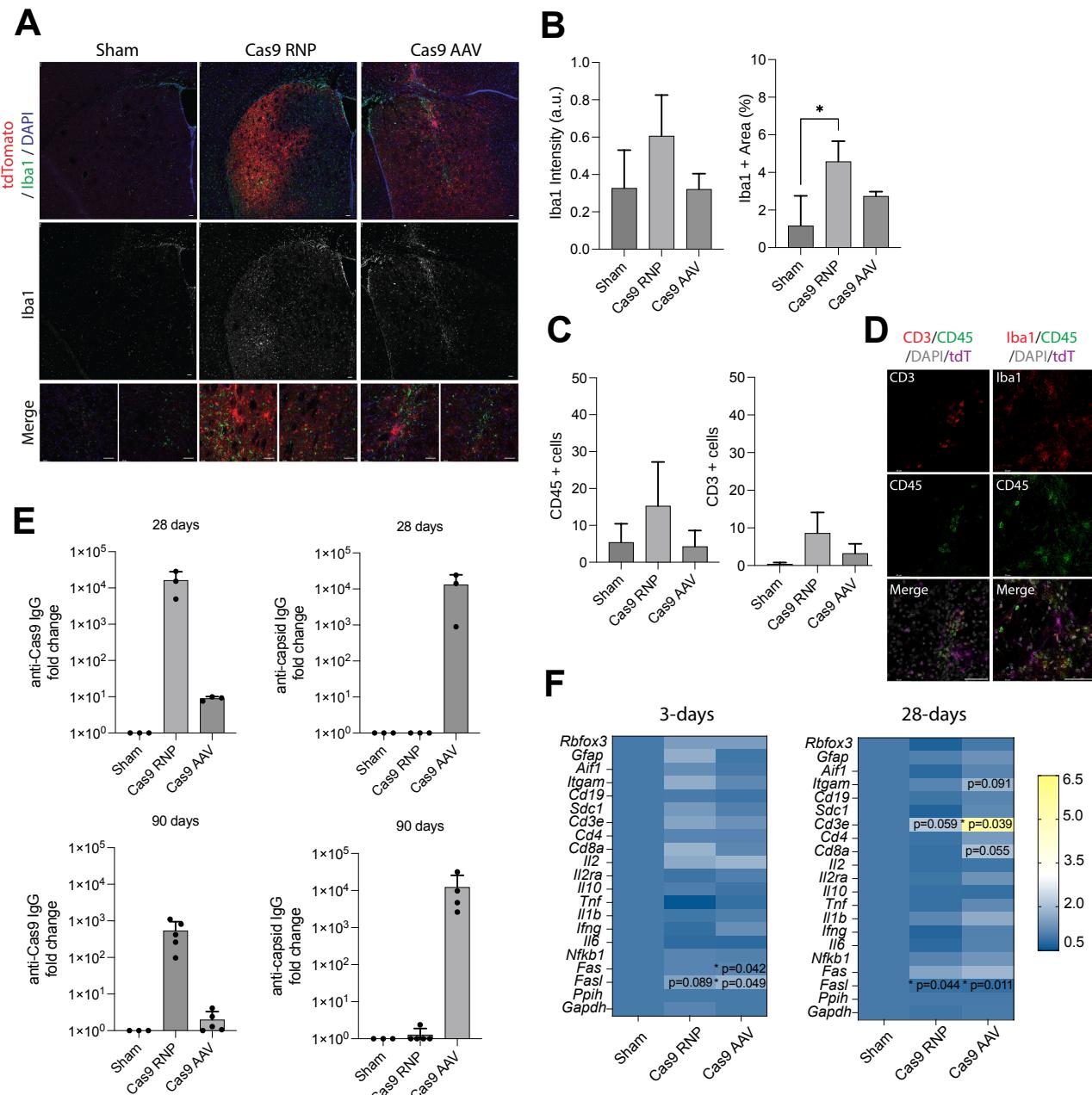
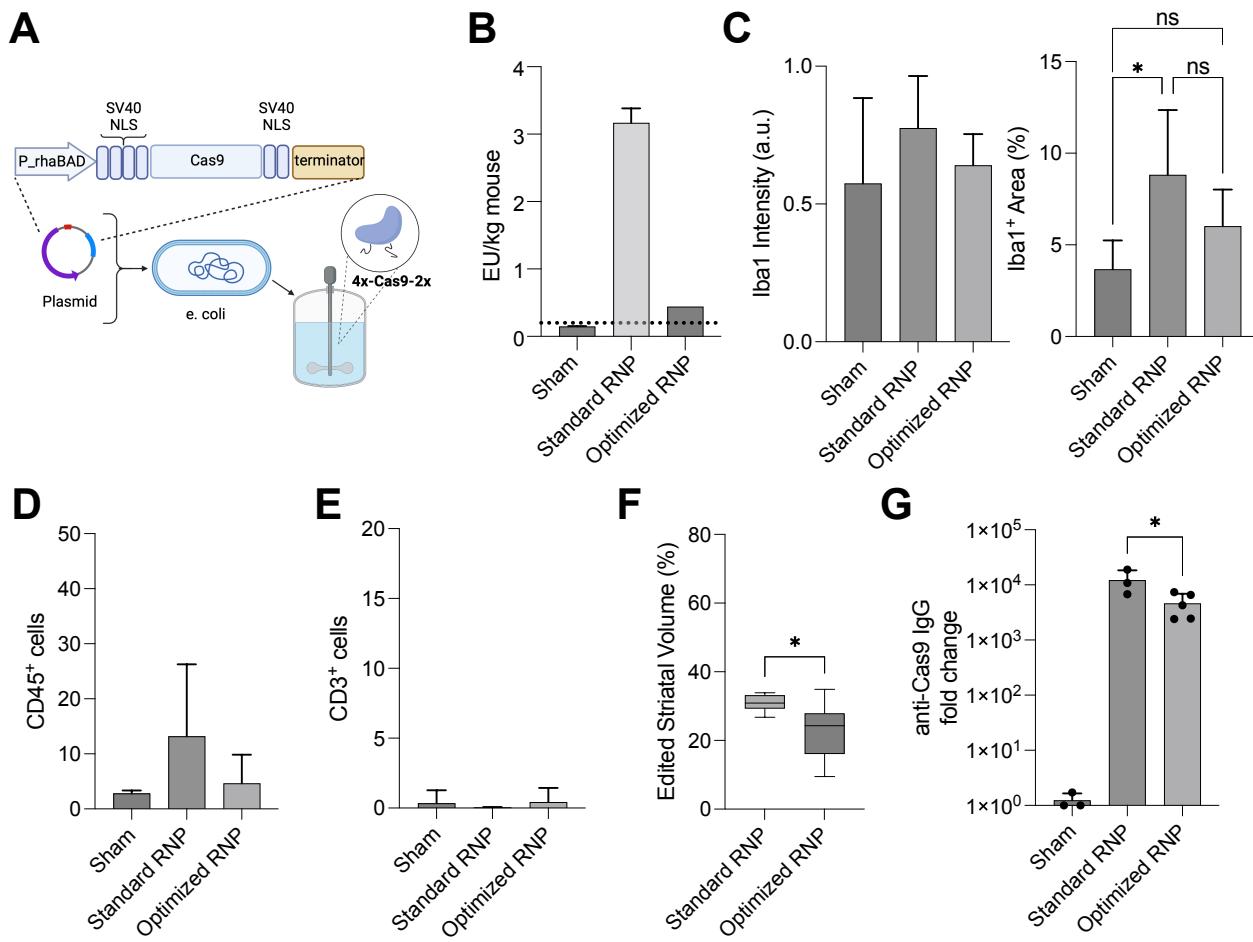



Figure 3. Optimized, low-endotoxin RNP formulation reduces local immune response

