

1 **Na⁺/H⁺ antiporter activity by respiratory complex I controls**
2 **mitochondrial Δψ and is impaired in LHON disease**

3 Pablo Hernansanz-Agustín^{1,2*}, Carmen Morales-Vidal¹, Enrique Calvo^{1,3}, Paolo
4 Natale^{4,5}, Yolanda Martí-Mateos¹, Sara Natalia Jaroszewicz¹, José Luis Cabrera-
5 Alarcón¹, Iván López-Montero^{4,5,6}, Jesús Vázquez^{1,3}, José Antonio Enríquez^{1,2*}.

6 ¹Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC); Madrid, E-
7 28029 Spain.

8 ²Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable.

9 ³Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares
10 (CIBER-CV). Madrid, Spain

11 ⁴ Departamento de Química Física, Facultad de Ciencias Químicas, Universidad
12 Complutense de Madrid, Madrid, Spain.

13 ⁵ Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Madrid,
14 Spain

15 ⁶ Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain

16

17 *Corresponding authors. Email: p hernansanz@cnic.es and jaenriquez@cnic.es

18

19

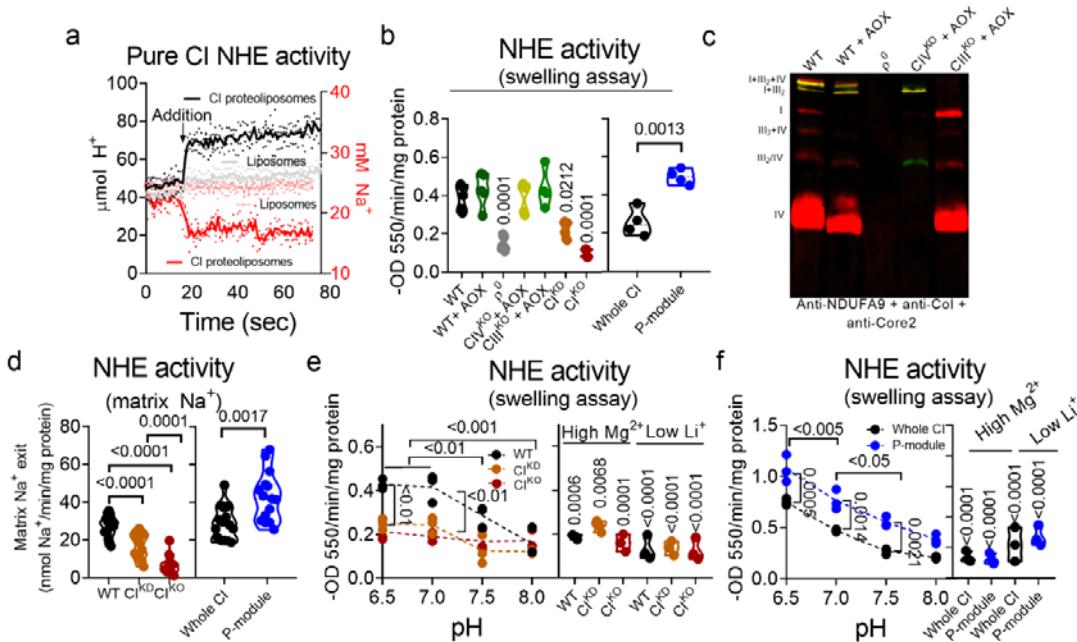
20 The mitochondrial electron transport chain (mETC) converts the energy of
21 substrate oxidation into a H^+ electrochemical gradient (Δp), which is composed by
22 an inner mitochondrial membrane (IMM) potential ($\Delta\Psi_{mt}$) and a pH gradient
23 (ΔpH). So far, $\Delta\Psi_{mt}$ has been assumed to be composed exclusively by H^+ .
24 Mitochondrial Ca^{2+} and Na^+ homeostasis, which are essential for cellular function,
25 are controlled by exchangers and antiporters in the inner mitochondrial
26 membrane (IMM). In the last few years, some of them have been identified, except
27 for the Na^+ -specific mitochondrial Na^+/H^+ exchanger (mNHE). Here, using a
28 rainbow of mitochondrial and nuclear genetic models, we have identified the P-
29 module of complex I (CI) as the major mNHE. In turn, its activity creates a Na^+
30 gradient across the IMM, parallel to ΔpH , which accounts for half of the $\Delta\Psi_{mt}$ in
31 coupled respiring mitochondria. We have also found that a deregulation of this
32 mNHE function in CI, without affecting its enzymatic activity, occurs in Leber
33 hereditary optic neuropathy (LHON), which has profound consequences in $\Delta\Psi_{mt}$
34 and mitochondrial Ca^{2+} homeostasis and explains the previously unknown
35 molecular pathogenesis of this neurodegenerative disease.

36 All organisms rely on the formation of transmembrane potentials to support
37 energy balance, and the maintenance and regulation of these transmembrane potentials
38 are crucial determinants of cell homeostasis. Eukaryotes rely on a plasma membrane
39 potential and a mitochondrial inner membrane potential ($\Delta\Psi_{mt}$), the latter being
40 particularly important for energy production and cell fate determination. The mETC is
41 composed of several complexes and supercomplexes¹. Mitochondrial complexes I (CI)
42 and II (CII) respectively oxidize NADH and succinate to reduce ubiquinone (CoQ) to
43 ubiquinol. Complex III (CIII) uses ubiquinol to reduce cytochrome c (cyt c), and
44 complex IV (CIV) oxidizes cyt c to reduce O_2 to H_2O . These series of reactions are
45 coupled to the translocation of H^+ by CI, CIII, and CIV across the inner mitochondrial
46 membrane (IMM) to form a H^+ -motive force (Δp). Δp , in turn, activates the
47 phosphorylation of ADP to ATP, which is coupled to the electrophoretic entry of H^+
48 through a fifth complex (CV). Δp is composed of an electrical component, $\Delta\Psi_{mt}$, which
49 is negative in the mitochondrial matrix, and a chemical component, ΔpH , which is
50 alkaline in the matrix and acidic in the intermembrane space², with $\Delta\Psi_{mt}$ accounting
51 for approximately 80% of the total Δp ³. CI is constituted by three structural modules⁴⁻⁶.
52 The N-module mediates NADH oxidation and transfers the electrons to the Q-module,
53 also called the CoQ-reducing module. The energy released by the NADH-CoQ
54 oxidoreduction is transferred to the subunits in the H^+ pumping module, or P-module.
55 This is composed by mtDNA-encoded subunits which are evolutionarily related to the
56 Na^+/H^+ antiporters of alkaliphilic and halophilic bacteria⁷.

57 Mitochondria also contain a panoply of exchangers and antiporters that allow
58 them to maintain respiration, osmolarity, and volume, permit the entry and extrusion of
59 substrates and metabolites and regulate allosterically many enzymes and transporters⁸.
60 The mitochondrial Ca^{2+} uniporter (MCU) introduces Ca^{2+} into the mitochondrial matrix
61 which, in turn, is extruded by the mitochondrial Na^+/Ca^{2+} exchanger (NCLX) in an
62 electrogenic exchange for 3 Na^+ ions⁹. Intramitochondrial Na^+ exit is mediated by a
63 Na^+ -specific, highly active, electroneutral Na^+/H^+ exchanger (NHE), which extrudes
64 Na^+ and acidifies the mitochondrial matrix¹⁰. Notably, the molecular identity of the
65 mitochondrial NHE remain to be identified¹⁰

66

67


68

Respiratory complex I is the main mitochondrial Na^+/H^+ antiporter.

69

In 2004, based on previous work in sequence similarity with alkaliophilic bacterial Na^+/H^+ antiporters⁷, Stolpe and Friedrich reconstituted purified CI from *E.coli* into liposomes, and proposed that prokaryotic CI may be capable of a secondary Na^+ antiport activity (i.e., This may occur in coordination with NADH:CoQ oxidoreduction and H^+ pumping)¹¹. Eight years later, Roberts and Hirst, using again purified CI from bovine heart and reconstituted in liposomes, proposed that also mitochondrial CI was capable of Na^+/H^+ exchange activity, but only after the enzyme transitioned to its deactive form (i.e., Na^+/H^+ antiport may not happen under the active, NADH:CoQ oxidoreduction- H^+ pumping, state)¹². These *in vitro* approaches suggested the possibility of CI being the molecular entity responsible for a mitochondrial NHE function. To evaluate this possibility, we first purified CI from pig heart mitochondria (Extended Data Figure 1a-d) and reconstituted it into proteoliposomes. In contrast to liposomes alone, CI proteoliposomes showed a strong Na^+/H^+ exchanger activity (Figure 1a and Extended Data Figure 1e-g).

83

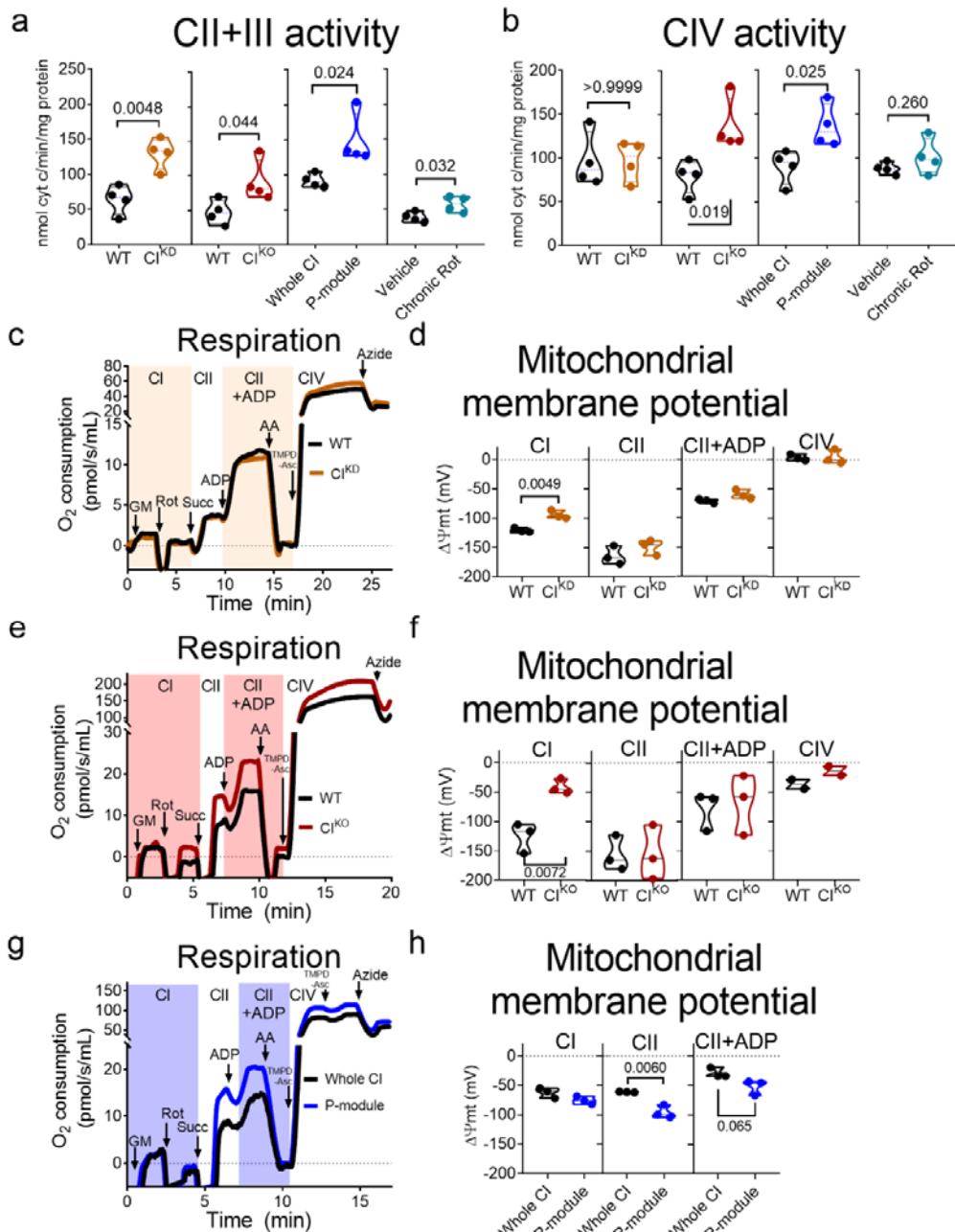
Figure 1. CI is the Na^+ -specific mitochondrial NHE. (a) (left axis) Buffer pH or (right axis) buffer Na^+ content was measured before and after the addition of either liposomes (grey or pink) or pure CI-containing proteoliposomes (black or red; n=3). (b) Passive swelling NHE activity in WT, WT+AOX, ρ^0 (CI, CIII and CIV absent), CIV^{KO}+AOX (only CIV absent), CIII^{KO}+AOX (only CIII absent), CI^{KD}, CI^{KO} NDUFS4^{WT} and NDUFS4^{KO} non-respiring mitochondria (n=4). Only p-values against WT are shown. (c) BN-PAGE of WT, WT+AOX, ρ^0 (CI, CIII and CIV absent), CIV^{KO}+AOX (only CIV absent) and CIII^{KO}+AOX (only CIII absent) mitochondria. Anti-NDUFA9 (CI) and anti-CoI (CIV) are colored in red, whereas anti-Core2 (CIII) is colored in green. (d) Passive NHE activity was measured as a readout of mitochondrial Na^+ exit in WT, CI^{KD}, CI^{KO}, NDUFS4^{WT} (Whole CI) and NDUFS4^{KO} (P-module; n=15; n=13 in CI^{KO}). (e) Passive swelling NHE activity in WT, CI^{KD} and CI^{KO} was assessed in different buffer pHs and in the presence of 50 mM MgCl_2 or with 2 mM LiCl (n=3). (f) Passive swelling NHE activity in NDUFS4^{WT} (Whole CI) and NDUFS4^{KO} (P-module) was assessed in different buffer pHs and in the presence of 50 mM MgCl_2 or with 2 mM LiCl (n=3). (d and e) p-values in “High Mg^{2+} ” and “Low Li^+ ” are against WT or NDUFS4^{WT} (Whole CI) at their corresponding, same pH (i.e., pH 7).

84

Next, we wondered whether such CI-dependent activity could be measured in intact mitochondria. For that, we used several cellular knock-out (KO) models of different OXPHOS subunits: 1) a mutant with reduced levels of, but still present, CI or

85

86


87 CI knock-down (CI^{KD})¹³, which only shows partial CI assembly by BN-PAGE (CI^{KD} in
88 [Extended Data Figure 2a](#)); 2) a mutant with a complete loss of CI or CI^{KO}, which show
89 no detectable CI by BNGE (CI^{KO} in [Extended Data Figure 2a](#))¹⁴; 3) and a KO model of
90 the CI nuclear-encoded subunit NDUFS4 or NDUFS4^{KO}, which has the assembly of the
91 CI N-module severely impaired, leaving a CI subassembly with only the P module
92 (named P-module; [Extended Data Figure 2b](#)); 4) a variety of cell lines lacking either all
93 mtDNA-encoded OXPHOS complexes (p^o cells) or only CIII or CIV¹⁵.

94 CI^{KD}, CI^{KO} and P-module cell lines displayed a significant decrease in CI
95 activity ([Extended Data Figure 2c](#) and [d](#)). Notably, whereas CI^{KD} and CI^{KO} showed a
96 reduction in mNHE proportional to their CI content, the only presence of the CI P-
97 module produced a marked increase of mNHE ([Figure 1b-c](#) and [Extended Data Figure](#)
98 [2e-j](#)). Importantly, the reduction in mNHE activity could only be seen after the specific
99 deletion of CI and not upon the removal of any other mETC complex ([Figure 1b-d](#) and
100 [Extended Data Figure 2a](#)). All this indicates that intact mitochondria retain its mNHE
101 function only when the P-module of CI is present, supporting the physiological
102 implication of the NHE activity observed in isolated CI. In addition, these results also
103 indicate that CI NADH:CoQ oxidoreductase function is not necessary for mNHE and
104 that CI can exert this role in the absence of the N-module.

105 Classically, there have been two NHE types ascribed to mitochondria: 1) A
106 highly active, Na⁺-specific NHE, inhibitible by low Li⁺, high Mg²⁺ and alkaline pH; 2)
107 and a sluggish Na⁺-unspecific (i.e., it also catalyzes K⁺/H⁺ antiport) NHE, inhibitible by
108 low Mg²⁺ and acidic pH¹⁶⁻²². We observed that neither of the CI deficient cell models
109 was able to alter mitochondrial K⁺/H⁺ exchanger (KHE) function in intact mitochondria
110 ([Extended Data Figure 2k-l](#)). Also, the pH-dependency profile showed that a rapid
111 mNHE becomes inhibited with increasing buffer pH only in the presence of CI ([Figure](#)
112 [1d](#)). This pattern was still present in CI lacking its N-module ([Figure 1e](#)). Finally, CI P-
113 module-dependent NHE activity was inhibited to similar values by high amounts of
114 Mg²⁺ or low levels of Li⁺ ([Figure 1e](#)). Altogether, these results indicate that the P-
115 module of mitochondrial CI constitutes the *bona-fide*, Na⁺-selective, mitochondrial
116 Na⁺/H⁺ antiporter.

117 CI^{KD} and CI^{KO} cells represent a partial or total mNHE loss-of-function models,
118 respectively, whereas the cells with only the CI P-module constitute a mNHE gain-of-
119 function one, having all a similar decrease in NADH:CoQ enzymatic activity. Thus, we
120 sought to characterize the bioenergetic impact of CI-mNHE activity in purified, intact
121 mitochondria and whole cells. All cell models showed an increase in combined
122 Antimycin A-dependent succinate:cyt c (i.e., CII+III) activity compared with their
123 respective isogenic controls ([Figure 2a](#) and [b](#) and [Extended Data Figure 3a](#), summarized
124 in [Extended Data Table 1](#)). Increased CII+III activity is a well-known consequence of
125 CI deficiency or inhibition¹³. CI^{KO} and mitochondria with only CI P-module, but not
126 CI^{KD} ones, showed elevated CIV activity ([Figure 2b](#) and [Extended Data Figure 3b](#)),
127 while CV activity, in forward or reverse mode, was higher only in mitochondria with CI
128 P-module ([Extended Data Figure 3c](#) and [d](#), summarized in [Extended Data Table 1](#)).
129 Since CII is rate limiting for succinate oxidation²³, it is expected that the increase in
130 CII+III activity would be accompanied by a raise in succinate-dependent respiration and
131 by an hyperpolarization of mitochondria. Surprisingly, only mitochondria with the P-
132 module accomplished such expectation ([Figure 2c-h](#) and [Extended Data Figure 3e-g](#),
133 summarized in [Extended Data Table 1](#)). Intriguingly, mitochondria with only the CI P-
134 module did not show lower respiration nor depolarization under CI substrates ([Figure](#)
135 [2g](#) and [h](#) and [Extended Data Figure 3g](#)), despite having lower CI activity ([Extended](#)

136 Data Figure 2c and d). Although it is tempting to attribute these bioenergetic differences
 137 to the impact of the mutations in the NHE activity, alternative explanations need to be

Figure 2. Characterization of CI-deficiency models. (a) Antimycin A (AA)-sensitive succinate-cyt c oxidoreductase activity in WT and CI^{KD}, WT and CI^{KO}, NDUFS4^{WT} (Whole CI) and NDUFS4^{KO} (P-module) and mitochondrial membranes from WT cells treated for 6 h with either vehicle or 250 nM rotenone (Chronic Rot; n=4). (b) Potassium cyanide (KCN)-sensitive cyt c oxidase activity in WT and CI^{KD}, WT and CI^{KO}, NDUFS4^{WT} (Whole CI) and NDUFS4^{KO} (P-module) and Chronic Rot mitochondrial membranes (n=4). (c, e and g) Oxygen consumption rates in WT and CI^{KD} (c, n=3), WT and CI^{KO} (e, n=3) and NDUFS4^{WT} (Whole CI) and NDUFS4^{KO} (P-module) isolated mitochondria (g, n=3). GM, glutamate/malate; Rot, 1 μM rotenone; Succ, succinate; ADP, adenosine di-phosphate; AA, 1 μM antimycin A; TMPD+Asc, N,N,N',N'-tetramethyl-p-phenylenediamine + ascorbate; Azide, 50 mM, sodium azide. CI denotes CI-dependent respiration, CII denotes CII-dependent respiration, CII+ADP denotes CII+ADP-dependent respiration, and CIV denotes CIV-dependent respiration. (d, f and h) Calibrated TMRM signal in WT, CI^{KD} (d, n=3), WT and CI^{KO} (f, n=3; CIV n=2) and NDUFS4^{WT} (Whole CI) and NDUFS4^{KO} (P-module) cells (h, n=3), providing the CI+III+IV-dependent ΔΨ_{mt} (Panel CI), CII+III+IV-dependent ΔΨ_{mt} (Panel CII), CII+III+IV+ADP-dependent ΔΨ_{mt} (Panel CII+ADP), and CIV-dependent ΔΨ_{mt} (Panel CIV).

138 ruled out first.

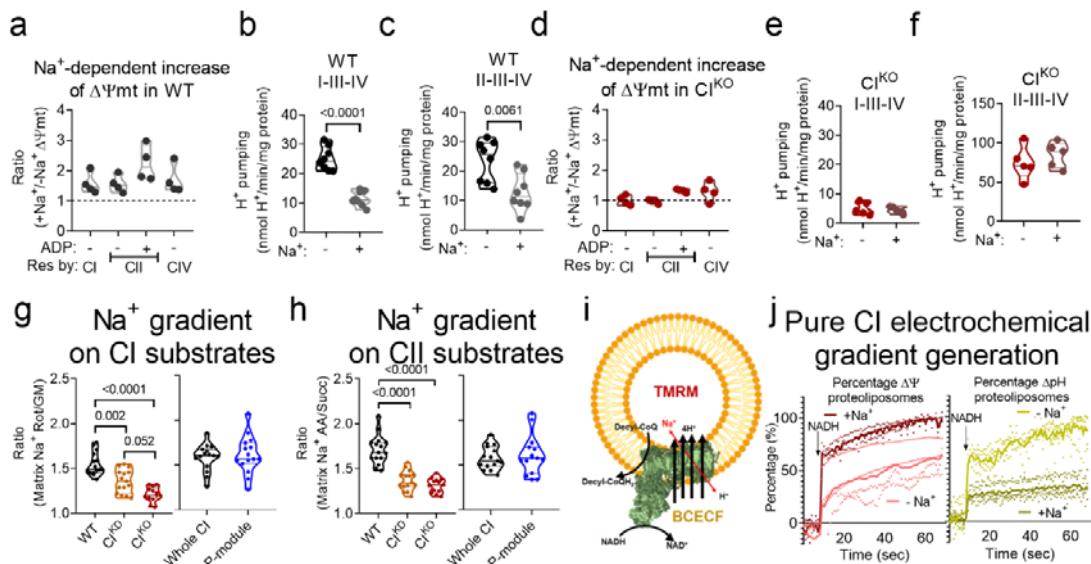
139 The different CI deficient cell lines analyzed were obtained from two different
140 mouse strains. CI^{KD} and CI^{KO} are cybrids with the nucleus of L929 cells, and
141 NDUFS4^{WT} (labelled as CI^{WT}) and NDUFS4^{KO} (labelled as $\text{CI}^{\text{P-module}}$) are mouse adult
142 fibroblasts isolated from C57BL/6J mice. We wondered whether this discrepant effect
143 in their bioenergetic footprint may be due to differences in their origin or genetic
144 background. To assess this, we chronically exposed cells with L929 nucleus and wild
145 type mtDNA (WT) to a low dose of the CI inhibitor rotenone, leaving CI structurally
146 intact. If the bioenergetic differences were due to the genetic background, we would
147 expect that the increase in CII+III elicited by rotenone would not translate into a rise
148 of succinate-dependent respiration and hyperpolarization.

149 We measured CII+III, CIV and CV activities ([Figure 2a](#) and [b](#) and [Extended](#)
150 [Data Figure 3c](#) and [d](#)) and found that the elevation in CII+III promoted an increase in
151 succinate-dependent respiration and hyperpolarization in mitochondria extracted from
152 cells chronically exposed to a low dose of rotenone ([Extended Data Figure 3h-i](#),
153 summarized in [Extended Data Table 1](#)). Given that these results resemble that of those
154 in mitochondria with only CI P-module, this points out that the observed bioenergetic
155 differences are not due to their origin or genetic background. Next, we inquired if the
156 fact that an increase in CII+III activity did not translate into a higher succinate-
157 dependent hyperpolarization may be due to phenotypic differences between WT and
158 CI^{KD} and CI^{KO} mitochondria in parameters known to affect bioenergetics, such as
159 mitochondrial volume, ultrastructure or MIM permeability. We did not observe changes
160 in mitochondrial volume ([Extended Data Figure 4a-d](#)), ultrastructure ([Extended Data](#)
161 [Figure 4c](#)), fragmentation ([Extended Data Figure 4d](#) and [e](#)) or MIM permeability
162 ([Extended Data Figure 4f-i](#)) which could explain the observed bioenergetic defects.

163 We also determined whether such differences between CI^{KD} , CI^{KO} and
164 mitochondria with only the P-module may be due to a succinate-specific effect and
165 wondered whether they could be seen under different substrates. N,N,N,N-tetramethyl-
166 p-phenylenediamine (TMPD)-Asc donate electrons to cyt c and provide a direct readout
167 of respiration and $\Delta\Psi_{\text{mt}}$ by CIV, avoiding possible effects of substate import to
168 mitochondria and potential differences in electron flux through other, upstream
169 complexes. Given their differences in isolated CIV activity ([Figure 2b](#)), we would
170 expect hyperpolarization in CI^{KO} and mitochondria with only P-module, but not in CI^{KD} .
171 However, our expectations were again exclusively fulfilled by mitochondria with only
172 P-module ([Extended Data Figure 4j](#) and [k](#)).

173 We wondered whether the observed effect may be because we were comparing
174 mtDNA mutants (CI^{KD} and CI^{KO}) against a knock-out of a nuclear encoded CI subunit
175 (P-module). Thus, we studied the bioenergetic footprint and NHE activity comparing a
176 different mtDNA mutant ($\text{ND}4^{\text{KO}}$) and a knock-out of another nuclear encoded CI
177 subunit (NDUFB11), both affecting CI P-module. All parameters measured in
178 $\text{NDUFB11}^{\text{KO}}$ and $\text{ND}4^{\text{KO}}$ cells resembled those in CI^{KD} and CI^{KO} : lower NHE activity
179 ([Extended Data Figure 5a](#)), higher CII+III activity ([Extended Data Figure 5b](#)), similar
180 degree of CI loss ([Extended Data Figure 5c](#) and [d](#)) and equal respiratory and $\Delta\Psi_{\text{mt}}$
181 values than their isogenic counterparts ([Extended Data Figure 5e-h](#)). These results point
182 out that the bioenergetic differences between the mitochondria with complete absence
183 of CI and the ones with the only presence of the P-module are not explained by the fact
184 that the CI subunit affected is encoded by the mtDNA or nuclear DNA or to a particular
185 type of mutation.

186 To complete the characterization of the different cell models we performed
187 proteomic studies of all cell lines. Principal component analysis of bulk proteomics
188 revealed that the two different wild type cell lines grouped together despite their
189 different genetic background (Extended data Figure 6a). In addition, wild type cells
190 were well differentiated from all CI mutant cell lines (Extended data Figure 6a).
191 Moreover, the CI^{KD} and CI^{KO} cells grouped very close, but clearly separated from the
192 proteome of cells with only the CI P-module (Extended data Figure 6a). This was
193 confirmed by gene set enrichment analysis (GSEA), which identified the gene ontology
194 pathways significantly downregulated (Extended data Figure 6b) or upregulated
195 (Extended data Figure 6c) in the CI deficient cells. In both cases these pathways were
196 very similar between CI^{KD} and CI^{KO} and clear divergent from those of cells with only
197 the CI P-module (Supplementary Table 1). Finally, proteomic analyses of isolated
198 mitochondria confirmed that CI^{KD} and CI^{KO} had a progressive loss of all CI subunits,
199 whereas mitochondria with only CI P-module retained the majority of its P-module
200 subunits, as expected (Extended Data Figure 6d and h). No significant differences were
201 observed in other mETC complexes (Extended Data Figure 6e-fg and i-k). Volcano
202 plots show changes found in mitochondria from all cell models; however, we failed to
203 see differences in the presence of the mitochondrial succinate carrier Slc25a10 or other
204 proteins which may affect CII- and CIV- dependent respiration (Extended Data Figure
205 6l). In summary, no feature other than the different impact of NHE activity was
206 associated with the divergent characteristic bioenergetic signature of the different CI
207 deficient cell models.


208 **CI Na⁺/H⁺ antiport function regulates respiration and $\Delta\Psi_{mt}$.**

209 We noticed a correlation between CI-NHE activity and $\Delta\Psi_{mt}$. CI^{KD} and CI^{KO}
210 displayed reduced CI-NHE activity and could neither increase the respiration nor
211 hyperpolarize under CII or CIV respiration. On the other hand, mitochondria with only
212 the P-module showed an elevated CI-NHE function and higher respiration and
213 hyperpolarization in all cases (compare $\Delta\Psi_{mt}$ and mNHE columns in Extended Data
214 Table 1). We speculate that, as $\Delta\Psi_{mt}$ controls respiration and this is exclusively
215 composed by a H⁺ gradient, the observed differences could be a result of lower H⁺
216 ejected by CIII and/or CIV in CI^{KD} and CI^{KO}. To assess this question, we measure H⁺
217 pumping directly in the same conditions as the previous experiments. As expected, H⁺
218 pumping was lower in all three models when they were reliant on CI substrates (CI-III-
219 IV inset and traces in Extended Data Figure 7a and b). However, under CII substrates,
220 CI^{KD} and CI^{KO} mitochondria showed higher H⁺ pumping than their isogenic control,
221 resembling mitochondria with only the CI P-module (CII-III-IV inset, traces in
222 Extended Data Figure 7a and b and summarized in Extended Data Table 1). This
223 finding agrees well with the higher CII+III activity in all CI-deficiency models
224 (compare Extended Data Figure 7a and b with Figure 2a) and further supports that
225 mitochondrial succinate import is not differentially altered in the CI deficiency models.
226 However, despite CI^{KD} and CI^{KO} mitochondria showed higher H⁺ pumping, this did not
227 translate into a higher respiration or hyperpolarization. This intriguing contradiction
228 may indicate that the Na⁺-selective CI-NHE function may be involved in the generation
229 of $\Delta\Psi_{mt}$ and control of respiration, so that $\Delta\Psi_{mt}$ may be governed not only by a H⁺
230 gradient, but also by a Na⁺ gradient.

231 To evaluate this hypothesis, we first recorded $\Delta\Psi_{mt}$ in WT and CI^{KO}
232 mitochondria, supplied with CII substrates and upon the addition of the chemical
233 Na⁺/H⁺ exchanger monensin to acutely restore a NHE function in isolated mitochondria.
234 Whereas nigericin, a chemical K⁺/H⁺ exchanger, promoted hyperpolarization in isolated

WT mitochondria (left inset in [Extended Data Figure 7c](#)), monensin did not (middle inset in [Extended Data Figure 7c](#)). In contrast, both drugs supported hyperpolarization of CI^{KO} mitochondria (left and middle insets in [Extended Data Figure 7c](#)), indicating that the restoration of a Na^+ gradient by monensin addition contributed to the establishment of $\Delta\Psi_{\text{mt}}$ in CI^{KO} mitochondria. No similar phenomenon was observed in mitochondria with only the CI P-module (right inset in [Extended Data Figure 7c](#)).

Second, we measured respiration rates and $\Delta\Psi_{\text{mt}}$ in intact WT mitochondria maintained in an osmotically compensated, Na^+ -free buffer. The absence of Na^+ slightly decreased the respiration rate and promoted mitochondrial depolarization by a third or a half, depending on the substrate conditions (Figure 3a and Extended Data Figure 7d). Mouse heart mitochondria behaved similarly (Extended Data Figure 7e and f). In parallel, the absence of Na^+ promoted apparently higher CI- and CII-dependent H^+ pumping in WT mitochondria, which we interpreted as the consequence of an inoperative NHE, unable to dissipate ΔpH (Figure 3b and c). None of these phenomena was observed in CI^{KO} mitochondria (Figure 3d-f and Extended Data Figure 7g), pointing to a role of the CI-NHE-dependent formation of $\Delta\Psi_{\text{mt}}$, possibly reliant on a Na^+ gradient. To note, mitochondria respiring on CI substrates, in which CI is fully active, were able to use their CI-NHE function to contribute to the establishment of $\Delta\Psi_{\text{mt}}$ (Figure 3a and Figure 3b), suggesting that fully active CI is still capable of performing a Na^+/H^+ antiporter activity. Indeed, we measured mNHE activity in

mitochondrial samples with CI active or deactive and observed that, though deactive CI

Figure 3. Mitochondrial Na^+ gradient controls $\Delta\Psi_{\text{mt}}$. (a) Relative contribution of Na^+ to $\Delta\Psi_{\text{mt}}$ in WT mitochondria respiring on different substrates, calculated as the ratio of the calibrated TMRM signal in Na^+ -containing buffer to that in Na^+ -free buffer (n=4). (b-c) Mitochondrial matrix H^+ pumping measured from the BCEFC-AM signal in WT isolated mitochondria respiring on CI (b) or CII (c) substrates in Na^+ -containing and Na^+ -free buffer (n=8). (d) Relative contribution of Na^+ to $\Delta\Psi_{\text{mt}}$ in CI^{KO} mitochondria respiring on CI, CII, CII+ADP, or CIV substrates, calculated as the ratio of the calibrated TMRM signal in Na^+ -containing to that in Na^+ -free buffer (n=4). (e-f) Mitochondrial matrix H^+ pumping measured from the BCEFC-AM signal in CI^{KO} isolated mitochondria respiring on CI (g) or CII (h) substrates in Na^+ -containing and Na^+ -free buffer (n=5). (g and h) Na^+ gradient in WT, CI^{KD} , CI^{KO} , $\text{NDUFS4}^{\text{WT}}$ and $\text{NDUFS4}^{\text{KO}}$ isolated mitochondria incubated with SBFI-AM and respiring on GM (g) or succinate (h), calculated as the ratio of the matrix Na^+ concentrations determined after and before the addition of rotenone (g) or antimycin A (h) (n=15; n=13 in CI^{KO}). (i) Scheme showing the experimental setup followed in section j. (j) Membrane potential (left inset; n=4) or intravesicular pH (right inset; n=5) of proteoliposomes reconstituted with pure CI were measured in a physiological buffer containing 130 μM decyl-CoQ, in the presence or absence of 100 mM NaCl and before and after the addition of 100 μM NADH.

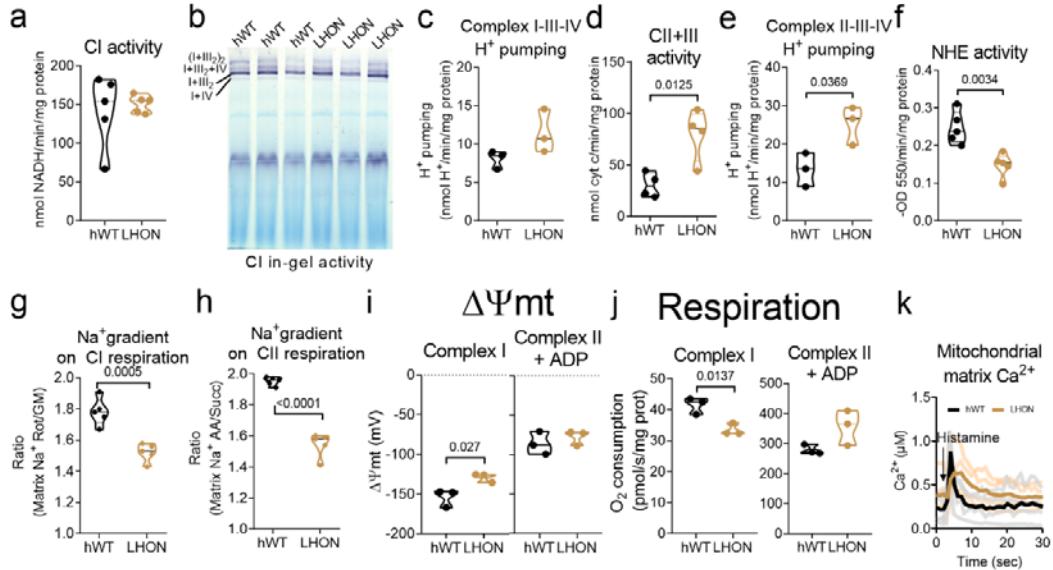
256 showed a clear increase in NHE, active CI was also able to perform it (Extended Data
257 Figure 7h).

258 We reasoned that if CI-NHE activity generates a Na^+ gradient that contributes to
259 the build-up of $\Delta\Psi_{\text{mt}}$ and respiration, the presence of Na^+ in the respiratory buffer
260 would permit WT mitochondria respiratory and $\Delta\Psi_{\text{mt}}$ values to equal those of CI^{KO}
261 under CII or CIV substrates, despite the latter having larger H^+ pumping. On the
262 contrary, respiratory and $\Delta\Psi_{\text{mt}}$ values should be lower in WT in the absence of Na^+
263 since the Na^+ gradient would not contribute to the build-up of $\Delta\Psi_{\text{mt}}$ in these
264 mitochondria (Extended Data Table 1). This is expected because CII-dependent H^+
265 pumping in CI^{KO} mitochondria is higher than that of WT mitochondria. Indeed, CI^{KO}
266 mitochondria showed higher respiration and hyperpolarization than WT in the absence
267 of Na^+ (Extended Data Figure 7i and j), which is in contrast with the very similar
268 respiratory rates and $\Delta\Psi_{\text{mt}}$ found in the presence of Na^+ (Figure 2e-f and Extended
269 Data Figure 3f). This result (i.e., CI^{KO} mitochondria having higher respiration and
270 hyperpolarization) resembled the bioenergetic footprint of mitochondria with only the
271 CI P-module and Chronic Rot mitochondria maintained in Na^+ -containing buffer
272 (Extended Data Table 1).

273 Finally, the fact that we did not observe lower CI-dependent respiration and
274 depolarization in mitochondria with only the P-module (CI inset in Figure 2g-e and
275 Extended Data Figure 3g) may be due to the higher CI-NHE function in this model, as
276 those experiments were carried out in the presence of Na^+ . Mitochondria with the CI P-
277 module would build-up a Na^+ -dependent $\Delta\Psi_{\text{mt}}$ sufficient to mask the lower CI activity
278 when assessing O_2 consumption and $\Delta\Psi_{\text{mt}}$. Thus, removing Na^+ from the buffer may be
279 enough to: 1) observe a lower CI respiration and depolarization mitochondria with only
280 the CI P-module with respect to its WT counterpart; 2) depolarize mitochondria with
281 only the P-module to slightly larger or even equal values than its isogenic WT, masking
282 the effect of higher CII+III activity. Indeed, removing Na^+ from the buffer revealed
283 lower respiration and depolarization in mitochondria with only the CI P-module under
284 CI substrates (Extended Data Figure 7k and l), making it consistent with its isolated CI
285 activity. Similar results were obtained measuring H^+ pumping (Extended Data Figure
286 7m). Furthermore, mitochondria with only the P-module oxidizing CII or CIV
287 substrates were not able to raise respiration nor hyperpolarize mitochondria with respect
288 to its isogenic WT in the absence of Na^+ (Extended Data Figure 7k and l), despite
289 having larger H^+ pumping (Extended Data Figure 7m). This is because the contribution
290 of the Na^+ gradient to $\Delta\Psi_{\text{mt}}$ in these mitochondria: 1) is larger than in its WT control;
291 2) and may be, in general, larger than that of the H^+ gradient. To note, these results
292 resemble those obtained with CI^{KD} and CI^{KO} in the presence of Na^+ (i.e., mitochondria
293 with only the CI P-module respiring without Na^+ resemble $\text{CI}^{\text{KD}}/\text{CI}^{\text{KO}}$ with Na^+),
294 indicating that the presence or absence of Na^+ in the respiratory buffer can mask many
295 bioenergetically relevant features through its contribution to $\Delta\Psi_{\text{mt}}$.

296 In a third approach, we directly measured the mitochondrial Na^+ gradient in
297 isolated mitochondria. For respiration driven by CI or CII substrates, the Na^+ gradient in
298 CI^{KD} and CI^{KO} mitochondria was below-WT, proportionally to the level of assembled
299 CI (Figure 3g and h). In contrast, the Na^+ gradient in mitochondria with only the P-
300 module was unaffected (Figure 3g and h), indicating that formation of the Na^+ gradient
301 requires a fully assembled CI P-module and CI-NHE function.

302 Fourth, if CI was able to build up a Na^+ gradient and contribute to $\Delta\Psi_{\text{mt}}$ due to
303 its Na^+ -selective NHE function in intact mitochondria, NADH-oxidizing CI alone


304 should reproduce such a behavior. To investigate this, pure CI from pig heart
305 mitochondria reconstituted into liposomes was fed with NADH and decyl-CoQ to
306 activate its H^+ pumping function (Figure 3i) in the absence or presence of Na^+ . Active
307 CI was able to create a membrane potential in the proteoliposomes through the increase
308 in their H^+ content in the absence of Na^+ (pink lines of left inset and light green of the
309 right inset in Figure 3j). In the presence of Na^+ , CI built up an even higher membrane
310 potential at the expense of the H^+ gradient generated by its own pumping function (red
311 lines of left inset and dark green of the right inset in Figure 3j). These results
312 corroborate that active CI contributes to membrane potential, not only by its H^+
313 pumping function, but also through its NHE activity. In intact mitochondria, this H^+ -
314 dissipating effect of CI-NHE increases respiration and contributes to the generation of
315 $\Delta\Psi_{mt}$. This was absent in CI^{KD} and CI^{KO} models respiration under CII or CIV substrates,
316 which is the reason why these models did not fulfill our expectations based on isolated
317 CII+III/CIV activities. To corroborate that the absence of the H^+ dissipating effect of
318 CI-NHE conforms a brake for respiration, we measured respiration under different
319 substrates in permeabilized mitochondria from CI^{KD} and CI^{KO} . In these conditions, a
320 higher CII- and CIV-dependent respiration could be readily seen (Extended Data Figure
321 7n and o), now confirming our expectations. Altogether, our results show that the CI-
322 NHE function forms a Na^+ gradient, at the expense of ΔpH dissipation, which raises
323 respiration and contributes relevantly to $\Delta\Psi_{mt}$ in mitochondria.

324 From the measurements taken throughout this study, we calculate that for
325 respiration driven by CI or CII substrates the Na^+ gradient contributes around one third
326 of the total $\Delta\Psi_{mt}$ (Extended Data Table 2). However, when CV is activated by the
327 presence of ADP (state 3) and partially dissipates ΔpH , the electrical contribution of the
328 Na^+ gradient reaches approximately half of the $\Delta\Psi_{mt}$ (Extended Data Table 2). The
329 mitochondrial Na^+ gradient thus either parallels the mitochondrial H^+ gradient (compare
330 WT in Extended Data Figure 8a and b with WT in Figure 3g and h) or even surpasses it
331 (compare P-module in Extended Data Figure 8c and d with Whole CI in Figure 3g and
332 h). Such a contribution of the Na^+ gradient to $\Delta\Psi_{mt}$ in coupled-respiring mitochondria,
333 together with its effects in respiration, were also obvious in intact cells (Extended Data
334 Figure 8e-i).

335 **The complex I Na^+/H^+ antiport function is specifically damaged in the mtDNA**
336 **11778G>A LHON mutation.**

337 The fact that, the two function of CI, NADH:CoQ oxidoreductase and mNHE
338 are independent, raised the possibility that mutations in key CI P-module residues,
339 altering CI NHE activity may alter $\Delta\Psi_{mt}$, independently of their CI NADH:CoQ
340 oxidoreductase activity and H^+ pumping capacity. LHON is a mitochondrial disorder
341 causing central vision loss at early age by degeneration of the optic nerve and it is
342 produced by mutations in mitochondrial DNA (mtDNA)-encoded CI subunits.
343 Particularly, m.11778G>A (Supplementary Video 1), the most common mutation
344 producing LHON, do not show a detectable decrease in neither CI activity^{24,25} (Figure
345 4a-b), CI-III-IV-dependent H^+ pumping (Figure 4c) nor CI assembly (Extended Data
346 Figure 9a). Likewise happened to CI^{KD} , CI^{KO} and cells with only the CI P-module,
347 LHON mitochondria displayed higher CII+III activity (Figure 4d) and, similarly to
348 CI^{KD} , comparable CIV activity than its control (Extended Data Figure 9b), which turned
349 into larger CII-III-IV-dependent H^+ pumping (Figure 4e). However, LHON
350 mitochondria showed lower Na^+ -specific mNHE activity compared to its isogenic
351 control (Figure 4f and Extended Data Figure 9c-e), which translated into a lower Na^+

352 gradient (Figure 4g and h), mitochondrial depolarization (Figure 4i) and decreased
 353 respiration under CI substrates (Figure 4j). These results point out that a specific
 354 mutation in a mtDNA-encoded CI subunit, which do not interfere with its NADH:CoQ
 355 oxidoreductase activity, its assembly nor its H^+ pumping capacity, and only affects its
 356 CI-NHE function, is able to promote defects in the maintenance of $\Delta\Psi_{mt}$ and

Figure 4. CI-NHE activity is specifically altered in LHON. (a) Rotenone-sensitive NADH-decylCoQ oxidoreductase activity in LHON vs control mitochondrial membranes (n=5). (b) CI in-gel activity in control (hWT) and LHON mitochondrial samples. (c) Mitochondrial matrix H^+ pumping measured from the BCEFC-AM signal in hWT and LHON isolated mitochondria respiring on CI substrates in Na^+ -containing buffer (n=3). (d) Antimycin A-sensitive succinate-cyt c oxidoreductase activity in LHON vs hWT mitochondrial membranes (n=4). (e) Mitochondrial matrix H^+ pumping measured from the BCEFC-AM signal in hWT and LHON isolated mitochondria respiring on CII substrates in Na^+ -containing buffer (n=3). (f) Passive swelling NHE activity measured in hWT vs LHON mitochondria (n=5). (g-h) Na^+ gradient in hWT versus LHON isolated mitochondria, incubated with SBFI-AM and respiring on GM (g) or succinate (h) and calculated as the ratio of the matrix Na^+ concentrations determined after and before the addition of rotenone (g) or antimycin A (h; n=5). (i-j) Calibrated TMRM signal (i) and respiration (j) in hWT versus LHON respiring with CI or CII+ADP substrates (n=3). (k) Mitochondrial Ca^{2+} was measured with calibrated Cepia2mt in hWT vs LHON cells before and after stimulation with 100 μM histamine (n=4).

357 respiration, also in intact cells (Extended Data Figure 9f and g).

358 An important factor for the pathogenesis of LHON is the deregulation of
 359 mitochondrial Ca^{2+} management, which plays a particularly important role in the
 360 opening of the mitochondrial permeability transition pore (mPTP)²⁶. Given that
 361 mitochondrial Ca^{2+} homeostasis is tightly linked to mitochondrial Na^+ homeostasis
 362 through the roles of mNHE and NCLX, we wondered whether such a defect in CI-NHE
 363 could lie behind the known defects of LHON mitochondria to handle Ca^{2+} . As such,
 364 given that mNHE function is impaired in LHON, mitochondrial Ca^{2+} entry would be
 365 expected to induce a slighter pH decrease in the matrix than its WT counterpart. Basal
 366 mitochondrial Ca^{2+} levels were higher in LHON (Extended Data Figure 9h). Also, both
 367 mitochondrial Ca^{2+} entry and exit were diminished (Figure 4k and Extended Data
 368 Figure 9i and j), which were not due to alterations in the levels of proteins involved in
 369 the homeostasis of mitochondrial Ca^{2+} (Extended Data Figure 9k and l) or lower
 370 cytosolic Ca^{2+} entry (Extended Data Figure 9m). We measured mitochondrial matrix pH
 371 and observed that, basally, LHON matrix was more acidic (Extended Data Figure 9n),
 372 presumably due to higher CV content and activity (Extended Data Figure 9a and n), and

373 that the pH decrease during mitochondrial Ca^{2+} entry, which is caused by the activity of
374 mNHE coupling Na^+ exit with H^+ entry, was also slighter ([Extended Data Figure 9n](#)). In
375 fact, a similar, or even a deeper phenotype could be observed in Cl^{KO} ([Extended Data](#)
376 [Figure 9p and q](#)). All these results show that the specific decrease in CI-NHE activity in
377 LHON not only directly affects $\Delta\Psi_{\text{mt}}$ and respiration by depolarizing mitochondria and
378 lowering oxygen consumption, but also alters mitochondrial Ca^{2+} management, causally
379 explaining the molecular pathogenesis of a disease-causing mutation with a previously
380 unknown etiology. Indeed, artificial restoration of Na^+/H^+ antiport with monensin was
381 sufficient to reverse the bioenergetic phenotype in LHON mitochondria ([Extended Data](#)
382 [Figure 9r](#)).

383 All in all, we provide here strong evidence supporting that CI conducts the
384 mitochondrial Na^+ -specific mNHE function under both active and deactive forms. The
385 presence of CI-NHE activity as well as the concomitant formation of a mitochondrial
386 Na^+ gradient enables the control of $\Delta\Psi_{\text{mt}}$, in addition to ΔpH , and a more efficient use
387 of substrates in terms of oxygen consumption. Indeed, a specific deficiency in the CI-
388 NHE function, independently of CI NADH:CoQ oxidoreductase activity, contributes to
389 the molecular mechanism of the m.11778G>A mutation at CI through deregulation of
390 mitochondrial Ca^{2+} homeostasis, which is responsible for the mtDNA-linked LHON.
391 The discovery that the Na^+ gradient controls $\Delta\Psi_{\text{mt}}$, together with its tight regulation by
392 a non-canonical NHE function of CI, introduces a new and unexpected layer of
393 regulation to mitochondrial bioenergetics, with extensive implications for neurological
394 physiology and disease.

395

396 **Main references**

397

- 398 1 Hernansanz-Agustin, P. & Enriquez, J. A. Functional segmentation of CoQ and
399 cyt c pools by respiratory complex superassembly. *Free Radic Biol Med* **167**,
400 232-242 (2021). <https://doi.org/10.1016/j.freeradbiomed.2021.03.010>
- 401 2 Mitchell, P. Coupling of phosphorylation to electron and hydrogen transfer by a
402 chemi-osmotic type of mechanism. *Nature* **191**, 144-148 (1961).
403 <https://doi.org/10.1038/191144a0>
- 404 3 Nicholls, D. G. The influence of respiration and ATP hydrolysis on the proton-
405 electrochemical gradient across the inner membrane of rat-liver mitochondria as
406 determined by ion distribution. *Eur J Biochem* **50**, 305-315 (1974).
407 <https://doi.org/10.1111/j.1432-1033.1974.tb03899.x>
- 408 4 Agip, A. A., Blaza, J. N., Fedor, J. G. & Hirst, J. Mammalian Respiratory
409 Complex I Through the Lens of Cryo-EM. *Annu Rev Biophys* **48**, 165-184
410 (2019). <https://doi.org/10.1146/annurev-biophys-052118-115704>
- 411 5 Kampjut, D. & Sazanov, L. A. Structure of respiratory complex I - An emerging
412 blueprint for the mechanism. *Curr Opin Struct Biol* **74**, 102350 (2022).
413 <https://doi.org/10.1016/j.sbi.2022.102350>
- 414 6 Parey, K. *et al.* Cryo-EM structure of respiratory complex I at work. *Elife* **7**
415 (2018). <https://doi.org/10.7554/eLife.39213>
- 416 7 Hamamoto, T. *et al.* Characterization of a gene responsible for the Na^+/H^+
417 antiporter system of alkalophilic *Bacillus* species strain C-125. *Mol Microbiol*
418 **14**, 939-946 (1994). <https://doi.org/10.1111/j.1365-2958.1994.tb01329.x>

- 419 8 Poburko, D. & Demaurex, N. Regulation of the mitochondrial proton gradient
420 by cytosolic Ca(2)(+) signals. *Pflugers Arch* **464**, 19-26 (2012).
<https://doi.org/10.1007/s00424-012-1106-y>
- 421 9 Palty, R. *et al.* NCLX is an essential component of mitochondrial Na+/Ca2+
422 exchange. *Proc Natl Acad Sci U S A* **107**, 436-441 (2010).
<https://doi.org/10.1073/pnas.0908099107>
- 423 10 Hernansanz-Agustin, P. & Enriquez, J. A. Sodium in Mitochondrial Redox
424 Signaling. *Antioxid Redox Signal* (2022). <https://doi.org/10.1089/ars.2021.0262>
- 425 11 Stolpe, S. & Friedrich, T. The *Escherichia coli* NADH:ubiquinone
426 oxidoreductase (complex I) is a primary proton pump but may be capable of
427 secondary sodium antiport. *J Biol Chem* **279**, 18377-18383 (2004).
<https://doi.org/10.1074/jbc.M311242200>
- 428 12 Roberts, P. G. & Hirst, J. The deactive form of respiratory complex I from
429 mammalian mitochondria is a Na+/H+ antiporter. *J Biol Chem* **287**, 34743-
430 34751 (2012). <https://doi.org/10.1074/jbc.M112.384560>
- 431 13 Acin-Perez, R. *et al.* ROS-triggered phosphorylation of complex II by Fgr
432 kinase regulates cellular adaptation to fuel use. *Cell Metab* **19**, 1020-1033
433 (2014). <https://doi.org/10.1016/j.cmet.2014.04.015>
- 434 14 Perales-Clemente, E. *et al.* Five entry points of the mitochondrially encoded
435 subunits in mammalian complex I assembly. *Mol Cell Biol* **30**, 3038-3047
436 (2010). <https://doi.org/10.1128/MCB.00025-10>
- 437 15 Guaras, A. *et al.* The CoQH2/CoQ Ratio Serves as a Sensor of Respiratory
438 Chain Efficiency. *Cell Rep* **15**, 197-209 (2016).
<https://doi.org/10.1016/j.celrep.2016.03.009>
- 439 16 Blondin, G. A., Vail, W. J. & Green, D. E. The mechanism of mitochondrial
440 swelling. II. Pseudoenergized swelling in the presence of alkali metal salts. *Arch
441 Biochem Biophys* **129**, 158-172 (1969). [https://doi.org/10.1016/0003-9861\(69\)90162-3](https://doi.org/10.1016/0003-9861(69)90162-3)
- 442 17 Brierley, G. P., Davis, M. H., Cragoe, E. J., Jr. & Jung, D. W. Kinetic properties
443 of the Na+/H+ antiport of heart mitochondria. *Biochemistry* **28**, 4347-4354
444 (1989). <https://doi.org/10.1021/bi00436a034>
- 445 18 Brierley, G. P., Davis, M. H. & Jung, D. W. Intravesicular pH changes in
446 submitochondrial particles induced by monovalent cations: relationship to the
447 Na+/H+ and K+/H+ antiporters. *Arch Biochem Biophys* **264**, 417-427 (1988).
[https://doi.org/10.1016/0003-9861\(88\)90307-4](https://doi.org/10.1016/0003-9861(88)90307-4)
- 448 19 Brierley, G. P., Jurkowitz, M. & Jung, D. W. Osmotic swelling of heart
449 mitochondria in acetate and chloride salts. Evidence for two pathways for cation
450 uptake. *Arch Biochem Biophys* **190**, 181-192 (1978).
[https://doi.org/10.1016/0003-9861\(78\)90266-7](https://doi.org/10.1016/0003-9861(78)90266-7)
- 451 20 Douglas, M. G. & Cockrell, R. S. Mitochondrial cation-hydrogen ion exchange.
452 Sodium selective transport by mitochondria and submitochondrial particles. *J
453 Biol Chem* **249**, 5464-5471 (1974).
- 454 21 Mitchell, P. & Moyle, J. Respiration-driven proton translocation in rat liver
455 mitochondria. *Biochem J* **105**, 1147-1162 (1967).
<https://doi.org/10.1042/bj1051147>
- 456 22 Nakashima, R. A. & Garlid, K. D. Quinine inhibition of Na+ and K+ transport
457 provides evidence for two cation/H+ exchangers in rat liver mitochondria. *J Biol
458 Chem* **257**, 9252-9254 (1982).
- 459 23 Bianchi, C., Genova, M. L., Parenti Castelli, G. & Lenaz, G. The mitochondrial
460 respiratory chain is partially organized in a supercomplex assembly: kinetic

- 469 evidence using flux control analysis. *J Biol Chem* **279**, 36562-36569 (2004).
470 <https://doi.org/10.1074/jbc.M405135200>
- 471 24 Hofhaus, G., Johns, D. R., Hurko, O., Attardi, G. & Chomyn, A. Respiration and
472 growth defects in transmitchondrial cell lines carrying the 11778 mutation
473 associated with Leber's hereditary optic neuropathy. *J Biol Chem* **271**, 13155-
474 13161 (1996). <https://doi.org/10.1074/jbc.271.22.13155>
- 475 25 Larsson, N. G., Andersen, O., Holme, E., Oldfors, A. & Wahlstrom, J. Leber's
476 hereditary optic neuropathy and complex I deficiency in muscle. *Ann Neurol* **30**,
477 701-708 (1991). <https://doi.org/10.1002/ana.410300511>
- 478 26 Giorgio, V., Guo, L., Bassot, C., Petronilli, V. & Bernardi, P. Calcium and
479 regulation of the mitochondrial permeability transition. *Cell Calcium* **70**, 56-63
480 (2018). <https://doi.org/10.1016/j.ceca.2017.05.004>

481

482 Acknowledgments

483 We thank Dr. Sara Cigliati (CMBSO, UAM-CSIC) for helping with TEM imaging;
484 Andrea Curtabbi, Dr. Demetrio Julián Santiago Castillo, Dr. Silvia Priori (CNIC), Dr.
485 Eduardo Rial (CIB-CSIC) for fruitful discussion, and M. M. Muñoz-Hernandez, R.
486 Martínez de Mena, E.R. Martínez Jiménez, and C. Jiménez for technical assistance.
487 Scheme figures were made with BioRender. PN and ILM would like to thank Dr. Luis
488 Calvo Adiego from the Icarlopsa Slaughterhouse for the generous gift of fresh porcine
489 heart.

490

491

492 Author contributions

493 Conceptualization: PHA and JAE. Methodology: PHA, CM (BN-PAGE of pure CI and
494 OXPHOS mutants), YMM (Opa1 western blot), PN, ILM (Purification and
495 reconstitution of CI in proteoliposomes) and EC (Proteomics). Investigation: PHA.
496 Funding acquisition: JAE and JV. Project administration: JAE. Writing: PHA and JAE.
497 Writing – review & editing: PHA, YMM, SJ, PN, ILM, EC, JV and JAE. PN and ILM
498 would like to thank Dr. Luis Calvo Adiego from the Icarlopsa Slaughterhouse for the
499 generous gift of fresh porcine heart. Microscopy experiments were performed in the
500 Microscopy and Dynamic Imaging Unit.

501

502 Competing interests' declaration

503 Authors declare that they have no competing interests.

504

505 Additional information

506 **Funding:** This study was supported by competitive grants from the *Ministerio de*
507 *Ciencia e Innovación* (MCIN) RTI2018-099357-B-I00, and CIBERFES
508 (CB16/10/00282), Human Frontier Science Program (grant RGP0016/2018), and
509 Leducq Transatlantic Networks (17CVD04) to JAE. PHA is supported by a JdC
510 IJC2020-042679-I, YMM is supported by a FPI-SO fellowship PRE2018-083478. The
511 CNIC has the support of the Carlos III Health Institute (ISCIII), the Ministry of Science
512 and Innovation (MCIN), the Pro CNIC Foundation and is a Severo Ochoa Center of

513 Excellence (CEX2020-001041-S financed by MICIN/AEI / 10.13039/501100011033).
514 ILM acknowledges financial support through the TECNOLOGÍAS 2018 program
515 funded by the Regional Government of Madrid (Grant S2018/BAA-4403
516 SINOXPHOS-CM).

517 **Data and materials availability:** All data are available in the main text or the
518 supplementary materials. Cell lines will be available under a materials transfer
519 agreement (MTAs).

520