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Abstract

Several prior studies have proposed the involvement of various brain regions and cell
types in Parkinson's disease (PD) pathology. Here, we performed snRNA-seq on the
prefrontal cortex and anterior cingulate regions from post-mortem control and PD brain
tissue. We found a significant association of oligodendrocytes (ODCs) and
oligodendrocyte precursor cells (OPCs) with PD-linked risk loci and report several
dysregulated genes and pathways, including regulation of tau-protein kinase activity,
regulation of inclusion body assembly and protein processing involved in protein
targeting to mitochondria. In an independent PD cohort with clinical measures (681
cases and 549 controls), polygenic risk scores derived from the dysregulated genes
significantly predicted Montreal Cognitive Assessment (MoCA)-, and Beck Depression
Inventory-Il (BDI-Il)-scores but not motor impairment (UPDRS-IIl). We extended our
analysis of clinical outcome prediction by incorporating three separate datasets that
were previously published by different laboratories. In the first dataset from the anterior
cingulate cortex, we identified a correlation between ODCs and BDI-II. In the second
dataset obtained from the substantia nigra (SN), OPCs displayed notable predictive
ability for UPDRS-III. In the third dataset from the SN region, a distinct subtype of
OPCs, labeled OPC_ADM, exhibited predictive ability for UPDRS-III. Intriguingly, the
OPC_ADM cluster also demonstrated a significant increase in PD samples. These
results suggest that by expanding our focus to glial cells, we can uncover
region-specific molecular pathways associated with PD symptoms.
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Parkinson's disease (PD) is the second most common neurodegenerative disorder. It is
characterized by the pathologic aggregation of alpha-synuclein and its pathology is
known to progress in a predictable spatiotemporal manner. The spread of the disease
pathology commences in the olfactory bulb and the lower brainstem and moves through
the substantia nigra pars compacta (SN) in the midbrain, eventually reaching the meso-
and neocortical areas’?. PD arises from a complex interplay of various factors, such as
aging, genetic predisposition, and environmental factors. While the cause of PD is
unknown in most cases, specific mutations in genes such as LRRK2 and GBA1 have
been identified to significantly increase the risk of developing the disease, although
likely by affecting different molecular pathways. This may be one reason why the impact
of LRRK2 and GBA1 mutations on clinical presentations may differ’. In recent decades,
transcriptome profiling has emerged as a preeminent methodology for exploring human
pathologies at the molecular and cellular level. In PD, alpha-synuclein pathology has
been shown to be associated with the transcriptional programs of various brain cell
types, including neurons and glial cells®. Furthermore, although the degeneration of
dopaminergic neurons (DA) in PD primarily occurs in the SN region, Lewy bodies can
form in other brain regions, such as the limbic system and the prefrontal cortex®.
Moreover, there has been no investigation into the relative impacts of LRRK2 and GBA1
risk genotypes on transcriptional programs across several brain regions of PD patients.

In this study, we performed single-nucleus RNA-sequencing (snRNA-seq) on the
prefrontal cortex (PFC) and anterior cingulate (ACC) brain regions from the same
individuals (2 LRRK2 PD, 2 GBA1 PD and 2 Healthy Controls) to identify neuronal and
non-neuronal cell-type differences (Figure 1A and Table S1). After data cleaning and
quality control (see Methods), 88,876 high-quality single nuclei were retained. The
clustering of these high-quality nuclei identified 13 clusters covering major cell types in
the brain, i.e. excitatory neurons (ExN), inhibitory neurons (InN), oligodendrocytes
(ODCs), oligodendrocyte precursor cells (OPCs), microglia (MG), astrocytes (Astro) and
vascular cells (Vas) (Figure 1B). While ~50% of the total nuclei were annotated as
ODCs, only 4.3% and 0.5% of nuclei accounted for OPCs and Vas cells, respectively
(Figure 1C). On average, we obtained 7406 high-quality nuclei per sample ranging from
3.6% to 16.5% of the total nuclei (Figure 1C and Table S2). While the percentage of
each cell type varied across the samples, no significant differences (see Methods) in
cell type proportions were observed between brain regions or mutation groups (Figure
1D-E and Table S2). The clusters were annotated based on the expression of
well-known cell-type markers (Figure 1F and Table S3). The top 5 markers of each cell
type cluster are shown in Figure 1G.

Integration of snRNA-seq data, which includes all expressed genes, with PD
genome-wide association studies (GWAS)® showed the strongest association of ODCs
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and OPCs with PD-linked risk loci (Figure 2A and Table S4). Next, we performed
differential expression gene analysis to identify dysregulated genes between PD and
controls in ODCs and OPCs. While 1040 and 543 genes were differentially expressed
between GBA17 and control samples in ODCs and OPCs, respectively, only 278 genes
in ODCs and 108 genes in OPCs were differentially expressed between LRRK2 and
control samples (Figure 2B and Table S5). Using all the DEGs, MAGMA indicated that
OPCs had the highest association with PD-linked risk loci (Figure 2C and Table S6).
The most prominent MAGMA association was observed among DEGs in OPCs when
comparing LRRK2 vs HC, aligning with earlier findings indicating highest LRRK?2
expression in OPCs’. Enriched biological processes in up-regulated DEGs (Figure 2D
and Table S7) exhibited negative regulation of inclusion body assembly (in
GBA1/Control ODCs), regulation of microtubule nucleation (in LRRKZ2/Control ODCs),
positive regulation of tau-protein kinase activity (in GBA1/Control OPCs) and regulation
of protein polymerization (in LRRK2/Control OPCs). On the other hand, enriched
biological processes in down-regulated DEGs exhibited protein processing involved in
protein targeting to mitochondria (in GBA1/Control ODCs), regulation of potassium ion
transport (in LRRK2/Control ODCs), modulation of chemical synaptic transmission (in
GBA1/Control OPCs) and cholesterol biosynthetic process (in LRRK2/Control OPCs).

Next, we performed polygenic prediction in an independent PD cohort from Tuebingen
(681 cases and 549 controls), which has a uniquely rich and detailed set of PD clinical
measures. Polygenic Risk Scores (PRS) were calculated using the GWAS summary
statistics for PD excluding the data from our Tuebingen cohort (see Methods). We
computed four different PRS derived from four gene lists obtained through our analysis
of differential expression in ODCs and OPCs (Table S8). All the scores significantly
predicted case-control status (Table S8). Subsequently, we conducted prediction of PD
measures among patients. We focused on Unified Parkinson Disease Rating Scale-ll|
(UPDRS-III), Montreal Cognitive Assessment (MoCA) and Beck Depression Inventory-Il
(BDI-Il) among PD patients (N ranges from 379 to 514). Significant associations were
observed between GBA1_OPC_DEG score with MoCA, LRRK2_ODC DEG and
LRRK2_OPC_DEG scores with BDI-Il. However, it is noteworthy that none of the scores
were able to predict motor examination measures i.e. UPDRS-III (Table 1).

In order to confirm and broaden our findings beyond cortical regions, we utilized three
distinct single-cell datasets for predicting PD measures using PRS derived from DEGs
in ODCs and OPCs®'° (Table S9). Using a dataset from the first study focusing on the
ACC region®, we uncovered an association between ODC DEGs and BDI-Il (Figure 3A
and Table S10). In the second study centered on the SN region®, we discovered a
substantial association between the OPC DEGs and UPDRS-III (Figure 3B and Table
S10), indicating a potential specificity to different brain regions. To further uncover the
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association of PD measures and subtypes of OPCs and ODCs, we used snRNA-seq
generated by Kamath and colleagues'®, providing well-defined subtypes within the SN
region. As a positive control, we first used DEGs from a highly vulnerable DA neuronal
subpopulation, marked by SOX6_AGTR1. Indeed, as expected the PRS derived from
DEGs in SOX6_AGTR1, were significantly associated with all three PD measures i.e.
UPDRS-IIl, MoCA and BDI-lIl (Figure 3C and Table S10). Intriguingly, besides
SOX6_AGTR1, we found a strong correlation of the OPC_ADM subtype with UPDRS-III
(Figure 3C and Table S10). In addition, BDI-Il was associated with the OPC_ADM,
OPC_HOXD3 and ODC_ENPP6_EMILIN subtypes. It's crucial to highlight that the
OPC_ADM population showed a notable increase in PD samples (figure 3 of Kamath et
al., 2022). Enriched biological processes in OPC_ADM DEGs exhibited distinct terms
like regulation of myelination and glial cell differentiation whereas OPC_HOXD3
exhibited terms like regulation of receptor-mediated endocytosis, neuroblast
proliferation and energy reserve metabolic process (Figure 3D and Table S11).
ODC_ENPP6_EMILIN displayed terms related to wunfolded protein and
chaperone-mediated protein complex assembly (Figure 3D and Table S11). Similar
processes have recently been found to be enriched in PD-associated
oligodendrocytes™, suggesting that oligodendrocytes are affected by protein folding
stress in PD.

To summarize, in this short report, we found a significant association of PD GWAS risk
loci in ODC and OPC expressed genes within PD GWAS risk loci and revealed several
dysregulated genes and pathways, including regulation of tau-protein kinase activity,
regulation of inclusion body assembly and protein processing involved in protein
targeting to mitochondria. Accumulating evidence points out that oligodendrocytes
and/or precursor cells also provide support to neurons via mechanisms beyond the
insulating function of myelin'>'. Therefore, it is tempting to speculate that the
abnormally regulated pathways, which extend beyond myelination, such as those
involved in metabolic support to neurons, may contribute to the pathology of PD. Here,
we would also address certain limitations of our study. We recognize that the sample
sizes of the newly generated data in this study are comparatively small. Therefore, we
utilized three distinct single-cell datasets from previously published studies to validate
our findings. However, it is crucial to highlight that not all datasets exhibit uniform
distribution in terms of age, gender, and mutations. Additionally, we are currently
expanding our Tuebingen cohort to enhance the predictive power of clinical outcomes.
In the future, it will be essential to integrate and replicate the results in a larger cohort
characterized by a balanced metadata. It is noteworthy that in line with our results,
previous studies indicate a significant enrichment of PD heritability in glial cell types like
oligodendrocytes and astrocytes'"". Two decades ago, Wakabyashi et al., observed an
abnormal accumulation of alpha-synuclein in the oligodendrocytes within the substantia
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nigra of PD patients'. By integrating GWAS results with single-cell transcriptomic data,
Bryois et al., and Agarwal et al., observed oligodendrocytes and oligodendrocyte
precursor cells to be significantly associated with PD'®'". Moreover, while the loss of DA
neurons in the SN region of the midbrain is a well-known pathological hallmark of PD
closely associated with motor symptoms, it is important to note that PD patients also
encounter various non-motor symptoms, including cognitive and psychopathological
manifestations'®. Szabolcs and colleagues found higher rates of psychiatric morbidity
(especially mood disorders, cognitive impairment, anxiety disorders, schizophrenia) in
the premotor phase of PD and these were more common in PD patients before PD
diagnosis®. In line with this, the polygenic predictions in this study showed notable
associations with non-motor symptoms, suggesting a crucial involvement of glial cells in
neuropsychiatric symptoms that may extend beyond the SN region of the midbrain. On
the other hand, significant correlation between OPC subpopulation in the SN region and
PD motor symptoms implies region-specific alterations of molecular pathways in glial
cells. Altogether, we anticipate that our study will serve as a valuable resource and
prompt further research into the involvement of oligodendrocytes and oligodendrocyte
precursor cells in the pathology of PD.

Methods

Samples used in this study

The research was conducted using fresh-frozen postmortem brain tissues obtained from
four PD patients, two of which had the LRRK2 p.G2019S mutation and the other two
had the GBA71 mutation (one with p.L444P and one with p.E326K), along with two
healthy controls. All donors were males, aged between 65 and 80, and PD patients had
Lewy body Braak stages of 5-6. Two brain regions, namely the prefrontal cortex and
anterior cingulate cortex, were investigated for each donor. All tissues were procured
from the Netherlands brain bank except one LRRKZ2 brain from UCL Queen Square
Brain Bank for Neurological Disorders, following the policies and regulations of the
institutional ethics board at the University Hospital Tuebingen in Germany. For
transcriptome analysis, single nuclei were extracted from all samples, and snRNA-seq
was performed. The clinical characteristics of the donors have been elaborated in Table
S1.

Generation of single nuclei from postmortem human brains

The process of isolating nuclei entails the utilization of a detergent lysis technique,
where a detergent is employed to break down the cellular membranes, followed by the
centrifugal separation of the nuclei. In brief, 300 mg of post-mortem brain tissue was
dounce-homogenized in 2 ml of Nuclei EZ Prep Lysis Buffer (Sigma Aldrich, MA, USA)
spiked with 0.2 U pl-1 RNase inhibitor (Sigma Aldrich, MA, USA) , 3.3 ul DTT (Thermo
Fisher Scientific, MA, USA) and 33 pul of 10% Triton X100 which were added before
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incubating on ice for 5 minutes in a final volume of 10 ml. Homogenized tissue was
washed with 3-4 ml washing buffer which was fresh PBSB 1% and then was filtered
through a 70-um cell strainer (BD Bioscience, NY, USA). Then using a long tube, 10 ml
of 1.8 M ice-cold sucrose cushion solution is added to each sample i.e the roughly 3 ml
lysate. After carefully and completely discarding the supernatant and the sucrose
cushion layer containing debris and myelin, 1 ml PBS buffer added to resuspend the
nuclei and 4 ml nuclei suspension buffer (1% BSA-PBS solution). It was finally
centrifuged on 500 g for 5 minutes. At the end, 2 ul DAPI (Sigma Aldrich, MA, USA) with
the concentration of 1:100 was added to stain the nuclei. Final centrifugation step on
500 g for 5 minutes was preceded by incubating the DAPI added suspension for 15-20
minutes in the cold & dark room on the rotation wheel at 4 C. Sorting buffer which
consists of 99 yl PBS and 1 pl RNase inhibitor (Sigma Aldrich, MA, USA) was added to
resuspend the nuclei and make them ready for quality/quantity inspection and then to
run on a 10x genomic chromium controller. Quality assessment was performed using
fluorescence-activated cell sorting (FACS) to detect all DAPI-positive events, i.e.
individual nuclei comprising more than 95 % of all events.

Droplet-based snRNA-seq using 10x Genomics

Single-nuclei suspension concentration was determined by automatic cell counting
(DeNovix CellDrop, DE, USA) using an AO/PI viability assay (DeNovix, DE, USA) and
counting nuclei as dead cells. Single-nucleus gene expression libraries were generated
using the 10x Chromium Next gel beads-in-emulsion (GEM) Single Cell 3’ Reagent Kit
v3.1 (10x Genomics, CA, USA) according to manufacturer’s instructions. In brief, cells
were loaded on the Chromium Next GEM Chip G, which was subsequently run on the
Chromium Controller (10x Genomics, CA, USA) to partition cells into GEMs. Cell lysis
and reverse transcription of poly-adenylated mRNA occurred within the GEMs and
resulted in cDNA with GEM-specific barcodes and transcript-specific unique molecular
identifiers (UMIs). After breaking the emulsion, cDNA was amplified by PCR,
enzymatically fragmented, end-repaired, extended with 3' A-overhangs, and ligated to
adapters. P5 and P7 sequences, as well as sample indices (Chromium i7 Multiplex kit,
10x Genomics, CA, USA), were added during the final PCR amplification step. The
fragment size of the final libraries was determined using the Bioanalyzer
High-Sensitivity DNA Kit (Agilent, CA, USA). Library concentration was determined
using the Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific, MA, USA). snRNA
libraries were pooled and paired-end-sequenced on the lllumina NovaSeq 6000
platform (lllumina, CA, USA).

snRNA-seq quality control
Samples were demultiplexed using lllumina's bcl2fastq conversion tool and the 10x
Genomics pipeline Cell Ranger count v6.0.1 to perform alignment against the 10x
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Genomics pre-built Cell Ranger reference GRCh38-2020-A (introns included), filtering,
barcode counting, and UMI counting. As a default, a cut-off value of 200 unique
molecular identifiers expressed in at least 3 cells was used to select nuclei of sufficient
complexity for further analysis. Each sample’s count was normalized by the
SCTransform method in Seurat v4.1.0?" with mitochondrial reads regressed out. Two
approaches were combined for quality control: (1) Doublets and multiplets were filtered
out using DoubletFinder v2.0.3% for each individual sample; (2) outliers with a high ratio
of mitochondrial and ribosomal counts (each >10%) and cells with low a number of
genes (N < 1000) were removed. The core statistical parameters of DoubletFinder used
to build artificial doublets for true doublet classification were determined automatically
using recommended settings. After applying these filtering steps on 105,781 input
nuclei, the dataset contained 88,876 high-quality single nuclei that were eligible for
further analysis. We used the speckle R package v0.99.7 to analyze differences in cell
type proportions®. We used the propeller function with CellType, SamplID and
Mutation/Region columns from the Seurat MetaData object as input for clusters, sample
and group, respectively.

Cell annotations and differential expression

After combining all samples into a single Seurat object, genes were projected into
principal component space using the principal component analysis (RunPCA). Harmony
R package? was used for integration as well as for removing unwanted effects across
subjects. The first 12 PC dimensions of data processed with Harmony were used as
inputs into the FindNeighbours, FindClusters (at 0.1 resolution obtained out of a range
of tested resolutions (0.1, 0.2, 0.5, 1.0)) and RunUMAP functions of Seurat. In brief, a
shared-nearest-neighbor graph was constructed on the basis of the Euclidean distance
metric in principal component space, and cells were clustered using the Louvain
algorithm. The RunUMAP function with default settings was used to calculate 2D UMAP
coordinates and search for distinct cell populations. Cluster markers and differential
expression testing was performed on Seurat “RNA” assay containing seurat
log-normalized counts using default Wilcoxon method implemented in Seurat v4.1.0.
Differential gene expression test between cases and controls was performed for each
cell type using the Wilcoxon ranked sum method implemented within the FindMarkers
function. Gene ontology enrichment analysis for biological processes was performed
using EnrichR®. In addition, hierarchical clustering of enriched GO terms was
performed for a set of paired comparisons, including LRRK2 vs. HC and GBA17 vs. HC
brains, in which differentially expressed genes showed significant enrichment (Adjusted
P-Value < 0.05).
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Cell-type association with genetic risk of PD

Association analysis of cell type-specific expressed genes with genetic risk of PD was
performed as described previously®, using Multi-marker Analysis of GenoMic
Annotation (MAGMA) v2.0.2, in order to identify disease-relevant cell types in the
data®”?®, MAGMA, as a gene set enrichment analysis method, tests the joint association
of all SNPs in a gene with the phenotype, while accounting for LD structure between
SNPs. Competitive gene set analysis was performed on SNP p-values from the latest
PD GWAS summary statistics including 23andMe data and the publicly available
European subset of 1000 Genomes Phase 3 was used as a reference panel to estimate
LD between SNPs. SNPs were mapped to genes using NCBI GRCh37 build (annotation
release 105). Gene boundaries were defined as the transcribed region of each gene. An
extended window of 10 kb upstream and 1.5 kb downstream of each gene was added to
the gene boundaries.

Polygenic Risk Scores (PRS)

Using summary statistics data from PD meta GWAS (https://pdgenetics.org/resources),
we performed a comprehensive annotation using the Region Annotation function in
Annovar?® to find all genes corresponding to the SNPs in the whole genome and then
generated the GWAS gene list. We performed an overlap analysis between the GWAS
annotated genes and gene lists obtained from our differential expression comparisons
in ODCs and OPCs. Next, we retrieved SNPs in each of the gene lists, including MAF,
beta, and p-value from the base data summary statistics. For the prediction, we used
imputed genotypes of 681 cases and 549 controls from the Tuebingen cohort*°, which
were not included in the base data. To construct polygenic risk score (PRS) models, we
utilized the R package PRSice2 v2.3.5%'. We applied clumping procedure using r2>0.1
and 1000 kb as the clumping parameters in PRSice2 and a p-value of 0.05 was chosen
as the threshold to exclude non-significant SNPs. In other words, lead SNPs with a
p-value of 0.05 from the LD-clumped list were included in the calculation of PRS used in
the regression models. The null model is a logistic regression model that measures the
power of covariates including age, sex, and genetic principal components (PC1-4) in the
prediction of PD status, whereas the full model adds the PRS to the null model, thereby
isolating the additive influence of the PRS on risk prediction. The R? was also adjusted
for an estimated PD prevalence of 0.005 on the liability scale. To predict the clinical
measures, PRS were included in a linear regression model using the “Im” function in R.
Standardized beta was obtained using the “Im.beta” function.

Publicly available datasets used in this study

We used three published snRNA-seq datasets from human postmortem specimens: (1)
Feleke et al., anterior cingulate cortex® (n = 7 per group PD vs Controls, proportion
female: control=1/7, PD=5/7), (2) Lee et al., substantia nigra® (n = 6 PD vs n = 13
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Controls, proportion female: control =4/13, PD = 3/6), and (3) Kamath et al., substantia
nigra' (n = 7 PD vs n = 8 Controls, proportion female: control =6/8, PD = 2/7). With the
exception of Kamath et al., DEGs were directly obtained from the respective studies.
DEGs between cases and controls from Kamath et al., were calculated using the
Wilcoxon ranked sum method as implemented in Seurat’s FindMarkers function (Seurat
v4.3.0.1). DEGs were computed for each cell type subpopulation based on
subpopulations defined in Kamath et al. Filtered gene expression matrices and
subpopulation annotations for Kamath et al. data were downloaded from Single Cell
Portal (https://singlecell.broadinstitute.org/single_cell/study/SCP1768/) and converted
into Seurat objects for log-normalization and differential gene expression analysis.
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Main figure legends

Figure 1: Overview of snRNA-seq profiling in the human post-mortem brain tissues. (A)
Schematic overview of the experimental plan. (B) Uniform manifold approximation and
projection (UMAP) visualization of the snRNA-seq clusters from 88,876 high quality nuclei. (C)
Percentage of nuclei for each cell type across samples, mutation group and brain regions. (D)
UMAP embeddings of nuclei colored by mutation group and brain regions. (E) Barplot displaying
the distribution of cell-type percentage sample-wise. (F) Violin plot illustrating the expression
distribution of known gene markers. (G) Genes most up-regulated in identified cell types:
excitatory neurons (ExN), inhibitory neurons (InN), oligodendrocytes (ODCs), oligodendrocyte
precursor cells (OPCs), microglia (MG), astrocytes (Astro) and vascular cells (Vas).

Figure 2: Association of PD susceptibility with ODCs and OPCs. (A) Multi-marker analysis
of genomic annotation (MAGMA) gene set enrichment based on all the 88,876 high quality
nuclei showed significant associations with oligodendrocytes (ODCs) and oligodendrocyte
precursor cells (OPCs). (B) Number of differentially expressed genes (DEGs) in each
comparison and cell-type. (C) MAGMA gene set enrichment based on DEGs in LRRK2 vs HC
(upper) and in GBA1 vs HC (lower). (D) Gene ontology enrichment analysis of up-regulated
(left) or down-regulated (right) genes. Top five biological process terms for each gene list are
indicated. Enrichr combined score is calculated by the logarithmic transformation of the p-value
obtained from Fisher's exact test, multiplied by the z-score representing the deviation from the
expected rank.

Figure 3: Polygenic prediction of PD measures using the ODCs and OPCs DEGs in
publicly available datasets. (A-C) Prediction of clinical outcomes using Feleke et al., 2021
from anterior cingulate cortex region (A), Lee et al., 2023 from substantia nigra region (B) and
Kamath et al., 2022 from substantia nigra region (C). (D) Gene ontology enrichment analysis

of DEGs in predictive subpopulation of cell-types in Kamath et al., 2022 from substantia nigra
region. Top five biological process terms for each gene list are indicated.

Supplementary table legends

Table S1: Sample overview with meta-data.

Table S2: Number of nuclei for cell types across samples, mutation group and brain regions.
Table S3: Known and identified cluster markers.

Table S4. MAGMA snRNA-seq cell-type enrichment results for PD GWAS.

Table S5: Differentially expressed genes in snRNA-seq for ODCs and OPCs.
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Table S6: MAGMA snRNA-seq cell-type enrichment results for PD GWAS using DEGs.
Table S7: Enriched gene ontology terms for DEGs in ODCs and OPCs.

Table S8: Polygenic risk scores in Tuebingen PD cohort with case-control prediction.
Table S9: Differentially expressed genes in ODCs and OPCs of publicly available datasets.

Table $10: Polygenic prediction of PD measures using the ODCs and OPCs DEGs in publicly
available datasets.

Table $11: Enriched gene ontology terms for DEGs in predictive subpopulation of cell-types in
Kamath et al., 2022 from substantia nigra region.
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Table 1: Polygenic prediction of Parkinson’s measures in the Tuebingen patient
sample.

Montreal Beck
UPDRS-III Cognitive  Depression
Assessment Inventory-ll
N 514 450 379
GBA1 model
GBA1_ODC_DEG th’;dar vized -0.019 0.005 -0.049
P value 0.668 0.474 0.345
GBA1_OPC_DEG th’;dar vized 0.006 0.090** 0.018
P value 0.891 0.049 0.739
Adj. R? 0.038 0.145 0.024
Model P value 4.8x10* 1.3x10" 0.029
LRRK2 model
LRRK2 ODC_DEG Standardized 0.032 -0.072 0.092*
beta
P value 0.457 0.103 0.072
LRRK2_OPC_DEG th’;dar dized 0.006 0.025 01524
P value 0.895 0.570 0.003
Adj. R? 0.039 0.143 0.050
Model P value 4.1x10* 2.5x1013 6.4x10*

Notes: Linear regression using the sex, age and genetic principal components as control
variables. *denotes significance at P < 0.1. **denotes significance at P < 0.05. ***denotes
significance at P < 0.01. UPDRS, Unified Parkinson Disease Rating Scale; ODC,
Oligodendrocytes; OPC, Oligodendrocyte precursor cells; DEG, differentially expressed genes.
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