

1 **Main Manuscript for:**

2 **Cyclic and pseudo-cyclic electron pathways play antagonistic roles**
3 **during nitrogen deficiency in *Chlamydomonas reinhardtii***

4
5 Ousmane Dao¹*, Adrien Burlacot^{2,3}, Felix Buchert⁴, Marie Bertrand¹, Pascaline Auroy¹, Carolyne
6 Stoffel², Jacob Irby², Michael Hippler^{4,5}, Gilles Peltier¹, Yonghua Li-Beisson¹*

7
8 ¹Aix Marseille Univ, CEA, CNRS, Institute of Biosciences and Biotechnology of Aix Marseille, BIAM,
9 CEA Cadarache, Saint Paul-Lez-Durance, France

10 ²Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA, 94305 USA

11 ³Department of Biology, Stanford University, Stanford, CA, 94305, USA

12 ⁴Institute of Plant Biology and Biotechnology, University of Münster, 48143 Münster, Germany

13 ⁵Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan

14
15 *Correspondence to: Yonghua Li-Beisson (yonghua.li@cea.fr) or Ousmane Dao
16 (ousmanedao17@yahoo.fr)

17
18 **ORCID IDs:** 0000-0002-7040-5770 (O.D.), 0000-0001-7434-6416 (A.B.), 0000-0001-6704-6634 (F.B.),
19 0000-0001-5098-1554 (M.B.), 0000-0002-3376-6550 (P.A.), 0000-0002-4078-6250 (C.S.), 0000-
20 0001-9670-6101 (M.H.), 0000-0002-2226-3931 (G.P.), 0000-0003-1064-1816 (Y.L.-B.)

21
22
23 **Competing Interest Statement:** There are no conflicts of interest.

24
25 **Classification:** Biological Sciences: Plant Biology

26
27 **Keywords:** Nitrogen deficiency; Flavodiiron proteins; Cyclic electron flow; Triacylglycerol;
28 Photosynthetic regulation

29
30
31 **This PDF file includes:**

32
33 Main Text
34 Figures 1 to 5

35
36
37
38
39
40
41

42 **Abstract (250 words)**

43

44 Nitrogen (N) scarcity is a frequently encountered situation that constrains global
45 biomass productivity. In response to N deficiency, cell division stops and
46 photosynthetic electron transfer is downregulated, while carbon storage is enhanced.
47 However, the molecular mechanism downregulating photosynthesis during N
48 deficiency and its relationship with carbon storage are not fully understood. The
49 Proton Gradient Regulator-like 1 (PGRL1) controlling cyclic electron flow (CEF) and
50 Flavodiiron proteins involved in pseudo-(CEF) are major players in the acclimation of
51 photosynthesis. To determine the role of PGRL1 or FLV in photosynthesis under N
52 deficiency, we measured photosynthetic electron transfer, oxygen gas exchange and
53 carbon storage in *Chlamydomonas pgrl1* and *flvB* knockout mutants. Under N
54 deficiency, *pgrl1* maintains higher net photosynthesis and O₂ photoreduction rates,
55 while *flvB* shows a similar response compared to control strains. Cytochrome *b*₆*f* and
56 PSI are maintained at a higher abundance in *pgrl1*. The photosynthetic activity of *flvB*
57 and *pgrl1 flvB* double mutants decreases in response to N deficiency similar to the
58 control strains. Furthermore, the preservation of photosynthetic activity in *pgrl1* is
59 accompanied by an increased accumulation of triacylglycerol depending on the
60 genetic background. Taken together, our results suggest that in the absence of
61 PGRL1-controlled CEF, FLV-mediated PCEF maintains net photosynthesis at a high
62 level and that CEF and PCEF play antagonistic roles during N deficiency. It further
63 illustrates how nutrient status and genetic makeup of a strain can affect the regulation
64 of photosynthetic energy conversion in relation to carbon storage and provides new
65 strategies for improving lipid productivity in algae.

66

67 **Significance statement**

68

69 Nitrogen (N) deficiency, an often-encountered phenomenon in nature, results in
70 growth arrest, downregulation of photosynthesis and massive carbon storage in
71 microalgae. However, more mechanistic insights involved in tuning photosynthetic
72 electron transfer during N deficiency are required. Here, we provide evidence that a
73 well-conserved protein in chlorophytes, the Proton Gradient Regulator-like 1
74 (PGRL1), is a key regulator of photosynthesis during N deficiency. In its absence,
75 cells exhibited sustained photosynthesis thanks to the Flavodiiron (FLV) proteins. We
76 propose that both PGRL1 and FLV, by having antagonistic roles in N deficiency,
77 manage the redox landscape, carbon storage and biomass production. Our work
78 revolves around the current paradigm of photosynthesis regulation during N
79 deficiency and provides a new framework for improving biomass production and
carbon storage in microalgae for biotechnological purposes.

80 **Introduction**

81 Nitrogen (N) deficiency is one of the most harsh environmental situation that
82 constrains global primary biomass productivity in all ecosystems (1–3). Under N
83 deficiency, cell division stops and photosynthetic CO₂ assimilation is downregulated,
84 the carbon and energy being used to synthesize starch and triacylglycerols (TAGs)
85 (4–7). The downregulation of photosynthetic electron transfer (PET) reactions,
86 together with a re-routing of the excess reducing power towards carbon storage,
87 prevents the over-production of reactive oxygen species, thus ensuring cell fitness
88 (8–12).

89 Due to the variability in their natural habitat, microalgae must constantly adjust
90 the photosynthetic conversion of energy to match the metabolic demand and have
91 therefore developed a set of regulatory mechanisms to fine-tune electron transfer
92 reactions. During photosynthesis, energy in the form of ATP and NADPH is mostly
93 produced by the linear electron flow (LEF) (13). The balance of ATP and NADPH is
94 essential for optimal CO₂ capture and metabolism to which cyclic electron flow (CEF)
95 and pseudo-cyclic electron flow (PCEF) play a critical role (14–18). Two pathways of
96 CEF around PSI have been described in the green microalga *Chlamydomonas*
97 *reinhardtii* (*Chlamydomonas* hereafter), one involving the type II NADPH
98 dehydrogenase (NDA2) (19), and the other being controlled by the proton gradient
99 regulator 5 (PGR5)/PGR-like 1 (PGRL1) proteins (20).

100 Recent work in *Chlamydomonas* provided evidence that PGR5 and PGRL1
101 are involved in CEF (20–22). Hereby PGR5 is required for efficient stromal electron
102 intake into the cytochrome *b*₆*f* complex (Cyt *b*₆*f*) (23). Its deletion thereby strongly
103 disturbs the Mitchellian Q cycle (23). Also, deletion of PGRL1 impacts CEF in
104 *Chlamydomonas* (20, 21). Despite the fact that PGRL1 has been implicated in
105 plastoquinone reduction during CEF (24), it appears that PGRL1 is rather important
106 for PGR5 expression and protein stability, as in the absence of PGRL1, PGR5 is
107 strongly diminished, mimicking PGR5 dependent phenotypes (21, 25, 26).

108 Both CEF pathways reduce the plastoquinone (PQ) pool by using either
109 NADPH or ferredoxin (Fd) as electron donor respectively (19, 24, 27). CEF has been
110 shown to contribute to the acidification of thylakoid lumen by generating an extra
111 proton motive force (*pmf*) in addition to the one produced by LEF (19, 20, 28, 29).
112 PCEF mediated by Flavodiiron proteins (FLVs), by transferring electrons toward O₂ at
113 the acceptor side of PSI, also contributes to the establishment of the *pmf* and
114 therefore to the lumen acidification (30–32). The *pmf* is used to either (1) produce
115 ATP (33), (2) trigger light energy quenching via a low luminal pH (34–36), (3) convert
116 HCO₃[−] into CO₂ thanks to carbonic anhydrase in the lumen (32) or (4) repress
117 electron transfer at the level the Cyt *b*₆*f* complex through the photosynthetic control
118 triggered by the low luminal pH (28, 37–40). Both CEF and PCEF have been shown
119 to be critical under various conditions of light, CO₂ availability or sulfur deficiency by
120 playing a synergistic role (14, 31, 32, 41, 42).

121 Despite the importance of CEF and PCEF in response to dynamic
122 environments, little is known about their role during N deficiency. The role of NDA2-
123 involved CEF have been recently addressed during CO₂-limiting photoautotrophic N
124 deficiency and the knockdown of NDA2 was shown to impair the establishment of
125 non-photochemical quenching (29). The role of PGRL1/PGR5-controlled CEF has
126 been investigated under mixotrophic N deficiency and the lack of PGRL1 was shown
127 to decrease the rate of CEF and TAG production (43). However, the role of PGRL1
128 during photoautotrophic N deficiency and the possible bioenergetic interactions
129 between carbon/energy sinks (TAG and starch) and CEF or PCEF pathways that

130 generate ATP has not yet been explored so far. Considering that massive carbon
131 reallocation occurs under N deficiency (4), the bioenergetics governing this
132 reallocation are likely critical. Fully understanding photosynthesis regulatory
133 pathways and how they affect biomass production and reserve formation is needed
134 towards engineering photosynthesis and carbon storage in conditions of nutrient
135 deficiency.

136 Here, we evaluated the contribution of PGRL1/PGR5-controlled CEF in the
137 regulation of photosynthesis during N deficiency and evaluate its metabolic
138 consequences on carbon storage in *Chlamydomonas* cells grown in photoautotrophic
139 conditions under non-limiting CO₂ concentrations (using 1% CO₂-enriched air),
140 conditions which favor the accumulation of carbon reserves (7, 44, 45). By monitoring
141 photosynthetic activity based on chlorophyll fluorescence and O₂ exchange rate
142 measurements, we observed high net photosynthetic activity in PGRL1-deficient
143 strains under N deficiency compared to the control strains. Furthermore, the lack of
144 PGRL1 in 137AH genetic background resulted in an over-accumulation of TAGs.
145 Those effects being suppressed in double mutants deficient in both PGRL1 and
146 FLVB. We conclude that FLVs, by maintaining a strong PCEF activity in the *pgrl1*
147 mutants, catalyze high photosynthetic rates. Finally, we discuss how modulating
148 photosynthetic electron flow could constitute an efficient strategy to improve
149 photosynthesis and eventually boost further TAG production under N deficiency.

150

151 **Results**

152 **Photosynthetic activity sustained longer in *pgrl1* under N deficiency**

153 To assess the role of the PGRL1/PGR5-controlled CEF in the regulation of
154 photosynthesis during photoautotrophic N deficiency, we simultaneously monitored
155 chlorophyll fluorescence and O₂ exchange following a dark-light-dark transition in N-
156 replete and N-deprived cells. We compared the photosynthesis efficiency of a
157 PGRL1-deficient strain (*pgrl1*_{137AH}) with its control wild-type strain (137AH) and a
158 complemented line (20) (**Fig. 1 and Supplemental Fig. S1 and S2**). Under N replete
159 conditions, both chlorophyll fluorescence and O₂ exchange patterns were mostly
160 similar in *pgrl1*_{137AH} and control cells (**Fig. 1A, C, E and F and Supplemental Fig.**
161 **S1 B-C**). After 2 days of N deficiency, the PSII operating yield measured in the light
162 decreased by about 75% in the wild-type and only by 35% in *pgrl1* (**Fig. 1A, B, and**
163 **E; Supplemental Fig. S1C and E**). Conversely, *pgrl1*_{137AH} showed twice higher net
164 O₂ evolution and light-dependent O₂ uptake as compared to the wild-type (**Fig. 1D,**
165 **F**). As previously reported (5, 46), the dark O₂ consumption rate was stimulated in the
166 137AH strain during N deficiency, this effect being reduced in *pgrl1*_{137AH} (**Fig. 1D;**
167 **Supplemental Fig. S2B**). By using *pgrl1*_{137AH} complemented line *pgrl1*::PGRL1-2
168 (20), we noticed a full recovery of all the observed phenotypes (**Fig. 1 E-G;**
169 **Supplemental Fig. S1 and S2**). To further strengthen the phenotype-genotype
170 relationship, we generated an additional *pgrl1*_{CC125} mutant in the CC125 wild-type
171 genetic background using CRISPR-Cas9. In line with our observation in the 137AH
172 background (**Fig. 1E-F**), we detected a sustained retention of photosynthetic PSII
173 yield and higher net O₂ evolution in the *pgrl1*_{CC125} during N deficiency compared to
174 CC125 (**Supplemental Fig. S3**). The higher O₂ consumption under N deficiency in
175 the dark-adapted 137AH strain from **Fig. 1D** was independent of PGRL1 in the
176 CC125 background (**Supplemental Fig. S3 D-E**). The preservation of photosynthetic
177 activity in *pgrl1* suggests that PGRL1-controlled CEF contributes to repressing the
178 PET reactions under photoautotrophic N deficiency.

179

180 **The PGRL1 modulates the PSI donor and acceptor side during N deficiency**

181 The PGRL1/PGR5-controlled CEF is a determinant of the downstream PSI electron
182 fate which prompted us to monitor P700, the primary PSI donor (**Fig. 2**;
183 **Supplemental Fig. S4**). P700 forms three populations and only the first two are
184 photo-oxidizable: 1. PSI donor shortage generates P700⁺ in the environmental light,
185 2. PSI yield quantifies P700⁻ during environmental acclimation that converts within
186 the ms range to P700⁺ upon a saturating light pulse, and 3. PSI acceptor side
187 limitation represents a redox-inactive P700 pool (see Materials and Methods). In the
188 absence of PGRL1/PGR5-controlled CEF the redox-inactive P700 pool is enhanced
189 under CO₂-limiting conditions (47). This was also observed in the 137AH genetic
190 background when *pgrl1* was grown photoautotrophically under 1% CO₂ (**Fig. 2A, B**).
191 The failure to produce P700⁺ in the light gradually developed within 0.5 s and
192 persisted throughout the illumination period (**Fig. 2A, B**). However, *pgrl1* did not
193 display lower PSI yields, typically detected in ambient CO₂ (48), since the diminished
194 P700⁺ was due to lower donor side limitation (**Fig. 2B**). The P700 differences in *pgrl1*
195 relied on PSII activity, pointing to a LEF/CEF entanglement. N depletion further
196 increased the P700⁺ pool in a strictly donor side-dependent fashion in both wild-type
197 and mutant. Nevertheless, *pgrl1* displayed twice the PSI acceptor side limitation
198 when PSII was active. Moreover, the mutant showed a delayed P700⁺ formation
199 within the first 200 ms of light when PSII was inhibited (**Fig. 2A**). The latter feature
200 was also displayed in N-deficient CC125 under DCMU conditions (**Supplemental**
201 **Fig. S4A**). This genetic background showed identical photo-oxidizable P700 pools
202 between wild-type and mutant in the presence of N, with *pgrl1* producing slightly
203 higher acceptor side limitation (**Supplemental Fig. S4B**). N depletion came at the
204 expense of PSI yields and *pgrl1* failed to alleviate the PSI acceptor side through
205 sufficient donor side induction. These results suggest that PGRL1-controlled CEF
206 facilitates the onset of photosynthetic control during photoautotrophic N deficiency by
207 inducing a donor side limitation at PSI to alleviate its acceptor side redox pressure.
208

209 **FLV-mediated O₂ photoreduction drives photosynthesis in *pgrl1* under N
210 deficiency**

211 Because light-dependent O₂ uptake can lead to the generation of extra ATP and
212 support CO₂ fixation but at various levels depending on the mechanism involved (18),
213 we sought to test the nature of the light-dependent O₂ uptake mechanism activated in
214 *pgrl1* mutants during N deficiency (**Fig. 1D**). FLVs have been reported to be a major
215 O₂ uptake mechanism in the light (31, 32, 49). *pgrl1 flvB* double mutants impaired in
216 both PGRL1 and FLVB have been recently generated by crossing the *pgrl1*_{137AH} with
217 a FLVB deficient strain (*flvB21*) as described in (32). Therefore, we used the parental
218 lines as control strains (*flvB-21* and *pgrl1*_{137AH}) as well as sibling strains from the
219 progeny of the crossing (WT1 and WT3) harboring both FLV and PGRL1 proteins
220 (**Supplemental Fig. S1A**). The two mutants (*pgrl1 flvB-3* and *pgrl1 flvB-5*) and
221 control sibling (WT1 and WT3) strains used throughout the manuscript have been
222 chosen for having similar maximal photosynthesis under N-replete conditions (V_{Max})
223 (18, 32). For all the experiments, we kept the *pgrl1*_{137AH} alongside with its control
224 137AH and *pgrl1::PGRL1-2; flvB* mutants (*flvB21*, *flvB208* and *flvB308*) alongside
225 with their control CC4533 and finally *pgrl1 flvB-3* and *pgrl1 flvB-5* alongside WT1 and
226 WT3 as control. We evaluated steady-state O₂ exchange rate in *pgrl1*_{137AH}, *flvB*
227 mutants as well as in the *pgrl1 flvB* double mutants after 2 days of N deficiency (**Fig.**
228 **3**). The light-dependent O₂ uptake was highly increased in *pgrl1*_{137AH} but strongly

229 impaired in *flvB* and *pgrl1 flvB* mutants (**Fig. 3A; Supplemental Fig. S2**) which
230 mirrors what has been reported for N-replete conditions in the presence of
231 atmospheric CO₂ level (31, 32). Interestingly, while the gross O₂ uptake, the gross O₂
232 and the net O₂ evolution measured during steady-state photosynthesis remained high
233 in *pgrl1*_{137AH}, no difference was detected between *flvB*, *pgrl1 flvB* mutants and their
234 respective control lines (**Figure 3B-D and Supplemental Fig. S2**). Taken together,
235 these data show that the absence of FLV-mediated O₂ photoreduction (in *pgrl1 flvB*
236 mutants) suppresses the effect of N deficiency observed in *pgrl1*_{137AH} strain. We
237 conclude that FLV-mediated O₂ photoreduction, by maintaining PET reactions in
238 *pgrl1*, allows net photosynthesis to be maintained at a high-level during N deficiency.
239

240 **Cyt b₆f and PSI subunits accumulate to higher levels in *pgrl1* under N
241 deficiency**

242 To gain insights into the mechanisms behind the high photosynthetic activity in *pgrl1*
243 during N deficiency, we compared the relative abundance of representative catalytic
244 core subunits from photosynthetic complexes in the *pgrl1*_{137AH} and the 137AH wild-
245 type during N deficiency (**Fig. 4A and D**). Additionally, we also investigated potential
246 changes in mitochondrial electron transport chain by probing Complex II (Cox IIB).
247 We observed a sustained retention of the PSI subunit PsaD and Cyt f subunit of Cyt
248 *b₆f* in *pgrl1*_{137AH} compared to the 137AH (**Fig. 4A and D**). Higher amounts of PsaD
249 and Cyt f were observed in *pgrl1*_{137AH} under N replete without any functional effect on
250 PSII yield and Net O₂ evolution (**Fig. 1E-F; 4A and D**). As for the stimulated dark O₂
251 consumption (**Fig. 1D**), the amount of mitochondrial respiratory chains component
252 Cox IIB was increased in the 137AH whereas it remains stable in the *pgrl1*_{137AH}
253 during N deficiency (**Fig. 4A**). It is worth noting that the hallmark of autophagy, i.e.,
254 ATG8 was barely detectable in the *pgrl1*_{137AH} whereas it was highly induced in the
255 137AH under N deficiency (**Fig. 4A, D**). All the other proteins tested accumulated to a
256 similar amount in *pgrl1*_{137AH} and 137AH (**Fig. 4A**). Note that higher amounts of Cyt f
257 were also observed in CRISPR-generated *pgrl1*_{CC125} mutant as compared to CC125
258 in response to N deficiency (**Supplemental Fig. S3E**). We conclude from these
259 experiments during N deficiency that the higher photosynthetic activity observed in
260 mutants impaired in PGRL1 might result from a lower decrease in the amounts of PSI
261 and Cyt *b₆f* complexes.

262 To test whether the retention of the PSI and Cyt *b₆f* observed in the *pgrl1*_{137AH}
263 are consequences of the existence of a FLV activity, similar immunoblot analyses
264 were performed in the *flvB-21* and *pgrl1 flvB-3* mutants. Consistent to the
265 photosynthetic activity, immunoblot analyses showed a similar accumulation of tested
266 proteins in the *flvB-21* and *pgrl1 flvB-3* compared to controls with the exception of
267 lower PsaD and ATG8 in *pgrl1 flvB-3* (**Fig. 4 B-C and E-F**).
268

269 **Defects in CEF and PCEF altered carbon storage during N deficiency**

270 Emerging literature suggests that alterations in energy management pathways affect
271 not only biomass production but also its composition (16, 17, 44, 50). Starch and
272 TAGs are major forms of carbon storage in *Chlamydomonas* during N deficiency.
273 Since the *pgrl1*_{137AH} mutant shows a stronger net photosynthetic rate, we measured
274 its ability to accumulate storage compounds. Starch accumulation was similar in
275 *pgrl1*_{137AH} and control lines under both N replete and deficiency (**Fig. 5A;**
276 **Supplemental Fig. S5A and S6A**). In contrast, twice more TAG accumulation was
277 observed in *pgrl1*_{137AH} compared to the control lines under N deficiency whereas no

278 difference was observed under N-replete condition (**Fig. 5D; Supplemental Fig. S5B**
279 and **S6D**). Lipid droplet imaging confirmed the accumulation of higher TAG amounts
280 (**Supplemental Fig. S5D**). Intriguingly, the *PGRL1* knockout mutant did not induce
281 TAGs or starch accumulation in response to N deficiency in the CC125 genetic
282 background (**Supplemental Fig. S6 G-J**), which may be related to the fact that
283 photosynthesis preservation (PSII yield and net O₂ evolution) was lower in the
284 *pgrl1*_{CC125} background as in the *pgrl1*_{137AH} background (**Supplemental Fig. S3**) thus
285 limiting reserve accumulation, or indicating the existence of a metabolic limitation for
286 storage compound accumulation in the CC125 background.

287 Under N replete, the *f/vB* single mutants accumulated higher amounts of starch than
288 the CC4533 wild-type (**Supplemental Fig. S6B**) but accumulated lower amounts of
289 TAG under N deficiency (**Fig. 5E**). The double mutants *pgrl1*_{137AH} *f/vB* accumulated
290 similar amounts of TAG and starch as compared to control strains either in N replete
291 or N deprived conditions (**Fig. 5C, F; Supplemental Fig. S6C, F**).

292 We then evaluated to which extent observed changes in photosynthesis affect
293 biomass accumulation, by following changes in cellular volume as a proxy for
294 biomass accumulation. After 6 days of N deficiency, the cell volume increased twice
295 as fast in the *pgrl1*_{137AH} compared to the control lines (**Supplemental Fig. S5C**). We
296 conclude from the above experiments that the higher photosynthetic activity in
297 *pgrl1*_{137AH} results in increased biomass and TAG productivity under N deficiency.

298 Altogether, our data suggested that during phototrophic N deficiency, photosynthetic
299 electron flow mediated by FLVs could trigger higher TAG accumulation while PGRL1
300 tends to constrain it, likely via a photosynthetic control-related process or specific
301 protease pathways that target Cyt *b₆f*. We propose that both PGRL1 (CEF) and FLVs
302 (PCEF), by having an antagonistic role during N deficiency, manage the redox
303 landscape, carbon storage and biomass production. It is worth pointing out that this
304 modification of metabolism as a consequence of redox management depends not
305 only on genetic background (137AH versus CC125) but also on the environmental
306 state (+N versus -N).

307

308 Discussion

309 The ability of microalgae to coordinate their energy conversion (from light to chemical
310 energy) to meet the metabolic demand is crucial for their survival in a constantly
311 fluctuating environment. Mechanisms involved in photosynthesis regulations have
312 been abundantly studied in response to light or CO₂ levels, but not much is known
313 during nutrient deficiency when a massive re-orientation of metabolic pathways
314 occurs. In the absence of N, the major cellular energy sinks (cell division, protein
315 biosynthesis and photosynthetic CO₂ fixation) are restricted whereas the carbon and
316 energy are stored as TAGs or starch. Moreover, the PET reactions are
317 downregulated under N deficiency. However, we do not know whether the
318 downregulation of PET is a mean to match cells energy status with the limited
319 metabolic demand. In other words, how the metabolism accommodates when
320 photosynthesis remains high during N deficiency is not well understood. In this study,
321 we demonstrated that PGRL1, which controls a CEF pathway, tunes PET during N
322 deficiency. This tuning favors the photosynthetic control mechanism via Cyt *b₆f* to
323 limit PSI donor availability (see below for details) and might affect energy-transducing
324 enzyme ratios at least in chloroplasts. Lack of PGRL1 resulted in sustained
325 photosynthetic activity up to 2 days of N deficiency. The misregulation of the
326 PGRL1/PGR5-controlled CEF is notorious for decreasing the photosynthetic control
327 efficiency and re-routing of electrons into alternative acceptors such as H₂ production

328 by Hydrogenases or O₂ photoreduction by FLVs (14, 20, 50). Here, we have further
329 shown that the higher FLVs-mediated PCEF in *pgr1* mutants channels excess
330 electrons toward O₂ under N deficiency. PCEF thus counteracts PSI over-reduction,
331 likely facilitating ATP production and at the same time keeping PET active.

332

333 **PGRL1/PGR5-controlled CEF contributes to photosynthetic control during N**
334 **deficiency**

335 The photosynthetic control refers to mechanisms that restrict the PET reactions
336 mostly occurring in response to environmental fluctuations and is typically achieved
337 on the level of the Cyt *b₆f* upon acidification of the thylakoid lumen (37, 38, 52, 53).
338 The PGRL1-PGR5-controlled CEF increases lumen acidification efficiency and has
339 been shown to contribute to the photosynthetic control in higher plants (26, 28, 54) as
340 well as in microalgae (20–23, 51). The induction of the photosynthetic control results
341 in PSI donor side limitation in the light which is typically determined *in vivo* via P700⁺
342 optical readouts (55–57). Our results showed higher acceptor side limitation (at the
343 expense of donor side limitation) in *pgr1* mutants (**Fig. 2 and Supplemental Fig. S4**)
344 indicating that they are affected in the induction of the photosynthetic control. The
345 decrease in Cyt *b₆f* abundance could be an additional cellular strategy to further
346 restrict the PET toward PSI (higher donor side limitation in wild-type, **Fig. 2 and**
347 **Supplemental Fig. S4**). While the wild-type successfully relaxes the redox pressure
348 on PSI and degrades Cyt *b₆f* under N deficiency, *pgr1* mutants sustained PET and
349 failed to degrade the Cyt *b₆f*. This dysfunctioning of the photosynthetic control in
350 *pgr1* (high acceptor side limitation and Cyt *b₆f* abundance; **Fig. 2 and 4A**), promotes
351 the recruitment of stromal electron carriers such as FLVs and TAG biosynthesis (in
352 137AH background). Similar observations were reported under sulphur deprivation
353 where deletion of PGRL1 or PGR5 resulted in sustained linear electron flow toward
354 H₂ production in *Chlamydomonas* (20, 51). Our work shows that impairing the
355 accumulation of PGRL1 removes a bottleneck of photosynthetic electron flow during
356 N deficiency under non-limiting CO₂ conditions (**Fig. 1-3; Supplemental Fig. S1-3**).
357 This characteristic of photosynthetic control makes PGRL1/PGR5-controlled CEF a
358 promising target for improving photosynthetic yield under nutrients deficiency.
359 Indeed, the control of photosynthesis under N deficiency has been seen as safety
360 mechanisms protecting cells from phototoxicity (28, 53, 54). Here, we show that
361 thanks to the presence of FLVs, photosynthesis could be improved by removing
362 PGRL1-controlled CEF during N deficiency under non-limiting CO₂ conditions.

363

364 **FLVs become predominant in the absence of PGRL1/PGR5-controlled CEF**

365 So far, a compensation mechanism between PGRL1 and FLVs has been reported
366 during algal adaptation to light or low-CO₂ conditions (14, 18, 32). Under high light or
367 low-CO₂ conditions, the increased activity of FLVs in the PGRL1-deficient strain does
368 not improve the net photosynthesis despite its strong efficiency in generating ATP
369 (18, 58). Similar compensation has also been observed in higher plants where
370 orthologous expression of FLVs rescues the *pgr5* mutants phenotype without further
371 improving photosynthesis (54, 59) although some levels of increased biomass were
372 measured in wild-type *Arabidopsis* expressing FLVs under light fluctuations thanks to
373 the protective role of FLVs in these conditions (60). In contrast, our results suggest
374 that under N deficiency, FLVs and PGRL1 have an antagonistic role. Indeed, the
375 increased activity of FLVs in the PGRL1-deficient strains resulted in higher net
376 photosynthesis (**Fig. 3D; Supplemental Fig. S2**), which shows that rather than

377 compensating each other, PGRL1 is indirectly controlling the activity of FLVs by
378 limiting the maximal electron flow capacity. Our observation of the sustained
379 accumulation of Cyt *b*₆*f* in the *pgrl1* but not in *pgrl1 flvB* double mutants under N
380 deficiency (**Fig. 4 A and D**) could be attributed to the activity of FLVs-mediated PCEF
381 draining electrons from the photosynthetic chain and indirectly preventing Cyt *b*₆*f*
382 from degradation. The latter process is catalysed in *pgrl1 flvB* upon PCEF shortage.
383 The presence of strong FLVs activity in *pgrl1* thereby allows maintaining high PET
384 while generating ATP for CO₂ fixation and reserve formation.

385 Because CEF and PCEF are dominant pathways for supplying extra ATP in
386 addition to LEF in the chloroplast, we were expecting that the removal of both PGRL1
387 and FLVs would have more severe consequences on cell physiology and metabolism
388 as it was observed when CO₂ is limiting (32). Instead, we observed similar
389 photosynthetic activity and TAG biosynthesis in the *pgrl1 flvB* double mutants as their
390 control strains (**Fig. 3 and 5**), i.e. the additional removal of FLVs suppressed the
391 phenotype of PGRL1 deficiency. A third pathway generating the energy required for
392 photosynthetic CO₂ fixation and ensuring redox dissipation could be operating in the
393 double mutant *pgrl1 flvB*. Both the NDA2-dependent CEF (19, 29) or a chloroplast-
394 mitochondria electron flow (CMEF) (18) could be good candidates. NDA2 protein
395 level was shown to increase during air photoautotrophic N deficiency under
396 atmospheric CO₂ level and the CEF rate in *Chlamydomonas* was decreased by 50%
397 in *nda2* mutants (29). However, we observed a similar protein level of NDA2 in the
398 *pgrl1 flvB* as their control lines (**Fig. 4C**). Nevertheless, the protein level might not
399 always correlate with the activity and other regulatory mechanisms (e.g.,
400 phosphorylation or redox regulation) can modulate enzyme activity. Additionally, the
401 stimulated mitochondrial respiration rates as well as increased in Cox IIB protein level
402 during N-deficiency in all the strains (except *pgrl1*_{137AH}) (**Fig. 4; Supplemental Fig.**
403 **S3**) points to a strong activity of CMEF (18, 32), which might compensate for CEF
404 and PCEF deficiency in *pgrl1 flvB* N-deprived cells. CMEF may have two distinct
405 roles, either to supply additional ATP or favour redox dissipation. In the context of
406 generating extra ATP, the Cox IIB pathways could take over the AOX1 alternative
407 oxidase pathway because of its efficiency in generating ATP (18). Further
408 investigation would be required to identify the mechanisms generating ATP in the
409 absence of PGRL1 and FLVs. Altogether, we conclude that FLVs maintain high
410 photosynthetic activity under N deficiency in the absence of PGRL1 by channeling
411 excess electrons toward O₂ meanwhile generating ATP for CO₂ and downstream
412 metabolic pathways (TAG production).

413

414 **Relationship between cellular redox landscape and carbon storage**

415 A major biotechnological challenge in algal domestication for biofuel is the tradeoff
416 between growth and lipid productivity. In *Chlamydomonas* as in many other
417 microalgae, starch and TAG massively accumulate but mostly under stress
418 conditions in particular N deficiency when cell division stops and productivity is
419 impaired. Considerable efforts have focused on the study of the molecular
420 mechanisms behind the onset of reserve accumulation by monitoring omics
421 responses to a stress (5, 61–64), or focused on specific steps of fatty acid and TAG
422 biosynthesis, which have resulted in some limited improvement in productivity (65,
423 66). Improving productivity requires a better understanding of the crosstalk between
424 photosynthetic carbon fixation, environmental signals and the redox balance, which
425 all govern reserve accumulation (67–69). Here by studying mutants affected in CEF

426 and PCEF, we explored the relationships between the cellular redox status and
427 carbon storage.

428 The increased accumulation of TAG but not starch observed in the PGRL1-deficient
429 strain (137AH background) under N deficiency (**Fig. 5 A and B**) is a consequence of
430 continuous production of NADPH and ATP through PCEF-dependent PET. In line
431 with our finding, the *Chlamydomonas pgd1* mutants (e.g. *Plastid galactoglycerolipid*
432 *degradation 1*) with reduced LEF rate (less ATP and NADPH) are shown to produce
433 less TAG under N starvation (11, 70). The report that the *pgrl1* mutant made less
434 TAG than wild-type under mixotrophic conditions (71) is not surprising. It is well
435 known that the bioenergetics of *Chlamydomonas* under photoautotrophic conditions
436 differ from mixotrophic conditions (72–74). The presence of acetate can drastically
437 affect cellular bioenergetics levels i.e. its uptake consumes ATP and its metabolism
438 produces NADH, therefore further favoring oil synthesis (72, 73, 75, 76). TAGs
439 accumulation was different in the CC125 background where the *pgrl1*_{CC125} mutant
440 made similar amounts of TAGs as its background strain (**Supplemental Fig. S6J**).
441 This seems not surprising when we consider that TAG accumulation is a metabolic
442 consequence of changes in chloroplast redox state and in photosynthetic
443 performance. The preservation of PSII yield and net O₂ evolution was less dramatic
444 in the CC125 background than in the 137AH background, which could be one of the
445 reasons behind strain-dependent phenotype. This further reflects the fact that oil
446 content is a complex trait, and it is the consequence of the interaction between
447 genetic makeup, its metabolic flexibility and the capacity of the extent of a given cell's
448 response to environmental changes.

449 In contrast to *pgrl1*_{137AH}, the *flvB* mutants accumulated lower amounts of TAGs
450 under N deficiency, and no difference in TAG was observed in the *pgrl1 flvB* double
451 mutants, consisting again with the profile in photosynthetic performance and with
452 their antagonistic roles. The *flvB* mutants accumulated higher amount of starch under
453 N sufficient condition though. To conclude, this work further points to the importance
454 of the role redox management on carbon allocation and storage, and that this effect
455 is dependent on many factors including the genetic background, the trophic style, as
456 well as the nutrient status.

457

458 Materials and methods

459 Growth conditions and strains

460 The *pgrl1*_{137AH} (from the background 137AH) with its complementing strain
461 (*pgrl1::PGRL1-2*), *flvB* mutants from the background CC-4533 and the *pgrl1 flvB*
462 double mutants were previously described (20, 31, 32). *pgrl1*_{CC125} mutants were
463 generated in the CC125 background using CRISPR-Cas9 (see Supplemental
464 Materials and Methods). All the information about the strains used are reported in
465 **Supplemental Table 1**. Cells were routinely cultivated in an incubation shaker
466 (INFORS Multitron pro) maintained at 25°C, with 120 rpm shaking and constant
467 illumination at 50 μmol m⁻² s⁻¹. Fluorescent tubes delivering white light enriched in
468 red wavelength supplied lightings in the INFORS. All experiments were performed
469 under photoautotrophic condition with minimum medium with or without nitrogen
470 source (MM and MM-N) buffered with 20 mM MOPS at pH 7.2 in air enriched with 1%
471 CO₂. Due to cell aggregation in the 137AH background (notably the *pgrl1* mutant)
472 that prevent accurate cell counting, total cellular volume was measured using a
473 Multisizer 4 Coulter counter (Beckman Coulter) and the different strains were diluted
474 to reach a similar cellular concentration before N deficiency experiments.

475

476 **Measurement of chlorophyll fluorescence using a Pulse Amplitude Modulation**
477 **(PAM)**

478 Chlorophyll fluorescence was measured using a PAM fluorimeter (Dual-PAM 100,
479 Walz GmbH, Effeltrich, Germany) on the MIMS chamber as described in (49) using
480 green actinic light ($1250 \mu\text{mol photon m}^{-2} \text{ s}^{-1}$, green LEDs). Red saturating flashes
481 ($8,000 \mu\text{mol photons m}^{-2} \text{ s}^{-1}$, 600 ms) were delivered to measure the maximum
482 fluorescence (FM) every 30 s (before and upon actinic light exposure). The maximum
483 PSII quantum yield was calculated as $F_v/F_m = (F_m - F_0)/F_m$ where F_0 is the basal
484 fluorescence obtained with the measuring light and F_m the fluorescence emitted after
485 saturating pulse (77). PSII operating yield (Φ_{PSII}) was calculated as $\Phi_{\text{PSII}} = (F'_m - F_s)/F'_m$ with
486 F'_m the fluorescence value after saturating pulse, F_s the stationary
487 fluorescence during actinic light exposure.

488

489 **O₂ exchange measurement using Membrane Inlet Mass Spectrometry (MIMS)**

490 O₂ exchanges were measured in the presence of [¹⁸O]-enriched O₂ using a water-
491 jacketed, thermoregulated (25°C) reaction vessel coupled to a mass spectrometer
492 (model Prima ΔB; Thermo Electronics) through a membrane inlet system (78). The
493 cell suspension (1.5 mL) was placed in the reaction vessel and bicarbonate (10 mM
494 final concentration) was added to reach a saturating CO₂ concentration. One hundred
495 microliters of [¹⁸O]-enriched O₂ (99% ¹⁸O₂ isotope content; Euriso-Top) was bubbled
496 at the top of the suspension just before vessel closure and gas exchange
497 measurements. O₂ exchanges were measured during a 3-min period in the dark, then
498 the suspension was illuminated at $1250 \mu\text{mol photons m}^{-2} \text{ s}^{-1}$ for 5 min using green
499 LEDs followed by 3-min in the dark. Isotopic O₂ species [¹⁸O¹⁸O] (m/e = 36), [¹⁸O¹⁶O]
500 (m/e = 34), and [¹⁶O¹⁶O] (m/e = 32) were monitored, and O₂ exchange rates were
501 determined (78). Argon gas was used to correct O₂ exchange measured by the
502 spectrometer as described in (78).

503

504 **Redox state measurements of P700**

505 The PSI primary electron donor, were obtained from optical signals (705 nm – 740
506 nm) using a Joliot-type spectrophotometer (JTS-150, Spectrologix USA), described in
507 detail elsewhere (23, 79, 80). Harvested cells (2 min, 4000 rpm, 22°C) were
508 resuspended in cuvettes to comparable densities in growth medium containing 20%
509 Ficol (w/v). Samples were subjected to 2.5-s alterations of dark/light ($490 \mu\text{mol}$
510 photon m⁻² s⁻¹, 630-nm LEDs), leading to a partial P700 pre-oxidation during the light
511 period (donor side limitation). Additional fractions of photo-oxidizable P700 (PSI yield)
512 were obtained by a 25 ms saturating pulse before the dark period, revealing non-
513 oxidizable P700 (acceptor side limitation) after comparison to fully oxidized P700
514 when measured in the presence of 20 μM 3-(3,4-dichlorophenyl)-1,1-dimethylurea
515 (DCMU).

516

517 All other methods are described in **SI Materials and Methods**.

518

519 **Acknowledgments**

520 O.D. thanks The French Atomic Energy and Alternative Energy Commission (CEA)
521 for a PhD scholarship. G.P. and Y.L.-B. acknowledge the continuous financial
522 support of CEA (LD-power, CO2Storage). A.B. acknowledges the support from the
523 Carnegie Institution for Science. We thank Bertrand Legeret for maintaining the
524 HelioBiotec lipidomics platform and thank Mallaury Cabanel for assistance in
525 performing immunoblot. We also acknowledge the ZoOM microscopy facility. M.H.

526 (DFG Research Unit FOR 5573) and F.B. (BU 3426/3-1) acknowledge Deutsche
527 Forschungsgemeinschaft for funding.

528

529 **Author's Contributions:**

530 Y.L-B., G.P., A.B., and O.D. conceived the study. Y.L-B., G.P. and A.B. provided
531 supervision. O.D. performed most of the experiments. P.A., M.B. and O.D. carried out
532 biochemical experiments. M.B. and O.D. performed starch and lipid analysis. G.P.
533 supervised the MIMS experiments. C.S. and J.I. generated the CRISPR-mediated
534 mutant lines under the supervision of A.B.. F.B. and M.H. performed and analyzed
535 the P700 measurements. O.D. drafted the manuscript with contributions from A.B.,
536 G.P., F.B., M.H. and Y.L-B.

537

538 **Figures**

539 **Figure 1. *pgrl1* showed sustained photosynthesis after 2 d of N deficiency.**

540 **A-B**, Chlorophyll fluorescence was measured using a Dual-PAM during the dark-light-dark transition from N-replete (**A**) and N-deficient (**B**) conditions.

541 **C-D**, O₂ exchange rates were measured using a MIMS during the dark-light-dark
542 transition from N-replete (**C**) and N-deficient (**D**) conditions. Net O₂ evolution (green)
543 was calculated as gross O₂ evolution (blue) – gross O₂ uptake (red).

544 **E**, PSII quantum yield before and after 2 d of N deficiency measured using green
545 actinic light (1250 µmol photon m⁻² s⁻¹, green LEDs) and calculated as $\Phi_{PSII} = (F'_M - F_s) / F'_M$ with F_{M'} the fluorescence value after saturating pulse, F_s the stationary
546 fluorescence during actinic light exposure.

547 **F**, The Net O₂ evolution before and after 2 d of N deficiency in the wild-type 137AH,
548 *pgrl1*_{137AH} and the complemented line *pgrl1*::*PGRL1-2*.

549 **G**, Immunoblot analysis of PGRL1 accumulation in the wild-type 137AH, *pgrl1* and
550 the complemented line. L30 antibody was used as a positive control. Coomassie blue
551 staining was used as the loading control. Protein samples were obtained from 2 d N-
552 starved cells.

553 N-replete wild-type 137AH, *pgrl1*_{137AH}, and *pgrl1*::*PGRL1-2* cells cultivated
554 photoautotrophically with 1% CO₂ in air under continuous light (50 µmol photons m⁻²
555 s⁻¹) were transferred into N-free media for 2 d prior to measurements. Shown are an
556 average of at least three biological replicates \pm SD. Asterisks represent statistically
557 significant differences compared to the control 137AH (* p<0.05, ** p<0.01 and ***
558 p<0.001) using one-way ANOVA.

559

560 **Figure 2. PSI oxidation is facilitated by PGRL1 under N deficiency**

561 The influence of PGRL1 on the redox state of the primary PSI donor, P700, was
562 monitored in the genetic background 137AH (**A-B**) and CC125 (**Supplemental Fig.**
563 **S4**). Panel A shows raw kinetics (red/yellow/black bars: 490/3000/0 µmol photons
564 m⁻² s⁻¹) in the presence and absence of PSII inhibitor DCMU (means \pm SD of 4
565 biological replicates). Panel B quantifies the corresponding P700 pools at the end of
566 the 2.5-s light period (letters indicate parameter-specific significances using one-way
567 ANOVA/Fisher-LSD, p<0.05). At the time of quantification, P700 remained photo-
568 oxidizable by a saturating pulse (PSI yield), was redox inactive (no acceptors) or was
569 pre-oxidized (no donors). N-replete cells of wild-type 137AH and *pgrl1*_{137AH} were
570 cultivated photoautotrophically with 1% CO₂ in air under continuous light (50 µmol
571 photons m⁻² s⁻¹), and then transferred into N-free media for 24 h prior to
572 measurements.

573

574

575

576 **Figure 3. The photosynthesis in *pgrl1* is driven by FLV-mediated O₂
577 photoreduction under N deficiency.**

578 **A**, Light-dependent O₂ uptake attributed to FLV activity and calculated as the
579 difference between the O₂ uptake during the 1st min of illumination and dark O₂
580 uptake as shown by the **Supplemental Figure 2**.

581 **B**, Gross O₂ uptake measured between 5-7min as shown by the **Supplemental
582 Figure 2**.

583 **C**, Gross O₂ evolution measured between 5-7min as shown by the **Supplemental
584 Figure 2**.

585 **D**, Net O₂ evolution measured between 5-7min as shown by the **Supplemental
586 Figure 2**.

587 O₂ exchange rates were measured using a MIMS in the presence of [¹⁸O]-enriched
588 O₂. Net O₂ evolution (green) was calculated as gross O₂ evolution (blue) – gross O₂
589 uptake (red). Total proteins were extracted from N-replete and 2 days N-deprived
590 cells and samples were loaded at equal total proteins amounts as shown on
591 Coomassie blue staining. Cells cultivated photoautotrophically with 1% CO₂ in air
592 under continuous light of 50 μmol photons m⁻² s⁻¹ were transferred into N-free media
593 for 2 days prior to measurements or sampling for immunoblot. Shown are an average
594 of at least three biological replicates ± SD. Asterisks represent statistically significant
595 difference compared to the wild-type strains (* p<0.05, ** p<0.01, *** p<0.001 and
596 **** p<0.0001) using one-way ANOVA.

597

598 **Figure 4. *pgrl1* accumulated more cytochrome Cyt b₆f and PsaD during N
599 deficiency.**

600 **A-C**, Immunodetection of photosynthetic proteins in the *pgrl1*_{137AH}, *flvB*-21 and *pgrl1*
601 *flvB*-3 as compared to their controls during N deficiency. Cells were harvested at 0, 8,
602 22, 30 and 50 hours of N deficiency. Samples were loaded at equal total protein
603 amounts as shown by Coomassie blue staining. Shown are representative images of
604 three biological replicates. The α-tubulin was used as housekeeping protein whereas
605 ATG8 and the chloroplast 50S ribosomal large subunit L30 are controls of N
606 depletion (81, 82).

607 **D-F**, Histogrammes showing the abundance Cyt f, PsaD and ATG8 proteins in the
608 *pgrl1*_{137AH}, *flvB*-21 and *pgrl1* *flvB*-3 during N deficiency in the wild-type cells. Shown
609 represent the ratio of mutants over control strains. Data are average of at least three
610 biological replicates.

611

612 **Figure 5. *pgrl1* over accumulated TAGs under N deficiency**

613 Starch (**A-C**) and TAG (**D-F**) quantification in N-deprived cells of *pgrl1*_{137AH}, *flvB* and
614 *pgrl1* *flvB* mutants respectively. Cells were cultivated photoautotrophically with 1%
615 CO₂ in air under continuous light of 50 μmol photons m⁻² s⁻¹. For N deficiency, cells
616 were transferred into N-free media for 2 d prior to sampling for starch and TAG.
617 Shown are an average of at least three biological replicates ± SD. Asterisks
618 represent statistically significant difference comparing mutants with their control
619 strains (* p<0.05, ** p<0.01 and *** p<0.001) using one-way ANOVA.

620

621

622

623

624 **Reference**

- 625 1. P. M. Vitousek, R. W. Howarth, Nitrogen limitation on land and in the sea: How can it occur? *Biogeochemistry* **13**, 87–115 (1991).
- 626 2. D. S. LeBauer, K. K. Treseder, Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. *Ecology* **89**, 371–379 (2008).
- 627 3. E. Du, *et al.*, Global patterns of terrestrial nitrogen and phosphorus limitation. *Nat. Geosci.* **13**, 221–226 (2020).
- 628 4. M. Siaut, *et al.*, Oil accumulation in the model green alga *Chlamydomonas reinhardtii*: characterization, variability between common laboratory strains and relationship with starch reserves. *BMC Biotechnology* **11**, 7 (2011).
- 629 5. S. Schmollinger, *et al.*, Nitrogen-Sparing Mechanisms in *Chlamydomonas* Affect the Transcriptome, the Proteome, and Photosynthetic Metabolism. *The Plant Cell* **26**, 1410–1435 (2014).
- 630 6. M. T. Juergens, *et al.*, The Regulation of Photosynthetic Structure and Function during Nitrogen Deprivation in *Chlamydomonas reinhardtii*. *Plant Physiology* **167**, 558–573 (2015).
- 631 7. M. Schulz-Raffelt, *et al.*, Hyper-accumulation of starch and oil in a *Chlamydomonas* mutant affected in a plant-specific DYRK kinase. *Biotechnology for Biofuels* **9**, 55 (2016).
- 632 8. Y.-M. Zhang, H. Chen, C.-L. He, Q. Wang, Nitrogen Starvation Induced Oxidative Stress in an Oil-Producing Green Alga *Chlorella sorokiniana* C3. *PLOS ONE* **8**, e69225 (2013).
- 633 9. J.-J. Park, *et al.*, The response of *Chlamydomonas reinhardtii* to nitrogen deprivation: a systems biology analysis. *The Plant Journal* **81**, 611–624 (2015).
- 634 10. M. Gargouri, P. D. Bates, J.-J. Park, H. Kirchhoff, D. R. Gang, Functional photosystem I maintains proper energy balance during nitrogen depletion in *Chlamydomonas reinhardtii*, promoting triacylglycerol accumulation. *Biotechnology for Biofuels* **10**, 89 (2017).
- 635 11. Z.-Y. Du, *et al.*, Galactoglycerolipid Lipase PGD1 Is Involved in Thylakoid Membrane Remodeling in Response to Adverse Environmental Conditions in *Chlamydomonas*. *The Plant Cell* **30**, 447–465 (2018).
- 636 12. Q.-G. Tran, *et al.*, Impairment of starch biosynthesis results in elevated oxidative stress and autophagy activity in *Chlamydomonas reinhardtii*. *Sci Rep* **9**, 9856 (2019).
- 637 13. J. F. Allen, Cyclic, pseudocyclic and noncyclic photophosphorylation: new links in the chain. *Trends in Plant Science* **8**, 15–19 (2003).
- 638 14. K.-V. Dang, *et al.*, Combined Increases in Mitochondrial Cooperation and Oxygen Photoreduction Compensate for Deficiency in Cyclic Electron Flow in *Chlamydomonas reinhardtii*. *The Plant Cell* **26**, 3036–3050 (2014).
- 639 15. B. Bailleul, *et al.*, Energetic coupling between plastids and mitochondria drives CO₂ assimilation in diatoms. *Nature* **524**, 366–369 (2015).
- 640 16. A. Burlacot, G. Peltier, Y. Li-Beisson, Subcellular Energetics and Carbon Storage in *Chlamydomonas*. *Cells* **8**, 1154 (2019).
- 641 17. S. Saroussi, *et al.*, Alternative outlets for sustaining photosynthetic electron transport during dark-to-light transitions. *Proc Natl Acad Sci USA* **116**, 11518–11527 (2019).
- 642 18. G. Peltier, *et al.*, Algal CO₂ capture is powered by alternative electron pathways of photosynthesis. 2023.08.08.552514 (2023).
- 643 19. C. Desplats, *et al.*, Characterization of Nda2, a Plastoquinone-reducing Type II NAD(P)H Dehydrogenase in *Chlamydomonas* Chloroplasts. *J. Biol. Chem.* **284**, 4148–4157 (2009).
- 644 20. D. Tolleter, *et al.*, Control of Hydrogen Photoproduction by the Proton Gradient Generated by Cyclic Electron Flow in *Chlamydomonas reinhardtii*[W]. *Plant Cell* **23**, 2619–2630 (2011).
- 645 21. D. Petroutsos, *et al.*, PGRL1 Participates in Iron-induced Remodeling of the Photosynthetic Apparatus and in Energy Metabolism in *Chlamydomonas reinhardtii**. *Journal of Biological Chemistry* **284**, 32770–32781 (2009).
- 646 22. X. Johnson, *et al.*, Proton Gradient Regulation 5-Mediated Cyclic Electron Flow under ATP- or Redox-Limited Conditions: A Study of ΔATPase pgr5 and Δrbcl pgr5 Mutants in the Green Alga *Chlamydomonas reinhardtii*1[C][W]. *Plant Physiol* **165**, 438–452 (2014).

676 23. F. Buchert, L. Mosebach, P. Gäbelein, M. Hippler, PGR5 is required for efficient Q cycle in the
677 cytochrome b6f complex during cyclic electron flow. *Biochemical Journal* **477**, 1631–1650
678 (2020).

679 24. A. P. Hertle, *et al.*, PGRL1 Is the Elusive Ferredoxin-Plastoquinone Reductase in Photosynthetic
680 Cyclic Electron Flow. *Molecular Cell* **49**, 511–523 (2013).

681 25. T. Rühle, *et al.*, PGRL2 triggers degradation of PGR5 in the absence of PGRL1. *Nat Commun* **12**,
682 3941 (2021).

683 26. G. DalCorso, *et al.*, A complex containing PGRL1 and PGR5 is involved in the switch between
684 linear and cyclic electron flow in Arabidopsis. *Cell* **132**, 273–285 (2008).

685 27. K. Tagawa, H. Y. Tsujimoto, D. I. Arnon, ROLE OF CHLOROPLAST FERREDOXIN IN THE ENERGY
686 CONVERSION PROCESS OF PHOTOSYNTHESIS. *Proc Natl Acad Sci U S A* **49**, 567–572 (1963).

687 28. Y. Munekage, *et al.*, PGR5 Is Involved in Cyclic Electron Flow around Photosystem I and Is
688 Essential for Photoprotection in Arabidopsis. *Cell* **110**, 361–371 (2002).

689 29. S. I. Saroussi, T. M. Wittkopp, A. R. Grossman, The Type II NADPH Dehydrogenase Facilitates
690 Cyclic Electron Flow, Energy-Dependent Quenching, and Chlororespiratory Metabolism during
691 Acclimation of Chlamydomonas reinhardtii to Nitrogen Deprivation. *Plant Physiology* **170**,
692 1975–1988 (2016).

693 30. C. Gerotto, *et al.*, Flavodiiron proteins act as safety valve for electrons in *Physcomitrella patens*.
694 *PNAS* **113**, 12322–12327 (2016).

695 31. F. Chaux, *et al.*, Flavodiiron Proteins Promote Fast and Transient O₂ Photoreduction in
696 Chlamydomonas. *Plant Physiology* **174**, 1825–1836 (2017).

697 32. A. Burlacot, *et al.*, Alternative photosynthesis pathways drive the algal CO₂-concentrating
698 mechanism. *Nature*, 1–6 (2022).

699 33. J. F. Allen, Photosynthesis of ATP—Electrons, Proton Pumps, Rotors, and Poise. *Cell* **110**, 273–
700 276 (2002).

701 34. G. Peers, *et al.*, An ancient light-harvesting protein is critical for the regulation of algal
702 photosynthesis. *Nature* **462**, 518–521 (2009).

703 35. G. Bonente, *et al.*, Analysis of LhcSR3, a Protein Essential for Feedback De-Excitation in the
704 Green Alga Chlamydomonas reinhardtii. *PLOS Biology* **9**, e1000577 (2011).

705 36. E. Erickson, S. Wakao, K. K. Niyogi, Light stress and photoprotection in Chlamydomonas
706 reinhardtii. *The Plant Journal* **82**, 449–465 (2015).

707 37. H. H. Stiehl, H. T. Witt, Quantitative treatment of the function of plastoquinone in
708 photosynthesis. *Z Naturforsch B* **24**, 1588–1598 (1969).

709 38. C. Foyer, R. Furbank, J. Harbinson, P. Horton, The mechanisms contributing to photosynthetic
710 control of electron transport by carbon assimilation in leaves. *Photosynth Res* **25**, 83–100
711 (1990).

712 39. Y. Munekage, *et al.*, Cytochrome b6f mutation specifically affects thermal dissipation of
713 absorbed light energy in Arabidopsis. *The Plant Journal* **28**, 351–359 (2001).

714 40. L. A. Malone, M. S. Proctor, A. Hitchcock, C. N. Hunter, M. P. Johnson, Cytochrome b6f –
715 Orchestrator of photosynthetic electron transfer. *Biochimica et Biophysica Acta (BBA) -
716 Bioenergetics* **1862**, 148380 (2021).

717 41. M. Jokel, *et al.*, Chlamydomonas Flavodiiron Proteins Facilitate Acclimation to Anoxia During
718 Sulfur Deprivation. *Plant and Cell Physiology* **56**, 1598–1607 (2015).

719 42. M. Jokel, X. Johnson, G. Peltier, E.-M. Aro, Y. Allahverdiyeva, Hunting the main player enabling
720 Chlamydomonas reinhardtii growth under fluctuating light. *The Plant Journal* **94**, 822–835
721 (2018).

722 43. H. Chen, *et al.*, Ca²⁺-regulated cyclic electron flow supplies ATP for nitrogen starvation-induced
723 lipid biosynthesis in green alga. *Sci Rep* **5**, 15117 (2015).

724 44. F. Kong, *et al.*, Interorganelle Communication: Peroxisomal MALATE DEHYDROGENASE2
725 Connects Lipid Catabolism to Photosynthesis through Redox Coupling in Chlamydomonas. *The
726 Plant Cell* **30**, 1824–1847 (2018).

727 45. S. Wu, *et al.*, Elevated CO₂ improves both lipid accumulation and growth rate in the glucose-6-
728 phosphate dehydrogenase engineered *Phaeodactylum tricornutum*. *Microb Cell Fact* **18** (2019).
729 46. G. Peltier, G. W. Schmidt, Chlororespiration: an adaptation to nitrogen deficiency in
730 *Chlamydomonas reinhardtii*. *Proceedings of the National Academy of Sciences* **88**, 4791–4795
731 (1991).
732 47. F. Chaux, *et al.*, PGRL1 and LCSR3 Compensate for Each Other in Controlling Photosynthesis
733 and Avoiding Photosystem I Photoinhibition during High Light Acclimation of *Chlamydomonas*
734 Cells. *Mol Plant* **10**, 216–218 (2017).
735 48. G. DalCorso, *et al.*, A complex containing PGRL1 and PGR5 is involved in the switch between
736 linear and cyclic electron flow in *Arabidopsis*. *Cell* **132**, 273–285 (2008).
737 49. A. Burlacot, *et al.*, Flavodiiron-Mediated O₂ Photoreduction Links H₂ Production with CO₂
738 Fixation during the Anaerobic Induction of Photosynthesis. *Plant Physiol.* **177**, 1639–1649
739 (2018).
740 50. S. Saroussi, E. Sanz-Luque, R. G. Kim, A. R. Grossman, Nutrient scavenging and energy
741 management: acclimation responses in nitrogen and sulfur deprived *Chlamydomonas*. *Current
742 Opinion in Plant Biology* **39**, 114–122 (2017).
743 51. J. Steinbeck, *et al.*, Deletion of Proton Gradient Regulation 5 (PGR5) and PGR5-Like 1 (PGRL1)
744 proteins promote sustainable light-driven hydrogen production in *Chlamydomonas reinhardtii*
745 due to increased PSII activity under sulfur deprivation. *Front Plant Sci* **6**, 892 (2015).
746 52. J. E. Johnson, J. A. Berry, The role of Cytochrome b6f in the control of steady-state
747 photosynthesis: a conceptual and quantitative model. *Photosynth Res* **148**, 101–136 (2021).
748 53. S. Saroussi, *et al.*, Restricting electron flow at cytochrome b6f when downstream electron
749 acceptors are severely limited. *Plant Physiology*, kiad185 (2023).
750 54. H. Yamamoto, T. Shikanai, PGR5-Dependent Cyclic Electron Flow Protects Photosystem I under
751 Fluctuating Light at Donor and Acceptor Sides. *Plant Physiology* **179**, 588–600 (2019).
752 55. J.-F. Penzler, *et al.*, Commonalities and specialties in photosynthetic functions of PROTON
753 GRADIENT REGULATION5 variants in *Arabidopsis*. *Plant Physiol* **190**, 1866–1882 (2022).
754 56. Q. Zhou, H. Yamamoto, T. Shikanai, Distinct contribution of two cyclic electron transport
755 pathways to P700 oxidation. *Plant Physiology* **192**, 326–341 (2023).
756 57. H. Yamamoto, T. Shikanai, PGR5-Dependent Cyclic Electron Flow Protects Photosystem I under
757 Fluctuating Light at Donor and Acceptor Sides. *Plant Physiology* **179**, 588–600 (2019).
758 58. A. Burlacot, Quantifying the roles of algal photosynthetic electron pathways: a milestone
759 towards photosynthetic robustness. *New Phytologist* **n/a**.
760 59. S. Wada, *et al.*, Flavodiiron Protein Substitutes for Cyclic Electron Flow without Competing CO₂
761 Assimilation in Rice. *Plant Physiology* **176**, 1509–1518 (2018).
762 60. L. Basso, K. Sakoda, R. Kobayashi, W. Yamori, T. Shikanai, Flavodiiron proteins enhance the rate
763 of CO₂ assimilation in *Arabidopsis* under fluctuating light intensity. *Plant Physiology*, kiac064
764 (2022).
765 61. R. Miller, *et al.*, Changes in Transcript Abundance in *Chlamydomonas reinhardtii* following
766 Nitrogen Deprivation Predict Diversion of Metabolism1[W][OA]. *Plant Physiol* **154**, 1737–1752
767 (2010).
768 62. I. K. Blaby, *et al.*, Systems-level analysis of nitrogen starvation-induced modifications of carbon
769 metabolism in a *Chlamydomonas reinhardtii* starchless mutant. *Plant Cell* **25**, 4305–4323
770 (2013).
771 63. K. Zienkiewicz, Z.-Y. Du, W. Ma, K. Vollheyde, C. Benning, Stress-induced neutral lipid
772 biosynthesis in microalgae — Molecular, cellular and physiological insights. *Biochimica et
773 Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids* **1861**, 1269–1281 (2016).
774 64. T. Takeuchi, C. Benning, Nitrogen-dependent coordination of cell cycle, quiescence and TAG
775 accumulation in *Chlamydomonas*. *Biotechnology for Biofuels* **12**, 292 (2019).
776 65. F. Kong, Y. Yamaoka, T. Ohama, Y. Lee, Y. Li-Beisson, Molecular Genetic Tools and Emerging
777 Synthetic Biology Strategies to Increase Cellular Oil Content in *Chlamydomonas reinhardtii*.
778 *Plant Cell Physiol* **60**, 1184–1196 (2019).

779 66. Y. Li-Beisson, J. J. Thelen, E. Fedosejevs, J. L. Harwood, The lipid biochemistry of eukaryotic
780 algae. *Progress in Lipid Research* **74**, 31–68 (2019).

781 67. P. Geigenberger, A. Kolbe, A. Tiessen, Redox regulation of carbon storage and partitioning in
782 response to light and sugars. *Journal of Experimental Botany* **56**, 1469–1479 (2005).

783 68. L. Michelet, *et al.*, Redox regulation of the Calvin–Benson cycle: something old, something new.
784 *Front Plant Sci* **4** (2013).

785 69. P. Geigenberger, A. R. Fernie, Metabolic Control of Redox and Redox Control of Metabolism in
786 Plants. *Antioxid Redox Signal* **21**, 1389–1421 (2014).

787 70. X. Li, *et al.*, A Galactoglycerolipid Lipase Is Required for Triacylglycerol Accumulation and
788 Survival Following Nitrogen Deprivation in *Chlamydomonas reinhardtii*. *The Plant Cell* **24**, 4670–
789 4686 (2012).

790 71. H. Chen, *et al.*, Ca(2+)-regulated cyclic electron flow supplies ATP for nitrogen starvation-
791 induced lipid biosynthesis in green alga. *Sci Rep* **5**, 15117 (2015).

792 72. X. Johnson, J. Alric, Interaction between Starch Breakdown, Acetate Assimilation, and
793 Photosynthetic Cyclic Electron Flow in *Chlamydomonas reinhardtii*. *J. Biol. Chem.* **287**, 26445–
794 26452 (2012).

795 73. X. Johnson, J. Alric, Central Carbon Metabolism and Electron Transport in *Chlamydomonas*
796 *reinhardtii*: Metabolic Constraints for Carbon Partitioning between Oil and Starch. *Eukaryot Cell*
797 **12**, 776–793 (2013).

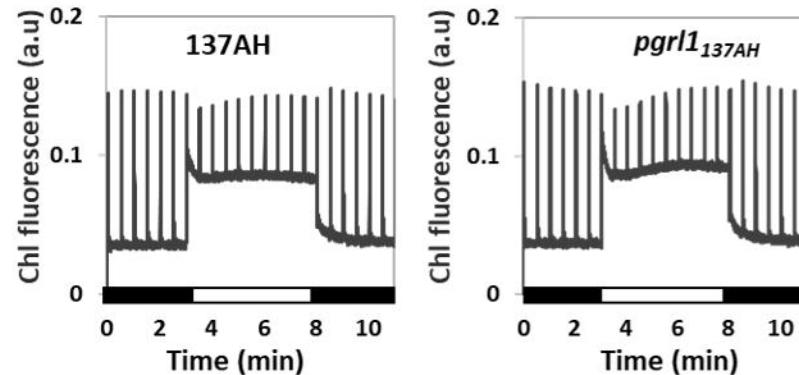
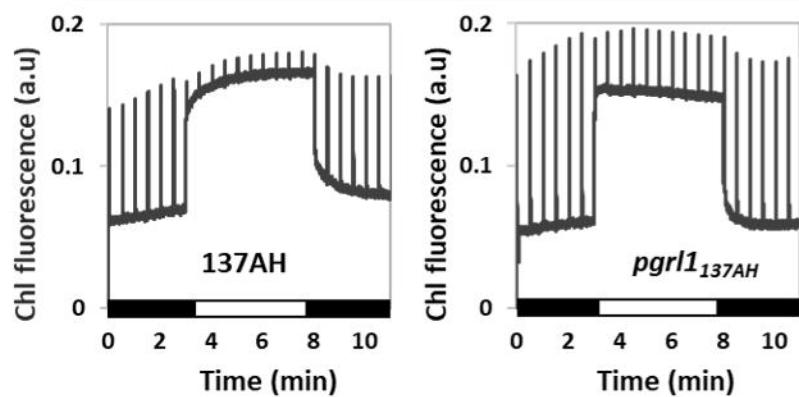
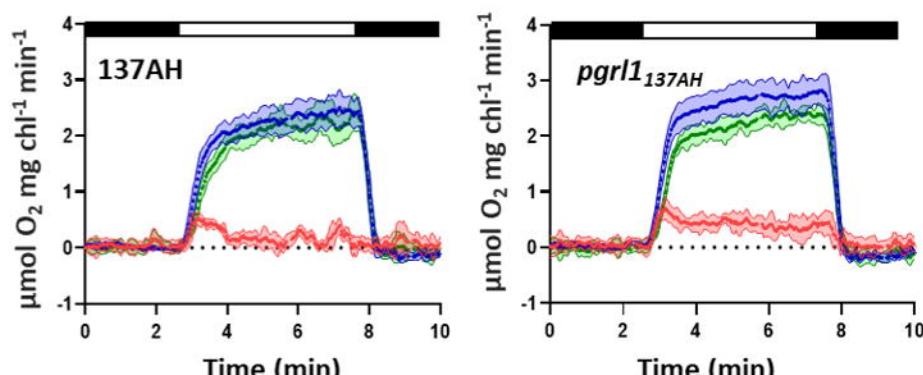
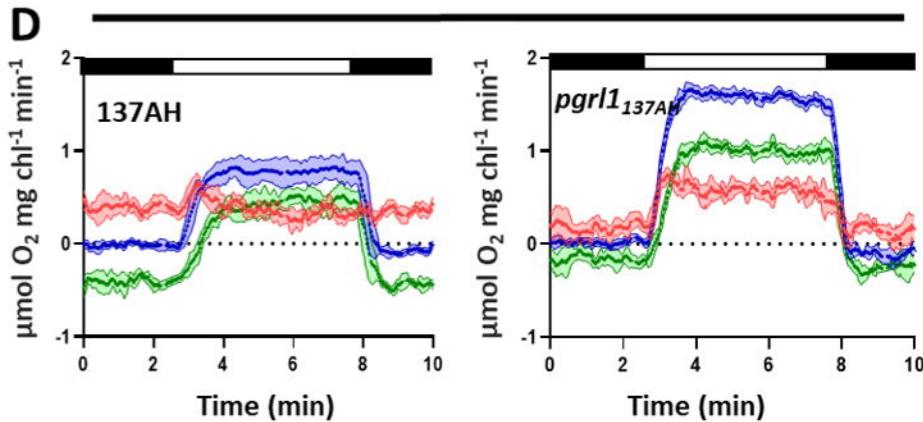
798 74. M. Saint-Sorny, P. Brzezowski, S. Arrivault, J. Alric, X. Johnson, Interactions Between Carbon
799 Metabolism and Photosynthetic Electron Transport in a *Chlamydomonas reinhardtii* Mutant
800 Without CO₂ Fixation by RuBisCO. *Frontiers in Plant Science* **13** (2022).

801 75. C. Goodson, R. Roth, Z. T. Wang, U. Goodenough, Structural correlates of cytoplasmic and
802 chloroplast lipid body synthesis in *Chlamydomonas reinhardtii* and stimulation of lipid body
803 production with acetate boost. *Eukaryot Cell* **10**, 1592–1606 (2011).

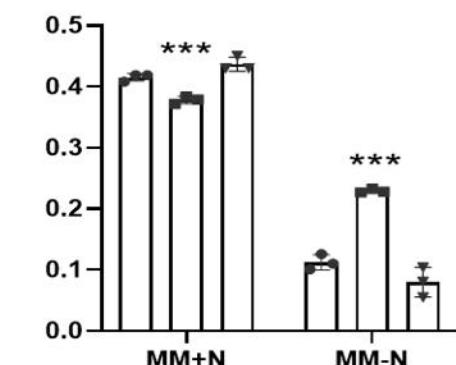
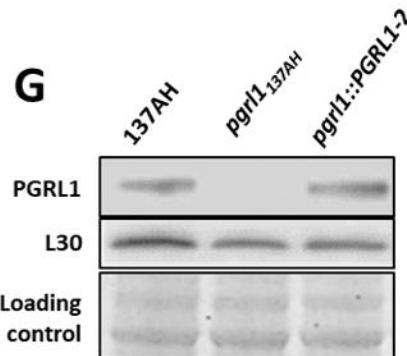
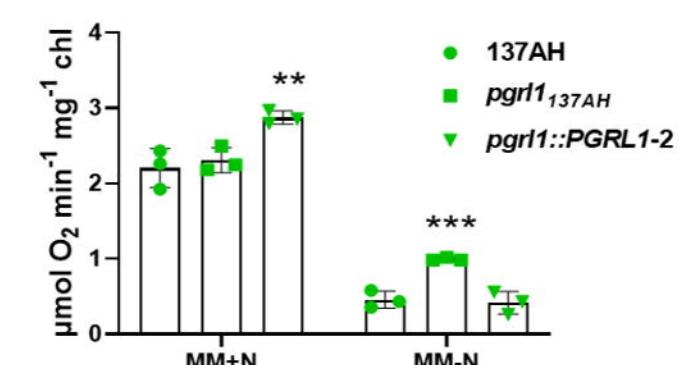
804 76. U. Goodenough, *et al.*, The path to triacylglyceride obesity in the sta6 strain of *Chlamydomonas*
805 *reinhardtii*. *Eukaryot Cell* **13**, 591–613 (2014).

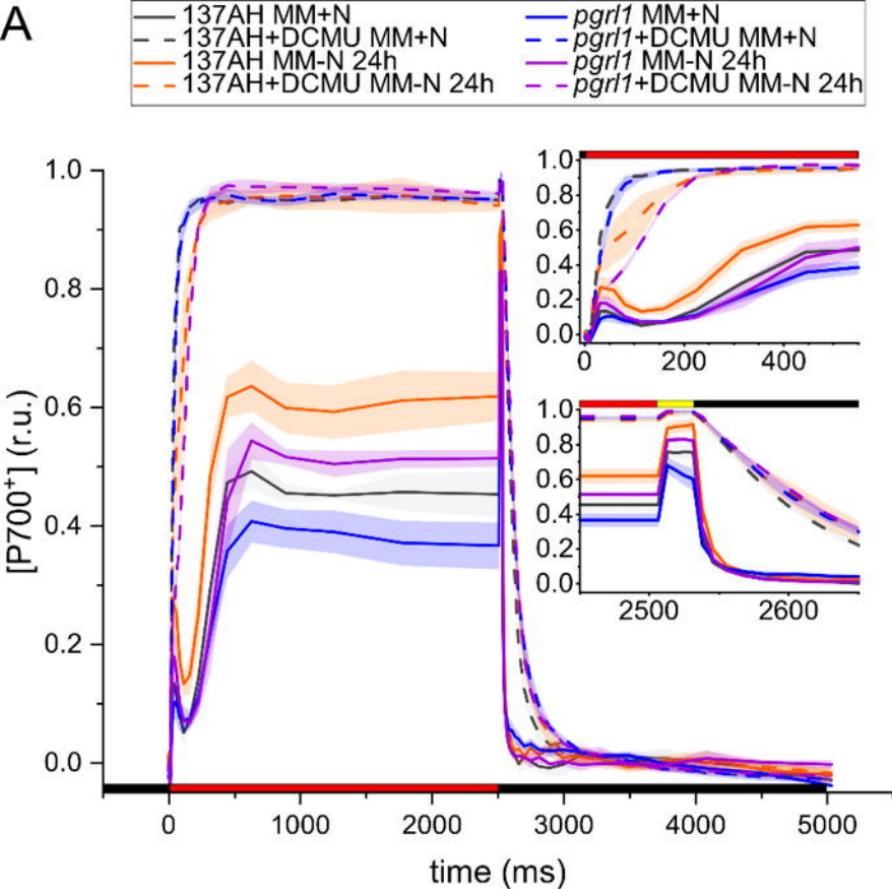
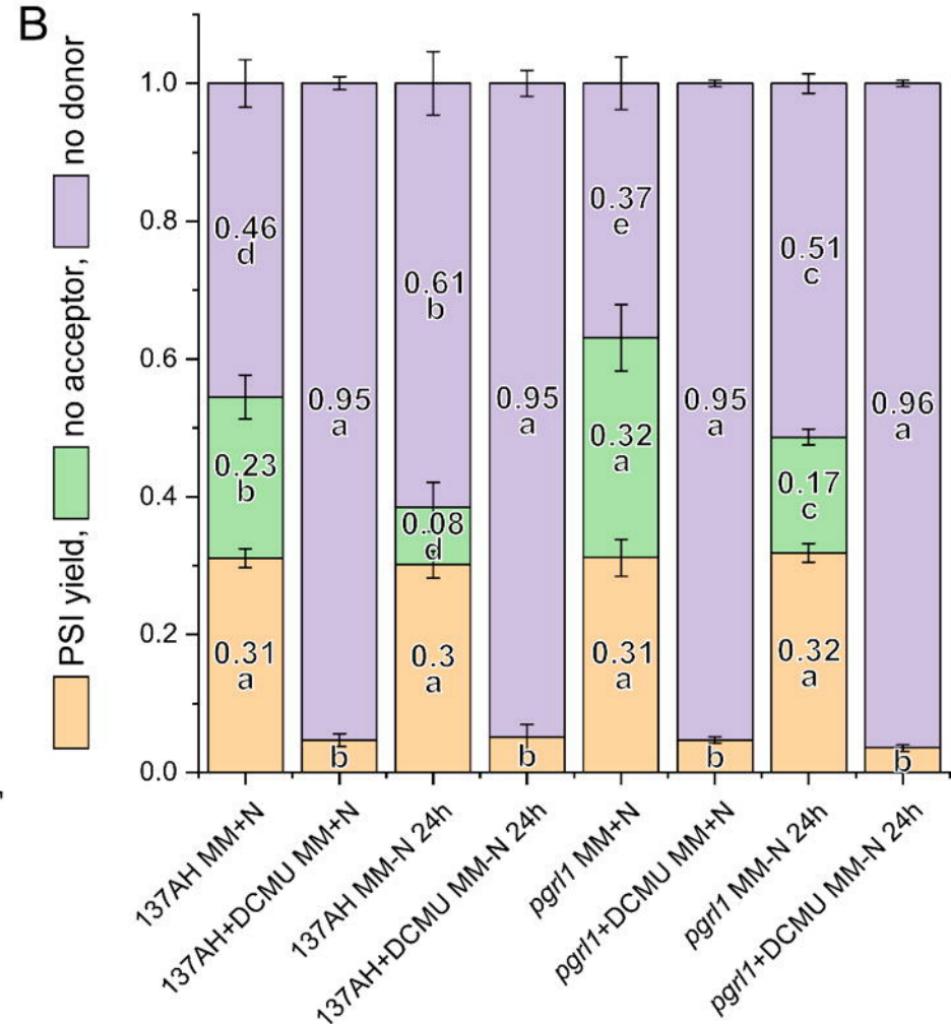
806 77. K. Maxwell, G. N. Johnson, Chlorophyll fluorescence—a practical guide. *J Exp Bot* **51**, 659–668
807 (2000).

808 78. A. Burlacot, F. Burlacot, Y. Li-Beisson, G. Peltier, Membrane Inlet Mass Spectrometry: A
809 Powerful Tool for Algal Research. *Front Plant Sci* **11**, 1302 (2020).

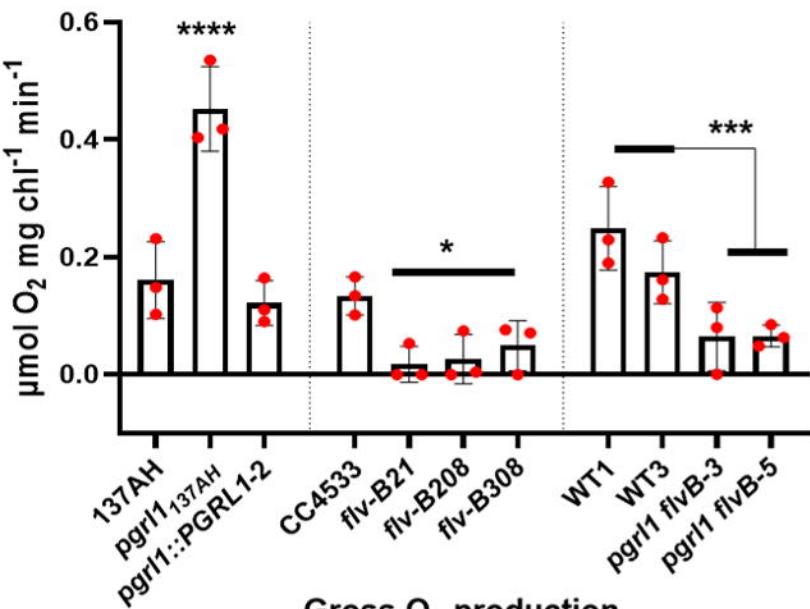




810 79. F. Buchert, M. Scholz, M. Hippel, Electron transfer via cytochrome b 6 f complex displays
811 sensitivity to Antimycin A upon STT7 kinase activation. *Biochemical Journal* **479** (2022).

812 80. C. Klughammer, U. Schreiber, An improved method, using saturating light pulses, for the
813 determination of photosystem I quantum yield via P700+-absorbance changes at 830 nm.
814 *Planta* **192**, 261–268 (1994).

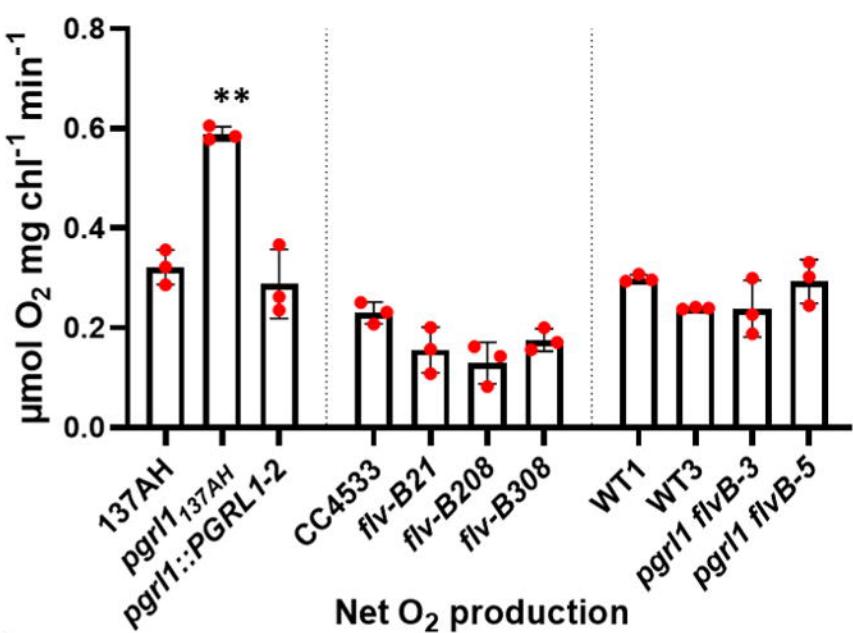



815 81. S. Upadhyaya, S. Agrawal, A. Gorakshakar, B. J. Rao, TOR kinase activity in *Chlamydomonas*
816 *reinhardtii* is modulated by cellular metabolic states. *FEBS Letters* **594**, 3122–3141 (2020).



817 82. J. L. Crespo, M. E. Pérez-Pérez, “Monitoring Autophagic Flux in the Model Single-Celled
818 Microalga *Chlamydomonas reinhardtii*” in *Plant Proteostasis: Methods and Protocols*, Methods
819 in Molecular Biology., L. M. Lois, M. Trujillo, Eds. (Springer US, 2023), pp. 123–134.

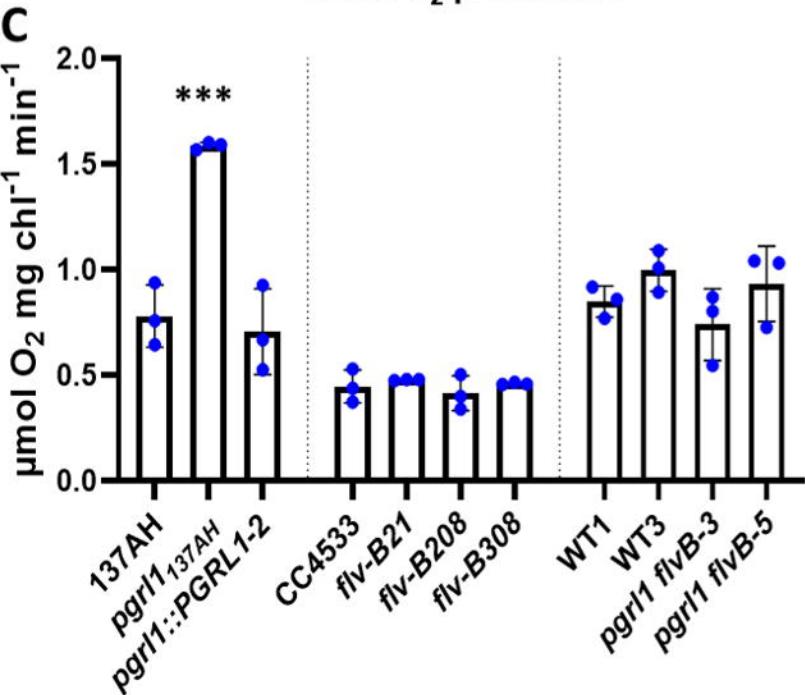
820

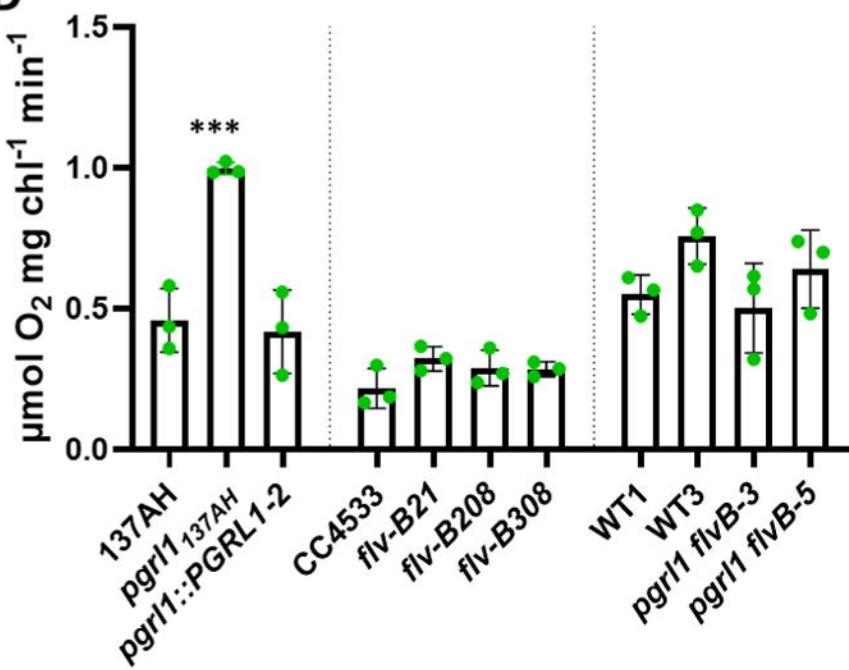

A **N replete (MM+N)****B** **N deficiency (MM-N)****C** **N replete (MM+N)****D** **N deficiency (MM-N)**

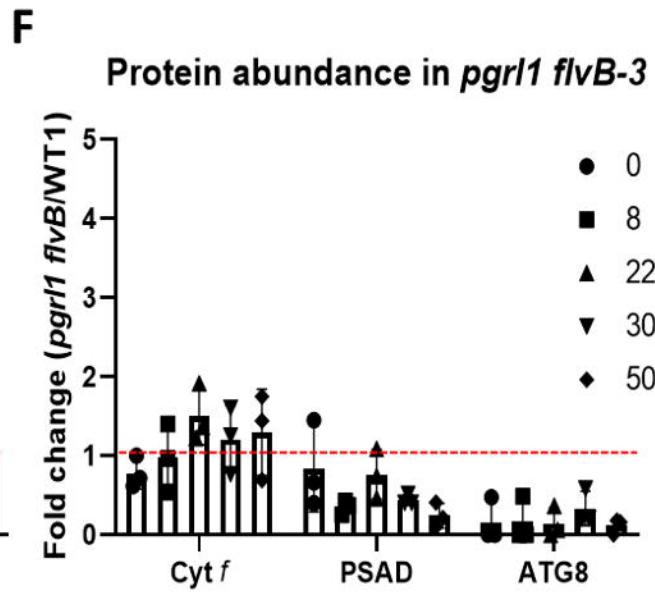
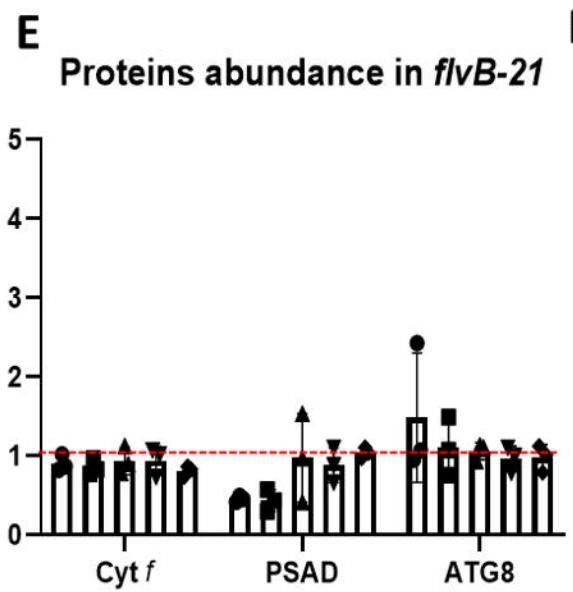
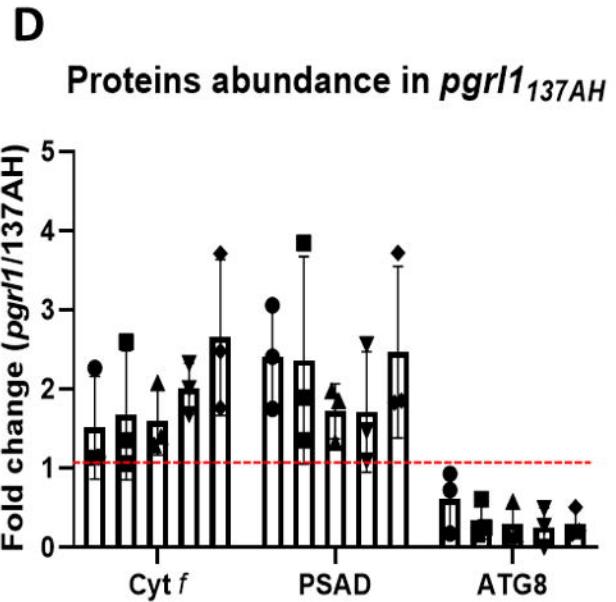
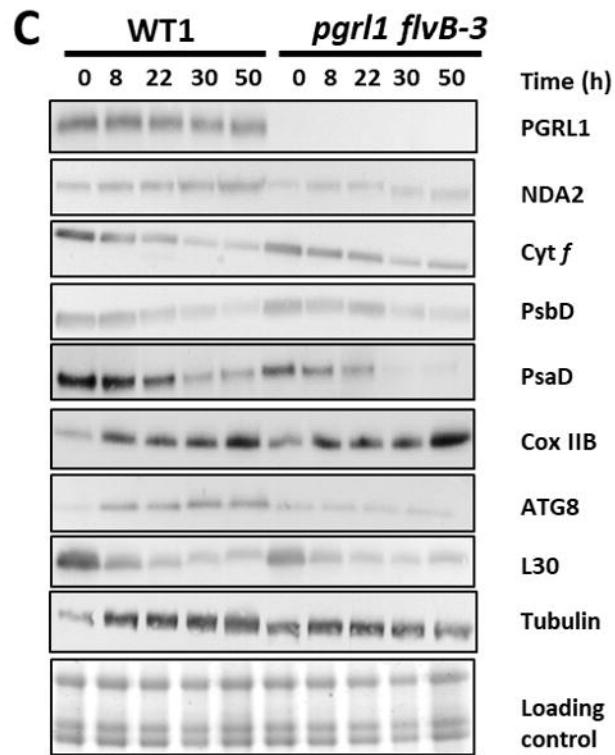
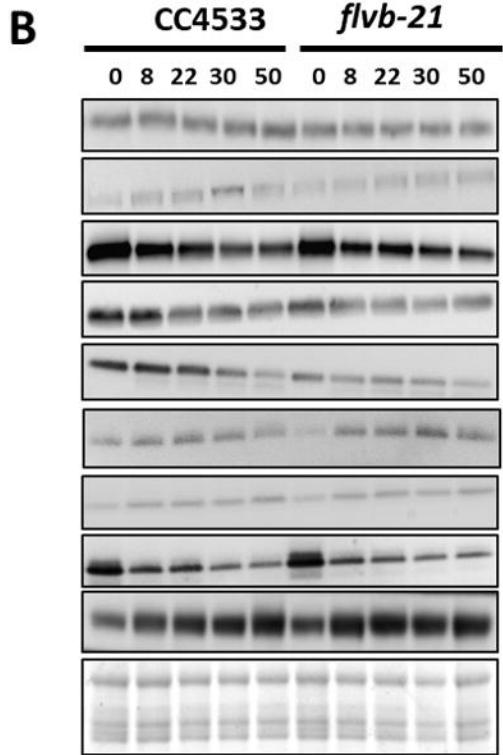
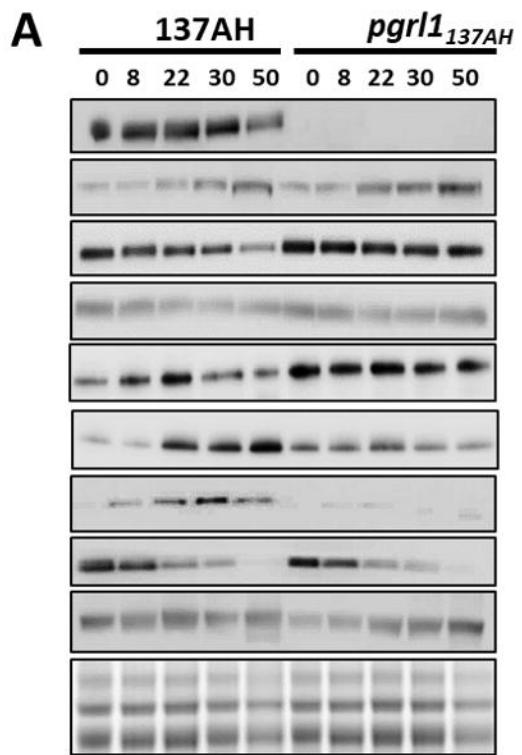
■ Gross O₂ uptake ■ Gross O₂ production ■ Net O₂ production

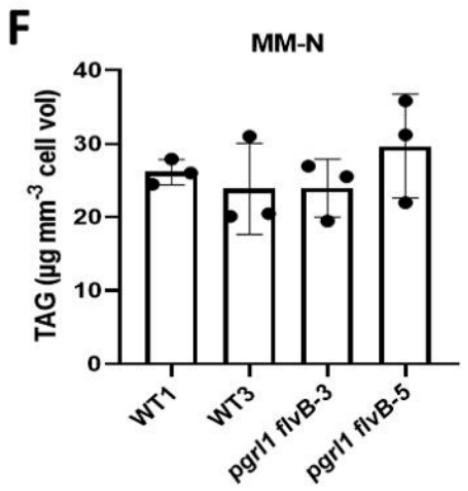
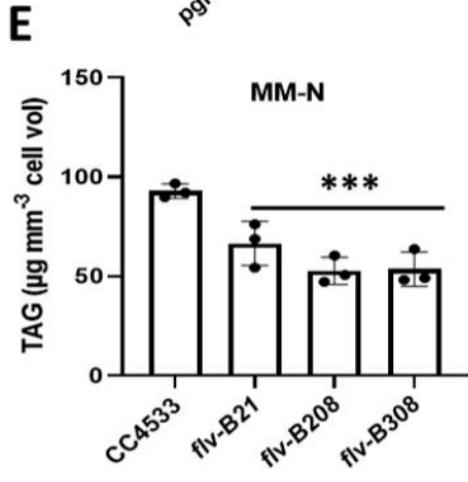
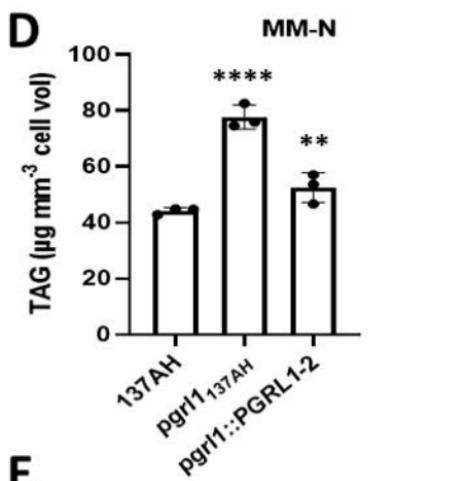
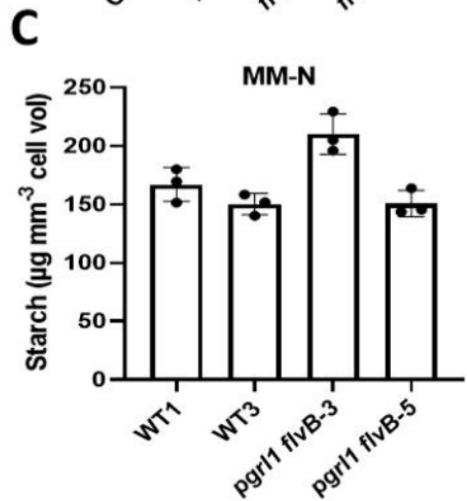
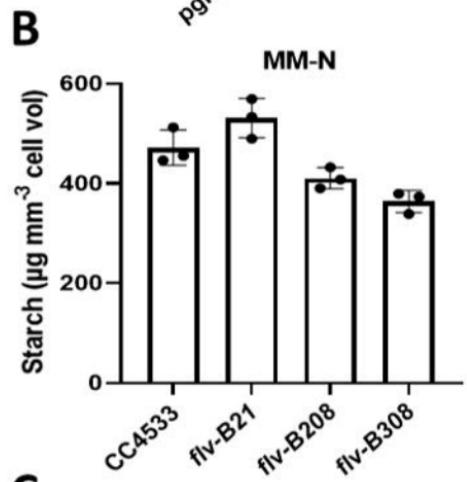
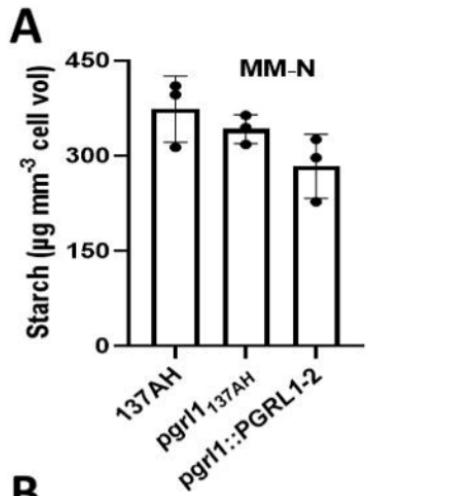

E PSII quantum yield (r.u.)**F** Net O₂ production 5-7min

A**B**


A Light-dependent O₂ uptake


B Gross O₂ uptake







C Gross O₂ production

D Net O₂ production

