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Abstract

Objective
Post-surgical seizure freedom in drug-resistant epilepsy (DRE) patients varies from 30 to 80%,
implying that in many cases the current approaches fail to fully map the epileptogenic zone
(EZ). This suggests that the EZ entails a broader epileptogenic brain network (EpiNet) be-
yond the seizure-zone (SZ) that show seizure activity.

Methods
We first used computational modeling to identify putative complex-systems- and systems-
neuroscience-driven mechanistic biomarkers for epileptogenicity. We then extracted these
epileptogenicity biomarkers from stereo-EEG (SEEG) resting-state data from DRE patients
and trained supervised classifiers to localize the SZ with these biomarkers against gold-
standard clinical localization. To further explore the prevalence of these pathological biomark-
ers in an extended network outside of the clinically-identified SZ, we also used unsupervised
classification.

Results
Supervised SZ-classification trained on individual features achieved accuracies of 0.6–0.7 area-
under-the-receiver-operating-characteristics curve (AUC). However, combining all criticality
and synchrony features improved the AUC up to 0.85.
Unsupervised classification uncovered an EpiNet-like cluster of brain regions with 51% of re-
gions outside of SZ. Brain regions in this cluster engaged in inter-areal hypersynchrony and
locally exhibited high amplitude bistability and excessive inhibition, which was strikingly sim-
ilar to the high seizure-risk regime revealed by computational modeling.

Significance
The finding that combining biomarkers improves EZ localization shows that the different
mechanistic biomarkers of epileptogenicity assessed here yield synergistic information. On
the other hand, the discovery of SZ-like pathophysiological brain dynamics outside of the
clinically-defined EZ provides experimental localization of an extended EpiNet.

Key points

• We advanced novel complex-systems- and systems-neuroscience-driven biomarkers for
epileptogenicity

• Increased bistability, inhibition, and power-low scaling exponents characterized our
model operating in a high seizure-risk regime and SEEG oscillations in the seizure-zone
(SZ)

• Combining all biomarkers yielded more accurate supervised SZ-classification than using
any individual biomarker alone

• Unsupervised classification revealed more extended pathological brain networks includ-
ing the SZ and many non-seizure-zone areas that were previously considered healthy
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1 Introduction

Epilepsy is an umbrella term for a number of syndromes sharing a common characteristic:
an enduring predisposition to having seizures [1, 2]. An epileptic seizure refers to an array of
abnormal neuronal activities and hypersynchrony [3, 4] often accompanied with involuntary
changes in behaviors, subjective experiences, or loss of consciousness in severe cases [1, 2].
30–40 % of epilepsy patients have drug-resistant epilepsy (DRE) where anti-seizure medica-
tions fail to stop the seizures. The last resort treatment for seizure control in DRE is surgery
[5] that aims to resect or disconnect the brain tissue responsible for seizure generation, com-
monly known as the epileptogenic zone (EZ). Nonetheless, uncertain post-surgical attainment
of seizure-freedom (30 – 80%) [6, 7] implies that the biomarkers in current clinical use fail to
fully localize the EZ in many patients [8, 9, 10]. New approaches to deepen the understanding
of the systems-level mechanisms of epileptogenicity and their individual expression are thus
urgently needed.

The EZ-localization is typically assisted by a range of multi-modal mechanistic characteristics,
such as MRI-visible lesions [11], metabolic anomalies [12], and neurophysiological anomalies
including high gamma oscillations [13], spikes [10], or concurring pathological slow and fast
activity [14]. In DRE patients with focal seizure onset, seizure activity is often limited to
a small number of brain areas [15]. The identification of the hypothetical EZ involves the
visual inspection of SEEG traces during seizure onset and propagation, while considering the
behavioral symptoms[15]. However, in light of evidence suggesting that the existence of a
broader connected epileptiform network portends poor surgical outcomes, it has been increas-
ingly recognized that epilepsy is a brain-network disease rather than attributable to isolated
lesions [16, 17, 18, 19, 20].

Inter-areal synchrony in large-scale brain networks is thought to be instrumental for neuronal
communication [21, 22]. Previous SEEG studies have showed that during inter-ictal periods,
pathological regions are more synchronized [23]. We have recently reported synchrony levels
in the human brain to be predicted by individual positions in a critical state-space [24] so that
synchrony among brain regions is moderate in healthy adults but more elevated in epilepsy
patients. These evidence supports the hypothesis of criticality being a hallmark of healthy
brain functioning and a shift towards super-criticality being characteristic to epileptogenicity.

The brain criticality hypothesis posits that healthy brains operate near a phase transition be-
tween asynchrony and synchrony [25, 26, 24]. Hallmarks of brain criticality include moderate
levels of synchrony (Fig 1, emergent scale-invariant long-range temporal correlations (LRTCs)
[27], balanced excitation and inhibition [28, 29], and a unimodal synchrony distribution (Bot-
tom, Fig 1c). Deviations from criticality – either to inadequate (subcriticality) or to excessive
synchrony (super-criticality) – have been associated with brain disorders[30]. In particular,
neuronal oscillations in epileptic brains has been found to show signs of super-critical-like
dynamics [31, 32, 24] .

The classic hypothesis of brain criticality postulates that the phase transition is continuous
(second-order) [25, 33]. However, both canonical firing rate models [34], ensemble dynamics
models [35], and models of synchronization dynamics with positive feedback [36] predict that
phase transition may also be discontinuous (first-order) (Fig 1 b). Empirically, operation at
a discontinuous phase transition would lead to bistable activity, such as the switching be-
tween an UP and an DOWN states during sleep in electrophysiological data from animal
models [37, 38] as well as comparable periods of high and low synchrony in awake human
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resting-state electroencephalography (EEG) [39, 40], magnetoencephalography (MEG), and
stereo-EEG (SEEG) [36]. Theoretical work has suggested bistability to occur near criticality
when ensembles are influenced by positive feedback [41, 36] or constrained by activity-limiting
mechanisms due to over-excitation [42]. Importantly, elevated bistability has been suggested
as a universal indicator of a predisposition of the system to exhibit catastrophic forms of aber-
rant activity [43], such as sudden, uncontrollable bursts of hypersynchrony like those that are
observed in various complex systems. We posit here that epileptic seizures could construed as
this kind of catastrophic runaway neuronal activity. This notion thus implies that bistability
in spontaneous neuronal network activity could be a mechanistic predictive marker for seizure
risk [36].

In epilepsy patients’ brain, an extended epileptogenic-like network (EpiNet) could entail
multiple, possibly overlapping components (Fig 1a), some of which might not engage in every
clinically observed seizure or exhibit currently well-known pathological characteristics [44, 45].
We hypothesized that, regardless of seizure types and pathological substrates, regions within
the EpiNet would spontaneously operate in a critical regime of high-stability that primes
them to catastrophic seizure events. This local aberrant criticality should also be associated a
large-scale super-critical trend exhibited as elevated phase synchrony [24] (Fig 1d). Therefore,
we evaluated the potential of combining criticality, bistability, and inter-areal synchrony to
serve as mechanistic biomarkers.

We tested the hypothesis on retrospective inter-ictal resting-state SEEG from 64 DRE pa-
tients. We assessed criticality and synchrony for the SEEG contacts, which were used as
features to train supervised classifiers for SZ on cohort level and within subjects. We subse-
quently used unsupervised classification to investigate whether there were nSZ samples shared
similar pathological features with the SZ. This hypothesis-free classification does not aim to
classify SZ but to identify an extended pathological brain network, i.e., the EpiNet .

2 Materials and Methods

2.1 Subjects and SEEG recording

The SEEG were recorded from 64 DRE patients (mean±std age: 29.7±9.5, 29 biological
females, Supplementary Table 1) at the Niguarda “Ca’ Granda” Hospital, Milan, Italy [6].
These patients: i) were the first time to undergo SEEG procedure; ii) had no previous
brain surgeries, iii) were free of cognitive impairment, psychological, or neurological con-
ditions, and iv) all had been diagnosed with focal onset seizures. Nine subjects who had
less than five contacts located in seizure-zone (SZ) or non-seizure-zone (nSZ) were excluded
from the SZ-classification analyses. Forty-five subjects underwent surgery or radio-frequency
thermo-coagulation (RF-TC) [15] were used for studying the correlation between neuronal
features and surgical outcome. In line with [6], a patient’s cumulative surgical outcome with
a minimum follow-up of 24 months is considered as ”favorable” when meeting the criteria of
International League Against Epilepsy (ILAE) classes 1 and 2 (corresponding to Engel classes
Ia–Ic). The outcome is considered as ”unfavorable” when a patient was not free of disabling
seizures (ILAE classes 3–6, Engel classes II–IV).

We obtained 10-min resting-state SEEG as monopolar local-field potentials (LFPs) with
shared reference in the white-matter away from the SZ locations [46]. There were no seizures at
least one hour before or after the resting-state recording. All patients were under anti-seizure
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medication with a large variability in the compounds and dosage. The recording time from the
last drug administration was not controlled, and therefore the drug effects was not considered.

SEEG leads were platinum-iridium, multi-lead electrodes (DIXI medical, Besancon, France),
each of which has 8 to 15 SEEG contacts that were 2 mm long, 0.8 mm thick and had an inter-
contact border-to-border distance of 1.5 mm. Freesurfer software [47] was used for extracting
cortical parcels from pre-surgically obtained T1 MRI 3D-FFE. An automated SEEG contact
localization method was then used to assign each SEEG contact to a cortical parcel with sub-
millimeter accuracy (github.com/mnarizzano/DEETO [48]; github.com/mnarizzano/SEEGA
[49]).

2.2 The seizure-zone (SZ) were clinically identified by physicians

SZ contacts were identified by visual analysis of the SEEG traces. This procedure was carried
out by one expert and validated by another [15]. Various peri-ictal and ictal events may initi-
ate from the seizure onset zone (SOZ), including low-voltage fast discharge, spike-and-wave,
and poly-spike slow bursts, etc [4]. The brain areas inside the seizure propagation zone (SPZ)
do not initiate ictals and often show delayed, rhythmic modulation after seizure initiation
from the SOZ [16, 18]. It is also common to see some SEEG contacts to have been identified
as SOZ and SPZ simultaneously (SOPZ) by physicians. In this study, we referred to SOZ,
SPZ, and SOPZ collectively as the seizure-zone SZ.

2.3 Preprocessing and filtering

Contacts located in SZ are known to demonstrate inter-ictal events (IIE) characterized by
high-amplitude spikes with widespread spatial diffusion, which could bias criticality estimates.
We followed the approach used in [50] to identify and exclude IIEs from biasing the assess-
ments. Briefly, each contact broad-band signal was first partitioned into non-overlapping 500
ms segments; a segment was tagged as ’spiky’ and discarded from LRTCs and bistability anal-
yses when at least 3 consecutive samples exceeding 7 times the standard deviation above the
channel mean amplitude. Last, narrow-band frequency amplitude time series was obtained
by convoluting the broad-band SEEG contact time series with Morlet wavelets (m=5) from
2 to 225 Hz with equal inter-frequency distance on log10 scale.

2.4 Assessing long-range temporal correlations (LRTCs)

After filtering, continuous narrow-band neuronal oscillations were subject to criticality assess-
ments (the formal definitions of the metrics and exemplary SEEG traces can be found in the
Supplementary Methods).

The critical exponent obtained using linear detrend fluctuation analysis (DFA) is conven-
tionally used to assess the LRTCs in the ongoing narrow-band oscillation [27]. The DFA
exponent quantifies how the root mean square of local fluctuations grows with logarithmi-
cally increasing sampling window size. In other words, the exponent could predict how fast
the fluctuations would grow in the long-run with only a small fraction of all available data.
DFA = 0.5 indicates that the time series is indistinguishable from a random walk process
with no long-range memory; 0.5 < DFA < 1 indicates significant LRTCs, i.e., an indication
of criticality; 1 < DFA < 2 indicates the time series is non-stationary.
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2.5 Assessing bistability

The BiS index quantifies the degree of bistability of a neuronal oscillation [39]. First, the em-
pirically observed probability distribution of the narrow-band power time series is fitted with
a single exponential and a bi-exponential model. Then, the BiS is derived from the model
comparison between the two competing models based on Bayesian information criterion of
the two candidate models. A BiS > 3 indicates bistability.

2.6 Assessing functional excitation/inhibition (E/I)

The functional excitation/inhibition (E/I) index (fE/I) is closely related to the DFA. It makes
inferences about the operational regime of the E/I population based the hypothetical relation-
ship between time-resolved scaling exponent and local synchrony [29]. There could be three
underlying operational regimes: 0 < fE/I < 1 indicates that the oscillation demonstrated
inhibition-dominated temporal dynamics; 1 < fE/I < 2 indicates excitation-dominated dy-
namics; and fE/I = 1 with a constraint of 0.5 < DFA < 1 indicates an excitation-inhibition
balanced dynamics.

2.7 Assessing and validating phase synchrony derivatives

To examine whether large-scale brain networks were characterized by hypersynchrony asso-
ciated with a trend towards super-criticality within the critical regime, we conducted graph
analyses on the all-to-all phase synchrony between SEEG contacts, i.e., connectomes. A con-
nectome was treated as a graph, wherein each contacts are nodes and inter-contact synchrony
are edges [51]. If the EpiNet indeed shows hypersynchrony, the nodes in the EpiNet would be
characterized by elevated 1st- and 2nd-order centrality (Fig 1d) [52], i.e., a node’s own and
its neighbors’ connectivity, respectively.

The synchrony between all contacts located in the cortical and subcortical gray matter was
assessed using the phase-locking value (PLV) for 50 narrow-band frequencies (Morlet wavelets,
m = 7.5). The frequency bands spanned from 2 to 450 Hz with equal inter-frequency distance
on log10 scale. Across subjects, a small number of contacts were referenced with the same
white-matter contact. The PLV edges between them were set to zeros as recommended by[46],
e.g., Fig 2f.

To characterize SEEG contact connectivity, the PLV connectomes were collapsing into 1D syn-
chrony derivatives [52] using the Brain Connectivity toolbox (brain-connectivity-toolbox.net).
We estimated 1st-order synchrony derivatives, i.e., the connectivity of a given contact, with
effective weight (We) and eigenvector centrality (EV C). We is the linear aggregating avail-
able edges. EV C is a self-referential measure of centrality, e.g., nodes have high EV C if they
connect to other nodes that have high EV C. We estimated 2nd-order synchrony derivatives,
i.e., the connectivity of the neighbors of a given contact, with clustering coefficient (Cc) and
local efficiency (LE). Cc is the fraction of node’s neighbors that are neighbors of each other.
The efficiency is defined as the average inverse shortest path length in the network, and LE
is the efficiency assessed in the neighborhood of a node ni, i.e., all the nodes connected to ni.

Spatial sampling inhomogeneity of SEEG could be exacerbated by the deletion of PLV edges
due to shared-reference, which might bias the properties of the synchrony graphs. Before
analyses, we ascertained that the synchrony derivatives used here were robust against missing
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samples by exhaustive simulations. This was tested with two sets of simulations. First, for
each subject’s narrow-band PLV matrices, random edge deletion was used to emulate the re-
moval of interactions between contacts that shared the same white-matter contacts. Second,
node deletion was used to emulate the individual variability in spatial sampling and therefore
possible sub-sampling. All these synchrony derivatives were consistently robust against sim-
ulated random deletion (Supplementary Fig 4).

2.8 Normalizing, frequency clustering, and differentiating brain dynamics
features

We first differentiated SZ and nSZ contacts within subjects and then aimed to train cohort-
level models for supervised SZ-classification. The criticality and phase synchrony estimates
were known to show co-variability and considerably large individual variability across sub-
jects [24]. Here, we concerned the difference between neurotypical and pathology within
subjects, and therefore, the criticality and synchrony derivatives were normalized as: x̂i =
(xi − median(X))./max(X − median(X)), where, xi is a contact, X is a 1D vector of real
numbers of criticality or synchrony derivative for all contacts for a given frequency within a
subject (Fig 3 a–f).

Because the topological features of narrow-band criticality assessments were similar between
neighboring frequencies and different between fast and slow brain rhythms, twenty narrow-
band criticality assessments were next collapsed into four frequency clusters based on observed
similarity as δ (2–4 Hz), θ − α (5.4–11 Hz), β (15–30 Hz), and γ1,2 (45–225 Hz) (Supplemen-
tary Fig 6); Likewise, as we previously reported that the narrow-band PLV matrices showed
topological similarity [50], fifty narrow-band synchrony derivatives were collapsed into six fre-
quency clusters as: δ− θ (2–5.4Hz), α (6.1–13 Hz), β (15–30 Hz), γ1 (40–96 Hz), γ2 (110–250
Hz), and γ3 (270–450 Hz) ([50]).

Subsequently, the effect size of differences between SZ and nSZ in these normalized and
frequency clustered feature data were assessed with Cohen’s d and compared with the 99%-
tile of Cohen’s d observed from 1,000 label-shuffled surrogates (Fig 3 g–h).

2.9 Supervised SZ-classification using the Random Forest algorithm

We first assessed the individual feature importance and then conducted supervised SZ-classification
using the SZ labels identified by physicians. The feature importance of these neuronal esti-
mates were assessed with the SHapley Additive exPlanations (SHAP) values [53]. The SHAP
values is a generic metric to explain any tree-based model by explicating the local and global
interpretability of features, which advances the transparency that conventional ”black-box”
classifications approaches lack of. The non-parametric Random Forest algorithm was em-
ployed for supervised SZ-classification [54]. The algorithm is a machine learning method
uses bootstrapped training data and combines the simplicity of decision trees with extended
flexibility to handle new data.

2.10 Unsupervised classification by contact cluster analysis

We also conducted unsupervised contact classification by cohort level contact cluster analysis,
i.e., without considering any human inputs as the ground truth for pathophysiology. This was
done by first pooling all feature data of the whole SZ-classification cohort (contacts × features,
2D scalars), then computing all-to-all feature-similarity (i.e., Spearman’s rank correlations
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r) between contacts (Fig4e), and last conducting clustering analyses using the unweighted
pair group method with arithmetic mean (UPGMA) [55]. The UPGMA is an agglomerative
hierarchical clustering approach that builds a hierarchical tree through an iterative procedure
to reflect the distance between all pairs of objects (i.e., either a contact or a cluster of contacts)
represented by the similarity matrix. The information about distance tree structure is then
used to partition the data into well delineated clusters.

3 Results

3.1 Positive feedback in a computational model of synchronization dynam-
ics leads to bistability and increased risk for seizure-like hypersyn-
chrony

To investigate the emergence of seizure-like hypersynchrony in systems with separately con-
trollable bistability and criticality, we used a Kuramoto model [24, 56] equipped with positive
feedback [36]. The Kuramoto model is a generative model for synchronization dynamics, i.e.,
a model that generates time series of oscillations characterized by emergent synchronization
that is quantified by ”order” (R) so that R = 0 in the absence of synchrony and R = 1 for
perfect synchrony (Supplementary eq.6). The positive feedback is a generative mechanism for
bistability in canonical systems such as the cusp bifurcation that also considers two control
parameters [43]. Based on the cusp bifurcation, we expected: i) the model order to be influ-
enced by both coupling (a) and positive feedback (b); ii) bistability in order should emerge
exclusively with increasing positive feedback ([36], Supplementary Fig 1).

At low levels of feedback, increasing coupling led to emergence of power-law scaling LRTCs
at moderate levels of order – indicating a smooth phase transition in the order consistent
with the prediction of the classic criticality hypothesis (Fig 1e, see also Supplementary Fig 2).
However, in the presence of stronger feedback, the model exhibited bistable synchronization
dynamics within the critical regime (Fig 1f).

Importantly, in the regime of critical bistability, the model became hyper-sensitive to changes
in coupling and could erratically transit from criticality to super-criticality. For example, a
15% increase in coupling could drive the model from the subcritical side of the critical regime
with low synchrony (R = 0.1) into a super-critical regime with seizure-like hypersynchrony
(R = 0.9); as a contrast, at low levels of feedback, a 61% increase in coupling was required to
drive the model to exhibit the same subcritical-to-supercritical transition (see ∆a1 vs ∆a2 in
Fig 1e).

Lastly, within the regime of critical bistability, the excitation-dominant dynamical regime is
closer to the super-criticality than the inhibition-dominant dynamical regime (Fig 1e, Sup-
plementary 2).

3.2 Seizure-zone (SZ) exhibits aberrant criticality and elevated synchrony

We assessed local criticality and inter-areal phase synchrony in inter-ictal, resting-state SEEG
recordings of local neocortical field potentials, and then examined the capacity of these syn-
chronization dynamics metrics to differentiate the SZ from non-seizure-zone (nSZ).

The amplitude envelope of neuronal oscillations reflects local synchronization and is equiv-
alent to the model order, and local criticality of the narrow-band SEEG data was assessed
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in the same manner as for the model. We assessed all-to-all phase synchrony between all
SEEG contacts with the phase locking value (PLV ), which was then used to obtain the first-
and second-order synchrony derivatives, i.e., a contact’s own and its neighbors’ connectivity,
respectively. (Fig 1d).

Visual inspection of individual data revealed differences between SEEG contacts located in
SZ and nSZ. SZ contacts often exhibited stronger bistability in broad-band and narrow-band
traces than adjacent nSZ contacts (Fig2 a–b, Supplementary Fig 3). In this representative
subject, the SZ was characterized by more pronounced bistability, stronger LRTCs, and more
inhibition-dominance in the 80 Hz than the nSZ (Fig2 c–d). Moreover, the 4 HZ PLV con-
nectome showed that both the synchrony among SZ contacts (first-order connectivity) and
between the SZ and nSZ contacts(second-order connectivity) were pronounced (Fig2 e–f).
The differences between SZ and nSZ in narrow-band criticality and synchrony assessments in
this subject are shown in (Fig2 g–h).

For the whole cohort, LRTCs, bistability, and functional E/I were assessed for 2 – 225 Hz
narrow-band oscillation amplitudes (Fig 3a). Pooling contacts from all subjects revealed that
the SZ appeared to have elevated bistability and inhibition-dominance in 45–225 Hz and
15–30 Hz (Fig 3b, c), whereas slightly stronger LRTCs in 2–5 Hz and above 100 Hz (Fig
3d). Meanwhile, the SZ showed elevated first- and second-order synchrony derivatives (Fig
3e, f, respectively). Overall, these narrow-band criticality and synchrony measures exhibited
highly similar anatomical patterns between neighboring bands but were less similar between
distinct frequency bands (Supplementary Fig 6). To improve interpretability and reduce di-
mensionality, we collapsed the individual frequencies into bands and used them to assess the
statistical differences between SZ and nSZ. For criticality, the 20 narrow-band maps were
collapsed into four bands (see Fig 3b–d and Supplementary Fig 6). Similarly, the 50 narrow-
band-synchrony-derivative maps were collapsed into six bands (see Fig 3e, f).

Comparing to the nSZ, the SZ exhibited greater bistability with concurrent stronger inhibi-
tion in γ1,2 (40−225 Hz) and β (15−30 Hz) band oscillations (Fig 3g). This form of aberrant
criticality was highly similar to the model dynamics in the high seizure-risk regime. Further-
more, the SZ showed simultaneously elevated first- and second-order synchrony derivatives in
δ − θ (2 − 5.4 Hz) followed by γ1 (40 − 96 Hz) band (Fig 3h). This indicated that SZ were
central nodes (i.e., the Type-1 node, Fig 1d) characterized by elevated resting connectivity to
SZ and between the neighbours of SZ. Finally, these findings indicate that the inter-ictal brain
dynamics in SZ are statistically dissociable from those in nSZ in terms of aberrant bistability,
classical criticality, and excitability.

3.3 Supervised SZ classification: combining criticality and synchrony as-
sessments maximizes SZ-classification accuracy

Next we asked if the criticality and synchrony derivatives could be used to classify the SZ
identified by physicians, which constitutes the first prerequisite for this approach to have
clinical value. To this end, we used a supervised learning approach and trained models to
identify the SZ contacts in individual patients in three steps. First, we assessed the similarity
between criticality and synchrony derivatives. Next, as a proof-of-concept, we conducted a
population level cross-validation. We employed the Random Forest algorithm that is a super-
vised Bayesian classifier [54], and the SZ contacts were used as the ground truth for training.
Lastly, we conducted within-patient leave-one-out SZ-classification, i.e., one subject as the
test set and the rest as the train set.
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First, feature similarity was assessed as correlations between band-collapsed local criticality
and synchrony features (Supplementary methods). The bistability index (BiS) and DFA were
positively correlated between all bands (Fig 4a, respectively). In line with the modeling re-
sults, the BiS and fE/I indices were negatively correlated which constituted the first empirical
evidence of concurring bistability and inhibition-dominance in SZ to support the model pre-
diction of elevated risk – but not immediately prior to supercriticality, i.e., a high-bistability
and excitation-dominance regime (Fig 1e–f). The weak correlation between criticality and
synchrony derivatives (Fig 4b) implied that they reflected non-overlapping physiological pro-
cesses. Since both feature families showed differentiating effects for SZ (Fig 3), combining
them would most likely offer better SZ-classification than using any individual features alone.

Next, as a precaution, we took two additional procedures to validate that criticality and syn-
chrony assessments were useful features for SZ-classification. First, we assessed global and
within-subject feature importance with the Shapley Additive exPlanations (SHAP) values
for the Random Forest classifier [53]. This revealed that, on the population level, γ band
BiS and fE/I, β band BiS, and δ − θ band LE were among the most important individual
features (Supplementary Fig 7). Next, we conducted a population level cross-validation with
1, 000 independent iterations, each of which was a random 80 : 20%-partition (training:test
set) (Supplementary methods). We tested SZ-classification using criticality alone, synchrony
derivatives alone, and combining criticality and connectivity and for “cortical contacts only”
and “all contacts” (i.e., cortical and subcortical). These tests revealed that combining criti-
cality and connectivity (’All’ in Fig 4c) yielded the best classification accuracy with the area
under curve (AUC) of the receiver operating characteristic reaching 0.85 ± 0.002 (mean ±
std). These results thus offered proof-of-concept for within-patient SZ-classification.

Lastly, we performed within-patient SZ-classification with leave-one-out validation, wherein
each patient’s contacts served as the test set (n=55, patients with less than five SZ or nSZ
contacts were excluded). Using all features yielded the best result with a mean AUC of
0.73±0.16 for all contacts, and 0.72±0.16 for cortical contacts only (Fig 4 d), with no difference
between cortical-only and all contacts (repeated t-test, p > 0.55). Synchrony derivatives
were more potent than criticality for SZ-classification in population cross-validation, whereas
criticality represented more potent features than connectivity in within-patients classification.

3.4 Unsupervised classification reveals a pathological EpiNet sample clus-
ter

The SZ and nSZ exhibited distinct brain dynamics, and these differences could be leveraged
to classify SZ and nSZ in individual patients with moderate-to-high accuracy. We next asked
whether the pathological brain network, the EpiNet, could entail not only the SZ but also
brain areas clinically identified as healthy nSZ. To answer this question, we used unsuper-
vised classification. We first estimated all-to-all feature similarity between contacts from all
subjects and then conducted clustering analyses of this cohort level inter-contact similarity
matrix (Supplementary methods). Thereby, contacts belonging to the same cluster are more
similar with each other than with the contacts from other clusters. We found that through
a range of partitioning resolutions from two to nine clusters, three major clusters remained
stable in their constituent contacts and were representative of the whole cohort (Supplemen-
tary Fig 8 a–b). Thus, we chose the 3-cluster partition solution for further analyses (cluster
size n = 2730, 1378, 1243, respectively) (Fig 4e).
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We subsequently checked if the clusters represent distinct (patho-)physiological profiles by
joint analyses of the clustering and within-patient supervised SZ-classification. Based on the
similarity between test set and the SZ in the train data, the supervised classifier assigned
a SZ-likelihood (LSZ , 0 − 100%) to each contact in test set to indicate how likely it was a
SZ. The Cluster-1 contacts (pink, Fig4 f) showed larger mean LSZ than Cluster-0 and -2
(unpaired t-test −log10(p) > 1015 and > 234.2 , respectively), whereas there was no difference
between cluster-0 and -2 (unpaired t-test, −log10(p) < 0.35). Here, a larger LSZ indicated
that pathological-like contacts were indeed more concentrated in Cluster-1 (in-cluster SZ:nSZ
= 48.8% : 51.2%). The probability of observing SZ in Cluster-1 (48.8%) were more than twice
larger than that of Cluster-0 and -2 (23.0% and 21.2%, respectively), which further supported
that Cluster-1 represented pathophysiology, i.e., the hypothetical EpiNet.

We next asked what features differentiated the three clusters by comparing criticality and
synchrony assessments between clusters. Cluster-1 showed elevated local efficiency (Fig 4i)
and eigen vector centrality (Supplementary Fig 8f) most prominently in δ − θ and γ1 band.
The concurrent larger first- and second-order synchrony derivatives suggested that these brain
areas were relatively central (Type-1 node, Fig 1f). Cluster-1 also showed elevated bistabil-
ity (Fig 4j) with concurring inhibition-dominance (Fig 4k) in γ1,2 and β band comparing to
Cluster-0 and -2. Lastly, Cluster-1 showed higher DFA in γ1,2 band (Fig 4l).

Notably, in the tentatively pathological Cluster-1 for EpiNet, 25.2% of the nSZ contacts were
identified as SZ by the supervised classifier (LSZ > 50%, Fig 4g). Hence, the the ratio of
such ’pathological-like’ nSZ contacts (pnSZ−clust1) in a patient might tell the extent of the
EZ network that could not be detected using conventional approaches. The pnSZ−clust1 was
higher in patients with predominantly frontal SZ (4.7± 3.8%, n = 15) than the patients with
SZ in temporal or other lobes (2.6 ± 2.6%, n = 40) (unpaired t-test, p < 0.018), whereas
the mean LSZ of all nSZ contacts in the frontal-SZ patients (23.6± 4.9%, n = 15) and other
patients (24.5± 7.1%, n = 40) had no difference (unpaired t-test, p > 0.667). This suggested
that these tentatively pathological nSZ were undetected during pre-surgical EZ mapping in
the frontal lobe seizure patients, who have previously been suggested to likely represent a
special type of focal epilepsy [57].

4 Discussion

With our putative mechanistic biomarkers for epileptogenicity, we extracted neuronal fea-
tures from inter-ictal SEEG and trained supervised classifiers to localize the SZ against gold-
standard clinical localization. The employed novel biomarkers were derived by using computa-
tional modeling motivated by complex system, brain criticality, and catastrophe theory. They
include bistability, long-range temporal correlations, and functional excitation/inhibition bal-
ance in local synchrony dynamics. In the model, strong positive feedback led to a high seizure-
risk regime, wherein the local synchrony exhibited high bistability, strong inhibition, and
aberrant power-low scaling. The SEEG analyses revealed that the local synchrony in SZ ar-
eas exhibited striking similarity to the model in the high risk regime. Meanwhile, the SZ areas
simultaneously exhibited strong inter-areal synchrony, implying large-scale super-criticality.
Supervised classifier trained on all criticality and synchrony features yielded more accurate
(AUC 0.85) identification of SZ than using any individual feature alone (AUC 0.6–0.7).

We subsequently investigated whether the brain network exhibiting pathophysiological fea-
tures constitutes more extended areas (EpiNet) than the clinically localized SZ. Unsupervised
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classifiers yielded three principal sample clusters, among which only one was pathological-
like. Co-localization of the supervised and unsupervised approaches further showed that the
pathological cluster included electrode contacts with the greatest likelihood of being SZ. Im-
portantly, however, 50% of contacts in the pathological cluster were considered healthy in
clinical assessment.

4.1 Strong positive feedback leads to elevated bistability, strong inhibition,
and lowered hypersynchrony threshold

Positive feedback has been suggested to cause bistability in complex systems irrespective
of their physical details [41]. Excessive bistability indicates a first-order discontinuity with
harmful hysteresis [36] and phenomenologically a signature of incoming catastrophes [43, 58].
In both unimodal and bistable critical regimes, increasing coupling strengths can lead to a
seizure-like hypersynchronous regime. However, only the bistability regime is associated with
a lowered threshold to hypersynchrony, wherein a small increase in coupling can result in a
sudden regime shift from asynchrony to full synchrony. Within the model critical bistability
regime, the excitation(E)-dominant dynamical regime was closer to the supercriticality than
the inhibition(I)-dominant dynamical regime. In the SEEG, the SZ exhibited larger bistabil-
ity and predominantly I-dominance, rather than E-dominance, in β − γ bands. These novel
results thus support the cusp catastrophe prediction and further suggest that concurrent high
bistability and strong inhibition – in a critical like regime – characterize an increased seizure
risk.

Theoretical work has shown that positive feedback could be associated with high resource
demand with ensuing bistable neuronal avalanche dynamics [42]. Brain regions with high
resource costs are considered vulnerable to abnormal development and pathology that lead
to disorders [59]. In our simple model, strong positive feedback was operationalized as a
state-dependent term. In more realistic models such as the Wilson-Cowan ensemble, several
synaptic mechanisms including strong E-to-E self-excitation and E-to-I disinhibition can lead
to bistable firing rates [34, 60]. These arguments have also been further supported by re-
cent evidence on the positive feedback between seizure and metabolic anomalies [61, 62] and
neuroinflammation [63, 64].

4.2 The EZ is a hypothetical core of the epileptogenic network

The concept of EZ has been evolving over the decades [44, 16, 45]. Nonetheless, when defining
the EZ, the clinical objective of achieving long-term seizure freedom has remained unchanged.
[65]. As the EZ represents the core of the epileptogenic network to generate seizures, and
hypothetically, there could be several possible surgical solutions to be weighted by clinical
constraints [12].

Across individuals, the EZ [16, 18, 66] might consist components such as structural lesions,
seizure zone, high gamma oscillators, and irritative zone, etc [45, 44], some of which may over-
lap. This could account for why individual markers often localize EZ inconsistently across
subjects [8, 9]. The low post-surgical seizure freedom in many patients has further suggested
that the pathological networks were not fully mapped with existing conventional biomarkers.
We found that combining all criticality and synchrony biomarkers yielded the highest classi-
fication accuracy compared to using any single biomarkers alone. This finding thus offered
evidence to support the multi-component and our concurrent local and global pathology hy-
potheses.
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4.3 The EpiNet represents a pathological brain network that is more ex-
tended than previously thought

With unsupervised classification we revealed an EpiNet cluster entailing both SZ and nSZ
with shared pathological characteristics. In these patients, the nSZ did not show seizure
activity throughout the SEEG monitoring period spanning from days to weeks and there-
fore were deemed as non-pathological. However, unsupervised classifiers trained on our novel
biomarkers using 10-min of resting-state SEEG could readily reveal that these nSZ shared
similar functional profiles with the SZ. These finding suggested that the entirety of the EZ
network might indeed encompass brain areas that do not engage in every observed seizure.
Alternatively, while not involved in seizure activity, these nSZ might be linked to the altered
structural connectivity within the SZ, potentially suggesting regions of future ictal network
spread or kindling.

In contrast, some SZ were assigned to the two remaining clusters that did not show clear
signs of pathophysiology and were assigned low SZ-likelihood by the supervised classifier. We
postulated these atypical SZ might be non-central nodes in the EZ (i.e., Type-2 nodes in
Fig 1d). Due to the unavailability of the structural connectome data, we could not simulate
large-scale synchrony to test this idea. Future efforts should be directed into elucidating
the interesting dissociation reported here, in particular the functional role of the nSZ in the
EpiNet cluster [45].

4.4 Integrating brain criticality and synchrony: novel mechanistic biomark-
ers for epileptogenicity

The joint consideration of these synchrony and criticality measures opens new avenues for
data-driven and automated identification of putative EpiNet areas in individuals, which may
complement current clinical tools and improve the outcome of epilepsy surgeries. In this
study, physicians identified the SZ case by case based on the SEEG readouts during inpatient
monitoring. We used the SZ as the ground truth for training classifier to identify pathological
areas. The supervised classification results were subsequently complemented by hypothesis-
free unsupervised classification. However, the SZ identification accuracy could be variable
across subjects because the spatio-temporal signatures of ictals are complex across seizure
types[4], sometimes can be highly ambiguous [67], and dependent on multiple seizure cycles
[68, 69]. The EZ, on the other hand, represents a surgical solution for attainment of seizure
freedom, and the overlap between the EZ and the EpiNet revealed here is still unclear. The
accurate EZ-localization will involve rigorous hypothesis testing and validation, i.e., using
virtual surgery and real surgery, respectively. [70, 71].

5 Conclusion

We showed that our novel complex-system and systems-neuroscience driven biomarkers were
able to discover epileptogenic pathology that were not previously known. Combining these
potent biomarkers with state-of-the-art learning approaches offers a promising avenue for
comprehensive localization of the epileptogenic network.
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Figure Legends

Fig 1

Figure 1: Hypothesis: aberrant local criticality and strong network synchrony concurrently
characterize spontaneous activity of the epileptogenic brain. a. Seizure-zone (SZ) show seizure
activity. The pathological brain network (EpiNet) might comprise the SZ and some non-seizure-zone (nSZ),
and the latter were previously considered healthy. SEEG electrode insertion is driven by clinical hypothesis
and thus might miss some pathological areas. b. Synchrony (R), i.e., amplitude envelope of the complex
mean-field, when the model is in different regimes. c. The probability distribution (p) of R samples and mean
DFA exponents of R (black line) as the model was controlled by strong (top) and weak (bottom) local positive
feedback; the corresponding time series were in (b); DFA: detrend fluctuation analysis. d. As synchrony
increased, 1st- and 2nd-order synchrony derivatives of Type 1 (central) nodes are consistently larger than
that of Type 2 (peripheral) nodes. The 1st- and 2nd-order refers to a node’s connectivity and its neighbor’s
connectivity, respectively. EV C: eigen vector centrality; LE: local efficiency. e–f. Local criticality assessed
from spontaneous activity of the model. e. Time-averaged R as a function of coupling and positive feedback; the
area sandwiched between two dashed lines is critical-like regime (DFA > 0.6); ∆a1 and ∆a2 indicate required
increment in coupling to drive the model from critical (R=0.1) to super-critical, seizure-like hypersynchrony
(R=0.9) at a given positive feedback strength. The y axis is reversed to make this figure comparable with
the cusp fold (Supplementary Fig 1). f. Association between criticality, bistability, inhibition-dominance, and
excitation-dominance in the model local dynamics.
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Fig 2

Figure 2: Individual level evidence of differences between SZ and nSZ. a–b. Five minutes of broad-
band and narrow-band traces from (a) a SZ contact and (b) a nSZ contact from frontal region of subject X.
c. The fitting of DFA exponent (top), the BiS (middle), and fE/I (bottom) for 4 Hz and 80 Hz oscillation from
(a). Markers and solid lines indicate observed data and fitted models, respectively. DF: detrend fluctuation;
pdf : probability distribution function; Norm’: normalized; Amp: amplitude envelope. d. The same as (c)
for (b). e. SEEG contact locations for (a) and (b). f. Top: subject X’s 4 Hz phase synchrony between all
contacts assessed using phase-locking value (PLV). Bottom: normalized synchrony derivatives of the SEEG
contacts from the PLV matrix. We: effective weight; EVC: eigen vector centrality; Cc: clustering coefficient;
LE: local efficiency. g–h Difference between SZ and nSZ in (g) narrow+band criticality assessments and (h)
synchrony derivatives. Dashed line indicate confidence intervals observed from 1,000 label shuffled surrogate
data.
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Fig 3

Figure 3: The EZ showed concurrent anomalies in criticality and synchrony assessments. a–f.
Demographics of the whole cohort samples (N=64). a. With-subject (thin) mean SEEG amplitude and group
average (thick). b–f. Normalized narrow-band frequency criticality and synchrony derivatives for SZ and nSZ
contacts. BiS: bistability index; fE/I: functional E/I index; DFA: detrend fluctuation analysis exponent; EVC:
eigen vector centrality; LE: local efficiency; Shades indicate 25 and 75%-tile; frequency clusters of criticality: δ
(2–4 Hz), θ − α (5.4–11 Hz), β (15–30 Hz), and γ1,2 (45–225 Hz); frequency clusters of synchrony derivatives:
δ − θ (2–5.4Hz), α (6.1–13 Hz), β (15–30 Hz), γ1 (40–96 Hz), γ2 (110–250 Hz), and γ3 (270–450 Hz). g–h.
Differences between SZ and nSZ in band clustered metrics for the sub-cohort (N=55)used in supervised SZ-
classification. Dished lines indicate confidence interval observed from 104 label-shuffled surrogates conducted
independently for each metric.
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Fig 4

Figure 4: Optimal SZ-classification was achieved by combining all criticality and synchrony fea-
tures. a. Mean within -patient Spearman’s correlation (< r >) between band-collapsed criticality assessments.
b. Similarity between criticality and connectivity across frequencies. c. Population pooled SEEG contacts
classification cross-validation (randomly split 20% vs 80% test vs train set over 1000 iterations) when using
different feature set. AUC: mean area under the receiver-operator-curve; * indicates differences (repeated
t-test, −log10(p) in sequence: 62.1, 39.9, 117.8, Benjamini-Hochberg FDR corrected); dashed line: surrogates
mean (nsurro = 1000). d. Mean subject AUC (n=55) of within-patient SZ-classification; * and **: indicate
differences (unpaired t-test, −log10(p) = 2.2 and 6.1, respectively (FDR corrected); error bars: standard de-
viation; dashed lines: surrogate mean (nsurro = 1000). e. All-to-all SEEG contact similarity matrix, and the
boxes demarcate three clusters. f. Distribution of SZ-likelihood for each cluster defined in (e). g–h. LSZ of
SZ and nSZ of (g) cluster-1, (h) cluster-0 and cluster-2. i–l. Intra-cluster group average of (i) LE, (j) BiS, (k)
fE/I, and (l) DFA. Inter-cluster differences in theses features see Supplementary Fig 8 (e–f).
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A Supplementary materials

A.1 Supplementary methods

A.1.1 The bistability in Thom’s cusp catastrophe

Catastrophes emerging from complex systems are characterized by sudden and violent onsets,
detrimental consequences, and are suggested to be generated by only few candidate mecha-
nisms [43]. We suggest the emergence of epileptic hypersynchrony in neuronal population to
be explain by Thom’s cusp catastrophe:

V (R, a, b) = R4 + aR2 + bR (1)

where R is synchrony; the stable solution for the potential function satisfies V :

δV

δR
= R3 − aR− b = 0 (2)

which defines the cusp fold, wherein the attractor of R, e.g., experimentally observed mean
synchrony over time, is controlled by two parameters: a modulates the degree of R, e.g., a
large a results in hypersynchrony; as b increases, bistability in R gradually emerges (Fig 1).
High bistability invariably predicts catastrophic events across a wide array of complex systems
(reviewed in [36]), and likely is the underlying bifurcation mechanism for epileptic seizures.

A.1.2 Bistability in a modified Kuramoto model

We built a modified Kuramoto model based on the classic definition [72] to investigate the
catastrophic hypersynchrony in neuronal oscillation dynamics. The theory and motivation of
the model were discussed in detail in [36]. Briefly, we introduced a state-dependent noise to
this Kuramoto model to reflect the local-positive feedback. The model contained 200 all-to-all
connected oscillators, and the dynamics of each oscillator i of the model is a scalar phase time
series θi(θ ∈ 0 : 2π) defined as:

θ̇i = ωi +Ki(t) + Zi(t) (3)

where, ωi = 11 Hz is the natural frequency of the oscillators; Ki is the coupling between oscil-
lators and the Zi is the state-dependent noise. The coupling function Ki can be interpreted
as oscillator i adjusts its phase due to the interaction with all other oscillators in the model
and is defined as:

Ki(t) =
a

N

N∑
n=1

sin(θi(t)− θj(t)) (4)

where a is the coupling strength between oscillators (Fig 1); N = 200 is the number of
oscillators in the model. The noise Zi is defined as:

Zi(t) = η[1− b]ζa(t) + b(RMAX −R(t))ζm(t) (5)

where η = 0.2 is a constant to weight the noise influence, ζa(t) and ζm(t) represent additive
and multiplicative noise, respectively, and they are two independent Gaussian time series with
zero mean and unit variance; the strength of positive local feedback b scales the influence of
ζm(t) depending on the current level of synchrony R; RMAX = 0.96 is the maximal synchrony
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the population can reach, and the order parameter R, aka the synchrony among all the
oscillators, is defined as:

R(t) =

∣∣∣∣∣ 1n
N∑

n=1

[eiθn(t)]

∣∣∣∣∣ (6)

hence when the population is in full synchrony, R → 1; when the population is fully desyn-
chronized, R → 0.

A.1.3 Criticality assessments

Assessing neuronal bistability with the BiS index. We used the BiS index to assess the
bistability of a power time series (R2). Briefly, we followed the approach proposed in [39, 40]
to obtain the probability distribution function (pdf) of a narrow-band power time series R2

with 200 bins. Next, because the square of a Gaussian process has an exponential pdf , we
used maximum likelihood estimate (MLE) to fit the observed pdf with a single-exponential
function:

PR2(R2) = γe−γR2
(7)

next, the same pdf was fitted with a bi-exponential function:

PR2(R2) = δγ1e
−γ1R2 − (1− δ)γ2e

−γ2R2
(8)

where where γ1, γ2 are the two exponents and δ is a weighting factor. Next, we used the
Bayesian information criterion (BIC) to assess the fitting of eq.7 and eq.8:

BIC = ln(n)k − 2ln(L̂) (9)

where, n is sample number; L̂ is the likelihood function; k is the number of parameters, i.e., for
eq.7, k = 1 and for eq.8 and k = 3. A better fitted model yields a small BIC estimate. Hence,
the BIC imposes a penalty to model complexity of eq.8 for two more degrees of freedom than
eq.7. Finally, the BiS index is computed as the log10 transform of the difference between the
BIC of the two models dBIC = BICsingleExp −BICbiExp as :

BiS = log10(dBIC), if dBIC > 0; BiS = 0, if dBIC ≤ 0 (10)

because a better fitted model yields a small BIC estimate, the BiS will be large if the bi-
exponential model is a better model for the observed pdf of the oscillation power time series.

Assessing neuronal LRTCs using the DFA. We followed the approach proposed by [27]
to assess the LRTCs of the narrow-band oscillation amplitudes with linear detrend fluctuation
analysis (DFA). The theory, technical details, and the toolbox of the DFA are well described in
[73]. Briefly, an estimated DFA exponent reflects the finite-size power-law scaling in narrow-
band amplitude fluctuations based on the assumption that the gradual evolution of a mono-
fractal time series would result in a normal distribution where the fluctuations can be captured
by the second order statistical moments. In practice, DFA characterizes how fast the overall
root mean square of local detrend fluctuations F grows with increasing sampling window size
L:

F (L) = CLβ (11)

where C is a constant; β is the DFA exponent and β > 0.6 can be safely considered as a
sign of a critical-like process, e.g., significantly greater than that of a random walk process
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(DFA = 0.5, see Fig 2 and Supplementary Fig 4 for fitting examples). Here, for assessing
narrow-band amplitude DFA, we set L as 40 windows with their size ranging from 20-cycle
length (e.g., 2 seconds for 10 Hz) to 2.5 min with equal log distance between windows; the
F (Li) were computed for a given window size Li as the mean of the root mean square of
the detrend fluctuation with 50% overlap between neighboring windows, and a window was
excluded from the mean if more than 10% of its samples contain interictal epileptiform events;
the linear regression of eq.11 was done with a bi-square fitting weighted by the square root of
observed window number for a given Li.
Assessing neuronal excitation-inhibition with the fE/I.We followed the approach pro-
posed by [29] to assess the functional excitation/inhibition (E/I) of a narrow-band oscillation
amplitudes with the fE/I index:

fE/I = 1− r(wamp, wnF (t)) (12)

where wamp denotes observed windowed oscillation amplitudes; wnF (t) is the observed win-
dowed detrend function of the amplitude-normalized signal profiles; r(wamp, wnF (t)) denotes
the Pearson’s correlation between wamp, wnF (t). Thus, based on Bruining’s hypothesis that, if
a time series is generated by a critical-like mechanism, we expect to observe, for an inhibition-
dominated ensemble fE/I < 1; for an excitation-dominated ensemble fE/I > 1, and for an
E/I balanced ensemble fE/I = 1 (illustrated in Supplementary Fig 2 j). Here, for assessing
narrow-band amplitude fE/I, we set window size as 50-cycle length (e.g., 5 seconds for 10
Hz) with 60% overlap between windows.

A.1.4 Phase synchrony assessment

The phase coupling between two narrow-band time series A and B (complex-valued) can be
quantified as the phase-locking value as [74]:

PLV = |cPLV (A,B)| =

∣∣∣∣∣ 1T
T∑
t=1

[ei(θA(t)−θB(t))]

∣∣∣∣∣ (13)

where T denotes the total number of independent samples; θA and θB are the instantaneous
phases of A and B. We denote a PLV connectivity matrix as a ”graph” GiPLV = (V,E),
where any SEEG contact i is a ”node” vi ∈ V ; the PLV between two nodes (vi, vj) are edges,
ek = (vi, vj) ∈ E|vi, vi ∈ V . The first- and second-order synchrony derivatives were computed
using these PLV matrices.

A.2 Supplementary results

A.2.1 Synchrony derivatives were robust against various random attacks

The anatomical coverage and number of SEEG contacts were variable across subjects. More-
over, some PLV edges were excluded from analyses if two contacts shared the same white-
matter reference [46]. This raised a slight concern about whether the spatial sampling variabil-
ity and missing edges in the PLV matrices would bias the first- and second-order Synchrony
derivatives (Synch.D). We conducted random deletions to the edges and to the nodes in graphs
and then compared Synch.D before and after the deletions to ask whether synchrony deriva-
tives were resilient against these varying factors. This was done by computing the Pearson’s
correlation r between the synchrony derivatives between the original and assaulted graphs,
and as r → 1 means that the nodal topological features were preserved after the assault.
Additionally, these Synch.D estimates were computed with weighted PLV graphs would be
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different after removing edges or nodes; in the SZ-classification analyses, we normalized syn-
chrony derivatives within subjects, and therefore different estimates was not a concern here.
After the shared-reference exclusion, subjects’ PLV graph density was 0.92 ± 0.04(mean ±
std, range : 0.81 − 0.96), where one means a fully connected network without nodal self-
connection. To ascertain that the missing edges did not significantly impact the synchrony
derivatives, we performed population-level edge deletion tests. We took 4.8 Hz PLV ma-
trices from the 55 patients of the SZ-classification cohort. We next assaulted each subject’s
PLV matrix by randomly deleting x% of edges in one surrogate run, and then compute
the Pearson’s r between the Synch.D between the nodes from the original and assaulted
graphs. We conducted 500 of such surrogates within each patient and across edge deletion
ratio x% ∈ [10 : 10 : 90, 91 : 1 : 98], which assured that all synchrony derivatives (i.e., We,
EVC, Cc, and LE) were resilient to random edge deletion – specifically for the range of the
missing data observed (Supplementary Fig 4 a, c).
Next, to ascertain that heterogeneity in SEEG spatial sampling or sub-sampling the targeted
network did not significantly impact the synchrony derivatives, we performed population-
level nodal removal tests. We used 4.8 Hz PLV matrices from the 55 patients and assaulted
each subject’s PLV matrix by randomly removing y% of nodes in one surrogate run, and
then compute the Pearson’s r between the synchrony derivatives of the remaining nodes from
the assaulted and the original graphs. We conducted 500 of such surrogates within each
patient and across nodal removal ratio y% ∈ [10 : 10 : 90, 91 : 1 : 95], which assured that all
synchrony derivatives (i.e., We, EVC, Cc, and LE) were resilient to random nodal removal
(Supplementary Fig 4 b, d).

A.2.2 Supervised SZ-Classification

The individual variability in SZ-classification outcomes can be explained by several factors.
Individual area under (AUC) the receiver operator characteristic curve was negatively corre-
lated with the standard deviation of edge-distance (Spearman’s rank r = −0.3, p < 0.026),
but was not correlated with mean edge distance (Spearman’s rank r = −0.24, p > 0.076)
nor total number of edges (Spearman’s r = −0.23, p > 0.091), which means relatively con-
centrated spatial sampling rather than the spatial extent of the spatial sampling helps with
increasing individual AUC. The LSZ (0 − 100%, i.e., the likelihood of being an SZ contact)
assigned by the Random Forest classifier were different between the SZ and nSZ contacts
(unpaired t-test, p < 6.8× 10−157), and the difference in SZ and nSZ contacts’ EZ-likelihood
predicted patient AUC (Spearman’s rank r = 0.93, p < 10−6, Supplementary Fig 7 k).
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A.3 Supplementary Figures

A.3.1 Supplementary Fig 1

Figure 1: The cusp catastrophe offers a canonical explanation to the link between high bistability
and catastrophic neuronal hypersynchrony. On the cusp fold, each point along the curve indicates the
stable solution of R with a given pair of a and b; a large R corresponding to seizure-like hypersynchrony, and
as b increases, the curves shifts shape from smooth to discontinuous transition in the temporal dynamics of R.
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A.3.2 Supplementary Fig 2

Figure 2: High bistability in neuronal synchrony of the model indicates a shift toward catas-
trophic hypersynchrony. a–d. Assessments averaged over 20 independent model realization for (a) model
synchrony (R), (b) DFA exponent (c) BiS index and (d) fE/I index. e–h. Co-variability between the crit-
icality assessments. i. In high bistability regime, a small increment in a (red vector) could drive the model
from adaptive critical-like dynamics into seizure-like hypersynchrony, during which the model can show radical
switching from inhibition-dominance (3) to excitation-dominance (4). j. Schematic showing how the fE/I index
utilizes distinct relationship between R and nDF (normalized detrend function) to capture the model operation
dynamics in three regions inside critical regime. Inhib’: inhibition-dominance; excited: excitation-dominance;
(1–5) the functional excitation-inhibition as response to a increment inside and outside of the bistable regime
(as marked in (i)), each marker indicates the estimates of an analysis window of 1000 samples; also note that
data can sometimes be fitted with a quadratic function indicating a wider operation region than one of the
three regions.
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A.3.3 Supplementary Fig 3

Figure 3: SEEG contacts from both SZ and nSZ can show bistable activity. a–b. Broad-band traces
and narrow-band power time series showing that higher bistability in an SZ than in a nearby nSZ contact in
two subjects. c. nSZ contacts can also demonstrate bistability as shown here in 4 and 80 Hz narrow-band
oscillations from another two subjects.
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A.3.4 Supplementary Fig 4

Figure 4: Synchrony derivatives were resilient against missing data, e.g., under-sampling, and
DFA goodness-of-fit was consistent across frequencies and subjects . a–b. The first- and (c–
d) second-order synchrony derivatives (Synch.D) employed in SZ-classification were highly resilient to random
edge deletion (blue) or nodal removal (red). Top: median correlation (Pearson’s r) between the Synch.D of the
original PLV graphs and the graphs under increasing levels of random assaults, computed over 500 iterations per
subject for 55 subjects of the EZ-classification cohort; shaded areas indicate interquartile distance. Bottom :
corresponding percent of significant correlations (p < 0.01, FDR corrected) out of the 500 surrogates in each
subject (thin lines). e. An example of how DFA fitting was done across narrow-band frequencies from a SEEG
contact of a randomly selected subject. Markers indicate observed data. Lines indicate DFA linear fitting,
and the fitting range was from 20 cycle-length of a given narrow-band frequency up to 25% of the 10-min
resting-state recording. f. Top: goodness of fit (r2) and bottom : the DFA exponents of the contact from (e).
g. DFA goodness-of-fit of individual patients’ mean across contacts (thin) and group mean (thick).
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A.3.5 Supplementary Fig 5

Figure 5: Individual level evidence of differences between SZ and nSZ in synchrony derivatives.
a–c. The narrow-band frequency PLV matrices and their corresponding synchrony derivatives (Synch.D),
and individual level differences between SZ and nSZ in three subjects. Within subjects: i-iii) Top: narrow-
band PLV matrices; bottom : We and EV C (first-order) and Cc and LE (second-order Synch.D) of the
corresponding PLV matrices. iv) Individual connectivity spectrum, i.e., effective mean PLV edges across
narrow-band frequencies. v) Differences between SZ and nSZ in Synch.D.
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A.3.6 Supplementary Fig 6

Figure 6: Supplementary information for frequency clustering by topological similarity. a–cWithin
patient mean (thin) and cohort average (thick) (a) DFA , (b) BiS, and (c) fE/I. d–f Cross-frequency topological
similarity (Spearman’s rank r) for (d) DFA , (e) BiS, and (f) fE/I. g. Population pooled Spearman’s rank r
between frequency clustered criticality assessments (validation for Fig 4 a), h–i. Example of the relationship
between the Pearson’s rank of contact (h) γ1,2 band DFA and BiS estimates, and (i) γ1,2 band BiS and fE/I
estimates, as indicated in (g).
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A.3.7 Supplementary Fig 7

Figure 7: Supplementary information for the supervised SZ-classification using Random Forest
(RF) algorithm. a. Importance ranking of the individual features assessed using the SHAP value. b–e.
The support information for cohort level cross-validate. b. SZ-classification accuracy assessed using the area
under (AUC) the receiver operating characteristic (ROC) for the RF classifier trained on different feature sets
using all contacts (blue) and with subcortical contacts excluded (gray). c–d. The AUC differences between
different feature combinations. e. The ROC of a randomly selected SZ-classification iteration when using
”all features” and ”all contacts”. f–k. Support information for within-patient SZ-classification. f. Difference
between individual AUC (*, ** indicate p < 0.05 and 0.01). g. No difference between the individual AUC of
SZ-localization trained on cortical-only and all contacts. h. Pooled probability distribution of the EZ-likelihood
LSZ assessed by the RF for SZ and nSZ contacts. i. Individual (thin) and group mean (thick) ROC curves.
j. Individual (gray) and mean (red) precision as a function of true positive rate (TRP) when LSZ threshold
was held at 95% confidence interval for SZ-classification using all features and all contacts. k. The individual
AUC of the SZ-localization as a function of the within-subject difference in LSZ between SZ and nSZ.
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A.3.8 Supplementary Fig 8

Figure 8: Supplementary information for unsupervised classification. a. Top: cluster size distribution;
bottom: distinct subject number within each cluster across partition solution from 2 to 9 clusters color-coded.
The 3-cluster solution was used in (Fig 4 e–i). b. Visualized partition solutions of the inter-contact similarity
(Spearman’s rank r) matrix for 2-, 4-, and 9-cluster solutions. The gray box in the 9-cluster solution contains 6
small clusters. c–d. For the 3-cluster solution, the correlations between the LSZ and (c) criticality assessments
and (d) synchrony derivatives. e–f. The inter-cluster contact difference in (e) criticality assessments and (f)
Synchrony derivatives. Dashed lines in (c-f) indicate confidence intervals (α < 0.05) observed from 104

surrogates.
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