

1 **Gamma-Mobile-Trio systems define a new class of mobile elements rich in**
2 **bacterial defensive and offensive tools**

4 Tridib Mahata¹, Katarzyna Kanarek¹, Moran G. Goren¹, Marimuthu Ragavan Rameshkumar¹,
5 Eran Bosis^{2,*}, Udi Qimron^{1,*}, & Dor Salomon^{1,*}

7 ¹ Department of Clinical Microbiology and Immunology, School of Medicine, Faculty of Medical
8 and Health Sciences, Tel Aviv University, Tel Aviv, Israel

9 ² Department of Biotechnology Engineering, Braude College of Engineering, Karmiel, Israel

10 * For correspondence: EB, bosis@braude.ac.il; UQ, ehudq@tauex.tau.ac.il; DS,
11 dorsalomon@mail.tau.ac.il

13 Keywords: T6SS, anti-phage, toxin, effector, antibacterial, nuclease, DNA mobility, integrase,
14 GMT, Vibrio

16 **Abstract**

17 Conflicts between bacteria and their rivals led to an evolutionary arms race and the
18 development of bacterial immune systems. Although diverse immunity mechanisms were
19 recently identified, many remain unknown, and their dissemination within bacteria is poorly
20 understood. Here, we describe a widespread genetic element, defined by the presence of the
21 Gamma-Mobile-Trio (GMT) proteins, that serves as a bacterial survival kit. We show that GMT-
22 containing genomic islands are active mobile elements with cargo comprising various anti-
23 phage defense systems, in addition to antibacterial type VI secretion system (T6SS) effectors
24 and antibiotic resistance genes. We identify four new anti-phage defense systems encoded
25 within GMT islands. A thorough investigation of one system reveals that it is triggered by a
26 phage capsid protein to induce cell dormancy. Our findings underscore the need to broaden the
27 concept of 'defense islands' to include also antibacterial offensive tools, such as T6SS effectors,
28 as they share the same mobile elements as defensive tools for dissemination.

29 Introduction

30 Competition and predation contribute to bacterial evolution. For example, the type VI secretion
31 system (T6SS), an offensive, missile-like dueling apparatus that delivers antibacterial toxins
32 (i.e., effectors) directly into rival bacteria^{1–5}, was shown to shift the balance of bacterial
33 populations and lead to the emergence of dominant strains^{6–11}. Similarly, bacteriophages
34 (phages) drive bacterial evolution and population dynamics^{12–14}. Their ability to prey on bacteria
35 has led to an arms race in which bacteria evolve or acquire anti-phage defense systems while
36 phages counteract these actions with anti-defense mechanisms¹⁵. Interestingly, anti-phage
37 defense systems often cluster in so-called 'defense islands'^{16,17}, a phenomenon that has been
38 used to identify dozens of anti-phage defense systems in recent years^{18–20}. Probably, many
39 defense systems are yet to be revealed. Identifying additional defense systems or antibacterial
40 toxins and deciphering the mechanisms governing their spread within bacterial populations is
41 important to understanding bacterial evolution.

42 Mobile genetic elements (MGEs), such as plasmids, phages, and transposons, mediate
43 horizontal gene transfer (HGT) and play a significant role in bacterial evolution by enhancing
44 bacterial fitness^{21–27}. Anti-phage defense systems, secreted antibacterial toxins, and antibiotic-
45 resistance genes have been identified within MGEs and were predicted to be horizontally
46 shared^{13,20,28–35}. Nevertheless, many MGEs are poorly understood and require further
47 investigation to reveal their distribution mechanisms and cargo.

48 We previously reported that *Vibrio parahaemolyticus* island-6 (VPal-6), a genomic island
49 encompassing *vpa1270*–*vpa1254* on chromosome 2 of the human pathogen *V.*
50 *parahaemolyticus* RIMD 2210633 (hereafter referred to as RIMD)³⁶, encodes an antibacterial
51 DNase T6SS effector, VPA1263 (BAC62606.1), and its cognate immunity protein, Vti2
52 (WP_005477334.1)^{37,38}. Here, we describe a protein trio found in VPal-6 and other genomic
53 islands, which defines a widespread mobile genetic element with diverse cargo rich in
54 antibacterial T6SS effectors and anti-phage defense systems. Examining genes and operons of
55 unknown function within these islands revealed four new anti-phage defense systems.
56 Therefore, the described MGE is akin to a bacterial armory containing diverse offensive and
57 defensive tools against potential rivals, which can be horizontally shared.

58

59 Results

60

61 GMT proteins define a new class of genomic islands

62 VPal-6 is found in *V. parahaemolyticus* RIMD and a subset of other *V. parahaemolyticus*
63 strains³⁶ (**Fig. 1a**). Analysis of VPal-6 revealed that the first three genes, encoding VPA1270,
64 VPA1269, and VPA1268 (WP_005477115.1, WP_005477239.1, and WP_005477284.1,
65 respectively), are annotated in the NCBI protein family models database as a Gamma-Mobile-
66 Trio (GMT) system. We found homologous co-occurring GMT proteins encoded in thousands of
67 Gram-negative and Gram-positive bacterial genomes (**Fig. 1b** and **Dataset S1**). Since no
68 information was available on the function of these proteins³⁶, we set out to investigate the GMT
69 system.

70 According to the NCBI Conserved Domain Database (CDD)³⁹, the trio's first gene, named
71 *vpa1270* or *gmtY*, encodes a site-specific tyrosine recombinase with a domain belonging to the
72 DNA_BRE_C superfamily. The second gene, *vpa1269*, encodes an integrase with a domain
73 belonging to the Phage_Integr_2 superfamily, which is predicted to mediate unidirectional site-
74 specific recombination (hereafter referred to as *gmtZ*). The third gene, named *vpa1268* or *gmtX*,

75 encodes a protein of unknown function; we found that it is similar to the DNA binding domain of
76 the partition protein StbA of plasmid R388 (according to HHpred⁴⁰, ~93% probability of similarity
77 between amino acids 3-75 of GmtX and amino acids 1-68 of StbA [PDB: 7PC1_A]). These
78 predicted activities suggest that the GMT system plays a role in DNA excision and integration
79 (**Fig. 1c**).

80 Systematic analysis of publicly available genomes revealed that GMT systems are found in
81 predicted genomic islands. Comparisons between GMT-containing regions identified in
82 completely assembled genomes and the genomes of closely related bacteria suggested that
83 GMT-encoding genes define the 5' border of these islands. By identifying sequences that flank
84 the GMT region but are found adjacent to each other in genomes of closely related bacteria, we
85 further revealed the putative 3' border for 83% (366 out of 442) of these GMT islands and their
86 predicted naïve insertion sites (NIS; **Fig. 1a,b** and **Dataset S2**). A genome may contain multiple
87 and diverse GMT islands, which can reside on the chromosome or a plasmid (**Dataset S1**).

88 Our analysis revealed diverse putative insertion sites of GMT islands in bacterial genomes,
89 either intergenic or intragenic (**Extended Data Fig. 1** and **Dataset S2**). Notably, a phylogenetic
90 tree of GmtY encoded within the GMT islands for which we identified a putative insertion site
91 revealed that closely related proteins are found in diverse bacterial orders yet share a similar
92 insertion site (**Extended Data Fig. 1**). This observation suggests that GMT islands are
93 horizontally shared.

94 Interestingly, when a GMT island appears to have been inserted intragenically, we often find a
95 homolog of the disrupted gene encoded within the island, possibly to compensate for its loss
96 (**Extended Data Fig. 2**), as previously reported for other MGEs^{13,41}. In most cases (238 of 366),
97 we identified an inverted repeat, at least 5 nucleotides long, as part of the predicted GMT island
98 NIS (**Dataset S2**); the same repeat is often found flanking the GMT island (**Fig. 1a**). These
99 observations led us to hypothesize that GMT islands are mobile and that repeat sequences
100 define specific insertion sites for each island.

101

102 **GMT islands are active mobile elements**

103 We reasoned that if VPal-6 is a functional MGE, it should transfer into a cognate NIS. To
104 investigate this possibility, we introduced a low copy-number plasmid harboring a predicted 30
105 bp-long VPal-6 NIS from *V. parahaemolyticus* BB22OP (pNIS^{VPal-6}; **Fig. 1a**) into wild-type RIMD
106 cells. Using primer sets designed to amplify fusions between the ends of VPal-6 and the
107 plasmid sequences flanking the NIS, we found that the RIMD population indeed contained
108 plasmids into which VPal-6 was inserted (**Fig. 1d**). We confirmed the insertion into the plasmid-
109 borne NIS with Sanger sequencing of the amplified products (**File S1**). Furthermore, using
110 primers facing outward from each end of VPal-6, we revealed the existence of a circular form of
111 the GMT island lacking the flanking inverted repeats (**Fig. 1d** and **File S1**). The amplification
112 products were missing when we used RIMD derivatives in which we either deleted the genes
113 encoding the GMT system (Δgmt), deleted individual GMT system components ($\Delta gmtY$, $\Delta gmtZ$,
114 and $\Delta gmtX$) (**Fig. 1d**), or modified the spacer sequence between the inverted repeats of the
115 predicted NIS on the plasmid (**Extended Data Fig. 3**). Taken together, our results demonstrate
116 that VPal-6 is a mobile GMT island, which inserts specifically via an intermediate circular form
117 into the repeat-containing site we identified in the above analyses.

118 To determine whether other GMT islands are also mobile, we investigated the ability of a GMT
119 island found in the chromosome of *V. parahaemolyticus* 04.2548⁴², which was available in our
120 laboratory stocks (**Extended Data Fig. 4a**), to transfer into a cognate, plasmid-borne NIS. Our
121 results confirmed that the 04.2548 GMT island transferred into its plasmid-borne cognate NIS

122 (pNIS^{04.2548}) but not into a plasmid containing the VPal-6 NIS (pNIS^{VPal-6}; **Extended Data Fig.**
123 **4b**). As observed with VPal-6, we identified a circular form of the 04.2548 GMT island lacking
124 the inverted repeats of the insertion site (**File S2**). These results indicate that GMT islands are
125 mobile, and each GMT system identifies a specific repeat-containing sequence for insertion.

126

127 **GMT islands employ a replicative mechanism of transfer**

128 Next, we investigated whether VPal-6 employs a conservative or replicative mechanism of
129 transfer (i.e., cut-and-paste or copy-and-paste, respectively) by introducing a single VPal-6 NIS
130 into chromosome 1 of RIMD and following the fate of VPal-6 located on chromosome 2. To
131 monitor the insertion of VPal-6 into the NIS, we engineered a system in which the VPal-6 NIS
132 was introduced in-frame as a linker between the 10th and 11th β-strands of a superfolder GFP
133 (sfGFP)⁴³ to produce sfGFP^{NIS}. The sfGFP^{NIS} gene was then used to replace *hcp1* (*vp1393*) on
134 chromosome 1, resulting in GFP-fluorescent cells containing a single chromosomal copy of the
135 VPal-6 NIS within the sfGFP gene (RIMD^{sfGFP-NIS}). To identify events of VPal-6 insertion into the
136 NIS, we plated the fluorescent cells and monitored the appearance of non-fluorescent colonies,
137 suggestive of VPal-6 transfer into the NIS, thereby obstructing the expression of a functional
138 sfGFP protein (**Fig. 1e**). After isolating non-fluorescent cells, we confirmed that the sfGFP^{NIS}
139 was indeed interrupted by the insertion of VPal-6 using PCR amplification of the junctions
140 between VPal-6 ends and the sfGFP^{NIS} flanking sequences (**Fig. 1f**). Importantly, the original
141 copy of VPal-6 remained on chromosome 2. We did not identify a loss of VPal-6 from either the
142 original VPal-6 location on chromosome 2 or the new location on chromosome 1 in these
143 isolated, non-fluorescent cells. These results indicate that VPal-6 employs a replicative transfer
144 mechanism.

145

146 **Plasmids can mediate the horizontal transfer of GMT islands**

147 We observed many GMT systems encoded on plasmids (**Dataset S1**), suggesting a possible
148 plasmid-mediated horizontal transfer mechanism for these MGEs. Therefore, we sought to
149 demonstrate that a GMT island can transfer between bacteria via a conjugatable plasmid. To
150 this end, we constructed a RIMD derivative (RIMD^{VPal-6_Gent}) in which we replaced the VPal-6
151 region encompassing *vpa1254-vpa1262* with a gentamicin resistance cassette (VPal-6^{Gent}, **Fig.**
152 **2a**) that enables selection of the mobilized island. A conjugatable plasmid containing the VPal-6
153 NIS (pNIS^{VPal-6}) was introduced into RIMD^{VPal-6_Gent}, and the derivative GMT island was
154 mobilized into the plasmid-borne NIS, as determined by a PCR performed on the pooled
155 bacterial population (**Fig. 2b,c**). We then mixed this pooled population with a derivative strain of
156 *V. parahaemolyticus* BB22OP containing a chromosomal tetracycline resistance cassette
157 (BB22OP^{Tet}), in the presence of a conjugation helper strain. BB22OP^{Tet} conjugates containing
158 pNIS^{VPal-6} harboring VPal-6^{Gent} were selected on agar plates supplemented with the appropriate
159 antibiotics, and PCR analyses revealed that these resulting colonies comprised a mixture of
160 cells in which VPal-6^{Gent} from the plasmid was copied into the NIS found on the BB22OP^{Tet}
161 chromosome and cells in which VPal-6^{Gent} was only found on the plasmid (**Fig. 2b,c**). Following
162 isolation streaking of a mixed colony, we identified homogenous colonies in which all cells
163 contained a chromosomal copy of VPal-6^{Gent} inserted into the NIS (**Fig. 2b,c**). These results
164 demonstrate that GMT islands can horizontally transfer between bacteria.

165 Next, we asked whether the tools within the VPal-6 cargo can provide a competitive advantage
166 to a bacterium that acquired them. Since VPal-6^{Gent} contains an antibacterial T6SS effector and
167 immunity pair (VPA1263-Vti2; **Fig. 2a**) absent in the parental BB22OP strain, we hypothesized
168 that after acquiring this island, the T6SS of BB22OP can use the effector to gain competitive

169 advantage. To test this hypothesis, we employed the isolated BB22OP^{Tet} strain containing a
170 chromosomal VPAl-6^{Gent} as an attacker in competition against a parental BB22OP prey strain.
171 As expected, this attacker intoxicated the parental prey compared to a BB22OP^{Tet} attacker
172 strain lacking VPAl-6^{Gent} (**Fig. 2d**). Moreover, expressing the Vti2 immunity protein from a
173 plasmid in the prey strain alleviated this toxicity. These results demonstrate that the BB22OP
174 strain used an antibacterial effector acquired on a GMT island to intoxicate its parental strain,
175 indicating that horizontally shared GMT islands provide a competitive advantage to recipient
176 bacteria.

177

178 **GMT islands are rich in defensive and offensive tools**

179 When analyzing the VPAl-6 cargo, we identified a Septu¹⁶ and a RIoC⁴⁴ anti-phage defense
180 systems (VPA1260-VPA1261 and VPA1255, respectively) in addition to the antibacterial T6SS
181 effector and immunity pair (**Fig. 1a**). The co-occurrence of defense systems and a secreted
182 offensive toxin within the same genomic island was not previously reported, prompting us to
183 investigate whether other GMT islands contain a similarly mixed cargo.

184 We observed considerable variability in the cargo length of the GMT islands for which we
185 identified the borders: between 4.8 and 152.2 kb-long, with a median of ~13.6 kb (**Fig. 3a**).
186 These lengths differ between bacterial families. Accordingly, the number of genes within GMT
187 islands varies between 3 and 143, with a median of ~9.6 (**Fig. 3b**). Notably, the cargo of ~14%
188 of these GMT islands (51 out of 366) comprises only the three genes encoding the GMT system
189 (**Dataset S3**), implying that these GMT proteins are the core components of the MGE.

190 Using domains previously associated with T6SS effectors (i.e., VgrG¹, PAAR/PAAR-like⁴⁵,
191 MIX^{37,38,46,47}, FIX⁴⁸, and Rhs⁴⁹), we identified antibacterial effectors in ~11% of the examined
192 GMT islands (41 out of 366), all found in genomes harboring a T6SS (**Fig. 3c** and **Dataset S3**).
193 These effectors neighbor a known or predicted immunity gene immediately downstream, and
194 some include a known C-terminal toxic domain (e.g., nuclease or phospholipase). Interestingly,
195 T6SS effectors are prevalent in GMT islands found in members of the *Vibrionaceae* family
196 (~40%; **Fig. 3c** and **Dataset S3**).

197 Further analysis of GMT island cargoes using the anti-phage defense system identification
198 servers PADLOC⁵⁰ and DefenseFinder⁵¹ revealed diverse anti-phage defense systems
199 distributed among most bacterial families (**Fig. 3c-e** and **Dataset S3**). Approximately 40% of the
200 GMT islands contain at least one predicted anti-phage defense system (145 out of 366).
201 Notably, ~12% of the *Vibrionaceae* GMT islands (12 out of 96) contain both anti-phage defense
202 systems and antibacterial T6SS effectors (**Fig. 3c,e** and **Dataset S3**).

203 We also found that ~7% of the analyzed GMT islands (28 out of 366) contain genes associated
204 with antimicrobial resistance, which have been previously reported to reside within MGEs⁵²⁻⁵⁴
205 and occasionally also in association with anti-phage defense systems⁵⁵. Notably, no cargo gene
206 encoding a predicted virulence toxin was identified within these 366 GMT islands. Taking the
207 abovementioned results together with a functional classification of GMT island cargo genes
208 (**Fig. 3f**), we propose that GMT islands are akin to armories that stockpile defensive and
209 offensive tools against attacking phages and competing bacteria.

210

211 **GMT islands harbor novel anti-phage defense systems**

212 Approximately 22% of the GMT islands' cargo genes encode proteins annotated as
213 hypothetical, thus not associated with specific processes (**Fig. 3f**). Since anti-phage defense
214 systems are prevalent within GMT islands, and because they often cluster within 'defense

215 islands^{16,17}, we hypothesized that genes of unknown function within GMT islands encode novel
216 anti-phage defense systems. To test this, we assembled a list of 13 genes and operons found
217 within GMT islands in members of the genus *Vibrio*, which we predicted are novel anti-phage
218 defense systems; we named them GAPS (GMT-encoded Anti-Phage System) 1 to 13 (Fig. 4a).
219 Because a collection of phages that infect a specific *Vibrio* strain is not publicly available, we set
220 out to use *E. coli* as a surrogate host, together with a recently established collection of
221 coliphages⁵⁶, to investigate the role of GAPSs in anti-phage defense. A similar strategy was
222 previously used to identify anti-phage defense systems⁵⁷⁻⁵⁹. To this end, we cloned GAPS1-13
223 into a low-copy number expression plasmid under an arabinose-inducible promoter. *E. coli*
224 strains containing the GAPS-encoding plasmids were challenged with 74 coliphages,
225 comprising the 69 coliphages included in the BASEL phage collection⁵⁶, T7, T4, P1_{vir}, T5, and
226 lambda_{vir}. We compared the efficiency of plating (EOP) of the different phages in these strains
227 to *E. coli* harboring a control empty plasmid. Remarkably, four candidates: GAPS1
228 (WP_005477165.1), GAPS2 (WP_174208646.1), GAPS4 (WP_055466293.1 and
229 WP_055466294.1), and GAPS6 (WP_248387294.1 and WP_248387295.1) provided significant
230 protection against various phages, manifested by a reduction of between two and four orders of
231 magnitude in the number of visible plaques that developed on a lawn of bacteria (i.e., the EOP)
232 (Fig. 4b). Six GAPSs (GAPS7, GAPS9, GAPS10, GAPS11, GAPS12, and GAPS13) had no
233 significant protective effect against any of the examined phages. Notably, three candidates were
234 considerably toxic to *E. coli* upon expression (GAPS3, GAPS5, and GAPS8); therefore, we
235 could not determine their anti-phage activity. These results support our hypothesis that the
236 cargoes of GMT islands harbor new anti-phage defense systems. Notably, we identified
237 GAPS1, GAPS2, and GAPS6 homologs in several GMT islands (Fig. 3c,d and Dataset S3)
238

239 **GAPS1 belongs to the PD-(D/E)xK superfamily of phosphodiesterases**

240 Three of the newly identified anti-phage defense systems contain predicted domains that may
241 play a role in their activity. GAPS1 and GAPS4 contain a phosphodiesterase domain of the PD-
242 (D/E)xK superfamily^{60,61}, the second of the two proteins comprising GAPS6 has a TPR domain
243 and a PINc RNase domain⁶² (Fig. 5a; domains were predicted using HHpred⁶³). We did not
244 identify similarity to known domains in GAPS2. Prompted by these findings, we further
245 investigated GAPS1, which is encoded within the VPal-6 GMT island analyzed above.

246 GAPS1 is a single protein containing a predicted phosphodiesterase domain toward its C-
247 terminus (Fig. 5b). GAPS1 homologs are widespread in Gram-negative and Gram-positive
248 bacteria, and their phylogenetic distribution suggests possible horizontal transfer between
249 bacterial orders (Extended Data Fig. 5). They were identified in ~3.5% of the 294,097 RefSeq
250 genomes analyzed in this study; notably, ~78% of the identified GAPS1 homologs are encoded
251 in *Klebsiella pneumoniae* genomes (Dataset S4). To determine whether the predicted
252 phosphodiesterase domain is required for the anti-phage activity of GAPS1, we substituted
253 D313 and K328 within its conserved PD-(D/E)xK active site with alanines. These substitutions
254 abolished the defensive activity against T7 phage, supporting a role for this domain in GAPS1-
255 mediated anti-phage defense (Fig. 5c).
256

257 **A phage capsid protein triggers the anti-phage activity of GAPS1**

258 Next, we sought to identify the phage component that triggers GAPS1. One of the phages
259 against which GAPS1 protects is T7 (Fig. 5c). We hypothesized that escape mutants of an
260 attacking T7 phage contain mutations in the protein that triggers GAPS1 to avoid system
261 activation. Therefore, we sequenced the genome of four T7 escape phages that formed plaques

262 in the presence of GAPS1. We identified mutations in the capsid protein-encoding gene 10
263 (Gp10) of all four isolates, including E183A, I217T, and V247A mutations (**Table S1**). Notably,
264 E183, I217, and V247 are spatially close in the folded capsid protein (**Extended Data Fig. 6**).

265 To determine whether the T7 capsid protein triggers GAPS1-mediated defense, we generated
266 two of the mutations identified above, I217T and V247A, in naïve T7 phages. We validated that
267 additional mutations we identified in the escape isolates are not present in these newly
268 constructed phages, and then tested the ability of GAPS1 to defend against them. We observed
269 no significant difference in the number of mutant T7 phage plaques formed on *E. coli* expressing
270 GAPS1 compared to *E. coli* containing an empty plasmid, indicating that GAPS1 could not
271 defend against the mutant phages (**Fig. 5d**). These findings suggest that the capsid protein
272 triggers GAPS1-mediated defense.

273

274 **GAPS1 induces cell dormancy**

275 Anti-phage defense systems protect bacterial populations by inducing cell suicide, often called
276 abortive infection, or by arresting bacterial growth^{64–67}. To determine what mechanism is used
277 by GAPS1, we monitored the effect of its activation on bacterial growth and viability in the
278 absence of T7 phage-derived toxins. Expression of the wild-type capsid protein (Gp10) from a
279 plasmid inhibited the growth of *E. coli* expressing a chromosomally inserted GAPS1 (**Fig. 5e**).
280 These arrested cells were protected from ampicillin-induced lysis, indicating that they were not
281 actively dividing or synthesizing peptidoglycan⁶⁸ (**Fig. 5f**). Importantly, we did not observe a
282 reduction in cell viability over time (**Fig. 5g**), demonstrating that Gp10-triggered GAPS1 activity
283 is not bactericidal. These results suggest that GAPS1 is a member of the PD-(D/E)xK
284 phosphodiesterase superfamily that induces cell dormancy rather than cell suicide upon
285 recognizing a phage capsid protein.

286

287 ***E. coli* GAPS1 homologs are bona fide anti-phage defense systems**

288 The results demonstrating anti-phage defense against coliphages were obtained by over-
289 expressing an exogenous GAPS1 originating from *V. parahaemolyticus* in *E. coli*. To confirm
290 that *E. coli* GAPS1 homologs protect against coliphages, we cloned three *E. coli* GAPS1
291 homologs from different strains (EGQ2075554.1, EJP5250929.1, and WP_152927281.1) into
292 the same expression plasmid used to investigate the *Vibrio* GAPS candidates; these homologs
293 share 24–29% amino acid identity with GAPS1 across 64–96% of its length (**Extended Data Fig.**
294 **7**). As predicted, these three GAPS1 homologs protected the surrogate *E. coli* against diverse
295 coliphages (**Fig. 6a**).

296 Importantly, we obtained a clinical *E. coli* isolate, ZH142-A, naturally encoding a GAPS1
297 homolog (WP_194242909.1; **Extended Data Fig. 7**). We found that the endogenous GAPS1
298 homolog is required to protect this strain against predation by BASEL collection phage 21
299 (BASEL21; **Fig. 6b**). While the growth of the wild-type *E. coli* strain was largely unaffected when
300 challenged with a low phage-to-bacteria ratio (multiplicity of infection [MOI] = 0.5), a high ratio
301 (MOI = 5), in which all bacteria are expected to encounter phage attack, led to growth arrest
302 (**Fig. 6c**). This result is in agreement with the dormancy observed in the surrogate *E. coli*
303 exogenously expressing the *Vibrio* GAPS1 together with the T7 capsid protein (**Fig. 5e**).
304 However, in the absence of the endogenous GAPS1 (Δ gaps1), challenging bacteria with a high
305 phage-to-bacteria ratio led to cell lysis, manifested as a drop in the optical density of the
306 bacterial culture, implying successful infection by the phage (**Fig. 6c**). These results confirm that
307 GAPS1 establishes a novel family of anti-phage defense systems.

308

309 **Discussion**

310 An evolutionary arms race forces bacteria to acquire new offensive and defensive tools to
311 outcompete rival bacteria and survive phage attacks. Although HGT plays a significant role in
312 this arms race⁶⁹, many mechanisms that mediate HGT in bacteria are poorly understood. Here,
313 we describe GMT, a new system akin to a mobile armory that equips bacteria with defensive
314 and offensive tools.

315 Anti-phage defense systems have been found in the cargo of MGEs^{13,20,28,29} and shown to often
316 cluster in so-called 'defense islands'^{16,19}. They have also been reported to neighbor other
317 defensive tools, such as antibiotic resistance genes, within MGEs^{55,70}. Secreted antibacterial
318 toxins were also identified within MGEs^{31-33,71}. However, GMT islands are the first reported
319 example of an MGE carrying defensive and offensive tools together or interchangeably.
320 Although predominantly prevalent in *Vibrionaceae* GMT islands, this phenomenon of mixed
321 offensive and defensive cargo may be common in other types of MGEs found in diverse
322 bacteria. We propose that MGEs previously regarded strictly as 'defense islands' should be re-
323 analyzed, considering they might contain new antibacterial offensive tools.

324 Our results imply that GMT islands are functional mobile elements that employ a replicative
325 mechanism to distribute and insert themselves into specific sites containing inverted repeat
326 sequences (see model in [Extended Data Fig. 8](#)). Similar replicative mechanisms were
327 previously suggested for transposons^{72,73}, however, unlike transposons, the excised and
328 circularized GMT island does not include the flanking repeat sequences, which are probably
329 important for insertion site identification. Even though we found that all three core GMT system
330 proteins are required for the circularization step and, thus, the insertion step, further
331 investigation is required to determine the specific role of each GMT protein in the process.

332 We propose that plasmids could mediate the dissemination of GMT islands via HGT, as we
333 demonstrated in [Fig. 2](#). In support of this notion, we find examples of GMT islands on plasmids
334 encoding conjugation machinery ([Dataset S1](#)). Some bacteria even contain two identical GMT
335 islands, one on the chromosome and another on a plasmid ([Dataset S2](#)). In *V. alginolyticus*, for
336 example, the predicted chromosomal and plasmid NISs share inverted repeat sequences with
337 an identical 5' AAGAGC 3' core separated by a 14 bp-long spacer ([Extended Data Fig. 9](#)).
338 Therefore, it is possible that if a NIS is found on a plasmid, a GMT island can replicate itself
339 from the chromosome to the plasmid and then exploit the plasmid to reach other bacteria via
340 HGT.

341 Many genes within the cargo of GMT islands have no known function. We leveraged the finding
342 that these MGEs are rich in defensive tools to reveal four new anti-phage defense systems. Two
343 of these, GAPS1 and GAPS4, contain predicted domains belonging to the PD-(D/E)xK
344 phosphodiesterase superfamily⁶¹, which had been previously reported in many anti-phage
345 defense systems^{16,20}. Notably, the investigated GAPSs originate from vibrios, yet we examined
346 them in *E. coli* as a surrogate platform against a collection of coliphages. The rationale behind
347 this strategy, which was successfully used by others to identify and investigate anti-phage
348 defense systems⁵⁷⁻⁵⁹, is two-fold: (i) a collection of *Vibrio* phages similar to the coliphage
349 BASEL collection⁵⁶ is currently unavailable; (ii) the candidate GAPSs that we investigated
350 originate from different species. To further support the results obtained in the *E. coli* surrogate
351 platform, we showed that an endogenous GAPS1 homolog in a clinical *E. coli* isolate protects
352 the bacterium against a native coliphage ([Fig. 6b-c](#)). Although we could not confirm their role
353 against phages, the nine GAPSs that did not protect against coliphages may defend against a
354 *Vibrio*-specific phage when expressed in their natural host, or against a phage family that was
355 not included in our coliphage array⁷⁴. Alternatively, additional regulatory or accessory

356 components endogenously found in vibrios might be required for defense activity. In light of our
357 findings, we predict that many other genes within GMT islands encode novel anti-phage
358 defense systems or novel antibacterial toxins.

359 GAPS1, encoded on VPal-6, represents a new widespread family of anti-phage defense
360 systems. Being a single protein, GAPS1 probably contains both the sensor that recognizes the
361 phage trigger and the effector domain, which we predict is its PD-(D/E)xK phosphodiesterase
362 domain. By identifying the phage trigger, we could decipher the outcome of GAPS1 activation
363 being cell dormancy rather than cell death. However, since the target of GAPS1 activity remains
364 unknown, it is unclear whether GAPS1 merely inhibits cell growth to halt the progression of the
365 phage infection cycle. It is possible that GAPS1 also actively eliminates the invading phage
366 threat, thus allowing for cell recovery.

367 Although widespread, the GMT system is predominantly found in gamma-proteobacteria, some
368 beta-proteobacteria, and a handful of Gram-positive families. Nevertheless, our analysis of GMT
369 homologs in this work was conservative, considering only systems highly similar to the trio
370 found in VPal-6. More distant trios may exist in other bacterial families, and their cargo could
371 contain additional defensive and offensive tools. In future work, we will determine whether GMT
372 systems are regulated, and what is the role of GMT components in the mobility mechanism. We
373 will also decipher how each system identifies a unique and specific insertion site. Further
374 investigation of these intriguing mobile armories will shed light on bacterial interactions,
375 evolution, and HGT.

376

377

378 Methods

379 **Strains and media:** For a complete list of strains used in this study, see **Table S2**. *Escherichia*
380 *coli* strains were grown in Lysogeny Broth (LB; 1% [wt/vol] tryptone, 0.5% [wt/vol] yeast extract,
381 and 0.5% [wt/vol] NaCl) or 2xYT (1.6% [wt/vol] tryptone, 1% [wt/vol] yeast extract, and 0.5%
382 [wt/vol] NaCl) at 37°C. *Vibrio parahaemolyticus* strains were grown in Marine Lysogeny Broth
383 (MLB; LB containing 3% [wt/vol] NaCl) and on Marine Minimal Media (MMM) agar plates (1.5%
384 [wt/vol] agar, 2% [wt/vol] NaCl, 0.4% [wt/vol] galactose, 5 mM MgSO₄, 7 mM K₂SO₄, 77 mM
385 K₂HPO₄, 35 mM KH₂PO₄, and 2 mM NH₄Cl) at 30°C. Media were supplemented with 1.5%
386 (wt/vol) agar to prepare solid plates. When required, media were supplemented with 35 or 10
387 µg/mL chloramphenicol (for *E. coli* and *V. parahaemolyticus*, respectively), 50 or 250 µg/mL
388 kanamycin (for *E. coli* and *V. parahaemolyticus*, respectively), or 100 µg/mL ampicillin to
389 maintain plasmids. To induce the expression from *Pbad* promoters, 0.04% or 0.2% (wt/vol) L-
390 arabinose was added to the media, as indicated.

391 **Plasmid construction:** Plasmids were constructed with standard molecular biology techniques
392 using the Gibson Assembly method⁷⁵. The Gibson Assembly master mix was obtained from
393 NEB (E2611S). DNA fragments were amplified by PCR from bacterial genomic DNA or from
394 DNA synthesized by TWIST Bioscience, and Gibson Assembly ligations were carried out
395 according to the manufacturer's instructions. Commercially synthesized DNA, plasmids, and
396 primers that were used in this study are listed in **Table S3**, **Table S4**, and **Table S5**,
397 respectively.

398 **Constructing *Vibrio parahaemolyticus* mutant strains:** For in-frame deletions and gene
399 replacement in *V. parahaemolyticus* RIMD 2210633 or BB22OP, pDM4-based suicide
400 plasmids⁷⁶ were used. Plasmids for gene deletions contained fusions of approximately 600 bp-
401 long sequences upstream and downstream of the region to be deleted in their multiple cloning

402 site (MCS). Plasmids for gene replacement also contained the sequence intended for insertion
403 into the chromosome between the upstream and downstream sequences mentioned above.

404 To construct the RIMD^{VPal-6_Gent} strain, wherein the *vpa1254-vpa1262* genes were replaced by a
405 gentamicin resistance (Gent^R) gene downstream of a constitutive promoter, a *cat* promoter
406 amplified from plasmid pBAD33.1⁷⁷ was ligated to the Gent^R gene amplified from plasmid
407 pBAD18-Gm. These were then inserted between the sequence upstream of *vpa1253* and the
408 sequence downstream of *vpa1263* in the pDM4 MCS.

409 To construct the BB22OP^{Tet} strain, wherein the *dns* gene (*vpbb_rs12365*) was replaced by a
410 tetracycline resistance gene (Tet^R), the Tet^R gene (*tetA*) was amplified together with its
411 constitutive promoter tetR/A from *E. coli* IYB5101⁷⁸ and inserted between the *dns* upstream and
412 downstream sequences in the pDM4 MCS.

413 To construct the RIMD^{sfGFP-NIS} strain, wherein the *vp1393 (hcp1)* was replaced by a superfolder
414 GFP (sfGFP) harboring a VPal-6 naïve insertion site, the sequence of sfGFP containing a 9
415 amino acid-long linker between the 10th and 11th β-strands was amplified from a commercially
416 synthesized plasmid (pTWIST-sfGFP-linker; Twist Biosciences) and inserted between the
417 upstream and downstream sequences of *vp1393* in the MCS of a pDM4 plasmid. Next, the
418 linker sequence was replaced by a 30 bp-long VPal-6 naïve insertion site.

419 The described pDM4 constructs were transformed into *E. coli* DH5α (λ-pir) by electroporation,
420 and then conjugated into *V. parahaemolyticus* via tri-parental mating with the help of an *E. coli*
421 conjugation helper strain. Next, trans-conjugants were selected on MMM agar plates containing
422 10 µg/mL chloramphenicol or, when necessary, supplemented with 5 µg/mL tetracycline or 25
423 µg/mL gentamicin. The resulting trans-conjugants were grown on MMM agar plates containing
424 15% [wt/vol] sucrose for counter-selection and loss of the *sacB*-containing pDM4. Deletions
425 were confirmed by PCR.

426 **GMT island mobility assays:**

427 *Transfer from a V. parahaemolyticus chromosome to a plasmid*

428 pBAD33.1 plasmids, either empty or containing a 30 bp-long VPal-6 naïve insertion site
429 (pNIS^{VPal-6}) or its mutated forms, or containing a naïve insertion site for the GMT island found in
430 *V. parahaemolyticus* 04.2548 (pNIS^{04.2548}) were transformed into *E. coli* Neb5α and
431 subsequently introduced into the indicated *V. parahaemolyticus* strains via tri-parental mating.
432 The resulting conjugated colonies were selectively grown on MMM agar plates supplemented
433 with 10 µg/mL chloramphenicol. Then, all the colonies that grew on the selective plate were
434 harvested, resuspended in LB media, and subjected to total genomic DNA isolation using the
435 PrestoTM Mini gDNA isolation kit. To identify instances in which the GMT island of interest
436 mobilized from the chromosome into the pBAD33.1-based plasmid, 110 ng of isolated total DNA
437 was used as template to perform PCR using primer sets intended to amplify: (i) a fusion
438 between the plasmid and the 5' end of the GMT island, (ii) a fusion between the plasmid and the
439 3' end of the GMT island, (iii) a fusion between the 5' and 3' ends of the GMT island (i.e.,
440 circularization), and (iv) a chloramphenicol resistance gene (*cat*; Cm^R) found in the pBAD33.1
441 backbone (used as an internal control for plasmid presence). PCR products were resolved on a
442 0.8% agarose gel and visualized with EtBr staining.

443 *Transfer between V. parahaemolyticus strains*

444 To monitor the transfer of VPal-6^{Gent} between RIMD^{Gent} and BB22OP^{Tet}, a colony of RIMD^{Gent} in
445 which the mobilization of VPal-6^{Gent} to the pNIS^{VPal-6} plasmid was confirmed via PCR
446 amplifications (as described above) was used as a donor in tri-parental mating together with an
447 *E. coli* conjugation helper strain and BB22OP^{Tet} recipient cells. The resulting trans-conjugates

448 were grown on MMM agar plates supplemented with 10 µg/mL chloramphenicol, 5 µg/mL
449 tetracycline, and 25 µg/mL gentamicin to select for BB22OP^{Tet} colonies containing a pNIS^{VPal-6}
450 plasmid with a VPal-6^{Gent}. The transfer was confirmed using PCR amplifications.

451 *Transfer from a plasmid to a naïve insertion site in the *V. parahaemolyticus* BB22OP*
452 *chromosome*

453 To monitor the transfer of VPal-6^{Gent} from a plasmid to the natural VPal-6 naïve insertion site
454 found on chromosome 2 of *V. parahaemolyticus* BB22OP, a single colony of BB22OP^{Tet}
455 containing a pNIS^{VPal-6} plasmid with a VPal-6^{Gent} (described in the previous section) was re-
456 streaked on a selective plate to isolate colonies in which VPal-6^{Gent} was found in the bacterial
457 chromosome. The transfer was confirmed using PCR amplifications.

458 *Discriminating between a replicative and conservative transfer mechanism*

459 To determine whether VPal-6 mobilizes via a replicative (copy-and-paste) or conservative (cut-
460 and-paste) mechanism, a fluorescent RIMD^{sfGFP-NIS} colony was streaked on a plate and
461 incubated for 16 hours at 30°C. The colonies were then inspected under blue light to identify a
462 colony that lost the GFP fluorescence, indicative of inactivation of the sfGFP open reading
463 frame, likely by insertion of VPal-6 into the intragenic naïve insertion site. This colony was then
464 re-streaked, and a single colony was used to extract genomic DNA and determine the location
465 of VPal-6 via PCR amplifications.

466 **Bacterial competition assays:** The indicated attacker and prey *V. parahaemolyticus* BB22OP
467 strains were cultured overnight in MLB with appropriate antibiotics, normalized to an OD₆₀₀ of
468 0.5, and then mixed at a 4:1 (attacker:prey) ratio in triplicate. Subsequently, 25 µL of the
469 mixtures were spotted onto MLB agar competition plates and incubated at 30°C for 4 hours. To
470 determine the colony-forming units (CFU) of the prey strains at t=0 hours, 10-fold serial
471 dilutions were plated on MMM agar plates supplemented with 10 µg/mL chloramphenicol and
472 250 µg/mL kanamycin. After 4 hours of co-incubation of the attacker and prey mixtures on the
473 competition plates, the bacteria were harvested, and the CFUs of the surviving prey strains
474 were determined as described above. Prey strains harbored a pVSV209⁷⁹ plasmid for selective
475 growth. A representative result out of three independent experiments is shown.

476 **Plaque assays:** The phages used in this study are listed in **Table S6**. Phages were propagated
477 on *E. coli* K12 MG1655 ΔRM. To determine the effect of the 13 putative defense system
478 (GAPS1-13) against coliphages T4, T5, T7, λ_{vir}, P1_{vir}, and the 69 phages included in the
479 BASEL collection⁵⁶, *E. coli* K12 MG1655 ΔRM strains harboring the indicated pBAD33.1-based
480 plasmids were grown overnight in LB supplemented with chloramphenicol and 0.2% (wt/vol) D-
481 glucose (to repress expression from the P_{bad} promoter) at 37°C. Overnight cultures were
482 washed twice to remove any remaining glucose, and then 350 µL of each culture were mixed
483 with 7 mL of 0.7% (wt/vol) molten agar supplemented with 0.2% (wt/vol) L-arabinose, 10 mM
484 MgSO₄, and 5 mM CaCl₂. The mixture was poured onto a 1.5% (wt/vol) agar plate
485 supplemented with chloramphenicol and 0.2% (wt/vol) L-arabinose, and the plates were left to
486 dry. Tenfold serial dilutions of all the phages were prepared, and 7.5 µL of each dilution were
487 spotted on the dried plates. The plates were incubated overnight at 37°C. The following day, the
488 plaques were counted and the plaque forming units (PFU/mL) were calculated. For dilution
489 spots in which no individual plaques were visible but a faint zone of lysis was observed, the
490 dilution was considered as having ten plaques, as previously described⁸⁰. Plaque assays with *E.*
491 *coli* K12 MG1655 ΔRM containing plasmids for the expression of GAPS1 mutants and
492 homologs were performed similarly. This protocol was also used to investigate the ability of
493 BASEL collection phage 21 to form plaques on *E. coli* ZH142-A and its Δgaps1 mutant, except
494 the plates did not include L-arabinose or antibiotics.

495 **Isolation of T7 escape phages:** *E. coli* BW25113 harboring an empty pBAD33.1 or one
496 encoding GAPS1 (pBAD33.1-GAPS1) was grown overnight in LB supplemented with
497 chloramphenicol and 0.2% (wt/vol) D-glucose at 37°C. The cells were washed twice and mixed
498 with 0.7% (wt/vol) molten agar supplemented with 0.2% (wt/vol) L-arabinose, and poured onto a
499 1.5% (wt/vol) agar plate supplemented with 0.2% (wt/vol) L-arabinose. After the agar dried,
500 tenfold serial dilutions of a T7 phage suspension were spotted onto the plate, and the plate was
501 incubated overnight at 37°C. Individual plaques growing at the highest dilution on the plates
502 containing *E. coli* expressing GAPS1 were isolated and propagated on naïve *E. coli* BW25113
503 cells harboring pBAD33.1-GAPS1 in LB supplemented with chloramphenicol and 0.2% (wt/vol)
504 L-arabinose at 37°C. The escape phages were confirmed by spotting on plates with *E. coli*
505 expressing GAPS1.

506 For phage genomic DNA isolation, high titers of escape phages and a parental wild-type phage
507 were prepared (~1.0E¹¹ PFU/mL). Approximately 40 mL of lysates of each escape phage were
508 mixed with 10% (wt/vol) PEG 8000 and 3 M NaCl, and incubated overnight at 4°C. The lysate-
509 PEG mixture was then centrifuged at 10000 x g for 15 minutes to collect the phage pellet. The
510 pellet was re-suspended using resuspension buffer from the Presto™ Mini gDNA isolation kit,
511 and the phage genomic DNA was isolated following the manufacturer's protocol.

512 Illumina whole-genome sequencing was carried out at SeqCenter (Pittsburgh, PA, USA;
513 <https://www.seqcenter.com/>). Sample libraries were prepared using the Illumina DNA Prep kit
514 and IDT 10 bp UDI indices, and sequenced on an Illumina NextSeq 2000, producing 2 x 151 bp
515 reads. Mutations were identified using variant calling (SeqCenter). Only mutations that were
516 found in the escape mutant genomes and that were not in the sequenced parental T7 phage are
517 reported in **Table S1**.

518 **Constructing T7 phage mutants:** T7 mutants were constructed using the pORTPHAGE
519 method⁸¹, a MAGE^{82,83}-based system for the mutagenesis of bacteriophages. Briefly, *E. coli* K-
520 12 strain harboring the pORTMAGE-Ec1 plasmid was grown to reach early log phase (OD₆₀₀
521 ~0.3). Then, 1 mM m-tolulic acid was added to induce the expression of recombineering
522 proteins. The cells were made electrocompetent and then transformed with mutating
523 oligonucleotides. After electroporation, the culture was infected with a wild-type T7 phage and
524 incubated until complete lysis occurred. The final lysate was cleared using chloroform, diluted,
525 and then plated using the soft agar overlay method to screen for individual mutated plaques.
526 Single plaques were picked, suspended in LB, and used as templates for PCR amplification and
527 sequencing to identify mutants.

528 **Chromosomal integration of GAPS1:** GAPS1 was introduced into the chromosome of *E. coli*
529 BW25113 in place of *ydhQ* (*ydhQ*::GAPS1) using the red recombination system, as previously
530 described⁸⁴. Briefly, *E. coli* BW25113 cells harboring pSim6 were grown overnight in LB
531 supplemented with ampicillin at 30°C. Overnight cultures were diluted 1:100 in 35 mL of fresh
532 LB supplemented with ampicillin and grown to an OD₆₀₀ of ~0.5. The red recombinase system
533 was then heat-induced for 20 minutes in a shaking water bath at 42°C. Immediately after
534 induction, the cells were chilled on ice and pelleted by centrifugation. The cell pellets were
535 washed thrice with ice-cold water and resuspended in 200 µL of ice-cold water. The gene
536 encoding GAPS1 under *Pbad* promoter control, along with a kanamycin-resistance cassette,
537 was amplified together with flanking sequences identical to flanking sequences 50 bp upstream
538 and downstream of the chromosomal *ydhQ*. The amplified DNA was treated with DpnI, and then
539 run on an agarose gel and purified. The purified DNA was electroporated into *E. coli*, and
540 bacteria were allowed to recover in 2xYT broth supplemented with 0.2% (wt/vol) D-glucose for
541 two hours at 30°C. The transformed cells were then plated onto a 1.5% (wt/vol) agar plate
542 supplemented with 25 µg/mL kanamycin. The integration of GAPS1 was verified by PCR.
543 Bacteria were cured of the pSIM6 plasmid, and the recombinant cells were electroporated with

544 pCP20 plasmid. The kanamycin cassette was flipped out by inducing the pCP20 plasmid at
545 42°C.

546 **Deleting the GAPS1 homolog in *E. coli* ZH142-A:** The GAPS1 homolog was deleted from the
547 chromosome of *E. coli* ZH142-A using the lambda red recombination system, and replaced with
548 a kanamycin resistance cassette. A single colony of bacteria containing the pSim6 plasmid was
549 grown overnight in LB supplemented with ampicillin at 30°C. The overnight culture was diluted
550 1:100 in 35 mL of fresh LB supplemented with ampicillin and grown to an OD₆₀₀ of ~0.5. The red
551 recombinase system was then heat-induced for 20 minutes in a shaking water bath at 42°C.
552 Immediately after induction, the cells were chilled on ice and pelleted by centrifugation. The cell
553 pellets were washed thrice with ice-cold water and resuspended in 200 µL of ice-cold water.
554 Then, these cells were electroporated with the following DNA: The kanamycin-resistance
555 cassette, along with the flipase recognition target (FRT) sites, was amplified from *E. coli*
556 BW25113ΔydhQ::kan using primer pairs with overhang sequences homologous to the 50 bp of
557 the 5' and 3' sequences flanking the GAPS1 homolog. The amplified DNA was treated with DpnI
558 restriction enzyme, run on an agarose gel, and purified.

559 Following electroporation, the cells were allowed to recover in 2xYT broth for two hours at 30°C.
560 The transformed cells were then plated onto a 1.5% (wt/vol) agar plate supplemented with 25
561 µg/mL kanamycin. The replacement of the GAPS1 homolog with the kanamycin resistance
562 cassette was verified by PCR. Bacteria were subsequently cured of the pSIM6 plasmid⁸⁵.

563 ***E. coli* toxicity and viability assays:** *E. coli* BW25133 ΔydhQ and *E. coli* BW25133
564 ydhQ::GAPS1 cells harboring an empty plasmid or a plasmid for the arabinose-inducible
565 expression of the T7 phage gene10 (encoding the Gp10 capsid protein) were grown overnight
566 at 37°C in LB supplemented with kanamycin and 0.2% (wt/vol) D-glucose. Overnight cultures
567 were diluted to an OD₆₀₀ = 0.02 in fresh LB supplemented with kanamycin, and 200 µL were
568 transferred into 96-well plates in triplicate. Cells were grown under continuous shaking (205
569 RPM) in a Tecan Infinite M Plex plate reader at 37°C. After two hours, the expression of Gp10
570 and GAPS1 was induced by adding L-arabinose to a final concentration of 0.2% (wt/vol). OD₆₀₀
571 readings were acquired every 10 minutes. A similar procedure was used to determine the effect
572 of adding ampicillin (100 µg/mL) 1 hour after arabinose addition.

573 To determine cell viability after induction, bacteria were collected at the indicated time points
574 after arabinose addition. Tenfold serial dilutions of each culture were spotted on agar plates
575 supplemented with kanamycin and 0.2% (wt/vol) D-glucose (to repress arabinose-induced
576 expression). The plates were incubated overnight at 37°C, and the CFU/mL of each culture
577 were determined the following day.

578 To monitor bacterial growth upon infection with BASEL collection phage 21, *E. coli* ZH142-A
579 wild-type and Δgaps1 mutant strains were grown overnight at 37°C in LB. Overnight cultures
580 were diluted 1:100 in 10 mL of fresh LB and grown to an OD₆₀₀ of ~0.3. The phage was then
581 added to the bacterial cultures at the indicated MOI, and 200 µL of cells were transferred into
582 96-well plates in triplicate. Cells were grown under continuous shaking (205 RPM) in a Tecan
583 Infinite M Plex plate reader at 37°C. OD₆₀₀ readings were acquired every 10 minutes.

584 **Identification of GMT islands:** GMT islands were identified by performing the following steps.

585 *Construction of position-specific scoring matrices (PSSMs) of GMT proteins.*

586 The PSSMs of VPA1270 (GmtY), VPA1269 (GmtZ), and VPA1268 (GmtX) were constructed
587 using full-length sequences from *Vibrio parahaemolyticus* RIMD 2210633 (WP_005477115.1,
588 WP_005477239.1, and WP_005477284.1, respectively). To improve the identification of GMT
589 proteins, additional PSSMs of VPA1269 and VPA1268 were constructed using full-length
590 sequences from *Vibrio parahaemolyticus* R14 (WP_108745444.1 and WP_085344822.1,

591 respectively). Online PSI-BLAST (<https://blast.ncbi.nlm.nih.gov>) was employed to construct all
592 PSSMs. In each case, five iterations of PSI-BLAST against the RefSeq protein database were
593 performed. A maximum of 500 hits with an expect value threshold of 10^{-6} and a query coverage
594 of 70% were used in each iteration of PSI-BLAST. Files containing PSSM information were
595 downloaded from the website and were used later in RPS-BLAST analysis (see below).

596 *Identification of bacterial genomes containing GMT systems.*

597 A local database containing the RefSeq bacterial nucleotide and protein sequences was
598 generated (last updated on August 21, 2023). RPS-BLAST was used to identify *GmtY* homologs
599 in the local database. The results were filtered using an expect value threshold of 10^{-6} and a
600 query coverage of 70%. Analysis was limited to complete genomes (NCBI assembly level:
601 complete genome or chromosome). Subsequently, the genomic neighborhood of *GmtY*-
602 containing genomes was analyzed as described before^{47,86,87}. The results were further analyzed
603 to identify bacterial sequences containing the three GMT proteins in tandem. Cases where an
604 unrelated protein was inserted between GMT proteins (e.g., a transposase) were
605 accommodated. A list of GMT proteins and adjacently encoded proteins is provided in **Dataset**
606 **S1**.

607 *Identification of closely related genomes.*

608 First, the sequences of *rpoB*, coding for DNA-directed RNA polymerase subunit beta, were
609 retrieved from the local database for all RefSeq bacterial genomes. Partial and pseudo-gene
610 sequences were excluded. A nucleotide database of *rpoB* genes was generated. Next, BLASTN
611 was performed using the sequences of *rpoB* from the GMT-containing genomes as queries to
612 identify *rpoB* homologs with high sequence identity (at least 90% over at least 90% of the
613 sequence). The BLASTN results were analyzed and a list of closely related genomes was
614 generated for each GMT-containing genome.

615 *Identification of genomic accessions in closely related genomes that are homologous to
616 sequences flanking GMT systems.*

617 The nucleotide sequences of the GMT systems and their 5' and 3' flanking regions, up to 200
618 kbp of either side of *GmtY*, were retrieved. These sequences were used as query in BLASTN
619 against the nucleotide sequences of closely related genomes. The results were filtered to
620 include local alignments that are of ≥ 1 kbp length with $\geq 80\%$ identity between aligned
621 sequences. The alignments were further analyzed to identify separate alignments belonging to
622 the same genomic accessions that flank the GMT systems but do not include them (**Fig. S8a**).
623 The alignments were required to be with the same strand of the subject accession. The
624 distances between the positions of the alignments in the subject accessions were required to be
625 ≤ 100 bp (**Fig. S8a**). In addition to the above criteria, the sequences upstream and downstream
626 to the GMT islands were required to contain sequence alignments to the subject accessions in
627 at least 4 kbp out of 10 kbp upstream and downstream sequences. The aim of this step was to
628 remove false alignments due to frequent sequences (e.g., transposases) (**Fig. S8b**).

629 *Identification of GMT Island borders.*

630 The alignments meeting all the abovementioned requirements were grouped together to
631 determine the 5' and 3' borders of GMT islands (**Figure S8c**). First, the consensus values of the
632 borders were deduced based on the most frequently occurring values. Then, the putative
633 borders were ranked based on the following criteria: (i) distance between subject alignments
634 ≤ 20 bp, (ii) upstream and downstream alignments ≥ 5 kbp, (iii) borders are ± 10 bp from
635 consensus values, and (iv) borders are exactly the same as the consensus values. The putative
636 borders with the highest ranking were selected for further analysis (**Dataset S2**).

637 **Analysis of the putative entry sites.**

638 The predicted entry site for each GMT island was determined according to positions of the
639 alignments in the subject accessions. Entry sites were defined as 'intragenic' or 'intergenic' if
640 located inside or outside genes, respectively (**Fig. S8d**). The sequences located 25 bp from the
641 ends of the predicted entry sites were analyzed to identify direct and inverted repeats (**Fig.**
642 **S8e**). Briefly, to identify direct repeats, all possible sub-sequences located in the first sequence
643 were searched in the second sequence. To identify inverted repeats, the search was performed
644 in the reverse complement. The minimal repeat size was set to 5 nucleotides, and the longest
645 identified repeats were saved.

646 **Analysis of GMT island cargoes:** T6SS effectors were identified by the presence of T6SS
647 effector-specific domains (i.e., MIX^{37,47}, FIX⁴⁸, Rhs⁴⁹, PAAR and PAAR-like⁴⁵, Hcp¹, and VgrG¹),
648 determined by NCBI Conserved Domain Database (CDD)³⁹ (see below) or using previously-
649 constructed PSSMs. Predicted toxic domains of T6SS effectors were identified using CDD or by
650 similarity detection using hidden Markov modeling (HHpred⁶³). Small genes downstream of
651 T6SS effectors were annotated as putative immunity genes.

652 Anti-phage defense systems were identified using the PADLOC⁵⁰ and DefenseFinder⁵¹ tools. In
653 the case of PADLOC, amino acid sequences and gff3 files of the complete genomes were
654 provided as input. In the case of DefenseFinder, amino acids sequences, ordered according to
655 their position in the genomes, were provided as input. The anti-phage defense systems
656 described in this work were identified by constructing PSSMs for proteins belonging to the
657 systems and identification of homologs using RPS-BLAST. PSSMs of GAPS1, GAPS2,
658 GAPS4a, GAPS4b, GAPS6a, and GAPS6b were constructed using full-length sequences
659 (WP_005477165.1, WP_174208646.1, WP_055466293.1, WP_055466294.1,
660 WP_248387294.1, and WP_248387295.1, respectively). PSI-BLAST was performed as
661 described above for the GMT system. RPS-BLAST results were filtered using an expect value
662 threshold of 10⁻¹⁵ and a minimal coverage of 70%. With regard to GAPS4 and GAPS6, all
663 proteins belonging to these systems were required for the systems to be counted.

664 DNA mobility elements were identified using blast search in the mobileOG database (Beatrix 1.6
665 v1⁸⁸) and by a manual search for protein descriptions containing 'transposase', 'recombinase',
666 'conjugation', or 'integrase' keywords. Antimicrobial resistance genes were identified using a
667 blast search in the NCBI Pathogen Detection Reference Gene Catalog, available from The
668 NCBI Pathogen Detection Project [Internet]. Bethesda (MD): National Library of Medicine (US),
669 National Center for Biotechnology Information. 2016 May [downloaded: 2024 May 13]. Available
670 from: <https://www.ncbi.nlm.nih.gov/pathogens/>. Virulence toxins were identified using blast
671 searches in the Virulence Factor Database (VfDB⁸⁹) and in Bastion-HUB database⁹⁰. Blast
672 results from searches in the various databases were manually assessed, and genes encoding
673 transcription regulators were excluded. Partial and pseudo-genes were not included in the
674 analysis.

675 **Identification of conserved domains:** The CDD and related information were downloaded
676 from NCBI on August 27, 2023³⁹. RPS-BLAST was employed to identify conserved domains in
677 protein sequences and the output was processed using the Post-RPS-BLAST Processing Utility
678 v0.1. The expect value threshold was set to 10⁻⁵.

679 **Construction of phylogenetic trees:** Phylogenetic analysis of bacterial strains was conducted
680 using the MAFFT server (mafft.cbrc.jp/alignment/server/)⁹¹. The nucleotide sequences of *rpoB*
681 were aligned using MAFFT version 7 (FFT-NS-i)⁹². Partial and pseudo-gene sequences were
682 not included in the analysis. The evolutionary history was inferred using the neighbor-joining
683 method⁹³ with the Jukes-Cantor substitution model (JC69). The indicated evolutionary distances
684 are in the units of the number of base substitutions per site.

685 The phylogenetic tree of GmtY and GAPS1 were constructed by performing the following steps.
686 First, protein sequences were aligned using CLUSTAL Omega⁹⁴. Then, evolutionary analyses
687 were conducted in MEGA X⁹⁵. In the case of GmtY, the evolutionary history was inferred by
688 using the Maximum Likelihood method and the LG+G+I model⁹⁶. In the case of GAPS1, the
689 Maximum Likelihood method and the LG+G+I+F model were used. Both models were found to
690 have the lowest BIC (Bayesian Information Criterion) scores among 56 different amino acid
691 substitution models that were analyzed in MEGA X. The analysis of GmtY involved 366 amino
692 acid sequences and 375 conserved sites. The analysis of GAPS1 involved 833 amino acid
693 sequences and 264 conserved sites. The trees were visualized using iTOL⁹⁷
694 (<https://itol.embl.de/>).

695 **Illustration of conserved residues using Weblogo:** The protein sequences of GAPS1
696 homologs were aligned using CLUSTAL Omega⁹⁴. Aligned columns not found in representative
697 proteins were discarded. The conserved residues were illustrated using the WebLogo server
698 (weblogo.berkeley.edu/)⁹⁸.

699 **Multiple sequence alignment of *E. coli* GAPS1 homologs:** The amino acid sequences of
700 EGQ2075554.1, EJP5250929.1, WP_152927281.1, WP_194242909.1, and GAPS1
701 (WP_005477165.1) were aligned using Clustal W⁹⁹ in MEGA X⁹⁵. Similarity and identity shading
702 was done in ESPript 3.0¹⁰⁰.

703

704

705 Acknowledgments

706 We thank members of the Salomon, Qimron, and Bosis laboratories for helpful discussions and
707 suggestions. We also thank Andrea Endimiani (University of Bern) for gifting us the *E. coli*
708 ZH1420A strain, and Alexander Harms (ETH Zurich) for generously sharing the BASEL phage
709 collection. DS and EB received funding from the Israel Science Foundation (ISF grant number
710 1362/21). UQ is supported by the European Research Council – Horizon 2020 research and
711 innovation program, grant no. 818878. UQ has also received funding from the Israeli Ministry of
712 Health in the framework of the ERANET-JPI-AMR, grant no. 15370. KK was supported by a
713 PhD Scholarship from the Tel Aviv University Center for Combatting Pandemics.

714

715

716 References

- 717 1. Pukatzki, S. *et al.* Identification of a conserved bacterial protein secretion system in *Vibrio*
718 *cholerae* using the *Dictyostelium* host model system. *Proc. Natl. Acad. Sci.* **103**, 1528–
719 1533 (2006).
- 720 2. Hood, R. D. *et al.* A type VI secretion system of *Pseudomonas aeruginosa* targets a toxin
721 to bacteria. *Cell Host Microbe* **7**, 25–37 (2010).
- 722 3. Jana, B. & Salomon, D. Type VI secretion system: a modular toolkit for bacterial
723 dominance. *Future Microbiol.* **14**, fmb-2019-0194 (2019).
- 724 4. MacIntyre, D. L., Miyata, S. T., Kitaoka, M. & Pukatzki, S. The *Vibrio cholerae* type VI
725 secretion system displays antimicrobial properties. *Proc. Natl. Acad. Sci.* **107**, 19520–
726 19524 (2010).
- 727 5. Allsopp, L. P. & Bernal, P. Killing in the name of: T6SS structure and effector diversity.
728 *Microbiology* **169**, 001367 (2023).

729 6. Speare, L. *et al.* Bacterial symbionts use a type VI secretion system to eliminate
730 competitors in their natural host. *Proc. Natl. Acad. Sci. U. S. A.* **115**, E8528–E8537
731 (2018).

732 7. Ma, L. S., Hachani, A., Lin, J. S., Filloux, A. & Lai, E. M. *Agrobacterium tumefaciens*
733 deploys a superfamily of type VI secretion DNase effectors as weapons for interbacterial
734 competition in planta. *Cell Host Microbe* **16**, 94–104 (2014).

735 8. Borgeaud, S., Metzger, L. C., Scignari, T. & Blokesch, M. The type VI secretion system
736 of *Vibrio cholerae* fosters horizontal gene transfer. *Science* **347**, 63–7 (2015).

737 9. Sana, T. G. *et al.* *Salmonella Typhimurium* utilizes a T6SS-mediated antibacterial
738 weapon to establish in the host gut. *Proc. Natl. Acad. Sci.* **113**, E5044–E5051 (2016).

739 10. Verster, A. J. *et al.* The Landscape of Type VI Secretion across Human Gut Microbiomes
740 Reveals Its Role in Community Composition. *Cell Host Microbe* **22**, 411–419.e4 (2017).

741 11. Unterweger, D. *et al.* The *Vibrio cholerae* type VI secretion system employs diverse
742 effector modules for intraspecific competition. *Nat. Commun.* **5**, 3549 (2014).

743 12. Pleška, M., Lang, M., Refardt, D., Levin, B. R. & Guet, C. C. Phage-host population
744 dynamics promotes prophage acquisition in bacteria with innate immunity. *Nat. Ecol.
745 Evol.* **2**, 359–366 (2018).

746 13. Hussain, F. A. *et al.* Rapid evolutionary turnover of mobile genetic elements drives
747 bacterial resistance to phages. *Science* **374**, 488–492 (2021).

748 14. Piel, D. *et al.* Phage–host coevolution in natural populations. *Nat. Microbiol.* **7**, 1075–
749 1086 (2022).

750 15. Hampton, H. G., Watson, B. N. J. & Fineran, P. C. The arms race between bacteria and
751 their phage foes. *Nature* vol. 577 327–336 (2020).

752 16. Doron, S. *et al.* Systematic discovery of antiphage defense systems in the microbial
753 pangenome. *Science* **359**, eaar4120 (2018).

754 17. Makarova, K. S., Wolf, Y. I., Snir, S. & Koonin, E. V. Defense Islands in Bacterial and
755 Archaeal Genomes and Prediction of Novel Defense Systems. *J. Bacteriol.* **193**, 6039–
756 6056 (2011).

757 18. Bernheim, A. & Sorek, R. The pan-immune system of bacteria: antiviral defence as a
758 community resource. *Nature Reviews Microbiology* vol. 18 113–119 (2020).

759 19. Millman, A. *et al.* An expanded arsenal of immune systems that protect bacteria from
760 phages. *Cell Host Microbe* **30**, 1556–1569.e5 (2022).

761 20. Vassallo, C. N., Doering, C. R., Littlehale, M. L., Teodoro, G. I. C. & Laub, M. T. A
762 functional selection reveals previously undetected anti-phage defence systems in the *E.
763 coli* pangenome. *Nat. Microbiol.* **7**, 1568–1579 (2022).

764 21. Le Roux, F. & Blokesch, M. Eco-evolutionary dynamics linked to horizontal gene transfer
765 in vibrios. *Annu. Rev. Microbiol.* **72**, annurev-micro-090817-062148 (2018).

766 22. Arnold, B. J., Huang, I. T. & Hanage, W. P. Horizontal gene transfer and adaptive
767 evolution in bacteria. *Nature Reviews Microbiology* vol. 20 206–218 (2022).

768 23. Horne, T., Orr, V. T. & Hall, J. P. How do interactions between mobile genetic elements
769 affect horizontal gene transfer? *Curr. Opin. Microbiol.* **73**, 102282 (2023).

770 24. Bellanger, X., Payot, S., Leblond-Bourget, N. & Guédon, G. Conjugative and mobilizable

771 genomic islands in bacteria: Evolution and diversity. *FEMS Microbiology Reviews* vol. 38
772 720–760 (2014).

773 25. Khedkar, S. *et al.* Landscape of mobile genetic elements and their antibiotic resistance
774 cargo in prokaryotic genomes. *Nucleic Acids Res.* **50**, 3155–3168 (2022).

775 26. Stephens, C. *et al.* F Plasmids Are the Major Carriers of Antibiotic Resistance Genes in
776 Human-Associated Commensal *Escherichia coli*. *mSphere* **5**, e00709-20 (2020).

777 27. Alekshun, M. N. & Levy, S. B. Molecular Mechanisms of Antibacterial Multidrug
778 Resistance. *Cell* vol. 128 1037–1050 (2007).

779 28. Fillol-Salom, A. *et al.* Bacteriophages benefit from mobilizing pathogenicity islands
780 encoding immune systems against competitors. *Cell* **185**, 3248-3262.e20 (2022).

781 29. Rousset, F. *et al.* Phages and their satellites encode hotspots of antiviral systems. *Cell*
782 *Host Microbe* **30**, 740-753.e5 (2022).

783 30. Salomon, D. *et al.* Type VI secretion system toxins horizontally shared between marine
784 bacteria. *PLoS Pathog.* **11**, 1–20 (2015).

785 31. Jana, B., Keppel, K., Fridman, C. M., Bosis, E. & Salomon, D. Multiple T6SSs, mobile
786 auxiliary modules, and effectors revealed in a systematic analysis of the *Vibrio*
787 *parahaemolyticus* pan-genome. *mSystems* e00723-22 (2022).

788 32. Thomas, J., Watve, S. S., Ratcliff, W. C. & Hammer, B. K. Horizontal gene transfer of
789 functional type VI killing genes by natural transformation. *MBio* **8**, 1–11 (2017).

790 33. Santoriello, F. J., Kirchberger, P. C., Boucher, Y. & Pukatzki, S. Pandemic *Vibrio*
791 *cholerae* acquired competitive traits from an environmental *Vibrio* species. *Life Sci.*
792 *alliance* **6**, e202201437 (2023).

793 34. Ruhe, Z. C., Low, D. A. & Hayes, C. S. Polymorphic toxins and their immunity proteins:
794 Diversity, evolution, and mechanisms of delivery. *Annu. Rev. Microbiol.* **74**, 497–520
795 (2020).

796 35. Ellabaan, M. M. H., Munck, C., Porse, A., Imamovic, L. & Sommer, M. O. A. Forecasting
797 the dissemination of antibiotic resistance genes across bacterial genomes. *Nat. Commun.*
798 **12**, 2435 (2021).

799 36. Hurley, C. C., Quirke, A. M., Reen, F. J. & Boyd, E. F. Four genomic islands that mark
800 post-1995 pandemic *Vibrio parahaemolyticus* isolates. *BMC Genomics* **7**, 104 (2006).

801 37. Salomon, D. *et al.* Marker for type VI secretion system effectors. *Proc. Natl. Acad. Sci.*
802 **111**, 9271–9276 (2014).

803 38. Fridman, C. M., Jana, B., Ben-Yaakov, R., Bosis, E. & Salomon, D. A DNase Type VI
804 Secretion System Effector Requires Its MIX Domain for Secretion. *Microbiol. Spectr.* **10**,
805 e0246522 (2022).

806 39. Marchler-Bauer, A. *et al.* CDD: a conserved domain database for interactive domain
807 family analysis. *Nucleic Acids Res.* **35**, D237-40 (2007).

808 40. Zimmermann, L. *et al.* A completely reimplemented MPI bioinformatics toolkit with a new
809 HHpred server at its core. *J. Mol. Biol.* **430**, 2237–2243 (2018).

810 41. Guerrero-Bustamante, C. A. & Hatfull, G. F. Bacteriophage tRNA-dependent lysogeny:
811 requirement of phage-encoded tRNA genes for establishment of lysogeny. *MBio* **15**,
812 e0326023 (2024).

813 42. Banerjee, S., Petronella, N., Leung, C. C. & Farber, J. Draft genome sequences of four
814 Vibrio parahaemolyticus isolates from clinical cases in Canada. *Genome Announc.* **3**,
815 e01482-14 (2015).

816 43. Pedelacq, J. D. & Cabantous, S. Development and applications of superfolder and split
817 fluorescent protein detection systems in biology. *Int. J. Mol. Sci.* **20**, 3479 (2019).

818 44. Davidov, E. & Kaufmann, G. RloC: A wobble nucleotide-excising and zinc-responsive
819 bacterial tRNase. *Mol. Microbiol.* **69**, 1560–1574 (2008).

820 45. Shneider, M. M. *et al.* PAAR-repeat proteins sharpen and diversify the type VI secretion
821 system spike. *Nature* **500**, 350–353 (2013).

822 46. Ray, A. *et al.* Type VI secretion system MIX-effectors carry both antibacterial and
823 anti-eukaryotic activities. *EMBO Rep.* **18**, e201744226 (2017).

824 47. Dar, Y., Salomon, D. & Bosis, E. The antibacterial and anti-eukaryotic Type VI secretion
825 system MIX-effector repertoire in Vibrionaceae. *Mar. Drugs* **16**, 433 (2018).

826 48. Jana, B., Fridman, C. M., Bosis, E. & Salomon, D. A modular effector with a DNase
827 domain and a marker for T6SS substrates. *Nat. Commun.* **10**, 3595 (2019).

828 49. Koskineni, S. *et al.* Rhs proteins from diverse bacteria mediate intercellular competition.
829 *Proc. Natl. Acad. Sci. U. S. A.* **110**, 7032–7 (2013).

830 50. Payne, L. J. *et al.* Identification and classification of antiviral defence systems in bacteria
831 and archaea with PADLOC reveals new system types. *Nucleic Acids Res.* **49**, 10868–
832 10878 (2021).

833 51. Tesson, F. *et al.* Systematic and quantitative view of the antiviral arsenal of prokaryotes.
834 *Nat. Commun.* **13**, 2561 (2022).

835 52. Botelho, J. Defense systems are pervasive across chromosomally integrated mobile
836 genetic elements and are inversely correlated to virulence and antimicrobial resistance.
837 *Nucleic Acids Res.* **51**, 4385–4397 (2023).

838 53. Wozniak, R. A. F. *et al.* Comparative ICE genomics: Insights into the evolution of the
839 SXT/R391 family of ICEs. *PLoS Genet.* **5**, (2009).

840 54. Dobrindt, U., Hochhut, B., Hentschel, U. & Hacker, J. Genomic islands in pathogenic and
841 environmental microorganisms. *Nature Reviews Microbiology* vol. 2 414–424 (2004).

842 55. LeGault, K. N. *et al.* Temporal shifts in antibiotic resistance elements govern phage-
843 pathogen conflicts. *Science*. **373**, eabg2166 (2021).

844 56. Maffei, E. *et al.* Systematic exploration of Escherichia coli phage-host interactions with
845 the BASEL phage collection. *PLoS Biol.* **19**, e3001424 (2021).

846 57. Johnson, A. G. *et al.* Bacterial gasdermins reveal an ancient mechanism of cell death.
847 *Science*. **375**, (2022).

848 58. Ernits, K. *et al.* The structural basis of hyperpromiscuity in a core combinatorial network
849 of type II toxin–antitoxin and related phage defense systems. *Proc. Natl. Acad. Sci. U. S.*
850 *A.* **120**, (2023).

851 59. Hossain, A. A. *et al.* DNA glycosylases provide antiviral defence in prokaryotes. *Nature*
852 **629**, 410–416 (2024).

853 60. Knizewski, L., Kinch, L. N., Grishin, N. V, Rychlewski, L. & Ginalski, K. Realm of PD-
854 (D/E)XK nuclease superfamily revisited: detection of novel families with modified

855 transitive meta profile searches. *BMC Struct. Biol.* **7**, 40 (2007).

856 61. Steczkiewicz, K., Muszewska, A., Knizewski, L., Rychlewski, L. & Ginalski, K. Sequence,
857 structure and functional diversity of PD-(D/E)XK phosphodiesterase superfamily. *Nucleic
858 Acids Res.* **40**, 7016–7045 (2012).

859 62. Arcus, V. L., Mckenzie, J. L., Robson, J. & Cook, G. M. The PIN-domain ribonucleases
860 and the prokaryotic VapBC toxin-antitoxin array. *Protein Engineering, Design and
861 Selection* vol. 24 33–40 (2011).

862 63. Gabler, F. *et al.* Protein Sequence Analysis Using the MPI Bioinformatics Toolkit. *Curr.
863 Protoc. Bioinforma.* **72**, e108 (2020).

864 64. Fernández-García, L. & Wood, T. K. Phage-Defense Systems Are Unlikely to Cause Cell
865 Suicide. *Viruses* vol. 15 1795 (2023).

866 65. Georjon, H. & Bernheim, A. The highly diverse antiphage defence systems of bacteria.
867 *Nature Reviews Microbiology* vol. 21 686–700 (2023).

868 66. Aframian, N. & Eldar, A. Abortive infection antiphage defense systems: separating
869 mechanism and phenotype. *Trends in Microbiology* vol. 31 1003–1012 (2023).

870 67. Fernández-García, L. *et al.* Toxin/antitoxin systems induce persistence and work in
871 concert with restriction/modification systems to inhibit phage. *Microbiol. Spectr.* **12**,
872 e0338823 (2024).

873 68. Scherrer, R. & Moyed, H. S. Conditional impairment of cell division and altered lethality in
874 hipA mutants of Escherichia coli K-12. *J. Bacteriol.* **170**, 3321–3326 (1988).

875 69. Granato, E. T., Meiller-Legrand, T. A. & Foster, K. R. The Evolution and Ecology of
876 Bacterial Warfare. *Current Biology* vol. 29 R521–R537 (2019).

877 70. Botelho, J. *et al.* Phylogroup-specific variation shapes the clustering of antimicrobial
878 resistance genes and defence systems across regions of genome plasticity in
879 *Pseudomonas aeruginosa*. *eBioMedicine* **90**, 104532 (2023).

880 71. Salomon, D. MIX and match: mobile T6SS MIX-effectors enhance bacterial fitness. *Mob.
881 Genet. Elements* **6**, e1123796 (2016).

882 72. Kosek, D., Hickman, A. B., Ghirlando, R., He, S. & Dyda, F. Structures of ISCth4
883 transpososomes reveal the role of asymmetry in copy-out/paste-in DNA transposition.
884 *EMBO J.* **40**, e105666 (2021).

885 73. Chandler, M., Fayet, O., Rousseau, P., Hoang, B. T. & Duval-Valentin, G. Copy-out-
886 paste-in transposition of IS911: A major transposition pathway. in *Mobile DNA III* 591–
887 607 (2015). doi:10.1128/9781555819217.ch27.

888 74. Patel, P. H. *et al.* Anti-phage defence through inhibition of virion assembly. *Nat. Commun.*
889 **15**, 1644 (2024).

890 75. Gibson, D. G. *et al.* Enzymatic assembly of DNA molecules up to several hundred
891 kilobases. *Nat. Methods* **6**, 343–345 (2009).

892 76. O'Toole, R., Milton, D. L. & Wolf-Watz, H. Chemotactic motility is required for invasion of
893 the host by the fish pathogen *Vibrio anguillarum*. *Mol. Microbiol.* **19**, 625–637 (1996).

894 77. Chung, H. S. & Raetz, C. R. H. Interchangeable domains in the Kdo transferases of
895 *escherichia coli* and *haemophilus influenzae*. *Biochemistry* **49**, 4126–4137 (2010).

896 78. Yosef, I., Goren, M. G. & Qimron, U. Proteins and DNA elements essential for the

897 CRISPR adaptation process in *Escherichia coli*. *Nucleic Acids Res.* **40**, 5569–5576
898 (2012).

899 79. Dunn, A. K., Millikan, D. S., Adin, D. M., Bose, J. L. & Stabb, E. V. New *rfp*- and pES213-
900 derived tools for analyzing symbiotic *Vibrio fischeri* reveal patterns of infection and *lux*
901 expression in situ. *Appl. Environ. Microbiol.* **72**, 802–810 (2006).

902 80. Cohen, D. *et al.* Cyclic GMP–AMP signalling protects bacteria against viral infection.
903 *Nature* **574**, 691–695 (2019).

904 81. Goren, M. G., Mahata, T. & Qimron, U. An efficient, scarless, selection-free technology
905 for phage engineering. *RNA Biol.* **20**, 830–835 (2023).

906 82. Wannier, T. M. *et al.* Improved bacterial recombineering by parallelized protein discovery.
907 *Proc. Natl. Acad. Sci. U. S. A.* **117**, 13689–13698 (2020).

908 83. Nyerges, Á. *et al.* A highly precise and portable genome engineering method allows
909 comparison of mutational effects across bacterial species. *Proc. Natl. Acad. Sci.* **113**,
910 2502–2507 (2016).

911 84. Sharan, S. K., Thomason, L. C., Kuznetsov, S. G. & Court, D. L. Recombineering: A
912 homologous recombination-based method of genetic engineering. *Nat. Protoc.* **4**, 206–
913 223 (2009).

914 85. Yosef, I., Manor, M., Kiro, R. & Qimron, U. Temperate and lytic bacteriophages
915 programmed to sensitize and kill antibiotic-resistant bacteria. *Proc. Natl. Acad. Sci. U. S.*
916 *A.* **112**, 7267–7272 (2015).

917 86. Dar, Y., Jana, B., Bosis, E. & Salomon, D. A binary effector module secreted by a type VI
918 secretion system. *EMBO Rep.* **23**, e53981 (2022).

919 87. Fridman, C. M., Keppel, K., Gerlic, M., Bosis, E. & Salomon, D. A comparative genomics
920 methodology reveals a widespread family of membrane-disrupting T6SS effectors. *Nat.*
921 *Commun.* **11**, 1085 (2020).

922 88. Brown, C. L. *et al.* mobileOG-db: a Manually Curated Database of Protein Families
923 Mediating the Life Cycle of Bacterial Mobile Genetic Elements. *Appl. Environ. Microbiol.*
924 **88**, e0099122 (2022).

925 89. Liu, B., Zheng, D., Zhou, S., Chen, L. & Yang, J. VFDB 2022: A general classification
926 scheme for bacterial virulence factors. *Nucleic Acids Res.* **50**, D912–D917 (2022).

927 90. Wang, J. *et al.* BastionHub: A universal platform for integrating and analyzing substrates
928 secreted by Gram-negative bacteria. *Nucleic Acids Res.* **49**, D651–D659 (2021).

929 91. Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: Multiple sequence
930 alignment, interactive sequence choice and visualization. *Brief. Bioinform.* **20**, 1160–1166
931 (2018).

932 92. Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple
933 sequence alignment based on fast Fourier transform. *Nucleic Acids Res.* **30**, 3059–66
934 (2002).

935 93. Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing
936 phylogenetic trees. *Mol. Biol. Evol.* **4**, 406–425 (1987).

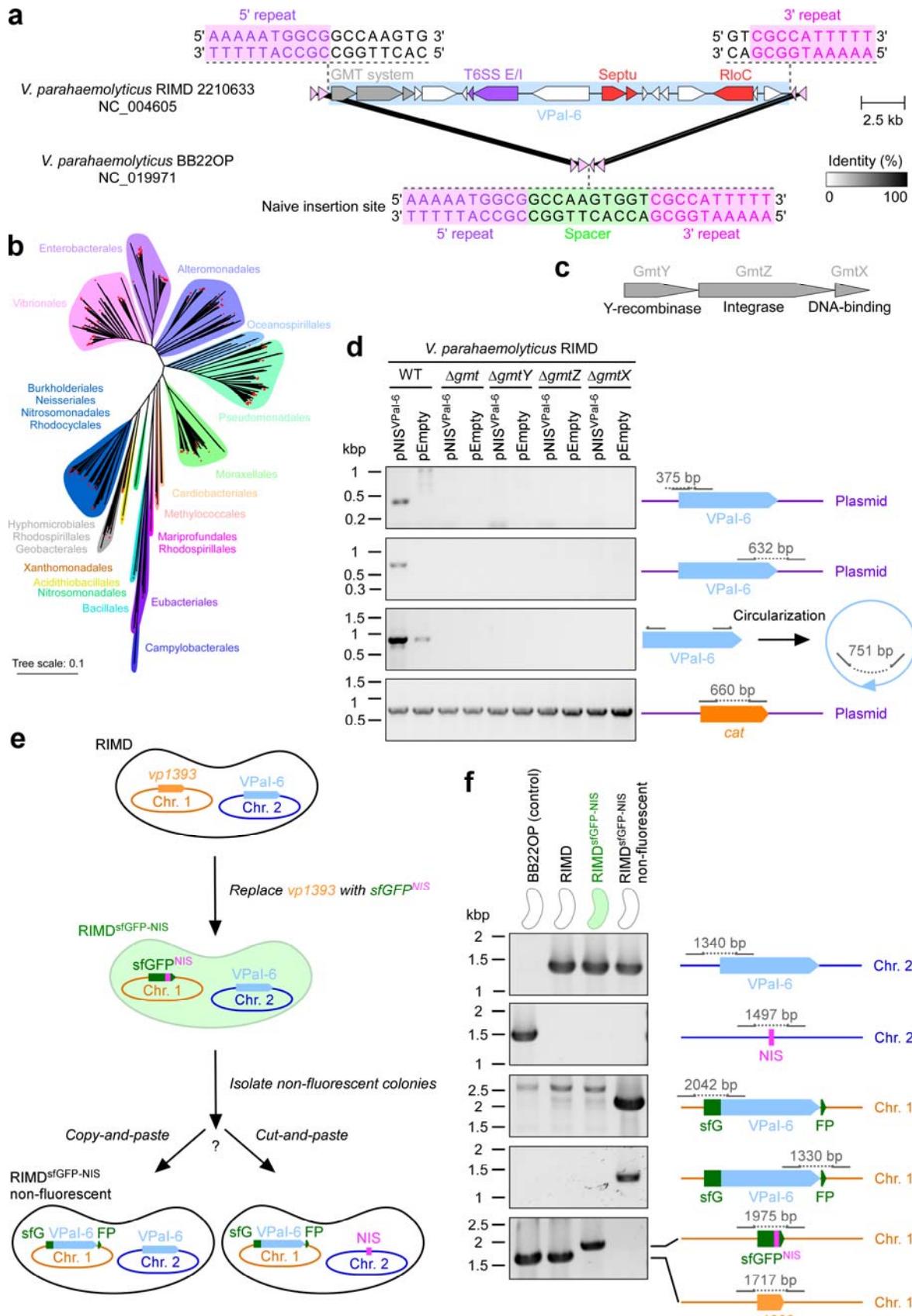
937 94. Madeira, F. *et al.* Search and sequence analysis tools services from EMBL-EBI in 2022.
938 *Nucleic Acids Res.* **50**, W276–W279 (2022).

939 95. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary

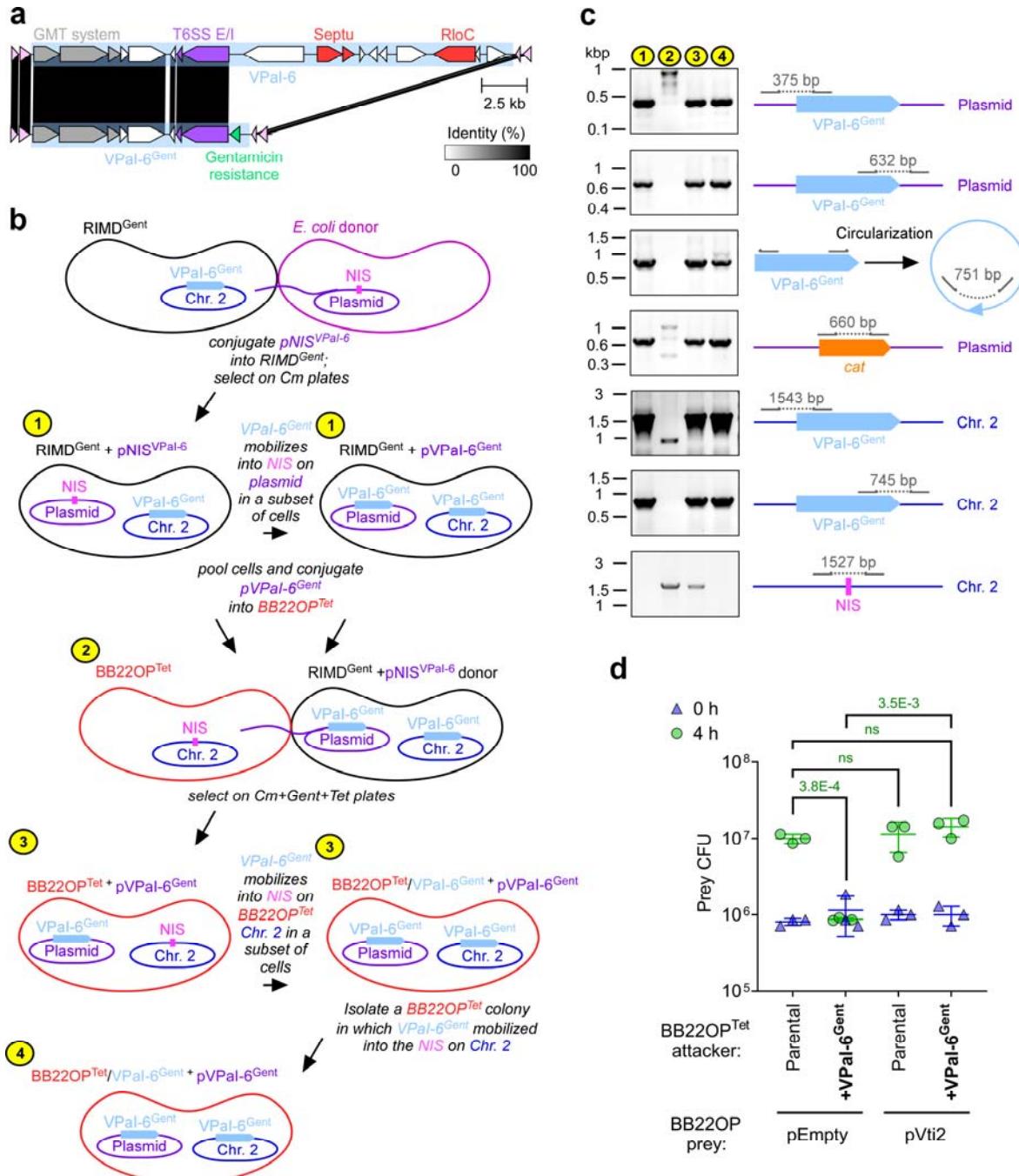
940 genetics analysis across computing platforms. *Mol. Biol. Evol.* **35**, 1547–1549 (2018).

941 96. Le, S. Q. & Gascuel, O. An improved general amino acid replacement matrix. *Mol. Biol.*
942 *Evol.* **25**, 1307–1320 (2008).

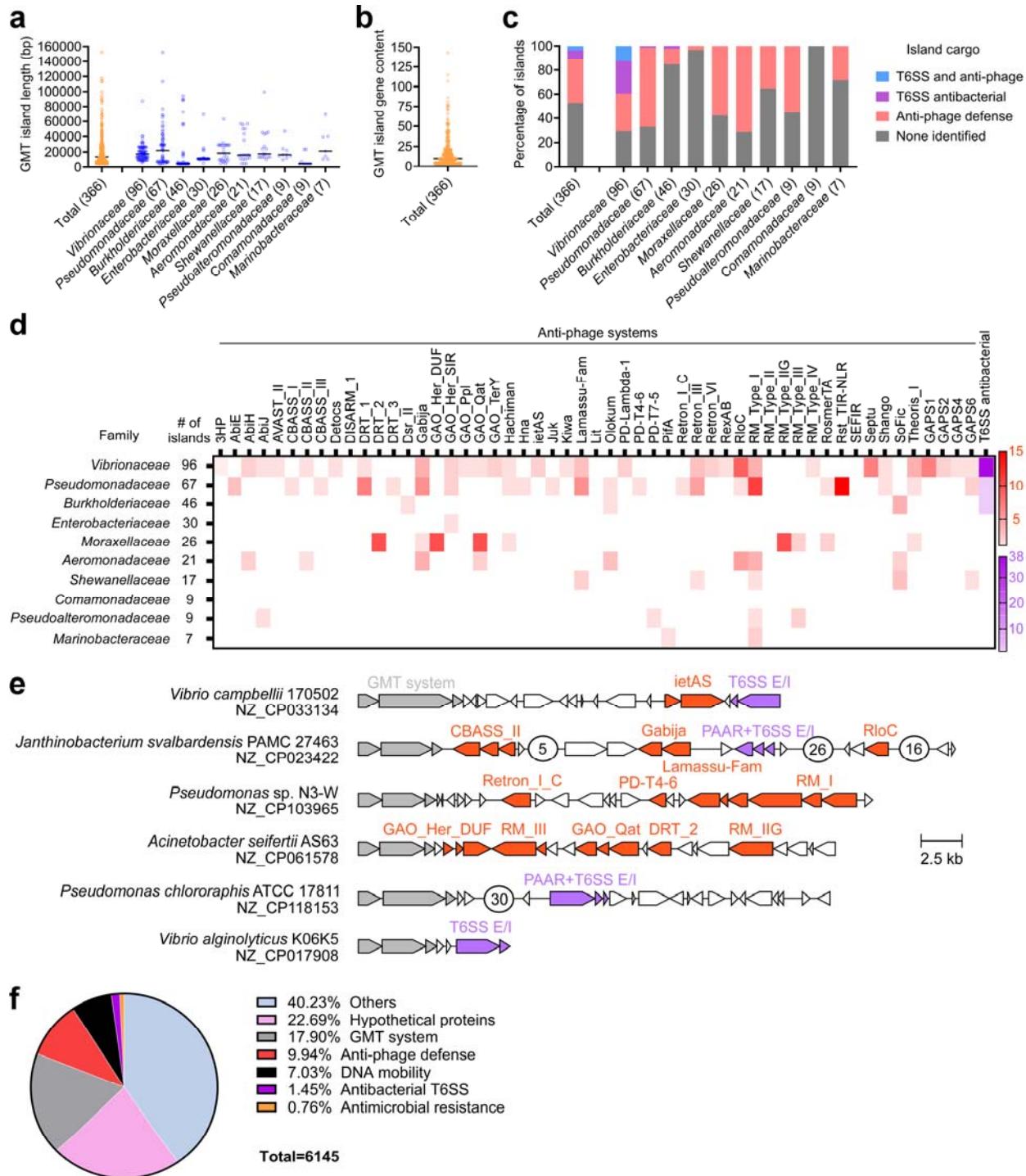
943 97. Letunic, I. & Bork, P. Interactive tree of life (iTOL) v5: An online tool for phylogenetic tree
944 display and annotation. *Nucleic Acids Res.* **49**, W293–W296 (2021).

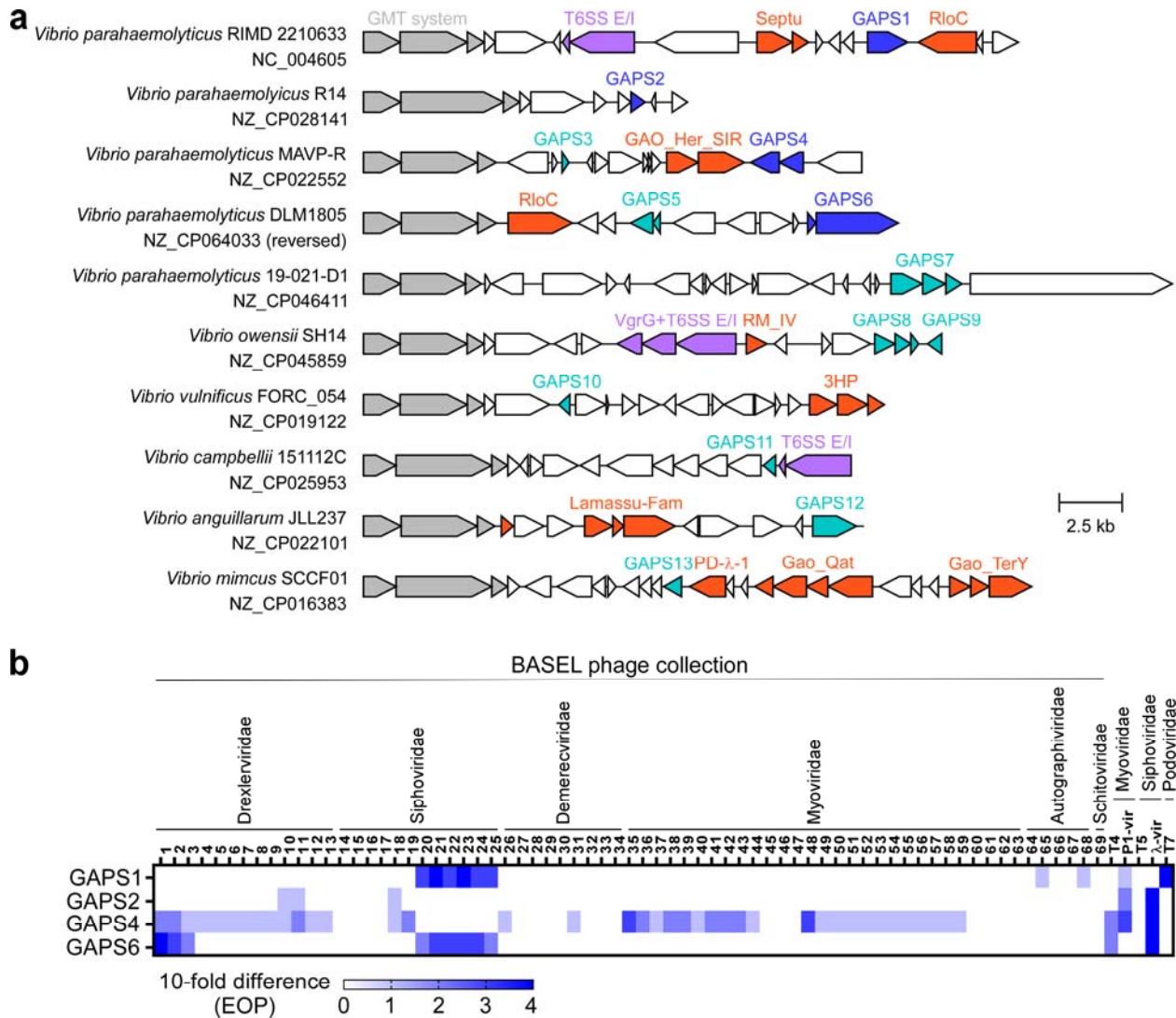

945 98. Crooks, G. E., Hon, G., Chandonia, J.-M. & Brenner, S. E. WebLogo: a sequence logo
946 generator. *Genome Res.* **14**, 1188–90 (2004).

947 99. Sievers, F. *et al.* Fast, scalable generation of high-quality protein multiple sequence
948 alignments using Clustal Omega. *Mol. Syst. Biol.* **7**, 539 (2011).

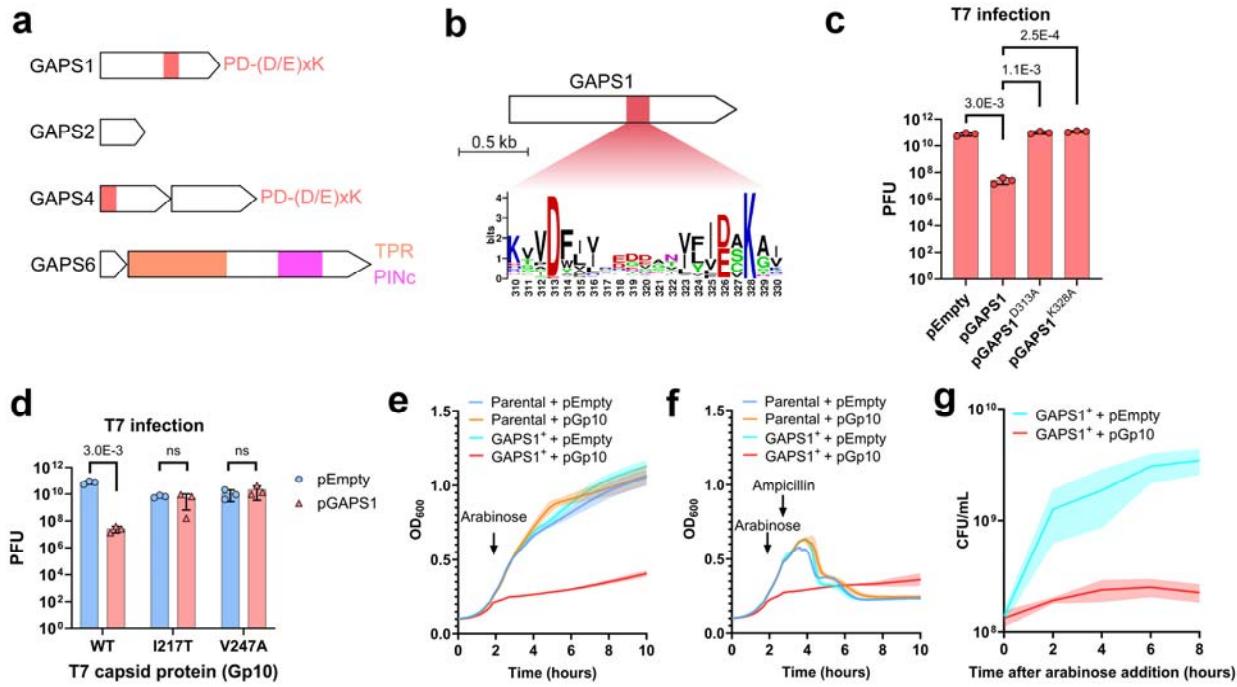

949 100. Robert, X. & Gouet, P. Deciphering key features in protein structures with the new
950 ENDscript server. *Nucleic Acids Res.* **42**, W320–W324 (2014).

951


952

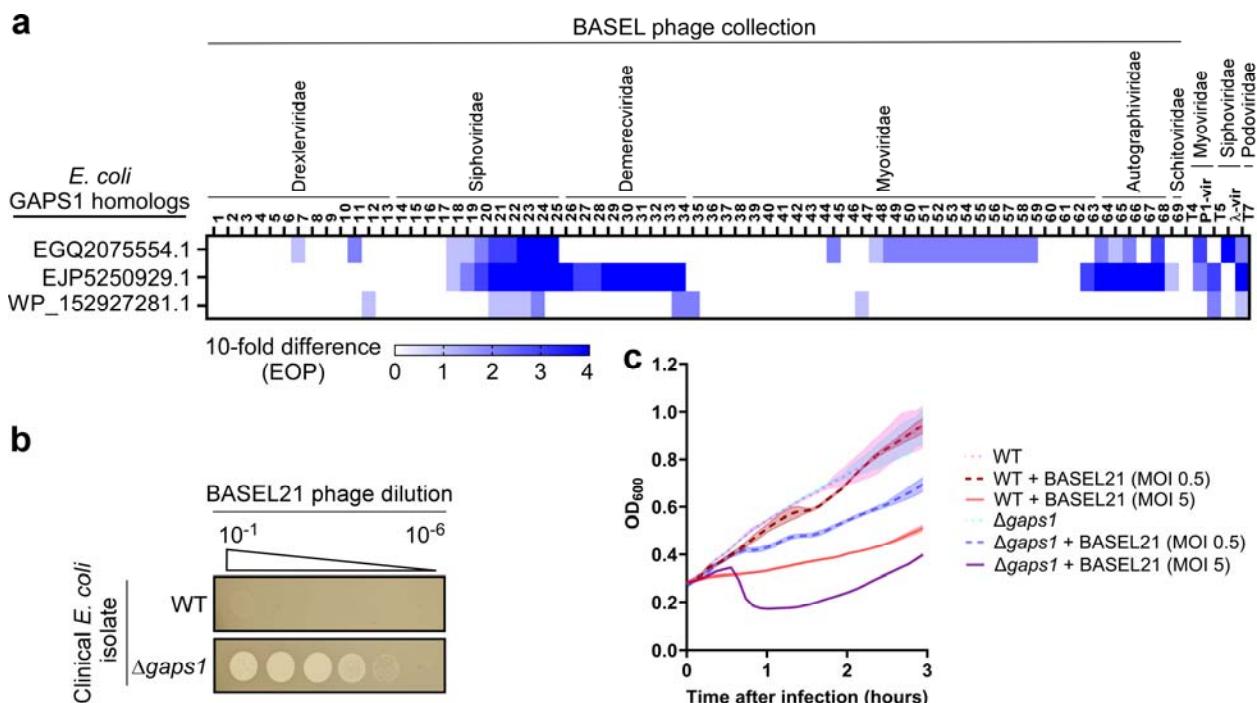

954 **Fig. 1. GMT proteins define a class of widespread, mobile genomic islands. (a)** Schematic
955 representation of VPAl-6 (cyan rectangle) and flanking regions. A predicted naïve insertion site
956 (NIS) identified in *V. parahaemolyticus* BB22OP is shown below; gray rectangles denote protein
957 sequence identity percentage. Inverted repeat sequences identified in the naïve insertion site
958 and flanking VPAl-6 are denoted. RefSeq accession numbers are provided. **(b)** Phylogenetic
959 distribution of bacteria containing GMT systems, based on the DNA sequence of *rpoB*. Bacterial
960 orders are denoted. The evolutionary history was inferred using the neighbor-joining method.
961 The evolutionary distances represent the number of nucleotide substitutions per site. Red stars
962 denote bacteria in which the borders of a GMT island were determined. **(c)** Predicted activities
963 of GMT system proteins. **(d)** Agarose gel electrophoresis analysis of the indicated amplicons.
964 The total DNA isolated from wild-type (WT) *V. parahaemolyticus* RIMD cells or its derivative
965 strains in which the entire GMT system was deleted (Δgmt) or its individual components (i.e.,
966 $\Delta gmtX$, $\Delta gmtZ$, and $\Delta gmtX$), conjugated with an empty plasmid (pEmpty) or a plasmid
967 containing a predicted naïve insertion site for VPAl-6 (pNIS^{VPAl-6}), was used as a template. The
968 *cat* gene found in the backbone of both plasmids was amplified as a control for plasmid
969 presence. **(e)** An illustration of the assay devised to distinguish between a copy-and-paste and a
970 cut-and-paste transfer mechanism of VPAl-6. Chr. 1, chromosome 1; Chr. 2, chromosome 2;
971 sfGFP-NIS, an sfGFP-encoding gene containing the 30 bp-long VPAl-6 NIS sequence as a
972 linker between the 10th and 11th beta strands of sfGFP. **(f)** Agarose gel electrophoresis analysis
973 of the indicated amplicons. The total DNA isolated from WT RIMD, a derivative in which *vp1393*
974 was replaced by sfGFP-NIS (RIMD^{sfGFP-NIS}), or an isolated RIMD^{sfGFP-NIS} colony that lost its
975 fluorescence (as described in (b)), was used as a template. *V. parahaemolyticus* BB22OP was
976 used as a control for a chromosomal VPAl-6 NIS. In (d) and (f), arrows denote the positions of
977 primers used for each amplicon; the expected amplicon size is denoted in gray.

979 **Fig. 2. VPal-6 can be horizontally shared via a conjugatable plasmid. (a)** Schematic
980 representation of VPal-6 and VPal-6^{Gent}; gray rectangles denote protein sequence identity
981 percentage. **(b)** An illustration of the assay devised to monitor the plasmid-mediated transfer of
982 VPal-6^{Gent} between RIMD^{Gent} and BB22OP^{Tet} derivative strains. NIS, naïve insertion site; Chr. 2,
983 chromosome 2; pNIS^{VPal-6}, a plasmid containing a predicted VPal-6 NIS; Cm, chloramphenicol;
984 Gent, gentamicin; Tet, tetracycline. Numbers in yellow circles denote bacterial populations used
985 for amplicon analysis in (c). **(c)** Agarose gel electrophoresis analysis of the indicated amplicons.
986 The total DNA isolated from the strains denoted by numbers in (b) was used as a template.
987 Samples 1 and 2 are pooled bacteria from both denoted strains in (b). Arrows denote the
988 positions of primers used for each amplicon, and the expected amplicon size is denoted in gray.
989 **(d)** Viability counts (colony forming units; CFU) of the indicated prey strains containing an empty
990 plasmid (pEmpty) or a plasmid expressing the Vti2 immunity protein (pVti2) before (0 h) and
991 after (4 h) co-incubation with the indicated attacker strain. The statistical significance between
992 samples at the 4 h time point was calculated using an unpaired, two-tailed Student's *t* test; ns,
993 no significant difference ($P > 0.05$); WT, wild-type. Data are shown as the mean \pm SD; $n = 3$
994 independent competition replicates. The data shown are a representative experiment out of at
995 least three independent experiments.



997 **Fig. 3. GMT islands contain a diverse cargo of offensive and defensive tools. (a)**
998 Distribution of GMT island lengths analyzed together (total) or by bacterial family. Black lines
999 denote the median length. **(b)** Distribution of gene number per GMT island. A black line denotes
1000 the median gene number. **(c)** Percentage of GMT islands in which we identified an anti-phage
1001 defense system, an antibacterial T6SS effector, or both together. **(d)** Distribution of specific anti-
1002 phage defense systems and antibacterial T6SS effectors in GMT islands of each bacterial
1003 family. Red and purple color gradients denote the number of occurrences, respectively. The
1004 analyses in (c-d) include the new anti-phage defense systems identified in this study, as
1005 detailed below (i.e., GAPS1, 2, 4, and 6). In (a,c,d), only bacterial families in which we identified
1006 the borders of > 5 GMT islands are shown; the number of analyzed islands is denoted in
1007 parenthesis next to the family name. **(e)** The gene structure of representative GMT islands with
1008 anti-phage defense systems (red), antibacterial T6SS effectors (purple), or both. Encircled
1009 numbers denote the number of genes not shown. RefSeq accession numbers are provided. **(f)**
1010 A pie chart showing the percentage of GMT island cargo genes associated with the indicated
1011 activity or process.

1012 **Fig. 4. Four new anti-phage defense systems identified within GMT islands. (a)** The gene
1013 structure of GMT islands containing GAPS1-13. GAPSSs for which anti-phage activity was
1014 experimentally confirmed are denoted in blue; other GAPSSs are denoted in turquoise. Known
1015 anti-phage defense systems (red) and antibacterial T6SS effectors (purple) are also shown.
1016 RefSeq accession numbers are provided. **(b)** The efficiency of plating (EOP), indicating the
1017 reduction in plaque numbers determined for *E. coli* expressing the four indicated GAPSSs when
1018 challenged with 74 coliphages, compared to *E. coli* containing an empty plasmid. Coliphage
1019 families are denoted above. The data shown are the average of three independent experiments.


1020

1021

1022 **Fig. 5. GAPS1 induces cell dormancy upon activation by a phage capsid protein. (a)**
1023 Schematic representation of domains identified in the indicated anti-phage defense systems. **(b)**
1024 The conservation logo of the predicted PD-(D/E)xK phosphodiesterase domain active site found
1025 in GAPS1 homologs. The residue numbers correspond to the positions in GAPS1
1026 (WP_005477165.1). **(c)** Plaque forming units (PFU) of T7 phage upon infection of *E. coli* strains
1027 containing an empty plasmid (pEmpty) or a plasmid for the arabinose-inducible expression of
1028 the indicated GAPS1 version. **(d)** PFU of T7 phage, either wild-type (WT) or containing the
1029 indicated mutation in the Gp10 capsid protein, upon infection of *E. coli* strains containing an
1030 empty plasmid (pEmpty) or a plasmid for the arabinose-inducible expression of GAPS1
1031 (pGAPS1). **(e,f)** Growth of *E. coli* strains in which the chromosomal *ydhQ* gene was deleted
1032 (Parental) or replaced with an arabinose-inducible GAPS1 (GAPS1⁺) containing either an empty
1033 plasmid (pEmpty) or a plasmid for the arabinose-inducible expression of the T7 phage Gp10
1034 (pGp10). An arrow denotes the time at which arabinose or ampicillin was added. **(g)** Viability
1035 (measured as CFU/mL) of GAPS1⁺ *E. coli* strains containing the indicated plasmids after
1036 arabinose addition. In (c,d), the data are shown as the mean \pm SD of three biological replicates.
1037 Statistical significance between samples was determined by an unpaired, two-tailed Student's *t*-
1038 test; ns, no significant difference ($P > 0.05$). In (e-g), a representative experiment out of at least
1039 three independent experiments is shown.

1040

1041 **Fig. 6. *E. coli* GAPS1 homologs protect against various coliphages. (a)** The efficiency of
1042 plating (EOP) determined for *E. coli* expressing the three indicated GAPS1 homologs when
1043 challenged with 74 coliphages, compared to *E. coli* containing an empty plasmid. The data
1044 shown are the average of three independent experiments. **(b)** Tenfold serial dilutions of the
1045 BASEL collection phage 21 (BASEL21) spotted on lawns of *E. coli* isolate ZH142-A, either wild-
1046 type (WT) or with a deletion of its endogenous GAPS1 homolog (Δ gaps1). **(c)** Growth of the
1047 indicated *E. coli* ZH142-A cells following infection with the BASEL21 phage at MOI of 0.5 or 5.
1048 Data are shown as the mean \pm SD of three biological replicates. In (b,c), a representative result
1049 out of three independent experiments is shown.