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Abstract

Conflicts between bacteria and their rivals led to an evolutionary arms race and the
development of bacterial immune systems. Although diverse immunity mechanisms were
recently identified, many remain unknown, and their dissemination within bacteria is poorly
understood. Here, we describe a widespread genetic element, defined by the presence of the
Gamma-Mobile-Trio (GMT) proteins, that serves as a bacterial survival kit. We show that GMT-
containing genomic islands are active mobile elements with cargo comprising various anti-
phage defense systems, in addition to antibacterial type VI secretion system (T6SS) effectors
and antibiotic resistance genes. We identify four new anti-phage defense systems encoded
within GMT islands. A thorough investigation of one system reveals that it is triggered by a
phage capsid protein to induce cell dormancy. Our findings underscore the need to broaden the
concept of 'defense islands' to include also antibacterial offensive tools, such as T6SS effectors,
as they share the same mobile elements as defensive tools for dissemination.
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Introduction

Competition and predation contribute to bacterial evolution. For example, the type VI secretion
system (T6SS), an offensive, missile-like dueling apparatus that delivers antibacterial toxins
(i.e., effectors) directly into rival bacteria', was shown to shift the balance of bacterial
populations and lead to the emergence of dominant strains®**. Similarly, bacteriophages
(phages) drive bacterial evolution and population dynamics'*™**. Their ability to prey on bacteria
has led to an arms race in which bacteria evolve or acquire anti-phage defense systems while
phages counteract these actions with anti-defense mechanisms™. Interestingly, anti-phage
defense systems often cluster in so-called 'defense islands™®*’, a phenomenon that has been
used to identify dozens of anti-phage defense systems in recent years*®* . Probably, many
defense systems are yet to be revealed. Identifying additional defense systems or antibacterial
toxins and deciphering the mechanisms governing their spread within bacterial populations is
important to understanding bacterial evolution.

Mobile genetic elements (MGES), such as plasmids, phages, and transposons, mediate
horizontal gene transfer (HGT) and play a significant role in bacterial evolution by enhancing
bacterial fitness**’. Anti-phage defense systems, secreted antibacterial toxins, and antibiotic-
resistance genes have been identified within MGEs and were predicted to be horizontally
shared™®?*#-%_Nevertheless, many MGEs are poorly understood and require further
investigation to reveal their distribution mechanisms and cargo.

We previously reported that Vibrio parahaemolyticus island-6 (VPal-6), a genomic island
encompassing vpal270-vpal254 on chromosome 2 of the human pathogen V.
parahaemolyticus RIMD 2210633 (hereafter referred to as RIMD)*®, encodes an antibacterial
DNase T6SS effector, VPA1263 (BAC62606.1), and its cognate immunity protein, Vti2
(WP_005477334.1)*"*8, Here, we describe a protein trio found in VPal-6 and other genomic
islands, which defines a widespread mobile genetic element with diverse cargo rich in
antibacterial T6SS effectors and anti-phage defense systems. Examining genes and operons of
unknown function within these islands revealed four new anti-phage defense systems.
Therefore, the described MGE is akin to a bacterial armory containing diverse offensive and
defensive tools against potential rivals, which can be horizontally shared.

Results

GMT proteins define a new class of genomic islands

VPal-6 is found in V. parahaemolyticus RIMD and a subset of other V. parahaemolyticus
strains® (Fig. 1a). Analysis of VPal-6 revealed that the first three genes, encoding VPA1270,
VPA1269, and VPA1268 (WP_005477115.1, WP_005477239.1, and WP_005477284.1,
respectively), are annotated in the NCBI protein family models database as a Gamma-Mobile-
Trio (GMT) system. We found homologous co-occurring GMT proteins encoded in thousands of
Gram-negative and Gram-positive bacterial genomes (Fig. 1b and Dataset S1). Since no
information was available on the function of these proteins*®, we set out to investigate the GMT
system.

According to the NCBI Conserved Domain Database (CDD)*, the trio's first gene, named
vpal270 or gmtY, encodes a site-specific tyrosine recombinase with a domain belonging to the
DNA_BRE_C superfamily. The second gene, vpal269, encodes an integrase with a domain
belonging to the Phage_Integr_2 superfamily, which is predicted to mediate unidirectional site-
specific recombination (hereafter referred to as gmtZ). The third gene, named vpal268 or gmtX,
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encodes a protein of unknown function; we found that it is similar to the DNA binding domain of
the partition protein StbA of plasmid R388 (according to HHpred*°, ~93% probability of similarity
between amino acids 3-75 of GmtX and amino acids 1-68 of StbA [PDB: 7PC1_A]). These
predicted activities suggest that the GMT system plays a role in DNA excision and integration
(Fig. 1c).

Systematic analysis of publicly available genomes revealed that GMT systems are found in
predicted genomic islands. Comparisons between GMT-containing regions identified in
completely assembled genomes and the genomes of closely related bacteria suggested that
GMT-encoding genes define the 5' border of these islands. By identifying sequences that flank
the GMT region but are found adjacent to each other in genomes of closely related bacteria, we
further revealed the putative 3' border for 83% (366 out of 442) of these GMT islands and their
predicted naive insertion sites (NIS; Fig. 1a,b and Dataset S2). A genome may contain multiple
and diverse GMT islands, which can reside on the chromosome or a plasmid (Dataset S1).

Our analysis revealed diverse putative insertion sites of GMT islands in bacterial genomes,
either intergenic or intragenic (Extended Data Fig. 1 and Dataset S2). Notably, a phylogenetic
tree of GmtY encoded within the GMT islands for which we identified a putative insertion site
revealed that closely related proteins are found in diverse bacterial orders yet share a similar
insertion site (Extended Data Fig. 1). This observation suggests that GMT islands are
horizontally shared.

Interestingly, when a GMT island appears to have been inserted intragenically, we often find a
homolog of the disrupted gene encoded within the island, possibly to compensate for its loss
(Extended Data Fig. 2), as previously reported for other MGEs'**!. In most cases (238 of 366),
we identified an inverted repeat, at least 5 nucleotides long, as part of the predicted GMT island
NIS (Dataset S2); the same repeat is often found flanking the GMT island (Fig. 1a). These
observations led us to hypothesize that GMT islands are mobile and that repeat sequences
define specific insertion sites for each island.

GMT islands are active mobile elements

We reasoned that if VPal-6 is a functional MGE, it should transfer into a cognate NIS. To
investigate this possibility, we introduced a low copy-number plasmid harboring a predicted 30
bp-long VPal-6 NIS from V. parahaemolyticus BB220P (pNIS'""®; Fig. 1a) into wild-type RIMD
cells. Using primer sets designed to amplify fusions between the ends of VPal-6 and the
plasmid sequences flanking the NIS, we found that the RIMD population indeed contained
plasmids into which VPal-6 was inserted (Fig. 1d). We confirmed the insertion into the plasmid-
borne NIS with Sanger sequencing of the amplified products (File S1). Furthermore, using
primers facing outward from each end of VPal-6, we revealed the existence of a circular form of
the GMT island lacking the flanking inverted repeats (Fig. 1d and File S1). The amplification
products were missing when we used RIMD derivatives in which we either deleted the genes
encoding the GMT system (Agmt), deleted individual GMT system components (AgmtY, AgmtZ,
and AgmtX) (Fig. 1d), or modified the spacer sequence between the inverted repeats of the
predicted NIS on the plasmid (Extended Data Fig. 3). Taken together, our results demonstrate
that VPal-6 is a mobile GMT island, which inserts specifically via an intermediate circular form
into the repeat-containing site we identified in the above analyses.

To determine whether other GMT islands are also mobile, we investigated the ability of a GMT
island found in the chromosome of V. parahaemolyticus 04.2548*, which was available in our
laboratory stocks (Extended Data Fig. 4a), to transfer into a cognate, plasmid-borne NIS. Our
results confirmed that the 04.2548 GMT island transferred into its plasmid-borne cognate NIS
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122 (pNIS®*?**%) but not into a plasmid containing the VPal-6 NIS (pNIS'""®; Extended Data Fig.

123 4b). As observed with VPal-6, we identified a circular form of the 04.2548 GMT island lacking
124  the inverted repeats of the insertion site (File S2). These results indicate that GMT islands are
125  mobile, and each GMT system identifies a specific repeat-containing sequence for insertion.

126
127 GMT islands employ a replicative mechanism of transfer

128  Next, we investigated whether VPal-6 employs a conservative or replicative mechanism of

129  transfer (i.e., cut-and-paste or copy-and-paste, respectively) by introducing a single VPal-6 NIS
130  into chromosome 1 of RIMD and following the fate of VPal-6 located on chromosome 2. To

131 monitor the insertion of VVPal-6 into the NIS, we engineered a system in which the VPal-6 NIS
132 was introduced in-frame as a linker between the 10" and 11" B-strands of a superfolder GFP
133 (sfGFP)* to produce sfGFPV'S. The sfGFPV' gene was then used to replace hcpl (vp1393) on
134  chromosome 1, resulting in GFP-fluorescent cells containing a single chromosomal copy of the
135  VPal-6 NIS within the sfGFP gene (RIMD*®""N'%) To identify events of VPal-6 insertion into the
136  NIS, we plated the fluorescent cells and monitored the appearance of non-fluorescent colonies,
137  suggestive of VPal-6 transfer into the NIS, thereby obstructing the expression of a functional
138 sfGFP protein (Fig. 1e). After isolating non-fluorescent cells, we confirmed that the sfGFP™'®
139  was indeed interrupted by the insertion of VPal-6 using PCR amplification of the junctions

140  between VPal-6 ends and the sfGFPM' flanking sequences (Fig. 1f). Importantly, the original
141 copy of VPal-6 remained on chromosome 2. We did not identify a loss of VPal-6 from either the
142  original VPal-6 location on chromosome 2 or the new location on chromosome 1 in these

143  isolated, non-fluorescent cells. These results indicate that VPal-6 employs a replicative transfer
144  mechanism.

145
146 Plasmids can mediate the horizontal transfer of GMT islands

147  We observed many GMT systems encoded on plasmids (Dataset S1), suggesting a possible
148  plasmid-mediated horizontal transfer mechanism for these MGEs. Therefore, we sought to

149  demonstrate that a GMT island can transfer between bacteria via a conjugatable plasmid. To
150  this end, we constructed a RIMD derivative (RIMD"72"°-%*") in which we replaced the VPal-6
151  region encompassing vpal254-vpal262 with a gentamicin resistance cassette (VPal-6°*": Fig.
152  2a) that enables selection of the mobilized island. A conjugatable plasmid containing the VPal-6
153  NIS (pNISYP?®) was introduced into RIMD""2"%-%¢" ' and the derivative GMT island was

154  mobilized into the plasmid-borne NIS, as determined by a PCR performed on the pooled

155  bacterial population (Fig. 2b,c). We then mixed this pooled population with a derivative strain of
156 V. parahaemolyticus BB220P containing a chromosomal tetracycline resistance cassette

157  (BB220OP™), in the presence of a conjugation helper strain. BB220P™ conjugates containing
158  pNISYP2"® harboring VPal-6°*" were selected on agar plates supplemented with the appropriate
159  antibiotics, and PCR analyses revealed that these resulting colonies comprised a mixture of
160  cells in which VPal-6°*" from the plasmid was copied into the NIS found on the BB220P™

161  chromosome and cells in which VPal-6°¢™ was only found on the plasmid (Fig. 2b,c). Following
162  isolation streaking of a mixed colony, we identified homogenous colonies in which all cells

163  contained a chromosomal copy of VPal-6°°" inserted into the NIS (Fig. 2b,c). These results
164  demonstrate that GMT islands can horizontally transfer between bacteria.

165  Next, we asked whether the tools within the VPal-6 cargo can provide a competitive advantage
166  to a bacterium that acquired them. Since VPal-6°®" contains an antibacterial T6SS effector and
167  immunity pair (VPA1263-Vti2; Fig. 2a) absent in the parental BB22OP strain, we hypothesized

168  that after acquiring this island, the T6SS of BB22OP can use the effector to gain competitive
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169  advantage. To test this hypothesis, we employed the isolated BB220OP™ strain containing a
170  chromosomal VPal-6°*" as an attacker in competition against a parental BB22OP prey strain.
171  As expected, this attacker intoxicated the parental prey compared to a BB220OP ™ attacker
172 strain lacking VPal-6°°™ (Fig. 2d). Moreover, expressing the Vti2 immunity protein from a

173  plasmid in the prey strain alleviated this toxicity. These results demonstrate that the BB220OP
174  strain used an antibacterial effector acquired on a GMT island to intoxicate its parental strain,
175 indicating that horizontally shared GMT islands provide a competitive advantage to recipient
176  bacteria.

177
178 GMT islands are rich in defensive and offensive tools

179  When analyzing the VPal-6 cargo, we identified a Septu®® and a RloC** anti-phage defense
180 systems (VPA1260-VPA1261 and VPA1255, respectively) in addition to the antibacterial T6SS
181  effector and immunity pair (Fig. 1a). The co-occurrence of defense systems and a secreted
182  offensive toxin within the same genomic island was not previously reported, prompting us to
183  investigate whether other GMT islands contain a similarly mixed cargo.

184  We observed considerable variability in the cargo length of the GMT islands for which we

185 identified the borders: between 4.8 and 152.2 kb-long, with a median of ~13.6 kb (Fig. 3a).

186  These lengths differ between bacterial families. Accordingly, the number of genes within GMT
187 islands varies between 3 and 143, with a median of ~9.6 (Fig. 3b). Notably, the cargo of ~14%
188  of these GMT islands (51 out of 366) comprises only the three genes encoding the GMT system
189  (Dataset S3), implying that these GMT proteins are the core components of the MGE.

190  Using domains previously associated with T6SS effectors (i.e., VgrG*, PAAR/PAAR-like®,

191 MIX3"384047 'F1x*8 and Rhs*?), we identified antibacterial effectors in ~11% of the examined
192  GMT islands (41 out of 366), all found in genomes harboring a T6SS (Fig. 3c and Dataset S3).
193  These effectors neighbor a known or predicted immunity gene immediately downstream, and
194  some include a known C-terminal toxic domain (e.g., nuclease or phospholipase). Interestingly,
195  T6SS effectors are prevalent in GMT islands found in members of the Vibrionaceae family

196  (~40%; Fig. 3c and Dataset S3).

197  Further analysis of GMT island cargoes using the anti-phage defense system identification

198  servers PADLOC™ and DefenseFinder>* revealed diverse anti-phage defense systems

199  distributed among most bacterial families (Fig. 3c-e and Dataset S3). Approximately 40% of the
200 GMT islands contain at least one predicted anti-phage defense system (145 out of 366).

201  Notably, ~12% of the Vibrionaceae GMT islands (12 out of 96) contain both anti-phage defense
202  systems and antibacterial T6SS effectors (Fig. 3c,e and Dataset S3).

203  We also found that ~7% of the analyzed GMT islands (28 out of 366) contain genes associated
204  with antimicrobial resistance, which have been previously reported to reside within MGEs>*™>*
205 and occasionally also in association with anti-phage defense systems®®. Notably, no cargo gene
206  encoding a predicted virulence toxin was identified within these 366 GMT islands. Taking the
207  abovementioned results together with a functional classification of GMT island cargo genes

208  (Fig. 3f), we propose that GMT islands are akin to armories that stockpile defensive and

209 offensive tools against attacking phages and competing bacteria.

210
211  GMT islands harbor novel anti-phage defense systems

212 Approximately 22% of the GMT islands’ cargo genes encode proteins annotated as
213 hypothetical, thus not associated with specific processes (Fig. 3f). Since anti-phage defense
214  systems are prevalent within GMT islands, and because they often cluster within 'defense
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islands™®*’, we hypothesized that genes of unknown function within GMT islands encode novel

anti-phage defense systems. To test this, we assembled a list of 13 genes and operons found
within GMT islands in members of the genus Vibrio, which we predicted are novel anti-phage
defense systems; we named them GAPS (GMT-encoded Anti-Phage System) 1 to 13 (Fig. 4a).

Because a collection of phages that infect a specific Vibrio strain is not publicly available, we set
out to use E. coli as a surrogate host, together with a recently established collection of
coliphages™, to investigate the role of GAPSs in anti-phage defense. A similar strategy was
previously used to identify anti-phage defense systems®"~°. To this end, we cloned GAPS1-13
into a low-copy humber expression plasmid under an arabinose-inducible promoter. E. coli
strains containing the GAPS-encoding plasmids were challenged with 74 coliphages,
comprising the 69 coliphages included in the BASEL phage collection®®, T7, T4, P1,,, T5, and
lambda,;;. We compared the efficiency of plating (EOP) of the different phages in these strains
to E. coli harboring a control empty plasmid. Remarkably, four candidates: GAPS1
(WP_005477165.1), GAPS2 (WP_174208646.1), GAPS4 (WP_055466293.1 and
WP_055466294.1), and GAPS6 (WP_248387294.1 and WP_248387295.1) provided significant
protection against various phages, manifested by a reduction of between two and four orders of
magnitude in the number of visible plaques that developed on a lawn of bacteria (i.e., the EOP)
(Fig. 4b). Six GAPSs (GAPS7, GAPS9, GAPS10, GAPS11, GAPS12, and GAPS13) had no
significant protective effect against any of the examined phages. Notably, three candidates were
considerably toxic to E. coli upon expression (GAPS3, GAPS5, and GAPSS); therefore, we
could not determine their anti-phage activity. These results support our hypothesis that the
cargoes of GMT islands harbor new anti-phage defense systems. Notably, we identified
GAPS1, GAPS2, and GAPS6 homologs in several GMT islands (Fig. 3c,d and Dataset S3)

GAPS1 belongs to the PD-(D/E)xK superfamily of phosphodiesterases

Three of the newly identified anti-phage defense systems contain predicted domains that may
play a role in their activity. GAPS1 and GAPS4 contain a phosphodiesterase domain of the PD-
(D/E)xK superfamily®®®*; the second of the two proteins comprising GAPS6 has a TPR domain
and a PINc RNase domain® (Fig. 5a; domains were predicted using HHpred®®). We did not
identify similarity to known domains in GAPS2. Prompted by these findings, we further

investigated GAPS1, which is encoded within the VPal-6 GMT island analyzed above.

GAPS1 is a single protein containing a predicted phosphodiesterase domain toward its C-
terminus (Fig. 5b). GAPS1 homologs are widespread in Gram-negative and Gram-positive
bacteria, and their phylogenetic distribution suggests possible horizontal transfer between
bacterial orders (Extended Data Fig. 5). They were identified in ~3.5% of the 294,097 RefSeq
genomes analyzed in this study; notably, ~78% of the identified GAPS1 homologs are encoded
in Klebsiella pneumoniae genomes (Dataset S4). To determine whether the predicted
phosphodiesterase domain is required for the anti-phage activity of GAPS1, we substituted
D313 and K328 within its conserved PD-(D/E)xK active site with alanines. These substitutions
abolished the defensive activity against T7 phage, supporting a role for this domain in GAPS1-
mediated anti-phage defense (Fig. 5¢).

A phage capsid protein triggers the anti-phage activity of GAPS1

Next, we sought to identify the phage component that triggers GAPS1. One of the phages
against which GAPS1 protects is T7 (Fig. 5¢). We hypothesized that escape mutants of an
attacking T7 phage contain mutations in the protein that triggers GAPS1 to avoid system
activation. Therefore, we sequenced the genome of four T7 escape phages that formed plaques
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in the presence of GAPS1. We identified mutations in the capsid protein-encoding gene 10
(Gp10) of all four isolates, including E183A, 1217T, and V247A mutations (Table S1). Notably,
E183, 1217, and V247 are spatially close in the folded capsid protein (Extended Data Fig. 6).

To determine whether the T7 capsid protein triggers GAPS1-mediated defense, we generated
two of the mutations identified above, 1217T and V247A, in naive T7 phages. We validated that
additional mutations we identified in the escape isolates are not present in these newly
constructed phages, and then tested the ability of GAPS1 to defend against them. We observed
no significant difference in the number of mutant T7 phage plaques formed on E. coli expressing
GAPS1 compared to E. coli containing an empty plasmid, indicating that GAPS1 could not
defend against the mutant phages (Fig. 5d). These findings suggest that the capsid protein
triggers GAPS1-mediated defense.

GAPS1 induces cell dormancy

Anti-phage defense systems protect bacterial populations by inducing cell suicide, often called
abortive infection, or by arresting bacterial growth®°’. To determine what mechanism is used
by GAPS1, we monitored the effect of its activation on bacterial growth and viability in the
absence of T7 phage-derived toxins. Expression of the wild-type capsid protein (Gp10) from a
plasmid inhibited the growth of E. coli expressing a chromosomally inserted GAPS1 (Fig. 5e).
These arrested cells were protected from ampicillin-induced lysis, indicating that they were not
actively dividing or synthesizing peptidoglycan® (Fig. 5f). Importantly, we did not observe a
reduction in cell viability over time (Fig. 5g), demonstrating that Gp10-triggered GAPS1 activity
is not bactericidal. These results suggest that GAPS1 is a member of the PD-(D/E)xK
phosphodiesterase superfamily that induces cell dormancy rather than cell suicide upon
recognizing a phage capsid protein.

E. coli GAPS1 homologs are bona fide anti-phage defense systems

The results demonstrating anti-phage defense against coliphages were obtained by over-
expressing an exogenous GAPS1 originating from V. parahaemolyticus in E. coli. To confirm
that E. coli GAPS1 homologs protect against coliphages, we cloned three E. coli GAPS1
homologs from different strains (EGQ2075554.1, EJP5250929.1, and WP_152927281.1) into
the same expression plasmid used to investigate the Vibrio GAPS candidates; these homologs
share 24-29% amino acid identity with GAPS1 across 64-96% of its length (Extended Data Fig.
7). As predicted, these three GAPS1 homologs protected the surrogate E. coli against diverse
coliphages (Fig. 6a).

Importantly, we obtained a clinical E. coli isolate, ZH142-A, naturally encoding a GAPS1
homolog (WP_194242909.1; Extended Data Fig. 7). We found that the endogenous GAPS1
homolog is required to protect this strain against predation by BASEL collection phage 21
(BASEL21; Fig. 6b). While the growth of the wild-type E. coli strain was largely unaffected when
challenged with a low phage-to-bacteria ratio (multiplicity of infection [MOI] = 0.5), a high ratio
(MOI = 5), in which all bacteria are expected to encounter phage attack, led to growth arrest
(Fig. 6¢). This result is in agreement with the dormancy observed in the surrogate E. coli
exogenously expressing the Vibrio GAPS1 together with the T7 capsid protein (Fig. 5e).
However, in the absence of the endogenous GAPS1 (Agapsl), challenging bacteria with a high
phage-to-bacteria ratio led to cell lysis, manifested as a drop in the optical density of the
bacterial culture, implying successful infection by the phage (Fig. 6¢). These results confirm that
GAPS1 establishes a novel family of anti-phage defense systems.
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Discussion

An evolutionary arms race forces bacteria to acquire new offensive and defensive tools to
outcompete rival bacteria and survive phage attacks. Although HGT plays a significant role in
this arms race®®, many mechanisms that mediate HGT in bacteria are poorly understood. Here,
we describe GMT, a new system akin to a mobile armory that equips bacteria with defensive
and offensive tools.

Anti-phage defense systems have been found in the cargo of MGEs**?°?%2° and shown to often

cluster in so-called 'defense islands'®*°. They have also been reported to neighbor other
defensive tools, such as antibiotic resistance genes, within MGEs>™"°. Secreted antibacterial
toxins were also identified within MGEs®****"*. However, GMT islands are the first reported
example of an MGE carrying defensive and offensive tools together or interchangeably.
Although predominantly prevalent in Vibrionaceae GMT islands, this phenomenon of mixed
offensive and defensive cargo may be common in other types of MGEs found in diverse
bacteria. We propose that MGEs previously regarded strictly as 'defense islands' should be re-
analyzed, considering they might contain new antibacterial offensive tools.

Our results imply that GMT islands are functional mobile elements that employ a replicative
mechanism to distribute and insert themselves into specific sites containing inverted repeat
sequences (see model in Extended Data Fig. 8). Similar replicative mechanisms were
previously suggested for transposons’*"*; however, unlike transposons, the excised and
circularized GMT island does not include the flanking repeat sequences, which are probably
important for insertion site identification. Even though we found that all three core GMT system
proteins are required for the circularization step and, thus, the insertion step, further
investigation is required to determine the specific role of each GMT protein in the process.

We propose that plasmids could mediate the dissemination of GMT islands via HGT, as we
demonstrated in Fig. 2. In support of this notion, we find examples of GMT islands on plasmids
encoding conjugation machinery (Dataset S1). Some bacteria even contain two identical GMT
islands, one on the chromosome and another on a plasmid (Dataset S2). In V. alginolyticus, for
example, the predicted chromosomal and plasmid NISs share inverted repeat sequences with
an identical 5 AAGAGC 3' core separated by a 14 bp-long spacer (Extended Data Fig. 9).
Therefore, it is possible that if a NIS is found on a plasmid, a GMT island can replicate itself
from the chromosome to the plasmid and then exploit the plasmid to reach other bacteria via
HGT.

Many genes within the cargo of GMT islands have no known function. We leveraged the finding
that these MGEs are rich in defensive tools to reveal four new anti-phage defense systems. Two
of these, GAPS1 and GAPS4, contain predicted domains belonging to the PD-(D/E)xK
phosphodiesterase superfamily®®, which had been previously reported in many anti-phage
defense systems'®?. Notably, the investigated GAPSs originate from vibrios, yet we examined
them in E. coli as a surrogate platform against a collection of coliphages. The rationale behind
this strategy, which was successfully used by others to identify and investigate anti-phage
defense systems®"~°, is two-fold: (i) a collection of Vibrio phages similar to the coliphage
BASEL collection® is currently unavailable; (ii) the candidate GAPSs that we investigated
originate from different species. To further support the results obtained in the E. coli surrogate
platform, we showed that an endogenous GAPS1 homolog in a clinical E. coli isolate protects
the bacterium against a native coliphage (Fig. 6b-c). Although we could not confirm their role
against phages, the nine GAPSs that did not protect against coliphages may defend against a
Vibrio-specific phage when expressed in their natural host, or against a phage family that was
not included in our coliphage array’. Alternatively, additional regulatory or accessory
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components endogenously found in vibrios might be required for defense activity. In light of our
findings, we predict that many other genes within GMT islands encode novel anti-phage
defense systems or novel antibacterial toxins.

GAPS1, encoded on VPal-6, represents a new widespread family of anti-phage defense
systems. Being a single protein, GAPS1 probably contains both the sensor that recognizes the
phage trigger and the effector domain, which we predict is its PD-(D/E)xXK phosphodiesterase
domain. By identifying the phage trigger, we could decipher the outcome of GAPS1 activation
being cell dormancy rather than cell death. However, since the target of GAPS1 activity remains
unknown, it is unclear whether GAPS1 merely inhibits cell growth to halt the progression of the
phage infection cycle. It is possible that GAPS1 also actively eliminates the invading phage
threat, thus allowing for cell recovery.

Although widespread, the GMT system is predominantly found in gamma-proteobacteria, some
beta-proteobacteria, and a handful of Gram-positive families. Nevertheless, our analysis of GMT
homologs in this work was conservative, considering only systems highly similar to the trio
found in VPal-6. More distant trios may exist in other bacterial families, and their cargo could
contain additional defensive and offensive tools. In future work, we will determine whether GMT
systems are regulated, and what is the role of GMT components in the mobility mechanism. We
will also decipher how each system identifies a unique and specific insertion site. Further
investigation of these intriguing mobile armories will shed light on bacterial interactions,
evolution, and HGT.

Methods

Strains and media: For a complete list of strains used in this study, see Table S2. Escherichia
coli strains were grown in Lysogeny Broth (LB; 1% [wt/vol] tryptone, 0.5% [wt/vol] yeast extract,
and 0.5% [wt/vol] NaCl) or 2xYT (1.6% [wt/vol] tryptone, 1% [wt/vol] yeast extract, and 0.5%
[wt/vol] NaCl) at 37°C. Vibrio parahaemolyticus strains were grown in Marine Lysogeny Broth
(MLB; LB containing 3% [wt/vol] NaCl) and on Marine Minimal Media (MMM) agar plates (1.5%
[wt/vol] agar, 2% [wt/vol] NaCl, 0.4% [wt/vol] galactose, 5 MM MgSO,, 7 mM K,;SOy4, 77 mM
K,HPO,, 35 mM KH,PO,4, and 2 mM NH,4CI) at 30°C. Media were supplemented with 1.5%
(wt/vol) agar to prepare solid plates. When required, media were supplemented with 35 or 10
png/mL chloramphenicol (for E. coli and V. parahaemolyticus, respectively), 50 or 250 pg/mL
kanamycin (for E. coli and V. parahaemolyticus, respectively), or 100 pg/mL ampicillin to
maintain plasmids. To induce the expression from Pbad promoters, 0.04% or 0.2% (wt/vol) L-
arabinose was added to the media, as indicated.

Plasmid construction: Plasmids were constructed with standard molecular biology techniques
using the Gibson Assembly method’. The Gibson Assembly master mix was obtained from
NEB (E2611S). DNA fragments were amplified by PCR from bacterial genomic DNA or from
DNA synthesized by TWIST Bioscience, and Gibson Assembly ligations were carried out
according to the manufacturer's instructions. Commercially synthesized DNA, plasmids, and
primers that were used in this study are listed in Table S3, Table S4, and Table S5,
respectively.

Constructing Vibrio parahaemolyticus mutant strains: For in-frame deletions and gene
replacement in V. parahaemolyticus RIMD 2210633 or BB220P, pDM4-based suicide
plasmids’ were used. Plasmids for gene deletions contained fusions of approximately 600 bp-
long sequences upstream and downstream of the region to be deleted in their multiple cloning
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402  site (MCS). Plasmids for gene replacement also contained the sequence intended for insertion
403  into the chromosome between the upstream and downstream sequences mentioned above.

404  To construct the RIMD"?2"%-%¢" strain, wherein the vpal254-vpal262 genes were replaced by a
405  gentamicin resistance (Gent®) gene downstream of a constitutive promoter, a cat promoter
406  amplified from plasmid pBAD33.1"" was ligated to the Gent® gene amplified from plasmid
407 pBAD18-Gm. These were then inserted between the sequence upstream of vpal253 and the
408  sequence downstream of vpal263 in the pDM4 MCS.

409  To construct the BB220P™ strain, wherein the dns gene (vpbb_rs12365) was replaced by a
410 tetracycline resistance gene (Tet?), the Tet® gene (tetA) was amplified together with its
411  constitutive promoter tetR/A from E. coli IYB5101"® and inserted between the dns upstream and
412  downstream sequences in the pDM4 MCS.

413 To construct the RIMDS*""N'S strain, wherein the vp1393 (hcpl) was replaced by a superfolder
414  GFP (sfGFP) harboring a VPal-6 naive insertion site, the sequence of sfGFP containing a 9
415  amino acid-long linker between the 10" and 11™ B-strands was amplified from a commercially
416  synthesized plasmid (pTWIST-sfGFP-linker; Twist Biosciences) and inserted between the
417  upstream and downstream sequences of vpl1393 in the MCS of a pDM4 plasmid. Next, the
418 linker sequence was replaced by a 30 bp-long VPal-6 naive insertion site.

419  The described pDM4 constructs were transformed into E. coli DH5a (A-pir) by electroporation,
420  and then conjugated into V. parahaemolyticus via tri-parental mating with the help of an E. coli
421  conjugation helper strain. Next, trans-conjugants were selected on MMM agar plates containing
422 10 pg/mL chloramphenicol or, when necessary, supplemented with 5 pg/mL tetracycline or 25
423 ug/mL gentamicin. The resulting trans-conjugants were grown on MMM agar plates containing
424  15% [wt/vol] sucrose for counter-selection and loss of the sacB-containing pDM4. Deletions
425  were confirmed by PCR.

426  GMT island mobility assays:
427  Transfer from a V. parahaemolyticus chromosome to a plasmid

428 pBAD33.1 plasmids, either empty or containing a 30 bp-long VPal-6 naive insertion site

429  (pNISY"?"®) or its mutated forms, or containing a naive insertion site for the GMT island found in
430 V. parahaemolyticus 04.2548 (pNIS®*?°*%) were transformed into E. coli Neb5a and

431  subsequently introduced into the indicated V. parahaemolyticus strains via tri-parental mating.
432  The resulting conjugated colonies were selectively grown on MMM agar plates supplemented
433 with 10 pg/mL chloramphenicol. Then, all the colonies that grew on the selective plate were

434  harvested, resuspended in LB media, and subjected to total genomic DNA isolation using the
435  PrestoTM Mini gDNA isolation kit. To identify instances in which the GMT island of interest

436  mobilized from the chromosome into the pBAD33.1-based plasmid, 110 ng of isolated total DNA
437  was used as template to perform PCR using primer sets intended to amplify: (i) a fusion

438  between the plasmid and the 5' end of the GMT island, (ii) a fusion between the plasmid and the
439  3'end of the GMT island, (iii) a fusion between the 5' and 3' ends of the GMT island (i.e.,

440  circularization), and (iv) a chloramphenicol resistance gene (cat; Cm~) found in the pBAD33.1
441  backbone (used as an internal control for plasmid presence). PCR products were resolved on a
442  0.8% agarose gel and visualized with EtBr staining.

443  Transfer between V. parahaemolyticus strains

444  To monitor the transfer of VPal-6°°" between RIMD®*™ and BB220P™, a colony of RIMD®*" in
445  which the mobilization of VPal-6°°" to the pNIS""® plasmid was confirmed via PCR

446  amplifications (as described above) was used as a donor in tri-parental mating together with an
447  E. coli conjugation helper strain and BB220P ™ recipient cells. The resulting trans-conjugates
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were grown on MMM agar plates supplemented with 10 pg/mL chloramphenicol, 5 pg/mL
tetracycline, and 25 pg/mL gentamicin to select for BB220OP ™ colonies containing a pNIS""2"®
plasmid with a VPal-6°®". The transfer was confirmed using PCR amplifications.

Transfer from a plasmid to a naive insertion site in the V. parahaemolyticus BB220OP
chromosome

To monitor the transfer of VPal-6°°™ from a plasmid to the natural VPal-6 naive insertion site
found on chromosome 2 of V. parahaemolyticus BB220P, a single colony of BB220P™
containing a pNIS'"2"® plasmid with a VPal-6°°™ (described in the previous section) was re-
streaked on a selective plate to isolate colonies in which VPal-6°°™ was found in the bacterial
chromosome. The transfer was confirmed using PCR amplifications.

Discriminating between a replicative and conservative transfer mechanism

To determine whether VPal-6 mobilizes via a replicative (copy-and-paste) or conservative (cut-
and-paste) mechanism, a fluorescent RIMDS®"™N'S colony was streaked on a plate and
incubated for 16 hours at 30°C. The colonies were then inspected under blue light to identify a
colony that lost the GFP fluorescence, indicative of inactivation of the sfGFP open reading
frame, likely by insertion of VPal-6 into the intragenic naive insertion site. This colony was then
re-streaked, and a single colony was used to extract genomic DNA and determine the location
of VPal-6 via PCR amplifications.

Bacterial competition assays: The indicated attacker and prey V. parahaemolyticus BB220OP
strains were cultured overnight in MLB with appropriate antibiotics, normalized to an ODggg Of
0.5, and then mixed at a 4:1 (attacker:prey) ratio in triplicate. Subsequently, 250uL of the
mixtures were spotted onto MLB agar competition plates and incubated at 30°C for 4[1hours. To
determine the colony-forming units (CFU) of the prey strains at t/'=I10lhours, 10-fold serial
dilutions were plated on MMM agar plates supplemented with 10 pg/mL chloramphenicol and
250 pg/mL kanamycin. After 47 Thours of co-incubation of the attacker and prey mixtures on the
competition plates, the bacteria were harvested, and the CFUs of the surviving prey strains
were determined as described above. Prey strains harbored a pvVSV209 plasmid for selective
growth. A representative result out of three independent experiments is shown.

Plaque assays: The phages used in this study are listed in Table S6. Phages were propagated
on E. coli K12 MG1655 ARM. To determine the effect of the 13 putative defense system
(GAPS1-13) against coliphages T4, T5, T7, lambday;, P1ly, and the 69 phages included in the
BASEL collection®, E. coli K12 MG1655 ARM strains harboring the indicated pBAD33.1-based
plasmids were grown overnight in LB supplemented with chloramphenicol and 0.2% (wt/vol) D-
glucose (to repress expression from the Pbad promoter) at 37°C. Overnight cultures were
washed twice to remove any remaining glucose, and then 350 L of each culture were mixed
with 7 mL of 0.7% (wt/vol) molten agar supplemented with 0.2% (wt/vol) L-arabinose, 10 mM
MgSO,, and 5 mM CacCl,. The mixture was poured onto a 1.5% (wt/vol) agar plate
supplemented with chloramphenicol and 0.2% (wt/vol) L-arabinose, and the plates were left to
dry. Tenfold serial dilutions of all the phages were prepared, and 7.5 pL of each dilution were
spotted on the dried plates. The plates were incubated overnight at 37°C. The following day, the
plagues were counted and the plaque forming units (PFU/mL) were calculated. For dilution
spots in which no individual plaques were visible but a faint zone of lysis was observed, the
dilution was considered as having ten plaques, as previously described®. Plaque assays with E.
coli K12 MG1655 ARM containing plasmids for the expression of GAPS1 mutants and
homologs were performed similarly. This protocol was also used to investigate the ability of
BASEL collection phage 21 to form plagues on E. coli ZH142-A and its Agaps1l mutant, except
the plates did not include L-arabinose or antibiotics.
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495  Isolation of T7 escape phages: E. coli BW25113 harboring an empty pBAD33.1 or one

496  encoding GAPS1 (pBAD33.1-GAPS1) was grown overnight in LB supplemented with

497  chloramphenicol and 0.2% (wt/vol) D-glucose at 37°C. The cells were washed twice and mixed
498  with 0.7% (wt/vol) molten agar supplemented with 0.2% (wt/vol) L-arabinose, and poured onto a
499  1.5% (wt/vol) agar plate supplemented with 0.2% (wt/vol) L-arabinose. After the agar dried,

500 tenfold serial dilutions of a T7 phage suspension were spotted onto the plate, and the plate was
501 incubated overnight at 37°C. Individual plagues growing at the highest dilution on the plates
502  containing E. coli expressing GAPS1 were isolated and propagated on naive E. coli BW25113
503 cells harboring pBAD33.1-GAPS1 in LB supplemented with chloramphenicol and 0.2% (wt/vol)
504 L-arabinose at 37°C. The escape phages were confirmed by spotting on plates with E. coli

505  expressing GAPSL1.

506  For phage genomic DNA isolation, high titers of escape phages and a parental wild-type phage
507  were prepared (~1.0E™ PFU/mL). Approximately 40 mL of lysates of each escape phage were
508  mixed with 10% (wt/vol) PEG 8000 and 3 M NacCl, and incubated overnight at 4°C. The lysate-
509 PEG mixture was then centrifuged at 10000 x g for 15 minutes to collect the phage pellet. The
510 pellet was re-suspended using resuspension buffer from the Presto™ Mini gDNA isolation Kit,
511  and the phage genomic DNA was isolated following the manufacturer's protocol.

512  Illumina whole-genome sequencing was carried out at SeqCenter (Pittsburgh, PA, USA;

513  https://www.seqcenter.com/). Sample libraries were prepared using the Illlumina DNA Prep kit
514 and IDT 10 bp UDI indices, and sequenced on an Illlumina NextSeq 2000, producing 2 x 151 bp
515  reads. Mutations were identified using variant calling (SeqCenter). Only mutations that were

516  found in the escape mutant genomes and that were not in the sequenced parental T7 phage are
517  reported in Table S1.

518 Constructing T7 phage mutants: T7 mutants were constructed using the pPORTPHAGE

519  method®, a MAGE®*®-based system for the mutagenesis of bacteriophages. Briefly, E. coli K-
520 12 strain harboring the pPORTMAGE-Ec1 plasmid was grown to reach early log phase (ODgqo
521  ~0.3). Then, 1 mM m-toluic acid was added to induce the expression of recombineering

522  proteins. The cells were made electrocompetent and then transformed with mutating

523  oligonucleotides. After electroporation, the culture was infected with a wild-type T7 phage and
524  incubated until complete lysis occurred. The final lysate was cleared using chloroform, diluted,
525 and then plated using the soft agar overlay method to screen for individual mutated plaques.
526  Single plaques were picked, suspended in LB, and used as templates for PCR amplification and
527  sequencing to identify mutants.

528 Chromosomal integration of GAPS1: GAPS1 was introduced into the chromosome of E. coli
529 BW25113 in place of ydhQ (ydhQ::GAPS1) using the red recombination system, as previously
530  described®. Briefly, E. coli BW25113 cells harboring pSim6 were grown overnight in LB

531  supplemented with ampicillin at 30°C. Overnight cultures were diluted 1:100 in 35 mL of fresh
532 LB supplemented with ampicillin and grown to an ODggo Of ~0.5. The red recombinase system
533  was then heat-induced for 20 minutes in a shaking water bath at 42°C. Immediately after

534  induction, the cells were chilled on ice and pelleted by centrifugation. The cell pellets were

535  washed thrice with ice-cold water and resuspended in 200 uL of ice-cold water. The gene

536  encoding GAPS1 under Pbad promoter control, along with a kanamycin-resistance cassette,
537  was amplified together with flanking sequences identical to flanking sequences 50 bp upstream
538 and downstream of the chromosomal ydhQ. The amplified DNA was treated with Dpnl, and then
539  run on an agarose gel and purified. The purified DNA was electroporated into E. coli, and

540  bacteria were allowed to recover in 2xYT broth supplemented with 0.2% (wt/vol) D-glucose for
541  two hours at 30°C. The transformed cells were then plated onto a 1.5% (wt/vol) agar plate

542  supplemented with 25 ug/mL kanamycin. The integration of GAPS1 was verified by PCR.

543  Bacteria were cured of the pSIM6 plasmid, and the recombinant cells were electroporated with
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544  pCP20 plasmid. The kanamycin cassette was flipped out by inducing the pCP20 plasmid at
545 42°C.

546  Deleting the GAPS1 homolog in E. coli ZH142-A: The GAPS1 homolog was deleted from the
547  chromosome of E. coli ZH142-A using the lambda red recombination system, and replaced with
548 a kanamycin resistance cassette. A single colony of bacteria containing the pSim6 plasmid was
549  grown overnight in LB supplemented with ampicillin at 30°C. The overnight culture was diluted
550  1:100 in 35 mL of fresh LB supplemented with ampicillin and grown to an ODggo 0f ~0.5. The red
551 recombinase system was then heat-induced for 20 minutes in a shaking water bath at 42°C.

552  Immediately after induction, the cells were chilled on ice and pelleted by centrifugation. The cell
553  pellets were washed thrice with ice-cold water and resuspended in 200 pL of ice-cold water.

554  Then, these cells were electroporated with the following DNA: The kanamycin-resistance

555  cassette, along with the flippase recognition target (FRT) sites, was amplified from E. coli

556 BW25113AydhQ::kan using primer pairs with overhang sequences homologous to the 50 bp of
557  the 5" and 3' sequences flanking the GAPS1 homolog. The amplified DNA was treated with Dpnl
558  restriction enzyme, run on an agarose gel, and purified.

559  Following electroporation, the cells were allowed to recover in 2xYT broth for two hours at 30°C.
560  The transformed cells were then plated onto a 1.5% (wt/vol) agar plate supplemented with 25
561  ug/mL kanamycin. The replacement of the GAPS1 homolog with the kanamycin resistance

562  cassette was verified by PCR. Bacteria were subsequently cured of the pSIM6 plasmid®®.

563  E. coli toxicity and viability assays: E. coli BW25133 AydhQ and E. coli BW25133

564  ydhQ::GAPSL1 cells harboring an empty plasmid or a plasmid for the arabinose-inducible

565  expression of the T7 phage genel0 (encoding the Gpl0 capsid protein) were grown overnight
566  at 37°C in LB supplemented with kanamycin and 0.2% (wt/vol) D-glucose. Overnight cultures
567  were diluted to an ODggo = 0.02 in fresh LB supplemented with kanamycin, and 200 uL were
568 transferred into 96-well plates in triplicate. Cells were grown under continuous shaking (205

569 RPM)in a Tecan Infinite M Plex plate reader at 37°C. After two hours, the expression of Gp10
570 and GAPS1 was induced by adding L-arabinose to a final concentration of 0.2% (wt/vol). ODeggo
571  readings were acquired every 10 minutes. A similar procedure was used to determine the effect
572 of adding ampicillin (100 ug/mL) 1 hour after arabinose addition.

573  To determine cell viability after induction, bacteria were collected at the indicated time points
574  after arabinose addition. Tenfold serial dilutions of each culture were spotted on agar plates
575  supplemented with kanamycin and 0.2% (wt/vol) D-glucose (to repress arabinose-induced
576  expression). The plates were incubated overnight at 37°C, and the CFU/mL of each culture
577  were determined the following day.

578  To monitor bacterial growth upon infection with BASEL collection phage 21, E. coli ZH142-A

579  wild-type and Agapsl mutant strains were grown overnight at 37°C in LB. Overnight cultures
580  were diluted 1:100 in 10 mL of fresh LB and grown to an ODggo Of ~0.3. The phage was then

581 added to the bacterial cultures at the indicated MOI, and 200 pL of cells were transferred into
582  96-well plates in triplicate. Cells were grown under continuous shaking (205 RPM) in a Tecan
583 Infinite M Plex plate reader at 37°C. ODgqo readings were acquired every 10 minutes.

584 Identification of GMT islands: GMT islands were identified by performing the following steps.
585  Construction of position-specific scoring matrices (PSSMs) of GMT proteins.

586 The PSSMs of VPA1270 (GmtY), VPA1269 (GmtZ), and VPA1268 (GmtX) were constructed
587  using full-length sequences from Vibrio parahaemolyticus RIMD 2210633 (WP_005477115.1,
588 WP_005477239.1, and WP_005477284.1, respectively). To improve the identification of GMT
589  proteins, additional PSSMs of VPA1269 and VPA1268 were constructed using full-length

590 sequences from Vibrio parahaemolyticus R14 (WP_108745444.1 and WP_085344822.1,
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respectively). Online PSI-BLAST (https://blast.ncbi.nim.nih.gov) was employed to construct all
PSSMs. In each case, five iterations of PSI-BLAST against the RefSeq protein database were
performed. A maximum of 500 hits with an expect value threshold of 10 and a query coverage
of 70% were used in each iteration of PSI-BLAST. Files containing PSSM information were
downloaded from the website and were used later in RPS-BLAST analysis (see below).

Identification of bacterial genomes containing GMT systems.

A local database containing the RefSeq bacterial nucleotide and protein sequences was
generated (last updated on August 21, 2023). RPS-BLAST was used to identify GmtY homologs
in the local database. The results were filtered using an expect value threshold of 10° and a
guery coverage of 70%. Analysis was limited to complete genomes (NCBI assembly level:
complete genome or chromosome). Subsequently, the genomic neighborhood of GmtY-
containing genomes was analyzed as described before*’®#". The results were further analyzed
to identify bacterial sequences containing the three GMT proteins in tandem. Cases where an
unrelated protein was inserted between GMT proteins (e.g., a transposase) were
accommodated. A list of GMT proteins and adjacently encoded proteins is provided in Dataset
S1.

Identification of closely related genomes.

First, the sequences of rpoB, coding for DNA-directed RNA polymerase subunit beta, were
retrieved from the local database for all RefSeq bacterial genomes. Partial and pseudo-gene
sequences were excluded. A nucleotide database of rpoB genes was generated. Next, BLASTN
was performed using the sequences of rpoB from the GMT-containing genomes as queries to
identify rpoB homologs with high sequence identity (at least 90% over at least 90% of the
sequence). The BLASTN results were analyzed and a list of closely related genomes was
generated for each GMT-containing genome.

Identification of genomic accessions in closely related genomes that are homologous to
sequences flanking GMT systems.

The nucleotide sequences of the GMT systems and their 5" and 3' flanking regions, up to 200
kbp of either side of GmtY, were retrieved. These sequences were used as query in BLASTN
against the nucleotide sequences of closely related genomes. The results were filtered to
include local alignments that are of =21 kbp length with 280% identity between aligned
sequences. The alignments were further analyzed to identify separate alignments belonging to
the same genomic accessions that flank the GMT systems but do not include them (Fig. S8a).
The alignments were required to be with the same strand of the subject accession. The
distances between the positions of the alignments in the subject accessions were required to be
<100 bp (Fig. S8a). In addition to the above criteria, the sequences upstream and downstream
to the GMT islands were required to contain sequence alignments to the subject accessions in
at least 4 kbp out of 10 kbp upstream and downstream sequences. The aim of this step was to
remove false alignments due to frequent sequences (e.g., transposases) (Fig. S8b).

Identification of GMT Island borders.

The alignments meeting all the abovementioned requirements were grouped together to
determine the 5' and 3' borders of GMT islands (Figure S8c). First, the consensus values of the
borders were deduced based on the most frequently occurring values. Then, the putative
borders were ranked based on the following criteria: (i) distance between subject alignments
<20 bp, (ii) upstream and downstream alignments =5 kbp, (iii) borders are £10 bp from
consensus values, and (iv) borders are exactly the same as the consensus values. The putative
borders with the highest ranking were selected for further analysis (Dataset S2).
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Analysis of the putative entry sites.

The predicted entry site for each GMT island was determined according to positions of the
alignments in the subject accessions. Entry sites were defined as 'intragenic' or 'intergenic' if
located inside or outside genes, respectively (Fig. S8d). The sequences located 25 bp from the
ends of the predicted entry sites were analyzed to identify direct and inverted repeats (Fig.
S8e). Briefly, to identify direct repeats, all possible sub-sequences located in the first sequence
were searched in the second sequence. To identify inverted repeats, the search was performed
in the reverse complement. The minimal repeat size was set to 5 nucleotides, and the longest
identified repeats were saved.

Analysis of GMT island cargoes: T6SS effectors were identified by the presence of T6SS
effector-specific domains (i.e., MIX*"*", FIX*®, Rhs*®, PAAR and PAAR-like*, Hcp', and VgrGY),
determined by NCBI Conserved Domain Database (CDD)*° (see below) or using previously-
constructed PSSMs. Predicted toxic domains of T6SS effectors were identified using CDD or by
similarity detection using hidden Markov modeling (HHpred®®). Small genes downstream of
T6SS effectors were annotated as putative immunity genes.

Anti-phage defense systems were identified using the PADLOC®® and DefenseFinder™* tools. In
the case of PADLOC, amino acid sequences and gff3 files of the complete genomes were
provided as input. In the case of DefenseFinder, amino acids sequences, ordered according to
their position in the genomes, were provided as input. The anti-phage defense systems
described in this work were identified by constructing PSSMs for proteins belonging to the
systems and identification of homologs using RPS-BLAST. PSSMs of GAPS1, GAPS2,
GAPS4a, GAPS4b, GAPS6a, and GAPS6b were constructed using full-length sequences
(WP_005477165.1, WP_174208646.1, WP_055466293.1, WP_055466294.1,
WP_248387294.1, and WP_248387295.1, respectively). PSI-BLAST was performed as
described above for the GMT system. RPS-BLAST results were filtered using an expect value
threshold of 10™*® and a minimal coverage of 70%. With regard to GAPS4 and GAPSS, all
proteins belonging to these systems were required for the systems to be counted.

DNA mobility elements were identified using blast search in the mobileOG database (Beatrix 1.6
v1%) and by a manual search for protein descriptions containing ‘transposase’, ‘recombinase’,
‘conjugation’, or ‘integrase’ keywords. Antimicrobial resistance genes were identified using a
blast search in the NCBI Pathogen Detection Reference Gene Catalog, available from The
NCBI Pathogen Detection Project [Internet]. Bethesda (MD): National Library of Medicine (US),
National Center for Biotechnology Information. 2016 May [downloaded: 2024 May 13]. Available
from: https://www.ncbi.nlm.nih.gov/pathogens/. Virulence toxins were identified using blast
searches in the Virulence Factor Database (VfDB®°) and in Bastion-HUB database®. Blast
results from searches in the various databases were manually assessed, and genes encoding
transcription regulators were excluded. Partial and pseudo-genes were not included in the
analysis.

Identification of conserved domains: The CDD and related information were downloaded
from NCBI on August 27, 2023%*°. RPS-BLAST was employed to identify conserved domains in
protein sequences and the output was processed using the Post-RPS-BLAST Processing Utility
v0.1. The expect value threshold was set to 107.

Construction of phylogenetic trees: Phylogenetic analysis of bacterial strains was conducted
using the MAFFT server (mafft.cbrc.jp/alignment/server/)**. The nucleotide sequences of rpoB
were aligned using MAFFT version 7 (FFT-NS-i)%. Partial and pseudo-gene sequences were
not included in the analysis. The evolutionary history was inferred using the neighbor-joining
method®® with the Jukes-Cantor substitution model (JC69). The indicated evolutionary distances
are in the units of the number of base substitutions per site.
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The phylogenetic tree of GmtY and GAPS1 were constructed by performing the following steps.
First, protein sequences were aligned using CLUSTAL Omega®. Then, evolutionary analyses
were conducted in MEGA X°. In the case of GmtY, the evolutionary history was inferred by
using the Maximum Likelihood method and the LG+G+l model®®. In the case of GAPS1, the
Maximum Likelihood method and the LG+G+I+F model were used. Both models were found to
have the lowest BIC (Bayesian Information Criterion) scores among 56 different amino acid
substitution models that were analyzed in MEGA X. The analysis of GmtY involved 366 amino
acid sequences and 375 conserved sites. The analysis of GAPS1 involved 833 amino acid
sequences and 264 conserved sites. The trees were visualized using iTOL®’
(https://itol.embl.de/).

lllustration of conserved residues using Weblogo: The protein sequences of GAPS1
homologs were aligned using CLUSTAL Omega®. Aligned columns not found in representative
proteins were discarded. The conserved residues were illustrated using the WebLogo server
(weblogo.berkeley.edu)®.

Multiple sequence alignment of E. coli GAPS1 homologs: The amino acid sequences of
EGQ2075554.1, EJP5250929.1, WP_152927281.1, WP_194242909.1, and GAPS1
(WP_005477165.1) were aligned using Clustal W in MEGA X®. Similarity and identity shading
was done in ESPript 3.0,
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Fig. 1. GMT proteins define a class of widespread, mobile genomic islands. (a) Schematic
representation of VPal-6 (cyan rectangle) and flanking regions. A predicted naive insertion site
(NIS) identified in V. parahaemolyticus BB220OP is shown below; gray rectangles denote protein
sequence identity percentage. Inverted repeat sequences identified in the naive insertion site
and flanking VPal-6 are denoted. RefSeq accession numbers are provided. (b) Phylogenetic
distribution of bacteria containing GMT systems, based on the DNA sequence of rpoB. Bacterial
orders are denoted. The evolutionary history was inferred using the neighbor-joining method.
The evolutionary distances represent the number of nucleotide substitutions per site. Red stars
denote bacteria in which the borders of a GMT island were determined. (c) Predicted activities
of GMT system proteins. (d) Agarose gel electrophoresis analysis of the indicated amplicons.
The total DNA isolated from wild-type (WT) V. parahaemolyticus RIMD cells or its derivative
strains in which the entire GMT system was deleted (Agmt) or its individual components (i.e.,
AgmtX, AgmtZ, and AgmtX), conjugated with an empty plasmid (pEmpty) or a plasmid
containing a predicted naive insertion site for VPal-6 (pNIS'"?®), was used as a template. The
cat gene found in the backbone of both plasmids was amplified as a control for plasmid
presence. (e) An illustration of the assay devised to distinguish between a copy-and-paste and a
cut-and-paste transfer mechanism of VPal-6. Chr. 1, chromosome 1; Chr. 2, chromosome 2;
sfGFP-NIS, an sfGFP-encoding gene containing the 30 bp-long VPal-6 NIS sequence as a
linker between the 10" and 11" beta strands of sfGFP. (f) Agarose gel electrophoresis analysis
of the indicated amplicons. The total DNA isolated from WT RIMD, a derivative in which vp1393
was replaced by sfGFP-NIS (RIMD®""N'5) "or an isolated RIMDS" ™S colony that lost its
fluorescence (as described in (b)), was used as a template. V. parahaemolyticus BB220P was
used as a control for a chromosomal VPal-6 NIS. In (d) and (f), arrows denote the positions of
primers used for each amplicon; the expected amplicon size is denoted in gray.
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Fig. 2. VPal-6 can be horizontally shared via a conjugatable plasmid. (a) Schematic
representation of VPal-6 and VPal-6°°"; gray rectangles denote protein sequence identity
percentage. (b) An illustration of the assay devised to monitor the plasmid-mediated transfer of
VPal-6°" between RIMD®®™ and BB220OP ™! derivative strains. NIS, naive insertion site; Chr. 2,
chromosome 2; pNIS'?2"° a plasmid containing a predicted VPal-6 NIS; Cm, chloramphenicol;
Gent, gentamicin; Tet, tetracycline. Numbers in yellow circles denote bacterial populations used
for amplicon analysis in (c). (c) Agarose gel electrophoresis analysis of the indicated amplicons.
The total DNA isolated from the strains denoted by numbers in (b) was used as a template.
Samples 1 and 2 are pooled bacteria from both denoted strains in (b). Arrows denote the
positions of primers used for each amplicon, and the expected amplicon size is denoted in gray.
(d) Viability counts (colony forming units; CFU) of the indicated prey strains containing an empty
plasmid (pEmpty) or a plasmid expressing the Vti2 immunity protein (pVti2) before (0 h) and
after (4 h) co-incubation with the indicated attacker strain. The statistical significance between
samples at the 4 h time point was calculated using an unpaired, two-tailed Student’s t test; ns,
no significant difference (P > 0.05); WT, wild-type. Data are shown as the mean £ SD; n =3
independent competition replicates. The data shown are a representative experiment out of at
least three independent experiments.
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Fig. 3. GMT islands contain a diverse cargo of offensive and defensive tools. (a)
Distribution of GMT island lengths analyzed together (total) or by bacterial family. Black lines
denote the median length. (b) Distribution of gene number per GMT island. A black line denotes
the median gene number. (c) Percentage of GMT islands in which we identified an anti-phage
defense system, an antibacterial T6SS effector, or both together. (d) Distribution of specific anti-
phage defense systems and antibacterial T6SS effectors in GMT islands of each bacterial
family. Red and purple color gradients denote the number of occurrences, respectively. The
analyses in (c-d) include the new anti-phage defense systems identified in this study, as
detailed below (i.e., GAPS1, 2, 4, and 6). In (a,c,d), only bacterial families in which we identified
the borders of > 5 GMT islands are shown; the number of analyzed islands is denoted in
parenthesis next to the family name. (e) The gene structure of representative GMT islands with
anti-phage defense systems (red), antibacterial T6SS effectors (purple), or both. Encircled
numbers denote the number of genes not shown. RefSeq accession numbers are provided. (f)
A pie chart showing the percentage of GMT island cargo genes associated with the indicated
activity or process.
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in GAPS1 homologs. The residue numbers correspond to the positions in GAPS1
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Fig. 6. E. coli GAPS1 homologs protect against various coliphages. (a) The efficiency of
plating (EOP) determined for E. coli expressing the three indicted GAPS1 homologs when
challenged with 74 coliphages, compared to E. coli containing an empty plasmid. The data
shown are the average of three independent experiments. (b) Tenfold serial dilutions of the
BASEL collection phage 21 (BASEL21) spotted on lawns of E. coli isolate ZH142-A, either wild-
type (WT) or with a deletion of its endogenous GAPS1 homolog (Agapsl). (c) Growth of the
indicated E. coli ZH142-A cells following infection with the BASEL21 phage at MOI of 0.5 or 5.
Data are shown as the mean = SD of three biological replicates. In (b,c), a representative result
out of three independent experiments is shown.
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