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Abstract 

Protein structure prediction has been greatly improved by deep learning in the past few years. However, 

the most successful methods rely on multiple sequence alignment (MSA) of the sequence homologs of the 

protein under prediction. In nature a protein folds in the absence of its sequence homologs and thus, a 

MSA-free structure prediction method is desired. Here we develop a single sequence-based protein 

structure prediction method RaptorX-Single by integrating several protein language models and a structure 

generation module and then study its advantage over MSA-based prediction methods. Our experimental 

results indicate that in addition to running much faster than MSA-based methods such as AlphaFold2, 

RaptorX-Single outperforms AlphaFold2 and other MSA-free methods in predicting the structure of 

antibodies, proteins of very few sequence homologs and single mutation effects. RaptorX-Single also 

compares favorably to MSA-based AlphaFold2 when the protein under prediction has a large number of 

sequence homologs. 

Keywords 
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structure prediction, single mutation effect 

Introduction 

In the past few years computational protein structure prediction has been revolutionized by the application 

of coevolution information and deep learning, as evidenced first by RaptorX [1,2] and then AlphaFold2 [3] 
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and other similar methods. These successful methods make use of sequence homologs of the protein 

under prediction and coevolution information derived from their multiple sequence alignment (MSA). 

Although very powerful, these methods are not perfect. For example, in nature a protein folds without 

knowledge of its sequence homologs, so predicting protein structure based upon some non-natural 

conditions such as MSAs (and coevolution information) does not reflect very well how a protein actually 

folds. It also takes much time to search for the sequence homologs of a protein, especially considering that 

the sequence databases are growing rapidly. Further, the MSA-based methods do not perform well on 

small-sized protein families. Experimental results show that MSA-based methods do not fare well on flexible 

regions such as loop regions [4] and highly variable antibody CDR regions. Further, MSA are not sensitive 

for sequence mutations, the MSA based methods may not fare well on the prediction of single-point 

mutational effects [5]. 

 

To reduce the dependence of protein structure prediction on MSA, we have studied protein structure 

prediction without using coevolution information in Xu et al [6], and demonstrated that in the absence of 

coevolution information, deep learning can still predict more than 50% of the most challenging CASP13 

targets. This implies that deep learning indeed has captured sequence-structure relationships useful for 

tertiary structure prediction. Nevertheless, in this work we still used sequence profiles derived from 

sequence homologs. In the past few months, several groups [7,8,7,9–11] have studied deep learning 

methods for single-sequence based protein structure prediction by making use of protein language models. 

Although running much faster, on average these methods are less accurate than MSA-based AlphaFold2. 

 

To further study the advantage of single-sequence based methods, we have developed RaptorX-Single for 

single sequence-based protein structure prediction. Our methods take an individual protein sequence as 

input and then feed it into protein language models to produce sequence embedding, which is then fed into 

a modified Evoformer module and a structure generation module to predict atom coordinates. Differing from 

other single sequence methods, our methods use a combination of three well-developed protein language 

models [12–14] instead of only one. Experimental results show that our RaptorX-Single not only runs much 

faster than MSA-based AlphaFold2, but also outperforms it on antibody structure prediction, orphan protein 
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structure prediction and single mutation effect prediction. RaptorX-Single also exceeds other single-

sequence based methods and compares favorably to AlphaFold2 when the protein under prediction has a 

large number of sequence homologs. 

Method 

Protein language models. Protein language models have been developed to model individual protein 

sequences. These models mainly use attention-based deep neural networks to capture long-range inter-

residue relationships. Here we make use of three pretrained protein language models including ESM-1b 

[12], ESM-1v [13] and ProtTrans [14]. Meanwhile, ESM-1b is a Transformer of ~650M parameters that was 

trained on UniRef50 [15] of 27.1 million protein sequences. ESM-1v employs the same network architecture 

as ESM-1b, but was trained on Uniref90 with 98 million protein sequences. For ProtTrans, we use the 

ProtT5-XL model of 3 billion parameters that was trained on a newer UniRef50 of 45 million sequences. 

 
Figure 1. Our deep network architecture for single sequence-based protein structure prediction. 

 

Network architecture. The overall network architecture of our method is shown in Figure 1, which mainly 

consists of three modules: the sequence embedding module, the modified Evoformer module and the 

structure generation module. Given an individual protein sequence as input, the embedding module 

generates the sequence embedding of the input sequence and its pair representations, by making use of 

one or three protein language models. In the embedding module, the one-hot encoding of the input 

sequence passes through a linear layer to generate the initial sequence embedding, then it combines the 

sequence representation from protein language models to create a new sequential embedding. The initial 
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pair embedding is generated by adding two primary sequence embedding (rowwise and columnwise), and 

it then combines the attention maps from the last two layers of protein language models to create a new 

pairwise embedding. We also add the relative positional encoding in the pairwise embedding. 

 

The sequence and pair embedding are updated iteratively in the Evoformer module consisting of 24 

modified Evoformer layers. Our Evoformer differs from the original one in AlphaFold2 in that ours does not 

have the column self-attention layer, which is meaningless for an individual sequence. 

 

The structure module is similar to that of AlphaFold2, which mainly consists of 8 IPA (invariant point 

attention) and transition layers with shared weights. Our structure module is different in that we use a linear 

layer to integrate the scalar, point, and pair attention values in the IPA model while AlphaFold2 uses only 

addition. The structure module outputs both the predicted atom 3D coordinates and confidence scores (i.e. 

pLDDT). 

 

Training and test data.  

Training data. The training data consists of ~340k proteins. Among them, there are 80852 proteins of 

different sequences that have experimental structures released before January 2020 in PDB (denoted as 

BC100). We cluster the proteins in BC100 by 40% sequence identity and denote the clustering result as 

BC100By40. The remaining 264k proteins have tertiary structures predicted by AlphaFold2 (denoted as 

distillation data). The proteins in the distillation dataset are extracted from Uniclust30_2018_08 [16] and 

share no more than 30% sequence identity. During each training epoch, one protein is randomly sampled 

from each BC100By40 cluster to form a set of training proteins, with the acceptance rate determined by the 

sequence length (0.5 for lengths under 256, 0.5-1 for lengths between 256 and 512, and 1.0 for lengths 

over 512). In each epoch proteins are also sampled from the distillation data by the ratio of 1:3 between 

BC100By40 and the distillation data. 

 

Antibody data for fine-tuning. In order to improve the performance on antibody targets, we construct an 

antibody training set for fine-tuning. Specifically, we use experimental structures from SAbDa [17] released 
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before 2021/03/31 as training samples and split each target into chains. In total, the training set contains 

5033 heavy and light chains. The validation set consists of 178 antibody structures released between 

2021/04/01 and 2021/06/30. 

 

Training procedure. The model was implemented using pytorch [18], and the distributed training on multi-

GPUs was based on pytorch-lightning [19]. We used the AdamW [20] optimizer with β1=0.9, β2=0.999, 

ε=10−8 and weight decay of 0.0001 for all models. Over the first ~1000 steps, the learning rate warmed up 

linearly from 1e-6 to 5e-4, remained at 5e-4 for the first 1/3 training steps, and then linearly decreased to 

1e-6 for the remaining 2/3 training steps. The model is initially trained on protein crops of size 256 for the 

first 2/3 of the training steps, and then trained on crop sizes of 384 for the remaining 1/3 of the training 

steps. The training losses include pairwise losses and structure losses. The pairwise losses are distogram 

distance and orientation loss, as employed in trRosetta [21]. The structure losses include the Frame Aligned 

Point Error (FAPE) [3] loss with a clamp of 20 Angstrom and the pLDDT loss. To improve the performance 

of the model, we also implemented the recycling strategy during training. The number of recycling iterations 

is randomly sampled from 0 to 3. Each model is trained on 32 GPUs with accumulated gradients 4, thus 

the batch size is 128.  

 

In total, we have trained four models with 150 epochs by combining the protein language models in different 

ways. RaptorX-Single (1b), RaptorX-Single (1v) and RaptorX-Single (pt) make use of ESM-1b, ESM-1v and 

ProtTrans respectively, while RaptorX-Single makes use of the three protein language models together. In 

the fine-tuning stage for antibody, we fine-tuned all four models 50 epochs with the learning rate linearly 

decreasing from 2e-4 to 1e-5, and obtained the corresponding four models for antibody structure prediction: 

RaptorX-Single-Ab (1b), RaptorX-Single-Ab (1v), RaptorX-Single-Ab (pt), and RaptorX-Single-Ab. 

 

Evaluation 

Benchmark datasets. We evaluated our methods on three antibody datasets (SAbDab-Ab, IgFold-Ab and 

nanobody), one orphan protein dataset and one single mutation effects dataset. 
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● IgFold-Ab dataset: It includes 67 non-redundant antibodies from the IgFold work [22] that were 

released after July 1, 2021. 

● SAbDab-Ab dataset: It is a non-redundant dataset (sequence identity lower than 95%) derived from 

SAbDab [17], which has 202 antibodies released in the first 6 months of 2022. 

● Nanobody dataset: It includes 60 nanobodies of different sequences derived from SAbDab released 

in the first 6 months of 2022. 

● Orphan dataset: It consists of 11 proteins released between Jan 01, 2020 and April 12, 2022. The 

proteins in this set do not have any sequence homologs in BFD [3], MGnify [23], Uniref90 [15] and 

Uniclust30 [16]. That is, they are not similar to any proteins used for training the protein language 

models and our deep learning models. 

● Rocklin dataset. The Rocklin dataset has 14 native and de novo designed proteins and their stability 

measures of 10,674 single mutations. The stability was evaluated using thermal and chemical 

denaturation. The source data is from Rocklin et al [24] and here we use the data collected by 

Strokach et al [25]. 

 

Performance metrics. For antibodies, we evaluate the backbone root-mean-squared-deviation (RMSD) of 

the framework (Fr) and CDR (CDR-1, CDR-2, CDR-3) regions of the heavy and light chains separately. 

The CDR regions are classified using ANARCI, and the backbone RMSD is calculated by PyRosetta [26]. 

For orphan targets, we evaluate the quality of the predicted structures by TMscore [27], global distance 

test–total score (GDT_TS) and global distance test–high accuracy (GHT_HA) [28]. For the single mutation 

effects prediction, we calculate the Pearson correlation coefficient (PCC) between the predicted structure 

changes and the stability data. The structure change is measured by the TMscore of predicted structures 

between the wild and mutant sequences. 

 

Baseline methods. We compared the performance of our methods with MSA-based AlphaFold2 and three 

single sequence-based methods (ESMFold [7], OmegaFold [8] and HelixFold-Single [11]). For AlphaFold2, 

we search the Uniclust30 [16] as of August 2018, Uniref90 [15] as of January 2020 and Metaclust [23] as 

of December 2018 and BFD [3] using HHblits and Jackhmmer to build its MSA. Additionally, we also report 
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the performance of AlphaFold2 using a single sequence as input. For the antibody datasets, we also 

compare our method with antibody-specific methods DeepAb [29] and IgFold [22]. 

Results 

Performance on the IgFold-Ab dataset 

As shown in Table 1, our antibody-specific method RaptorX-Single-Ab consistently outperforms other 

methods for antibody structure prediction, especially in the CDR H3 region as shown in Figure 2 (A). The 

MAS-based AlphaFold2 performs comparably with other single sequence methods (HelixFold-Single, 

OmegaFold and ESMFold), but is not as good as the antibody-specific methods DeepAb and IgFold. 

AlphaFold2 (Single) performs much worse than AlphaFold2 (MSA), mainly because AlphaFold2 was trained 

on MSAs instead of single sequences. Our antibody-specific methods outperform our non-fine-tuned 

methods, suggesting the value of the fine-tuning phase on antibody data. 

 

 

Figure 2. Performance comparison of various methods on antibody structure prediction. (A) The average 

RMSD of predicted CDR-3 structures on different datasets. (B) The CDR-3 RMSD distribution of our non-
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fine-tuned and antibody fine-tuned models by combining protein language models in different ways. The 

antibody fine-tuned methods consistently outperform the non-fine-tuned methods (C) Comparison of 

RaptorX-Single-Ab and MSA-based AlphaFold2 on the CDR H3 structure prediction (marked by red circle) 

for targets 7DAA, 7L7E, 7QJJ and 7RDL. 

 

Table 1. The average RMSD of predicted tertiary structures for the IgFold-Ab dataset. 

 RMSD (H)  RMSD (L) 

 Fr CDR-
1 

CDR-
2 

CDR-
3 

Fr CDR-
1 

CDR-
2 

CDR-
3 

AlphaFold2 (MSA) 0.48 0.77 0.76 3.55 0.43 0.96 0.45 1.26 

AlphaFold2 (Single) 10.84 15.34 15.48 16.33 8.98 13.54 16.13 15.14 

HelixFold-Single 0.56 0.85 0.95 5.01 0.51 1.10 0.57 1.60 

OmegaFold 0.47 0.75 0.74 3.70 0.41 0.93 0.43 1.35 

ESMFold 0.51 0.84 0.91 4.10 0.43 1.16 0.52 1.44 

DeepAb 0.43 0.80 0.74 3.28 0.38 0.86 0.45 1.11 

IgFold 0.45 0.80 0.75 2.99 0.45 0.83 0.51 1.07 

RaptorX-Single 0.51 0.86 0.90 4.33 0.46 1.13 0.54 1.95 

RaptorX-Single-Ab 0.38 0.63 0.60 2.65 0.35 0.69 0.39 0.88 

 

Performance on the SAbDab-Ab dataset 

Our fine-tuned antibody-specific method greatly outperforms other methods regardless of metrics, as 

shown in Table 2. AlphaFold2 (MSA) performs slightly better than other single sequence methods 

(HelixFold-Single, OmegaFold and ESMFold), and is comparable with the antibody-specific methods 

DeepAb and IgFold. Our fine-tuned antibody-specific methods outperform our non-fine-tuned methods, 

while there is no obvious difference between models using different protein language models as shown in 

Table S2. As shown in Figure 2 (C), our RaptorX-Single-Ab significantly outperforms AlphaFold2 (MSA) on 

some targets. 

 

Table 2. The average RMSD of predicted tertiary structures for the SAbDab-Ab dataset. 

 RMSD (H) RMSD (L) 

 Fr CDR-
1 

CDR-
2 

CDR-
3 

Fr CDR-
1 

CDR-
2 

CDR-
3 

AlphaFold2 (MSA) 0.63 1.08 0.89 3.82 0.59 0.89 0.69 1.39 

AlphaFold2 (Single) 8.85 12.30 11.59 15.24 8.82 13.28 15.13 14.62 
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HelixFold-Single 0.71 1.15 1.10 5.50 0.66 1.10 0.79 1.84 

OmegaFold 0.63 1.05 0.86 4.11 0.58 0.90 0.69 1.42 

ESMFold 0.64 1.11 1.02 4.56 0.60 1.16 0.72 1.74 

DeepAb 0.62 1.08 0.90 3.83 0.66 0.96 0.75 1.43 

IgFold 0.66 1.15 0.95 3.65 0.65 0.96 0.80 1.40 

RaptorX-Single 0.64 1.17 1.06 4.66 0.64 1.12 0.77 2.14 

RaptorX-Single-Ab 0.57 1.01 0.82 3.24 0.53 0.79 0.66 1.24 

 

Performance on the Nanobody dataset 

Nanobody is an increasingly popular modality for therapeutic development [30]. Compared with traditional 

antibodies, nanobodies lack a second immunoglobulin chain and have increased CDR3 loop length, which 

makes the nanobody structure prediction challenging. As shown in Table 3, no methods perform very well 

on the CDR-3 region, but our fine-tuned antibody-specific models still outperform other methods. 

AlphaFold2 (MSA) outperforms HelixFold-Single and ESMFold but underperforms OmegaFold. DeepAb 

performs poorly on nanobodies, possibly because it is trained for paired antibody structure prediction. 

RaptorX-Single-Ab performs the best, demonstrating the value of combining three protein language 

models. 

Table 3. The average RMSD of the predicted structures for the Nanobody dataset. 

 RMSD 

 Fr CDR-1 CDR-2 CDR-3 

AlphaFold2 (MSA) 0.73 2.05 1.15 4.01 

AlphaFold2 (Single) 9.3373 12.6722 12.3947 17.8738 

HelixFold-Single 0.86 1.99 1.18 4.20 

OmegaFold 0.71 2.02 1.12 3.77 

ESMFold 0.80 2.06 1.12 4.23 

DeepAb 0.92 2.38 1.34 8.76 

IgFold 0.82 1.93 1.29 4.27 

RaptorX-Single 0.83 2.19 1.14 4.06 

RaptorX-Single-Ab 0.82 1.78 1.06 3.50 

 

Performance of different combinations of protein language models 
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We have trained four models by combining the protein language models in different ways. RaptorX-Single 

(1b), RaptorX-Single (1v) and RaptorX-Single (pt) make use of ESM-1b, ESM-1v and ProtTrans 

respectively, while RaptorX-Single makes use of the three protein language models together. The detailed 

performance of different protein language model combinations are shown in Table S1-4, and Figure 2 (B) 

shows the performance on CDR-3 regions. Overall, by combining three protein language models, RaptorX-

Single and RaptorX-Single-Ab performs better than those that use only a single protein language model. 

Performance on the Orphan dataset 

Orphan proteins lack evolutionary homologs in structure and sequence databases and thus, are very 

challenging for MSA-based methods. Here we construct an orphan protein dataset, in which no protein has 

any sequence homologs in the 4 widely-used sequence databases BFD, MGnify, Uniref90 and Uniclust30. 

As shown in Table 4, almost all single sequence methods outperform AlphaFold2 on this dataset and our 

method RaptorX-Single achieved the best performance. However, neither MSA nor single sequence 

methods can predict the correct fold of most orphan proteins, mainly because current single sequence 

methods are still implicitly making use of homologous information learned by protein language models. 

 

Table 4. The average model quality (measured by TMscore, GDT_TS and GHT_HA) of our method, 

AlphaFold2, HelixFold-Single, OmegaFold and ESMFold on the Orphan dataset. 

Method TMscore GDT_TS GHT_HA 

AlphaFold2 0.40 41.02 30.20 

HelixFold-Single 0.42 44.19 30.95 

OmegaFold 0.37 38.23 27.70 

ESMFold 0.42 41.91 31.20 

RaptorX-Single 0.43 43.40 32.14 

 

Predicted structure changes of single mutations 

Previous works showed that the MSA-based methods do not work well on predicting mutational effects 

[4,5,31]. To evaluate the advantage of our single sequence-based method over the MSA-based methods 

for mutational effect prediction, we analyze the correlation between predicted structure change and stability 

change of single mutations using data gathered from DMS datasets [24]. The structure change is measured 

by TMscore of predicted structures between the wildtype and mutated sequences. As shown in Figure 3, 
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our single sequence methods outperform AlphaFold2 on most targets, especially on targets 1, 9 and 11. 

AlphaFold2 (Single) outperforms AlphaFold2 (MSA), demonstrating the advantage of single sequence 

methods for mutational effects prediction. 

 

 
Figure 3. The PCC between predicted structure change and stability change of single mutations. 

 

 

Impact of MSA depth on prediction quality 

It is generally believed that current single sequence-based methods are implicitly making use of sequence 

homologs of a protein under prediction. To study this, we compare our single sequence method RaptorX-

Single with the MSA-based AlphaFold2 on targets of various MSA depths. We built a dataset consisting of 

60 CASP14 targets (88 domains) and 194 CAMEO targets (released from April 23, 2022 through June 25, 

2022). Most of these targets have lots of sequence homologs, to balance the MSA depth distribution, we 

additionally collected 99 targets released from Jan 01, 2020 through April 12, 2022 that do not have 

sequence homologs in Uniclust30 but may have sequence homologs in BFD, MGnify or Uniref90. As shown 

in Figure 4, when the MSA is shallow (<=10), RaptorX-Single outperforms the MSA-based AlphaFold2 on 

most targets. When the MSA is deep (>1e4), RaptorX-Single achieves comparable performance with 

AlphaFold2. RaptorX-Single significantly underperforms MSA-based AlphaFold2 mainly when the MSA 

depth is between 100 and 1000.  
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Figure 4. Performance comparison between our method RaptorX-Single and MSA-based 

AlphaFold2 with respect to MSA depth. The performance is measured by ∆GDT_TS (GDT_TS 

difference of the 3D models predicted by RaptorX-Single and that predicted by AlphaFold2). The 

MSA depth is the number of sequences in the MSA. 

Conclusion and Discussion 

We have presented deep learning methods that can predict the structure of a protein without explicitly 

making use of its sequence homologs and MSAs. Our experimental results show that our methods 

outperforms MSA-based AlphaFold2 and other single sequence methods on antibody structure prediction, 

orphan protein structure prediction and single mutation effect prediction, demonstrating the advantage of 

single sequence methods on these specific structure prediction tasks. However, although single sequence 

methods do not explicitly make use of sequence homologs, the protein language models may implicitly 

encode some evolutionary and coevolution information by learning from a very large protein sequence 
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database. Although outperforming AlphaFold2 on orphan proteins, our method and other similar ones still 

cannot predict the correct fold of most orphan proteins, possibly because all current single sequence-based 

methods are still implicitly making use of sequence homologs of a protein under prediction. Our future plan 

is to develop a method that can indeed predict the structure of a protein directly from its primary sequence 

even without implicitly using any homologous information. Such a method shall perform well on those 

orphan proteins. 
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Supplementary information 
 

Table S1. The average RMSD of predicted tertiary structures for the IgFold-Ab dataset. 

 RMSD (H)  RMSD (L) 

 Fr CDR-
1 

CDR-
2 

CDR-
3 

Fr CDR-
1 

CDR-
2 

CDR-
3 

RaptorX-Single (1b) 0.60 1.31 1.31 4.61 0.49 1.42 0.61 2.32 

RaptorX-Single (1v) 0.56 1.14 1.24 4.19 0.47 1.45 0.60 1.85 

RaptorX-Single (pt) 0.55 1.06 1.17 4.91 0.47 1.40 0.64 2.05 

RaptorX-Single 0.51 0.86 0.90 4.33 0.46 1.13 0.54 1.95 

RaptorX-Single-Ab (1b) 0.39 0.67 0.60 2.79 0.35 0.76 0.40 0.92 

RaptorX-Single-Ab (1v) 0.38 0.62 0.57 2.83 0.35 0.70 0.38 0.92 

RaptorX-Single-Ab (pt) 0.38 0.65 0.60 2.71 0.34 0.73 0.38 0.97 

RaptorX-Single-Ab 0.38 0.63 0.60 2.65 0.35 0.69 0.39 0.88 

 
Table S2. The average RMSD of predicted tertiary structures for the SAbDab-Ab dataset. 

 RMSD (H) RMSD (L) 

 Fr CDR-
1 

CDR-
2 

CDR-
3 

Fr CDR-
1 

CDR-
2 

CDR-
3 

RaptorX-Single (1b) 0.72 1.65 1.41 5.06 0.65 1.33 0.82 2.37 

RaptorX-Single (1v) 0.70 1.54 1.25 4.64 0.63 1.22 0.79 1.96 

RaptorX-Single (pt) 0.68 1.40 1.27 4.89 0.64 1.23 0.84 2.25 

RaptorX-Single 0.64 1.17 1.06 4.66 0.64 1.12 0.77 2.14 

RaptorX-Single-Ab (1b) 0.57 1.01 0.83 3.39 0.53 0.80 0.66 1.23 

RaptorX-Single-Ab (1v) 0.57 1.01 0.82 3.17 0.54 0.80 0.66 1.25 

RaptorX-Single-Ab (pt) 0.57 0.99 0.83 3.32 0.53 0.81 0.66 1.25 

RaptorX-Single-Ab 0.57 1.01 0.82 3.24 0.53 0.79 0.66 1.24 

 

Table S3. The average RMSD of the predicted structures for the Nanobody dataset. 

 RMSD 

 Fr CDR-1 CDR-2 CDR-3 

RaptorX-Single (1b) 0.84 2.33 1.27 4.37 
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RaptorX-Single (1v) 0.81 2.16 1.18 4.10 

RaptorX-Single (pt) 0.81 2.21 1.18 4.69 

RaptorX-Single 0.83 2.19 1.14 4.06 

RaptorX-Single-Ab (1b) 0.77 1.83 1.05 4.01 

RaptorX-Single-Ab (1v) 0.73 1.78 1.10 3.64 

RaptorX-Single-Ab (pt) 0.75 1.73 1.04 3.66 

RaptorX-Single-Ab 0.82 1.78 1.06 3.50 

 

Table S4. The average model quality (measured by TMscore, GDT_TS and GHT_HA) of our method on 

the Orphan dataset. 

Method TMscore GDT_TS GHT_HA 

RaptorX-Single (1b) 0.41 42.05 30.34 

RaptorX-Single (1v) 0.39 39.81 29.29 

RaptorX-Single (pt) 0.45 45.25 33.69 

RaptorX-Single 0.43 43.40 32.14 
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