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Abstract 
Single-cell sequencing is frequently marred by "interruptions" due to limitations in 
sequencing throughput, yet bulk RNA-seq may harbor these ostensibly "interrupted" 
cells. In response, we introduce the single cell trajectory blending from Bulk RNA-seq 
(BulkTrajBlend) algorithm, a component of the OmicVerse suite that leverages a Beta-
Variational AutoEncoder for data deconvolution and graph neural networks for the 
discovery of overlapping community. This approach proficiently interpolates and 
restores the continuity of "interrupted" cells within single-cell RNA sequencing dataset. 
Furthermore, OmicVerse provides an extensive toolkit for bulk and single cell RNA-
seq analysis, offering uniform access to diverse methodologies, streamlining 
computational processes, fostering exquisite data visualization, and facilitating the 
extraction of novel biological insights to advance scientific research. 
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Main 
Single-cell RNA sequencing (scRNA-seq) and bulk RNA sequencing (RNA-seq) 

have emerged as essential techniques for exploring cellular heterogeneity, 
differentiation, and disease mechanisms1-6. These technologies facilitate numerous 
applications, including the conversion of bulk-seq data into single-seq analyses7, 
performing differential expression analysis8, pathway enrichment9, gene co-expression 
network analysis in bulk RNA-seq10, cell annotation11, cell interaction analysis12, cell-
trajectory inference13, evaluation of cell-state in gene sets, and prediction of drug 
response in scRNA-seq14. Many of these approaches harness open-source algorithms 
contributed by the research community 15,16. 

Nevertheless, the burgeoning variety and number of omics algorithms pose 
challenges in selecting tools that are accurate, user-friendly and appropriate for specific 
analyses. Learning to use diverse algorithms often leads to computational inefficiencies, 
as users are required to acclimate to various system. Moreover, for analyses involving 
low-data quantities, researchers commonly employ web servers and the R language 17, 
whereas Python is the language of choice for processing large-scale datasets18.  

Integrating single-cell and bulk sequencing results can be intricate, producing 
complex, multi-layered data sets that challenge the exaction of meaningful biological 
insights. A recognized impediment in single-cell sequencing is the 'interruption' -- the 
omission of certain cell types due to technological constraints on the sequencing 
platform and interruption the trajectory of cell differentiation, such as the enzymatic 
lysis-related loss of podocytes and intercalated cells19, the differentiation from HPC to 
podocytes was interrupted, and the filtering-induced absence of neutrophils, 
cardiomyocytes, neuronal cells, and megakaryocytes and the differentiation from nIPC 
to neurons was interrupted20-22. The BD Rhapsody™ single-cell platform overcomes 
granulocyte loss by accommodating their natural sedimentation23. Conversely, bulk 
RNA-seq of whole tissues intrinsically includes these 'interrupted' cells. Current 
algorithm for isolating 'interrupted' cells from bulk RNA-seq are non-existent, revealing 
a gap in the tools available for reconciling bulk RNA-seq and scRNA-seq data 

To address these challenges, we have developed OmicVerse 
(https://omicverse.readthedocs.io/ ), a comprehensive Python library designed for 
transcriptomic research. OmicVerse streamlines access to a spectrum of 
model/algorithms for bulk-seq and single-seq analyses, enhancing computational 
efficiency and visual engagement. Rewritten model/algorithms and integrated different 
pre-processing options stem from benchmark testing24 (Supplementary Note 1). 
Moreover, OmicVerse features ingle cell trajectory blending from Bulk RNA-seq 
(BulkTrajBlend), an algorithm specifically adept at resolving 'interruptions' in single-
cell data. BulkTrajBlend employs a beta-variational autoencoder and graph neural 
network-based algorithm to deconvolve single-cell data from bulk RNA-seq, 
facilitating the identification of 'interrupted' cells within the reconstructed single-cell 
landscape 
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Results 

Design concept of BulkTrajBlend and Benchmarking 

The conceptualization of BulkTrajBlend draws upon prior research, proposing that 
Bulk RNA-seq data is a composite of scRNA-seq data through a nonlinear 
superposition mechanism25,26. Central to this notion is the implementation of the beta-
variational autoencoder (β-VAE), a potent tool for approximating Bulk RNA-seq data 
to scRNA-seq representation27,28. The incorporation of β-VAE facilitates the 
construction of an encoder and decoder from single-cell data, traditionally 
characterized by unconstrained attributes. 

BulkTrajBlend advances the foundational structure of autoencoders (AE) and β-
VAE. These enhancements encompass (1) employing an AE to construct a Bulk RNA-
seq generator analogous to real Bulk RNA-seq inspired by TAPE29, subsequently 
utilizing ground truth bulk RNA-seq as input for calculating the true fraction of cells, 
(2) deploying unsupervised clustering to denoise and refine the outcomes of the decoder, 
(3) substituting the percentage of cells in the output with a secondary VAE network 
employing a linear estimation approach, and (4) employing a graph neural network 
(GNN) to sample the generated single-cell data, thereby identifying overlapping cell 
communities. 

The methodology based on β-VAE approximates the joint distribution of data 𝑥 
and latent generating factors 𝑧  by estimating the probability distribution 𝑞!(𝑧|𝑥) 
relative to the true posterior 𝑞!(𝑥|𝑧). Here, 𝑥 denotes gene expression data, and 𝑧 
characterizes the normally distributed parameters of 𝑥 post-sampling. It is noteworthy 
that this approximation introduces a level of noise and bias into the generated data. 
Consequently, unsupervised clustering is employed as a data refinement strategy to 
mitigate the impact of noise and enhance data robustness. 

Another salient constraint of β-VAE pertains to the unconstrained nature of the 
decoder's output. This contrasts with the real Bulk environment, where the cellular 
ratios are not rigidly fixed. To address this discrepancy, a simulated Bulk environment 
is constructed through the sampling of single-cell data, with the procedural details 
outlined in the "Methods" section. This process is facilitated by a deep neural network 
(DNN)-based autoencoder model, wherein the simulated Bulk serves as input, the 
encoder's output reflects the proportions of actual cells, and the simulated Bulk 
constitutes the decoder's output. Mean absolute error (MAE) is adopted as the 
evaluation metric for both the encoder and decoder. Subsequent to model convergence, 
the real Bulk data is utilized as input for the AE model, with the critical requirement 
being the alignment of the generation, based on the best-pretrained decoder, with the 
real Bulk data. At this juncture, the cell proportions output by the encoder accurately 
mirror the cell proportions of the actual Bulk (Fig.1a). 

Given that BulkTrajBlend's primary objective is to interpolate data from original 
scRNA-seq data, the focus shifts to the targeted extraction of cells from the generated 
single-cell data. Considering the inherent challenges associated with cell annotation, 
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the input single-cell data encompassing diverse cell types is expected to exhibit 
overlaps in real-world scenarios. Most of the existing community discovery (cell 
clustering) algorithms are non-overlapping30, real communities are overlapping31, and 
the GNN-based Neural Overlapping Community Detection (NOCD) algorithm 
achieves the best level in the existing baseline32. Using NOCD enabling the 
identification of overlapping cell communities. This insight is integral to the subsequent 
task of recovering and reconstructing cell differentiation trajectories within the single-
cell sequencing data (Fig.1b). 

To assess the efficacy and accuracy of BulkTrajBlend in the context of cell 
differentiation trajectory recovery, a rigorous benchmarking exercise is undertaken. The 
VAE module within BulkTrajBlend is systematically compared against alternative 
generative models, including conditional generative adversarial networks (CGAN) and 
auxiliary conditional GANs (ACGAN). The benchmarking process encompasses the 
evaluation of various performance metrics, encompassing the correlation of cell-type 
marker gene expression, marker gene similarity (quantified via cosine similarity), 
probability of trajectory conversion post-interpolation, and the degree of data 
variability following interpolation. Notably, the findings consistently underscore 
BulkTrajBlend's superior performance, manifesting as heightened correlations in 
marker gene expression, marker gene similarity, trajectory conversion probabilities, and 
minimal post-interpolation data variability in the generated single-cell data (Fig.1c-1f, 
Supplementary Note 2, Extended Data Fig.2-4). 
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Fig 1 Architecture of the BulkTrajBlend framework.  
(a) Single-Cell Profile Generation in BulkTrajBlend: This stage outlines the creation of single-cell 
profiles. An initial single-cell profile, representing the ground truth for cell fractions, and simulated bulk 
transcriptome data are fed into an autoencoder (AE). Simultaneously, real bulk transcriptome data 
provides the optimal input for the AE. The AE's predicted cell fractions define the clustering space of the 
resulting single-cell profile, which is then processed by a β-VAE to generate a profile akin to that of real 
bulk data. Any noise in this profile is refined using unsupervised clustering.  
(b) 'Interrupt' Cell Detection in BulkTrajBlend: Here, a neighborhood graph constructed via UMAP based 
on the generated single-cell data identifies nodes corresponding to individual cells and demarcates 
distinct communities by cell type. The annotated graph is the input for a Graph Neural Network (GNN) 
that detects overlapping communities and identifies mixed cell types, which are then reintegrated into 
the original single-cell profile.  
(c) Correlation Score of Cell-Type Marker Gene Expression: This component exhibits correlation scores 
for cell-type marker gene expression across three models within the Dentate Gyrus and Hematopoietic 
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datasets. 
(d) Cell-Type Marker Similarity Assessment Using Cosine Similarity: This part addresses the assessment 
of similarities between cell-type marker genes using cosine similarity. 
(e) Probability of Cell Conversion: The framework evaluates the likelihood of nIPC (neurogenic 
intermediate progenitor cells) becoming OPC (oligodendrocyte progenitor cells) against the backdrop of 
interpolated OPC cells in the Dentate Gyrus dataset, and the corresponding likelihood for the conversion 
of HSC (hematopoietic stem cells) to Basophil cells with interpolated Basophil cells in the Hematopoietic 
dataset.  
(f) Pseudotime Density for OPC Cells: This final component depicts the pseudotime density of OPC cells 
incorporating interpolated OPC cells in the Dentate Gyrus dataset, coupled with an analogous 
representation for Basophil cells post-interpolation in the Hematopoietic dataset.. 

Impact of Varied Hyperparameters on Interpolation Performance in 

BulkTrajBlend 

This study explores the effect of varying hyperparameter settings on the 
performance of BulkTrajBlend, an tool reconstruction OPC trajectories in the Dentate 
gyrus dataset and interpolating Basophil within the HPC dataset. We analyzed the 
impact of hyperparameter variations by examining five key factors: (1) the number of 
interpolated cells, (2) the correlation of marker gene expression between interpolated 
and actual cells, (3) marker gene similarity, (4) transition probabilities following 
interpolation, and (5) the prevalence of noise clusters. 

Initially, the effect of changing the size of the input single-cell data, ranging from 
1,000 to 20,000 cells, was investigated. An increase in data size resulted in higher 
correlations of marker gene expression and improved single-cell similarity as 
performed by BulkTrajBlend (Fig.2a-2b). The transition probabilities, however, were 
only slightly better (Fig.2c). Notably, an inverse relationship was found between the 
saturation of cell numbers and the frequency of noise clusters (Fig.2d). 

Next, the effect of interpolation size was examined, with sizes ranging from 1 to 
10 times the original number of target ‘interrupted’ cells. Marker gene correlation and 
single-cell similarity improved significantly within the 1-4x interpolation range, 
outperforming the 6-10x range. Conversely, larger interpolation sizes were correlated 
with a marked increase in noise clusters (Fig.2e-2h). 

Counter to expectations, a detailed analysis of the number of neurons in 
BulkTrajBlend's hidden layer, with a range from 64 to 1024, revealed that a hidden 
layer with only 64 neurons exhibited the highest marker gene correlation, similarity, 
and transition probability for interpolated single cells, while also reducing noise cluster 
occurrences (Fig.2i-2l). 

In conclusion, the ideal hyperparameter setting involve using the entire single-cell 
dataset, interpolating at a scale of 2x or 4x, and configuring a hidden layer with 64 
neurons. Under these optimal hyperparameters, BulkTrajBlend effectively reconstructs 
the nIPC-OPC developmental flow pattern in dentate gyrus datasets and the HSC-
Basophil flow pattern in hematopoietic system development datastes (Fig.2m-2n). It is 
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important to note that using the full single-cell dataset improves accuracy, it also 
significantly increases computational demands (Fig.2o). 
 

 
Fig 2 The systematic hyperparameter testing for 'interrupt' performance. The tests consider varying sizes 
of raw single-cell profiles as input in a-d: 
(a) The quantity of 'interrupt' cells generated from Basophil cells in the Hematopoietic dataset and OPC 
cells in the Dentate Gyrus dataset, respectively. 
(b) The analysis juxtaposes two aspects: on the left panel, the expression trends’ correlation of marker 
genes between the reference and generated single-cell profiles; and on the right panel, the similarity 
between marker genes of the two profiles. 
(c) The transition probability of the generated target cells is computed along a cellular developmental 
trajectory, with Basophil cells in the Hematopoietic dataset and OPC cells in the Dentate Gyrus dataset. 
(d) The extent of noise clusters present in single-cell profiles, with the Hematopoietic dataset on the left 
and Dentate Gyrus on the right. 
(e-h) The scale size of the generated target cells utilized as input is scrutinized. 
(i-l) The size of neurons in the hidden layer varies as input. 
(m) The flow trend of cell developmental trajectories of neurogenic intermediate progenitor cells (nIPC) 
are visualized on UMAP plots for the Dentate Gyrus on the left and the Hematopoietic dataset on the 
right. 
(n) Cell state transition directed graphs within the trajectory of Partition-based Graph Abstraction (PAGA) 
graphs are presented for the Dentate Gyrus on the left and Hematopoietic dataset on the right. 
(o) The model's runtime in relation to different sizes of raw single-cell profile inputs is illustrated. 
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Proficient Reconstruction of Cell Developmental Trajectories in 

Simulated "interruptions" Single-Cell Profiles 

Our study extended beyond evaluating BulkTrajBlend's ability to reconstruct 
developmental trajectories in real datasets, by also examining its performance within 
simulated datasets. We crafted three simulated datasets with specific "interruptions": 
the first omitted a subset of Ngn3High endocrine progenitor-precursor (Ngn3High EP) 
cells in mouse pancreatic development, the second removed immature granule from 
mouse dentate gyrus neurons development, and a third excluded hematopoietic stem 
cells (HSC) mesomorphic cells from the human bone marrow development. The 
reconstructed developmental trajectories within these simulated "interruptions" 
datasets were successful (Fig.3a-3c, Extended Data Fig.5a-5c, Extended Data Fig.5g-
5i). 

Within the mouse pancreatic development dataset, PAGA plots illustrated a 
baseline probability of 0.04 for Ngn3High EP cells differentiating into Pre-endocrine 
cells. In the corresponding "interruptions" dataset, this probability was 0. 
BulkTrajBlend interpolation increased the probability to 0.035 (Fig.3d-3g, Extended 
Data Fig.6a-6c). In the mouse dentate gyrus neurons development, Granule Immature 
cells had baseline differentiation probability to Granule Mature cells of 0.018, while no 
probability was observed in simulated "interruptions" dataset. BulkTrajBlend’s 
interpolation resulted in a probability elevation to 0.019 (Fig.3g, Extended Data Fig.5d-
5f, Extended Data Fig.6d-6f). In human bone marrow development, hematopoietic stem 
cells stage 2 (HSC 2) cells showed a differentiation probability into monocytes of 0.082, 
compared to 0 in the simulated "interruptions" dataset. Following BulkTrajBlend 
interpolation, the probability rose to 0.079 (Fig.3g, Extended Data Fig.5j-5l, Extended 
Data Fig.6g-6i). Notably, the original pseudotime variability in the three datasets was 
preserved after interpolation (Supplement Note 3). These analyses collectively 
highlight BulkTrajBlend's effectiveness in accurately reconstructing authentic 
developmental trajectories. 
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Fig 3 | Reconstruction of cell developmental trajectories in simulated "interruptions" within single-cell 
Profiles.  
(a-c), Sequentially depicted are the raw pancreas dataset's velocity stream, the effect of simulated 
'interruptions' via cell dropouts, and the refined dataset post-interpolation with BulkTrajBlend for 
dropout imputation as determined by pyVIA. The UMAP embedding is color-coded by cell type, 
consistent with the initial cluster annotations. Explained are the following cell types: Ngn3High EP, 
Ngn3High endocrine progenitor-precursor; Ngn3Low EP, Ngn3Low endocrine progenitor-precursor, Alpha, 
glucagon- producing α-cells; Beta, insulin-producing β-cells; Delta, somatostatin-producing δ-cells and 
Epsilon, ghrelin-producing ε-cells.  
(d-f), Displayed in sequence is the directed graph overlaid on the UMAP embeddings for the raw 
pancreas dataset, the dataset with 'interruptions' in cell dropouts, and the dataset post-BulkTrajBlend 
interpolation based on pyVIA's dropout assessments.  
(g), The confidence in cell state transitions as determined by pyVIA is presented for various datasets and 
experimental conditions. The corresponding color bars signify the methodology employed. Specifically, 
for the pancreas dataset with Ngn3High EP dropouts, the displayed confidence relates to the transition 
from Ngn3High EP to pre-endocrine cells. In the bone marrow dataset with HSC dropouts, the values 
indicate the transition confidence from HSC to Monocytes. Likewise, the Dentate Gyrus dataset with 
dropouts of Granule Immature cells shows the transition confidence from Granule immature to Granule 
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mature cells.  
(h), The variance in pseudotime, as estimated by pyVIA, is documented across different datasets and 
experimental manipulations. 
 

OmicVerse provides a comprehensive analysis platform for Bulk RNA-

seq data. 

The OmicVerse platform provides a sophisticated environment for the analysis of Bulk 
RNA-seq data. Bulk RNA-seq is an established method for investigating the 
transcriptome of combined cellular samples, tissue or biopsies6. It probes gene 
expression, isoform variations, alternative splicing, and single-nucleotide 
polymorphisms, unveiling critical biological information such as copy number 
variations, microbial contamination, transposable elements, cell-types deconvolution, 
and neoantigens. Advances in bioinformatics have enhanced the ability to reveal these 
hidden dimensions in Bulk RNA-seq data, expanding its analytical applications. 

OmicVerse integrates an extensive collection of Bulk RNA-seq analysis algorithms, 
previously developed mostly in R but now increasingly in Python, to promote their use 
and interconnectivity33, to promote their use and interconnectivity. Our integration 
enhances the existing repertoire of analysis algorithms catering to single-cell, spatial 
transcriptomics, as well as machine learning and deep learning models34. 

The platform hosts a comprehensive assortment of Bulk RNA-seq algorithms, 
including pyComBat35 for batch correction, pyDEG for differential expression analysis 
using Deseq236, t-test, and Wilcoxon tests, pyPPI for protein-protein interaction 
network using STRING web API37, pyWGCNA for gene co-expression network38 , 
pyGSEA for gene set enrichment analysis39, and pyTCGA for The Cancer Genome 
Atlas (TCGA) data analysis, complete with survival analysis (Fig.4a). 

To evaluate the OmicVerse’s analytical pipeline, we analyzed Alzheimer's disease 
(AD) data, beginning with pyDEG to identify differential expressed genes between AD 
patients and controls, highlighting the top 10 foldchange genes. Then, we executed 
Gene Set Enrichment Analysis at the gene level using pyGSEA, ordering genes 
according to p-values derived from pyDEG's differential expression analysis. We 
further built a co-expression network from the top 5000 genes exhibiting the highest 
absolute median difference (MAE), selecting the most differential expression module 
for visualization (See Supplementary Note 4 for Methods). 

OmicVerse's workflow simplifies Bulk RNA-seq analyses with minimal coding 
required (Fig.4b). Parameter adjustments may enhance visual outputs. Our analysis 
revealed 62 genes differentially expressed in AD--52 upregulated and 10 
downregulated. Box plots showcased the most altered genes (Fig.4c-4e) .And Gene Set 
Enrichment Analysis exposed over-represented pathways pertinent to Alzheimer's, 
consistent with established literature (Fig.4f-4g). Moreover, we refined our focus to the 
most variable genes from the top 5000, discerning 12 modules through pyWGCNA at 
5 soft threshold. Notably, modules 4 and 5 showed the highest rates of differential gene 
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expression, with module 5 containing APP proteins. Further probing of these modules 
gives insight into their network connectivity (Fig.4h-4j). 
 

 
Fig 4 A comprehensive overview of Bulk RNA-seq data analysis utilizing OmicVerse.  
(a) A graphical depiction showcases various analyses: differential expression analysis (pyDEG), gene set 
enrichment analysis (pyGSEA), protein-protein interaction analysis (pyPPI), and weighted gene co-
expression network analysis (pyWGCNA).  
(b) A code snippet demonstrates how to import data and execute pyDEG, pyGSEA, and pyWGCNA, 
incorporating continuous covariates.  
(c) Principal Component Analysis (PCA) embeddings characterize samples within Alzheimer's and 
control groups.  
(d) A volcano plot highlights differentially expressed genes; those upregulated are marked in red, while 
downregulated genes are indicated in blue.  
(e) A box plot reveals the top 10 genes with the most significant fold change between Alzheimer's and 
control groups.   
(f) WikiPathways enrichment results are visualized, with dot size correlating to the gene count for each 
function and color intensity reflecting p-value significance – darker hues indicate higher pathway 
enrichment.  
(g) Gene set enrichment analysis (GSEA) is executed using WikiPathways gene sets, with enrichment 
scores and p-values derived from a weighted two-sided Kolmogorov–Smirnov-like statistic and 
normalized for gene set size, producing the Normalized Enrichment Score (NES).  
(h) The optimal soft threshold is determined, where the horizontal axis represents the soft threshold 
gradient, the left vertical axis corresponds to the scale-free fit index (with higher values preferred), and 
the right vertical axis reflects the average node connectivity (with lower values preferred).  
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(i) A gene clustering dendrogram illustrates dissimilarity based on topological overlap, combined with 
module color assignments. Consequently, twelve co-expression modules are identified, each displayed 
in a distinct color. An accompanying heatmap depicts the correlation among the 5,000 genes within each 
module.  
(j) Modules 4 and 5, which are scale-free networks, are shown where each node represents a gene. The 
node size corresponds to gene connectivity, and color denotes the module affiliation, with the five most 
central genes in each module labeled. 
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OmicVerse provides a versatile multifaceted framework for Single-Cell 

RNA-Seq Analysis 

Single-cell RNA-seq is a powerful high-throughput technique that enables the 
measurement of gene expression patterns and cell types at the single-cell level. It has 
become an crucial technique for delineating cellular heterogeneity, differentiation, and 
disease mechanisms, particularly within cancer research. scRNA-seq unravels tumor 
cell diversity and tracks tumor progression to preempt cellular deterioration40. The 
breadth of scRNA-seq data analysis facilitated by OmicVerse includes cell annotation, 
examination of cell interactions, trajectories inference, states evaluation within gene 
sets, and drug responses prediction41.  The framework supports Anndata-standardized 
data processing for integrated downstream analysis and benefits from benchmarked 
data transformations24. Preprocessing methods in OmicVerse feature optimal 
logarithmic transformation with pseudo-count addition, principal-component analysis 
(PCA), and Pearson residual normalization. For visualizing reduced dimensions, it 
employs GPU-accelerated Uniform Manifold Approximation and Projection (UMAP) 
through pymde42. 

Incorporating a suite of state-of-the-art scRNA-seq algorithms, OmicVerse's 
integrated toolset includes pyHarmony43, pyCombat35, scanorama44 for batch correction, 
pySCSA45, updated with CellMarker46 2.0 and CancerSEA47 for enhanced cell-type 
annotation; CellPhoneDB12 for cell-cell interactions analysis pyVIA13 for trajectory 
inference; AUCell for geneset score evaluates based on Area Under the Curve48;  and 
scDrug for drug prediction14 (Fig.5a). The OmicVerse framework also introduces 
SEACells for metacell analysis, effectively minimizing data noise49. Importantly, the 
data format input for all the aforementioned methods is consistent, enabling users to 
conduct analyses using Anndata, with significantly improved visualization for more 
elegant results. OmicVerse's user-friendly nature and straightforward application are 
exemplified in Fig.5b. 

Illustrating Omicverse’s practical application in scRNA-seq, we analyzed a 
colorectal cancer (CRC) dataset, emphasizing the tumor microenvironment (TME) cell 
atlas integration50,51. Beginning with cell automatical annotation via pySCSA, the 
results showed high concordance with manual annotations (Fig. 5c) , and the f1_score 
reached 0.856, attesting to OmicVerse's annotation prowess(Fig. 5d). Employing 
AUCell, we confirmed the expected signaling pathway enrichment in cell-specific 
receptor pathways: B-cell receptor signaling pathway exhibited prominence in B cells, 
while the T-cell receptor signaling pathway was most pronounced in T cells and NK 
cells (Fig.5e). In addressing the sparsity inherent in previous CRC single-cell data 
analysis and enhancing resolution and depth, we harnessed SEACells to extract 
metacells from the scRNA-seq data. After 39 epochs, the metacell aggregation iteration 
converged, attaining high cell purity of 0.98, with compactness and separation values 
closely approximating 0 (Fig.5f, Extended Data Fig.7a-7c). The SEACells algorithm 
enhanced cell type differentiation, with the signal intensity for receptor pathways 
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significantly accentuated (Extended Data Fig.7d). 
Further, we traced epithelial-to-cancer cell differentiation trajectories using pyVIA 

and annotated cancer cell types within the epithelial population with pySCSA,  
delineating distinct pathways including EMT and Metastasis. This provided deep 
insights into cancer progression (Fig. 5g). By commencing the trajectory with stemness 
as the starting point, we delineated the pseudotime trajectory of cancer cell 
differentiation, revealing three distinctive directions: EMT-Differentiation, Metastasis, 
representing two stages in the transition from epithelial cells to cancer cells. This 
analysis furnished invaluable insights into the dynamics of cancer evolution. In a 
parallel approach, metacells within the epithelial cell subpopulation were subjected to 
further aggregation analysis. Due to the inherent similarities among epithelial cells, the 
average cell purity of the metacells obtained reduced to 0.9, while compactness and 
separation values remained in close proximity to 0 (Extended Data Fig.7e-7f). 
Consequently, we extrapolated the metacells of epithelial cells into trajectories, 
revealing that EMT-differentiation and Metastasis served as the two primary 
differentiation pathways, aligning with the analysis conducted on all cells (Extended 
Data Fig.7g-7i).  

Finally, to investigate the interaction network between epithelial cells and other TME 
cells, we established a CRC cell communication network using CellPhoneDB (Fig. 5h). 
The analysis encompassed immune cells, including B-cells, T-cells, NK-cells, and 
plasma cells, exploring their interactions with eight subtypes of epithelial cells. The 
analysis unveiled PPIA-BSG and LTB-LTBR as recurrent ligand-receptor pairs 
mediating the recognition of cancer epithelial cells by immune cells (Fig. 5i). Notably, 
PPIA-BSG and LTB-LTBR have been linked to a positive correlation in various cancers 
and associated with poor prognosis52,53. OmicVerse's data harmonization significantly 
streamlines this comprehensive analysis, enabling researchers to delve into 
personalized explorations as outlined in our detailed tutorial (Refer to Supplementary 
Note 5 for the Methods). 
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Fig 5 OmicVerse a comprehensive analytical platform for single-cell RNA-seq analysis.  
(a) A graphical overview highlights crucial analysis modules: cell type annotation (pySCSA), cellular 
interactions (CellPhoneDB), trajectory inference (pyVIA), pathway analysis (AUCell), and drug 
response prediction (scDrug).   
(b) An example code snippet illustrates the process for loading data and conducting analyses using 
pySCSA, CellPhoneDB, pyVIA, AUCell, and SEACells, with the inclusion of continuous covariates.  
(c) UMAP plot visualizes single-cell RNA sequencing (scRNA-seq) data from colorectal cancer (CRC) 
patients. The plot contrasts manual cell type annotations, shown in the left panel, with automatic 
annotations depicted in the right panel.  
(d) The concordance between manual and pySCSA-generated annotations is presented in a row-
normalized confusion matrix.  
(e) Pathway enrichment within CRC cells is elucidated in a UMAP visualization, with the left side 
indicating B cell receptor signaling and the right side detailing T cell receptor signaling, as analyzed by 
AUCell.  
(f) Metacell composition within the CRC dataset is revealed in a UMAP plot.  
(g) Epithelial cell subpopulations in CRC are displayed in a UMAP plot; automated annotations by 
pySCSA are demonstrated on the left, complemented by a cell state transition directed graph derived 
from a Partition-based Graph Abstraction (PAGA) trajectory on the right.  
(h) CellPhoneDB computes an interaction network between CRC cell types, offering insights into 
intercellular communication.  
(i) Scaled mean expression levels of genes that code for interacting ligand-receptor proteins, identified 
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by CellPhoneDB, are shown in dot plots to underscore the supporting interactions between immune and 
epithelial cells. 

OmicVerse performed multi-omics analysis with MOFA and GLUE 

Single-cell sequencing advancements enable the investigation of biological systems 
across different tissue levels. A key element in scRNA-seq is understanding the impact 
of chromatin accessibility variation, which is quantified by Single-cell sequencing 
assay for transposase-accessible chromatin (scATAC-seq). The conjoined analysis of 
scATAC-seq and scRNA-seq data is critical for unravelling transcriptional regulatory 
complexities. While scNMT-seq can capture both modalities simulaneously, obtaining 
unpaired data from identical tissues is more common54. Addressing this disparity, 
Graphical Linkage Unified Embedding (GLUE) offers a Graphical Linkage Unified 
Embedding solution for integrating unpaired data55, and Multi-Omics Factor Analysis 
(MOFA) elucidates the variations within omics data56. OmicVerse utilizes both GLUE 
and MOFA to reveal transcriptional regulatory dynamics. 

Within OmicVerse, the novel GLUE_pair alhorithm leverages the pearson 
correlation coefficient to compute cell similarity between scRNA-seq and scATAC-seq 
base on embedding from GLUE (Fig. 6a). The accuracy of GLUE_pair is verified using 
the Adjusted Rand Score (ARI) to confirm cell type congruence post-normalization. 
For analysis of paired cell modalities, OmicVerse applies MOFA's core algorithm, 
simplifying ensuing data analysis and visualization tasks (Fig. 6a). , all achievable with 
minimal coding (Fig. 6b). 

Demonstrating the integration of GLUE and MOFA, we analyzed simultaneous 
single-nucleus RNA-seq (snRNA-seq) and single-nucleus ATAC-seq (snATAC-seq) 
data from cortical regions of Alzheimer's disease patients. Our analysis of aligned cell 
types uncovered consistent patterns indicative of common cellular states (Fig. 6c-6d). 
From a random subset of 5,000 paired cells, MOFA unveiled 13 factors (Fig. 6e-6f). 
The initial six factors accounted for RNA-related variance, while the second for ATAC-
related variance. The interplay among these factors and cell types revealed significant 
associations: EX-signature with Factor 1, PER.END-signature with Factor 5, ASC-
signature with Factor 2, MG-signature with Factor 3, and INH-signature jointly detailed 
by Factors 6 and 4. Additionally, gene weights for each factor uncovered genes with the 
most considerable influence on their respective signatures (Refer to Supplementary 
Note 6 for the Methods, Extended Data Fig 8a-8c). 
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Fig 6!The integration of multi-omics data analysis by OmicVerse, utilizing both MOFA and GLUE:  
(a) The representation includes a graphical model of cell type correlations using GLUE, alongside an 
illustration of cell variance captured by MOFA, as indicated by the Evidence Lower Bound (ELBO).  
(b) A sample code snippet is provided for the import and processing of data via pyMOFA-pair and 
pyMOFA-object tools.  
(c) A UMAP plot showcases the distribution of cell types identified in scRNA-seq data from patients 
with Alzheimer's Disease.  
(d) Integrated cell embeddings from various omics layers are displayed in UMAP visualizations, with 
color-coding reflecting the respective omic strata.  
(e) A heatmap illustrates the percentage of variance accounted for by each factor (displayed as rows) 
across different omics datasets.  
(f) Another heatmap exhibits the results of correlation analyses between cell types and the identified 
factors.  
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Discussion 
The innovative amalgamation of the variational autoencoder and graph neural networks 
culminated in the creation of the BulkTrajBlend framework, designed for the 
deconvolution of scRNA-seq data within Bulk RNA-seq and the elucidation of precise 
cell-specific developmental trajectories in scRNA-seq. This framework demonstrates 
significant accuracy and robustness, due in large part to the novel integration of the 
topological overlap community in graph neural networks, which skillfully addresses the 
potential bias introduced by unsupervised clustering in the single cell data outcomes. 

A conceptual parallel exists between back-calculating cell proportions in Bulk 
RNA-seq from scRNA-seq and using Bulk RNA-seq as a scaffold for interpolating 
scRNA-seq. However, the latter is inherently more challenging due to the need to 
accurately interpolat inadequate target cell type. While numerous single-cell generators 
perform well in generate scRNA-seq data, the incorporation of unknown information 
remains an intrinsic challege. For example, scDesign3 is a proficient statistical 
simulator that creates realistic single-cell data by learning interpretable parameters from 
actual scRNA-seq data. Nevertheless, reconstructing cell developmental trajectories 
often requires elusive parameters, which necessitates leveraging known data from Bulk 
RNA-seq57. Hence, BulkTrajBlend is meticulously crafted based on the principles of  
scDesign357 and scGen28, with the state space and parameters informed by Bulk RNA-
seq. Notably, cell categorization in the resulting single-cell data often relies on 
unsupervised annotation. By introducing GNN, BulkTrajBlend effectively reduces 
resolution-dependent issues linked to unsupervised clustering. 

While BulkTrajBlend can efficiently extract the state space of cells from Bulk 
RNA-seq and interpolate the original scRNA-seq data, this interpolation relies on the 
selection of the reference scRNA-seq versus the reference Bulk RNA-seq data. We 
suggest that users can adopt an additional comprehensive single-cell profile to train 
BulkTrajBlend and then perform interpolation of their data, greatly avoiding generating 
BulkTrajBlend without information about the target cells. 

Upon devising the interpolation algorithm for Bulk RNA-seq in scRNA-seq, it 
became apparent that a unified Python-based framework was comprehensive dual 
analysis of these platforms was missing.  To fill this void, we developed OmicVerse, 
seamlessly integrating single-seq and bulk-seq. OmicVerse introduces a specialized 
analysis object for each omics layer, facilitating streamlined analysis and ensuring an 
intuitive user experience. OmicVerse not only has a well-established scRNA-seq 
ecosystem like Seurat, which complements Scanpy, but also has a unique Bulk RNA-
seq ecosystem, thus offering a consistent and user-friendly interface (Supplement Note 
7). 

As an integrated framework for both Bulk and single-cell RNA-seq analysis, 
OmicVerse offers a suite of analytical tools that include, but not limited to: 

1) Bulk RNA-seq: OmicVerse provides comprehensive functionalities, including 
multi-sample integration, batch effect correction, differential gene expression analysis, 
gene set enrichment analysis, protein interaction network construction, the 
identification of gene co-expression modules, and TCGA database preprocessing. 
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2) Single-cell RNA-seq: OmicVerse offers robust features, including multi-sample 
quality control, batch effect removal and integration, automated cell type annotation 
(with multiple databases support) and migration annotation, cell type and gene set 
enrichment analysis, developmental trajectory reconstruction, metacell identification, 
cellular communication network analysis, and drug response prediction. It also covers 
scATAC-seq integration and multi-omics analysis, inherently linked to RNA-seq. 

3) Bulk RNA-seq to scRNA-seq: OmicVerse augments the deconvolution of Bulk 
RNA-seq, cell proportions estimation, interpolation the scRNA-seq data and the 
recovery of developmental trajectories within scRNA-seq. Acting as a critical bridge in 
the transition from Bulk to single-cell RNA-seq. 

The OmicVerse documentation provides a detailed Application Programming 
Interface (API) reference for each algorithm, coupled with tutorials that clarify their 
functions, limitations, and synergies with other bulk and single-seq analysis tools. 
These resources are accessible via Google Colab, offering a free computational 
workspace for pipeline examinations. OmicVerse also has comprehensive developer 
documentation that makes it easy for users to add tools to the ecosystem following a 
consistent development logic. 

Our primary goal was to foster an ecosystem replete with visually engaging and 
insightful visualizations, fully integrated within the Python programming environment. 
OmicVerse allows users to perform extensive transcriptome analysis using a singlular 
programming language, tapping into the collective machine-learning knowledge and 
models within the Python community. We anticipate that OmicVerse will continue to 
grow, with updates introducing new algorithms, features, and models. Ultimately, 
OmicVerse aims to act as a driving force for the bulk and single-seq community, 
encouraging the prototyping of new models, establishing the standards for RNA-omics 
analysis, and expanding the potential for scientific exploration. 
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Methods 

Methods for BulkTrajBlend 

BulkTrajBlend is primarily designed to address the issue of "interrupt" cells in single-
cell data, making the inference of developmental or differentiation trajectories 
continuous. To achieve this goal, we designed BulkTrajBlend to generate potential 
"missing" cells from bulk RNA-seq data for inferring pseudo-temporal cell trajectories. 
This process consists of the following four steps (where communities represent cell 
types): (1) Cell fraction calculation: Using AE to construct a similuar bulk RNA-seq 
generator and ground truth bulk RNA-seq as input to calculate the true fraction of cells. 
(2) Generation of single-cell data: Using beta-VAE, bulk RNA-seq data is transformed 
into single-cell data, where each cell represents a node. (3) Computation of single-cell 
neighborhood graph: The UMAP method is employed to compute the neighborhood 
graph of the single-cell data, resulting in an adjacency matrix A. (4) Community 
detection and generation of overlapping cell communities: A Graph Neural Network 
(GNN) is utilized to identify overlapping cell communities within the single-cell data, 
generating an affinity matrix F. (5) Community trajectory inference: By incorporating 
the overlapping cell communities of target cells, the inference of community 
trajectories in the original single-cell data is improved. 
(1) Cell fraction calculation: 

To estimate the proportion of cells in Bulk RNA-seq, we first annotated the single-cell 
data with cell types and summed the gene counts of single cells of different cell types 
by cell to obtain an 𝑁 ∗ 𝑀 matrix, where 𝑀 represents the number of cell types and 
𝑁 represents the number of genes. We define this 𝑁 ×𝑀 matrix as the simulated Bulk 
RNA-seq cell type matrix, and then we sum 𝑀  columns of each row to get the 
simulated Bulk RNA-seq 𝐵"#$%&'()*, and we input the simulated Bulk RNA-seq into 
the self-encoder. In the self-encoder, we define the output of the encoder as 𝑇, and we 

make 𝑇 close to +%$,)-	/0	(1)	2)&&
+%$,)-	/0	'&&	2)&&"

, i.e., Cell Fraction, by training AE. we then define 

the output of the generator as 𝐺 and we make 𝐺 and 𝐵"#$%&'()* close to each other 
by MAE as an evaluation. After training the optimal AE, we change the input to real 
Bulk RNA-seq 𝐵3-/%4*(-%(1, at which time the output of the encoder, 𝑇, is the Cell 
Fraction corresponding to real Bulk, which we use as the range of the generator space 
for the subsequent beta-VAE. 
(2) Generation of single-cell data： 

Given a set 𝐷 = 𝑋, 𝑉,𝑊 , where 𝑥 ∈ 𝑋	represents gene expression vectors, 𝑣 ∈ 𝑉 
represents cell type proportions, satisfying 𝑙𝑜𝑔𝑝(𝑣|𝑥) = ∑ 𝑙5 𝑜𝑔𝑝(𝑣5|𝑥)	,where 𝑣 ∈
𝑅6; and 𝑤 ∈ 𝑊 represents conditionally correlated generative factors . We assume 
that gene expression vectors 𝑥 are generated by a real-world simulator 𝑆, with the 
corresponding generative factors as input, i.e., 𝑝!(𝑥|𝑣, 𝑤) = 𝑆(𝑣, 𝑤) , where 𝜃 
represents the generative model parameters. 
We aim to develop an unsupervised deep generative model that, using only the samples 
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of 𝑋, learns the joint distribution of the data x and a set of latent variables z (𝑧 ∈ ℝ7, 
where 𝑀 ≥ 𝐾) for generating observed data x, i.e., 𝑝!(𝑥|𝑧) ≈ 𝑝(𝑥|𝑣, 𝑤) = 𝑆(𝑣, 𝑤). 
However, the marginal likelihood 𝑝!(𝑥) = ∫ 𝑝!(𝑧)𝑝!(𝑥|𝑧)𝑑𝑧 required for evaluation 
and differentiation is intractable, making it difficult to compute or derive the true 
posterior density 𝑝!(𝑧|𝑥). 
To address this problem, we approximate the true posterior distribution 𝑝!(𝑧|𝑥) with 

an approximate posterior distribution 𝑞8(𝑧|𝑥) that is easier to compute. Our goal is to 

ensure that the inferred latent variables 𝑞8(𝑧|𝑥) capture the generative factors 𝑣 in a 

disentangled manner. 𝐴 disentangled representation implies that individual latent units 
are sensitive to variations in a single generative factor while being relatively invariant 
to variations in other factors. In a disentangled representation, knowledge of one factor 
can be generalized to new configurations of other factors. The conditionally correlated 
generative factors 𝑤 can remain entangled in a separate subset of 𝑧 and are not used 
to represent 𝑣. 
To achieve this, we minimize the KL divergence between the approximate posterior and 
the true posterior: 

𝒦ℒ(𝑞8J𝑧|𝑥)||𝑝!(𝑧|𝑥)K = −M𝑞8
9

(𝑧|𝑥)log Q
𝑝!(𝑥, 𝑧)

𝑝!(𝑥)𝑞8(𝑧|𝑥)
R

= −M𝑞8
9

(𝑧|𝑥)log Q
𝑝!(𝑥|𝑧)𝑞8(𝑧|𝑥)

𝑝!(𝑥)
R

= −M𝑞8
9

(𝑧|𝑥)log S𝑝!(𝑥|𝑧)𝑞8(𝑧|𝑥)T + logJ𝑝!(𝑥)K 

Here, 𝒦ℒ(𝑞8J𝑧|𝑥)||𝑝!(𝑧|𝑥)K is the variational lower bound and can be written as: 

ℒ(𝜃, 𝜙; 𝑥) =M𝑞8
9

(𝑧|𝑥)logJ𝑝!(𝑥|𝑧)K − 𝒦ℒ(𝑞8J𝑧|𝑥)||𝑝!(𝑧)K 

We introduce a constraint to shape the inferred posterior 𝑞8(𝑧|𝑥) and match it with a 

prior 𝑝!(𝑧) that controls the capacity of the latent information bottleneck. We set the 
prior as an isotropic unit Gaussian, 𝑝(𝑧) ∼ 𝒩(0, 𝐼) . The constrained optimization 
problem can be written as: 

max8,!𝔼;!(9|>)`logJ𝑝!(𝑥|𝑧)Ka s.t. 𝒦ℒ(𝑞8J𝑧|𝑥)||𝑝!(𝑧)K < 𝜖 

Here, 𝜖 is the strength of the applied constraint. With this optimization based on MLE, 
the latent variable 𝑧 can reflect the character of the ground truth data with lower error. 
By KKT conditions, we can rewrite the problem in Lagrangian form: 

ℱ(𝜃, 𝜙, 𝛽; 𝑥, 𝑧) = 𝔼;!(9|>)`logJ𝑝!(𝑥|𝑧)Ka − 𝛽J𝒦ℒ(𝑞8J𝑧|𝑥)||𝑝!(𝑧)K − 𝜖K 
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where 𝛽 is the regularization coefficient of the constraint, which limits the capacity of 
𝑧  and imposes an implicit pressure for independence in learning the posterior 
distribution due to the isotropic nature of the Gaussian prior 𝑝!(𝑧). With both 𝛽 and 
𝜖 being non-negative, the equation can be rewritten using complementary relaxation 
of KKT conditions as: 

ℱ(𝜃, 𝜙, 𝛽; 𝑥, 𝑧) ≥ ℒ(𝜃, 𝜙; 𝑥, 𝑧, 𝛽)

= 𝔼;!(9|>)`logJ𝑝!(𝑥|𝑧)Ka − 𝛽𝒦ℒ(𝑞8J𝑧|𝑥)||𝑝!(𝑧)K 

This is the expression of the 𝛽-VAE model with an additional 𝛽 coefficient. 
In this model, different values of 𝛽 can alter the level of learning pressure imposed 
during training, encouraging the learning of different representations. We assume 𝑎 
disentangled representation of the conditional independent data generative factors 𝑣 
and therefore set 𝛽 > 1 to apply a stronger constraint on the latent variable information 
bottleneck, exceeding the constraint of the original VAE. These constraints restrict the 
capacity of 𝑧 and, combined with the pressure to maximize the log-likelihood of the 
training data 𝑥, encourage the model to learn the most efficient representation of the 
data. 
(3) Computation of single-cell neighborhood graph 

Here, we used the scanpy.pp.neighbors function from Scanpy to compute the cell 
neighborhood graph. For detailed mathematical descriptions, please refer to the relevant 
papers and documentation of UMAP in Scanpy. 
(4) Community detection and generation of overlapping cell communities: 
We performed community detection on the cell neighborhood graph using a Graph 
Neural Network (GNN) model to find overlapping cell communities. GNN can learn 
relationships between nodes and divide them into different communities based on their 
similarities. Specifically, we used GNN to generate an affinity matrix 𝐹 , which 
represents the degree of association between cells. The computation is as follows: 

𝐹 := GNN!(𝐴, 𝑋) 
Here, 𝐴 is the adjacency matrix of the cell neighborhood graph, and 𝑋 represents cell 
type as the node feature. To ensure non-negativity of 𝐹, we applied element-wise ReLU 
non-linear activation function to the output layer. For detailed information about the 
GNN architecture, 

𝐹 := GCN!(𝐴, 𝑋) = ReLUJ𝐴𝐴jReLUJ𝐴𝐴j𝑋𝑊(@)K𝑊(A)K 

Here, 𝐴j = 𝐷kB
"
#𝐴j𝐷kB

"
#  is the normalized adjacency matrix, 𝐴j = 𝐴 + 𝐼+  is the 

adjacency matrix with self-loops, and 𝐷k ∗ 𝑖𝑖 = ∑ 𝐴jC ∗ 𝑖𝑗 is the diagonal degree matrix 

of the adjacency matrix with self-loops. We considered other GNN architectures and 
deeper models but did not observe significant improvements. Two main differences 
between our model and the standard GCN are: (1) batch normalization applied after the 
first graph convolutional layer, and (2) L2 regularization applied to all weight matrices. 
We found that both modifications significantly improved the performance. 
We measured the fit between the generated affinity matrix 𝐹 and the neighborhood 
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graph using the negative log-likelihood function of the Bernoulli-Poisson model: 

−log𝑝(𝐴|𝐹) = − M log
(%,D)∈F

J1 − exp(−𝐹%𝐹DG)K + M 𝐹%
(%,D)∉F

𝐹DG 

Here, 𝐸 represents the set of edges in the graph. Since neighborhood graphs of single-
cell data are typically sparse, the second term in the third sum contributes more to the 
loss. To balance these two terms, we adopted a standard technique known as balanced 
classification [18], and defined the loss function as follows: 

𝐿(𝐹) = −𝐸J(𝑢, 𝑣) ∼ 𝑃FK`logJ1 − exp(−𝐹%𝐹DG)Ka + 𝐸J(𝑢, 𝑣) ∼ 𝑃+K[𝐹%𝐹DG] 

Here, 𝑃F  and 𝑃+  represent uniform distributions over edges and non-edges, 
respectively. 
Instead of directly optimizing the affinity matrix 𝐹  as in traditional methods, we 
search for the optimal neural network parameters 𝜃∗  to minimize the (balanced) 
negative log-likelihood function: 

𝜃∗ = argmin!𝐿JGNN!(𝐴, 𝑋)K 

Through these steps, the BulkTrajBlend model computes overlapping communities in 
single-cell data, which can be used to infer "interruption" cells in the original single-
cell data. It can help reveal cell type transitions and dynamics, and model and analyze 
cell developmental trajectories. 
(5) Community trajectory inference: 
Here, we inserted the overlapping communities of target cells into the original single-
cell data and used PyVIA to infer pseudo-temporal trajectories of cell differentiation. 
For detailed inference methods, please refer to the mathematical description of PyVIA. 
Additionally, researchers can also use CellRank for community trajectory re-inference. 
 

CGAN and ACGAN model description 

CGAN (Conditional Generative Adversarial Nets) is a GAN (Generative Adversarial 
Nets) based model that generates data by training the generator and discriminator with 
the data and corresponding labels. The training process can be split into 2 parts. In the 

first part, latent variables  (dims=100) generated by standardized normal distribution 

 and its generated class label  are input into the generator to get the 

generated data. Here the generator can be summarized as a function , where  is 

the parameter of the MLP and there are 6 layers in that each layer is normalized the 
hidden dimensions are 128*256*512*1024 and the activation function is LeakyRelu. 

After getting the generated data , there will be a discriminator  , where 

 is the parameter of the MLP and there are 4 layers in each layer the hidden dimension 
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is 512, dropout rate is 0.4 and the activation function is LeakyRelu,  judging whether 

 accords with its label . Therefore, in the second part,  will be trained by the 

real data  and its label  with Adam optimizer to improve the judgement level of 

. Then the loss of  judged by will be employed to enhance the generation 

ability of  with the same optimizer. The loss functions for  and  are both 

MSEloss and the weights of the loss of the generative data and the real data are both 
0.5. 
 
In addition, ACGAN (Auxiliary Classifier GAN), which makes the generative data 
more authentic, keeps the same structure of the generator as the one in the CGAN, but 
it adds the classifier that offers the label of the input data on the output of the 
discriminator. In the training process, the loss function for the added classifier is 
CrossEntropy. 

Data pre-processing 

All single-cell data used for BulkTrajBlend training underwent the same quality control 
steps: Cells with low sequencing counts (<1,000) and a high mitochondrial fraction 
(>0.2) were excluded in further analysis. The filtered count matrix was normalized by 
dividing the counts of each cell by total molecule counts detected in that particular cell 
and logarithmised with Python library scanpy58. All Bulk RNA-seq were normalised 
using DEseq2 and `numpy.log1p` logarithmised using Python's Numpy59 package. It is 
worth noting that both Bulk and single-cell data use raw counts during AE estimation 
of the cell fraction state space, whereas both Bulk and single-cell data use normalised 
and logarithmised data during training of β-VAE. 

Performance evaluation 

To evaluated the generated and `interruption` performance of our model, a 
comprehensive analysis was conducted, encompassing the examination of five critical 
dimensions:  
(1) The count of interpolated cells, we counted the number of cells that were eventually 
used to interpolate into the raw single-cell profile.  
(2) The correlation in marker gene expression between interpolated and authentic cells, 
we first use scanpy's `scanpy.tl.rank_genes_groups` function to calculate the marker 
genes for each type of cell subpopulation in the raw single-cell profile (taking the top 
200 marker genes). Then, we use the Pearson coefficient to calculate the percentage of 
these 200 marker genes in the expression correlation between the generated single-cell 
profile and the raw single-cell profile.  
(3) Marker gene similarity, we first used scanpy's `scanpy.tl.rank_genes_groups` 
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function to calculate the marker genes for each type of cell subpopulation (taking the 
first 200 marker genes) in the raw single-cell profile versus the generated single-cell 
profile, respectively. Then, we treated marker genes as words and all the marker genes 
of each cell class as sentences, and used cosine similarity to calculate the similarity of 
marker genes of each cell subpopulation.  
(4) Transition probabilities post-interpolation We first wrapped `omicverse.pp.scale` 
and `omicverse.pp.pca` in omicverse, `omicverse.utils.cal_paga`, and computed the 
principal component PCA of the single-cell profile. We took the first 50 principal 
components and used the scanpy's `scanpy.pp.neighbour` to compute the 
neighbourhood map of the single-cell profile. Immediately after that, we calculated the 
developmental trajectory of single-cell profile with pseudotime using pyVIA, and we 
calculated the state transfer confidence for each type of cell subpopulation by taking 
pseudotime as the priority time with the neighbourhood graph as the input of 
`omicverse.utils.cal_paga`.  
(5) The number of noise clusters, we used `scanpy.tl.leiden` in scanpy to perform 
unsupervised clustering on the generated single-cell profiles, with the resolution set to 
1.0, and we identified the categories with less than 25 cells after clustering as noisy 
clusters and counted the number of noisy clusters as an assessment of the generation 
quality. 
(6) Density assessment of pseudotime, after we obtained the pseudotime of single-cell 
profiles using pyVIA as described previously, we assessed the variance of the 
pseudotime of target interpolated cells as one of the metrics for the assessment of 
developmental trajectory reconstruction 

Datasets 

Dentate Gyrus:  

Single-cell RNA-seq: Data from Hochgerner et al. (2018)60. Dentate gyrus (DG) is part 
of the hippocampus involved in learning, episodic memory formation and spatial 
coding. The experiment from the developing DG comprises two time points (P12 and 
P35) measured using droplet-based scRNA-seq (10x Genomics Chromium). The 
dominating structure is the granule cell lineage, in which neuroblasts develop into 
granule cells. Simultaneously, the remaining population forms distinct cell types that 
are fully differentiated (e.g. Cajal-Retzius cells) or cell types that form a sub-lineage 
(e.g. GABA cells) (Accession ID GSE95753). 
Bulk RNA-seq: Data from Cembrowski et al. (2016)61. Dentate gyrus (DG) is measured 
by RNA sequencing (RNA-seq) to produce a quantitative, whole genome atlas of gene 
expression for every excitatory neuronal class in the hippocampus; namely, granule 
cells and mossy cells of the dentate gyrus, and pyramidal cells of areas CA3, CA2, and 
CA1 (Accession ID GSE74985). 
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Pancreatic endocrinogenesis:  

Single-cell RNA-seq: Data from Bastidas-Ponce et al. (2019)62. Pancreatic epithelial 
and Ngn3-Venus fusion (NVF) cells during secondary transition with transcriptome 
profiles sampled from embryonic day 15.5. Endocrine cells are derived from endocrine 
progenitors located in the pancreatic epithelium. Endocrine commitment terminates in 
four major fates: glucagon- producing α-cells, insulin-producing β-cells, somatostatin-
producing δ-cells and ghrelin-producing ε-cells (Accession ID GSE132188). 
Bulk RNA-seq: Data from Bosch et al. (2023)63. RNA-sequencing was performed of 
pancreatic islets (islets of Langerhans) from mice on PLX5622 or control diet for 5.5 
or 8.5 months (Accession ID GSE189434). 

Human bone marrow:  

Single-cell RNA-seq: Data from Setty et al. (2019)64. The bone marrow is the primary 
site of new blood cell production or haematopoiesis. It is composed of hematopoietic 
cells, marrow adipose tissue, and supportive stromal cells. This dataset served to detect 
important landmarks of hematopoietic differentiation, to identify key transcription 
factors that drive lineage fate choice and to closely track when cells lose plasticity 
(https://data.humancellatlas.org/explore/projects/091cf39b-01bc-42e5-9437-
f419a66c8a45). 
Bulk RNA-seq: Data from Myers et al (2018). RNA-Seq of CD34+ Bone Marrow 
Progenitors from Healthy Donors (Accession ID GSE118944). 

Maturation of murine liver: 

Single-cell RNA-seq: Data from Liang et al (2022)65. A total of 52,834 single cell 
transcriptomes, collected from the newborn to adult livers, were analyzed. We observed 
dramatic changes in cellular compositions during liver postnatal development. We 
characterized the process of hepatocytes and sinusoidal endothelial cell zonation 
establishment at single cell resolution. We selected 'Pro-B', 'Large Pre-B', 'SmallPre-
B','B','HPC','GMP','iNP','imNP','mNP', 
'Basophil','Monocyte','cDC1','cDC2','pDC','aDC',Kupffer','Proerythroblast','Erythrobla
st', erythrocyte' (Annotation could be found in metadata of Data from Liang et al) to 
performed HPC differentiation analysis (Accession ID GSE171993). 
Bulk RNA-seq: Data from Renaud et al (2014)66. We analyze gene expression patterns 
in the developing mouse liver over 12 distinct time points from late embryonic stage (2 
days before birth) to maturity (60 days after birth). Three replicates per time point 
(Accession ID GSE58827). 
 

Construction of Simulated "interruptions" single-cell profile 

To simulate the cell "interruptions" in single-cell sequencing, we conducted 
experiments involving cell dropout across diverse datasets. In the Pancreas dataset, we 
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employed Leiden clustering and manually excluded specific clusters of Ngn3 high EP, 
resulting in a reduction of confidence in the transition from Ngn3 high EP to Pre-
endocrine to 0. In the Dentategyrus dataset, we applied Leiden clustering and manually 
removed specific clusters of Granule Immature, leading to a confidence reduction in 
the transition from Granule Immature to Granule Mature to 0. Furthermore, in the 
BoneMarrow dataset, we randomly eliminated 80% of the cells from HSC-2, causing a 
confidence drop in the transition from HSC-2 to Monocyte-2 to 0.  
To employ BulkTrajBlend for generating "interrupted" cells across various datasets, we 
generated single-cell data from the bulk RNA-seq data using BulkTrajBlend and 
filtered out noisy cells using the size of the Leiden as a constraint. In configuring the 
model for different datasets, we set the hyperparameter "cell_target_num" to be 1.5 
times, 1 time, and 6 times the number of dropped-out cell types, aligning with Pancreas, 
Dentategyrus, and BoneMarrow, respectively. Subsequently, BulkTrajBlend calculated 
the overlap of cell types in the generated single-cell data and we annotated the 
overlapping cell communities. Specifically, we selected the single-cell data in which 
dropped-out cell types were associated with adjacent cell types. 

Methods of OmicVerse integration 

We unified the downstream analyses of Bulk RNA-seq, single cell RNA-seq in 
OmicVerse. Since the downstream analyses are independent of the parameter 
evaluation of BulkTrajBlend and the analysis modules of each part are independent of 
each other, we have placed the datasets and methods used in each part in Supplementary, 
an index of which is provided here. 
(1) Bulk RNA-seq: All datasets selected, parameter setting, and methods could be 

found in Supplementary Note 4. 
(2) scRNA-seq: All datasets selected, parameter setting, and methods could be found 

in Supplementary Note 5. 
(3) Multi-omics: All datasets selected, parameter setting, and methods could be found 

in Supplementary Note 6. 
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Data availability 
All datasets analyzed in this manuscript are public and have been published in other 
papers. We have referenced them in the manuscript and, when necessary, made them 
available at https://github.com/Starlitnightly/omicverse-reproducibility. 

Code availability 
The code to reproduce the experiments of this manuscript is available at 
https://github.com/Starlitnightly/omicverse-reproducibility . The OmicVerse package 
can be found on GitHub at https://github.com/Starlitnightly/omicverse Documentation 
and tutorials can be found at https://omicverse.readthedocs.io. 
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