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Abstract 

Introduction: Antiretroviral treatment regimens can effectively control HIV replication 

and some aspects of disease progression. However, molecular events in end-organ 

diseases such as central nervous system (CNS) disease are not yet fully understood, 

and routine eradication of latent reservoirs is not yet in reach. Brain tissue-derived 

extracellular vesicles (bdEVs) act locally in the source tissue and may indicate 

molecular mechanisms in HIV CNS pathology. Regulatory RNAs from EVs have 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 29, 2023. ; https://doi.org/10.1101/2023.04.01.535193doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.01.535193
http://creativecommons.org/licenses/by-nc-nd/4.0/


emerged as important participants in HIV disease pathogenesis. Using brain tissue and 

bdEVs from the simian immunodeficiency virus (SIV) model of HIV disease, we profiled 

messenger RNAs (mRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), 

seeking to identify possible networks of RNA interaction in SIV infection and 

neuroinflammation. Methods: Postmortem occipital cortex tissue were collected from 

pigtailed macaques: uninfected controls and SIV-infected subjects (acute phase and 

chronic phase with or without CNS pathology). bdEVs were separated and 

characterized in accordance with international consensus standards. RNAs from bdEVs 

and source tissue were used for sequencing and qPCR to detect mRNA, miRNA, and 

circRNA levels. Results: Multiple dysregulated bdEV RNAs, including mRNAs, miRNAs, 

and circRNAs, were identified in acute infection and chronic infection with pathology. 

Most dysregulated mRNAs in bdEVs reflected dysregulation in their source tissues. 

These mRNAs are disproportionately involved in inflammation and immune responses, 

especially interferon pathways. For miRNAs, qPCR assays confirmed differential 

abundance of miR-19a-3p, let-7a-5p, and miR-29a-3p (acute SIV infection), and miR-

146a-5p and miR-449a-5p (chronic with pathology) in bdEVs. In addition, target 

prediction suggested that several circRNAs that were differentially abundant in source 

tissue might be responsible for specific differences in small RNA levels in bdEVs during 

SIV infection. Conclusions: RNA profiling of bdEVs and source tissues reveals 

potential regulatory networks in SIV infection and SIV-related CNS pathology. 

 

Introduction 

Human immunodeficiency virus (HIV) infection can lead to chronic immune activation 

and inflammation. Antiretroviral treatment (ART) regimens can effectively control HIV 

replication, decrease the viral load in the plasma to an undetectable level, and reduce 

disease progression. However, ART does not eliminate the latent viral reservoir, and 

end-organ diseases continue to affect people living with HIV (PLWH) (Marsh Sung and 

M. Margolis, 2018; Siliciano and Greene, 2011). The central nervous system (CNS) can 

be damaged by chronic inflammation, leading to HIV-associated neurocognitive 

disorders (HAND) (Smail and Brew, 2018; Tedaldi et al., 2015). Therefore, detecting 

HIV neuropathology and changes to the brain viral reservoir is of great importance to 
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reveal potential mechanisms of HIV CNS infection and possible HIV cure. SIV-infected 

models are of great value in the study of HIV viral pathogenesis, eradication, treatment, 

and vaccine development. Here, we studied archived samples from a pigtailed macaque 

(Macaca nemestrina) model in which subjects are dually inoculated with neurovirulent 

molecular clone SIV/17E-Fr and an immunosuppressive CD4+ T cell-depleting SIV 

swarm (B670), recapitulating classic HIV CNS pathology (Beck et al., 2018; MC et al., 

1999). 

Extracellular vesicles (EVs) are nano-sized membranous vesicles released by most 

cells. A growing body of evidence suggests broad involvement of EVs in HIV disease 

pathogenesis. EVs share signaling and biogenesis pathways with HIV, affect virus entry 

and budding, carry HIV proteins, and transfer molecules with pro-viral and anti-viral 

effects to recipient cells (Madison and Okeoma, 2015; Stenovec et al., 2019). Much like 

retroviruses, EVs shuttle bioactive molecules including RNAs and proteins, between 

cells and are abundant in biofluids (Dreyer and Baur, 2016) like plasma and CSF. 

However, the most critical site of EV actions may be in the tissue of origin. Tissue-

specific EVs can be used to assess the health of the tissue of origin (such as the brain) 

and may also betray disease mechanisms in the periphery (Li et al., 2020). Recent 

advances by our group and others allow us to separate and characterize brain tissue-

derived EVs (bdEVs)  (Huang et al., 2020a) with high rigor. Exploring the molecular 

components of bdEVs may hint at mechanisms of CNS pathogenesis in the brain 

(Huang et al., 2022a, 2020b). 

Previous studies investigating differences in linear RNAs (mainly messenger RNAs, 

(mRNAs) (Biswas et al., n.d.; Renga et al., 2012), and microRNAs (miRNAs) (Biswas et 

al., 2019; Chettimada et al., 2020; Lu et al., 2017; Marques de Menezes et al., 2020; 

Sun et al., 2012a; Witwer et al., 2011)) in HIV have yielded insights into pathogenic 

mechanisms that may involve RNA. Circular RNAs (circRNAs) may also contribute 

towards regulation of HIV replication as nodes in “competing endogenous RNA” (ceRNA) 

networks (Zhang et al., 2018a). circRNAs are covalently closed single-stranded RNAs 

that are thought to bind specific miRNAs as “sponges” and thus modulate miRNA 

posttranscriptional regulatory roles (Liu and Chen, 2022). Since circRNAs are generated 

from alternative splicing of pre-mRNAs, they also affect linear RNA transcription by 
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competing with canonical RNA splicing from the same pre-mRNAs (Zhang et al., 2020). 

Like miRNAs, circRNAs are highly stable RNAs and are strong candidates for disease 

biomarkers. However, regulatory interactions of circRNAs and miRNAs in host immune 

responses and HIV pathogenesis are largely undetermined, particularly in HIV CNS 

infection.  

We thus assessed potential ceRNA interactions in brain tissue and bdEVs during SIV 

infection and neuroinflammation using RNA sequencing (RNA-Seq) and quantitative 

PCR (qPCR) validation. We report associations of mRNA, miRNA, and circRNA in SIV 

infection and SIV-associated CNS pathology. mRNA differences in brain tissue and 

bdEVs largely correlated with each other, while miRNA and circRNA findings suggest 

that several circRNAs in brain tissue may contribute to differential abundance of specific 

miRNAs in bdEVs. Our study thus proposes novel functions of bdEVs and ceRNAs in 

HIV infection and HAND. 

Methods 

Tissue sample collection and processing  

All samples were from archives of studies approved by the Johns Hopkins University 

Institutional Animal Care and Use Committee and conducted following the Weatherall 

Report, the Guide for the Care and Use of Laboratory Animals, and the USDA Animal 

Welfare Act. Postmortem occipital cortex tissues were obtained from pigtailed 

macaques (as listed in Table 1) that were not infected (n=6) or dual-inoculated with SIV 

swarm B670 and clone SIV/17E-Fr (n=16) (Beck et al., 2018; MC et al., 1999). SIV-

inoculated groups, including samples collected during acute infection (n=5, 7 days post-

inoculation (dpi)) and chronic infection (n=11, 84-101 dpi). According to pathology 

examination (Mangus et al., 2015; Mankowski et al., 2002), the chronic infection group 

was divided into subjects without (CP-, n=7) or with CNS pathology (CP+, SIV-

encephalitis, n=4). Tissue samples were stored at −80°C.  

Separation of EVs from brain tissue 

bdEVs were separated from frozen occipital cortex tissues using our published protocol 

with minor modifications (Huang et al., 2022a, 2022b, 2020a). Before extraction, a small 
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(∼50�mg) piece of tissue was stored at –80°C for later RNA extraction from brain 

homogenate (BH). After tissue digestion by 75 U/ml collagenase type 3 (Worthington 

#CLS-3, S8P18814) for 15 min, the dissociated tissue was spun at 300 × g for 10 min 

and 2000 × g for 15 min at 4°C. Cell-free supernatant was then filtered through a 0.22 

μm filter, and followed by a 10,000 × g spin for 30 min at 4°C. The 10K supernatant was 

then separated by size exclusion chromatography (SEC) and concentrated. 

Nanoflow cytometry 

The concentration and size profile of bdEV preparations were measured by nanoflow 

cytometry (NFCM; Flow NanoAnalyzer, NanoFCM, Inc.). The instrument was pre-

calibrated for concentration and size measurements with 250�nm silica beads and a 

silica nanosphere cocktail (diameters of 68, 91, 113, and 151�nm), respectively. Both 

calibration materials were from the manufacturer, NanoFCM. bdEV preparations were 

diluted as needed (typically 1:200 dilution), and particle events were recorded for 1 

minute. Particle numbers and sizes were calculated based on the calibration curve, flow 

rate, and side scatter intensity. 

Single particle interferometric reflectance imaging (SP-IRIS) 

Measurements were performed per manufacturer's instructions and as previously 

described (Arab et al., 2021). Briefly, A total of 10  μL bdEVs were diluted in 35  μL 

incubation buffer (IB). Diluted EVs were then incubated overnight at room temperature 

on ExoView chips (NanoView Biosciences) printed with anti-human CD81, CD63, CD9, 

and isotype controls. After incubation, chips were washed with IB 4 times for 3 min and 

then imaged in the ExoView scanner (NanoView Biosciences, Brighton, MA) by 

interferometric reflectance imaging detection. Data were analyzed using NanoViewer 

2.8.10 Software (NanoView Biosciences). 

Transmission electron microscopy 

bdEV preparations (10 μL) were adsorbed to glow-discharged 400 mesh ultrathin 

carbon-coated grids (EMS CF400-CU-UL) for 2 minutes following our published protocol 

(Huang et al., 2020a). Grids were rinsed 3 times with tris‐buffered saline and stained 

with 1% uranyl acetate with 0.05% Tylose. Grids were aspirated, dried, and immediately 
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imaged with a Philips CM120 instrument set at 80 kV. Images were captured with an 8-

megapixel AMT XR80 charge‐coupled device. 

bdEV and BH RNA extraction  

bdEV RNAs were extracted by adding Trizol LS (Thermo Fisher 10296028) to 100 μL 

bdEV resuspension. After phase separation, RNAs were purified by miRNeasy Mini Kit 

solutions (Qiagen217004) and Zymo-Spin I Columns (Zymo ResearchC1003–50) 

according to the manufacturer's instructions.  

BH RNA was extracted by adding Trizol (Thermo Fisher15596018) and homogenizing 

tissues with Lysing Matrix D (MP Biomedicals116913100) in a benchtop homogenizer 

(FastPrep-24, MP Biomedicals) at 4.0 m/s for 20 seconds. After homogenization, the 

supernatant was collected, and RNA was isolated by miRNeasy Mini Kit solutions 

(Qiagen217004) and Zymo-Spin IIICG Columns (Zymo Research C1006-50-G) 

following the manufacturer's instructions. 

SIV Gag RNA quantification by qPCR/ddPCR 

Viral RNA was measured by quantitative PCR (qPCR) or digital droplet PCR (ddPCR) 

after reverse transcription as described (Abreu et al., 2019; Shen et al., 2003). Viral 

RNA from parietal cortex tissues and CSF was isolated by QIAamp Viral RNA Mini kit 

(Qiagen 1020953). qPCR of SIV gag RNA was by QuantiTect Virus kit (Qiagen 211011) 

or ddPCR using One-Step RT ddPCR Advanced Kit for Probes (Bio-Rad 1864022). 

Copy numbers were calculated with a regression curve from control RNA transcript 

standards and normalization to per µg RNA in cortex or per ml CSF. Primers/probes for 

SIV gag RNA were: SIV21 forward 5’-GTCTGCGTCATCTGGTGCATTC-3’; SIV22 

reverse 5`’-CACTAGGTGTCTCTGCACTATCTGTTTTG-3’; SIV23, 5’ FAM/3’-Black hole 

quencher-labeled probe 5′-CTTCCTCAGTGTGTTTCACTTTCTCTTCTG-3 (Integrated 

DNA Technologies). 

Small RNA sequencing 

8 µl of bdEV (from a total of 40 μl RNAs) and 20 ng of BH RNAs were used for small 

RNA library construction by the D-Plex Small RNA-seq Kit (Diagenode C05030001). D-

Plex Single Indexes for Illumina - Set A (DiagenodeC05030010) were attached 
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according to the manufacturer’s protocol. The yield and size distribution of the small 

RNA libraries were assessed using the Fragment Bioanalyzer™ system with DNA 1000 

chip (Agilent5067-1505). 170-230 bp libraries were selected with agarose gel cassettes 

(Sage Science HTG3010) on the BluePippin Size Selection System (Sage Science). 

Multiplexed libraries were equally pooled to 1nM and sequenced on the NovaSeq 6000 

system (Illumina) with the NovaSeq 6000 SP Reagent Kit v1.5 (100 cycles) (Illumina 

20028401). 

Small RNA sequencing data analysis 

Raw reads were first trimmed from polyA-tails using cutadapt software, and the PCR 

duplicates were removed by collapsing identical sequences with seqkit. De-duplicated 

reads were trimmed from the 5'-UMI sequences and size-selected 

using cutadapt software. Trimmed and size-selected (>15 nt) reads were aligned to 

custom-curated hg38 reference transcriptomes using Bowtie, allowing 1 mismatch 

tolerance (-v 1 option) as follows. First, reads were mapped to RNA species with low 

sequence complexity and/or high repeat number: rRNA, tRNA, RN7S, snRNA, snoRNA, 

scaRNA, vault RNA, RNY, and mitochondrial chromosome (mtRNA). Unmapped reads 

were aligned sequentially to mature miRNA, pre-miRNA, protein-coding mRNA 

transcripts (mRNA), and long non-coding RNAs (lncRNAs). Unmapped reads were 

aligned to the remaining transcriptome (other ncRNAs: mostly pseudogenes and non-

protein-coding parts of mRNAs). Finally, all remaining unmapped reads were aligned to 

the human genome reference (rest hg38) corresponding to introns and intergenic 

regions. Data scaling was done using R/Bioconductor packages DESeq2, and scaled 

data were visualized with principal component analysis (PCA). Differential gene 

expression was quantified using R/Bioconductor packages DESeq2 (Love et al., 2014) 

and edgeR (Smyth et al., 2018) with sequences identified by both packages defined as 

differentially expressed (FDR adjusted p-value < 0.05). RefFinder (Xie et al., 2012) was 

used for evaluating and screening internal reference genes from sRNA sequencing 

datasets. mRNA/protein interaction, cluster mRNA/protein function prediction, and 

cellular component annotations were done by Protein-Protein Interaction Networks 

Functional Enrichment Analysis (STRING) (Szklarczyk et al., 2019). Hierarchical 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 29, 2023. ; https://doi.org/10.1101/2023.04.01.535193doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.01.535193
http://creativecommons.org/licenses/by-nc-nd/4.0/


clustering of sRNAs was performed with Heatmapper (Babicki et al., 2016). miRNA-

mRNA interaction predictions were conducted by TargetScan (McGeary et al., 2019) 

and miRDB (Chen and Wang, 2020). To assess whether SIV infection-associated sRNA 

differences in the extracellular space reflect overall changes in the brain tissue, 

Pearson’s correlation was used to evaluate the correlation of sRNA fold changes in 

bdEVs with BH. Two-tailed p < 0.05 was considered statistically significant. Analysis 

was conducted in R 4.2.1 and GraphPad Prism. 

Total transcriptome sequencing 

1 µg of BH RNAs was incubated with 1 U/µg RNase R (Lucigen RNR07250) at 37°C for 

30 min. RNase R-treated RNAs were then re-isolated by RNA Clean & Concentrator™-

5 (Zymo Research R1014) according to the manufacturer’s protocol. 100 ng of total BH 

RNA with and without RNase R treatment was then used to construct cDNA libraries by 

Illumina Stranded Total RNA Prep Ligation with Ribo-Zero Plus (Illumina 20072063). A 

Ribo-Zero Plus kit was used to deplete ribosomal RNA in these samples, and library 

construction was then done per manufacturer’s protocol. Indexes were attached using 

IDT for Illumina RNA UD Indexes according to the manufacturer’s protocol. The yield 

and size distribution of the total RNA libraries were assessed using the Fragment 

Bioanalyzer™ system with DNA 1000 chip (Agilent 5067-1505). Multiplexed libraries 

were equally pooled to 1nM and sequenced with the NovaSeq 6000 system (Illumina) 

and NovaSeq 6000 S2 Reagent Kit v1.5 (300 cycles) (Illumina 20028314). 

Total transcriptome sequencing data analysis 

The raw reads were first trimmed from contaminating adapter sequences using cutadapt 

software. The trimmed and size-selected (>15 nt) reads were then aligned using 

Bowtie2 (default settings) to the manually curated M. mulatta mRNA reference 

containing a single (main) transcript per each gene (designated with a gene symbol, 

e.g., GAPDH). All reads which did not align to the above mRNA were mapped to the 

combined M. mulatta cDNA and ncRNA references from Ensembl (designated with 

transcript ID, e.g., ENSMMUT00000047080.3). The numbers of reads mapped to each 

transcript were extracted using eXpress software based on a previous publication 

(Roberts and Pachter, 2013). 
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circRNA identification by Sequential Alignment (CiRISeqA) 

All reads aligned to the M. mulatta combined cDNA and ncRNA references from 

Ensembl were discarded. The remaining reads were additionally filtered from non-

circular RNA sequences by removing all reads mapped to "non-modified" M. mulatta 

CircAtlas v.2 references (downloaded from: http://circatlas.biols.ac.cn/) using the same 

Bowtie settings. Next, the remaining reads were aligned to "duplicated" CircAtlas v.2 

reference transcripts that correspond to sequences mapped to the junction regions of 

circRNAs. The numbers of reads mapped to each duplicated RNA reference were 

extracted using eXpress software based on a previous publication (Roberts and Pachter, 

2013). See also Supplementary Figure 2.   

circRNA identification by circExplorer2 

The genome and gene annotations for M. mulatta were obtained from UCSC (BCM 

Mmul_8.0.1/rheMac8). First, raw files were aligned to the genome using STAR 

(chimSegmentMin 10), and the chimeric junction files were used to count circRNAs 

using circExplorer2. circRNAs identified by both our custom pipeline (above) and 

circExplorer2 were included in the following analysis.  

circRNA data analysis 

Differential circRNA expression was quantified using R/Bioconductor packages edgeR. 

CircRNAs with false discovery rate (FDR) < 0.05 were defined as significantly 

differentially abundant. Significant circRNAs from both CiRISeqA and circExplorer2 

were included in the analysis. miRanda (Betel et al., 2010) (MMU) was used to predict 

interactions of circRNAs and mature miRNA sequences (912 macaque miRNAs, 

miRBase). 

Individual qPCR assays for miRNAs 

Individual qPCR assays (Thermo Fisher) were performed as described (Witwer et al., 

2011) for miRs-19a-3p (Assay ID 000395), 29a-3p (002112), 146a-5p (000468), 449a-

5p (001030), and let-7a-5p (000377). Data were adjusted to the geometric mean of Cq 

values of selected internal reference genes: miRs-124-3p (003188_mat), 125b-5p 

(000449), and 23b-3p (245306_mat). 
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Individual qPCR assays for circular RNAs 

1 µg BH RNAs and 5 µl bdEV RNAs were used to generate cDNA by iScript ™ Reverse 

Transcription Supermix for RT-qPCR (Bio-Rad 1708840). Expression levels of circRNAs 

were evaluated by qPCR using iTaq Universal SYBR ® Green Supermix (Bio-Rad 

1725120). Divergent primers for circRNAs were designed using the primer3 webtool 

(Untergasser et al., 2012). The 3' end of a circRNA is fused to its 5' end and then 

submitted to primer3 for the primer design using default parameters. GAPDH (forward 

5’-CCATGGGGAAGGTGAAGGTC-3’, reverse 5’-TGAAGGGGTCATTGATGGCA-3’) 

was used as a housekeeping gene for circRNA quantification in BH, while the geometric 

mean of Cq values of selected internal reference genes (miRs-124-3p, 125b-5p, and 

23b-3p) was used as a reference for circRNA in bdEVs. 

Statistical analysis, data availability, and EV-TRACK 

Statistical significance of particle count, size distribution differences, miRNA level, and 

circRNA level between different groups were determined by the Brown-Forsythe and 

Welch ANOVA tests.  

We have submitted all relevant details of our experiments to the EV-TRACK 

knowledgebase (EV-TRACK ID: EV230365). Nucleic acid sequencing data (currently 

being deposited with NCBI databases and available on request during review).  

Results 

Following the protocol illustrated in Figure 1A, bdEVs were separated from the occipital 

brain tissue of uninfected and SIV-infected macaques. After basic bdEV 

characterization, bdEVs and source brain homogenate (BH) were subjected to small 

RNA-Seq for mRNA and miRNA identification, while BH was subjected to parallel total 

RNA-Seq for mRNA and circRNA identification. 

Particle counts, sizes, and morphology in SIV infection 

Particle count and size distribution per 100� mg tissue input were determined for bdEV 

preparations by NFCM. Fewer particles were recovered from acute-phase samples 

compared with the uninfected and chronic infection without CNS pathology (CP-; Figure 

1B). No overall particle size distribution difference was detected by NFCM (Figure 1C). 
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Transmission electron microscopy (TEM) revealed oval and round particles, consistent 

with EV morphology (Figure 1D). EV-associated membrane proteins CD81, CD63, and 

CD9 were detected by single-particle interferometric reflectance imaging sensing (SP-

IRIS) (Supplementary Figure 1). To assess viral replication, an SIV RNA gag amplicon 

was measured by qPCR in parietal cortex tissue and CSF corresponding to each brain 

sample (Figure 1E). More gag amplicons were observed in the CP+ group compared 

with the CP- group in parietal cortex, while no statistically significant differences 

between groups were observed in CSF.  

bdEV sRNA dysregulation in SIV infection and CP+ 

Ligation-independent small RNA-Seq of bdEVs yielded an average of 38.7M (± 5.4M) 

reads per sample (M = million, 1 x 10^6). After adapter clipping and removing reads 

shorter than 15 nt, 85.04% (± 1.81%) of bdEV reads mapped to the human genome 

(hg38). PCA based on sRNA profiles (Figure 2A) indicated a clear separation of the 

acute group. In the CP+ group (n=4), sRNA contents of three bdEV samples were 

separated from the other groups, while one was close to the CP- group. Differential 

expression analysis was conducted to identify differentially abundant sRNAs in SIV 

versus uninfected and CP+ versus CP- based on adjusted p-value < 0.05 (Figure 2B). 

Most differences were between acute and uninfected (71 more, 6 less abundant), 

followed by CP+ versus uninfected (46 more, 2 less abundant), and CP+ versus CP- (2 

more abundant). No significantly different sRNAs were identified in CP- versus 

uninfected. Among all dysregulated sRNAs, 38 were consistently dysregulated in both 

acute and CP+ versus uninfected, while 2 were also dysregulated in CP+ versus CP- 

(Figure 2C). As all 38 sRNAs were mapped to protein-coding messenger RNAs 

(mRNAs), STRING analysis was used to examine the potential functions of their parent 

mRNAs. 30 out of 38 mRNAs had a high interaction confidence score as predicted by 

STRING (0.7 on a scale of 0-1) (Figure 2D). Gene ontology (GO) enrichment analysis 

indicated potential involvement in immune regulation, including cytokine-mediated 

signal pathways, interferon-gamma mediated signal pathways, immune system process, 

immune effector process, and defense responses to viruses. (Figure 2E). To examine 

the associations of CP+ and bdEV sRNA levels, 10 sRNAs with putative differential 
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abundance exclusively between CP+ and uninfected (Figure 2D, sRNAs indicated in the 

upper right of the Venn diagram) were then visualized by unsupervised clustering 

(Figure 2F). Based on the profile of these sRNAs, subjects in CP+ and uninfected 

groups clustered together (Figure 2F). Although no significant GO ontology enrichment 

was found for these sRNAs (data not shown), many have known involvement in 

immunity and immune regulation based on the Database for Annotation, Visualization 

and Integrated Discovery (DAVID) (Sherman et al., 2022), including protein tyrosine 

phosphatase (PTPRC), complement C7 (C7), IFI6 interferon alpha inducible protein 6 

(IFI6), CD74, and HLA-DRA.  

bdEV miRNA dysregulation in SIV infection and CP+ 

Since we previously reported miRNA dysregulation in biofluids during retroviral infection 

(Huang et al., 2023; Witwer et al., 2011; Zhao et al., 2020), and since our sample size 

was relatively small, we further assessed differentially abundant bdEV miRNAs based 

on unadjusted p-value alone. In line with differences for other sRNAs, more miRNA 

differences were apparent in the comparison of acute versus uninfected (n=24) than in 

the CP+ versus uninfected (n=14), or CP+ versus CP- groups (n=9) (Figure 3A and B). 

Only 3 miRNAs were dysregulated in both acute and CP+ versus uninfected, while 3 

miRNAs were dysregulated in both CP+ versus uninfected and CP+ versus chronic 

groups (Figure 3B). Unsupervised clustering of 20 CP+-associated miRNAs suggested 

two miRNA clusters that differentiate CP+ and uninfected (Figure 3C). miRNA profiles of 

CP- are intermediate, with greater variance between subjects. Individual qPCR assays 

confirmed that miR-19a-3p, let-7a-5p, and miR-29a-3p were less abundant during SIV 

infection (acute group), and that miRs-146a-5p and -449a-5p were dysregulated in the 

CP+ group (Figure 3D). 

circular RNA dysregulation in SIV-infected brain 

After ribosomal RNA depletion, RNAs from bdEVs and source BH were used to make 

test libraries for total RNA-Seq. High-quality libraries with expected insert sizes were 

obtained only from BH-derived RNA, consistent with previous observations that RNAs in 

EVs are mostly shorter fragments (data not shown). BH RNA was then used for total 
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RNA sequencing. RNase R-untreated and RNase R-treated RNAs were sequenced to 

identify mRNAs and circRNAs. 

PCA was conducted on mRNA and circRNA profiles of BH from uninfected, acute-

phase, CP-, and CP+ groups (Figure 4A). Similar to the bdEV sRNA patterns, both 

mRNA and circRNA profiles in the acute BH group showed separation from other 

groups. mRNA and circRNA profiles in the uninfected group also separated from the 

three infected groups, indicate an influence of SIV infection on RNA profiles (Figure 4A). 

According to the differential expression analysis, in line with bdEVs, most differentially 

expressed mRNAs in BH were found in the comparison of the acute and uninfected 

(n=245), followed by CP+ versus uninfected (n=78) (Figure 4B, left). No significantly 

different mRNAs were identified in either CP+ versus CP- or CP- versus uninfected. 69 

mRNAs were consistently dysregulated in both acute and CP+ versus uninfected 

(Figure 4B, left). For circRNAs, most differentially abundant circRNAs in BH were also 

found in the comparison of the acute and uninfected (n=19), followed by CP+ versus 

uninfected (n=10), CP- versus uninfected groups (n=10), and CP+ versus CP- (n=4) 

(Figure 4B, right). However, only a few circRNAs were identified in more than one 

comparison (Figure 4B, right). Furthermore, the linear RNAs corresponding to most of 

the differentially expressed circRNAs did not change significantly in SIV infection or CP+ 

(Figure 4C, grey dots). An exception was the linear transcript IFI6, which was positively 

correlated with circ-IFI6_0001 (Figure 4C, shown in red dots). Individual qPCR assays 

confirmed dysregulation of circ-IFI6_0001, circ-EXOC2_0008, circ-PRKCE_0004, circ-

PPP2R5A_0001, circ-RNF41_0003, and circ-ENC1_0001 in SIV-infected BH (Figure 

4D). 

bdEVs reflected mRNA and circRNA changes in BH after SIV infection 

To assess whether SIV infection-associated sRNA differences in the extracellular space 

reflect overall changes in the brain tissue, we assessed the correlation of sRNA fold 

changes in bdEVs with BH by Pearson’s correlation analysis (Figure 5A and 5B). 

sRNAs significantly different (adjusted p-value < 0.05) in both bdEVs and BH when 

comparing acute with uninfected (n=43, Figure 5A) and CP+ with uninfected (n= 22, 

Figure 5B) were included in the analysis. A significantly positive correlation of sRNA 
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profiles between bdEVs and BH was observed for both acute vs uninfected (R=0.836, 

p<0.001) and CP+ vs uninfected (R=0.647, p=0.001) (Figures 5A and 5B). When 

comparing sRNA profiles between CP+ and CP-, two differentially abundant sRNAs, 

HLA-C and MX1, were identified only in bdEVs but not in BH. However, the pattern was 

consistent between bdEVs and BH, with a higher abundance in acute and CP+, and 

lower in uninfected and CP- (Supplementary Figure 3).  

circRNA differences in bdEVs were also tested by individual qPCR assays. Among six 

dysregulated circRNAs identified in SIV-infected BH (as shown in Figure 4D), only circ-

IFI6_0001 was consistently more abundant in CP+ for both bdEVs and BH (Figure 5C, 

left). The corresponding linear transcript, IFI6, was also more abundant in acute and 

CP+ compared with uninfected (sequencing data), and for both bdEVs and BH (Figure 

5C, right). 

To identify potential ceRNA regulation networks involving bdEVs and BH, bdEV 

miRNAs (Figure 3D) and BH circRNAs (Figure 4D) verified by qPCR were used as input 

for target prediction, along with mRNAs. circRNAs, miRNAs, and mRNAs were 

represented as nodes, while the edges represented interactions between items in the 

network (Figure 5D). miRanda predicted that three circRNAs in BH (Figure 5D, blue 

rectangle) potentially bind with four miRNAs identified in bdEVs (Figure 5D, orange 

ellipse). Next, overlapping mRNA targets of these four miRNAs were predicted by 

TargetScan and miRDB (Supplementary Figure 4). Based on the overlapping mRNA list 

and differences in bdEVs, four potential mRNA targets are indicated in Figure 5D (green 

hexagon).  

Discussion 

The potential regulatory roles of ceRNA networks in HIV/SIV-infected brains and 

neuroinflammation are largely undetermined, for both brain tissue and extracellular 

particles like bdEVs that may mediate communication between cells. Here, we 

systematically examined RNA profiles of bdEVs and source brain tissues of SIV-

infected HIV models. Overall bdEV sRNA profile and brain tissue transcriptome 

differences were most pronounced for the acute infection group, suggesting that 

retroviral infection has the greatest effect on host RNA processing in brain early in 

infection. However, some differences were also observed in association with CNS 
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pathology in chronic infection. GO enrichment analysis suggested that dysregulated 

mRNAs (or fragments thereof) in bdEVs are significantly involved in inflammation 

regulation and immune responses. Furthermore, competing RNA network analysis 

showed that several circRNAs in brain cells may affect the miRNA and mRNA contents 

of bdEVs. ceRNA networks in the brain and bdEVs may contribute to gene expression 

modulation in HIV/SIV infection and neuropathology. Further studies are needed to 

confirm and characterize the extent of these associations. 

One aspect of our findings regarding the correlation of EV abundance and HIV infection 

contrasts starkly with earlier reports. Whereas previous studies (Bazié et al., 2021; 

Chettimada et al., 2020; Hubert et al., 2015; WW et al., 2021), including our own recent 

study on SIV infection (Huang et al., 2023), report more abundant plasma EVs during 

SIV infection, especially during acute infection phase, we report lower particle 

concentrations in bdEV preparations from acute-infected subjects. Virions themselves 

are unlikely to explain either the EV abundance in plasma or in brain: although virions 

co-isolate with EVs (Hoen et al., 2016), they are not abundant enough even in acute 

infection to contribute to overall particle increases in plasma. Instead, the cellular origins 

and uptake patterns of EVs in the peripheral blood (Auber and Svenningsen, 2022; 

Grenier-Pleau et al., 2020; Li et al., 2020) and brain compartments (Arab et al., 2022; 

Huang et al., 2022a) may be responsible for the seemingly discrepant findings. Studies 

of EV release/uptake dynamics of different cell types and during retroviral infection and 

inflammation are merited. 

Previous studies of cell models revealed host gene expression changes associated with 

HIV infection and HIV-associated neurocognitive disorders (Chang et al., 2011; 

Devadas et al., 2016; Ojeda-Juárez and Kaul, 2021; Sanna et al., 2021). Here, we for 

the first time compared mRNA changes in bdEVs and brain tissues in the SIV/HIV 

infection model, including differences associated with CNS pathology. We found that 

acute infection and chronic pathology (CP+) groups shared many common mRNA 

differences when compared with the uninfected group, while in the CP- group, no 

significant differences were detected compared with uninfected group. 8 signature 

mRNAs in bdEVs were dysregulated in the CP+ group, possibly representing genes that 

are especially affected in SIV-associated CNS pathology. These genes encode key 
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immune system proteins such as CD74 and HLA-DRA, involved in antigen processing 

and presentation (Karakikes et al., 2012; Su et al., 2017). Another mRNA was for the 

interferon γ-inducible protein 16 (IFI16) (Altfeld and Gale, 2015a), which modulates HIV 

transcription, latency reactivation, and HIV replication by targeting the transcription 

factor Sp1 to drive viral gene expression (Hotter et al., 2019) or as the immune sensor 

of retroviral DNA (Altfeld and Gale, 2015b; Jakobsen et al., 2013). These mRNAs are 

differentially abundant not just in BH, but also in bdEVs (Figure 5A-B), suggesting that 

CNS cells may use bdEVs to transfer antiviral immune response elements during SIV 

infection. 

In addition to mRNAs, we examined miRNAs, a class of RNA also reportedly altered in 

HIV infection (Klase et al., 2012; Swaminathan et al., 2014, 2012a). Here, only subtle 

differences were detectable, but several could still be verified by qPCR. Two miRNAs 

(let-7a-5p and miR-29a-3a) were previously reported in HIV infection or inflammation. 

Consistent with a previous report that let-7 family miRNAs were less abundant in CD4+ 

T cells from HIV-1-infected patients compared with uninfected controls and long-term 

non-progressors, we found less let-7a-5p in bdEVs from acute infection (Swaminathan 

et al., 2012b). Since let-7 might regulate host immune responses by increasing IL-10 

levels (Swaminathan et al., 2012b) or affecting other chemokine and cytokine-related 

pathways (Venkatachari et al., 2017) in peripheral blood cells, it might also function in 

SIV CNS infection by similar pathways. miR-29a, which we previously also found to be 

less abundant in peripheral plasma EVs during acute infection (Huang et al., 2023) may 

directly target many regions of HIV RNA to inhibit HIV viral  translation and replication 

(Ahluwalia et al., 2008; Nathans et al., 2009; Sun et al., 2012b), even during HIV latency 

(Patel et al., 2014a, 2014b). We also identified two miRNAs correlated with SIV-

associated CNS pathology, including neuroinflammation-related miRNA-146a-5p (Kim 

et al., 2022; Rom et al., 2010; Zhao et al., 2023) and brain development-related miR-

449a-5p(Tan et al., 2020; Wu et al., 2014). Furthermore, let-7a, miR-29a, and miR-449a 

were key components of a ceRNA network we constructed between BH and bdEVs 

(Figure 5D), indicating that their levels in bdEVs, as well as those of target mRNAs, may 

be regulated by upstream circRNA expression in brain tissue. 
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We also profiled circRNAs in SIV-infected brain tissues. Specific circRNAs have 

differential abundance not only in the acute and CP+ groups, but also in the CP- group 

compared with controls. These circRNAs include circ-PRKCE_0004, circ-

PPP2R5A_0001, and circ-RNF41_0003, as also verified by qPCR assays, indicating 

persistent RNA dysregulation even in asymptomatic chronic infection. We also found 

two circRNAs, circ-IFI6_0001 and circ-EXOC2_0008, with levels consistent with 

dynamic changes during the course of SIV infection and disease. The level of circ-

IFI6_0001 was greater in the acute and CP+ groups but had a similar level in uninfected 

and CP- groups, while circ-EXOC2_0008 showed the reverse pattern. These 

differences indicate potential regulatory roles and biomarker potential in SIV CNS 

infection. Among qPCR-verified circRNAs, circ-PRKCE_0004 and circ-ENC1_0001 

were part of the ceRNA networks we identified that may potentially affect the level of 

several miRNAs in bdEVs. Regulatory roles of these covalently closed forms of RNAs in 

viral infection and CNS diseases are largely unexplored, but functions of their linear 

forms are known. IFI6 is an interferon-induced proteins with antiviral effects against HIV, 

influenza, and flavivirus (Jiang et al., 2021; Kubo et al., 2022; Richardson et al., 2018). 

Exocyst Complex Component 2 (EXOC2), involved in vesicle-mediated transport, has 

critical roles in vesicle tethering and fusion with the plasma membrane but also in 

neuronal function and brain development (Van Bergen et al., 2020). Consistent 

differential abundance of circular and linear IFI6 in both SIV-infected BH as well as in 

bdEVs emphasizes the potential roles of bdEVs in transferring viral infection regulators 

in brain. Overall, although several groups have reported that different viral infections 

affect circRNA expression patterns [e.g., (Xie et al., 2021)], only one publication to our 

knowledge has investigated circRNA in HIV infection (Zhang et al., 2018b). Our findings 

thus provide additional evidence of circRNA dysregulation in retroviral infection. Further 

studies are now needed to determine the regulatory mechanisms of these circRNAs in 

SIV CNS infection and assess their biomarker or therapeutic potential. 

In conclusion, RNA profiling of bdEVs and source brain tissues from the SIV model of 

HIV CNS disease identified mRNAs, miRNAs, and circRNAs closely linked to SIV 

infection and neuropathology in both bdEVs and BH. Our study provides additional 

evidence of ceRNA network dysfunction in SIV-related CNS disease. Our findings also 
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have several limitations. First, the size of the study was relatively small. Second, the 

SIV model may not entirely recapitulate all aspects of HIV disease in people living with 

HIV (PLWH). Lastly, only selected number of targets were verified by qPCR assays. 

Our results should thus be further explored and verified using larger cohorts and in HIV 

infection to assess theragnostic potential.   
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Figure legends 

Figure 1 Enrichment and characterization of brain tissue-derived EV (bdEV) from 

uninfected and SIV-infected macaques. A) Workflow for bdEV enrichment and RNA 

sequencing. bdEV and source brain homogenate (BH) were subjected to small RNA-

Seq, while BH was subjected to parallel total RNA-Seq. B) Particle concentrations of 

bdEVs from uninfected, acute, CP-, and CP+ macaques were measured by NFCM. 

Particle concentration for each group was normalized by tissue mass (per 100 mg). 

Data are presented as mean ± SD. *p≤0.05, **p≤0.01 by two-tailed Welch’s t-test. C) 

Size distributions of bdEVs were measured by NFCM and calculated as particles in a 

5nm size bin versus total detected particles in each sample (percentage). D) bdEVs 

were visualized by negative staining transmission electron microscopy (TEM) (scale 

bar�=�500 nm). TEM is representative of ten images taken of each fraction from three 

independent human tissue samples. E) Viral GAG RNA amplicon as copy number per 

ug RNA in parietal cortex, and per ml CSF measured by qPCR. Data are presented as 

mean ± SD. ns, not significant, *p≤0.05 by two-tailed Welch’s t-test. 

Figure 2 bdEV small RNAs with differential expression in SIV infected macaques. A) 

Principal component analysis (PCA) based on quantitative small RNA profiles of bdEVs 

from uninfected, acute, CP-, and CP+ groups. Animal #299 in the CP- group was 

defined as outlier and not shown in the PCA plot as it was not well reconstructed within 

the principal vectors. B) The number of small RNAs differentially abundant between 

groups based on adjusted p-value < 0.05 from both DESeq2 and edgeR packages. C) 

Venn diagrams of differentially abundant small RNAs in acute and CP+ as compared 

with uninfected, and CP+ as compared with CP-. D) STRING protein interaction network 

analysis indicated that 30 out of 38 mRNAs dysregulated in both acute and CP+ groups 

had a high interaction confidence score (0.7 on a scale of 0-1). E) Top 10 biological 

processes ranked by FDR-corrected p-value was predicted by GO ontology enrichment 

for 38 mRNAs dysregulated in both acute and CP+ groups. F) Unsupervised 

hierarchical clustering of 10 differentially abundant small RNAs of bdEVs between CP+ 

and uninfected.   
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Figure 3 bdEV miRNAs with differential expression in SIV infected macaques. A) 

Volcano plots showing bdEV miRNA log2FC and p-value for acute vs uninfected (left), 

CP+ vs uninfected (middle), and CP+ vs CP- (right). Thresholds for 2-fold change and 

p-value < 0.05 are indicated by dashed lines. Significant changes are indicated with 

different colors. Gray: Not Significant, Red: non adjust p-value < 0.05. B) Venn 

diagrams of differentially abundant miRNAs (non-adjust p-value < 0.05) in acute and 

CP+ as compared with uninfected, and CP+ as compared with CP-. C) Unsupervised 

hierarchical clustering of 20 miRNAs differentially abundant in bdEVs of CP+ as 

compared to CP- and uninfected. D) qPCR validation for miR-19a-3p, let-7a-5p, miR-

29a-3p, miR-146a-5p, and miR-449a-5p in bdEVs from uninfected, acute, CP-, and CP+ 

groups. Delta Cq values was normalized to the geometric mean Cq value of selected 

internal references: miR-124-3p, miR-125b-5p, and miR-23b-3p. Data are presented as 

mean +/- SD. *p ≤ 0.05, **p ≤ 0.01 by two-tailed Welch’s t-test. 

Figure 4 circRNA dysregulation in SIV-infected brain tissues. A) Multidimensional 

scaling analysis based on quantitative mRNA (left) and circRNA (right) profiles of BH 

from uninfected, acute, CP-, and CP+ groups. B) Venn diagrams of differentially 

abundant mRNAs (left) and circRNAs (right) (adjust p-value < 0.05) in acute, CP+, and 

CP- groups as compared with uninfected, and CP+ as compared with CP-. C) circRNA 

log2FC between different comparisons in BH were plotted against the correspondent 

linear mRNA log2FC. Red dots indicate both circRNA and corresponding linear RNA 

were differentially abundant between groups with adjust p-values < 0.05. D) qPCR 

validation for circ-IFI6_0001, circ-EXOC2_0008, circ-PRKCE_0004, circ-

PPP2R5A_0001, circ-RNF41_0003, and circ-ENC1_0001 in BH from uninfected, acute, 

CP-, and CP+ groups. Delta Cq values was normalized to the Cq value of GAPDH. Data 

are presented as mean +/- SD. *p ≤ 0.05, **p ≤ 0.01 by two-tailed Welch’s t-test. 

Figure 5 The SIV related mRNA and circRNA changes in bdEVs and BH. A) 

Correlations of small RNA log2FC in bdEVs and BH when comparing acute with 

uninfected. Linear regression line was shown in black. Pearson correlation coefficient (R) 

and significance (p) are shown based on all dysregulated small RNAs in acute versus 

uninfected. B) Correlations of small RNA log2FC in bdEVs and BH when comparing 

CP+ with uninfected. Linear regression line was shown in black. Pearson correlation 
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coefficient (R) and significance (p) are shown based on all dysregulated small RNAs in 

CP+ versus uninfected. C) Levels of circ-IFI6_0001(left) and IFI6 (right) in bdEVs and 

BH. *adjust p < 0.05 based on edge R. D) The circRNA-associated ceRNA network. The 

blue rectangle nodes represent circRNAs, the orange oval nodes represent miRNAs, 

the green hexagon nodes denote mRNAs. The edges represented interactions between 

RNAs in the network. 

Supplementary Figure 1 Levels of EVmarkers CD81, CD63, and CD9 were measured 

by single-particle interferometric reflectance imaging (SP-IRIS) and normalized per 100 

mg tissue input. 

Supplementary Figure 2 Workflow for circRNA identification by Sequential Alignment 

(CiRISeqA) pipeline. 

Supplementary Figure 3 Levels of mRNA HLA-C(left) and MX1 (right) in bdEVs and BH. 

*adjust p < 0.05 based on edgeR. 

Supplementary Figure 4 mRNAs targets of miRNAs as predicted by TargetScan and 

miRDB. Venn diagrams of mRNA targets as predicted by TargetScan and miRDB for 

miR-449a, miR-29a-ap, Let-7a-5p, and miR-19a-3p. 
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Figure 5
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