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Abstract1

The pre-Bötzinger complex (preBötC), located in the medulla, is the essential rhythm-generating2

neural network for breathing. The actions of opioids on this network impair its ability to generate3

robust, rhythmic output, contributing to life-threatening opioid-induced respiratory depression (OIRD).4

The occurrence of OIRD varies across individuals and internal and external states, increasing the risk5

of opioid use, yet the mechanisms of this variability are largely unknown. In this study, we utilize a6

computational model of the preBötC to perform several in silico experiments exploring how differences7

in network topology and the intrinsic properties of preBötC neurons influence the sensitivity of the8

network rhythm to opioids. We find that rhythms produced by preBötC networks in silico exhibit9

variable responses to simulated opioids, similar to the preBötC network in vitro. This variability is10

primarily due to random differences in network topology and can be manipulated by imposed changes11

in network connectivity and intrinsic neuronal properties. Our results identify features of the preBötC12

network that may regulate its susceptibility to opioids.13
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Significance Statement14

The neural network in the brainstem that generates the breathing rhythm is disrupted by opioid15

drugs. However, this response can be surprisingly unpredictable. By constructing computational models16

of this rhythm-generating network, we illustrate how random differences in the distribution of biophysical17

properties and connectivity patterns within individual networks can predict their response to opioids,18

and we show how modulation of these network features can make breathing more susceptible or resistant19

to the effects of opioids.20

1 Introduction21

Opioid-induced respiratory depression (OIRD) is the primary cause of death associated with opioid overdose.22

Because both the pain-killing and respiratory depressive effects of opioids require the µ-opioid receptor23

(MOR) encoded by the Oprm1 gene (Baldo & Rose, 2022; Dahan et al., 2001; Lynch et al., 2023; Sora24

et al., 1997), there are few effective strategies to protect against OIRD without eliminating the beneficial25

analgesic effects of opioids. Increasing doses of opioid are often required to maintain analgesia as the neural26

circuits that mediate pain become desensitized to opioids (Freye & Latasch, 2003; Uniyal et al., 2020),27

putting patients at greater risk of OIRD. However, a dangerous and less well-understood feature of OIRD28

is its apparent unpredictability (Dahan et al., 2013). Changes in breathing in response to opioid use can29

vary substantially between individuals and can be surprisingly inconsistent even within the same individual30

under different internal and external states or contexts (Cherny et al., 2001; Dahan et al., 2013; Fleming31

et al., 2015).32

Although Oprm1 is expressed in many brain regions (Erbs et al., 2015), including those involved in33

the regulation of breathing (Baldo & Rose, 2022; Varga et al., 2020), one site of particular importance34

is the PreBötzinger Complex (preBötC), a medullary region that is critical for generating the respiratory35

rhythm (Bachmutsky et al., 2020; Gray et al., 1999; Smith et al., 1991). This network is composed of36

interacting excitatory and inhibitory interneurons (Baertsch et al., 2018; Harris et al., 2017; Winter et al.,37

2009). Although inhibitory neurons are important for regulating the frequency and regularity of breathing38

(Baertsch et al., 2018; Sherman et al., 2015), GABAergic or glycinergic mechanisms do not seem to play a39

significant role in OIRD in the preBötC (Bachmutsky et al., 2020; Gray et al., 1999). Instead, glutamatergic40

neurons are the critical component of the preBötC network needed for both rhythmogenesis and OIRD41

(Bachmutsky et al., 2020; Funk et al., 1993; Greer et al., 1991; Sun et al., 2019). Among the estimated42

40-60% of preBötC neurons that express Oprm1 (Baertsch et al., 2021; Gray et al., 1999; Rousseau et al.,43

2023), activation of MORs has two primary consequences: Excitability is suppressed due to activation of44
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a hyperpolarizing current, and the strength of excitatory synaptic interactions is reduced (Baertsch et al.,45

2021). Together, these mechanisms of opioid action act synergistically to undermine the cellular and network46

mechanisms that mediate preBötC rhythmogenesis.47

Neurons in the preBötC have heterogeneous cellular properties, which are readily observed following48

pharmacological blockade of synaptic interactions. Under these conditions, the intrinsic activity of preBötC49

neurons is either silent, bursting, or tonic, which largely depends on their persistent sodium conductance50

(gNaP) and potassium dominated leak conductance (gleak) (Butera et al., 1999b; Del Negro et al., 2002;51

Koizumi & Smith, 2008; Phillips & Rubin, 2019; Yamanishi et al., 2018). However, gNaP, gleak, and the52

intrinsic activity of preBötC neurons are not fixed but can be dynamically modulated by conditional factors53

such as neuromodulation and changes in excitability (Del Negro et al., 2001; Doi & Ramirez, 2008; Ramirez54

et al., 2011). Thus, unlike the discrete activity states of its constituent neurons, when synaptically coupled,55

the network collectively produces an inspiratory rhythm that can operate along a continuum of states as the56

ratios of silent, bursting, and tonic neurons change (Burgraff et al., 2021; Butera et al., 1999a). As previously57

demonstrated in rhythmic brainstem slices, the preBötC has an optimal configuration of cellular and network58

properties that results in a maximally stable inspiratory rhythm. These properties are dynamic, and the59

state of each individual preBötC network relative to its optimal configuration can predict how susceptible60

rhythmogenesis is to opioids (Burgraff et al., 2021).61

Here, we expand on these findings by utilizing computational modeling to perform preBötC network ma-62

nipulations and analyses that are experimentally intractable to better understand properties of the network63

that may contribute to the variation in OIRD and to provide proof of concept for perturbations that may64

render preBötC rhythmogenesis less vulnerable to opioids. We demonstrate that model preBötC networks65

exhibit variable responses to simulated opioids. This variation in opioid response is best predicted by differ-66

ences in “fixed” properties of randomly generated networks, specifically the connectivity between different67

groups of excitatory and inhibitory neurons as well as which neurons in the network express MOR. In con-68

trast, opioid-induced changes in the intrinsic spiking patterns preBötC neurons (silent, bursting, tonic) do69

not predict this variation. In networks with high opioid sensitivity, we find that modulation of either gNaP70

or gleak can render rhythmogenesis more resistant to opioids. These insights help establish a conceptual71

framework for understanding how the fixed and dynamic properties of the preBötC shape how this vital72

network responds when challenged with opioids.73
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2 Methods74

2.1 Computational modeling of OIRD in the PreBötC75

We model the preBötC network as a random, directed graph of N = 300 nodes, with each node representing76

a neuron. The dynamical neuron equations are modified from (Baertsch et al., 2021; Butera et al., 1999a;77

Butera et al., 1999b; Harris et al., 2017). First, we have the total membrane current balance equation78

−Cm
dV

dt
= INa + INaP + Ileak + IK + Isyn,exc + Isyn,inh + Isyn,op + Ihyp,op, (1)

where the currents are given by79

INa = gNam
3
∞(1− n)(V − ENa)

INaP = gNaPDNaP(t)mNaP,∞h(V − ENa)

Ileak = gleakDleak(t)(V − Eleak)

IK = gKn4(V − EK)

Isyn,exc = gexc(V − Eexc)

Isyn,inh = ginh(V − Einh)

Isyn,op = gsyn,op(t)(V − Eexc)

Ihyp,op = DopIhyp,op(t)

We implemented the terms DNaP(t) and Dleak(t) to simulate time-dependent “drugs” strengthening or weak-80

ening NaP and leak channel conductances by varying between 0 and 1. We also added the opioid-modulated81

synaptic and hyperpolarizing currents Isyn,op and Ihyp,op as a mechanism for biophysical perturbations82

through changing Ihyp,op(t) and gsyn,op(t). While many terms in these differential equations are time-83

dependent, we only explicitly highlight the time-dependence of DNaP, Dleak, gsyn,op, Ihyp,op because these84

are set exogenously. The gating equations are85

dn

dt
=

n∞ − n

τn
dh

dt
=

h∞ − h

τh
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with voltage-dependent steady states,86

m∞ =

(
1 + exp

(
V − Em

σm

))−1

mNaP,∞ =

(
1 + exp

(
V − Em,NaP,∞

σm,NaP,∞

))−1

n∞ =

(
1 + exp

(
V − En

σn

))−1

h∞ =

(
1 + exp

(
V − Eh

σh

))−1

and time constants87

τn =
τnb

cosh
(

V−En

2σn

)
τh =

τhb

cosh
(

V−Eh

2σh

) .
Finally, synapses are modeled separately for excitatory, inhibitory, and opioid-sensitive presynaptic neurons.88

Each synapse conductance s is modeled with first-order dynamics:89

ds

dt
=

(1− s)msyn,∞ − s

τsyn

msyn,∞ =

(
1 + exp

(
Vpre − Es

σsyn

))−1

,

and gsyn is given as the sum of gsyn,max · s over all incoming synapses to the neuron. This model was90

implemented in brian2 (Stimberg et al., 2019). The parameters which are shared across all neurons are91

given in Table 1; other parameters will be described in the rest of the methods. Our code will be included92

with the final version of this paper.93

2.1.1 Network construction94

Our 300 neuron network consists of 60 inhibitory neurons and 240 excitatory neurons. Synapses were ran-95

domly constructed, with each neuron having a connection probability of
davg/2
N−1 , where davg is the neurons’96

average degree (in-degree + out-degree). Our default davg is 6, giving us a connection density of approxi-97

mately 1%. However, in 3 we increase the connection probability by scaling davg, e.g. davg = 12 results in a98

2% connection density.99

The intrinsic activity of each neuron is either tonic spiking (T), bursting (B), or quiescent (Q), which100

is controlled by gleak and gNaP. The gleak value for each neuron was randomly drawn from a mixture of101
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Parameter Value
Cm 21 pF
EK -85 mV
Eleak -58 mV
ENa 50 mV
Eexc 0 mV
Einh -70 mV
Es 0 mV
σh 5 mV
σm -5 mV

σm,NaP,∞ -6 mV
σn -4 mV
σsyn -3 mV
Eh -48 mV
Em -34 mV

Em,NaP -40 mV
En -29 mV
τsyn 15 ms
τnb 10 ms
τhb 10 s
gNa 28 nS
gK 11.2 nS

Table 1: Table of model parameters shared across neurons.

three Gaussians with weights [0.35, 0.1, 0.55], means [0.5, 0.7, 1.2] nS, and standard deviation 0.05 nS. The102

gNaP values are drawn from a Gaussian with mean 0.8 nS and standard deviation 0.05 nS. Classification of103

intrinsic activity is done by using peak detection on the voltage V recorded with synapses blocked.104

2.1.2 MOR targeting105

In all simulations, half of the excitatory neurons are opioid-sensitive (MOR+) and can be targeted with opioid106

(Dop = 1), while the inhibitory neurons and the other half of the excitatory neurons (MOR-) are insensitive107

(Dop = 0). The opioid-sensitive population’s excitatory synapses follow the Isyn,op equation, whereas the108

insenstive neurons follow Isyn,exc. Assignment of Dop among excitatory neurons is random except in two109

cases shown in Fig. 5, where opioid is applied to the excitatory neurons with gleak values below or above the110

median among the excitatory population.111

2.1.3 Gradual ramp up of opioid112

For opioid ramping simulations (Figs. 1, 3, 4E), Ihyp,op ramped from 0–8 pA, increasing by 0.5% every 3113

seconds, while gsyn,op gradually decreased from 1.0–0.0 nS by 0.5% every 3 seconds. Hence, the total length114

of the simulation is 10 minutes. The opioid shutdown dosage was calculated by averaging the Ihyp,op values115

at the time of the last bursts with amplitudes of 10–15 Hz.116
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2.1.4 Timed all-or-nothing perturbations117

In simulations with timed all-or-nothing perturbations (Figs. 2, 5A,B,C, 6, and 7), we allowed for a 10 second118

transient period before each perturbation. Data from transient periods is not used in our analysis. When119

the opioid perturbation is turned on, Ihyp,op = 4 pA and gsyn,opioid = 0.5 nS. We varied gNaP (Fig. 6) or gleak120

(Fig. 7). For each node, gNaP was increased to 110%, 130%, and 150% of control values, whereas gleak was121

decreased to 90%, 70%, and 50% of control values. In Figs 6 and 7, the 200 s experimental procedure is as122

follows:123

1. 10 s transient period124

2. 30 s control period125

3. 10 s transient period126

4. 30 s opioid perturbation127

5. 10 s transient period128

6. 30 s control “wash” period129

7. 10 s transient period130

8. 30 s gNaP or gleak perturbation131

9. 10 s transient period132

10. 30 s simultaneous perturbation of opioid and gNaP or gleak133

2.2 Analysis134

2.2.1 Burst detection and opioid shutdown dosage135

Bursts were detected using a basic peak-finding algorithm (find peaks function in scipy (Virtanen et al.,136

2020)) where each peak must have a minimum height of 4 Hz/cell and minimum prominence of 10 Hz/cell.137

We then compute the opioid shutdown dosage by finding the averaging Iopioid values at the time of the last138

bursts meeting an amplitude threshold of 10, 11, 12, 13, 14, and 15 Hz/cell. Statistical analysis of measured139

variables was performed using GraphPad Prism 10 software, and data was visualized using a combination of140

python, GraphPad Prism, and Powerpoint.141
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2.2.2 Phase diagrams142

Each phase boundary was computed by simulating the network under synaptic block, sweeping across a143

grid of conductances gleak ∈ {0.2, 0.3, . . . , 1.5} nS and gNaP = {0.6, 0.7, . . . , 1.5} nS. The points plotted144

within the phase boundaries represent the neurons in the two-population network simulated under synaptic145

block. Population neurons and phase sections are both colored by intrinsic activity classified as described in146

Section 2.2.1.147

2.3 Code availability148

Code is available in our github repository or upon request to the corresponding author. Code was run using149

Linux systems with python simulation stack.150

3 Results151

3.1 Opioid sensitivity varies across model preBötC networks.152

In sparsely connected (1%) preBötC networks, connections were drawn randomly between excitatory and153

inhibitory neurons with different intrinsic activities as determined by varied gNaP and gleak values. We154

implemented a two-population distribution of gleak and gNaP (Baertsch et al., 2021) as described in Methods155

2.1.1 to reduce the number of neurons in the network that exhibit intrinsic bursting to 5 − 10% (Fig. 1),156

as estimated by experimental recordings in vitro. With 50% of excitatory neurons randomly designated as157

opioid-responsive (MOR+) and the remaining 50% non-responsive (MOR-), we performed simulations on 40158

different preBötC networks where the effects of opioid (i.e. presynaptic suppression and hyperpolerization)159

were gradually increased over the course of 10 minutes. An example of how simulated opioid affected the160

intrinsic activities of MOR+ and MOR- neurons in gleak, gNaP parameter space is shown in Fig. 1B. Across161

all networks, opioids transitioned the intrinsic activity of preBötC neurons from tonic or bursting to silent162

(Fig. 1C), similar to observations in preBötC slices (Burgraff et al., 2021). Some networks were highly163

sensitive to opioid, as shown by a quicker decline in the respiratory rhythm (e.g. Fig. 1D, traces 1 and 2),164

while other networks were quite resistant (e.g. Fig. 1D, traces 3 and 4). This variability is reflected in the165

distribution of shutdown dosages, which ranged from 3.73 to 7.51 with a mean of 5.26 and was approximately166

Gaussian Fig. 1E. Thus, despite all simulated networks having the same number of neurons designated as167

excitatory, inhibitory, and opioid sensitive (MOR+), there was considerable variation in how individual168

networks responded to opioids.169
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3.2 Changes in intrinsic cell activities do not predict opioid sensitivity.170

To explore how random differences in the intrinsic cellular activities of the networks may predict the varied171

responses of the network rhythm to opioids, we compared networks with high and low opioid sensitivity.172

In silico preBötC Network Intrinsic Cellular Activities
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Figure 1: Opioid sensitivity varies across model preBötC networks. (A) A network graph of the in-silico
preBötC network. (B) Phase diagrams showing intrinsic activities of each neuron (open circles) based on
gleak and gNaP conductances. Top-row: MOR- neurons. Bottom-left: control condition, MOR+ neurons.
Bottom-right: opioid applied to MOR+ neurons. (C) Quantified changes in the number of neurons with
silent, bursting, or tonic intrinsic activities in response to opioid (n = 40 networks; two-tailed paired t-tests;
****p < 0.0001). (D) Traces of 4 network simulations where opioid is ramped up. Numbered boxes show
the last bursts detected at a given amplitude threshold (10-15 Hz/cell). (E) Histogram and kernel density
estimation of the distribution of opioid shutdown doses for n = 40 model networks.
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“High-sensitivity” networks were defined as those with an above-median opioid shutdown dosage, while173

networks with a below-median shutdown dosage were considered “low-sensitivity”. Rather than the gradual174

opioid ramping as shown in Fig. 1, in Fig. 2 we instead simulated a 30-second control period followed by a175

30-second period with a moderate dose of opioid applied (opioid=4). The variation in opioid sensitivity is176

exemplified in Fig. 2A, where we see clear differences in how the rhythm responded to opioid. In the high-177

sensitivity case, the rhythm became weak and irregular, whereas rhythms produced by the most resistant178

networks were able to maintain consistent frequencies and burst amplitudes close to baseline. Changes in179

the intrinsic cellular activities of these representative high- and low-sensitivity networks are shown in gleak,180

gNaP parameter space in Fig. 2B. Under control conditions and in the presence of opioid, the proportions181

of neurons with silent, bursting, or tonic intrinsic activity were similar between high- and low-sensitivity182

networks (Fig. 2C). Indeed, regardless of opioid sensitivity, a similar number of MOR+ neurons that were183
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Figure 2: Intrinsic cellular activities do not predict opioid sensitivity. (A) Example rhythms (top) and
overlaid burst waveforms (bottom) under control conditions and in the presence of opioid from representative
“high sensitivity” (left) and “low sensitivity” (right) networks. (B) Phase diagrams of high (left) and low
(right) sensitivity networks, showing intrinsic activities of MOR- (top) and MOR+ (bottom) neurons (open
circles) based on gleak and gNaP conductances. (C) Quantified relationship between opioid shutdown and the
number of silent, bursting, and tonic neurons under control conditions (top) and in the presence of opioid
(bottom) (n = 40 networks; two-tailed paired t-tests; ns=not significant).
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tonic or bursting in control conditions became silent in the presence of opioid, which was consistent across all184

40 networks. Thus, differences in how opioids affect the intrinsic activities of neurons in our model networks185

are unlikely to explain their variable responses to opioids.186

3.3 Connection density and network structure regulate opioid sensitivity.187

To test how the total amount of connectivity with the preBötC model networks affects how they respond188

to opioids, we ran simulations where the connection probability of each neuron was increased to 2%, 4%,189

8%, or 16% for 40 networks each (the default for all other experiments is 1% connection density), while190

maintaining total synaptic strength in the network constant. The results are shown in Fig. 3. For each191

trace in Fig. 3A, we can see that networks with higher connectivity are able to maintain a network rhythm192

at higher doses of opioid. The distribution of dosages that effectively shut down each network also tends to193

be slightly less variable at higher connection probabilities ( 3B and C). Thus, preBötC networks with higher194

total connection densities are more resistant to opioids.195

Next, we examined how random differences in connection topology may contribute to the variation196

in opioid responses observed across our 40 randomly drawn model networks. To do so, we first tested197

whether the total number of excitatory and inhibitory connections (excitation/inhibition balance) within198

each model network was related to its sensitivity to opioids (Fig. 4A). Correlation analysis revealed that, in199

general, networks with a more highly connected excitatory population and fewer inhibitory inputs to these200

excitatory neurons were more resistant to opioids (i.e. higher opioid shutdown dose). In contrast, overall201

connectivity within the inhibitory population or from excitatory to inhibitory neurons was not correlated with202

the sensitivity of the network rhythm to opioids. Next, we tested more specifically whether the number of203

connections within and between, excitatory MOR+, excitatory MOR-, and inhibitory neurons was correlated204

with the opioid dose that shutdown rhythm generation (Fig. 4B). We found that when the population of205

excitatory MOR- neurons was more interconnected and received less inhibitory input, the network was more206

likely to be resistant to opioids.207

In a third analysis, we broke the network connectivity down even further by computing correlations208

between opioid shutdown dose and the number of connections among intrinsically tonic, bursting, and silent209

excitatory MOR+, excitatory MOR-, and inhibitory neuron subpopulations (Fig. 4C). This revealed three210

primary observations. First, the number of connections from silent to tonic excitatory MOR- neurons211

was the strongest driver of opioid resistance among this MOR- population. Second, although the total212

number of connections within the MOR+ population was not predictive of opioid sensitivity, networks with213

more connections between intrinsically tonic MOR+ neurons and fewer connections between intrinsically214

11

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2023. ; https://doi.org/10.1101/2023.08.29.555355doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.29.555355
http://creativecommons.org/licenses/by/4.0/


4 5 6 7 8

0.16

0.08

0.04

0.02

0.01

P
(C

o
n
n
e
ct

io
n)

n
s

✱
✱ ✱
✱
✱
✱

✱
✱
✱
✱

✱ ✱
✱
✱
✱

✱
✱
✱
✱

✱ ✱
✱
✱
✱n
s

0
1

0

#
 N

e
tw

o
rk

s

Opioid Shutdown

74

5

3 5 6 8

F
ir

in
g 

R
a

te
 (

H
z)

B

Increasing # Connections with Constant Total Synaptic WeightA

C

0.01
0.02
0.04
0.08
0.16

P(Connect)

0

25

50

0

25

50

0

25

50

0

25

50

Time (10 minutes)
0

25

50

P(Connect) = 0.01

P(Connect) = 0.02

P(Connect) = 0.04

P(Connect) = 0.08

P(Connect) = 0.16

Figure 3: Increased connection density reduces opioid sensitivity. (A) Example traces of 4 different simula-
tions with varied connection densities where opioid is ramped up (opioid=0-8) over 10-minutes. (B) Kernel
density estimations showing the distribution of shutdown dosages based on connection probabilities. (C)
Quantified opioid shutdown dose vs. connection probability (n = 40 networks; one-way RM ANOVA with
Bonferroni multiple comparisons tests; *p < 0.05, **p < 0.01, ****p < 0.0001).

silent MOR+ neurons were more resistant to opioids. And third, networks were also more likely to be215

resistant to opioids if they had more connections from tonic MOR+ neurons to tonic or silent MOR- neurons216

and fewer connections from bursting MOR+ neurons to silent MOR- neurons. Overall, these correlation217

analyses suggest that differences in network topology as a result of randomness in the assignment of network218

connections contribute to the variable responses of preBötC networks to opioids.219
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Figure 4: Network structure regulates opioid sensitivity. Correlation analysis of the relationship between
opioid shutdown dose and connectivity within and between (A) excitatory and inhibitory populations, (B),
MOR+, MOR-, and inhibitory populations, and (C) tonic, bursting, and silent excitatory and inhibitory
subpopulations (n = 40, two-tailed correlation analysis; *p < 0.05, **p < 0.01, ***p < 0.001). Numbers in
A and B represent the max and min number of each type of connection.

3.4 Identity of MOR+ neurons regulates opioid sensitivity.220

Because 50% of the excitatory neurons in our model networks are randomly designated as MOR+, we next221

wondered how the opioid sensitivity of the model networks may be altered if the identity of MOR+ neurons222

is non-random. To address this question, we performed simulations to compare opioid responses in networks223

where the intrinsically silent neurons (high gleak) or the tonic/bursting neurons (low gleak) were designated224

as MOR+, as described in Section 2.1.2. Example network activity during these experiments is shown in225

Fig. 5A. Compared to random assignment of MOR as described above, assigning MOR to the low gleak226

population made the rhythms more resistant to opioids, whereas assigning MOR to the high gleak population227
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Figure 5: Identity of MOR+ neurons regulates opioid sensitivity. (A) Example rhythms (top) and burst
waveforms (bottom) in response to opioids when MOR is assigned randomly (left) or specifically to low
gleak (middle) or high gleak (right) populations. (B) Intrinsic activities of MOR- and MOR+ neurons (open
circles) in gNaP, gleak space of the example networks shown in A. C) Quantified number of silent, bursting,
and tonic neurons under control conditions and in response to opioid when MOR is assigned randomly or
to low/high gleak populations (n = 40 each, one-way ANOVA with Bonferroni multiple comparisons tests,
ns=not significant, *p < 0.05, **p < 0.01, ****p < 0.0001). D) Example network rhythm during opioid ramp
(opioid=0-8) with MOR assigned randomly or to low/high gleak populations. E) Kernel density estimations
showing distributions of opioid shutdown dosages based on the identity of MOR expressing neurons. (n = 40,
one-way ANOVA with Bonferroni multiple comparisons tests; *p < 0.05, ****p < 0.0001)
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made them more sensitive. When low gleak (primarily intrinsically tonic/bursting) neurons are MOR+, 92.3%228

of the population became intrinsically silent in response to opioids (Fig. 5B). However, this only reflects the229

intrinsic activity of those neurons with synapses blocked. With synaptic interactions intact, the network230

remained rhythmic, with a slower frequency than control conditions but a similar amplitude. On the other231

hand, when the high gleak (primarily intrinsically silent) population is MOR+, the rhythm collapsed under232

only a moderate dose of opioid (Ihyp,op = 4 pA) (Fig. 5A). In this case, changes in the intrinsic activities of233

neurons in the network in response to opioid were minimal (Fig. 5B).234

The above results were for a single exemplar network. In Fig. 5C, for each condition, we compared235

the number of intrinsically silent, bursting, and tonic neurons and how the distributions of these intrinsic236

activities change in response to opioids across 40 different model networks. As expected (see Fig. 1B),237

when the identity of MOR+ neurons was randomly assigned, opioids caused many of the low gleak MOR+238

neurons to transition from tonic/bursting activity to silent, whereas high gleak MOR+ neurons were largely239

unaffected. Under non-random conditions, when all low gleak neurons were designated as MOR+, changes in240

the intrinsic activities within the network were exaggerated such that nearly all intrinsically tonic activity was241

lost as 92% of the network became intrinsically silent. In contrast, when high gleak neurons were designated as242

MOR+, there were minimal changes in the distribution of intrinsic activities within the networks (Fig. 5C).243

To further test how the identity of MOR+ neurons may alter how the preBötC network rhythm responds to244

opioids, we performed simulations ramping up the opioid effect to compare shutdown dosages for networks245

with MOR identity assigned randomly, or selectively to low or high gleak populations. (Fig. 5D, E). Notably,246

despite a much larger proportion of the network becoming intrinsically silent, networks with low gleak neurons247

designated as MOR+ were more resistant to opioids, than when MOR identity was randomly assigned. On248

the other hand, the average shutdown dosage was lower when high gleak neurons were designated as MOR+,249

indicating that, despite the minimal effects on the intrinsic activities of the neurons, the network rhythm250

was substantially more sensitive to opioids under these conditions. These findings support the conclusion251

that changes in intrinsic cellular activities within the network are not predictive of its sensitivity to opioids252

(see Fig. 2), but that the distribution of MOR+ expression among preBötC neurons may be an important253

determinant of how the network responds to opioids.254

3.5 Modulation of gNaP or gleak can render the preBötC resistant to opioids.255

Considering these results, we tested whether manipulations of the intrinsic properties of preBötC neurons256

may represent a viable strategy to protect the preBötC rhythm from the effects of opioids. Specifically,257

we tested whether increasing gNaP would allow for sustained rhythmogenesis in the presence of relatively258
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high opioid doses as previously hypothesized based on pharmacological experiments in vitro (Burgraff et al.,259

2021). We also tested whether decreasing the leak conductance gleak would have a similar protective effect260
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Figure 6: Modulation of gNaP renders the network resistant to opioids. (A) Example rhythm and burst
waveforms from a network (MOR randomly assigned) in response to opioid and during concurrent modulation
of gNaP to 110%, 130%, and 150% of control values. (B) Quantified effects on frequency (top) and burst
amplitude (bottom) during opioid and gNaP modulation (n = 40, one-way RM ANOVA with Bonferroni
multiple comparisons tests, **p < 0.01, ***p < 0.001, ****p < 0.0001). (C) Changes in the intrinsic
activities in gNaP, gleak space of MOR- and MOR+ neurons from the example network shown in A. (D)
Quantified changes in the number of silent, bursting, and tonic neurons in response to opioid and subsequent
modulation of gNaP (n = 40, one-way RM ANOVA with Bonferroni multiple comparisons tests, *p < 0.05,
**p < 0.01, ***p < 0.001, ****p < 0.0001).
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on rhythmogenesis. Rhythmic activity of a representative network under control conditions, in opioid, and261

during a subsequent 10%, 30%, and 50% increase in gNaP are shown in Fig. 6A. Increasing gNaP by 30% in262

the model networks reversed the effects of opioids on burst frequency and amplitude (Fig. 6B). However,263

recovery of the rhythm by gNaP modulation did not restore intrinsic cellular activities to near control.264

Instead, it was associated with a change in the intrinsic activity of both MOR+ and MOR- neurons from265

silent to bursting, with little effect on the number of tonic neurons (Fig. 6C, D). Under control conditions,266

the network was composed of mostly intrinsically tonic and silent neurons (52.3% and 40.7%, respectively).267

In response to opioid, the proportion of silent neurons increased to 73.7% as MOR+ neurons transitioned268

from tonic to silent. As gNaP was increased, the MOR+ neurons that were originally tonic under control269

conditions transitioned to bursting. Specifically, when gNaP was increased by 30%, 55% of the population270

entered a gNaP, gleak parameter space that supports intrinsic bursting. Thus, despite recovery of a rhythm271

with similar frequency and amplitude characteristics following gNaP modulation, the number of intrinsically272

tonic neurons remained reduced, whereas the number of bursting neurons was increased relative to control273

conditions.274

We next performed similar simulations during manipulation of gleak (Fig. 7). The rhythmic activity of275

a representative network under control conditions, in opioid, and following a subsequent 10, 30, and 50%276

reduction in gleak is shown in Fig. 7A. In this case, burst amplitude but not frequency could be significantly277

recovered towards control values (Fig. 7B). This was associated with changes in the intrinsic activities of278

primarily MOR- neurons (Fig. 7C). When gleak was reduced to 70% of control, there was a large increase279

in the number of bursting neurons, and upon further reduction of gleak to 50% of control, these neurons280

became tonic, leaving only 2.7% of the population as bursting (Fig. 7D). Thus, our model predicts that281

manipulations that directly or indirectly affect persistent sodium and/or potassium leak conductances may282

be effective for increasing the resistance of preBötC function to opioids.283

4 Discussion284

The effect of opioids on respiratory function is variable in brain slices in vitro, animal models in vivo, and285

in individual humans (Burgraff et al., 2021; Cherny et al., 2001; Dahan et al., 2005; Dahan et al., 2013).286

Here we adopt a computational model of the respiratory rhythm generator to dissect plausible network287

topology and cellular properties that contribute to variable respiratory responses to opioids. We leverage288

computational models that allow us to instantiate networks of the preBötC with connectivity patterns and289

conductances drawn from random distributions. These networks are statistically indistinguishable on the290

“macro”-scale; they have the same overall numbers of excitatory and inhibitory neurons, the same numbers291
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Figure 7: Modulation of gleak renders the network resistant to opioids. (A) Example rhythm and burst
waveforms from a network in response to opioid and during concurrent modulation of gleak to 90%, 70%,
and 50% of control values. (B) Quantified effects on frequency (top) and burst amplitude (bottom) during
opioid and gleak modulation (n = 40, one-way RM ANOVA with Bonferroni multiple comparisons tests, **p
< 0.01, ****p < 0.0001). (C) Changes in the intrinsic activities in gNaP, gleak space of MOR- and MOR+
neurons from the example network shown in A. (D) Quantified changes in the number of silent, bursting,
and tonic neurons in response to opioid and subsequent modulation of gleak (n = 40, one-way RM ANOVA
with Bonferroni multiple comparisons tests, ****p < 0.0001).

of MOR+ and MOR- neurons, the same probability of connections per neuron, and conductance values are292

drawn from the same distributions. Yet, due to the random assignment of some of these properties, each293
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network differs on the level of individual neurons (nodes), which vary in their exact connectivity patterns294

and conductance strengths. Surprisingly, this “micro”-level randomness is sufficient to create quite variable295

responses at the network level to the same stimulus - in this case simulated opioids. We suspect that these296

differences may contribute to the observed variable responses to opioids seen in experimental preparations297

(Burgraff et al., 2021). Further, this micro-level variability could, for example, explain how individuals may298

respond differently to network perturbations despite the preBötC network developing with the same general299

set of instructions (e.g. genome, transcriptome, axonal targeting mechanisms, etc). While OIRD arises300

from the effects of opioids on multiple central and peripheral sites (Ramirez et al., 2021), our simulations301

illustrate how variation in the architecture of the inspiratory rhythm generator could be an important factor302

underlying the unpredictability of opioid overdose.303

The computational approach here allows for directed manipulations that are experimentally intractable.304

For instance, we are able to ask if the response of the preBötC to opioids depends on MOR being expressed305

in populations with particular conductance profiles. More concretely, we target the opioid effect directly to306

neurons that have a particular leak conductance. This leak conductance (gleak) is an important determinant307

of whether a neuron is intrinsically “tonic”, “bursting”, or “silent” (Butera et al., 1999b; Del Negro et al.,308

2002; Koizumi & Smith, 2008; Yamanishi et al., 2018). Surprisingly, introducing MOR selectively to low309

gleak (intrinsically excited neurons with tonic/bursting activity), decreased the response of the network to310

opioids making the rhythm more resilient. Conversely, introducing MOR selectively to the less excitable311

population (the high gleak, quiescent cells), increased the susceptibility of the network rhythm to opioids.312

We speculate that a robust preBötC rhythm relies on the existence of a population of “recruitable” neurons313

that are not strongly intrinsically active, but are capable of becoming active with a small amount of synaptic314

input. When opioids affect neurons in the low gleak population, their intrinsic activity is reduced but they315

remain in the recruitable pool and therefore can continue to participate in the network, allowing the rhythm316

to continue at higher opioid doses. Conversely, we expect that when opioids further suppress neurons that317

already have low intrinsic excitability (high gleak) they are removed from the recruitable pool and unable318

to participate in network bursts, making coordinated network activity more vulnerable to opioids. When319

the effect of opioids is randomly targeted to 50% of neurons, the proportion that remains recruitable in320

the presence of opioid depends on how MOR expression is randomly assigned within the high and low gleak321

populations, contributing to variable opioid responses at the network level.322

Network connectivity is difficult to study and manipulate experimentally. Thus, computational models,323

where the number and strength of all connections between every neuron are known, can be an important324

tool to provide “proof of concept” insights into how network topology can influence network function and325

determine its response to perturbations. We took advantage of this by performing correlation analysis326
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to better understand how the number of connections between certain subgroups of preBötC neurons may327

predict how susceptible the network is to opioids. These analyses revealed that, in general, when neurons that328

do not respond to opioid (MOR-) are more interconnected and receive less inhibitory input, the network329

is more resistant to opioids. We suspect that this connectivity configuration may allow the network of330

MOR- neurons to remain rhythmogenic even when very few opioid sensitive (MOR+) neurons are able331

to contribute to network function. In another analysis, we scaled the number of connections within the332

network without altering total synaptic strength, which consistently increased the robustness of the network333

to opioids. Because opioids weaken the pre-synaptic strength of excitatory interactions (Baertsch et al.,334

2021), we anticipate that networks with lower numbers of connections become “fractured” into isolated335

sub-networks when opioid-induced weakening of synapses impairs the network’s ability to effectively recruit336

portions of the population. Indeed, the preBötC rhythm in vitro has a higher proportion of failed bursts with337

low amplitude in response to opioids (Baertsch et al., 2021; Phillips & Rubin, 2022). In networks with more338

connections, activity more consistently propagates to all neurons (Kam et al., 2013), efficiently recruiting339

the whole population despite the effect of opioids on synaptic transmission. This could also contribute to340

the variable opioid responses observed in in vitro experiments since both within and across labs where the341

creation of rhythmic brain stem slices invariably samples slightly different portions of the preBötC population342

that may be more or less densely connected (Baertsch et al., 2019; Ruangkittisakul et al., 2014). Although343

these simulations illustrate that network topology could be an important determinant of opioid sensitivity,344

because connection density and patterns are considered “fixed” properties of the network, at least on short345

time scales, manipulation of network topology is an unlikely avenue for therapeutic interventions. In contrast,346

the strength of existing excitatory synaptic connections can be pharmacologically altered acutely via e.g.347

ampakines, which may render the preBötC less vulnerable to opioids and shows promise as an intervention348

for OIRD (Ren et al., 2006; Sunshine & Fuller, 2021; Xiao et al., 2020).349

The intrinsic activity of preBötC neurons is determined by multiple interacting cellular properties (Ramirez350

et al., 2012). Not all are known and not all can be incorporated into our simplified model network. Yet,351

like many other computational studies (Lindsey et al., 2012), the interaction between gleak and gNaP deter-352

mines intrinsic activity in our model and is sufficient to capture the silent, bursting, or tonic phenotypes353

of preBötC neurons. Both gleak and gNaP contribute to cellular excitability (resting membrane potential),354

and the voltage-dependent properties of gNaP allow some neurons with appropriate gleak to exhibit intrinsic355

bursting or “pacemaker” activity (Koizumi & Smith, 2008). Whether such neurons with intrinsic bursting356

capabilities have a specialized role in network rhythmogenesis is a matter of ongoing debate (da Silva et al.,357

2023; Feldman & Del Negro, 2006; Ramirez & Baertsch, 2018a; Ramirez & Baertsch, 2018b; Smith et al.,358

2000) that we do not address here. Instead, we aimed to understand how opioids alter the intrinsic activities359
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of preBötC neurons. In the model network, opioids reduce the number of neurons with intrinsic bursting or360

tonic activity and increase the number of silent neurons. To our surprise, the extent of these changes was361

not a significant predictor of the network response to opioids. This suggests that the intrinsic activity of a362

given neuron may not be representative of its contribution to network function, and that other factors, such363

as those discussed above, play more substantial roles in determining how the preBötC responds to opioids.364

Although network differences due to random sampling of gleak and gNaP from set distributions were not a365

significant factor driving variable opioid responses, we found that scaling the distribution of gNaP or gleak366

across the whole population did alter the sensitivity of model networks to opioids. Interestingly, manipu-367

lation of gNaP was more effective since a 30% increase in gNaP was sufficient to restore both frequency and368

amplitude of the rhythm, whereas effects were more specific to burst amplitude following a 30% decrease369

in gleak. Unlike network topology, intrinsic conductances that regulate cellular excitability and activity are370

not “fixed” but are dynamic and can be modified by conditional changes in e.g. neuromodulators and ion371

concentrations (Ramirez et al., 2012; Rybak et al., 2007) and are also more amenable to pharmacological372

manipulations (Bedoya et al., 2019; Burgraff et al., 2021; Verneuil et al., 2020). Thus, further experimental373

investigation of these approaches is warranted as they may hold promise as potential therapeutic strategies374

to protect against opioid-induced failure of preBötC network function.375
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Ramirez, J. M., & Baertsch, N. A. (2018a). The Dynamic Basis of Respiratory Rhythm Generation: One456

Breath at a Time. Annu Rev Neurosci, 41 (1), 475–499.457

Ramirez, J.-M., & Baertsch, N. A. (2018b). The dynamic basis of respiratory rhythm generation: One breath458

at a time. Annual review of neuroscience, 41, 475–499.459

Ramirez, J.-M., Burgraff, N. J., Wei, A. D., Baertsch, N. A., Varga, A. G., Baghdoyan, H. A., Lydic,460

R., Morris, K. F., Bolser, D. C., & Levitt, E. S. (2021). Neuronal mechanisms underlying opioid-461

induced respiratory depression: Our current understanding [Publisher: American Physiological So-462

ciety Rockville, MD]. Journal of Neurophysiology, 125 (5), 1899–1919463

Publisher: American Physiological Society Rockville, MD.464

Ramirez, J.-M., Koch, H., Garcia, A. J., Doi, A., & Zanella, S. (2011). The role of spiking and bursting465

pacemakers in the neuronal control of breathing. Journal of biological physics, 37, 241–261.466

Ramirez, J., Doi, A., Garcia III, A., Elsen, F., Koch, H., & Wei, A. (2012). The cellular building blocks of467

breathing. Comprehensive Physiology, 2 (4), 2683.468

Ren, J., Poon, B. Y., Tang, Y., Funk, G. D., & Greer, J. J. (2006). Ampakines alleviate respiratory depression469

in rats. American journal of respiratory and critical care medicine, 174 (12), 1384–1391.470

24

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2023. ; https://doi.org/10.1101/2023.08.29.555355doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.29.555355
http://creativecommons.org/licenses/by/4.0/


Rousseau, J.-P., Furdui, A., da Silveira Scarpellini, C., Horner, R. L., & Montandon, G. (2023). Medullary471

tachykinin precursor 1 neurons promote rhythmic breathing. Elife, 12, e85575.472

Ruangkittisakul, A., Kottick, A., Picardo, M. C., Ballanyi, K., & Del Negro, C. A. (2014). Identification473
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