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1 Abstract

2 The pre-Botzinger complex (preBotC), located in the medulla, is the essential rhythm-generating
3 neural network for breathing. The actions of opioids on this network impair its ability to generate
4 robust, rhythmic output, contributing to life-threatening opioid-induced respiratory depression (OIRD).
5 The occurrence of OIRD varies across individuals and internal and external states, increasing the risk
6 of opioid use, yet the mechanisms of this variability are largely unknown. In this study, we utilize a
7 computational model of the preBotC to perform several in silico experiments exploring how differences
8 in network topology and the intrinsic properties of preBotC neurons influence the sensitivity of the
9 network rhythm to opioids. We find that rhythms produced by preBotC networks in silico exhibit
10 variable responses to simulated opioids, similar to the preB6tC network in wvitro. This variability is
11 primarily due to random differences in network topology and can be manipulated by imposed changes
12 in network connectivity and intrinsic neuronal properties. Our results identify features of the preBotC
13 network that may regulate its susceptibility to opioids.


https://doi.org/10.1101/2023.08.29.555355
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.29.555355; this version posted November 10, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

14 Significance Statement

15 The neural network in the brainstem that generates the breathing rhythm is disrupted by opioid
16 drugs. However, this response can be surprisingly unpredictable. By constructing computational models
17 of this rhythm-generating network, we illustrate how random differences in the distribution of biophysical
18 properties and connectivity patterns within individual networks can predict their response to opioids,
19 and we show how modulation of these network features can make breathing more susceptible or resistant
20 to the effects of opioids.

2 1 Introduction

» Opioid-induced respiratory depression (OIRD) is the primary cause of death associated with opioid overdose.
»3  Because both the pain-killing and respiratory depressive effects of opioids require the p-opioid receptor
»  (MOR) encoded by the Oprml! gene (Baldo & Rose, 2022; Dahan et al., 2001; Lynch et al., 2023; Sora
5 et al,, 1997), there are few effective strategies to protect against OIRD without eliminating the beneficial
»% analgesic effects of opioids. Increasing doses of opioid are often required to maintain analgesia as the neural
x circuits that mediate pain become desensitized to opioids (Freye & Latasch, 2003; Uniyal et al., 2020),
;s putting patients at greater risk of OIRD. However, a dangerous and less well-understood feature of OIRD
2 is its apparent unpredictability (Dahan et al., 2013). Changes in breathing in response to opioid use can
3 vary substantially between individuals and can be surprisingly inconsistent even within the same individual
s under different internal and external states or contexts (Cherny et al., 2001; Dahan et al., 2013; Fleming
2 et al., 2015).

3 Although Oprm1 is expressed in many brain regions (Erbs et al., 2015), including those involved in
s the regulation of breathing (Baldo & Rose, 2022; Varga et al., 2020), one site of particular importance
55 is the PreBotzinger Complex (preBotC), a medullary region that is critical for generating the respiratory
s rhythm (Bachmutsky et al., 2020; Gray et al., 1999; Smith et al., 1991). This network is composed of
w interacting excitatory and inhibitory interneurons (Baertsch et al., 2018; Harris et al., 2017; Winter et al.,
s 2009). Although inhibitory neurons are important for regulating the frequency and regularity of breathing
s (Baertsch et al., 2018; Sherman et al., 2015), GABAergic or glycinergic mechanisms do not seem to play a
w significant role in OIRD in the preBotC (Bachmutsky et al., 2020; Gray et al., 1999). Instead, glutamatergic
s neurons are the critical component of the preBotC network needed for both rhythmogenesis and OIRD
» (Bachmutsky et al., 2020; Funk et al., 1993; Greer et al., 1991; Sun et al., 2019). Among the estimated
i 40-60% of preBotC neurons that express Oprm1 (Baertsch et al., 2021; Gray et al., 1999; Rousseau et al.,

w 2023), activation of MORs has two primary consequences: Excitability is suppressed due to activation of
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s a hyperpolarizing current, and the strength of excitatory synaptic interactions is reduced (Baertsch et al.,
s 2021). Together, these mechanisms of opioid action act synergistically to undermine the cellular and network
« mechanisms that mediate preB6tC rhythmogenesis.

a8 Neurons in the preBotC have heterogeneous cellular properties, which are readily observed following
w0 pharmacological blockade of synaptic interactions. Under these conditions, the intrinsic activity of preBotC
so  neurons is either silent, bursting, or tonic, which largely depends on their persistent sodium conductance
s (gnap) and potassium dominated leak conductance (gieakx) (Butera et al., 1999b; Del Negro et al., 2002;
2 Koizumi & Smith, 2008; Phillips & Rubin, 2019; Yamanishi et al., 2018). However, gnxap, gleak, and the
53 intrinsic activity of preBotC neurons are not fixed but can be dynamically modulated by conditional factors
s« such as neuromodulation and changes in excitability (Del Negro et al., 2001; Doi & Ramirez, 2008; Ramirez
ss et al., 2011). Thus, unlike the discrete activity states of its constituent neurons, when synaptically coupled,
s the network collectively produces an inspiratory rhythm that can operate along a continuum of states as the
57 ratios of silent, bursting, and tonic neurons change (Burgraff et al., 2021; Butera et al., 1999a). As previously
ss  demonstrated in rhythmic brainstem slices, the preBotC has an optimal configuration of cellular and network
s properties that results in a maximally stable inspiratory rhythm. These properties are dynamic, and the
s state of each individual preBotC network relative to its optimal configuration can predict how susceptible
s rhythmogenesis is to opioids (Burgraff et al., 2021).

62 Here, we expand on these findings by utilizing computational modeling to perform preBotC network ma-
6 nipulations and analyses that are experimentally intractable to better understand properties of the network
e that may contribute to the variation in OIRD and to provide proof of concept for perturbations that may
e render preBotC rhythmogenesis less vulnerable to opioids. We demonstrate that model preBotC networks
e exhibit variable responses to simulated opioids. This variation in opioid response is best predicted by differ-
o7 ences in “fixed” properties of randomly generated networks, specifically the connectivity between different
e groups of excitatory and inhibitory neurons as well as which neurons in the network express MOR. In con-
o0 trast, opioid-induced changes in the intrinsic spiking patterns preBo6tC neurons (silent, bursting, tonic) do
7o not predict this variation. In networks with high opioid sensitivity, we find that modulation of either gna.p
7n Or gleak can render rhythmogenesis more resistant to opioids. These insights help establish a conceptual
7 framework for understanding how the fixed and dynamic properties of the preBétC shape how this vital

73 network responds when challenged with opioids.
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2 Methods

2.1 Computational modeling of OIRD in the PreBotC

We model the preBotC network as a random, directed graph of N = 300 nodes, with each node representing
a neuron. The dynamical neuron equations are modified from (Baertsch et al., 2021; Butera et al., 1999a;

Butera et al., 1999b; Harris et al., 2017). First, we have the total membrane current balance equation

dv
_Cmﬁ = INa + INaP + Ileak + IK + Isyn,exc + Isyn,inh + Isyn,op + Ihyp,opv (1)

where the currents are given by

Ina = gnam2e (1 = n)(V — Eng)
INaP = gNaP Dnapr (8)MNaP, 0 R(V — Ena)
Deak = Greak Dicak (1) (V' — Eleak)
Ix = ggn*(V — Bx)
Isyn,exe = Gexc(V = Eexc)
Isyn inh = ginn (V' — Einn)
Isyn,op = Gsyn,op(£)(V — Eexc)

Inyp,op = Doplnyp,op(t)

We implemented the terms Dyap(t) and Djeax(t) to simulate time-dependent “drugs” strengthening or weak-
ening NaP and leak channel conductances by varying between 0 and 1. We also added the opioid-modulated
synaptic and hyperpolarizing currents Igyn op and Ihypop as a mechanism for biophysical perturbations
through changing Inyp op(t) and gsynop(t). While many terms in these differential equations are time-
dependent, we only explicitly highlight the time-dependence of Dyap, Dicak;s Gsyn,op> Ihyp,op Decause these

are set exogenously. The gating equations are

dn  Ne—n

dt T
@ _hee —h
dt Th
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s with voltage-dependent steady states,

sz and time constants

S Tnb
Y= ——
cosh (%)
- Thb
Th — 7‘/ i .
cosh( 2_Uhh)

e Finally, synapses are modeled separately for excitatory, inhibitory, and opioid-sensitive presynaptic neurons.

s FEach synapse conductance s is modeled with first-order dynamics:

ds (1 —8)Meyn,co —$

% B Tsyn

Vire — Bs\\
Mgsyn,co = (1 + exp (M)) )
’ Osyn

o and geyn is given as the sum of geyn max - s over all incoming synapses to the neuron. This model was

o implemented in brian2 (Stimberg et al., 2019). The parameters which are shared across all neurons are
oo given in Table 1; other parameters will be described in the rest of the methods. Our code will be included

o3 with the final version of this paper.

w 2.1.1 Network construction

s Our 300 neuron network consists of 60 inhibitory neurons and 240 excitatory neurons. Synapses were ran-

dawvg /2

s domly constructed, with each neuron having a connection probability of =724,

where dg,4 is the neurons’
o average degree (in-degree + out-degree). Our default dy., is 6, giving us a connection density of approxi-
s mately 1%. However, in 3 we increase the connection probability by scaling dqvg, €.8. davg = 12 results in a
o 2% connection density.

100 The intrinsic activity of each neuron is either tonic spiking (T), bursting (B), or quiescent (Q), which

1w is controlled by gieax and gnap. The greak value for each neuron was randomly drawn from a mixture of
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Parameter | Value
Cm 21 pF
EK -85 mV

Eleak -58 mV
EnNa 50 mV
Foxe 0 mV
Einh -70 mV
Eq 0 mV
on 5mV
Om -5 mV

Om,NaP,co -6 mV
On -4 mV
Osyn -3 mV
E, -48 mV
E,, -34 mV

Em,NaP -40 mV
FE, -29 mV
Tsyn 15 ms
Tnb 10 ms
Thb 10 s
9Na 28 nS
JK 11.2 nS

Table 1: Table of model parameters shared across neurons.

three Gaussians with weights [0.35, 0.1, 0.55], means [0.5, 0.7, 1.2] nS, and standard deviation 0.05 nS. The
gnap values are drawn from a Gaussian with mean 0.8 nS and standard deviation 0.05 nS. Classification of

intrinsic activity is done by using peak detection on the voltage V recorded with synapses blocked.

2.1.2 MOR targeting

In all simulations, half of the excitatory neurons are opioid-sensitive (MOR+) and can be targeted with opioid
(Dop = 1), while the inhibitory neurons and the other half of the excitatory neurons (MOR-) are insensitive
(Dop = 0). The opioid-sensitive population’s excitatory synapses follow the Iy op equation, whereas the
insenstive neurons follow Igyn exc. Assignment of D,, among excitatory neurons is random except in two
cases shown in Fig. 5, where opioid is applied to the excitatory neurons with gje.x values below or above the

median among the excitatory population.

2.1.3 Gradual ramp up of opioid

For opioid ramping simulations (Figs. 1, 3, 4E), Ihypop ramped from 0-8 pA, increasing by 0.5% every 3
seconds, while gsyn op gradually decreased from 1.0-0.0 nS by 0.5% every 3 seconds. Hence, the total length
of the simulation is 10 minutes. The opioid shutdown dosage was calculated by averaging the Iiyp, op values

at the time of the last bursts with amplitudes of 10-15 Hz.
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n7 2.1.4 Timed all-or-nothing perturbations

us In simulations with timed all-or-nothing perturbations (Figs. 2, 5A,B,C, 6, and 7), we allowed for a 10 second
9 transient period before each perturbation. Data from transient periods is not used in our analysis. When
10 the opioid perturbation is turned on, Iyp op = 4 PA and gsyn opioid = 0.5 nS. We varied gnap (Fig. 6) or gieak
o (Fig. 7). For each node, gnap was increased to 110%, 130%, and 150% of control values, whereas gieax was
122 decreased to 90%, 70%, and 50% of control values. In Figs 6 and 7, the 200 s experimental procedure is as

123 follows:

124 1. 10 s transient period
125 2. 30 s control period
126 3. 10 s transient period

127 4. 30 s opioid perturbation

128 5. 10 s transient period

129 6. 30 s control “wash” period

130 7. 10 s transient period

131 8. 30 s gnap O gleak perturbation
132 9. 10 s transient period

133 10. 30 s simultaneous perturbation of opioid and gnap O gleak

s 2.2 Analysis
1 2.2.1 Burst detection and opioid shutdown dosage

s Bursts were detected using a basic peak-finding algorithm (find_peaks function in scipy (Virtanen et al.,
wr 2020)) where each peak must have a minimum height of 4 Hz/cell and minimum prominence of 10 Hz/cell.
13z We then compute the opioid shutdown dosage by finding the averaging Iopi0iq values at the time of the last
130 bursts meeting an amplitude threshold of 10, 11, 12, 13, 14, and 15 Hz/cell. Statistical analysis of measured
o variables was performed using GraphPad Prism 10 software, and data was visualized using a combination of

1w python, GraphPad Prism, and Powerpoint.


https://doi.org/10.1101/2023.08.29.555355
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.29.555355; this version posted November 10, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

1w 2.2.2 Phase diagrams

us  Each phase boundary was computed by simulating the network under synaptic block, sweeping across a
e grid of conductances gieax € {0.2,0.3,...,1.5} nS and gnop = {0.6,0.7,...,1.5} nS. The points plotted
us  within the phase boundaries represent the neurons in the two-population network simulated under synaptic
s block. Population neurons and phase sections are both colored by intrinsic activity classified as described in

ur  Section 2.2.1.

us 2.3 Code availability

19 Code is available in our github repository or upon request to the corresponding author. Code was run using

10 Linux systems with python simulation stack.

s 3  Results

= 3.1 Opioid sensitivity varies across model preBotC networks.

153 In sparsely connected (1%) preBotC networks, connections were drawn randomly between excitatory and
15« inhibitory neurons with different intrinsic activities as determined by varied gnap and gieax values. We
155 implemented a two-population distribution of gje.x and gnap (Baertsch et al., 2021) as described in Methods
1 2.1.1 to reduce the number of neurons in the network that exhibit intrinsic bursting to 5 — 10% (Fig. 1),
157 as estimated by experimental recordings in vitro. With 50% of excitatory neurons randomly designated as
158 opioid-responsive (MOR+) and the remaining 50% non-responsive (MOR-), we performed simulations on 40
150 different preBétC networks where the effects of opioid (i.e. presynaptic suppression and hyperpolerization)
w0 were gradually increased over the course of 10 minutes. An example of how simulated opioid affected the
161 intrinsic activities of MOR+ and MOR- neurons in gjeax, gnap parameter space is shown in Fig. 1B. Across
12 all networks, opioids transitioned the intrinsic activity of preB6tC neurons from tonic or bursting to silent
s (Fig. 1C), similar to observations in preBotC slices (Burgraff et al., 2021). Some networks were highly
e sensitive to opioid, as shown by a quicker decline in the respiratory rhythm (e.g. Fig. 1D, traces 1 and 2),
s while other networks were quite resistant (e.g. Fig. 1D, traces 3 and 4). This variability is reflected in the
166 distribution of shutdown dosages, which ranged from 3.73 to 7.51 with a mean of 5.26 and was approximately
1wv  Gaussian Fig. 1E. Thus, despite all simulated networks having the same number of neurons designated as
168 excitatory, inhibitory, and opioid sensitive (MOR+), there was considerable variation in how individual

1o networks responded to opioids.
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mw 3.2 Changes in intrinsic cell activities do not predict opioid sensitivity.

i To explore how random differences in the intrinsic cellular activities of the networks may predict the varied

12 responses of the network rhythm to opioids, we compared networks with high and low opioid sensitivity.

A In silico preBo6tC Network B intrinsic Cellular Activities
20% Inhibitory 80% Excitatory Bursting Tonic
L L
' i ! Control + Opioid

50% Opioid
14
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Figure 1: Opioid sensitivity varies across model preBotC networks. (A) A network graph of the in-silico
preBotC network. (B) Phase diagrams showing intrinsic activities of each neuron (open circles) based on
Jleak and gnap conductances. Top-row: MOR- neurons. Bottom-left: control condition, MOR+ neurons.
Bottom-right: opioid applied to MOR+ neurons. (C) Quantified changes in the number of neurons with
silent, bursting, or tonic intrinsic activities in response to opioid (n = 40 networks; two-tailed paired t-tests;
kD < 0.0001). (D) Traces of 4 network simulations where opioid is ramped up. Numbered boxes show
the last bursts detected at a given amplitude threshold (10-15 Hz/cell). (E) Histogram and kernel density
estimation of the distribution of opioid shutdown doses for n = 40 model networks.
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13 “High-sensitivity” networks were defined as those with an above-median opioid shutdown dosage, while
s networks with a below-median shutdown dosage were considered “low-sensitivity”. Rather than the gradual
s opioid ramping as shown in Fig. 1, in Fig. 2 we instead simulated a 30-second control period followed by a
ws  30-second period with a moderate dose of opioid applied (opioid=4). The variation in opioid sensitivity is
1w exemplified in Fig. 2A, where we see clear differences in how the rhythm responded to opioid. In the high-
s sensitivity case, the rhythm became weak and irregular, whereas rhythms produced by the most resistant
o networks were able to maintain consistent frequencies and burst amplitudes close to baseline. Changes in
180 the intrinsic cellular activities of these representative high- and low-sensitivity networks are shown in gjeak,
11 gNap Parameter space in Fig. 2B. Under control conditions and in the presence of opioid, the proportions
12 of neurons with silent, bursting, or tonic intrinsic activity were similar between high- and low-sensitivity

13 networks (Fig. 2C). Indeed, regardless of opioid sensitivity, a similar number of MOR+ neurons that were
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Figure 2: Intrinsic cellular activities do not predict opioid sensitivity. (A) Example rhythms (top) and
overlaid burst waveforms (bottom) under control conditions and in the presence of opioid from representative
“high sensitivity” (left) and “low sensitivity” (right) networks. (B) Phase diagrams of high (left) and low
(right) sensitivity networks, showing intrinsic activities of MOR~ (top) and MOR+ (bottom) neurons (open
circles) based on gjeax and gnap conductances. (C) Quantified relationship between opioid shutdown and the
number of silent, bursting, and tonic neurons under control conditions (top) and in the presence of opioid
(bottom) (n = 40 networks; two-tailed paired t-tests; ns=not significant).
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18« tonic or bursting in control conditions became silent in the presence of opioid, which was consistent across all
15 40 networks. Thus, differences in how opioids affect the intrinsic activities of neurons in our model networks

16 are unlikely to explain their variable responses to opioids.

w 3.3 Connection density and network structure regulate opioid sensitivity.

18 'To test how the total amount of connectivity with the preBoétC model networks affects how they respond
189 to opioids, we ran simulations where the connection probability of each neuron was increased to 2%, 4%,
wo 8%, or 16% for 40 networks each (the default for all other experiments is 1% connection density), while
11 maintaining total synaptic strength in the network constant. The results are shown in Fig. 3. For each
12 trace in Fig. 3A, we can see that networks with higher connectivity are able to maintain a network rhythm
13 at higher doses of opioid. The distribution of dosages that effectively shut down each network also tends to
s be slightly less variable at higher connection probabilities ( 3B and C). Thus, preBotC networks with higher
15 total connection densities are more resistant to opioids.

196 Next, we examined how random differences in connection topology may contribute to the variation
17 in opioid responses observed across our 40 randomly drawn model networks. To do so, we first tested
s whether the total number of excitatory and inhibitory connections (excitation/inhibition balance) within
190 each model network was related to its sensitivity to opioids (Fig. 4A). Correlation analysis revealed that, in
20  general, networks with a more highly connected excitatory population and fewer inhibitory inputs to these
21 excitatory neurons were more resistant to opioids (i.e. higher opioid shutdown dose). In contrast, overall
202 connectivity within the inhibitory population or from excitatory to inhibitory neurons was not correlated with
203 the sensitivity of the network rhythm to opioids. Next, we tested more specifically whether the number of
2a - connections within and between, excitatory MOR+, excitatory MOR-, and inhibitory neurons was correlated
25 with the opioid dose that shutdown rhythm generation (Fig. 4B). We found that when the population of
206 excitatory MOR- neurons was more interconnected and received less inhibitory input, the network was more
207 likely to be resistant to opioids.

208 In a third analysis, we broke the network connectivity down even further by computing correlations
200 between opioid shutdown dose and the number of connections among intrinsically tonic, bursting, and silent
a0 excitatory MOR+, excitatory MOR-, and inhibitory neuron subpopulations (Fig. 4C). This revealed three
ou primary observations. First, the number of connections from silent to tonic excitatory MOR- neurons
a2 was the strongest driver of opioid resistance among this MOR- population. Second, although the total
213 number of connections within the MOR+4 population was not predictive of opioid sensitivity, networks with

s more connections between intrinsically tonic MOR+ neurons and fewer connections between intrinsically

11
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Figure 3: Increased connection density reduces opioid sensitivity. (A) Example traces of 4 different simula-
tions with varied connection densities where opioid is ramped up (opioid=0-8) over 10-minutes. (B) Kernel
density estimations showing the distribution of shutdown dosages based on connection probabilities. (C)
Quantified opioid shutdown dose vs. connection probability (n = 40 networks; one-way RM ANOVA with
Bonferroni multiple comparisons tests; *p < 0.05, **p < 0.01, ****p < 0.0001).

a5 silent MOR+ neurons were more resistant to opioids. And third, networks were also more likely to be
26 resistant to opioids if they had more connections from tonic MOR+ neurons to tonic or silent MOR- neurons
a7 and fewer connections from bursting MOR+ neurons to silent MOR- neurons. Overall, these correlation
a8 analyses suggest that differences in network topology as a result of randomness in the assignment of network

210 connections contribute to the variable responses of preBotC networks to opioids.
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Figure 4: Network structure regulates opioid sensitivity. Correlation analysis of the relationship between
opioid shutdown dose and connectivity within and between (A) excitatory and inhibitory populations, (B),
MOR+, MOR-, and inhibitory populations, and (C) tonic, bursting, and silent excitatory and inhibitory
subpopulations (n = 40, two-tailed correlation analysis; *p < 0.05, **p < 0.01, ***p < 0.001). Numbers in
A and B represent the max and min number of each type of connection.

» 3.4 Identity of MOR+ neurons regulates opioid sensitivity.

21 Because 50% of the excitatory neurons in our model networks are randomly designated as MOR+, we next
22 wondered how the opioid sensitivity of the model networks may be altered if the identity of MOR+ neurons
23 is non-random. To address this question, we performed simulations to compare opioid responses in networks
24 where the intrinsically silent neurons (high gieax) or the tonic/bursting neurons (low gieax) were designated
25 as MOR+, as described in Section 2.1.2. Example network activity during these experiments is shown in
2 Fig. 5A. Compared to random assignment of MOR as described above, assigning MOR, to the low gjeak

27 population made the rhythms more resistant to opioids, whereas assigning MOR to the high gjc.x population
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Figure 5: Identity of MOR+ neurons regulates opioid sensitivity. (A) Example rhythms (top) and burst
waveforms (bottom) in response to opioids when MOR is assigned randomly (left) or specifically to low
Jleak (middle) or high gieax (right) populations. (B) Intrinsic activities of MOR-~ and MOR+ neurons (open
circles) in gnap, gleak Space of the example networks shown in A. C) Quantified number of silent, bursting,
and tonic neurons under control conditions and in response to opioid when MOR is assigned randomly or
to low/high gjeax populations (n = 40 each, one-way ANOVA with Bonferroni multiple comparisons tests,
ns=not significant, *p < 0.05, **p < 0.01, ****p < 0.0001). D) Example network rhythm during opioid ramp
(opioid=0-8) with MOR assigned randomly or to low /high gieax populations. E) Kernel density estimations
showing distributions of opioid shutdown dosages based on the identity of MOR expressing neurons. (n = 40,
one-way ANOVA with Bonferroni multiple comparisons tests; *p < 0.05, ****p < 0.0001)
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28 made them more sensitive. When low gjeax (primarily intrinsically tonic/bursting) neurons are MOR+, 92.3%
20 of the population became intrinsically silent in response to opioids (Fig. 5B). However, this only reflects the
20 intrinsic activity of those neurons with synapses blocked. With synaptic interactions intact, the network
an remained rhythmic, with a slower frequency than control conditions but a similar amplitude. On the other
22 hand, when the high gjeax (primarily intrinsically silent) population is MOR+, the rhythm collapsed under
23 only a moderate dose of opioid (Inypop =4 pA) (Fig. 5A). In this case, changes in the intrinsic activities of
2¢ neurons in the network in response to opioid were minimal (Fig. 5B).

235 The above results were for a single exemplar network. In Fig. 5C, for each condition, we compared
26 the number of intrinsically silent, bursting, and tonic neurons and how the distributions of these intrinsic
2 activities change in response to opioids across 40 different model networks. As expected (see Fig. 1B),
28 when the identity of MOR+ neurons was randomly assigned, opioids caused many of the low geax MORA+
220 meurons to transition from tonic/bursting activity to silent, whereas high gjeax MOR~+ neurons were largely
20 unaffected. Under non-random conditions, when all low gjcx neurons were designated as MOR+, changes in
2 the intrinsic activities within the network were exaggerated such that nearly all intrinsically tonic activity was
a2 lost as 92% of the network became intrinsically silent. In contrast, when high gjea) neurons were designated as
23 MOR+, there were minimal changes in the distribution of intrinsic activities within the networks (Fig. 5C).
2a To further test how the identity of MOR+4 neurons may alter how the preB6tC network rhythm responds to
s opioids, we performed simulations ramping up the opioid effect to compare shutdown dosages for networks
26 with MOR identity assigned randomly, or selectively to low or high gieax populations. (Fig. 5D, E). Notably,
27 despite a much larger proportion of the network becoming intrinsically silent, networks with low gjeax neurons
28 designated as MOR+ were more resistant to opioids, than when MOR identity was randomly assigned. On
29 the other hand, the average shutdown dosage was lower when high gje,x neurons were designated as MOR+,
»0 indicating that, despite the minimal effects on the intrinsic activities of the neurons, the network rhythm
1 was substantially more sensitive to opioids under these conditions. These findings support the conclusion
s that changes in intrinsic cellular activities within the network are not predictive of its sensitivity to opioids
3 (see Fig. 2), but that the distribution of MOR+ expression among preBotC neurons may be an important

»s  determinant of how the network responds to opioids.

» 3.5 Modulation of gn.p or gie.x can render the preBotC resistant to opioids.

»6  Considering these results, we tested whether manipulations of the intrinsic properties of preBotC neurons
7 may represent a viable strategy to protect the preBotC rhythm from the effects of opioids. Specifically,

»s  we tested whether increasing gn,p would allow for sustained rhythmogenesis in the presence of relatively
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20 high opioid doses as previously hypothesized based on pharmacological experiments in vitro (Burgraff et al.,

%0 2021). We also tested whether decreasing the leak conductance gjeax would have a similar protective effect
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Figure 6: Modulation of gna.p renders the network resistant to opioids. (A) Example rhythm and burst
waveforms from a network (MOR randomly assigned) in response to opioid and during concurrent modulation
of gnap to 110%, 130%, and 150% of control values. (B) Quantified effects on frequency (top) and burst
amplitude (bottom) during opioid and gn.p modulation (n = 40, one-way RM ANOVA with Bonferroni
multiple comparisons tests, **p < 0.01, ***p < 0.001, ***p < 0.0001). (C) Changes in the intrinsic
activities in gnap, gleak space of MOR- and MOR+ neurons from the example network shown in A. (D)
Quantified changes in the number of silent, bursting, and tonic neurons in response to opioid and subsequent
modulation of gn.p (n = 40, one-way RM ANOVA with Bonferroni multiple comparisons tests, *p < 0.05,
**p < 0.01, ***p < 0.001, ****p < 0.0001).
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s on rhythmogenesis. Rhythmic activity of a representative network under control conditions, in opioid, and
% during a subsequent 10%, 30%, and 50% increase in gnap are shown in Fig. 6A. Increasing gnap by 30% in
%3 the model networks reversed the effects of opioids on burst frequency and amplitude (Fig. 6B). However,
s recovery of the rhythm by gn.p modulation did not restore intrinsic cellular activities to near control.
s Instead, it was associated with a change in the intrinsic activity of both MOR+ and MOR- neurons from
x6  silent to bursting, with little effect on the number of tonic neurons (Fig. 6C, D). Under control conditions,
»7  the network was composed of mostly intrinsically tonic and silent neurons (52.3% and 40.7%, respectively).
%8 In response to opioid, the proportion of silent neurons increased to 73.7% as MOR+ neurons transitioned
%0 from tonic to silent. As gn.p was increased, the MOR+ neurons that were originally tonic under control
a0 conditions transitioned to bursting. Specifically, when gna.p was increased by 30%, 55% of the population
o entered a gnap, Gleak Parameter space that supports intrinsic bursting. Thus, despite recovery of a rhythm
a2 with similar frequency and amplitude characteristics following gnap modulation, the number of intrinsically
213 tonic neurons remained reduced, whereas the number of bursting neurons was increased relative to control
o conditions.

215 We next performed similar simulations during manipulation of gieax (Fig. 7). The rhythmic activity of
a6 a representative network under control conditions, in opioid, and following a subsequent 10, 30, and 50%
o7 reduction in gpeai is shown in Fig. 7A. In this case, burst amplitude but not frequency could be significantly
as recovered towards control values (Fig. 7B). This was associated with changes in the intrinsic activities of
a9 primarily MOR- neurons (Fig. 7C). When gjeax was reduced to 70% of control, there was a large increase
20 in the number of bursting neurons, and upon further reduction of g to 50% of control, these neurons
s became tonic, leaving only 2.7% of the population as bursting (Fig. 7D). Thus, our model predicts that
2 manipulations that directly or indirectly affect persistent sodium and/or potassium leak conductances may

23 be effective for increasing the resistance of preB6tC function to opioids.

» 4 Discussion

25 The effect of opioids on respiratory function is variable in brain slices in vitro, animal models in vivo, and
26 in individual humans (Burgraff et al., 2021; Cherny et al., 2001; Dahan et al., 2005; Dahan et al., 2013).
27 Here we adopt a computational model of the respiratory rhythm generator to dissect plausible network
s topology and cellular properties that contribute to variable respiratory responses to opioids. We leverage
29 computational models that allow us to instantiate networks of the preBotC with connectivity patterns and
20 conductances drawn from random distributions. These networks are statistically indistinguishable on the

201 “macro”-scale; they have the same overall numbers of excitatory and inhibitory neurons, the same numbers
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Figure 7: Modulation of gjeax renders the network resistant to opioids. (A) Example rhythm and burst
waveforms from a network in response to opioid and during concurrent modulation of gieax to 90%, 70%,
and 50% of control values. (B) Quantified effects on frequency (top) and burst amplitude (bottom) during
opioid and gjeax modulation (n = 40, one-way RM ANOVA with Bonferroni multiple comparisons tests, **p
< 0.01, ¥***p < 0.0001). (C) Changes in the intrinsic activities in gnap, gleak Space of MOR- and MOR+
neurons from the example network shown in A. (D) Quantified changes in the number of silent, bursting,
and tonic neurons in response to opioid and subsequent modulation of ge.x (n = 40, one-way RM ANOVA
with Bonferroni multiple comparisons tests, ****p < 0.0001).

of MOR+ and MOR- neurons, the same probability of connections per neuron, and conductance values are

drawn from the same distributions. Yet, due to the random assignment of some of these properties, each
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24 network differs on the level of individual neurons (nodes), which vary in their exact connectivity patterns
25 and conductance strengths. Surprisingly, this “micro”-level randomness is sufficient to create quite variable
26 responses at the network level to the same stimulus - in this case simulated opioids. We suspect that these
27 differences may contribute to the observed variable responses to opioids seen in experimental preparations
28 (Burgraff et al., 2021). Further, this micro-level variability could, for example, explain how individuals may
200 respond differently to network perturbations despite the preB&tC network developing with the same general
w0 set of instructions (e.g. genome, transcriptome, axonal targeting mechanisms, etc). While OIRD arises
sn from the effects of opioids on multiple central and peripheral sites (Ramirez et al., 2021), our simulations
32 illustrate how variation in the architecture of the inspiratory rhythm generator could be an important factor
33 underlying the unpredictability of opioid overdose.

304 The computational approach here allows for directed manipulations that are experimentally intractable.
s For instance, we are able to ask if the response of the preBétC to opioids depends on MOR, being expressed
s in populations with particular conductance profiles. More concretely, we target the opioid effect directly to
sr - neurons that have a particular leak conductance. This leak conductance (gieax) is an important determinant
w8 of whether a neuron is intrinsically “tonic”, “bursting”, or “silent” (Butera et al., 1999b; Del Negro et al.,
30 2002; Koizumi & Smith, 2008; Yamanishi et al., 2018). Surprisingly, introducing MOR, selectively to low
30 gleak (Intrinsically excited neurons with tonic/bursting activity), decreased the response of the network to
s opioids making the rhythm more resilient. Conversely, introducing MOR selectively to the less excitable
sz population (the high gieax, quiescent cells), increased the susceptibility of the network rhythm to opioids.
a1z We speculate that a robust preBotC rhythm relies on the existence of a population of “recruitable” neurons
s that are not strongly intrinsically active, but are capable of becoming active with a small amount of synaptic
a5 input. When opioids affect neurons in the low gjeax population, their intrinsic activity is reduced but they
as  remain in the recruitable pool and therefore can continue to participate in the network, allowing the rhythm
a7 to continue at higher opioid doses. Conversely, we expect that when opioids further suppress neurons that
s already have low intrinsic excitability (high gieax) they are removed from the recruitable pool and unable
a0 to participate in network bursts, making coordinated network activity more vulnerable to opioids. When
a0 the effect of opioids is randomly targeted to 50% of neurons, the proportion that remains recruitable in
s the presence of opioid depends on how MOR expression is randomly assigned within the high and low gjeak
32 populations, contributing to variable opioid responses at the network level.

323 Network connectivity is difficult to study and manipulate experimentally. Thus, computational models,
324 where the number and strength of all connections between every neuron are known, can be an important
35 tool to provide “proof of concept” insights into how network topology can influence network function and

s determine its response to perturbations. We took advantage of this by performing correlation analysis
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37 to better understand how the number of connections between certain subgroups of preBétC neurons may
3s  predict how susceptible the network is to opioids. These analyses revealed that, in general, when neurons that
20 do not respond to opioid (MOR-) are more interconnected and receive less inhibitory input, the network
;0 1S more resistant to opioids. We suspect that this connectivity configuration may allow the network of
s MOR- neurons to remain rhythmogenic even when very few opioid sensitive (MOR+) neurons are able
32 to contribute to network function. In another analysis, we scaled the number of connections within the
33 network without altering total synaptic strength, which consistently increased the robustness of the network
3¢ to opioids. Because opioids weaken the pre-synaptic strength of excitatory interactions (Baertsch et al.,
s5 2021), we anticipate that networks with lower numbers of connections become “fractured” into isolated
36 sub-networks when opioid-induced weakening of synapses impairs the network’s ability to effectively recruit
a7 portions of the population. Indeed, the preBétC rhythm in vitro has a higher proportion of failed bursts with
18 low amplitude in response to opioids (Baertsch et al., 2021; Phillips & Rubin, 2022). In networks with more
10 connections, activity more consistently propagates to all neurons (Kam et al., 2013), efficiently recruiting
uo  the whole population despite the effect of opioids on synaptic transmission. This could also contribute to
s the variable opioid responses observed in in vitro experiments since both within and across labs where the
w2 creation of rhythmic brain stem slices invariably samples slightly different portions of the preB6tC population
w3 that may be more or less densely connected (Baertsch et al., 2019; Ruangkittisakul et al., 2014). Although
s these simulations illustrate that network topology could be an important determinant of opioid sensitivity,
us  because connection density and patterns are considered “fixed” properties of the network, at least on short
us time scales, manipulation of network topology is an unlikely avenue for therapeutic interventions. In contrast,
wr the strength of existing excitatory synaptic connections can be pharmacologically altered acutely via e.g.
us ampakines, which may render the preBotC less vulnerable to opioids and shows promise as an intervention
s for OIRD (Ren et al., 2006; Sunshine & Fuller, 2021; Xiao et al., 2020).

350 The intrinsic activity of preBotC neurons is determined by multiple interacting cellular properties (Ramirez
s et al, 2012). Not all are known and not all can be incorporated into our simplified model network. Yet,
52 like many other computational studies (Lindsey et al., 2012), the interaction between gieax and gn.p deter-
33 mines intrinsic activity in our model and is sufficient to capture the silent, bursting, or tonic phenotypes
3¢ of preBotC neurons. Both gieax and gnap contribute to cellular excitability (resting membrane potential),
s and the voltage-dependent properties of gnap allow some neurons with appropriate gieax to exhibit intrinsic
6 bursting or “pacemaker” activity (Koizumi & Smith, 2008). Whether such neurons with intrinsic bursting
37 capabilities have a specialized role in network rhythmogenesis is a matter of ongoing debate (da Silva et al.,
s 2023; Feldman & Del Negro, 2006; Ramirez & Baertsch, 2018a; Ramirez & Baertsch, 2018b; Smith et al.,

30 2000) that we do not address here. Instead, we aimed to understand how opioids alter the intrinsic activities
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w0 of preBotC neurons. In the model network, opioids reduce the number of neurons with intrinsic bursting or
1 tonic activity and increase the number of silent neurons. To our surprise, the extent of these changes was
w2 not a significant predictor of the network response to opioids. This suggests that the intrinsic activity of a
%3 given neuron may not be representative of its contribution to network function, and that other factors, such
4 as those discussed above, play more substantial roles in determining how the preB&tC responds to opioids.
s Although network differences due to random sampling of gjeax and gnap from set distributions were not a
w6 significant factor driving variable opioid responses, we found that scaling the distribution of gnap O Gleax
7 across the whole population did alter the sensitivity of model networks to opioids. Interestingly, manipu-
s lation of gnap was more effective since a 30% increase in gna.p was sufficient to restore both frequency and
0 amplitude of the rhythm, whereas effects were more specific to burst amplitude following a 30% decrease
s in gleax. Unlike network topology, intrinsic conductances that regulate cellular excitability and activity are
sn not “fixed” but are dynamic and can be modified by conditional changes in e.g. neuromodulators and ion
sz concentrations (Ramirez et al., 2012; Rybak et al., 2007) and are also more amenable to pharmacological
s manipulations (Bedoya et al., 2019; Burgraff et al., 2021; Verneuil et al., 2020). Thus, further experimental
s investigation of these approaches is warranted as they may hold promise as potential therapeutic strategies

a5 to protect against opioid-induced failure of preBotC network function.
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