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Abstract

Motivation: There exists a range of different quantification frameworks to estimate the synergistic effect of drug
combinations. The diversity and disagreement in estimates make it challenging to determine which combinations from
a large drug screening should be proceeded with. Furthermore, the lack of accurate uncertainty quantification for those
estimates precludes the choice of optimal drug combinations based on the most favourable synergistic effect.
Results: In this work, we propose SynBa, a flexible Bayesian approach to estimate the uncertainty of the synergistic
efficacy and potency of drug combinations, so that actionable decisions can be derived from the model outputs. The
actionability is enabled by incorporating the Hill equation into SynBa, so that the parameters representing the potency
and the efficacy can be preserved. Existing knowledge may be conveniently inserted due to the flexibility of the prior,
as shown by the empirical Beta prior defined for the normalised maximal inhibition. Through experiments on large
combination screenings and comparison against benchmark methods, we show that SynBa provides improved accuracy
of dose-response predictions and better-calibrated uncertainty estimation for the parameters and the predictions.
Availability: The code for SynBa is available at https://github.com/HaotingZhang1/SynBa. The datasets are publicly
available (DOI of DREAM: 10.7303/syn4231880; DOI of the NCI-ALMANAC subset: 10.5281/zenodo.4135059).
Contact: hz381@cam.ac.uk

Introduction

With the increased use of small molecule drugs in monotherapy

and drug combination treatments, off-target toxicity and

resistance to treatments are becoming clear challenges. The

use of combinations of drugs offers a possible solution to

reduce toxicity minimising doses and bypassing resistance with

alternative targeting. Thanks to the development of high-

throughput approaches to screen drug-sensitivity in cell lines,

dose-response data for a large number of combinations have

been made available. Examples include the AstraZeneca-Sanger

DREAM challenge (DREAM) (Menden et al. [2019]), NCI-

ALMANAC (Holbeck et al. [2017]), DrugComb (Zagidullin

et al. [2019]), and the screening data from the Wellcome Sanger

Institute (Jaaks et al. [2022]). The availability of these datasets

makes it possible to predict the effect of drug combinations from

modelling drug-sensitivity data, leveraging information from

biological features of the cell lines and chemical characteristics

of the drugs (Bulusu et al. [2016]).

To understand how drugs can work synergistically when

combined, models with a quantification framework are required.

Traditional quantification frameworks usually involve a null

surface, based on a number of set assumptions. The Bliss model

is based on the Multiplicative Survival Principle (Bliss [1939]),

whereas the Loewe model is based on the Dose Equivalence

Principle (Loewe [1953]). In the past decade, parametric

methods have started to emerge as alternatives to the above.

These include MuSyC (Meyer et al. [2019], Wooten et al.

[2021]), BRAID (Twarog et al. [2016]) and the Effective Dose

model (Zimmer et al. [2016]). All these frameworks are based

on different assumptions and parameterisations. As a result of

this, the outputs from these models often disagree. Although

there have been efforts to unify the frameworks, this is still an

open problem for the field.

To define a common framework for drug combination, we

need a less ambiguous definition of synergy (Tang et al. [2015]).

When a combination is said to be synergistic, it is unclear

whether it implies that the combination is desirable in terms of

its potency or its efficacy. Potency is the amount of dosage

required for a drug to produce a specified effect, whereas

efficacy is the degree of the beneficial effect produced by

the drug (Meyer et al. [2019]). A strong synergistic potency

implies the toxicity may be reduced when the drugs are

combined, which is crucial for avoiding overdose, whereas

a strong synergistic efficacy implies that the combination

increases the maximal possible effect. Both aspects are

relevant for progressing with pre-clinical and subsequent clinical

investigation. An ideal combination would be potent and

effective. However, in clinical research there are situations

where a drug partner is requested only for enhancement

of potency and not to increase efficacy. Until recently, in

quantification frameworks including Bliss, Loewe, BRAID and

the Effective Dose Model, potency and efficacy are entangled

within the concept of synergy as defined in the traditional

quantification frameworks. To tackle this problem, Meyer

et al. [2019] developed MuSyC, a framework that decouples

potency and efficacy following the principles of the generalised

Hill equation. Although the MuSyC approach is effective for

modelling both potency and efficacy, the model does not fully

explore the challenge of model-based estimation of uncertainty.

There are various sources of uncertainty associated with drug-

sensitivity modelling. Firstly, the biology of dose-response

relationships is still unknown despite existing efforts. This leads

to uncertainty associated with insufficient scientific knowledge.

Secondly, there are systematic and random errors arising

from the experimental procedures. Thirdly, biological variation

exists among cell lines of the same disease, resulting in a further
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source of noise. Finally, uncertainty also stems from limited

information that can be extracted due to the small size of

available data (epistemic uncertainty).

Given these multiple sources of uncertainty, it is often

impossible to reach an accurate estimate of the quantities of

interest, e.g potency of a monotherapy, or the synergistic effect

(in terms of either potency or efficacy) of a combination. Since

the best single deterministic estimates might not be reached,

here we focus on accurately quantifying uncertainty in the

model as deviation from the true estimate given the noise (e.g.

the credible range of model parameter estimates/predictions).

Most existing frameworks for drug combinations either

do not compute the uncertainty or estimate it by standard

error (Zimmer et al. [2016]) or parametric bootstrap (Wooten

et al. [2021]), each of which contains unrealistic assumptions.

The standard error is only accurate when a large number

of samples is available, which is not the case for most

pharmacology datasets. Similarly, for the parametric bootstrap,

an accurate uncertainty estimation relies on a sufficiently

large number of observations to be reasonably close to the

truth. In either case, the uncertainty estimation will often

be inaccurate due to the small data size. For this reason,

here we approach uncertainty estimation with a Bayesian

framework, which incorporates the uncertainty by treating all

parameters of interest as probabilistic quantities. This enables

us to continuously model the uncertainty in our estimates as

the number of measurements grows, without becoming over-

confident. Moreover, the estimated quantities of interest are

obtained simultaneously with their uncertainties, making this

approach computationally efficient.

In the current literature, there are examples that use a

probabilistic model to incorporate uncertainty in their outputs.

Hand-GP (Shapovalova et al. [2021]) is a non-parametric model

based on the combination of the Hand model with Gaussian

processes, providing more believable uncertainty estimation

than MuSyC in some cases. However, Hand-GP does not

incorporate the 1D Hill equation that imposed biological

constraints useful for providing interpretable model outputs.

For example, monotonicity of the monotherapy fitted curve is

not enforced in Hand-GP, meaning it is possible that the model

produces a dose-response surface that is unlikely to occur in the

in vitro setting (Tansey et al. [2022]). More importantly, due

to the non-parametric structure of Hand-GP, the parameters

describing potency and efficacy are lost. The bayesynergy

model (Rønneberg et al. [2021]) is a Bayesian framework that

models synergistic interaction effects using Gaussian Processes,

which provide uncertainty quantification. Although flexible, its

formulation is based on the Bliss independence assumption that

is biased against drug combinations with a moderate level of

efficacy (Wooten et al. [2021]). The bayesynergy model also

does not separate out synergistic potency and efficacy.

Here, we design a flexible Bayesian framework to infer

synergistic effects of drug combination (SynBa) where (1)

the classic Hill equation is preserved to produce estimates

of efficacy and potency (2) the existing biological knowledge

or insight from historical data may be conveniently added

through the prior distribution over parameters in the model. In

SynBa we will use MuSyC as a baseline framework to decouple

synergistic potency and efficacy and add probabilistic inference

to provide outputs and their associated uncertainty. This is

to design a framework estimating the most favourable scores

and efficiently provide optimal candidates to the drug discovery

pipeline with actionable decision-making criteria derived from

the model outputs. SynBa is also the first synergy framework
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Fig. 1. Description of the datasets for the proposed framework. (A): A

typical dose-response matrix, where the top-left entry is the base value,

the first row contains the monotherapy responses for the first agent, the

first column contains the monotherapy responses for the second agent.

The remaining entries are the responses when a combination of the two

drugs is applied. (B): A dose-response matrix where not all responses are

available for training. The shaded cells represent the test data.

that simultaneously provides principled uncertainty estimation,

preserves the Hill equation and decouples the synergistic

efficacy and potency.

With our approach, when a combination is predicted to

be synergistic, a level of confidence will be quantified for this

prediction, together with a level of improvement in efficacy or

in potency. The associated uncertainty can guide decision on

further laboratory experiments to proceed to the next phase.

This will provide actionable metrics for the subsequent stages

of the drug discovery pipeline, which is an unmet need.

Methods

Our proposed method can be used for both analysing existing

dose-response data and predicting unseen dose-response data

for a given monotherapy D = (X,Y ) = {(xi, yi)} or a given

combination D = (X,Y ) = {(xi, yi)}. The covariate can be

a scalar xi (in monotherapy) or a vector xi (in combination)

corresponding to the drug dosages. The response yi can be

defined as cell growth or inhibition of growth, depending on

how the data are collected. In this study, we focus on inhibitory

datasets, where a large dosage typically results in growth

inhibition. In this case, yi is defined as the percentage of

growth-inhibited cells. Nevertheless, our method can be easily

modified to accommodate the opposite setting where the drug

response is enhancing growth with respect to the dosages.

Fig. 1 (A) illustrates a typical dose-response matrix for a

combination from a screening, where the first row and column

contain monotherapy data and the remaining entries contain

combination data. The core aim of our method is to infer

the synergistic potency and efficacy given such a matrix (or

a vector in the case of monotherapy). To accomplish this, we

designed SynBa, a Bayesian framework for the inference of

Synergistic effects of drug combinations. SynBa is defined by

a prior distribution p(θ) for the parameters θ and a likelihood

function p(Y | θ, X) for the drug responses Y . The likelihood

function describes the probability of the responses given the

dosages X and the parameters θ. The prior distribution encodes

the existing belief or knowledge about the parameters. In

monotherapy, we have θ = {E0, E1, C,H, σ}, whereas in

combination, θ = {E0, E1, E2, E3, C1, C2, H1, H2, α, σ}. The

likelihood function and parameters encode the shape of the

dose-response curve (defined in Boxes 1 and 2 and described

in more detail below).

In addition, our method provides a way of predicting unseen

dose-response data for both monotherapies and combinations.
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Fig. 2. Two options (A) and (B) for the monotherapy prior model. The

prior for logC is plotted underneath the x-axis, which is uniform in both

options. The priors for E0 (which is Gaussian in both options) and the

normalised E1 are plotted along the y-axis. Given E0, the normalised E1

is uniform in Option (A) and follows a Beta(0.46, 0.58) distribution in

Option (B). The 300 blue curves are random samples from the expected

prior responses E[Y |θ] where θ are sampled from the prior distributions

defined in Box 1. The seven red points illustrate an example set of

monotherapy dose-response data D. The black curve is a sample from

the expected posterior responses E[Y |θ,D] after the model is fitted to the

data D, whilst the orange bell-shaped curves illustrate the i.i.d. Gaussian

noise for the responses.

For example in the case of Fig. 1 (B), the quantity of interest

would be the posterior predictive distribution of the response,

i.e.
p(ỹ | X,Y, x̃) =

∫
θ

p(ỹ | θ, x̃)p(θ | X,Y )dθ (1)

where x̃ is the untested dosage of interest, ỹ is the predicted

response and p(θ | X,Y ) is the posterior distribution over the

parameters θ given training data (X,Y ).

Overview of SynBa: Monotherapies
We begin by defining SynBa for monotherapy screens, where the

dosage x is a scalar. The likelihood function for the response y

is based on the Hill equation (Hill [1910]), which has been the

classic choice to model pharmacology data:

E(x) = E(0) +
E(∞) − E(0)

1 + (C
x )H

(2)

where x is the dosage of the drug, E(x) is the corresponding

measured response, and H controls the slope of the curve. The

interpretation of C depends on the problem and the dataset of

interest. In this study, as the focus is on inhibitory datasets,

C represents the dosage required to inhibit the given biological

process or biological component by 50%, known as IC50. C

quantifies the potency of the monotherapy in the study.

The base level of the monotherapy is denoted by E0 := E(0),

which is the response when no drug is applied. The efficacy is

quantified by E1 := E(∞), or denoted as Einf , which is the

maximal inhibition when a sufficiently large dosage x is applied.

Box 1 defines the prior distribution for the parameters and

the likelihood model for the response given the dosages, which

are also illustrated in Fig. 2.

To account for observational noise in the data, we

define a noise model for y centred around E(x). For each

fixed experiment setting (i.e. a fixed cell line treated by a

fixed monotherapy or combination in the same laboratory

environment), y is modelled as having Gaussian noise that is

conditionally independent given the dosage: y ∼ N (E(x), σ2).

The assumption of conditional independence is valid because

in screenings such as DREAM, the measurements for each

monotherapy or combination are performed independently

in different plates, instead of being performed sequentially.

Therefore, given a set of measurements for a monotherapy or

a combination, the noise level of their corresponding responses

is independent. The i.i.d. noise is illustrated as orange bell-

shaped curves in Fig. 2. As a result, the likelihood function for

y is defined as Eq. (4).

The datasets are normalised by measuring cell inhibition

when no drug is added (at dose zero). However, due to the

noise in the biological process, the inhibition at dose zero would

not be the same if the experiment is repeated multiple times.

Thus, the normalization procedure itself contains uncertainty.

Therefore, we define E0 to be probabilistic instead of a fixed

initial value. A Gaussian prior with mean B and variance 0.03B

is given for E0, where B is the normalized inhibition of a dose

zero, e.g. B = 100 in DREAM. The variance of this prior is

defined to be 0.03B so that it is flexible enough to allow for

errors, but not too conservative.

The prior for the normalised maximal response (i.e. Ẽ1 :=
E1

E0
, with a range of [0, 1]) may be defined in various ways

depending on whether to insert existing knowledge or historical

information. One option is to remain uninformative and impose

a uniform prior, as shown in Fig. 2 (A).

Alternatively, we may make use of the existing information

from the monotherapy data available. According to the single

agent datasets in DREAM, the empirical distribution of Einf

has a high density on both extremes of the range, with 17.9% of

them smaller than 0.05 and 15.1% equal to 1 (after normalising

to the interval [0, 1]). Using maximum likelihood estimation

to fit a Beta(a, b) distribution to these Einf values, we obtain

a = 0.46 and b = 0.58. To account for this information, we

define Beta(0.46, 0.58) as the second option of the prior for the

normalised maximal response, as illustrated in Fig. 2 (B). This

prior is consistent with the biological behaviour that a drug

administered with a sufficiently large dose will either kill the

majority of the targeted cells if effective, or very few of them

if not effective. The choice of this empirical prior shows how

existing knowledge or information on the dynamic/kinetic of

drugs can be conveniently added to SynBa through its priors.

A uniform prior is imposed for logC (the logarithm of IC50),

with C bounded by δ and M . The values of δ and M depend

on the dataset and the unit of the dosages. In this work, we

define δ to be smaller than any non-zero dosage in the dataset

(i.e. 0 < δ < min{x | x > 0, (x, y) ∈ D}) and M to be larger

than any dosage in the dataset (i.e. M > max{x | (x, y) ∈
D}). For example, δ = 10−10 and M = 106 is a viable choice

for DREAM, whereas in NCI-ALMANAC, we may have δ =

10−15 and M = 10. The idea is to be uninformative about

logC a priori, since the ideal dosage range for the experiments

is unknown and often unsuitable, either too small or too large.

It is common that IC50 exceeds the maximum dosage. In other

cases, IC50 may lie between zero dosage and the smallest non-

zero dosage, due to the tested dosages being too large. Our

method includes these possibilities a priori.

H and σ are both given a lognormal(0, 1) prior because they

are both non-negative and assumed to be moderately small. In

addition, previous literature indicated that H is approximately

lognormal (Wooten et al. [2021]). A lognormal(0, 1) prior

ensures that P (H < 5) ≈ 0.95 and P (σ < 5) ≈ 0.95 a priori.

The blue curves in Fig. 2 are 300 random samples from the

expected prior responses E[Y |θ] where θ are sampled from the

prior distributions. It can be observed that the curves cover a

wide range of possibilities a priori. Yet, they are not excessively

general, as all of them follow the Hill equation.

Note that the priors we have chosen are motivated by general

knowledge and previous literature. When more knowledge

exists for a specific combination, the prior can be conveniently
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Box 1: Overview of SynBa for the inference of monotherapy dose-response data.

The joint prior distribution for the response and the parameters of the curve given the dosages is

p(Y,E0, E1, C,H, σ | x) = p(Y | E0, E1, C,H, σ, x)p(E1 | E0)p(E0)p(C)p(H)p(σ). (3)

where the likelihood model for the responses Y given the dosage x is defined as

p(y | E0, E1, C,H, σ, x) = N (E0 +
E1 − E0

1 + (C
x )H

, σ
2
) (4)

independently for all y ∈ Y , where E0 := E(0), E1 := E(∞) and σ is the standard deviation of the noise level of y, and the

priors are

p(E0) = N (B, 0.03B), p(
E1

E0

) = U(0, 1) or Beta(0.46, 0.58),

p(log(C)) = U(log(δ), log(M)), p(H) = lognormal(0, 1), p(σ) = lognormal(0, 1),

(5)

where 0 = x1 < x2 ≤ x3 ≤ ... ≤ xn are the dosages, and δ ∈ (0, x2) is a small non-zero value to avoid logC being undefined.
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Fig. 3. An example illustration of SynBa on a set of monotherapy data

with six measurements. Each blue curve is a sample from E[Y | θ] where

θ ∼ p(θ | D). The distribution for IC50 is shown in red, whereas the

distribution for Einf is shown in green. (A)-(C): The prior distribution for

Ẽ1 is U(0, 1). (D)-(F): The prior distribution for Ẽ1 is Beta(0.46, 0.58).

adjusted to accommodate this, since the inference framework is

agnostic to the choice of prior.

Fig. 3 is an illustrative example of SynBa trained on a

monotherapy (the compound MTOR 1 treated on the cell line

MDA-MB-231) with six measurements, taken from the DREAM

dataset. The first row shows the resulting model with a uniform

prior for the normalised Einf (i.e. Ẽ1), whereas the second row

shows the model with the Beta(0.46, 0.58) prior for Ẽ1. We

start with two measurements and add two additional responses

each time. It can be observed that the posterior distribution

for IC50 narrows down quickly for both models because the

observed responses span across the range between 40 and 100,

which provides sufficient information to estimate IC50 with low

uncertainty. The posterior for Einf , on the other hand, is more

uncertain, due to the dosage range being too small to observe

the convergence of the responses. In this case, the two models

provide a visibly different posterior distribution for Einf , due

to the different priors. As shown in Fig. 3 (F), the maximum a

posteriori probability estimate for Einf is 0 when the Beta prior

is imposed, which results from the inserted prior knowledge

that the response is likely to converge to 0 if an effective (but

non-zero) response is already observed. This example shows

how the prior design affects the inference of the parameter

uncertainty. Nevertheless, if we look at the posterior predictive

distribution for the responses (with samples illustrated by light

blue curves), the two models reach a similar conclusion. We will

show in Result that the predictive performance of the model is

insensitive to the choices of prior.

Overview of SynBa: Combinations
Extending SynBa to combinations of two drugs, the goal is now

to model the dose-response surface E(x1, x2) = f(x1, x2) where

x1 and x2 are the dosages for the two drugs, whereas E(x1, x2)

is the response, and f is some class of function to be defined.

To define our likelihood model for the responses Y , we

take inspiration from MuSyC but maintain some flexibility on

their model assumptions. The effect of a drug in a system is

usually described by the Hill equation that describes the state

of equilibrium of a reversible process between an unaffected

population and an affected one (the principle of detailed

balance). To obey to this equation and its effects, in our model

we incorporate the assumptions of the principle of detailed

balance, of the proliferation rate of unaffected population and

of the saturation of the maximum effect of the drug in the

affected population. In MuSyC, these assumptions are defined

in a nested structure in which levels are called Tiers (see Table

S5 in Meyer et al. [2019]). In defining SynBa for combinations,

we adopt the same model assumptions as Tier 4 of the levels

specified by MuSyC. This category encodes the most complex

class of models that still maintains the assumption of detailed

balance. It is worth noting that, conversely to MuSyC, our

model posterior covers all four tiers simultaneously. This is

because Tier 4 subsumes all lower tiers and thus for how

our model is defined, they will not be eliminated from the

posterior distribution, unless the evidence from the data is

strongly against them. The concepts of Tiers as described in

MuSyC would require a post-learning model selection. The use

of a Bayesian approach avoids such a selection procedure whilst

still maintaining biologically viable assumptions.

In contrast to MuSyC, in SynBa we choose to maintain the

detailed balance assumption to also avoid over-parameterisation,

which is likely to occur due to the limited data size for each drug

combination set. For example, the majority of the combinations

in the NCI-ALMANAC dataset has a data size of 15 (excluding

the base level at dose zero), only 3 more than the number

of parameters in MuSyC. In a real-world scenario, the data

size may often be even smaller. Furthermore, with the detailed

balance assumption, matrix multiplication and inversion are

avoided, which lowers the computational cost.

Box 2 defines the prior distribution for the parameters

and the likelihood model for the response given the dosages.
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Box 2: Overview of SynBa for the inference of combination dose-response data.

We define the following joint distribution for the response and the parameters of the surface given the dosages x = (x1, x2),

p(Y,E0, E1, E2, E3, C1, C2, H1, H2, σ, α | x)

= p(Y | E0, E1, E2, E3, C1, C2, H1, H2, σ, α,x)p(E1 | E0)p(E2 | E0)p(E3 | E0)p(E0)p(C1)p(C2)p(H1)p(H2)p(σ)p(α),
(6)

where the likelihood model for responses Y given the dosages is defined as

p(y | E0, E1, E2, E3, C1, C2, H1, H2, σ, α,x) = N (
CH1

1 CH2

2 E0 + xH1

1 CH2

2 E1 + CH1

1 xH2

2 E2 + αxH1

1 xH2

2 E3

CH1

1 CH2

2 + xH1

1 CH2

2 + CH1

1 xH2

2 + αxH1

1 xH2

2

, σ
2
) (7)

for all y ∈ Y , where E0 := E(0, 0), E1 := E(∞, 0), E2 := E(0,∞), E3 := E(∞,∞), C1 and H1 are the monotherapeutic

parameters associated for Drug 1, C2 and H2 are the monotherapeutic parameters associated for Drug 2, and α is an association

parameter that controls how the two drugs are affected by the presence of each other.

The priors are

p(E0) = N (B, 0.03B), p(
Ei

E0

) = U(0, 1) or Beta(0.46, 0.58) for i = 1, 2, 3,

p(log(Ci)) = U(log(δ), log(M)) and p(Hi) = lognormal(0, 1) for i = 1, 2, and (8)

p(α) = lognormal(0, 1), p(σ) = lognormal(0, 1),

where 0 = xi,1 ≤ xi,2 ≤ ... ≤ xi,n are the dosages for drug i, and δ is a small non-zero value to avoid logC being undefined.

The definitions of the priors are a natural extension of the

monotherapy model, with the same arguments being followed.

The only new parameter is α, which follows a lognormal prior

with median 1 because α is non-negative and equals 1 when the

combination is neither synergistic nor antagonistic in terms of

potency.

Inference of the synergy

After inferring the posterior for the parameters and their

associated uncertainty, we focus on distinguishing the effect of

efficacy and potency in drug combinations. MuSyC has defined

metrics for both synergistic efficacy and synergistic potency,

which is a promising step in decoupling potency and efficacy.

However, the uncertainty for these two quantities has not been

quantified systematically. Our model output includes not only

quantification for the synergistic efficacy and the synergistic

potency, but also a separate uncertainty estimation for each.

For the synergistic efficacy, one simple yet informative

quantity is ∆HSA = min(E1, E2) − E3 which is the change

in the maximal effect between the combination and the more

effective single drug of the two (Greco [1995]). A positive

score indicates synergistic efficacy. As E1, E2 and E3 are

probabilistic, the resulting ∆HSA score is also probabilistic.

A metric such as

P (∆HSA > 0 | D) (9)

can then be defined to estimate how confident we are about the

synergistic efficacy of the combination, based on the dataset

D. It is possible to have a synergistic combination that is highly

uncertain, which would indicate that more data are required to

reach confidence in the estimation.

For the synergistic potency, α contains the required

information. α > 1 would indicate synergistic potency (Wooten

et al. [2021]), which means the potency of the two drugs has

reduced due to being combined. Consequently, we define

P (α > 1 | D) (10)

to estimate how likely a combination satisfies synergistic

potency.
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Fig. 4. The data and the inference outputs of the combination of AKT

and ADAM17 applied on the cell line BT-20. (A): The original dose-

response matrix. (B)-(C): The monotherapy model outputs. Each blue

curve is a sample from E[Y | θ] where θ is a sample from the posterior

of the respective monotherapy model. The posterior distribution for IC50

and Einf are shown in red and green respectively. (D): The contour plot

for the joint posterior distribution of the synergistic efficacy (∆HSA)

and the synergistic potency (log(α)). The distribution is smoothed from

the empirical posterior with a kernel density estimation for visualisation

purpose. (E)-(F): The histogram of the empirical posterior distribution for

the synergistic efficacy (∆HSA) and the synergistic potency (log(α)). The

areas on the right-hand side of the red vertical lines are the probability

that the combination is synergistic in terms of efficacy (in (E)) and

potency (in (F)).

Case studies
To illustrate how the uncertainty estimation from our method

can be explained and further used for decision-making, we take

two combinations from the DREAM dataset as examples.

Fig. 4 (A) shows the dose-response matrix for the

combination of ADAM17 and AKT acted on the cell line

BT-20. The first column is the monotherapy dose-response

measurements for AKT (as the dosage for ADAM17 is zero),

whilst the first row is the monotherapy measurements for

ADAM17 (as the dosage for AKT is zero). It can be observed

that the responses for AKT start to decrease at a higher rate

when the dosage increases, but the dosage range is too small to
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Fig. 5. The data and the inference outputs of the combination of EGFR

and AKT applied on the cell line MDA-MB-468. (A)-(F): The same as

the caption of Fig. 4.

understand its potency (IC50) and efficacy (Einf). The efficacy

cannot be determined because the response has not shown any

sign of convergence, whereas the potency cannot be determined

because it relies on understanding the maximal response, which

is itself uncertain. However, if a deterministic Hill equation

is fitted to the monotherapy data, it will only provide a

point estimate for the IC50 and Einf , without acknowledging

the above caveats. On the contrary, our method provides an

uncertainty estimation for both quantities. As shown in Fig. 4

(B)-(C), the posterior distribution of IC50 and Einf have large

variances, which correspond to large uncertainty. In particular,

as shown in Fig. 4 (C), the posterior of Einf for ADAM17 has

a multimodal shape, which is sensible because it is unclear

whether the dosage range is too small (which corresponds to

the peak at 0), or the drug is simply ineffective regardless of

the dosage (which corresponds to the peak at around 90).

Moving to the inference of the full combination matrix,

most existing synergy methods have no means to showcase

the uncertainty. Our method, on the contrary, provides the

uncertainty around the synergistic potency and the synergistic

efficacy, as shown in Fig. 4 (D), (E) and (F). According to

the model output, the combination is moderately likely to be

synergistically potent (with a probability of 85.2%), but it is

difficult to conclude its synergistic efficacy (with a probability

of 62.9% to be synergistic efficacious). This is reasonable

because the excessively small dosage range makes it difficult

to conclude anything about efficacy with high certainty, but

with the 25 available measurements on the plates where the two

drugs have interacted, information can be extracted on whether

combining the two drugs may lower the level of toxicity required

to reach the same beneficial effect.

This combination is an example where the model implies

some potential in the synergy of the combination, but the level

of uncertainty in the synergy is still high, which may require

more measurements at larger dosages to be narrowed down.

We now consider the combination of AKT and EGFR

acted on the cell line MDA-MB-468. Fig. 5 shows its dose-

response matrix and the inference result from our model

for the monotherapies and the combination respectively.

All parameters and metrics of interest have low variances,

representing low uncertainties. As shown in Fig. 5 (B) and

(C), the dosages have suitable ranges and approximately follow

the sigmoidal shapes of the expected dose-response fit, in

particular for AKT. They contain sufficient information for the

possibilities for IC50 and Einf to be narrowed down. Similarly,

the combination data are well-behaved. Fig. 5 (C), (D) and (E)

show that the probabilities of this combination being synergistic

in terms of potency and efficacy are both close to 100%.

These are signs that this combination is worth being taken to

subsequent steps in the drug development pipeline.

The two examples above show that concrete decisions can

be made based on the posterior distributions (e.g. for IC50,

Einf , ∆HSA and α) from our model, and more importantly, the

uncertainties associated with these distributions.

Training details
The models are trained by Stan, a state-of-the-art platform

for statistical modelling and high-performance statistical

computation, particularly for Bayesian computation (Stan

Development Team [2023]). The user specifies the prior model

of the parameters and the likelihood model of the data, while

Stan performs either full Bayesian statistical inference with

Markov chain Monte Carlo (MCMC) sampling, or approximate

Bayesian inference with variational inference. In this study we

opt for MCMC due to the importance of the reliability of the

output, which is ensured by the asymptotic exactness of the

MCMC inference. Despite choosing the slower option of the two,

SynBa is still computationally efficient. Running on 4 CPUs

of the Intel Xeon Platinum 8276 CPU Processor, the median

time taken to fit SynBa (via MCMC with 1000 iterations and

4 chains, including 500 iterations in the warm-up phase) to a

6-by-6 dose-response matrix in DREAM is 10.2 seconds, which

is comparable to MuSyC with bootstrap.

With this training pipeline, we can avoid the overhead that

occurs during the usage of non-linear optimisation packages in

deterministic parametric methods such as MuSyC, BRAID and

the Effective Dose model. A different choice of the numerical

algorithm (and its hyperparameters) results in a different result

for those methods. On the contrary, in SynBa, the same exact

result can be found asymptotically via MCMC with Stan.

For the implementation of the other benchmark methods

including MuSyC, BRAID and the Effective Dose model, the

Python package synergy (Wooten and Albert [2021]) is used.

Results

Prediction of drug combination responses
In this subsection, we show that in addition to providing

uncertainty estimations, SynBa is competitive in predicting

unseen responses within a dose-response matrix, and is less

prone to overfitting compared to the existing methods.

The datasets of interest are DREAM (Menden et al. [2019])

and NCI-ALMANAC (Holbeck et al. [2017]), two of the

most widely-used publicly-available combination screenings.

In DREAM, we focus on all examples in the training set

of Challenge 1 that have passed the Quality Assurance and

that only contain non-negative responses and one set of

replicates, which are 1631 sets of combinations in total. In NCI-

ALMANAC, we focus on the subset defined in Julkunen et al.

[2020], which is a subset of the data consisting of 50 unique

FDA-approved drugs and 36,120 combinations. We remove

examples that contain negative measurements, which results

in 28,854 remaining combinations.

We leave out 20% of the non-zero dosage combinations for

prediction. The models are trained using the remaining 80%

dosage combinations, and then evaluated on the left-out points.

For the dose-response matrices in DREAM, we leave out 7 of

the 35 points with non-zero dosages from the 6-by-6 matrix (see

Fig. 1(A)) using a specific leave-out strategy. For each of the

two monotherapy slices, one point is left out for testing. For
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the 5-by-5 combination grid (i.e. the orange cells in Fig. 1(A)),

five points are randomly left out for testing. Fig. 1(B) shows

an example of such a train-test split. The measurements are

left out in this manner so that each monotherapy contains one

measurement for testing.

For the dose-response matrices in NCI-ALMANAC, it is not

possible to leave out points separately for monotherapies and

for combinations because the data size is too small. For most

combinations, there are only 3 points for each monotherapy and

9 points for the interactions. Thus, we directly leave out 3 of

the 15 points randomly for prediction.

Evaluation metrics

To evaluate the predictive performance of the models,

test likelihood and the root-mean-square error (RMSE) are

computed using the left-out points. The former focuses on the

goodness of the full predictive distribution, whereas the latter

focuses solely on the goodness of the point estimates for the

responses.

The computation of the test likelihood for SynBa follows

Equation (1) for both monotherapy and combination. However,

the right hand side of the equation cannot be computed in a

closed form, so Monte Carlo estimation is required using the

expression

p(ỹ | D, x̃) ≈
1

M

M∑
m=1

p(ỹ | θm, x̃) (11)

where ỹ is the predicted response of the left-out dosage, D is

the training data containing the known dosages and the known

responses, and θm ∼ p(θ | D) are the MCMC samples from the

posterior distribution for the parameters.

For MuSyC, BRAID and the Effective Dose model, the

parametric bootstrap pipeline described in Wooten et al. [2021]

is followed. Each bootstrapped dataset provides a fitted curve.

The density for ỹ is then estimated by averaging its density

computed on the models learnt from the bootstrapped datasets.

The computation of RMSE is more straightforward. For each

combination, its RMSE for the test responses {y1, ..., yN} is

RMSE =

√∑N
i=1(yi − ŷi)2

N
(12)

where ŷi is the point estimate for the response that corresponds

to dosage xi. For SynBa, we define ŷi to be the posterior

predictive mean E[yi | D,xi], which is estimated by Monte

Carlo sampling from the posterior.

Quantitative results

We compare our prediction results against MuSyC, BRAID,

and the Effective Dose model, which are three of the most

widely-used synergy models. For SynBa, we implement both the

uniform prior and the empirical Beta prior for the normalised

Einf , which we denote as SynBa-U and SynBa-B respectively.

Tables 1 show the mean and the median of the test log-

likelihood and the test RMSE for MuSyC, BRAID, Effective

Dose model and SynBa. Our method outperforms all three

other methods in all metrics except for the mean test log-

likelihood on DREAM. In particular, our method performs well

on RMSE, a metric that only considers the quality of point

estimates and ignores uncertainty. The upper diagonal panels in

Fig. 6 show the scatter plots directly comparing the test RMSE

values between methods (visualised with the blue colour). Our

method is the most competitive, as evidenced by having more

points above the diagonal y = x line. These show that our
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Fig. 6. Upper diagonal panels (with blue points): Scatter plot of the

test RMSE values obtained from different methods on DREAM with a

train-test split ratio of 80% : 20%. Lower diagonal panels (with red

points): Scatter plot of the test RMSE values obtained from different

methods on DREAM with a train-test split ratio of 40% : 60%. Diagonal

panels: Histograms of the test RMSE values and their corresponding

kernel density estimates, where the train-test split is 4:1 for the blue

ones and 2:3 for the red ones.

method is not trading off predictive accuracy for uncertainty

estimation. By following a principled Bayesian workflow, our

model is strong in both prediction and uncertainty estimation.

It is worth noting that at least one of MuSyC, BRAID or

the Effective Dose model fail to find a solution for 4.8% of the

examples in DREAM and 38.4% of them in NCI-ALMANAC,

despite an effort in tuning the bounds, initial values and

hyperparameters involved in the optimisation. Most likely this

is because these methods rely on external optimisation packages

with no guaranteed convergence, which can become a problem

when overparameterisation becomes severe due to small data

sizes. SynBa does not incur this problem since its priors ensure

conservative outputs when data size is too small.

To investigate whether SynBa is prone to overfitting and

how it compares to the other three methods, we perform the

same prediction experiment on DREAM, but with a train-

test split ratio of 40% : 60% instead. As shown in the lower

diagonal panels in Fig. 6, the test RMSE values (visualised

with the red colour) increase significantly for MuSyC, BRAID

and the Effective Dose model. For SynBa, however, the test

RMSE values have increased on average, but not by much.

It can be seen that the mean value and the spread increase

more significantly for the other three methods compared to

SynBa. It can also be observed that the predictive performance

of SynBa is not sensitive to the choice of prior, with the two

priors producing very close RMSE values to each other.

In addition, we compare SynBa with bayesynergy and

Hand-GP, the two probabilistic synergy models. As shown in

Supplementary Table S1, the test RMSE for bayesynergy and

Hand-GP are significantly higher on both datasets. This could

be because drug interactions are modelled nonparametrically in

both methods, meaning a wide range of functions is represented

and it is difficult to narrow down the probable dose-response

curves or surfaces when the data size is small or noisy.
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Table 1. The mean and the median (Mdn) of the test log-likelihood (LL) and the test root-mean-squared error (RMSE) for MuSyC, BRAID,

the Effective Dose model (ED) and SynBa, computed on a subset of DREAM and NCI-ALMANAC, along with their standard errors. The

standard error of the mean is computed by the standard deviation of the metrics across examples divided by the square root of the number

of examples. The standard error of the median is estimated by nonparametric bootstrap. SynBa with a uniform prior for the normalised Einf

is denoted by SynBa-U. SynBa with the Beta(0.46, 0.58) prior for the normalised Einf is denoted by SynBa-B.

DREAM, LL DREAM, RMSE NCI-ALMANAC, LL NCI-ALMANAC, RMSE

mean (± se) Mdn (± se) mean (± se) Mdn (± se) mean (± se) Mdn (± se) mean (± se) Mdn (± se)

MuSyC −3.50 ± 0.35 −3.09 ± 0.02 6.11 ± 0.10 5.01 ± 0.08 −3.86 ± 0.01 −3.79 ± 0.01 14.87 ± 0.10 10.17 ± 0.03

BRAID −4.12 ± 0.69 −3.06 ± 0.02 5.71 ± 0.09 4.88 ± 0.08 −3.80 ± 0.04 −3.48 ± 0.01 9.57 ± 0.06 7.16 ± 0.03

ED -3.37 ± 0.09 −3.22 ± 0.02 6.46 ± 0.09 5.66 ± 0.09 −3.68 ± 0.02 −3.48 ± 0.01 8.47 ± 0.05 6.77 ± 0.09

SynBa-U −3.59 ± 0.42 -3.01 ± 0.02 5.20 ± 0.07 4.56 ± 0.08 −3.42 ± 0.02 −3.24 ± 0.01 6.72 ± 0.04 5.45 ± 0.05

SynBa-B −3.84 ± 0.66 -3.01 ± 0.02 5.15 ± 0.07 4.55 ± 0.08 -3.39 ± 0.01 -3.23 ± 0.01 6.66 ± 0.04 5.43 ± 0.04

Uncertainty calibration
For a model M with learnt cumulative distribution FM

with well-calibrated uncertainty, it would approximately follow

the identity that FY (xi) ≈ FM(xi) for every data point

{(xi, yi(xi)) | i = 1, ..., N} in the dataset, where yi(xi)

is a sample from the unknown true cumulative distribution

FY (xi). Equivalently, assuming the measurements yi(xi) for

a combination are conditionally independent given the dosages

xi, their cumulative probabilities F (yi) := P(yi(xi) < FM(xi))

would be approximately uniformly distributed between 0 and

1, if M is well-calibrated.

In this study, for each combination in DREAM, we split the

35 measurements (excluding the base value) with a 80%:20%

ratio in the same way as the prediction evaluation in the

previous subsection. We then evaluate the quality of the

uncertainty calibration with the Kolmogorov–Smirnov (K-S)

uniformity test (Massey Jr [1951]) for the empirical cumulative

probabilities (or CDF values) across all test data points. If the

model is well-calibrated, then the CDF values for the test data

points will be approximately uniform for each combination.

Otherwise, they will show a non-uniform pattern and the

resulting p-value for the K-S test will be statistically significant.

This procedure is performed across every combination in

DREAM, resulting in a p-value for each combination. The

histogram of the p-values for SynBa is in Supplementary

Fig. S1(A), showing that 6.07% of the combinations have not

passed the uniformity test, and thus are not well-calibrated.

As a comparison, the same procedure is performed using

MuSyC. Supplementary Fig. S1(B) shows that 25.1% of the

combinations are not well-calibrated when modelled by MuSyC,

which is roughly four times as high as the number for SynBa.

This shows the estimated uncertainty from SynBa is more

reliable and closer to the unknown ground truth on average.

Discussion

Machine learning methods have been developed for preclinical

modelling and the prediction of drug combinations, thanks

to the availability of large screenings (Julkunen et al. [2020],

Wang et al. [2021]), which are beneficial for discovering and

explaining drug combinations. However, a few factors prevent

most from being applied to real-world drug discovery projects.

One issue is that performance measures rely on synergy scores,

which do not have a gold standard and contain a non-trivial

amount of uncertainty, as discussed in Introduction. The

Spearman correlation of the replicate experiments in DREAM

(Menden et al. [2019]) and O’Neil et al. [2016] are 0.56 and

0.63 respectively, which show that quantifying a combination

with a single synergy score would result in high variance.

However, uncertainty measurement is not included in synergy

score estimation. This could be one of the reasons that 20% of

drug combinations are poorly predicted by all methods in the

DREAM challenge. Measuring the uncertainties associated with

the estimated scores is important for the subsequent decision-

making process based on the model outputs. In real-world

scenarios, scientists are often facing the decision to choose

amongst a large set of drug combinations that score similarly

in terms of synergy. Without quantification of how certain (or

uncertain) the estimated scores are, they will have to rely

on background knowledge compromising innovation in their

choices. SynBa provides a way to implement a ranking strategy

in the decision process of a drug discovery pipeline, which is a

real-world unmet need.

SynBa has the limitation that it only models the

combination of two drugs, while there exist methods such as the

Effective Dose Model that consider higher-order combinations.

While this is a limitation, our initial aim is to provide a

method that is reliable and not over-parameterised, to meet

with practical needs.

Conclusions

We have developed a new framework for quantifying dose-

response relationships for monotherapies and combinations that

provides a full uncertainty estimation for all parameters that

are associated with the monotherapies and the combinations,

including information about efficacy, potency and synergy.

These uncertainty information would be helpful to the

biologists to make further decisions about progressing to the

next stages of the drug discovery pipeline, or whether more

experiments are required to lower the level of the uncertainty

and better understand the drug mechanism of action.

We have also shown that SynBa is competitive in predicting

unseen responses within a given dose-response matrix, and

outperforms MuSyC, BRAID and the Effective Dose model

on DREAM and NCI-ALMANAC. In addition, the prediction

performance is not sensitive to the choice of the priors.

In summary, our framework is capable of providing a reliable

uncertainty estimation for the potency (e.g. IC50) and the

efficacy (e.g. Einf) of a monotherapy, or the synergistic potency

and efficacy of a combination, in a decoupled manner, and

reliably predicting unseen responses within a dose-response

matrix. The parameter uncertainties can be interpreted and

used as guidance for further experiments and subsequent

decision-making.
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