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Abstract

Motivation: There exists a range of different quantification frameworks to estimate the synergistic effect of drug
combinations. The diversity and disagreement in estimates make it challenging to determine which combinations from
a large drug screening should be proceeded with. Furthermore, the lack of accurate uncertainty quantification for those
estimates precludes the choice of optimal drug combinations based on the most favourable synergistic effect.

Results: In this work, we propose SynBa, a flexible Bayesian approach to estimate the uncertainty of the synergistic
efficacy and potency of drug combinations, so that actionable decisions can be derived from the model outputs. The
actionability is enabled by incorporating the Hill equation into SynBa, so that the parameters representing the potency
and the efficacy can be preserved. Existing knowledge may be conveniently inserted due to the flexibility of the prior,
as shown by the empirical Beta prior defined for the normalised maximal inhibition. Through experiments on large
combination screenings and comparison against benchmark methods, we show that SynBa provides improved accuracy
of dose-response predictions and better-calibrated uncertainty estimation for the parameters and the predictions.
Availability: The code for SynBa is available at https://github.com/HaotingZhangl/SynBa. The datasets are publicly
available (DOI of DREAM: 10.7303/syn4231880; DOI of the NCI-ALMANAC subset: 10.5281/zenodo.4135059).
Contact: hz381Qcam.ac.uk

Introduction To define a common framework for drug combination, we

dal bi definiti f T t al. [2015]).
With the increased use of small molecule drugs in monotherapy need a fess am .1gm.)us .e n1. lon of synergy ( a{ng (? é [ D
When a combination is said to be synergistic, it is unclear
whether it implies that the combination is desirable in terms of

its potency or its efficacy. Potency is the amount of dosage

and drug combination treatments, off-target toxicity and
resistance to treatments are becoming clear challenges. The

use of combinations of drugs offers a possible solution to R .
.. .. . . . required for a drug to produce a specified effect, whereas
reduce toxicity minimising doses and bypassing resistance with . .
. . . efficacy is the degree of the beneficial effect produced by
alternative targeting. Thanks to the development of high- oo
e . . the drug (Meyer et al. [2019]). A strong synergistic potency
throughput approaches to screen drug-sensitivity in cell lines, . K .
. . implies the toxicity may be reduced when the drugs are
dose-response data for a large number of combinations have . . X . L
. . combined, which is crucial for avoiding overdose, whereas
been made available. Examples include the AstraZeneca-Sanger

DREAM challenge (DREAM) (Menden et al. [2019]), NCI-
ALMANAC (Holbeck et al. [2017]), DrugComb (Zagidullin
et al. [2019]), and the screening data from the Wellcome Sanger
Institute (Jaaks et al. [2022]). The availability of these datasets
makes it possible to predict the effect of drug combinations from

a strong synergistic efficacy implies that the combination
increases the maximal possible effect. Both aspects are
relevant for progressing with pre-clinical and subsequent clinical
investigation. An ideal combination would be potent and
effective. However, in clinical research there are situations
modelling drug-sensitivity data, leveraging information from where a drug partner 1.S requested only for. enhancemer.lt
. . . . .. of potency and not to increase efficacy. Until recently, in
biological features of the cell lines and chemical characteristics
of the drugs (Bulusu et al. [2016]).

To understand how drugs can work synergistically when

quantification frameworks including Bliss, Loewe, BRAID and
the Effective Dose Model, potency and efficacy are entangled

ithin th t of defined in the traditi 1
combined, models with a quantification framework are required. Wi H? e. concept ob synergy as de ne. m the traditiona
quantification frameworks. To tackle this problem, Meyer
et al. [2019] developed MuSyC, a framework that decouples

potency and efficacy following the principles of the generalised

Traditional quantification frameworks usually involve a null
surface, based on a number of set assumptions. The Bliss model
is based on the Multiplicative Survival Principle (Bliss [1939]),
whereas the Loewe model is based on the Dose Equivalence
Principle (Loewe [1953]). In the past decade, parametric
methods have started to emerge as alternatives to the above.
These include MuSyC (Meyer et al. [2019], Wooten et al.
[2021]), BRAID (Twarog et al. [2016]) and the Effective Dose
model (Zimmer et al. [2016]). All these frameworks are based
on different assumptions and parameterisations. As a result of
this, the outputs from these models often disagree. Although

Hill equation. Although the MuSyC approach is effective for
modelling both potency and efficacy, the model does not fully
explore the challenge of model-based estimation of uncertainty.
There are various sources of uncertainty associated with drug-
sensitivity modelling. Firstly, the biology of dose-response
relationships is still unknown despite existing efforts. This leads
to uncertainty associated with insufficient scientific knowledge.
Secondly, there are systematic and random errors arising
there have been efforts to unify the frameworks, this is still an from the experimental procedures. Thirdly, biological variation

open problem for the field. exists among cell lines of the same disease, resulting in a further


https://github.com/HaotingZhang1/SynBa
hz381@cam.ac.uk
https://doi.org/10.1101/2023.01.24.524900
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.24.524900; this version posted April 11, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

2 | H. Zhang et al.

source of noise. Finally, uncertainty also stems from limited
information that can be extracted due to the small size of
available data (epistemic uncertainty).

Given these multiple sources of uncertainty, it is often
impossible to reach an accurate estimate of the quantities of
interest, e.g potency of a monotherapy, or the synergistic effect
(in terms of either potency or efficacy) of a combination. Since
the best single deterministic estimates might not be reached,
here we focus on accurately quantifying uncertainty in the
model as deviation from the true estimate given the noise (e.g.
the credible range of model parameter estimates/predictions).

Most existing frameworks for drug combinations either
do not compute the uncertainty or estimate it by standard
error (Zimmer et al. [2016]) or parametric bootstrap (Wooten
et al. [2021]), each of which contains unrealistic assumptions.
The standard error is only accurate when a large number
of samples is available, which is not the case for most
pharmacology datasets. Similarly, for the parametric bootstrap,
an accurate uncertainty estimation relies on a sufficiently
large number of observations to be reasonably close to the
truth. In either case, the uncertainty estimation will often
be inaccurate due to the small data size. For this reason,
here we approach uncertainty estimation with a Bayesian
framework, which incorporates the uncertainty by treating all
parameters of interest as probabilistic quantities. This enables
us to continuously model the uncertainty in our estimates as
the number of measurements grows, without becoming over-
confident. Moreover, the estimated quantities of interest are
obtained simultaneously with their uncertainties, making this
approach computationally efficient.

In the current literature, there are examples that use a
probabilistic model to incorporate uncertainty in their outputs.
Hand-GP (Shapovalova et al. [2021]) is a non-parametric model
based on the combination of the Hand model with Gaussian
processes, providing more believable uncertainty estimation
than MuSyC in some cases. However, Hand-GP does not
incorporate the 1D Hill equation that imposed biological
constraints useful for providing interpretable model outputs.
For example, monotonicity of the monotherapy fitted curve is
not enforced in Hand-GP, meaning it is possible that the model
produces a dose-response surface that is unlikely to occur in the
in vitro setting (Tansey et al. [2022]). More importantly, due
to the non-parametric structure of Hand-GP, the parameters
describing potency and efficacy are lost. The bayesynergy
model (Rgnneberg et al. [2021]) is a Bayesian framework that
models synergistic interaction effects using Gaussian Processes,
which provide uncertainty quantification. Although flexible, its
formulation is based on the Bliss independence assumption that
is biased against drug combinations with a moderate level of
efficacy (Wooten et al. [2021]). The bayesynergy model also
does not separate out synergistic potency and efficacy.

Here, we design a flexible Bayesian framework to infer
synergistic effects of drug combination (SynBa) where (1)
the classic Hill equation is preserved to produce estimates
of efficacy and potency (2) the existing biological knowledge
or insight from historical data may be conveniently added
through the prior distribution over parameters in the model. In
SynBa we will use MuSyC as a baseline framework to decouple
synergistic potency and efficacy and add probabilistic inference
to provide outputs and their associated uncertainty. This is
to design a framework estimating the most favourable scores
and efficiently provide optimal candidates to the drug discovery
pipeline with actionable decision-making criteria derived from
the model outputs. SynBa is also the first synergy framework
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Fig. 1. Description of the datasets for the proposed framework. (A): A
typical dose-response matrix, where the top-left entry is the base value,
the first row contains the monotherapy responses for the first agent, the
first column contains the monotherapy responses for the second agent.
The remaining entries are the responses when a combination of the two
drugs is applied. (B): A dose-response matrix where not all responses are

available for training. The shaded cells represent the test data.

that simultaneously provides principled uncertainty estimation,
preserves the Hill equation and decouples the synergistic
efficacy and potency.

With our approach, when a combination is predicted to
be synergistic, a level of confidence will be quantified for this
prediction, together with a level of improvement in efficacy or
in potency. The associated uncertainty can guide decision on
further laboratory experiments to proceed to the next phase.
This will provide actionable metrics for the subsequent stages
of the drug discovery pipeline, which is an unmet need.

Methods

Our proposed method can be used for both analysing existing
dose-response data and predicting unseen dose-response data
for a given monotherapy D = (X,Y) = {(x;,y:)} or a given
combination D = (X,Y) = {(x;,y:)}. The covariate can be
a scalar z; (in monotherapy) or a vector x; (in combination)
corresponding to the drug dosages. The response y; can be
defined as cell growth or inhibition of growth, depending on
how the data are collected. In this study, we focus on inhibitory
datasets, where a large dosage typically results in growth
inhibition. In this case, y; is defined as the percentage of
growth-inhibited cells. Nevertheless, our method can be easily
modified to accommodate the opposite setting where the drug
response is enhancing growth with respect to the dosages.

Fig. 1 (A) illustrates a typical dose-response matrix for a
combination from a screening, where the first row and column
contain monotherapy data and the remaining entries contain
combination data. The core aim of our method is to infer
the synergistic potency and efficacy given such a matrix (or
a vector in the case of monotherapy). To accomplish this, we
designed SynBa, a Bayesian framework for the inference of
Synergistic effects of drug combinations. SynBa is defined by
a prior distribution p(@) for the parameters @ and a likelihood
function p(Y | 8, X) for the drug responses Y. The likelihood
function describes the probability of the responses given the
dosages X and the parameters 8. The prior distribution encodes
the existing belief or knowledge about the parameters. In
monotherapy, we have 8 = {Ey, E1,C,H,c}, whereas in
combination, 8 = {Ey, E1, E2, E3,C1,C2, H1, H2,a,0}. The
likelihood function and parameters encode the shape of the
dose-response curve (defined in Boxes 1 and 2 and described
in more detail below).

In addition, our method provides a way of predicting unseen
dose-response data for both monotherapies and combinations.
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Fig. 2. Two options (A) and (B) for the monotherapy prior model. The
prior for log C' is plotted underneath the x-axis, which is uniform in both
options. The priors for Ej; (which is Gaussian in both options) and the
normalised E; are plotted along the y-axis. Given Ey, the normalised E;
is uniform in Option (A) and follows a Beta(0.46, 0.58) distribution in
Option (B). The 300 blue curves are random samples from the expected
prior responses E[Y |@] where 6 are sampled from the prior distributions
defined in Box 1. The seven red points illustrate an example set of
monotherapy dose-response data D. The black curve is a sample from
the expected posterior responses E[Y |6, D] after the model is fitted to the
data D, whilst the orange bell-shaped curves illustrate the i.i.d. Gaussian

noise for the responses.

For example in the case of Fig. 1 (B), the quantity of interest
would be the posterior predictive distribution of the response,

ie.

p(F | X, Y, %) = /ep(g 16,5)p(6 | X,Y)d6 (1)

where X is the untested dosage of interest, § is the predicted
response and p(@ | X,Y) is the posterior distribution over the
parameters 6 given training data (X,Y).

Overview of SynBa: Monotherapies

We begin by defining SynBa for monotherapy screens, where the
dosage z is a scalar. The likelihood function for the response y
is based on the Hill equation (Hill [1910]), which has been the
classic choice to model pharmacology data:

E(o0) — E(0)

(@) = BO) + =~ O

(2)
where z is the dosage of the drug, E(z) is the corresponding
measured response, and H controls the slope of the curve. The
interpretation of C' depends on the problem and the dataset of
interest. In this study, as the focus is on inhibitory datasets,
C represents the dosage required to inhibit the given biological
process or biological component by 50%, known as ICso. C
quantifies the potency of the monotherapy in the study.

The base level of the monotherapy is denoted by Eqy := E(0),
which is the response when no drug is applied. The efficacy is
quantified by E; := E(c0), or denoted as Ei,¢, which is the
maximal inhibition when a sufficiently large dosage x is applied.

Box 1 defines the prior distribution for the parameters and
the likelihood model for the response given the dosages, which
are also illustrated in Fig. 2.

To account for observational noise in the data, we
define a noise model for y centred around E(z). For each
fixed experiment setting (i.e. a fixed cell line treated by a
fixed monotherapy or combination in the same laboratory
environment), y is modelled as having Gaussian noise that is
conditionally independent given the dosage: y ~ N(E(z),o?).
The assumption of conditional independence is valid because
in screenings such as DREAM, the measurements for each
monotherapy or combination are performed independently
in different plates, instead of being performed sequentially.
Therefore, given a set of measurements for a monotherapy or
a combination, the noise level of their corresponding responses
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is independent. The i.i.d. noise is illustrated as orange bell-
shaped curves in Fig. 2. As a result, the likelihood function for
y is defined as Eq. (4).

The datasets are normalised by measuring cell inhibition
when no drug is added (at dose zero). However, due to the
noise in the biological process, the inhibition at dose zero would
not be the same if the experiment is repeated multiple times.
Thus, the normalization procedure itself contains uncertainty.
Therefore, we define Ejy to be probabilistic instead of a fixed
initial value. A Gaussian prior with mean B and variance 0.03B
is given for Ey, where B is the normalized inhibition of a dose
zero, e.g. B = 100 in DREAM. The variance of this prior is
defined to be 0.03B so that it is flexible enough to allow for
errors, but not too conservative.

The prior for the normalised maximal response (i.e. Eq =
% with a range of [0,1]) may be defined in various ways
depending on whether to insert existing knowledge or historical
information. One option is to remain uninformative and impose
a uniform prior, as shown in Fig. 2 (A).

Alternatively, we may make use of the existing information
from the monotherapy data available. According to the single
agent datasets in DREAM, the empirical distribution of Ejy¢
has a high density on both extremes of the range, with 17.9% of
them smaller than 0.05 and 15.1% equal to 1 (after normalising
to the interval [0, 1]). Using maximum likelihood estimation
to fit a Beta(a, b) distribution to these E;jnf values, we obtain
a = 0.46 and b = 0.58. To account for this information, we
define Beta(0.46, 0.58) as the second option of the prior for the
normalised maximal response, as illustrated in Fig. 2 (B). This
prior is consistent with the biological behaviour that a drug
administered with a sufficiently large dose will either kill the
majority of the targeted cells if effective, or very few of them
if not effective. The choice of this empirical prior shows how
existing knowledge or information on the dynamic/kinetic of
drugs can be conveniently added to SynBa through its priors.

A uniform prior is imposed for log C (the logarithm of IC5¢),
with C bounded by é and M. The values of § and M depend
on the dataset and the unit of the dosages. In this work, we
define ¢ to be smaller than any non-zero dosage in the dataset
(i.e. 0 < § < min{z | z > 0, (z,y) € D}) and M to be larger
than any dosage in the dataset (i.e. M > max{z | (z,y) €
D}). For example, § = 107 and M = 10° is a viable choice
for DREAM, whereas in NCI-ALMANAC, we may have § =
107'® and M = 10. The idea is to be uninformative about
log C a priori, since the ideal dosage range for the experiments
is unknown and often unsuitable, either too small or too large.
It is common that IC5¢ exceeds the maximum dosage. In other
cases, ICso may lie between zero dosage and the smallest non-
zero dosage, due to the tested dosages being too large. Our
method includes these possibilities a priori.

H and o are both given a lognormal(0, 1) prior because they
are both non-negative and assumed to be moderately small. In
addition, previous literature indicated that H is approximately
lognormal (Wooten et al. [2021]). A lognormal(0,1) prior
ensures that P(H < 5) ~ 0.95 and P(o < 5) = 0.95 a priori.

The blue curves in Fig. 2 are 300 random samples from the
expected prior responses E[Y'|@] where @ are sampled from the
prior distributions. It can be observed that the curves cover a
wide range of possibilities a priori. Yet, they are not excessively
general, as all of them follow the Hill equation.

Note that the priors we have chosen are motivated by general
knowledge and previous literature. When more knowledge
exists for a specific combination, the prior can be conveniently
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Box 1: Overview of SynBa for the inference of monotherapy dose-response data.

priors are
p(Eo) = N(B,0.03B),

p(log(C)) = U(log(s), log(M)),

The joint prior distribution for the response and the parameters of the curve given the dosages is
p(Y, Eo, E1,C,H,0 | z) = p(Y | Eo, E1,C, H,0,x)p(E1 | Eo)p(Eo)p(C)p(H)p(o). (3)

where the likelihood model for the responses Y given the dosage x is defined as

p(y ‘ EUvElvc7 H,G’,{E) :N(EO +

independently for all y € Y, where Eg := E(0), E1 := E(o0) and o is the standard deviation of the noise level of y, and the
E

p(E—) =U(0,1) or Beta(0.46,0.58),
0

p(H) = lognormal(0, 1),

where 0 = 21 < zo < 23 < ... < z,, are the dosages, and § € (0, z2) is a small non-zero value to avoid log C' being undefined.

E1 — Eyp

2
W’U ) (4)

(5)
p(o) = lognormal(0, 1),
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Fig. 3. An example illustration of SynBa on a set of monotherapy data
with six measurements. Each blue curve is a sample from E[Y | 8] where
6 ~ p(6 | D). The distribution for ICs¢ is shown in red, whereas the
distribution for E;,¢ is shown in green. (A)-(C): The prior distribution for
E; is U(0,1). (D)-(F): The prior distribution for E; is Beta(0.46,0.58).

adjusted to accommodate this, since the inference framework is
agnostic to the choice of prior.

Fig. 3 is an illustrative example of SynBa trained on a
monotherapy (the compound MTOR.1 treated on the cell line
MDA-MB-231) with six measurements, taken from the DREAM
dataset. The first row shows the resulting model with a uniform
prior for the normalised Ein¢ (i.e. El), whereas the second row
shows the model with the Beta(0.46,0.58) prior for E;. We
start with two measurements and add two additional responses
each time. It can be observed that the posterior distribution
for IC5p narrows down quickly for both models because the
observed responses span across the range between 40 and 100,
which provides sufficient information to estimate IC5¢ with low
uncertainty. The posterior for E;,¢, on the other hand, is more
uncertain, due to the dosage range being too small to observe
the convergence of the responses. In this case, the two models
provide a visibly different posterior distribution for Ei,¢, due
to the different priors. As shown in Fig. 3 (F), the maximum a
posteriori probability estimate for Ei,r is O when the Beta prior
is imposed, which results from the inserted prior knowledge
that the response is likely to converge to 0 if an effective (but
non-zero) response is already observed. This example shows
how the prior design affects the inference of the parameter
uncertainty. Nevertheless, if we look at the posterior predictive
distribution for the responses (with samples illustrated by light
blue curves), the two models reach a similar conclusion. We will

show in Result that the predictive performance of the model is
insensitive to the choices of prior.

Overview of SynBa: Combinations

Extending SynBa to combinations of two drugs, the goal is now
to model the dose-response surface E(z1,z2) = f(z1, x2) where
z1 and z2 are the dosages for the two drugs, whereas E(z1, z2)
is the response, and f is some class of function to be defined.

To define our likelihood model for the responses Y, we
take inspiration from MuSyC but maintain some flexibility on
their model assumptions. The effect of a drug in a system is
usually described by the Hill equation that describes the state
of equilibrium of a reversible process between an unaffected
population and an affected one (the principle of detailed
balance). To obey to this equation and its effects, in our model
we incorporate the assumptions of the principle of detailed
balance, of the proliferation rate of unaffected population and
of the saturation of the maximum effect of the drug in the
affected population. In MuSyC, these assumptions are defined
in a nested structure in which levels are called Tiers (see Table
S5 in Meyer et al. [2019]). In defining SynBa for combinations,
we adopt the same model assumptions as Tier 4 of the levels
specified by MuSyC. This category encodes the most complex
class of models that still maintains the assumption of detailed
balance. It is worth noting that, conversely to MuSyC, our
model posterior covers all four tiers simultaneously. This is
because Tier 4 subsumes all lower tiers and thus for how
our model is defined, they will not be eliminated from the
posterior distribution, unless the evidence from the data is
strongly against them. The concepts of Tiers as described in
MuSyC would require a post-learning model selection. The use
of a Bayesian approach avoids such a selection procedure whilst
still maintaining biologically viable assumptions.

In contrast to MuSyC, in SynBa we choose to maintain the
detailed balance assumption to also avoid over-parameterisation,
which is likely to occur due to the limited data size for each drug
combination set. For example, the majority of the combinations
in the NCI-ALMANAC dataset has a data size of 15 (excluding
the base level at dose zero), only 3 more than the number
of parameters in MuSyC. In a real-world scenario, the data
size may often be even smaller. Furthermore, with the detailed
balance assumption, matrix multiplication and inversion are
avoided, which lowers the computational cost.

Box 2 defines the prior distribution for the parameters
and the likelihood model for the response given the dosages.
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Box 2: Overview of SynBa for the inference of combination dose-response data.

We define the following joint distribution for the response and the parameters of the surface given the dosages x = (z1, z2),
p(Y, Eg, E1,Es, E3,C1,Co, H1,Hy, 0, | X)
= p(Y | Eo, E1, B2, E3,C1,C2, H1, H2,0,,x)p(E1 | Eo)p(E2 | Eo)p(Es | Eo)p(Eo)p(C1)p(C2)p(H1)p(Hz2)p(o)p(a),
where the likelihood model for responses Y given the dosages is defined as

H, ~H. H, ~H. H, H H, H
Ci"Cy?Eg+27'Cy?E + Ci ey " Ee + axy 'zy *E3

p(y | Eo, E1, E2, E3,C1,Ca, H1, Ha,0,a,%x) = N (

The priors are

E
Ey

p(EO) :N(B’O'03B)7 P(

p(a) = lognormal(0, 1),

where 0 = z;,1 < x;2 < ... < x;, are the dosages for drug 7,

Cfllcfz —‘rz{{‘C?z +C’f{‘z§2 +amfl‘z§2
for all y € Y, where Ey := E(0,0), Ey := E(00,0), E; := E(0,00), E3 := E(00,00), C1 and H; are the monotherapeutic
parameters associated for Drug 1, Cs and Hs are the monotherapeutic parameters associated for Drug 2, and « is an association

parameter that controls how the two drugs are affected by the presence of each other.

L) =U(0,1) or Beta(0.46,0.58)

p(log(C1)) = U(log(6), log(M)) and p(H;) = lognormal(0, 1)

and § is a small non-zero value to avoid log C being undefined.

,o”) (7)

fori=1,2,3,
for i = 1,2, and (8)

p(o) = lognormal(0, 1),

The definitions of the priors are a natural extension of the
monotherapy model, with the same arguments being followed.
The only new parameter is «, which follows a lognormal prior
with median 1 because « is non-negative and equals 1 when the
combination is neither synergistic nor antagonistic in terms of
potency.

Inference of the synergy
After inferring the posterior for the parameters and their
associated uncertainty, we focus on distinguishing the effect of
efficacy and potency in drug combinations. MuSyC has defined
metrics for both synergistic efficacy and synergistic potency,
which is a promising step in decoupling potency and efficacy.
However, the uncertainty for these two quantities has not been
quantified systematically. Our model output includes not only
quantification for the synergistic efficacy and the synergistic
potency, but also a separate uncertainty estimation for each.

For the synergistic efficacy, one simple yet informative
quantity is AHSA = min(FE1, E2) — E3 which is the change
in the maximal effect between the combination and the more
effective single drug of the two (Greco [1995]). A positive
score indicates synergistic efficacy. As E;, E5 and FE3 are
probabilistic, the resulting AHSA score is also probabilistic.
A metric such as

P(AHSA > 0| D) 9)

can then be defined to estimate how confident we are about the
synergistic efficacy of the combination, based on the dataset
D. It is possible to have a synergistic combination that is highly
uncertain, which would indicate that more data are required to
reach confidence in the estimation.
For the synergistic potency, « contains the required
information. o > 1 would indicate synergistic potency (Wooten
et al. [2021]), which means the potency of the two drugs has
reduced due to being combined. Consequently, we define

P(a>1]|D) (10)

to estimate how likely a combination satisfies synergistic
potency.
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Fig. 4. The data and the inference outputs of the combination of AKT
and ADAM17 applied on the cell line BT-20. (A): The original dose-
response matrix. (B)-(C): The monotherapy model outputs. Each blue
curve is a sample from E[Y | 8] where 6 is a sample from the posterior
of the respective monotherapy model. The posterior distribution for ICgq
and E;,s are shown in red and green respectively. (D): The contour plot
for the joint posterior distribution of the synergistic efficacy (AHSA)
and the synergistic potency (log(«)). The distribution is smoothed from
the empirical posterior with a kernel density estimation for visualisation
purpose. (E)-(F): The histogram of the empirical posterior distribution for
the synergistic efficacy (AHSA) and the synergistic potency (log(a)). The
areas on the right-hand side of the red vertical lines are the probability
that the combination is synergistic in terms of efficacy (in (E)) and
potency (in (F)).

Case studies

To illustrate how the uncertainty estimation from our method
can be explained and further used for decision-making, we take
two combinations from the DREAM dataset as examples.

Fig. 4 (A) shows the dose-response matrix for the
combination of ADAM17 and AKT acted on the cell line
BT-20. The first column is the monotherapy dose-response
measurements for AKT (as the dosage for ADAMI17 is zero),
whilst the first row is the monotherapy measurements for
ADAMI1T (as the dosage for AKT is zero). It can be observed
that the responses for AKT start to decrease at a higher rate
when the dosage increases, but the dosage range is too small to
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Fig. 5. The data and the inference outputs of the combination of EGFR
and AKT applied on the cell line MDA-MB-468. (A)-(F): The same as
the caption of Fig. 4.

understand its potency (ICs0) and efficacy (Eint). The efficacy
cannot be determined because the response has not shown any
sign of convergence, whereas the potency cannot be determined
because it relies on understanding the maximal response, which
is itself uncertain. However, if a deterministic Hill equation
is fitted to the monotherapy data, it will only provide a
point estimate for the ICso and Ej,¢, without acknowledging
the above caveats. On the contrary, our method provides an
uncertainty estimation for both quantities. As shown in Fig. 4
(B)-(C), the posterior distribution of IC5¢ and E;,s have large
variances, which correspond to large uncertainty. In particular,
as shown in Fig. 4 (C), the posterior of Ei,s for ADAM17 has
a multimodal shape, which is sensible because it is unclear
whether the dosage range is too small (which corresponds to
the peak at 0), or the drug is simply ineffective regardless of
the dosage (which corresponds to the peak at around 90).

Moving to the inference of the full combination matrix,
most existing synergy methods have no means to showcase
the uncertainty. Our method, on the contrary, provides the
uncertainty around the synergistic potency and the synergistic
efficacy, as shown in Fig. 4 (D), (E) and (F). According to
the model output, the combination is moderately likely to be
synergistically potent (with a probability of 85.2%), but it is
difficult to conclude its synergistic efficacy (with a probability
of 62.9% to be synergistic efficacious). This is reasonable
because the excessively small dosage range makes it difficult
to conclude anything about efficacy with high certainty, but
with the 25 available measurements on the plates where the two
drugs have interacted, information can be extracted on whether
combining the two drugs may lower the level of toxicity required
to reach the same beneficial effect.

This combination is an example where the model implies
some potential in the synergy of the combination, but the level
of uncertainty in the synergy is still high, which may require
more measurements at larger dosages to be narrowed down.

We now consider the combination of AKT and EGFR
acted on the cell line MDA-MB-468. Fig. 5 shows its dose-
response matrix and the inference result from our model
for the monotherapies and the combination respectively.
All parameters and metrics of interest have low variances,
representing low uncertainties. As shown in Fig. 5 (B) and
(C), the dosages have suitable ranges and approximately follow
the sigmoidal shapes of the expected dose-response fit, in
particular for AKT. They contain sufficient information for the
possibilities for IC5¢ and Eiyr to be narrowed down. Similarly,
the combination data are well-behaved. Fig. 5 (C), (D) and (E)
show that the probabilities of this combination being synergistic

made available under aCC-BY 4.0 International license.

in terms of potency and efficacy are both close to 100%.
These are signs that this combination is worth being taken to
subsequent steps in the drug development pipeline.

The two examples above show that concrete decisions can
be made based on the posterior distributions (e.g. for ICsg,
Eint, AHSA and «) from our model, and more importantly, the
uncertainties associated with these distributions.

Training details

The models are trained by Stan, a state-of-the-art platform
for statistical modelling and high-performance statistical
computation, particularly for Bayesian computation (Stan
Development Team [2023]). The user specifies the prior model
of the parameters and the likelihood model of the data, while
Stan performs either full Bayesian statistical inference with
Markov chain Monte Carlo (MCMC) sampling, or approximate
Bayesian inference with variational inference. In this study we
opt for MCMC due to the importance of the reliability of the
output, which is ensured by the asymptotic exactness of the
MCMC inference. Despite choosing the slower option of the two,
SynBa is still computationally efficient. Running on 4 CPUs
of the Intel Xeon Platinum 8276 CPU Processor, the median
time taken to fit SynBa (via MCMC with 1000 iterations and
4 chains, including 500 iterations in the warm-up phase) to a
6-by-6 dose-response matrix in DREAM is 10.2 seconds, which
is comparable to MuSyC with bootstrap.

With this training pipeline, we can avoid the overhead that
occurs during the usage of non-linear optimisation packages in
deterministic parametric methods such as MuSyC, BRAID and
the Effective Dose model. A different choice of the numerical
algorithm (and its hyperparameters) results in a different result
for those methods. On the contrary, in SynBa, the same exact
result can be found asymptotically via MCMC with Stan.

For the implementation of the other benchmark methods
including MuSyC, BRAID and the Effective Dose model, the
Python package synergy (Wooten and Albert [2021]) is used.

Results

Prediction of drug combination responses

In this subsection, we show that in addition to providing
uncertainty estimations, SynBa is competitive in predicting
unseen responses within a dose-response matrix, and is less
prone to overfitting compared to the existing methods.

The datasets of interest are DREAM (Menden et al. [2019])
and NCI-ALMANAC (Holbeck et al. [2017]), two of the
most widely-used publicly-available combination screenings.
In DREAM, we focus on all examples in the training set
of Challenge 1 that have passed the Quality Assurance and
that only contain non-negative responses and one set of
replicates, which are 1631 sets of combinations in total. In NCI-
ALMANAC, we focus on the subset defined in Julkunen et al.
[2020], which is a subset of the data consisting of 50 unique
FDA-approved drugs and 36,120 combinations. We remove
examples that contain negative measurements, which results
in 28,854 remaining combinations.

We leave out 20% of the non-zero dosage combinations for
prediction. The models are trained using the remaining 80%
dosage combinations, and then evaluated on the left-out points.
For the dose-response matrices in DREAM, we leave out 7 of
the 35 points with non-zero dosages from the 6-by-6 matrix (see
Fig. 1(A)) using a specific leave-out strategy. For each of the
two monotherapy slices, one point is left out for testing. For
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the 5-by-5 combination grid (i.e. the orange cells in Fig. 1(A)),
five points are randomly left out for testing. Fig. 1(B) shows
an example of such a train-test split. The measurements are
left out in this manner so that each monotherapy contains one
measurement for testing.

For the dose-response matrices in NCI-ALMANAC, it is not
possible to leave out points separately for monotherapies and
for combinations because the data size is too small. For most
combinations, there are only 3 points for each monotherapy and
9 points for the interactions. Thus, we directly leave out 3 of
the 15 points randomly for prediction.

FEvaluation metrics

To evaluate the predictive performance of the models,
test likelihood and the root-mean-square error (RMSE) are
computed using the left-out points. The former focuses on the
goodness of the full predictive distribution, whereas the latter
focuses solely on the goodness of the point estimates for the
responses.

The computation of the test likelihood for SynBa follows
Equation (1) for both monotherapy and combination. However,
the right hand side of the equation cannot be computed in a
closed form, so Monte Carlo estimation is required using the

expression
1 M
P | D%~ o > P ] 0m, %) (11)
m=1

where ¢ is the predicted response of the left-out dosage, D is
the training data containing the known dosages and the known
responses, and 8, ~ p(8 | D) are the MCMC samples from the
posterior distribution for the parameters.

For MuSyC, BRAID and the Effective Dose model, the
parametric bootstrap pipeline described in Wooten et al. [2021]
is followed. Each bootstrapped dataset provides a fitted curve.
The density for § is then estimated by averaging its density
computed on the models learnt from the bootstrapped datasets.

The computation of RMSE is more straightforward. For each
combination, its RMSE for the test responses {y1,...,yn} is

271;\7:1(% — 9i)?

RMSE =
N

(12)
where §; is the point estimate for the response that corresponds
to dosage x;. For SynBa, we define §; to be the posterior
predictive mean E[y; | D, x;], which is estimated by Monte
Carlo sampling from the posterior.

Quantitative results

We compare our prediction results against MuSyC, BRAID,
and the Effective Dose model, which are three of the most
widely-used synergy models. For SynBa, we implement both the
uniform prior and the empirical Beta prior for the normalised
Einr, which we denote as SynBa-U and SynBa-B respectively.
Tables 1 show the mean and the median of the test log-
likelihood and the test RMSE for MuSyC, BRAID, Effective
Dose model and SynBa. Our method outperforms all three
other methods in all metrics except for the mean test log-
likelihood on DREAM. In particular, our method performs well
on RMSE, a metric that only considers the quality of point
estimates and ignores uncertainty. The upper diagonal panels in
Fig. 6 show the scatter plots directly comparing the test RMSE
values between methods (visualised with the blue colour). Our
method is the most competitive, as evidenced by having more
points above the diagonal y = x line. These show that our
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Fig. 6. Upper diagonal panels (with blue points): Scatter plot of the
test RMSE values obtained from different methods on DREAM with a

train-test split ratio of 80% : 20%. Lower diagonal panels (with red

points): Scatter plot of the test RMSE values obtained from different
methods on DREAM with a train-test split ratio of 40% : 60%. Diagonal
panels: Histograms of the test RMSE values and their corresponding
kernel density estimates, where the train-test split is 4:1 for the blue

ones and 2:3 for the red ones.

method is not trading off predictive accuracy for uncertainty
estimation. By following a principled Bayesian workflow, our
model is strong in both prediction and uncertainty estimation.

It is worth noting that at least one of MuSyC, BRAID or
the Effective Dose model fail to find a solution for 4.8% of the
examples in DREAM and 38.4% of them in NCI-ALMANAC,
despite an effort in tuning the bounds, initial values and
hyperparameters involved in the optimisation. Most likely this
is because these methods rely on external optimisation packages
with no guaranteed convergence, which can become a problem
when overparameterisation becomes severe due to small data
sizes. SynBa does not incur this problem since its priors ensure
conservative outputs when data size is too small.

To investigate whether SynBa is prone to overfitting and
how it compares to the other three methods, we perform the
same prediction experiment on DREAM, but with a train-
test split ratio of 40% :
diagonal panels in Fig. 6, the test RMSE values (visualised
with the red colour) increase significantly for MuSyC, BRAID
and the Effective Dose model. For SynBa, however, the test
RMSE values have increased on average, but not by much.

60% instead. As shown in the lower

It can be seen that the mean value and the spread increase
more significantly for the other three methods compared to
SynBa. It can also be observed that the predictive performance
of SynBa is not sensitive to the choice of prior, with the two
priors producing very close RMSE values to each other.

In addition, we compare SynBa with bayesynergy and
Hand-GP, the two probabilistic synergy models. As shown in
Supplementary Table S1, the test RMSE for bayesynergy and
Hand-GP are significantly higher on both datasets. This could
be because drug interactions are modelled nonparametrically in
both methods, meaning a wide range of functions is represented
and it is difficult to narrow down the probable dose-response
curves or surfaces when the data size is small or noisy.
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Table 1. The mean and the median (Mdn) of the test log-likelihood (LL) and the test root-mean-squared error (RMSE) for MuSyC, BRAID,
the Effective Dose model (ED) and SynBa, computed on a subset of DREAM and NCI-ALMANAC, along with their standard errors. The
standard error of the mean is computed by the standard deviation of the metrics across examples divided by the square root of the number
of examples. The standard error of the median is estimated by nonparametric bootstrap. SynBa with a uniform prior for the normalised Ein¢
is denoted by SynBa-U. SynBa with the Beta(0.46, 0.58) prior for the normalised Ei,¢ is denoted by SynBa-B.

DREAM, LL DREAM, RMSE NCI-ALMANAC, LL NCI-ALMANAC, RMSE

mean (£ se) Mdn (£ se) | mean (£ se) Mdn (£ se) | mean (+ se) Mdn (& se) | mean (£ se) Mdn (+ se)
MuSyC | —3.50 £0.35 —3.09+0.02 | 6.11+£0.10 5.014+0.08 | —3.86 £0.01 —3.79+0.01 | 14.87 +£0.10 10.17 £ 0.03
BRAID | —4.12+£0.69 —3.06+£0.02 | 5.71+0.09 4.88+0.08 | —3.80£0.04 —3.48£0.01| 9.57+0.06 7.16+0.03
ED -3.37+£0.09 -—-3.224+0.02 | 6.46+0.09 5.66+0.09 | —3.684+0.02 —3.48+0.01 | 8.47+0.05 6.77 £ 0.09
SynBa-U | —3.59 +0.42 -3.01 £0.02 | 5.20£0.07 4.56 £0.08 | —3.42£0.02 —3.24+0.01 | 6.724+0.04 5.45 + 0.05
SynBa-B | —3.84 £0.66 -3.01+0.02 | 5.15+0.07 4.55+0.08 | -3.39+0.01 -3.234+0.01 | 6.66 +0.04 5.43 £0.04

Uncertainty calibration

For a model M with learnt cumulative distribution Faq
with well-calibrated uncertainty, it would approximately follow
the identity that Fy (x;) = Fam(x;) for every data point
{(xs,yi(x:)) | ¢ = 1,...,N} in the dataset, where y;(x;)
is a sample from the unknown true cumulative distribution
Fy (x;). Equivalently, assuming the measurements y;(x;) for
a combination are conditionally independent given the dosages
X;, their cumulative probabilities F(y;) := P(yi(x;) < Fa(xi))
would be approximately uniformly distributed between 0 and
1, if M is well-calibrated.

In this study, for each combination in DREAM, we split the
35 measurements (excluding the base value) with a 80%:20%
ratio in the same way as the prediction evaluation in the
previous subsection. We then evaluate the quality of the
uncertainty calibration with the Kolmogorov—Smirnov (K-S)
uniformity test (Massey Jr [1951]) for the empirical cumulative
probabilities (or CDF values) across all test data points. If the
model is well-calibrated, then the CDF values for the test data
points will be approximately uniform for each combination.
Otherwise, they will show a non-uniform pattern and the
resulting p-value for the K-S test will be statistically significant.
This procedure is performed across every combination in
DREAM, resulting in a p-value for each combination. The
histogram of the p-values for SynBa is in Supplementary
Fig. S1(A), showing that 6.07% of the combinations have not
passed the uniformity test, and thus are not well-calibrated.
As a comparison, the same procedure is performed using
MuSyC. Supplementary Fig. S1(B) shows that 25.1% of the
combinations are not well-calibrated when modelled by MuSyC,
which is roughly four times as high as the number for SynBa.
This shows the estimated uncertainty from SynBa is more
reliable and closer to the unknown ground truth on average.

Discussion

Machine learning methods have been developed for preclinical
modelling and the prediction of drug combinations, thanks
to the availability of large screenings (Julkunen et al. [2020],
Wang et al. [2021]), which are beneficial for discovering and
explaining drug combinations. However, a few factors prevent
most from being applied to real-world drug discovery projects.
One issue is that performance measures rely on synergy scores,
which do not have a gold standard and contain a non-trivial
amount of uncertainty, as discussed in Introduction. The
Spearman correlation of the replicate experiments in DREAM
(Menden et al. [2019]) and O’Neil et al. [2016] are 0.56 and
0.63 respectively, which show that quantifying a combination
with a single synergy score would result in high variance.
However, uncertainty measurement is not included in synergy

score estimation. This could be one of the reasons that 20% of
drug combinations are poorly predicted by all methods in the
DREAM challenge. Measuring the uncertainties associated with
the estimated scores is important for the subsequent decision-
making process based on the model outputs. In real-world
scenarios, scientists are often facing the decision to choose
amongst a large set of drug combinations that score similarly
in terms of synergy. Without quantification of how certain (or
uncertain) the estimated scores are, they will have to rely
on background knowledge compromising innovation in their
choices. SynBa provides a way to implement a ranking strategy
in the decision process of a drug discovery pipeline, which is a
real-world unmet need.

SynBa has the limitation that it only models the
combination of two drugs, while there exist methods such as the
Effective Dose Model that consider higher-order combinations.
‘While this is a limitation, our initial aim is to provide a
method that is reliable and not over-parameterised, to meet
with practical needs.

Conclusions

We have developed a new framework for quantifying dose-
response relationships for monotherapies and combinations that
provides a full uncertainty estimation for all parameters that
are associated with the monotherapies and the combinations,
including information about efficacy, potency and synergy.
These uncertainty information would be helpful to the
biologists to make further decisions about progressing to the
next stages of the drug discovery pipeline, or whether more
experiments are required to lower the level of the uncertainty
and better understand the drug mechanism of action.

‘We have also shown that SynBa is competitive in predicting
unseen responses within a given dose-response matrix, and
outperforms MuSyC, BRAID and the Effective Dose model
on DREAM and NCI-ALMANAC. In addition, the prediction
performance is not sensitive to the choice of the priors.

In summary, our framework is capable of providing a reliable
uncertainty estimation for the potency (e.g. ICsp) and the
efficacy (e.g. Einf) of a monotherapy, or the synergistic potency
and efficacy of a combination, in a decoupled manner, and
reliably predicting unseen responses within a dose-response
matrix. The parameter uncertainties can be interpreted and
used as guidance for further experiments and subsequent
decision-making.
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