

1 **RESEARCH ARTICLE**

2

3 **Heritable changes of epialleles in maize can be triggered in the absence of DNA**
4 **methylation**

5 Beibei Liu¹, Diya Yang¹, Dafang Wang², Chun Liang¹, Jianping Wang³, Damon Lisch⁴, Meixia
6 Zhao^{5,*}

7 ¹Department of Biology, Miami University, Oxford, OH 45056

8 ²Biology Department, Hofstra University, Hempstead, NY 11549

9 ³Agronomy Department, University of Florida, Gainesville, FL 32610

10 ⁴Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907

11 ⁵Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611

12

13

14 *Address for correspondence: Meixia Zhao (meixiazhao@ufl.edu; tel 352-273-3715)

15

16

17 **Running Title:** CHH methylation in maize

18

19

20 **Key words:** *trans*-chromosomal interactions, DNA methylation, initiation and maintenance,
21 differentially methylated regions

22

23

24

25

26

27

28

29

30

31

32 **Abstract**

33 *Trans*-chromosomal interactions resulting in changes in DNA methylation during hybridization
34 have been observed in several plant species. However, very little is known about the causes or
35 consequences of these interactions. Here, we compared DNA methylomes of F1 hybrids that are
36 mutant for a small RNA biogenesis gene, *Mop1* (*mediator of paramutation1*) with that of their
37 parents, wild type siblings, and backcrossed progeny in maize. Our data show that hybridization
38 triggers global changes in both *trans*-chromosomal methylation (TCM) and *trans*-chromosomal
39 demethylation (TCdM), most of which involved changes in CHH methylation. In more than 60%
40 of these TCM differentially methylated regions (DMRs) in which small RNAs are available, no
41 significant changes in the quantity of small RNAs were observed. Methylation at the CHH TCM
42 DMRs was largely lost in the *mop1* mutant, although the effects of this mutant varied depending
43 on the location of the CHH DMRs. Interestingly, an increase in CHH at TCM DMRs was
44 associated with enhanced expression of a subset of highly expressed genes and suppressed
45 expression of a small number of lowly expressed genes. Examination of the methylation levels in
46 backcrossed plants demonstrates that TCM and TCdM can be maintained in the subsequent
47 generation, but that TCdM is more stable than TCM. Surprisingly, although increased CHH
48 methylation in F1 plants did require *Mop1*, initiation of the changes in the epigenetic state of
49 TCM DMRs did not require a functional copy of this gene, suggesting that initiation of these
50 changes is not dependent on RNA-directed DNA methylation.

51

52 **Key words:** *trans*-chromosomal interactions, DNA methylation, initiation and maintenance,
53 differentially methylated regions

54

55

56

57

58

59

60

61

62 **Introduction**

63 DNA methylation is a heritable epigenetic mark involved in many important biological processes,
64 such as genome stability, genomic imprinting, paramutation, development, and environmental
65 stress responses [1-4]. In plants, DNA methylation commonly occurs in three cytosine contexts,
66 the symmetric CG and CHG (where H = A, C, or T) contexts, and the asymmetric CHH context
67 [5-7]. In *Arabidopsis*, *de novo* methylation at all of these three cytosine contexts is catalyzed by
68 domains rearranged methyltransferase 2 (DRM2) through the RNA-directed DNA methylation
69 (RdDM) pathway. In RdDM, single-stranded RNA is transcribed by RNA polymerase IV (Pol
70 IV) and copied into double-stranded RNA by RNA-directed RNA polymerase 2 (RDR2). The
71 dsRNA is then processed by Dicer-like 3 (DCL3) into 24-nucleotide (nt) small interfering RNAs
72 (siRNAs), which can recruit histone modifiers and DNA methyltransferases back to the original
73 DNA sequences to trigger methylation [3-5]. In maize, loci targeted by RdDM are primarily
74 transposable elements (TEs) or other repeats near genes, where the chromatin is more accessible,
75 rather than the deeply heterochromatic regions farther from genes [8, 9]. In plants, DNA
76 methylation is maintained by different pathways depending on the location of the target
77 sequences [6]. CG and CHG methylation are maintained during following DNA replication by
78 methyltransferase 1 (MET1) and chromomethylase 3 (CMT3), respectively [4, 5]. CHH
79 methylation is maintained through persistent *de novo* methylation by DRM2 through the RdDM
80 pathway, which requires small RNAs and relatively open chromatin, or by chromomethylase 2
81 (CMT2) in conjunction with H3 lysine 9 dimethylation (H3K9me2) in deep heterochromatin,
82 which does not [10].

83 This complex system of chromatin modification ensures that epigenetic silencing is reliably
84 transmitted from generation to generation. However, there are situations in which that stability
85 can be perturbed. Hybrids are an example of this because hybridization brings together two
86 divergent genomes and epigenomes in the same nucleus. The interaction between these divergent
87 genomes can result in both instability and transfers of epigenetic information between genomes.
88 *Trans*-chromosomal interactions of DNA methylation between parental alleles in F1 hybrids
89 occur in many plant species, including *Arabidopsis* [1, 11-14], rice [15-17], maize [18-20],
90 pigeonpea [21], and soybean [22]. In *Arabidopsis* F1 hybrids, significant changes in F1
91 methylomes involve *trans*-chromosomal methylation (TCM) and *trans*-chromosomal

92 demethylation (TCdM), in which the methylation level of one parental allele is altered to
93 resemble that of the other parental allele [1, 11, 12, 21].

94 Small RNAs, particularly 24-nt siRNAs, are associated with the methylation changes at the
95 regions of the genome where methylation levels differ between the two parents [1, 11, 16, 17, 23,
96 24]. Small RNA sequencing in *Arabidopsis*, maize, wheat and rice has revealed a general
97 decrease in 24-nt siRNAs in hybrids at regions where parental siRNA abundance differs [16-18,
98 23, 25]. In maize, downregulation of 24-nt siRNAs following hybridization is observed in
99 developing ears but not in seedling shoot apex [18], suggesting either the tissue type or
100 developmental stage is important for the changes in small RNAs observed in hybrids. It has been
101 hypothesized that siRNAs produced from the methylated parental allele can trigger *de novo*
102 methylation of the other parental allele when the two alleles are brought together in F1 hybrids
103 [12, 13], a process that is reminiscent of paramutation at many loci in maize [26, 27]. In
104 *Arabidopsis* F1 hybrids, siRNAs from one allele are found to be sufficient to trigger methylation
105 without triggering siRNA biogenesis from the other allele in F1 plants at TCM differentially
106 methylated regions (DMRs) [1].

107 The inheritance of both TCM and TCdM in subsequent generations can be meiotically stable
108 across many generations but varies at different loci in *Arabidopsis* [11, 28, 29]. In maize and
109 soybean, parental methylation differences are inherited by recombinant inbred lines over
110 multiple generations. However, these changes can be unstable, and are likely guided by small
111 RNAs [22, 30]. A recent study in maize identified thousands of TCM and TCdM loci in F1
112 hybrids. However only about 3% of these changes were transmitted through six generations of
113 backcrossing and three generations of selfing [31], suggesting that the methylation status of any
114 given locus is largely determined by local sequences.

115 Most recent research has focused on the initiation and maintenance of overall levels of DNA
116 methylation, but the causes and consequences of DNA methylation depend on its sequence
117 context. In large genomes such as maize, regions distant from genes are typically maintained in a
118 deeply heterochromatic state and cytosine methylation is primarily the CG and CHG sequence
119 contexts. In contrast, CHH methylation, which is primarily dependent on RdDM in maize, occurs
120 almost exclusively in regions immediately adjacent to genes, resulting in so-called “mCHH
121 islands” [9, 32]. The result of this variation is a dramatically skewed distribution of methylated
122 cytosines. In the maize reference genome, there are a total of 972,798,068 cytosines, out of

123 which 18.7% and 16.4% are CG and CHG cytosines and 64.9% of which are CHH cytosines.
124 Unlike CG and CHG cytosines, which are methylated at a high level, the level of CHH
125 methylation is extremely low, only 2.4% genome-wide, and is largely restricted to mCHH
126 islands. This may be due to lack of CMT2 in maize, the major chromomethylase that functions in
127 the maintenance of CHH methylation in heterochromatin in other plants. In maize, these CHH
128 islands are thought to be the boundaries between deeply silenced heterochromatin and more active
129 euchromatin that promote and reinforce silencing of TEs near genes [9, 32].

130 To address these questions, we performed high-throughput sequencing of DNA methylomes,
131 small RNA and mRNA from F1 hybrids that were mutant for a small RNA biogenesis gene,
132 *Mop1* (*mediator of paramutation1*), as well as their parents, wild type siblings and backcrossed
133 progeny. *Mop1* is a sequence ortholog of *RDR2* in Arabidopsis, which is a major component of
134 the RdDM pathway [33, 34]. In the *mop1* mutant, 24 siRNAs are dramatically reduced [8, 35],
135 which results in a near complete removal of CHH methylation near genes [9, 36], confirming a
136 significant role for MOP1 in *de novo* CHH methylation in maize. Our results show a global
137 increase in CHH methylation in hybrids, but these increases are unequally distributed, leading to
138 new and distinctive patterns of methylation. While only the low-parent (the parent with the lower
139 methylation level) allele gained methylation in CG and CHG TCM DMRs, both the high-parent
140 (the parent with the higher methylation level) and low-parent alleles of CHH TCM DMRs gained
141 methylation in F1 hybrids. As has been observed in Arabidopsis, the increase in methylation in
142 the low-parent alleles was not associated with the generation of allele-specific small RNAs at
143 many genomic loci, suggesting that small RNAs from one allele are sufficient to trigger
144 methylation in the other allele, but are not always sufficient to trigger Pol IV transcription of the
145 target allele. Interestingly, these CHH TCM DMRs were associated with the enhanced
146 expression of a subset of highly expressed genes and suppressed expression of a subset of lowly
147 expressed genes.

148 Changes in CG and CHG methylation were often retained in the backcrossed generation, a
149 process that did not require MOP1. Heritable changes in CHH methylation were more complex.
150 The increase in CHH methylation in both the highly methylated and lowly methylated alleles
151 was lost in backcrossed 1 (BC1) plants, even at loci where both alleles were present, suggesting
152 that the global increase we observed in the F1 is a function of heterosis, rather than an interaction
153 between each pair of heterozygous epialleles. However, new methylation added to the low

154 methylation allele could be transmitted to the BC1 plants, even in progeny of plants that were
155 *mop1* mutant and that lacked MOP1-dependent siRNAs. This suggests that the transfer of the
156 epigenetic state from high CHH alleles to low CHH alleles, as well as the maintenance of this
157 altered state in the gametophyte does not require MOP1.

158

159 **Results**

160 **CHH methylation level is increased globally in hybrids**

161 To understand the initiation of DNA methylation, we crossed *mop1* heterozygous plants in the
162 Mo17 and B73 backgrounds to each other (Mo17; *mop1*-1/+ × B73; *mop1*-1/+) to generate F1
163 hybrid *mop1* mutants (Mo17/B73; *mop1*-1/*mop1*-1, designated as *mop1*F1) and their hybrid
164 homozygous wild type siblings (Mo17/B73; +/+, designated as WTF1) (Fig 1A). We next
165 performed whole genome bisulfite sequencing (WGBS) of the two parental genotypes (Mo17
166 and B73) and the two F1 hybrids (WTF1 and *mop1*F1) (S1 Table). The overall methylation
167 levels of B73 (25.1%) and Mo17 (25%) were similar. We observed a substantial increase in
168 overall methylation levels in WTF1 hybrids (30%) compared to the two parents (25%), as has
169 been noted previously in both Arabidopsis and maize (S1 Fig and S2 Table) [1, 31]. The
170 increased methylation was primarily driven by the increased CHH methylation, while CG and
171 CHG were not dramatically changed (Fig 1B, S1 Fig and S2 Fig). In both parents and WTF1, the
172 overall levels of CHH methylation tend to be higher in chromosomal arms, likely because there
173 are more mCHH islands near genes in the ends of chromosomes [9]. Interestingly, although the
174 *mop1* mutation reduces CHH methylation [36], the overall level of CHH methylation in *mop1*F1
175 was still higher than the two wild type parents (Fig 1B and S2 Fig), suggesting that a significant
176 portion of the increased *de novo* CHH methylation in F1 hybrid plants does not require classical
177 RdDM.

178 Previous research had shown that *mop1* mutants primarily affect mCHH islands near active
179 genes [8, 9]. Therefore, we plotted DNA methylation levels of CG, CHG and CHH within gene
180 bodies, 3 kb upstream of TSSs (transcription start sites) and 3 kb downstream of TTSs
181 (transcription termination sites). In genes, we observed similar patterns with respect to the
182 methylation levels of CG and CHG between parents and F1 hybrids. In contrast, the methylation
183 levels of CHH cytosines both upstream and downstream of genes were dramatically increased in
184 WTF1 plants, and dramatically reduced in the *mop1*F1 mutants relative to the two parents (Fig

185 1C). We next determined CG, CHG and CHH methylation levels within TE bodies and their
186 flanking regions. The region flanking the distal edge of TEs relative to genes generally had
187 higher levels of CG and CHG methylation than did the region flanking their proximal edge. CHH
188 methylation was increased in Wtf1 hybrids across TE bodies and flanking regions relative to
189 the parents, particularly at the two edges of TEs. In line with previous observations [9], CHH
190 methylation level at the proximal edge and the adjacent flanking regions of TEs in *mop1*F1 was
191 lower than that in the two parents. In contrast, the CHH methylation level at the distal edge of
192 TEs and the adjacent flanking regions in *mop1*F1 was only marginally reduced relative to Wtf1,
193 and was still higher than that in the parents (Fig 1D). In the body of TEs, the increase in CHH
194 methylation triggered by hybridization was unchanged, or even increased in *mop1* mutants.
195 Together, these data suggest that MOP1 is particularly important for CHH methylation of the
196 ends of TEs that are near genes, along with the region between the TE and the gene. Outside of
197 those regions, it appears that MOP1 is not required for a significant portion of the increased
198 CHH methylation in F1 plants. The net effect is a strong effect of *mop1* on CHH islands, but a
199 much reduced effect on overall changes in DNA methylation seen in the F1 generation.

200 **Levels of CHH methylation of both high- and low-parent (parents with the higher and
201 lower methylation levels) alleles are increased at TCM DMRs in the F1 hybrids**

202 We identified DMRs between the two parents, Mo17 and B73, in our data set. Here we referred
203 to these DMRs as parental DMRs, which can be Mo17 or B73 hyper DMRs, indicating that
204 either Mo17 or B73 has a significantly higher level of DNA methylation (Fig 2A). In total, we
205 identified 7,107 CG, 9,045 CHG, and 13,307 CHH DMRs between the two parents (Fig 2B and
206 S3 Table). CHH DMRs were typically shorter than CG and CHG DMRs (S3 Fig and S3 Table).
207 The B73 genome had more CG and CHG hyper DMRs, and the Mo17 genome had more CHH
208 hyper DMRs, which is consistent with the observation that B73 had higher overall CG and CHG
209 methylation and Mo17 had higher overall CHH methylation at these DMRs (Fig 2B and 2C), as
210 has been noted previously [37]. We also found that CG and CHG DMRs were more overlapped
211 with each other than each one was with CHH DMRs (Fig 2D), consistent with previous
212 observations that CHH methylation is often found in mCHH islands immediately up and
213 downstream of genes [9, 32]. Out of the 13,307 CHH DMRs, 52% were located within or near
214 genes, particularly 2 kb upstream and downstream of genes (43%), which was significantly
215 higher than the values for CG (27%) and CHG (18%) in these regions ($P < 0.0001$, χ^2 test) (Fig

216 2E). Given that TEs are the primary targets of DNA methylation and maize genes are frequently
217 adjacent to TEs [3, 9], we compared the different classes of TEs overlapping DMRs within the 2
218 kb flanking regions of genes. Not surprisingly given their distribution within genomes, we found
219 that terminal inverted repeat (TIR) DNA transposons were more enriched in CHH DMRs than
220 they were in CG and CHG DMRs within 2 kb of genes (Fig 2E and 2F).

221 Next, we examined the methylation levels of these parental DMRs in the F1 hybrids.
222 Following previously published studies, we compared the methylation levels of WTF1 to the
223 mid-parent value (MPV, the average of the two parents) and classified changes as being a
224 consequence of TCM (*trans*-chromosomal methylation), TCdM (*trans*-chromosomal
225 demethylation), or NC (no change) (Fig 3A) [1]. A majority of parental DMRs (~75%) did not
226 significantly change their methylation levels in the WTF1 hybrids, and most of these unchanged
227 DMRs were in TEs and unclassified regions (Fig 3A and S4 Fig). However, when single
228 nucleotide polymorphisms (SNPs) were used to distinguish methylation in each of the two
229 parental genomes, many of these NC DMRs (CG 53.8%, CHG 52.9%, and CHH 51.4%) in
230 WTF1 were revealed to have lost methylation at the high-parent allele and gained methylation at
231 the low-parent allele, which resulted in no significant changes in overall methylation levels
232 between the hybrids and parents, suggesting that methylation interaction still occurs in these NC
233 DMRs (S5 Fig). Of the remaining 25% parental DMRs that were significantly changed in F1
234 hybrids, 18.7% were TCM, and 6.8% were TCdM (Fig 3A). We then compared allele specific
235 methylation levels of these regions between B73 and Mo17. Given that these two inbred
236 genomes are highly polymorphic, we were able to compare allele specific methylation at 2,459
237 (57%) of the TCM and 915 (59%) of the TCdM DMRs. At TCM DMRs, WTF1 had higher
238 methylation levels at all three cytosine contexts (Fig 3B). The increased methylation at CG and
239 CHG in these wild type F1 plants was primarily due to the increased methylation in the parental
240 allele that had the lower level of methylation. In contrast, CHH methylation levels of both the
241 high- and low-parent alleles were substantially increased in WTF1 at these TCM DMRs (Fig 3B).
242 At TCdM DMRs, the reduction of methylation was primarily due to the decreased methylation of
243 the high-parent allele in all of the three cytosine contexts (Fig 3C).

244 **Methylation of CHH TCM DMRs is dramatically reduced in the *mop1* mutant**

245 To shed light on the effects of the loss of *Mop1*-dependent small RNAs at TCM and TCdM
246 DMRs, we examined their methylation levels in *mop1*F1 mutant plants. Only 99 (8.6%) of 1,147

247 CG and 144 (11.2%) of 1,284 CHG TCM DMRs significantly changed their methylation levels
248 in *mop1*F1 mutants. In contrast, methylation levels of 90.7% (1,031 out of 1,137) CHH TCM
249 DMRs were significantly changed in *mop1*F1 (Fig 4A). Consistent with our global analysis, the
250 CHH DMRs that were significantly changed in *mop1* were primarily located in the 2 kb flanking
251 regions of genes (S6 Fig). As expected, methylation of all the three sequence contexts at these
252 TCM DMRs were largely reduced in *mop1*F1 mutants, particularly in the CHH context, in which
253 the methylation level in *mop1*F1 plants was even lower than the low parent (Fig 4B). This
254 suggests that in these regions, but not the genome as a whole, the additional methylation in F1
255 wild type plants is lost altogether. Not surprising, given that the methylation of TCdM DMRs
256 was already very low, we did not observe significant changes in methylation at TCdM DMRs in
257 the *mop1*F1 mutants (Fig 4C).

258 Previous research has demonstrated that loss of methylation in mCHH islands results in
259 additional loss of CG and CHG methylation [9]. We found that out of the 118 CG DMRs that
260 were significantly changed in *mop1*F1 mutants relative to their wild type siblings, 37 (31.4%)
261 were also CHG DMRs, but only 3 (2.5%) were CHH DMRs. Similarly, only 32 (20.9%) and 9
262 (5.9%) of the CHG DMRs that were changed in *mop1* were CG and CHH DMRs, respectively.
263 Out of the 1,048 *mop1*-affected CHH DMRs, 72 (6.7%) and 181 (17.3%) were also CG and
264 CHG DMRs (S4 Table). A similar pattern was observed for the *mop1*-affected CHG DMRs, in
265 which we detected changes in CG but no changes in CHH methylation. For *mop1*-affected CHH
266 DMRs, we saw no change in CG but a substantial change in CHG (Fig 4D). Together these data
267 suggest that *mop1* mutation primarily prevents the methylation of CHH TCM DMRs, and that a
268 loss of CHH methylation in *mop1* can result in additional loss of CHG, but not CG methylation.

269 **Small RNAs from one allele are sufficient to trigger methylation of the other allele at a
270 majority of CHH TCM DMRs in F1 hybrids**

271 Because small RNAs are the trigger for *de novo* DNA methylation [4, 5], we next asked whether
272 the difference in methylation during hybridization is caused by differences in small RNAs. We
273 proposed two hypotheses with respect to siRNAs at the CHH TCM DMRs. As shown in Fig 5A,
274 in the first hypothesis, small RNAs are produced from one allele and trigger increases in
275 methylation at the high-parent allele and *de novo* methylation in low-parent allele without
276 triggering production of new, allele specific small RNAs from that allele. In the alternative
277 hypothesis, once methylation is triggered in the low-parent allele, it becomes competent to

278 produce its own, allele specific small RNAs, which may in turn act to enhance at the high-parent
279 allele. To distinguish between these hypotheses, we performed small RNA sequencing from the
280 same plants that were used for DNA methylation analysis (S1 Table). Because of the increase in
281 the apparent number of 22-nt siRNAs in *mop1* mutants caused by normalization following the
282 loss of most 24-nt small RNAs in *mop1* mutants, the small RNA values were adjusted to total
283 abundance of all mature microRNAs following previously described protocols [35]. As was
284 expected, 24-nt siRNAs were the most abundant siRNAs in all the sequenced wild type samples.
285 Overall, despite the dramatic increase we observed in CHH methylation in the hybrids (Fig 1B),
286 no significant differences in small RNAs were observed between the WTF1 hybrids and parents
287 (Fig 5B). The *mop1* mutation substantially reduced 24-nt siRNAs, particularly in the mCHH
288 island regions near TSSs and TTSs (Fig 5B and S7 Fig). Next, we compared 24-nt siRNAs in
289 generated from the high parent and low parent. We detected 24-nt uniquely mapped siRNAs in
290 795 CG (11.2% of the total), 700 CHG (7.7%), and 5,070 CHH (38.1%) parental DMRs.
291 Consistent with their role in methylation, on average, the high parent harbored significantly more
292 24-nt siRNAs than the low parent (Fig S8). This is also true for TCM, TCdM, and NC DMRs
293 when analyzed separately (S9 Fig).

294 To test whether the increase in methylation in WTF1 plants was due to an increase in 24-nt
295 small RNAs, we compared the abundance of 24-nt siRNAs between WTF1 and the MPV.
296 Although 24-nt siRNAs were increased at CHH TCM DMRs in WTF1 hybrids, this increase was
297 not significant (Fig 5C and S9 Fig). We then analyzed allele-specific expression of siRNAs in F1
298 hybrids. Because only uniquely mapped reads with SNPs can be used to access the allele specific
299 expression of siRNAs and because the length (24-nt) of siRNAs is very short, we were able to
300 obtain data from only 207 CHH TCM DMRs that had enough information to compare allele-
301 specific expression. There was no significant difference between the ratio of 24-nt siRNAs of the
302 high-parent allele to the low-parent allele in F1 hybrids and that of the high parent to the low
303 parent in the parents (Fig 5D). Among these 207 CHH TCM DMRs, 53 had siRNAs expressed
304 from only the high parent. Of these, 34 (64.2%) had siRNAs still produced from the high-parent
305 allele in WTF1. Out of the remaining 154 CHH TCM DMRs, 104 expressed more siRNAs from
306 the high parent, out of which, 65 (62.5%) still had more siRNAs expressed from the high-parent
307 allele than the low-parent allele in WTF1. These data suggest that the increased methylation at
308 CHH TCM DMRs is not caused by an increase in siRNAs from the newly methylated allele,

309 which favors the hypothesis that small RNAs produced from one allele trigger methylation of the
310 other allele in *trans*, but that the newly methylated allele is not itself a source of small RNAs.

311 RdDM triggered by small RNAs depends on the similarity of the small RNAs and their
312 targets. Thus, the sequence variation between the two alleles may affect small RNA targeting and
313 ultimately, methylation. To test this, we compared the SNPs between TCM and TCdM. As
314 shown in Fig 5E, no significant differences in SNP enrichment were observed when comparing
315 TCM and TCdM at CG and CHG DMRs. In contrast, CHH TCdM DMRs had significantly more
316 SNPs than did CHH TCM DMRs, suggesting that more genetic variation at CHH TCdM DMRs
317 hinders targeting of one allele by small RNAs from the other allele.

318 **CHH methylation of sequences flanking genes can be associated with either suppressed or
319 enhanced expression of neighboring genes**

320 Given the variation in DNA methylation we observed in the parental lines and F1 hybrids (Fig 2),
321 we compared the expression values of 51 genes involved in the RdDM pathway among these
322 genotypes. We detected eight RdDM genes differentially expressed between B73 and Mo17, all
323 of which showed significantly higher expression in the Mo17 genome (S10 Fig and S5 Table),
324 which may contribute to the greater abundance of CHH methylation in the Mo17 genome (Fig
325 2B and 2C). In addition, we identified six RdDM pathway genes differentially expressed
326 between the F1 hybrids and the MPV, and all of them had higher expression in the F1 hybrids
327 (S10 Fig and S6 Table), suggesting that the RdDM pathway is more active in hybrids.

328 DNA methylation is generally associated with repression of transcription, particularly when
329 the methylation is in the promoter regions of genes [38-40]. However, previous analysis of the
330 maize methylome suggests that the reverse is true of CHH islands. One interpretation of this
331 observation is that because CHH methylation is an active process that requires relatively open
332 chromatin, increased gene expression may permit more efficient RdDM, resulting in higher
333 levels of methylation [9, 32]. If this were the case, one would expect that allele specific increases
334 in expression in F1 plants would result in increased CHH methylation of TEs near those genes.
335 Alternatively, it is possible that additional CHH methylation could under some circumstance,
336 result in decreased expression in F1 plants. To understand the relationship between CHH
337 methylation and gene expression, we investigated the correlation between a subset of CHH TCM
338 DMRs with expression of genes that flank them. As shown in Fig 6A, for the Mo17 CHH TCM
339 DMRs, whose methylation is transferred from Mo17 to B73, if methylation suppresses gene

340 expression, because the Mo17 parent has higher methylation, we expect the Mo17 allele to have
341 a lower level of expression. After hybridization, if the B73 allele gains methylation, it would be
342 expected to produce less transcript. If this is the case, we would expect to see the ratio of gene
343 expression of B73 to Mo17 in the F1 hybrids to decrease relative to the ratio of expression of
344 these alleles in the parents (Fig 6A, left panel). In contrast, if CHH methylation promotes gene
345 expression or if it responds passively to increased expression, we would predict an increase in
346 the ratio of gene expression of B73 to Mo17 in F1 hybrids associated with a relative increase in
347 expression of B73 (Fig 6A, right panel).

348 We focused on 442 Mo17 hyper DMRs with available data on allele-specific methylation in
349 F1, 172 of which also had available allele-specific expression data, and then looked for genes
350 whose allele-specific expression changed significantly in F1 relative to the parents. Of the genes
351 flanking the 172 Mo17 hyper DMRs, 126 (73%) associated with those DMRs showed no
352 significant change in relative expression. For 16 genes, the ratio of B73 to Mo17 expression was
353 decreased, and for 31 genes, the ratio was increased in the F1 hybrids (Fig 6B), suggesting that
354 CHH methylation can be associated with both suppressed and enhanced gene expression. Next,
355 we asked whether variation in expression of genes is associated with variation in histone
356 modifications. The 16 DMRs that were associated with suppressed gene expression were
357 significantly more enriched for H3K27me3 and more depleted of H3K4me3 than the 31 DMRs
358 that were associated with enhanced gene expression in B73 (Fig 6C and S11C Fig) [41]. The 31
359 genes that seemed to be enhanced by CHH methylation were typically longer, more highly
360 expressed, and with higher gene body methylation than the 16 suppressed genes in Mo17 (Fig
361 6D and S11D Fig).

362 Because the *mop1* mutation results in reduced methylation in mCHH islands near genes [9,
363 36], we wanted to determine whether removal of methylation of the 16 and 31 DMRs in the
364 *mop1* mutant changed the expression of their flanking genes. We compared the methylation
365 levels of CHH, CG, and CHG in the 16 and 31 CHH TCM DMRs. Because CG and CHG
366 methylation at these 16 suppression-associated CHH DMRs were not available in the *mop1*
367 mutant, we were only able to examine methylation of the 31 enhanced-associated CHH DMRs in
368 the *mop1* mutant. As expected, in the *mop1* mutant, CHH methylation was greatly reduced in
369 these 31 DMRs, as was CG and CHG methylation (Fig 6E), which echoes previous research [9].
370 However, this reduction in CHH methylation did not have a significant effect on the expression

371 of the 31 genes that seemed to be promoted by CHH methylation (Fig 6F). These data suggest
372 that variations in CHH methylation are a consequence, rather than a cause of variation in gene
373 expression.

374 **Most newly induced CG and CHG DMRs lose methylation, and most newly induced CHH
375 DMRs gain methylation in F1 hybrids**

376 In addition to examining changes in methylation of the parental DMRs, we also investigated the
377 newly induced DMRs in F1 hybrids that were not differentially methylated in the parents. These
378 newly induced DMRs can either gain or lose methylation at an allele relative to both parents
379 (S12A and S12B Fig). A total of 715 CG, 1,149 CHG, and 3,876 CHH new DMRs were
380 identified (S13 Fig). These newly induced DMRs were equally distributed as hyper or hypo
381 DMRs relative to both the B73 and Mo17 genomes (S13C and S13D Fig), which is different
382 from the parental DMRs, which were enriched for CHH methylation in the Mo17 genome (Fig
383 2B). The newly induced DMRs at CG and CHG sequence contexts largely overlapped with TEs
384 (S13E and S13F Fig), confirming that TEs are the most frequent targets of DNA methylation.
385 Next, we compared the allele specific methylation of these newly induced DMRs. Because the
386 two parents were methylated at the similar levels to those at these newly induced DMRs, we
387 defined the high or low parent as the parental allele that was changed in the F1, so the low parent
388 would be the allele whose methylation was reduced in the F1. We found that the majority of
389 newly induced CG (89%, 558 out of 627) and CHG (75%, 918 out of 1,231) DMRs followed the
390 model in S12B Fig, in which one parental allele loses methylation in F1 hybrids (S12D Fig).
391 Interestingly, the majority of newly induced CHH (92%, 2,959 out of 3,230) DMRs followed the
392 model in S12A Fig, in which one parental allele gains methylation in F1 hybrids (S12C Fig),
393 suggesting a distinction between CHH and CG and CHG methylation. We also compared the
394 small RNAs at these newly induced CHH DMRs and did not observe any significant changes in
395 small RNAs between the two parents that had similar methylation levels, or between the hybrids
396 and parents (S14 Fig).

397 **Initiation of the changes in the epigenetic state of targets of *trans*-chromosomal CHH
398 methylation does not require *Mop1***

399 We next wanted to determine whether the methylation or demethylation triggered in F1 can be
400 maintained in subsequent generations. To test this, we backcrossed WTF1 (Mo17/B73;+/+) and
401 *mop1*F1 (Mo17/B73;*mop1/mop1*) with B73 and obtained backcrossed (BC1) plants for WGBS

402 (Fig 1A). We first analyzed the overall methylation differences between WTF1 and WTBC1. To
403 determine whether changes had been heritably transmitted, we set a cut off for a lack of a change
404 from WTF1 to WTBC1 as <10% change in methylation for CG and CHG and <5% for CHH
405 methylation. We found that approximately 25% of CG and 26% of CHG TCM DMRs met this
406 cut off, as did 11% CHH TCM DMRs. Interestingly, the CG (35%), CHG (44%) and CHH (38%)
407 TCdM DMRs all had higher percentages of DMRs that met the threshold of differences between
408 F1 and BC1 (S7 and S8 Table), suggesting that TCdM DMRs are more heritable.

409 To better understand the inheritance of newly acquired DNA methylation, we focused
410 specifically on the inheritance of TCM DMRs. Because all of the sequenced BC1 plants were
411 backcrossed individuals derived from the cross of F1 with B73, we separately analyzed B73 and
412 Mo17 TCM DMRs. For B73 TCM DMRs (Fig 7A and Fig 8A), in which the Mo17 allele has
413 acquired new methylation in F1, BC1 plants could be either homozygous or heterozygous for
414 B73. Among the homozygous BC1 plants, all should have the native level of B73 methylation
415 because it was the Mo17 allele whose methylation was changed in the F1 at these DMRs.
416 Similarly, BC1 plants that were heterozygous for B73 and the newly converted Mo17 allele
417 would be expected to remain hypermethylated because Mo17 was still in the presence of the B73
418 allele in these plants (Fig 7A and Fig 8A). For CG and CHG methylation, this is what we
419 observed. Methylation at these DMRs in all BC1 progeny, both homozygotes and heterozygotes
420 were at similar levels as the F1 heterozygotes (Fig 7C, 7D, S15C and S15D Fig). Whether or not
421 the F1 plant was *mop1* or not did not affect the heritability of the added methylation in these
422 cases.

423 Inheritance of CHH methylation was complicated by the fact that in each case, both alleles
424 in the F1 had elevated methylation relative to parents. Thus, it was possible that each allele or
425 both would return to their original level of methylation following the backcross. With respect to
426 CHH methylation, the BC1 B73 homozygotes showed levels of methylation similar to the B73
427 (HP) parent, rather than the F1 (Fig 8C and S16C Fig), suggesting that the enhanced methylation
428 in the F1 that resulted from the interaction between B73 and Mo17 had been reduced in the BC1.
429 In the heterozygous BC1s, the overall level of methylation was more similar to the MPV than to
430 the heterozygous F1s (Fig 8D and S16D Fig). This observation suggests that the elevated level of
431 methylation is a consequence of the hybrid genomes, and not just an interaction between alleles,
432 and that the elevated levels of methylation at Mo17 in the F1 was not heritable.

433 With respect to heritability, the Mo17 TCM DMRs (Fig 7B and Fig 8B) are more
434 informative. In these cases, the B73 allele has become hypermethylated due to an interaction
435 with the Mo17 allele in the F1. The BC1 plants could be either homozygous for B73, in which
436 case one epiallele would remain more methylated if the change at B73 in the F1 were heritable,
437 or heterozygous for Mo17 and B73, in which the B73 allele from the backcrossed parent would
438 be expected to be newly converted to a more methylated state due to interaction with the Mo17
439 allele in the BC1 generation. Thus, if the change in the B73 in the F1 is heritable, we would
440 expect to see methylation similar to the MPV of the newly converted B73 epiallele and the native
441 B73 epiallele in the homozygotes. In the heterozygotes, we would expect a similar average level
442 of methylation as was observed in the F1 (Fig 7B).

443 For CG and CHG methylation at the Mo17 TCM DMRs, the homozygotes were similar to
444 the MPV of B73 and Mo17, rather than B73 (Fig 7E, S15E, and S15F Fig), suggesting that
445 changes caused in the F1 plants at B73 were heritably transmitted to the next generation. In
446 contrast, the heterozygotes, which should resemble the F1s because they carried both B73 and
447 Mo17, were also at the MPV (Fig 7F, S15E, and S15F Fig). This suggests that the increase in
448 methylation in B73 due to the presence of Mo17 that we observed in the F1 did not occur in BC1,
449 again suggesting the effects we observed in F1 are not simply due to allelic interactions. For
450 CHH methylation at the Mo17 TCM DMRs, both the homozygous and heterozygous BC1 plants
451 had methylation at the MPV, rather than the elevated methylation observed in the F1 (Fig 8E, Fig
452 8F and S16D Fig). This indicated that CHH methylation that was added to the B73 allele was
453 lost in BC1, and the presence of the Mo17 allele did not trigger methylation in B73 in the BC1
454 generation.

455 To determine whether the initiation of TCM requires the presence of MOP1, we also looked
456 at BC1 derived from *mop1*F1 mutants (Mo17/B73; *mop1/mop1* × B73). Our expectation was that
457 if the transfer of heritable methylation requires MOP1, backcrossed progeny of *mop1*F1 would
458 not carry that methylation if they only carried the modified allele. The most informative class
459 was the B73 homozygous progeny of Mo17 TCM DMRs that had shown evidence of heritable
460 changes in methylation of the B73 allele (Fig 7E and Fig 8E). For CG and CHG TCM
461 methylation, we find that although the *mop1* mutant had a minor effect on methylation in the F1,
462 it had no effect on the heritability of CG and CHG methylation that had been added to the B73
463 allele in F1 Mo17 TCM DMRs (Fig 7E). In contrast, the substantial additional CHH methylation

464 that was added in the F1 generation was not transmitted to the next generation of either wild type
465 or *mop1* mutant hybrids. However, wild type progeny of *mop1*F1 mutant plants that had been
466 nearly devoid of CHH methylation were competent to reestablish methylation (Fig 8E, orange
467 box), suggesting that the epigenetic states at those alleles retained enough information for
468 methylation to be targeted back to them in the wild type BC1 progeny.

469 Together these data suggest that methylation or demethylation triggered by hybridization
470 can be maintained in the next generation, but that heritability varies depending on the sequence
471 context of the methylated cytosines, and whether new methylation or demethylation is being
472 transmitted. They also show that the elevated methylation we observed in F1 heterozygotes is
473 likely a result of hybridization, rather than simple interaction between alleles.

474

475 **Discussion**

476 In this study, we used hybrids as a model system to understand the initiation and maintenance of
477 DNA methylation in maize, with a special focus on CHH methylation, which is abundant in
478 plants, but whose functions are still poorly understood. Our analyses revealed that CHH
479 methylation had some unique features compared to CG and CHG methylation in maize. First,
480 only the level of CHH methylation was increased globally upon hybridization (Fig 1B). This
481 methylation is largely enriched near genes as mCHH islands, which means that most parental
482 CHH DMRs are located within 2 kb flanking regions of genes (Fig 2E). Second, both the high-
483 and low-parent alleles of CHH TCM DMRs gained methylation in F1 hybrids, while only the
484 low-parent allele gained methylation in CG and CHG TCM DMRs (Fig 3C and 3D).
485 Furthermore, although the *mop1* mutation reduced CHH methylation globally (Fig 1B), it had its
486 biggest effect on the CHH TCM DMRs, and the loss of CHH methylation in *mop1* resulted in
487 additional loss of CHG methylation in these regions (Fig 4). Next, genetic variation was
488 significantly higher in the demethylated CHH TCdM DMRs than in the methylated CHH TCM
489 DMRs, which was not observed for CG and CHG DMRs (Fig 5E). In addition, we also provided
490 evidence that CHH methylation in promoter regions was associated with either the suppressed or
491 enhanced expression of flanking genes (Fig 6). Finally, we detected an overall lower level of
492 CHH methylation in the backcross individuals relative to F1 plants (Fig 8). This suggests that the
493 high levels of CHH methylation at individual DMRs in F1 plants is unlikely to be a consequence

494 of *trans* interaction between these alleles alone, and is thus more likely to be a manifestation of
495 the global effects of hybridization.

496 **Initiation of the changes in the epigenetic state of targets of *trans*-chromosomal CHH
497 methylation does not depend on RdDM**

498 Hybridization brings together two divergent genomes into one nucleus, which can induce rapid
499 genomic and epigenomic changes, including gain or loss of DNA fragments, alteration of
500 expression of TEs and genes, changes in splicing sites, activation of endogenous retroviruses,
501 and epigenetic reprogramming [30, 42, 43]. It has been hypothesized that hybridization could
502 induce a “genomic shock” that leads to the mobilization of TEs [44]. However, evidence for this
503 is mixed and varies between species. Most reports suggest that upregulation of TEs is not a
504 general phenomenon but that some specific TEs may change their expression level upon
505 hybridization, such as the upregulation of *ATHILA* in the crosses of *Arabidopsis thaliana* and
506 *Arabidopsis arenosa* [45, 46]. In our study, we observed a genome-wide increase in CHH, but
507 not CG or CHG methylation following hybridization (Fig 1B). Based on this result, we
508 hypothesize that CHH methylation may buffer the global effects of hybridization on
509 transcriptional activation of TEs near genes in maize by transferring silencing information in the
510 form of small RNAs from one genome to the other, resulting in the dramatic increases in CHH
511 *de novo* methylation we observed in the F1 plants.

512 The lack of evidence for the production of new siRNAs from the target loci suggests that in
513 many cases, this methylation is often transient, as is evidenced by the reduced heritability of
514 CHH, CG and CHG methylation in BC1 plants (Fig 7 and Fig 8). Our analysis of gene-adjacent
515 TEs in wild type and mutant F1 plants reveals that the cause of the increases in CHH methylation
516 observed in F1 hybrids varies depending on location. As has been observed previously [9], the
517 sharp increase in CHH methylation at the proximal portion of TEs near genes that are referred to
518 as mCHH islands are dramatically reduced in the *mop1* mutant (Fig 1C and 1D). The significant
519 increase in CHH methylation in these regions observed in F1 wild type plants are largely
520 eliminated in the mutant as well, resulting in an overall level of CHH methylation in the F1 *mop1*
521 mutants that is lower than both parents. That is not true in the body of gene-adjacent TEs, where
522 CHH methylation actually increases in the F1 *mop1* mutant. At the distal edge of those TEs,
523 although the methylation added in the F1 plants is lost, the preexisting methylation in the parents
524 is not. In the region distal to the TEs, only a subset of the additional CHH added in the F1 plants

525 is dependent on *Mop1* (Fig 1D). This pattern is characteristic of the vast majority of the
526 chromosomes outside of the gene rich distal ends. Together, these data suggests that the global
527 increase in CHH methylation observed in F1 hybrids varies with respect for a requirement for
528 classical RdDM, with the large increases in CHH islands being the only region entirely
529 dependent on it.

530 **Small RNAs are critical players in transient *trans*-chromosomal CHH methylation**

531 Our results demonstrated that small RNAs play a critical role in triggering TCM and TCdM in
532 hybrids and maintaining such interaction in the subsequent generation. An overall reduction of
533 24-nt siRNAs following hybridization has been documented in a number of plant species
534 including maize [11, 18, 23]. In our analyses, we focused on 24-nt siRNAs specifically at TCM
535 DMRs, and observed no significant difference in the abundance of 24-nt siRNAs between
536 hybrids and the MPV of parents (Fig 5B), as has been seen in Arabidopsis [1]. A detailed look at
537 53 CHH TCM DMRs that had 24-nt siRNAs produced only in one parent showed that 34 (64%)
538 of them had only siRNAs derived from the initially methylated parental allele, despite the fact
539 that both alleles now had CHH methylation. Given that the precursor transcript of 24-nt siRNAs
540 is produced by Pol IV [4, 5], this observation suggests that Pol IV in these F1 plants is only
541 active at one of the two methylated alleles. It is unclear as to why Pol IV does not appear to
542 recognize the newly methylated allele.

543 Our data also showed that CHH TCdM DMRs had significantly higher genetic variation
544 than TCM DMRs, as has been notedly previously [1]. Given that RdDM relies on similarity
545 between small RNAs and their targets, this may explain the reduction of methylation at TCdM
546 DMRs. Small RNAs from the high-parent allele may be too divergent to target the low-parent
547 allele to trigger methylation. However, it is unclear why the methylation of the high-parent allele
548 is also reduced in the TCdM DMRs. One hypothesis that has been suggested is that small RNAs
549 from the high-parent allele can interact with the low-parent allele unproductively, which dilutes
550 siRNA concentration at the donor allele, which in turn weakens the methylation of the donor
551 allele [1]. However, we do not believe this is the general mechanism for TCdM, as in our study
552 41.3% of these TCdM DMRs do not have any polymorphisms (Fig 3). It has been proposed that
553 TCdM may be regulated by distal factors [47]. These distal factors have also been used to
554 explain newly induced DMRs. In this so called ‘TCM proximity model’, a gain of methylation at
555 TCM DMRs during hybridization spreads into flanking regions, resulting in the increased

556 methylation in F1 at those regions, in which parental alleles have the similar methylation state
557 [47]. However, we tested this model in our data set and did not find evidence supporting this
558 hypothesis.

559 ***de novo* CHH methylation is associated with both increased and decreased expression of**
560 **flanking genes**

561 It has been proposed that mCHH islands in maize are the boundaries between highly deep
562 heterochromatin and more active euchromatin to reinforce silencing of TEs located near genes
563 rather than to protect the euchromatic state of the genes [9, 32, 48]. Our study is an ideal model
564 to test this hypothesis because we can examine the effects of presence and absence of mCHH
565 islands on the expression of the same gene in *cis* and in *trans*. For example, as shown in Fig 6A,
566 a gene in the parent B73 does not have CHH methylation in the promoter region, but obtains
567 methylation after hybridization, which we hypothesize is triggered in *trans* by small RNAs
568 generated from the Mo17 allele. We demonstrated that out of the 47 CHH TCM DMRs in Mo17
569 (Mo17 mCHH islands), 16 (34%) were associated with suppressed gene expression, and 31 (66%)
570 were associated with enhanced gene expression (Fig 6B), indicating that a gain of CHH
571 methylation in their promoter regions may actually enhance their expression. Alternatively, it
572 may be that gene properties and chromatin states may dictate the relationship between CHH
573 islands and their flanking genes. The 31 genes whose expression appeared to be promoted by
574 CHH methylation were generally longer, expressed higher, and with more gene body
575 methylation than the 16 genes that seemed to be suppressed by CHH methylation (Fig 6D). This
576 data suggests that more active genes tend to harbor “positive mCHH islands”, and lowly
577 expressed genes more likely have “negative mCHH islands”, which were significantly enriched
578 for the repressive histone mark H3K27me3 and were depleted with the active mark H3K4me3
579 (Fig 6C). We hypothesize that it is the repressive histone mark in the promoter regions
580 suppresses the expression of flanking genes rather than the mCHH islands. Given this
581 assumption, removal of these islands would not have significant effects on flanking gene
582 expression. However, removal of DNA methylation may result in increase of H3K27me3 given
583 that the activity of Polycomb-repressive complex 2, which is involved in catalyzing H3K27me3,
584 is generally anti-correlated with DNA methylation, and likely functions after DNA
585 demethylation [49, 50]. This probably explains why we observed these 16 genes with “negative
586 mCHH islands” significantly reduced their expression in *mop1* mutants (Fig 6F). In contrast, the

587 expression of the 31 genes with “positive mCHH islands” were upregulated in the *mop1* mutant
588 although not significantly (Fig 6F), which supports the hypothesis that mCHH islands do not
589 prevent the spread of heterochromatin silencing of genes [9]. Rather, these “positive mCHH
590 islands” act as a border to prevent the spread of euchromatin into flanking sequences because
591 loss of the mCHH islands in the *mop1* mutant is accompanied by additional loss of CG and CHG
592 methylation (Fig 6E) [9].

593

594 **Materials and methods**

595 **Genetic material construction and tissue collection**

596 The *mop1* heterozygous plants in the Mo17 background were crossed with the *mop1*
597 heterozygous plants in the B73 background (Mo17; *mop1*-1/+ × B73; *mop1*-1/+) to generate F1
598 hybrid *mop1* mutants (Mo17/B73; *mop1/mop1*) and their hybrid wildtype siblings
599 (Mo17/B73; +/+) (Fig 1A). The *mop1* mutation was introgressed into the B73 and Mo17
600 backgrounds for at least seven generations. The F1 plants and the two parental lines (B73 and
601 Mo17) were grown in the Ecology Research Center at Miami University (Oxford, Ohio), and 5-7
602 cm immature ears were collected for the subsequent whole genome bisulfite sequencing (WGBS),
603 RNA sequencing, and small RNA sequencing with two biological replicates.

604 **Analysis of WGBS data**

605 DNA was isolated from the 5-7 cm immature ears of the two parents (B73 and Mo17), WTF1
606 (Mo17/B73; +/+), and *mop1*F1 (Mo17/B73; *mop1/mop1*) using the modified CTAB method. The
607 quality of DNA was examined by Nanodrop. Library construction and subsequent WGBS were
608 performed by Novogene. The raw reads were quality controlled by FastQC. The remaining clean
609 reads from B73, WTF1, and *mop1*F1 were mapped to the B73 reference genome (v4) using
610 Bismark under following parameters (-n 2, -I 50, -N 1) [51, 52]. The clean reads from the Mo17
611 plants were aligned against the SNP replaced Mo17 genome sequences, which were generated by
612 taking the B73 reference sequences and replacing the nucleotides where a SNP identified by the
613 maize Hapmap3 project was present between the two inbreds [53]. Given that treatment of DNA
614 with bisulfite converts cytosine residues to uracil, but leaves 5-methylcytosine residues
615 unaffected, SNPs of C to T and G to A (B73 to Mo17) were excluded from the analysis when
616 considering the B73 allele, and SNPs of T to C and A to G (B73 to Mo17) were excluded from
617 the analysis when considering the Mo17 allele [54]. We kept reads with perfect and unique

618 matches for the two parents, and allowed one mismatch for the hybrids. PCR duplicates were
619 removed using Picardtools. Additional packages including Bismark methylation extractor,
620 bismark2bedGraph and coverage2cytosine under Bismark were used to extract the methylated
621 cytosines, and to count methylated and unmethylated reads [55, 56].

622 **Identification of DMRs between parents**

623 To identify DMRs between parents, we first filtered out the cytosines with less than three
624 mapped reads [57]. Next, the methylation level of each cytosine was determined by the number
625 of methylated reads out of the total number of reads covering the cytosine [58, 59]. The software
626 ‘metilene’ was used for DMR calling between the two parents B73 and Mo17 [60]. Specially, a
627 DMR was determined as containing at least eight cytosine sites with the distance of two adjacent
628 cytosine sites $<300\text{ bp}$, and with the average methylation differences in CG and CHG >0.4 and
629 in CHH >0.2 between the two parents [57]. These DMRs were furthered filtered by the estimated
630 false discovery rates (FDRs) using the Benjamini-Hochberg method [1]. We only kept FDRs
631 <0.01 for CG and CHG DMRs, and <0.05 for CHH DMRs [57].

632 **Determination of TCM and TCdM in WTF1**

633 To determine the methylation patterns of the parental DMRs in WTF1, we first calculated the
634 methylation levels at the parental DMRs in WTF1. Only DMRs with available data in all the
635 samples were included in the analysis. Fisher’s exact test was used to compare the methylation
636 levels of WTF1 to the MPV (middle parent value, the average methylation of the two parents),
637 and the estimated FDRs were generated to adjust *P* values using the Benjamini-Hochberg
638 method [1]. DMRs with an FDR <0.05 between WTF1 and the MPV were retained as
639 significantly changed DMRs during hybridization. These DMRs were classified into TCM,
640 which has a significantly higher level of methylation in WTF1 than the MPV, and TCdM, which
641 has a significantly lower level of methylation in WTF1.

642 To further determine whether the TCM and TCdM were affected by *mop1* mutation, we first
643 calculated the methylation levels of *mop1*F1 at TCM and TCdM DMRs. For CG and CHG TCM
644 and TCdM, DMRs with the changes in methylation levels between *mop1*F1 and WTF1 <-0.4
645 or >0.4 were considered as significantly affected by the mutation. For CHH TCM and TCdM,
646 DMRs with the changes in methylation levels <-0.2 or >0.2 were considered as significantly
647 changed in the mutants.

648 **Identification of the newly induced DMRs in WTF1**

649 To identify the newly induced DMRs in WTF1 that are not differentially methylated in the
650 parents, we used mpileup in the samtools package and SNPs between B73 and Mo17 to obtain
651 the allele-specific reads from WTF1 [61]. Next, these allele-specific reads were used to calculate
652 methylation levels as described above, and ‘metilene’ was used for DMR detection between the
653 two alleles in WTF1 [60]. The same cutoffs are used for defining new DMRs as for the detection
654 of parental DMRs. The methylation levels of these newly induced DMRs were further compared
655 with the methylation levels of the two parents using Fisher’s exact test (FDR <0.05). The DMRs
656 that have similar methylation levels between the two parents but exhibit significantly different
657 methylation levels between the two alleles in WTF1 were defined as new DMRs. The illustration
658 is shown in A and S12B Fig.

659 **Analysis of the inheritance of TCM and TCdM in BC1**

660 We backcrossed WTF1 (Mo17/B73;+/+) and *mop1*F1 (Mo17/B73;*mop1/mop1*) with B73
661 (Mo17/B73;+/+ × B73 and Mo17/B73;*mop1/mop1* × B73) to generate the BC1 generation. We
662 collected 5-7 cm immature ears from eight WTBC1 plants and eight *mop1*-derived-BC1 plants
663 for WGBS (Fig 1A). The methylation analysis for BC1 is the same as that for parents and WTF1.
664 Next, we compared the methylation levels at the TCM and TCdM DMRs among WTBC1, *mop1*-
665 derived-BC1, WTF1, *mop1*F1, and parents. The “intersect” function in BEDTools was used to
666 access all the cytosines in BC1 that are at the TCM and TCdM DMRs, and these cytosines were
667 used to calculate the average methylation levels across all the BC1 individuals in those regions.
668 As shown in Fig 8A,B, because we only sequenced the BC1 individuals derived from the
669 backcrosses of F1 and B73, we separated B73/B73 homozygous and B73/Mo17 heterozygous
670 genotypes at each TCM in BC1 using samtools mpileup and the SNPs between B73 and Mo17
671 [53, 61], same as what we did for the determination of allele specific reads in F1.

672 **Distribution analysis of DMRs in different genomic locations**

673 To classify the DMRs in different genomic locations, we compared the locations of the DMRs
674 with gene and transposable element annotations, which were downloaded from MaizeGDB,
675 <https://www.maizegdb.org/>, using intersect function in BEDTools [62]. If one DMR is dropped
676 to two different types of annotation, we followed the order gene bodies, 2 kb upstream of genes,
677 2kb downstream of genes, TEs, and unclassified regions. DMRs in the 2 kb up and downstream

678 regions of genes were further separated into those with and without TEs depending on whether
679 there is a TE insertion in the 2 kb flanking regions.

680 **Analysis of small RNA-seq data**

681 The same genetic materials for B73 and Mo17, WTF1, and *mop1*F1 were used for small RNA
682 sequencing with two biological replicates. The raw reads were quality controlled by FastQC. The
683 clean reads were aligned against the Rfam database (v14.6) to remove rRNAs, tRNAs, snRNAs,
684 and snoRNAs [56]. The remaining reads with the length of 18-26 nt were retained for further
685 mapping to the genomes. The reads from B73, WTF1, and *mop1*F1 were mapped to the B73
686 reference genome (v4), and the reads from Mo17 were mapped to the SNP replaced Mo17
687 genome sequences using bowtie [52, 63], as was done for our methylation analysis. For the
688 parents, only perfectly and uniquely mapped reads were kept, and one mismatch was allowed for
689 the F1 hybrids. The small RNA values were adjusted to total abundance of all mature
690 microRNAs following the previous research to remove the artificial increase of 22-nt siRNAs in
691 *mop1* mutants caused by normalization [35]. The intersect module in BEDTools was used to
692 compare the mapping results (sam files) to the positions of DMRs to obtain the 24-nt small RNA
693 reads that are in the DMRs [62]. These 24-nt small RNAs were used to calculate the expression
694 of small RNAs of the DMRs. To access allele specific small RNA expression, samtools mpileup
695 and SNPs at small RNAs between B73 and Mo17 were used [61].

696 **Analysis of mRNA-seq data**

697 The mRNA from the same genetic materials were sequenced with two biological replicates. The
698 raw reads were quality controlled by FastQC, and the low-quality reads and the adapter
699 sequences were removed by Trimmomatic [64]. We mapped the cleaned reads of B73, WTF1,
700 and *mop1*F1 to the B73 reference genome (v4) [52], and the reads from Mo17 to the SNP
701 replaced Mo17 genome that was generated by replacing the B73 genome with the SNPs between
702 Mo17 and B73 using Hisat2 with one mismatch [65]. Next, HTSeq-count was used to calculate
703 the total number of reads of each gene [66]. These values were loaded to DESeq2 to identify
704 genes that were differentially expressed between WTF1 and parents, and between WTF1 and
705 *mop1*F1 [67]. To determine allele specific expression of each gene in F1, the mpileup function in
706 samtools and SNPs between B73 and Mo17 were used to access allele specific reads [61], which
707 were further used in DESeq2 to identify differential expression of the two alleles [67].

708 **Accession Numbers**

709 The raw and processed data of whole genome bisulfite, mRNA and small RNA sequencing
710 presented in this study have been deposited in NCBI Gene Expression Omnibus under the
711 accession number GSE222155.

712

713 **Supporting information**

714 **S1 Fig. Whole genome levels of DNA methylation among parents, hybrids and mutants.**

715 The average methylation of the overall cytosine (total C), CG, CHG, and CHH on the whole
716 genome in parents, WTF1, and *mop1*F1.

717 **S2 Fig. CHH methylation is globally increased in hybrids.** Nine of the 10 maize chromosomes
718 are shown here. Methylation levels were measured in 1 Mb windows with 500 kb shift. Here
719 WTF1 indicates the sibling of *mop1*F1. The shaded boxes represent pericentromeric region of
720 each chromosome.

721 **S3 Fig. The length distribution of the DMRs identified between parents. (A) CG DMRs. (B)**
722 CHG DMRs. (C) CHH DMRs. DMRs, differentially methylated regions.

723 **S4 Fig. Genomic distribution of unchanged (NC) parental DMRs. (A) CG DMRs. (B) CHG**
724 DMRs. (C) CHH DMRs. (D) The types of TEs at the categories of 2 kb upstream of genes with
725 TEs and 2 kb downstream of genes with TEs A-C. 2 kb upstream of genes with TEs
726 (transposable elements) and 2 kb downstream of genes with TEs indicate both the DMRs and
727 TEs are located within the 2 kb of genes.

728 **S5 Fig. Methylation changes at the unchanged (NC) DMRs.** HP, high parent (parent with
729 higher methylation). HA, high-parent allele in F1. LP, low parent (parent with lower
730 methylation). LA, low-parent allele in F1. Average means the average between the two parents,
731 or between the two alleles in WTF1 and *mop1*F1. DMRs, differentially methylated regions.

732 **S6 Fig. Genomic distribution of *mop1*-affected DMRs. (A) CG DMRs. (B) CHG DMRs. (C)**
733 CHH DMRs. 2 kb upstream of genes with TEs (transposable elements) and 2kb downstream of
734 genes with TEs indicate both the DMRs and TEs are located within the 2 kb of genes. DMRs,
735 differentially methylated regions.

736 **S7 Fig. The production of 24-nt small interfering RNAs (siRNAs) from gene bodies and**
737 **flanking regions. (A)** Patterns of CHH methylation in and flanking genes. **(B)** The expression of

738 24-nt siRNAs on gene bodies and flanking regions. TSS, transcription start site. TTS,
739 transcription termination site. TP10M = siRNA reads/total unique mapped reads *10,000,000.

740 **S8 Fig. The high parent has significantly more 24-nt small interfering RNAs (siRNAs).** HP,
741 high parent (parent with higher methylation). LP, low parent (parent with lower methylation).

742 DMRs, differentially methylated regions. RPKM, 24-nt siRNA reads per kilobase (DMR length)
743 per million uniquely mapped reads. **, $P < 0.01$. Student's t test.

744 **S9 Fig. Comparisons of 24-nt small interfering RNAs (siRNAs) at unchanged (NC), TCM**
745 **and TCdM DMRs.** (A) NC DMRs. (B) TCM DMRs. (C) TCdM DMRs. HP, high parent (parent
746 with higher methylation). LP, low parent (parent with lower methylation). MPV, the middle
747 parent value. DMRs, differentially methylated regions. TCM, *trans*-chromosomal methylation.
748 TCdM, *trans*-chromosomal demethylation. RPKM, 24-nt siRNA reads per kilobase (DMR
749 length) per million uniquely mapped reads. **, $P < 0.01$, *, $P < 0.05$. Student's t test.

750 **S10 Fig. Expression of genes involved in the transcriptional gene silencing pathway.**

751 **S11 Fig. CHH methylation is associated with both suppressed and enhanced expression of**
752 **their flanking genes.** (A) Two possible scenarios of the effects of CHH methylation on gene
753 expression. Here only shows the examples of Mo17 CHH TCM DMRs. (B) Expression values of
754 the 16 and 31 genes that are associated with suppressed and enhanced expression by flanking
755 CHH DMRs respectively between the two parents (B73 and Mo17). *, $P < 0.05$. Student's paired
756 t test. (C) DNA methylation levels between the 16 and 31 CHH DMRs that are with suppressed
757 and enhanced expression of flanking genes. *, $P < 0.05$. Student's t test. (D) Gene length
758 including introns between the 16 and 31 genes. *, $P < 0.05$. Student's t test.

759 **S12 Fig. Most new CG and CHG DMRs lose methylation, and most new CHH DMRs gain**
760 **methylation in Wtf1.** (A) and (B) Two hypothetical models of new CG, CHG and CHH
761 DMRs induced in Wtf1. (C) Comparisons of CG, CHG and CHH methylation at DMRs
762 following the Model A. (D) Comparisons of CG, CHG and CHH methylation at DMRs
763 following the Model B. HP/HA indicates high parent or high-parent allele in F1, and LP/LA
764 represents low parent or low-parent allele in F1. Average means the average between the two
765 parents, or between the two alleles in Wtf1 and *mop*IF1. DMRs, differentially methylated
766 regions.

767 **S13 Fig. Newly induced CG and CHG DMRs are largely located in transposable elements.**
768 (A) and (B) Two hypothetical models of new CG, CHG and CHH DMRs induced in Wtf1. (C)

769 Number of B73 and Mo17 hyper DMRs in Model A. **(D)** Number of B73 and Mo17 hyper
770 DMRs in Model B. **(E)** The distribution of CG, CHG and CHH DMRs in Model A. **(F)** The
771 distribution of CG, CHG and CHH DMRs in Model B. 2 kb upstream of genes with TEs
772 (transposable elements) and 2kb downstream of genes with TEs indicate both the DMRs and TEs
773 are located within the 2 kb of genes.

774 **S14 Fig. No significant changes in small RNAs between the two parents, and between the**
775 **hybrids and parents. (A) and (B)** Two hypothetical models of new CHH DMRs induced in
776 WTF1. **(C)** 24-nt small interfering RNA (siRNAs) of new CHH DMRs in Model A. **(D)** 24-nt
777 siRNAs of new CHH DMRs in Model B. **(E)** Ratios of 24 nt siRNAs of high parent to low
778 parent, and of high-parent allele to low-parent allele at the new CHH DMRs in Model A. **(F)**
779 Ratios of 24-nt siRNAs of high parent to low parent, and of high-parent allele to low-parent
780 allele at the new CHH DMRs in Model B. HP, high parent (parent with higher methylation). LP,
781 low parent (parent with lower methylation). MPV, the middle parent value. **, $P < 0.01$,
782 Student's *t* test. DMRs, differentially methylated regions.

783 **S15 Fig. Inheritance of newly triggered methylation at CG and CHG TCM DMRs in the**
784 **backcrossed generation. (A)** Hypothetical model of maintenance of B73 CG and CHG TCM
785 DMRs. Asterisk denotes the newly converted (methylated) allele. **(B)** Hypothetical model of
786 maintenance of Mo17 CG and CHG TCM DMRs. **(C)** Methylation changes of B73 CG TCM
787 DMRs. **(D)** Methylation changes of B73 CHG TCM DMRs. **(E)** Methylation changes of Mo17
788 CG TCM DMRs. **(F)** Methylation changes of Mo17 CHG TCM DMRs. DMRs, differentially
789 methylated regions. TCM, *trans*-chromosomal methylation. Homo, homozygous. Hetero,
790 heterozygous. WTBC1, Mo17/B73;+/- × B73. *mop1*-derived BC1, Mo17/B73; *mop1/mop1* ×
791 B73.

792 **S16 Fig. Inheritance of newly triggered methylation at CHH TCM DMRs in the**
793 **backcrossed generation. (A)** Hypothetical model of maintenance of B73 CHH TCM DMRs.
794 Asterisk denotes the newly converted (methylated) allele. **(B)** Hypothetical model of
795 maintenance of Mo17 CHH TCM DMRs. **(C)** Methylation changes of B73 CHH TCM DMRs.
796 **(D)** Methylation changes of Mo17 CHH TCM DMRs. DMRs, differentially methylated regions.
797 TCM, *trans*-chromosomal methylation. Homo, homozygous. Hetero, heterozygous. WTBC1,
798 Mo17/B73;+/- × B73. *mop1*-derived BC1, Mo17/B73; *mop1/mop1* × B73.

799 **S1 Table. The summary of raw reads of different samples.**

800 **S2 Table. The overall patterns of cytosine methylation in parents, WTF1, and mutant F1.**

801 **S3 Table. DMRs identified between parents (B73 and Mo17).**

802 **S4 Table. Number of changed DMRs in the other two cytosine contexts at the mop1-
803 affected CG, CHG, and CHH DMRs.**

804 **S5 Table. Differentially expressed genes involved in the transcriptional gene silencing
805 pathway between parents.**

806 **S6 Table. Differentially expressed genes involved in the transcriptional gene silencing
807 pathway between MPV and F1.**

808 **S7 Table. Inheritance of CG and CHG TCM and TCdM in the backcrossed generation
809 (BC1).**

810 **S8 Table. Inheritance of CHH TCM and TCdM in the backcrossed generation (BC1).**

811

812 **Acknowledgements**

813 We are grateful to Nathan M Springer and Karen M. McGinnis for critical reading of the
814 manuscript. We thank Ohio Supercomputer Center for providing us with the computational
815 resources to perform the analysis.

816

817 **Author contributions**

818 **Conceptualization:** Beibei Liu, Damon Lisch, Meixia Zhao.

819 **Data curation:** Beibei Liu, Diya Yang, Dafang Wang.

820 **Funding acquisition:** Dafang Wang, Meixia Zhao.

821 **Investigation:** Beibei Liu, Diya Yang, Meixia Zhao.

822 **Methodology:** Beibei Liu, Diya Yang, Chun Liang, Meixia Zhao.

823 **Project administration:** Meixia Zhao.

824 **Resources:** Damon Lisch, Meixia Zhao.

825 **Software:** Beibei Liu, Meixia Zhao.

826 **Supervision:** Beibei Liu, Meixia Zhao.

827 **Validation:** Beibei Liu, Meixia Zhao.

828 **Visualization:** Beibei Liu, Meixia Zhao.

829 **Writing – original draft:** Beibei Liu, Meixia Zhao.

830 **Writing – review & editing:** Beibei Liu, Dafang Wang, Chun Liang, Jianping Wang, Damon
831 Lisch, Meixia Zhao.

832

833 **References**

1. Zhang Q, Wang D, Lang Z, He L, Yang L, Zeng L, et al. Methylation interactions in *Arabidopsis* hybrids require RNA-directed DNA methylation and are influenced by genetic variation. *Proc Natl Acad Sci U S A.* 2016;113(29):E4248-56. Epub 2016/07/07. doi: 10.1073/pnas.1607851113. PubMed PMID: 27382183; PubMed Central PMCID: PMCPMC4961169.
2. Lewsey MG, Hardcastle TJ, Melnyk CW, Molnar A, Valli A, Urich MA, et al. Mobile small RNAs regulate genome-wide DNA methylation. *Proc Natl Acad Sci U S A.* 2016;113(6):E801-10. Epub 2016/01/21. doi: 10.1073/pnas.1515072113. PubMed PMID: 26787884; PubMed Central PMCID: PMCPMC4760824.
3. Erdmann RM, Picard CL. RNA-directed DNA Methylation. *PLoS Genet.* 2020;16(10):e1009034. Epub 2020/10/09. doi: 10.1371/journal.pgen.1009034. PubMed PMID: 33031395; PubMed Central PMCID: PMCPMC7544125.
4. Matzke MA, Kanno T, Matzke AJ. RNA-Directed DNA Methylation: The Evolution of a Complex Epigenetic Pathway in Flowering Plants. *Annu Rev Plant Biol.* 2015;66:243-67. Epub 2014/12/11. doi: 10.1146/annurev-arplant-043014-114633. PubMed PMID: 25494460.
5. Matzke MA, Mosher RA. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. *Nat Rev Genet.* 2014;15(6):394-408. Epub 2014/05/09. doi: 10.1038/nrg3683. PubMed PMID: 24805120.
6. Law JA, Jacobsen SE. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. *Nat Rev Genet.* 2010;11(3):204-20. Epub 2010/02/10. doi: 10.1038/nrg2719. PubMed PMID: 20142834; PubMed Central PMCID: PMCPMC3034103.
7. Li Q, Song J, West PT, Zynda G, Eichten SR, Vaughn MW, et al. Examining the Causes and Consequences of Context-Specific Differential DNA Methylation in Maize. *Plant Physiol.* 2015;168(4):1262-74. Epub 2015/04/15. doi: 10.1104/pp.15.00052. PubMed PMID: 25869653; PubMed Central PMCID: PMCPMC4528731.
8. Gent JI, Madzima TF, Bader R, Kent MR, Zhang X, Stam M, et al. Accessible DNA and relative depletion of H3K9me2 at maize loci undergoing RNA-directed DNA methylation. *Plant Cell.* 2014;26(12):4903-17. Epub 2014/12/04. doi: 10.1105/tpc.114.130427. PubMed PMID: 25465407; PubMed Central PMCID: PMCPMC4311197.
9. Li Q, Gent JI, Zynda G, Song J, Makarevitch I, Hirsch CD, et al. RNA-directed DNA methylation enforces boundaries between heterochromatin and euchromatin in the maize genome. *Proc Natl Acad Sci U S A.* 2015;112(47):14728-33. Epub 20151109. doi: 10.1073/pnas.1514680112. PubMed PMID: 26553984; PubMed Central PMCID: PMCPMC4664327.
10. Stroud H, Do T, Du J, Zhong X, Feng S, Johnson L, et al. Non-CG methylation patterns shape the epigenetic landscape in *Arabidopsis*. *Nat Struct Mol Biol.* 2014;21(1):64-72. Epub 2013/12/18. doi: 10.1038/nsmb.2735. PubMed PMID: 24336224; PubMed Central PMCID: PMCPMC4103798.
11. Greaves IK, Eichten SR, Grossmann M, Wang A, Ying H, Peacock WJ, et al. Twenty-four-nucleotide siRNAs produce heritable trans-chromosomal methylation in F1 *Arabidopsis*

874 hybrids. *Proc Natl Acad Sci U S A.* 2016;113(44):E6895-E902. Epub 2016/11/03. doi:
875 10.1073/pnas.1613623113. PubMed PMID: 27791153; PubMed Central PMCID:
876 PMCPMC5098650.

877 12. Greaves IK, Groszmann M, Ying H, Taylor JM, Peacock WJ, Dennis ES. *Trans*
878 *chromosomal methylation in Arabidopsis hybrids.* *Proc Natl Acad Sci U S A.* 2012;109(9):3570-
879 5. Epub 2012/02/15. doi: 10.1073/pnas.1201043109. PubMed PMID: 22331882; PubMed
880 Central PMCID: PMCPMC3295253.

881 13. Greaves IK, Gonzalez-Bayon R, Wang L, Zhu A, Liu PC, Groszmann M, et al.
882 *Epigenetic Changes in Hybrids.* *Plant Physiol.* 2015;168(4):1197-205. Epub 2015/05/24. doi:
883 10.1104/pp.15.00231. PubMed PMID: 26002907; PubMed Central PMCID: PMCPMC4528738.

884 14. Shen H, He H, Li J, Chen W, Wang X, Guo L, et al. *Genome-wide analysis of DNA*
885 *methylation and gene expression changes in two Arabidopsis ecotypes and their reciprocal*
886 *hybrids.* *Plant Cell.* 2012;24(3):875-92. Epub 2012/03/23. doi: 10.1105/tpc.111.094870. PubMed
887 PMID: 22438023; PubMed Central PMCID: PMCPMC3336129.

888 15. Ma X, Xing F, Jia Q, Zhang Q, Hu T, Wu B, et al. *Parental variation in CHG methylation*
889 *is associated with allelic-specific expression in elite hybrid rice.* *Plant Physiol.*
890 2021;186(2):1025-41. Epub 2021/02/24. doi: 10.1093/plphys/kiab088. PubMed PMID:
891 33620495; PubMed Central PMCID: PMCPMC8195538.

892 16. Chodavarapu RK, Feng S, Ding B, Simon SA, Lopez D, Jia Y, et al. *Transcriptome and*
893 *methylome interactions in rice hybrids.* *Proc Natl Acad Sci U S A.* 2012;109(30):12040-5. Epub
894 2012/07/11. doi: 10.1073/pnas.1209297109. PubMed PMID: 22778444; PubMed Central
895 PMCID: PMCPMC3409791.

896 17. He G, Zhu X, Elling AA, Chen L, Wang X, Guo L, et al. *Global epigenetic and*
897 *transcriptional trends among two rice subspecies and their reciprocal hybrids.* *Plant Cell.*
898 2010;22(1):17-33. Epub 2010/01/21. doi: 10.1105/tpc.109.072041. PubMed PMID: 20086188;
899 PubMed Central PMCID: PMCPMC2828707.

900 18. Barber WT, Zhang W, Win H, Varala KK, Dorweiler JE, Hudson ME, et al. *Repeat*
901 *associated small RNAs vary among parents and following hybridization in maize.* *Proc Natl*
902 *Acad Sci U S A.* 2012;109(26):10444-9. Epub 2012/06/13. doi: 10.1073/pnas.1202073109.
903 PubMed PMID: 22689990; PubMed Central PMCID: PMCPMC3387101.

904 19. He G, Chen B, Wang X, Li X, Li J, He H, et al. *Conservation and divergence of*
905 *transcriptomic and epigenomic variation in maize hybrids.* *Genome Biol.* 2013;14(6):R57. Epub
906 2013/06/14. doi: 10.1186/gb-2013-14-6-r57. PubMed PMID: 23758703; PubMed Central
907 PMCID: PMCPMC3707063.

908 20. Li Q, Eichten SR, Hermanson PJ, Springer NM. *Inheritance patterns and stability of*
909 *DNA methylation variation in maize near-isogenic lines.* *Genetics.* 2014;196(3):667-76. Epub
910 2013/12/24. doi: 10.1534/genetics.113.158980. PubMed PMID: 24361940; PubMed Central
911 PMCID: PMCPMC3948799.

912 21. Junaid A, Kumar H, Rao AR, Patil AN, Singh NK, Gaikwad K. *Unravelling the*
913 *epigenomic interactions between parental inbreds resulting in an altered hybrid methylome in*
914 *pigeonpea.* *DNA Res.* 2018;25(4):361-73. Epub 2018/03/23. doi: 10.1093/dnares/dsy008.
915 PubMed PMID: 29566130; PubMed Central PMCID: PMCPMC6105106.

916 22. Schmitz RJ, He Y, Valdes-Lopez O, Khan SM, Joshi T, Urich MA, et al. *Epigenome-*
917 *wide inheritance of cytosine methylation variants in a recombinant inbred population.* *Genome*
918 *Res.* 2013;23(10):1663-74. Epub 2013/06/07. doi: 10.1101/gr.152538.112. PubMed PMID:
919 23739894; PubMed Central PMCID: PMCPMC3787263.

920 23. Groszmann M, Greaves IK, Albertyn ZI, Scofield GN, Peacock WJ, Dennis ES. Changes
921 in 24-nt siRNA levels in *Arabidopsis* hybrids suggest an epigenetic contribution to hybrid vigor.
922 *Proc Natl Acad Sci U S A.* 2011;108(6):2617-22. Epub 2011/01/27. doi:
923 10.1073/pnas.1019217108. PubMed PMID: 21266545; PubMed Central PMCID:
924 PMCPMC3038704.

925 24. Shivaprasad PV, Dunn RM, Santos BA, Bassett A, Baulcombe DC. Extraordinary
926 transgressive phenotypes of hybrid tomato are influenced by epigenetics and small silencing
927 RNAs. *EMBO J.* 2012;31(2):257-66. Epub 2011/12/20. doi: 10.1038/embj.2011.458. PubMed
928 PMID: 22179699; PubMed Central PMCID: PMCPMC3261569.

929 25. Kenan-Eichler M, Leshkowitz D, Tal L, Noor E, Melamed-Bessudo C, Feldman M, et al.
930 Wheat hybridization and polyploidization results in deregulation of small RNAs. *Genetics.*
931 2011;188(2):263-72. Epub 2011/04/07. doi: 10.1534/genetics.111.128348. PubMed PMID:
932 21467573; PubMed Central PMCID: PMCPMC3122319.

933 26. Arteaga-Vazquez MA, Chandler VL. Paramutation in maize: RNA mediated trans-
934 generational gene silencing. *Curr Opin Genet Dev.* 2010;20(2):156-63. Epub 2010/02/16. doi:
935 10.1016/j.gde.2010.01.008. PubMed PMID: 20153628; PubMed Central PMCID:
936 PMCPMC2859986.

937 27. Hollick JB. Paramutation and related phenomena in diverse species. *Nat Rev Genet.*
938 2017;18(1):5-23. Epub 2016/11/01. doi: 10.1038/nrg.2016.115. PubMed PMID: 27748375.

939 28. Schmitz RJ, Schultz MD, Lewsey MG, O'Malley RC, Urich MA, Libiger O, et al.
940 Transgenerational epigenetic instability is a source of novel methylation variants. *Science.*
941 2011;334(6054):369-73. Epub 2011/09/17. doi: 10.1126/science.1212959. PubMed PMID:
942 21921155; PubMed Central PMCID: PMCPMC3210014.

943 29. Greaves IK, Groszmann M, Wang A, Peacock WJ, Dennis ES. Inheritance of Trans
944 Chromosomal Methylation patterns from *Arabidopsis* F1 hybrids. *Proc Natl Acad Sci U S A.*
945 2014;111(5):2017-22. Epub 2014/01/23. doi: 10.1073/pnas.1323656111. PubMed PMID:
946 24449910; PubMed Central PMCID: PMCPMC3918825.

947 30. Regulski M, Lu Z, Kendall J, Donoghue MT, Reinders J, Llaca V, et al. The maize
948 methylome influences mRNA splice sites and reveals widespread paramutation-like switches
949 guided by small RNA. *Genome Res.* 2013;23(10):1651-62. Epub 2013/06/07. doi:
950 10.1101/gr.153510.112. PubMed PMID: 23739895; PubMed Central PMCID:
951 PMCPMC3787262.

952 31. Cao S, Wang L, Han T, Ye W, Liu Y, Sun Y, et al. Small RNAs mediate
953 transgenerational inheritance of genome-wide trans-acting epialleles in maize. *Genome Biol.*
954 2022;23(1):53. Epub 2022/02/11. doi: 10.1186/s13059-022-02614-0. PubMed PMID: 35139883;
955 PubMed Central PMCID: PMCPMC8827192.

956 32. Gent JI, Ellis NA, Guo L, Harkess AE, Yao Y, Zhang X, et al. CHH islands: de novo
957 DNA methylation in near-gene chromatin regulation in maize. *Genome Res.* 2013;23(4):628-37.
958 Epub 2012/12/28. doi: 10.1101/gr.146985.112. PubMed PMID: 23269663; PubMed Central
959 PMCID: PMCPMC3613580.

960 33. Alleman M, Sidorenko L, McGinnis K, Seshadri V, Dorweiler JE, White J, et al. An
961 RNA-dependent RNA polymerase is required for paramutation in maize. *Nature.*
962 2006;442(7100):295-8. Epub 2006/07/21. doi: 10.1038/nature04884. PubMed PMID: 16855589.

963 34. Woodhouse MR, Freeling M, Lisch D. The *mop1* (mediator of paramutation1) mutant
964 progressively reactivates one of the two genes encoded by the *MuDR* transposon in maize.

965 Genetics. 2006;172(1):579-92. Epub 2005/10/13. doi: 10.1534/genetics.105.051383. PubMed
966 PMID: 16219782; PubMed Central PMCID: PMC1456185.

967 35. Nobuta K, Lu C, Srivastava R, Pillay M, De Paoli E, Accerbi M, et al. Distinct size
968 distribution of endogenous siRNAs in maize: Evidence from deep sequencing in the *mop1-1*
969 mutant. Proc Natl Acad Sci U S A. 2008;105(39):14958-63. Epub 2008/09/26. doi:
970 10.1073/pnas.0808066105. PubMed PMID: 18815367; PubMed Central PMCID:
971 PMC1456185.

972 36. Zhao M, Ku JC, Liu B, Yang D, Yin L, Ferrell TJ, et al. The *mop1* mutation affects the
973 recombination landscape in maize. Proc Natl Acad Sci U S A. 2021;118(7). doi:
974 10.1073/pnas.2009475118. PubMed PMID: 33558228; PubMed Central PMCID:
975 PMC1456185.

976 37. Li Q, Eichten SR, Hermanson PJ, Zaunbrecher VM, Song J, Wendt J, et al. Genetic
977 perturbation of the maize methylome. Plant Cell. 2014;26(12):4602-16. Epub 2014/12/21. doi:
978 10.1105/tpc.114.133140. PubMed PMID: 25527708; PubMed Central PMCID:
979 PMC1456185.

980 38. He XJ, Chen T, Zhu JK. Regulation and function of DNA methylation in plants and
981 animals. Cell Res. 2011;21(3):442-65. Epub 2011/02/16. doi: 10.1038/cr.2011.23. PubMed
982 PMID: 21321601; PubMed Central PMCID: PMC1456185.

983 39. Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S. Genome-wide analysis of
984 *Arabidopsis thaliana* DNA methylation uncovers an interdependence between methylation and
985 transcription. Nat Genet. 2007;39(1):61-9. doi: Doi 10.1038/ng1929. PubMed PMID:
986 ISI:000243136500018.

987 40. Hollister JD, Gaut BS. Epigenetic silencing of transposable elements: A trade-off
988 between reduced transposition and deleterious effects on neighboring gene expression. Genome
989 Res. 2009;19(8):1419-28. doi: DOI 10.1101/gr.091678.109. PubMed PMID:
990 ISI:000268597600009.

991 41. Ricci WA, Lu Z, Ji L, Marand AP, Ethridge CL, Murphy NG, et al. Widespread long-
992 range cis-regulatory elements in the maize genome. Nat Plants. 2019;5(12):1237-49. Epub
993 2019/11/20. doi: 10.1038/s41477-019-0547-0. PubMed PMID: 31740773; PubMed Central
994 PMCID: PMC1456185.

995 42. Qin J, Mo R, Li H, Ni Z, Sun Q, Liu Z. The Transcriptional and Splicing Changes
996 Caused by Hybridization Can Be Globally Recovered by Genome Doubling during
997 Allopolyploidization. Mol Biol Evol. 2021;38(6):2513-9. Epub 2021/02/16. doi:
998 10.1093/molbev/msab045. PubMed PMID: 33585937; PubMed Central PMCID:
999 PMC1456185.

1000 43. Ishikawa R, Kinoshita T. Epigenetic programming: the challenge to species hybridization.
1001 Mol Plant. 2009;2(4):589-99. Epub 2009/10/15. doi: 10.1093/mp/ssp028. PubMed PMID:
1002 19825641.

1003 44. McClintock B. The significance of responses of the genome to challenge. Science.
1004 1984;226(4676):792-801. Epub 1984/11/16. doi: 10.1126/science.15739260. PubMed PMID:
1005 15739260.

1006 45. Josefsson C, Dilkes B, Comai L. Parent-dependent loss of gene silencing during
1007 interspecies hybridization. Curr Biol. 2006;16(13):1322-8. Epub 2006/07/11. doi:
1008 10.1016/j.cub.2006.05.045. PubMed PMID: 16824920.

1009 46. Gobel U, Arce AL, He F, Rico A, Schmitz G, de Meaux J. Robustness of Transposable
1010 Element Regulation but No Genomic Shock Observed in Interspecific *Arabidopsis* Hybrids.

1011 Genome Biol Evol. 2018;10(6):1403-15. Epub 2018/05/23. doi: 10.1093/gbe/evy095. PubMed
1012 PMID: 29788048; PubMed Central PMCID: PMCPMC6007786.

1013 47. Kakoulidou I, Johannes F. DNA methylation remodeling in F1 hybrids. Plant J. 2023.
1014 Epub 2023/02/09. doi: 10.1111/tpj.16137. PubMed PMID: 36752648.

1015 48. Martin GT, Seymour DK, Gaut BS. CHH Methylation Islands: A Nonconserved Feature
1016 of Grass Genomes That Is Positively Associated with Transposable Elements but Negatively
1017 Associated with Gene-Body Methylation. Genome Biol Evol. 2021;13(8). Epub 2021/06/20. doi:
1018 10.1093/gbe/evab144. PubMed PMID: 34146109; PubMed Central PMCID: PMCPMC8374106.

1019 49. Rodrigues JA, Zilberman D. Evolution and function of genomic imprinting in plants.
1020 Genes Dev. 2015;29(24):2517-31. Epub 2015/12/19. doi: 10.1101/gad.269902.115. PubMed
1021 PMID: 26680300; PubMed Central PMCID: PMCPMC4699382.

1022 50. Batista RA, Kohler C. Genomic imprinting in plants-revisiting existing models. Genes
1023 Dev. 2020;34(1-2):24-36. Epub 2020/01/04. doi: 10.1101/gad.332924.119. PubMed PMID:
1024 31896690; PubMed Central PMCID: PMCPMC6938664.

1025 51. Krueger F, Andrews SR. Bismark: a flexible aligner and methylation caller for Bisulfite-
1026 Seq applications. Bioinformatics. 2011;27(11):1571-2. Epub 2011/04/16. doi:
1027 10.1093/bioinformatics/btr167. PubMed PMID: 21493656; PubMed Central PMCID:
1028 PMCPMC3102221.

1029 52. Jiao Y, Peluso P, Shi J, Liang T, Stitzer MC, Wang B, et al. Improved maize reference
1030 genome with single-molecule technologies. Nature. 2017;546(7659):524-7. Epub 2017/06/13.
1031 doi: 10.1038/nature22971. PubMed PMID: 28605751; PubMed Central PMCID:
1032 PMCPMC7052699 T.L. and A.H. are employees of BioNano Genomics, Inc., and own company
1033 stock options. W.R.M. has participated in Illumina sponsored meetings over the past four years
1034 and received travel reimbursement and an honorarium for presenting at these events. Illumina
1035 had no role in decisions relating to the study/work to be published, data collection and analysis
1036 of data, or the decision to publish. W.R.M. has participated in Pacific Biosciences sponsored
1037 meetings over the past three years and received travel reimbursement for presenting at these
1038 events. W.R.M. is a founder and shared holder of Orion Genomics, which focuses on plant
1039 genomics and cancer genetics. W.R.M. is an SAB member for RainDance Technologies, Inc. All
1040 other authors declare no competing financial interests.

1041 53. Bukowski R, Guo X, Lu Y, Zou C, He B, Rong Z, et al. Construction of the third-
1042 generation Zea mays haplotype map. Gigascience. 2018;7(4):1-12. Epub 2018/01/05. doi:
1043 10.1093/gigascience/gix134. PubMed PMID: 29300887; PubMed Central PMCID:
1044 PMCPMC5890452.

1045 54. Li T, Yin L, Stoll CE, Lisch D, Zhao M. Conserved noncoding sequences and de novo
1046 Mutator insertion alleles are imprinted in maize. Plant Physiol. 2023;191(1):299-316. Epub
1047 2022/09/30. doi: 10.1093/plphys/kiac459. PubMed PMID: 36173333; PubMed Central PMCID:
1048 PMCPMC9806621.

1049 55. Liu B, Iwata-Otsubo A, Yang D, Baker RL, Liang C, Jackson SA, et al. Analysis of
1050 CACTA transposase genes unveils the mechanism of intron loss and distinct small RNA
1051 silencing pathways underlying divergent evolution of *Brassica* genomes. Plant J.
1052 2021;105(1):34-48. Epub 2020/10/25. doi: 10.1111/tpj.15037. PubMed PMID: 33098166.

1053 56. Yin L, Xu G, Yang J, Zhao M. The Heterogeneity in the Landscape of Gene Dominance
1054 in Maize is Accompanied by Unique Chromatin Environments. Mol Biol Evol. 2022;39(10).
1055 Epub 2022/09/22. doi: 10.1093/molbev/msac198. PubMed PMID: 36130304; PubMed Central
1056 PMCID: PMCPMC9547528.

1057 57. Xu G, Lyu J, Li Q, Liu H, Wang D, Zhang M, et al. Evolutionary and functional
1058 genomics of DNA methylation in maize domestication and improvement. *Nat Commun.*
1059 2020;11(1):5539. Epub 2020/11/04. doi: 10.1038/s41467-020-19333-4. PubMed PMID:
1060 33139747; PubMed Central PMCID: PMCPMC7606521.

1061 58. Schultz MD, Schmitz RJ, Ecker JR. 'Leveling' the playing field for analyses of single-
1062 base resolution DNA methylomes. *Trends Genet.* 2012;28(12):583-5. Epub 2012/11/08. doi:
1063 10.1016/j.tig.2012.10.012. PubMed PMID: 23131467; PubMed Central PMCID:
1064 PMCPMC3523709.

1065 59. Zhao M, Zhang B, Lisch D, Ma J. Patterns and Consequences of Subgenome
1066 Differentiation Provide Insights into the Nature of Paleopolyploidy in Plants. *Plant Cell.*
1067 2017;29(12):2974-94. Epub 2017/11/27. doi: 10.1105/tpc.17.00595. PubMed PMID: 29180596;
1068 PubMed Central PMCID: PMCPMC5757279.

1069 60. Juhling F, Kretzmer H, Bernhart SH, Otto C, Stadler PF, Hoffmann S. metilene: fast and
1070 sensitive calling of differentially methylated regions from bisulfite sequencing data. *Genome Res.*
1071 2016;26(2):256-62. Epub 2015/12/04. doi: 10.1101/gr.196394.115. PubMed PMID: 26631489;
1072 PubMed Central PMCID: PMCPMC4728377.

1073 61. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve years
1074 of SAMtools and BCFtools. *Gigascience.* 2021;10(2). Epub 2021/02/17. doi:
1075 10.1093/gigascience/giab008. PubMed PMID: 33590861; PubMed Central PMCID:
1076 PMCPMC7931819.

1077 62. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic
1078 features. *Bioinformatics.* 2010;26(6):841-2. Epub 2010/01/30. doi:
1079 10.1093/bioinformatics/btq033. PubMed PMID: 20110278; PubMed Central PMCID:
1080 PMCPMC2832824.

1081 63. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment
1082 of short DNA sequences to the human genome. *Genome Biol.* 2009;10(3):R25. Epub 2009/03/06.
1083 doi: 10.1186/gb-2009-10-3-r25. PubMed PMID: 19261174; PubMed Central PMCID:
1084 PMCPMC2690996.

1085 64. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence
1086 data. *Bioinformatics.* 2014;30(15):2114-20. Epub 2014/04/04. doi:
1087 10.1093/bioinformatics/btu170. PubMed PMID: 24695404; PubMed Central PMCID:
1088 PMCPMC4103590.

1089 65. Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and
1090 genotyping with HISAT2 and HISAT-genotype. *Nat Biotechnol.* 2019;37(8):907-15. Epub
1091 2019/08/04. doi: 10.1038/s41587-019-0201-4. PubMed PMID: 31375807; PubMed Central
1092 PMCID: PMCPMC7605509.

1093 66. Putri GH, Anders S, Pyl PT, Pimanda JE, Zanini F. Analysing high-throughput
1094 sequencing data in Python with HTSeq 2.0. *Bioinformatics.* 2022;38(10):2943-5. Epub
1095 2022/05/14. doi: 10.1093/bioinformatics/btac166. PubMed PMID: 35561197; PubMed Central
1096 PMCID: PMCPMC9113351.

1097 67. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for
1098 RNA-seq data with DESeq2. *Genome Biol.* 2014;15(12):550. Epub 2014/12/18. doi:
1099 10.1186/s13059-014-0550-8. PubMed PMID: 25516281; PubMed Central PMCID:
1100 PMCPMC4302049.

1102 **Figure legends**

1103 **Fig 1. CHH methylation level is globally increased in hybrids.** **(A)** Genetic strategy to
1104 construct wild type F1 (WTF1), *mop1* mutant F1 (*mop1*F1), and backcross1 (BC1). **(B)** The
1105 distribution of CG, CHG, and CHH methylation on chromosome 5. Methylation levels were
1106 measured in 1 Mb windows with 500 kb shift. The shaded boxes represent pericentromeric
1107 regions. **(C)** Patterns of methylation in and flanking genes. **(D)** Patterns of methylation in and
1108 flanking TEs.

1109 DNA methylation levels were calculated in 50 bp windows in the 3 kb upstream and downstream
1110 regions of the genes/transposable elements (TEs). Each gene/TE sequence was divided into 40
1111 equally sized bins to measure the gene/TE body methylation. Bin sizes differ from gene/TE to
1112 gene/TE because of the different lengths of genes/TEs. The methylation levels of TEs were
1113 orientated into proximal and distal ends depending on the flanking genes of TEs. Methylation for
1114 each sample was calculated as the proportion of methylated C over total C in each sequence
1115 context (CG, CHG, and CHH, where H = A, T, or C) averaged for each window. The average
1116 methylation levels were determined by combining two biological replicates for each genotype.
1117

1118 **Fig 2. Parental CHH DMRs are largely located within 2 kb flanking regions of genes.** **(A)**
1119 Definition of B73 hyper DMRs (higher methylation in B73) and Mo17 hyper DMRs (higher
1120 methylation in Mo17) between parents. Red, green, and blue dots represent CG, CHG, and CHH
1121 methylation, respectively. **(B)** B73 has more CG and CHG hyper DMRs, and Mo17 has more
1122 hyper CHH DMRs. **(C)** B73 has higher methylation levels at CG and CHG DMRs, and Mo17
1123 has higher methylation levels at CHH DMRs. **(D)** CG and CHG DMRs were more overlapped
1124 with each other than each one was with CHH DMRs. **(E)** The distribution of CG, CHG and CHH
1125 parental DMRs. 2 kb up and downstream of genes overlapping TEs indicate the DMRs overlap
1126 TEs within the 2 kb flanking regions of genes. **(F)** The types of TEs in the categories of 2 kb up
1127 and downstream of genes overlapping TEs in (E). DMRs, differentially methylated regions.
1128

1129 **Fig 3. The levels of CHH methylation of both high- and low-parent alleles are increased at**
1130 **TCM DMRs in the F1 hybrids.** **(A)** Identification of TCM, TCdM, and unchanged (NC) DMRs
1131 between WTF1 and parents. **(B)** Comparisons of CG, CHG and CHH methylation at TCM
1132 DMRs in parents and WTF1. **(C)** Comparisons of CG, CHG and CHH methylation at TCdM

1133 DMRs in parents and WTF1. HP, high parent (parent with higher methylation). HA, high-parent
1134 allele in F1. LP, low parent (parent with lower methylation). LA, low-parent allele in F1.
1135 Average means the average between the two parents, or between the two alleles in WTF1 and
1136 *mop1*F1. DMRs, differentially methylated regions. TCM, *trans*-chromosomal methylation.
1137 TCdM, *trans*-chromosomal demethylation.

1138

1139 **Fig 4. The *mop1* mutation primarily removes the methylation of CHH TCM DMRs. (A)**
1140 Number of CG, CHG and CHH TCM DMRs affected by the *mop1* mutation. **(B)** Comparison of
1141 methylation levels at the *mop1*-affected CG, CHG, and CHH TCM DMRs. **(C)** Number of CG,
1142 CHG and CHH TCdM DMRs affected by the *mop1* mutation. **(D)** Examination of the
1143 methylation changes in the other two cytosine contexts at the *mop1*-affected CG, CHG, and CHH
1144 TCM DMRs. The top panel shows the methylation changes in CHG and CHH sequence contexts
1145 for the 99 *mop1*-affected CG TCM DMRs. The middle panel shows the methylation changes in
1146 CG and CHH sequence contexts for the 144 *mop1*-affected CHG TCM DMRs. The bottom panel
1147 shows the methylation changes in CG and CHG sequence contexts for the 1031 *mop1*-affected
1148 CHH TCM DMRs. HP, high parent (parent with higher methylation). LP, low parent (parent
1149 with lower methylation). MPV, the middle parent value. DMRs, differentially methylated
1150 regions. TCM, *trans*-chromosomal methylation. TCdM, *trans*-chromosomal demethylation.

1151

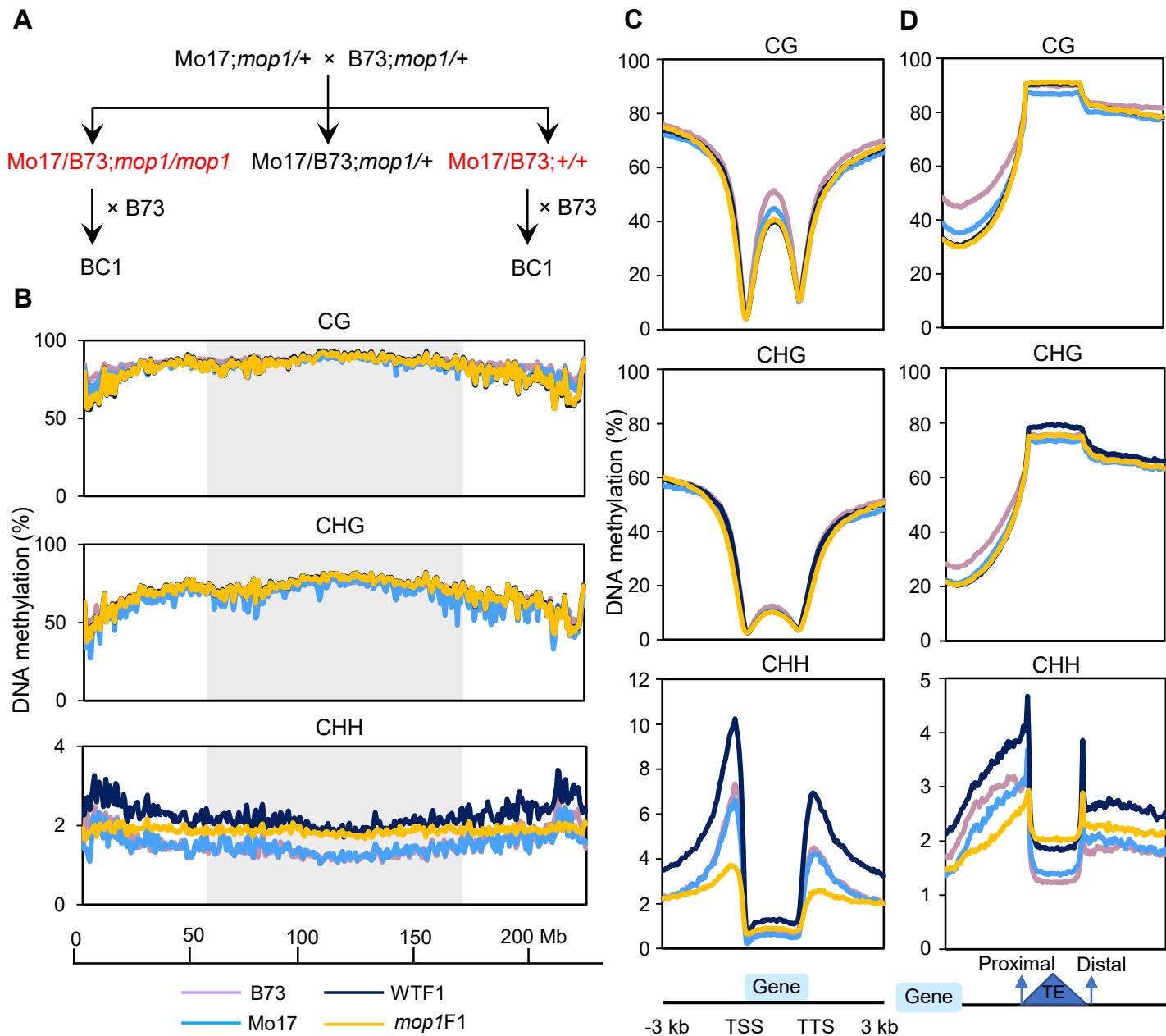
1152 **Fig 5. Small RNAs produced from one parent are sufficient to trigger new methylation of**
1153 **the other allele in hybrids. (A)** Two hypothetical models of small RNA biogenesis in F1 at
1154 CHH TCM. **(B)** Expression values of small RNAs in parents, WTF1 and *mop1*F1. TPM,
1155 transcripts per million uniquely mapped reads. The small RNA values were adjusted to total
1156 abundance of all mature microRNAs following the previous research [35]. **(C)** The abundance of
1157 24-nt siRNAs at the *mop1*-affected CHH TCM DMRs. HP, high parent (parent with higher
1158 methylation). LP, low parent (parent with lower methylation). MPV, the middle parent value.
1159 RPKM, 24-nt siRNA reads per kilobase (DMR length) per million uniquely mapped reads. **(D)**
1160 Ratios of 24-nt siRNAs of the high parent to the low parent, and of the high-parent allele to the
1161 low-parent allele at the *mop1*-affected CHH TCM DMRs. **(E)** Number of single nucleotides
1162 polymorphisms between TCM and TCdM. **, $P < 0.01$, *, $P < 0.05$, Student's *t* test. DMRs,

1163 differentially methylated regions. TCM, *trans*-chromosomal methylation. TCdM, *trans*-
1164 chromosomal demethylation.

1165

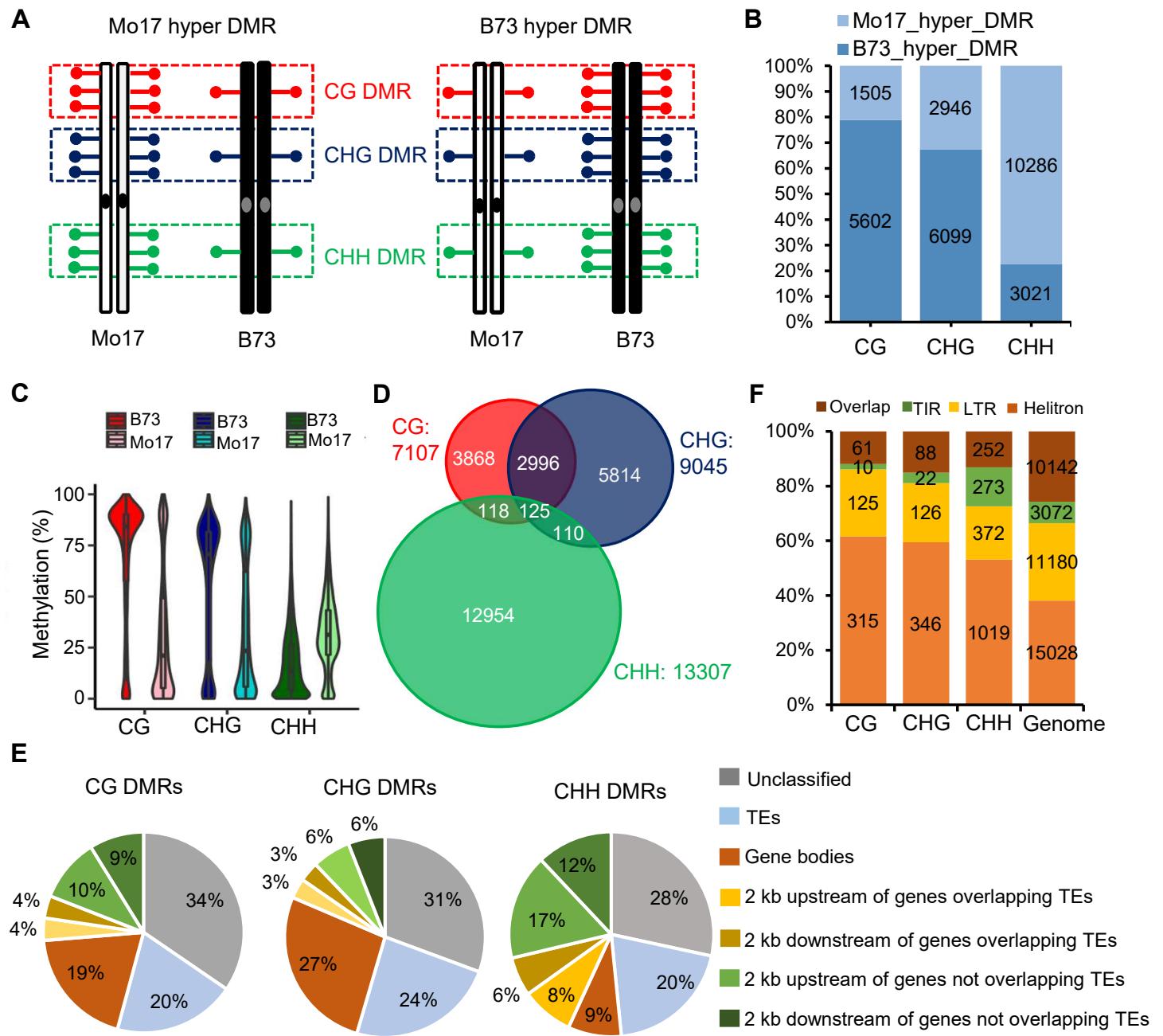
1166 **Fig 6. CHH methylation is associated with both suppressed and enhanced expression of**
1167 **their flanking genes.** (A) Two possible scenarios of the effects of CHH methylation on gene
1168 expression. Only examples of Mo17 CHH TCM DMRs are shown. (B) Number of genes
1169 identified based on the models in (A). The ratios of expression values of B73 to Mo17 between
1170 the parents and WTF1 were used to distinguish the scenarios. (C) Histone modification of 16
1171 CHH TCM DMRs that are associated with the suppressed expression of flanking genes and 31
1172 CHH TCM DMRs that are associated with the enhanced expression of flanking genes. **, $P <$
1173 0.01, Student's t test. (D) Gene properties of the 16 suppressed and 31 enhanced genes. **, $P <$
1174 0.01, *, $P < 0.05$, Student's t test. (E) Methylation changes in *mop1* mutants at the 31 CHH TCM
1175 DMRs that are associated with the enhanced expression of flanking genes. **, $P < 0.01$,
1176 Student's paired t test. (F) Gene expression changes of the 16 suppressed and 31 enhanced genes
1177 in *mop1* mutants. *, $P < 0.01$, Student's paired t test. DMRs, differentially methylated regions.
1178 TCM, *trans*-chromosomal methylation.

1179


1180 **Fig 7. Newly triggered methylation at CG and CHG TCM DMRs in F1 plants is maintained**
1181 **in the next generation.** (A) Hypothetical model of maintenance of B73 CG and CHG TCM
1182 DMRs. Asterisks denote the newly converted (methylated) allele. (B) Hypothetical model of
1183 maintenance of Mo17 CG and CHG TCM DMRs. (C) Methylation changes of homozygous B73
1184 CG and CHG TCM DMRs. (D) Methylation changes of heterozygous B73 CG and CHG TCM
1185 DMRs. (E) Methylation changes of homozygous Mo17 CG and CHG TCM DMRs. (F)
1186 Methylation changes of heterozygous Mo17 CG and CHG TCM DMRs. DMRs, differentially
1187 methylated regions. TCM, *trans*-chromosomal methylation. Homo, homozygous. Hetero,
1188 heterozygous. WTBC1, Mo17/B73;+/+ \times B73. *mop1*-derived BC1, Mo17/B73;*mop1/mop1* \times
1189 B73.

1190

1191 **Fig 8. Initiation of the changes in the epigenetic state of *trans*-chromosomal CHH**
1192 **methylation in maize does not require Mop1.** (A) Hypothetical model of maintenance of B73
1193 CHH TCM DMRs. Asterisks denote the newly converted (methylated) allele. (B) Hypothetical


1194 model of maintenance of Mo17 CHH TCM DMRs. **(C)** Methylation changes of homozygous
1195 B73 CHH TCM DMRs. **(D)** Methylation changes of heterozygous B73 CHH TCM DMRs. **(E)**
1196 Methylation changes of homozygous Mo17 CHH TCM DMRs. **(F)** Methylation changes of
1197 heterozygous Mo17 CHH TCM DMRs. **(G)** Distribution and methylation levels of two examples
1198 of Mo17 CHH TCM DMRs. DMRs, differentially methylated regions. TCM, *trans*-chromosomal
1199 methylation. Homo, homozygous. Hetero, heterozygous. WTBC1, Mo17/B73;+/+ × B73. *mop1*-
1200 derived BC1, Mo17/B73; *mop1/mop1* × B73.

1201

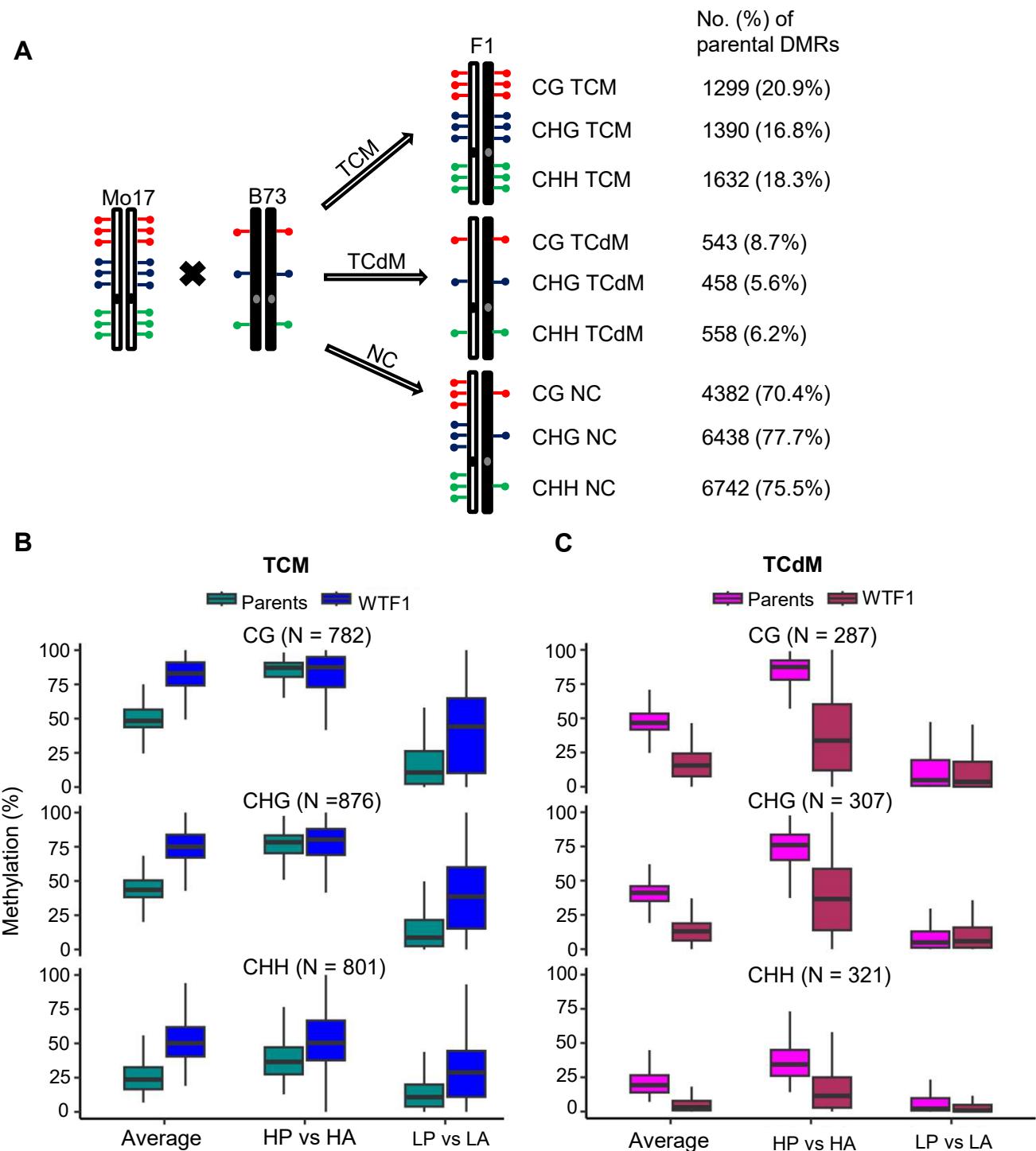
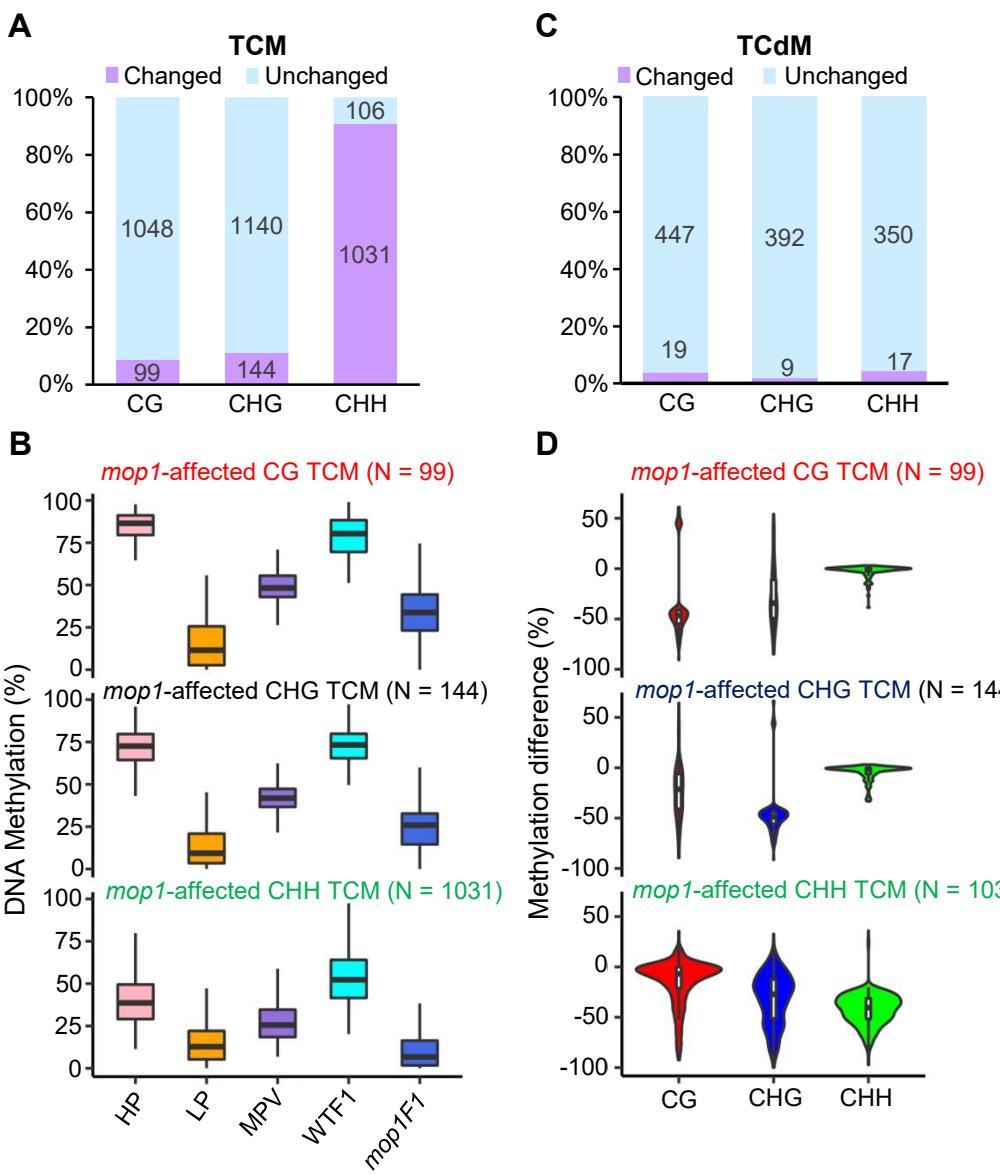
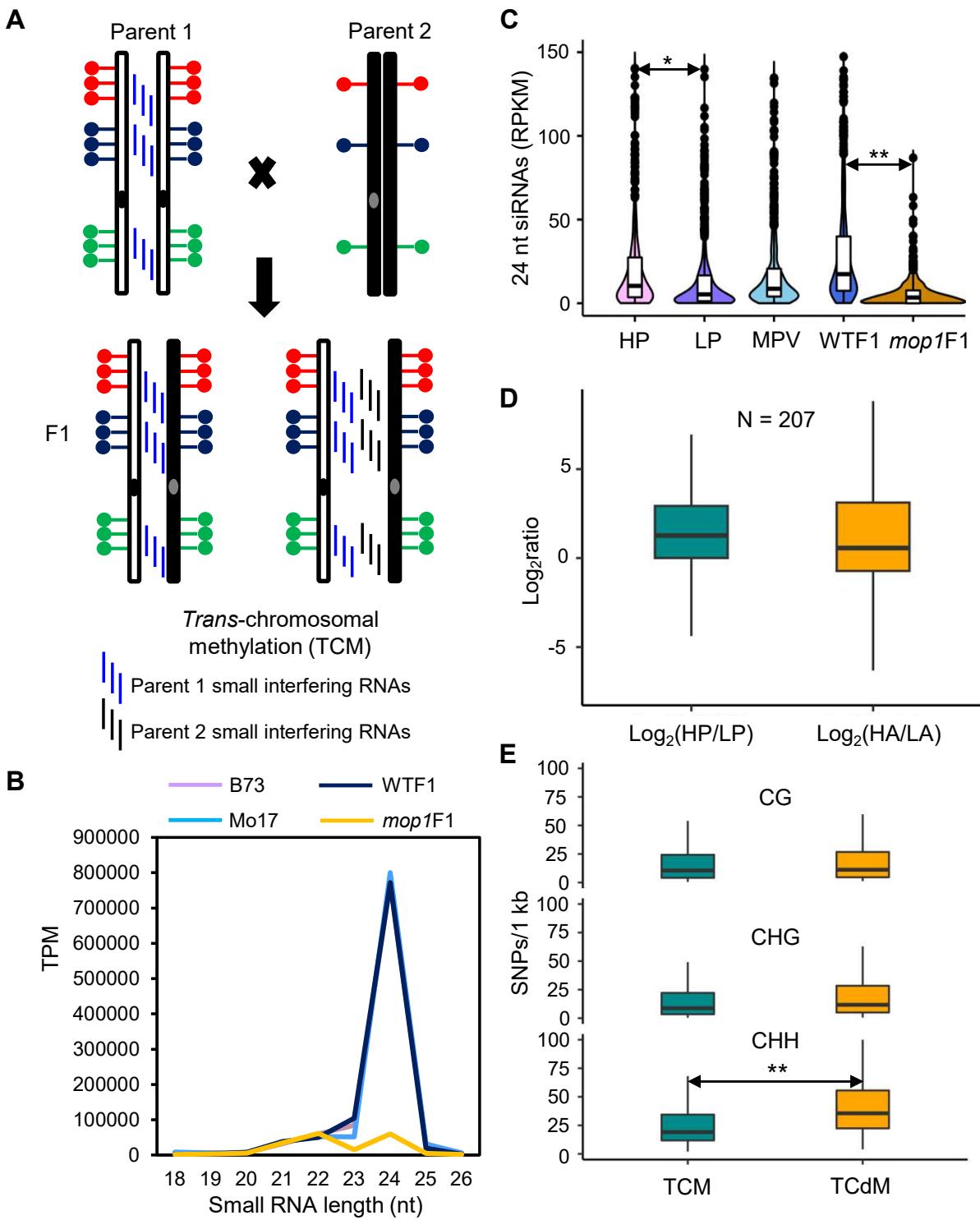
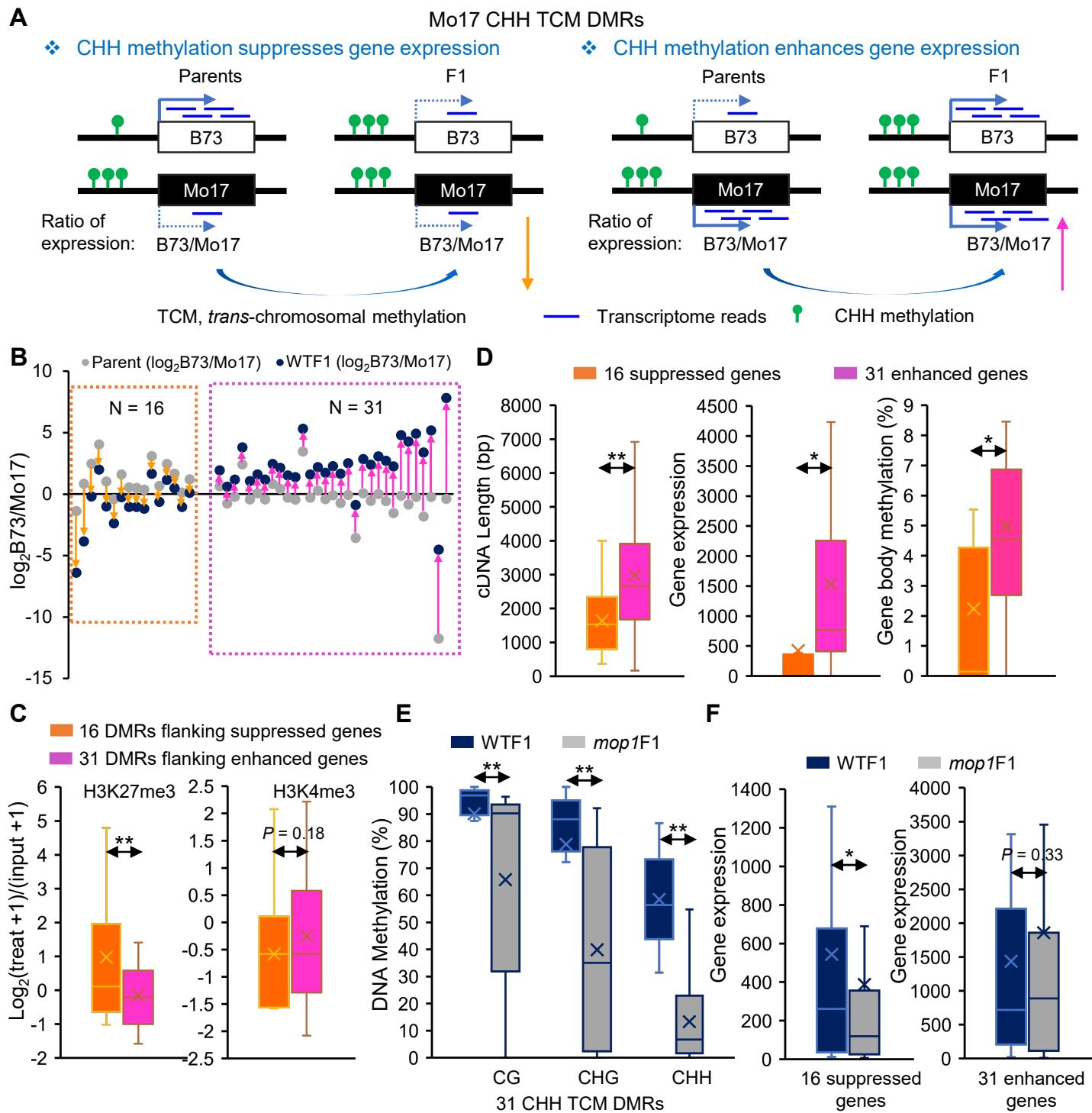
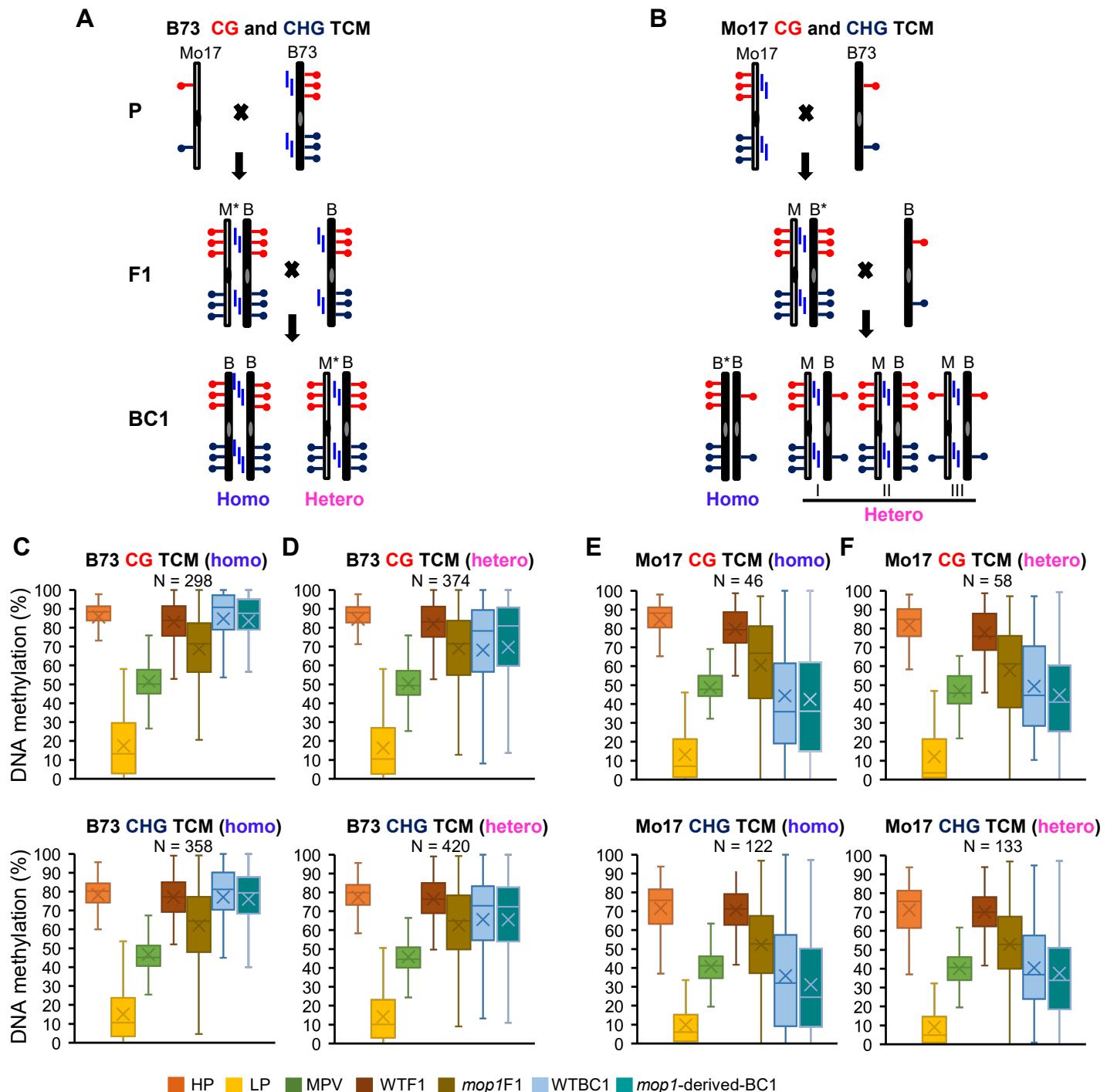


Fig 1. CHH methylation level is globally increased in hybrids. (A) Genetic strategy to construct wild type F1 (WTF1), *mop1* mutant F1 (*mop1*F1), and backcross1 (BC1). (B) The distribution of CG, CHG, and CHH methylation on chromosome 5. Methylation levels were measured in 1 Mb windows with 500 kb shift. The shaded boxes represent pericentromeric regions. (C) Patterns of methylation in and flanking genes. (D) Patterns of methylation in and flanking TEs.


DNA methylation levels were calculated in 50 bp windows in the 3 kb upstream and downstream regions of the genes/transposable elements (TEs). Each gene/TE sequence was divided into 40 equally sized bins to measure the gene/TE body methylation. Bin sizes differ from gene/TE to gene/TE because of the different lengths of genes/TEs. The methylation levels of TEs were orientated into proximal and distal ends depending on the flanking genes of TEs. Methylation for each sample was calculated as the proportion of methylated C over total C in each sequence context (CG, CHG, and CHH, where H = A, T, or C) averaged for each window. The average methylation levels were determined by combining two biological replicates for each genotype.


Fig 2. Parental CHH DMRs are largely located within 2 kb flanking regions of genes. (A) Definition of B73 hyper DMRs (higher methylation in B73) and Mo17 hyper DMRs (higher methylation in Mo17) between parents. Red, green, and blue dots represent CG, CHG, and CHH methylation, respectively. (B) B73 has more CG and CHG hyper DMRs, and Mo17 has more hyper CHH DMRs. (C) B73 has higher methylation levels at CG and CHG DMRs, and Mo17 has higher methylation levels at CHH DMRs. (D) CG and CHG DMRs were more overlapped with each other than each one was with CHH DMRs. (E) The distribution of CG, CHG and CHH parental DMRs. 2 kb up and downstream of genes overlapping TEs indicate the DMRs overlap TEs within the 2 kb flanking regions of genes. (F) The types of TEs in the categories of 2 kb up and downstream of genes overlapping TEs in (E). DMRs, differentially methylated regions.


Fig 3. The levels of CHH methylation of both high- and low-parent alleles are increased at TCM DMRs in the F1 hybrids. (A) Identification of TCM, TCdM, and unchanged (NC) DMRs between WTF1 and parents. **(B)** Comparisons of CG, CHG and CHH methylation at TCM DMRs in parents and WTF1. **(C)** Comparisons of CG, CHG and CHH methylation at TCdM DMRs in parents and WTF1. HP, high parent (parent with higher methylation). HA, high-parent allele in F1. LP, low parent (parent with lower methylation). LA, low-parent allele in F1. Average means the average between the two parents, or between the two alleles in WTF1 and *mop1*F1. DMRs, differentially methylated regions. TCM, *trans*-chromosomal methylation. TCdM, *trans*-chromosomal demethylation.


Fig 4. The *mop1* mutation primarily removes the methylation of CHH TCM DMRs. **(A)** Number of CG, CHG and CHH TCM DMRs affected by the *mop1* mutation. **(B)** Comparison of methylation levels at the *mop1*-affected CG, CHG, and CHH TCM DMRs. **(C)** Number of CG, CHG and CHH TCdM DMRs affected by the *mop1* mutation. **(D)** Examination of the methylation changes in the other two cytosine contexts at the *mop1*-affected CG, CHG, and CHH TCM DMRs. The top panel shows the methylation changes in CHG and CHH sequence contexts for the 99 *mop1*-affected CG TCM DMRs. The middle panel shows the methylation changes in CG and CHH sequence contexts for the 144 *mop1*-affected CHG TCM DMRs. The bottom panel shows the methylation changes in CG and CHG sequence contexts for the 1031 *mop1*-affected CHH TCM DMRs. HP, high parent (parent with higher methylation). LP, low parent (parent with lower methylation). MPV, the middle parent value. DMRs, differentially methylated regions. TCM, trans-chromosomal methylation. TCdM, trans-chromosomal demethylation.

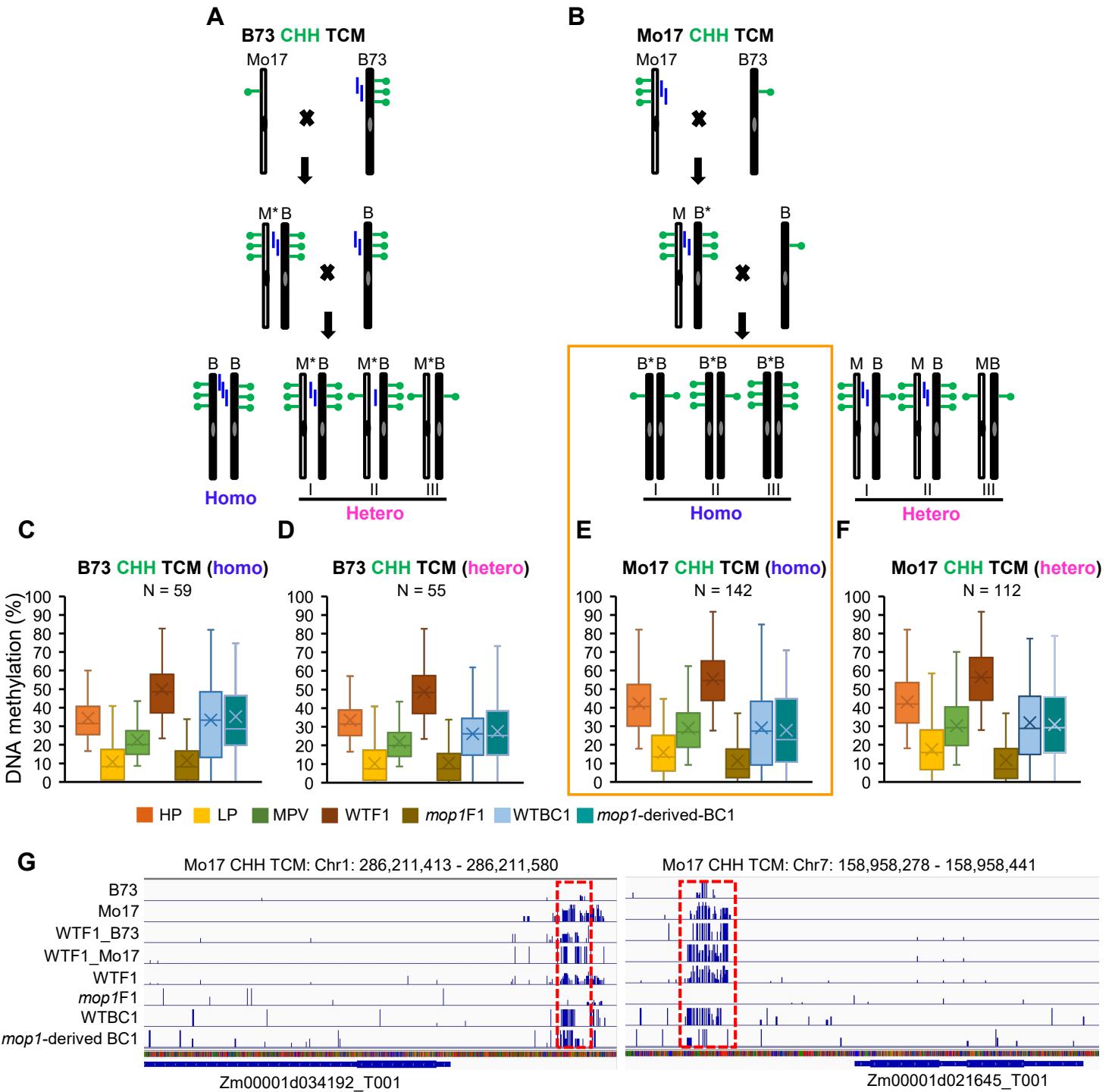

Fig 5. Small RNAs produced from one parent are sufficient to trigger new methylation of the other allele in hybrids. (A) Two hypothetical models of small RNA biogenesis in F1 at CHH TCM. **(B)** Expression values of small RNAs in parents, WTF1 and *mop1F1*. TPM, transcripts per million uniquely mapped reads. The small RNA values were adjusted to total abundance of all mature microRNAs following the previous research [35]. **(C)** The abundance of 24-nt siRNAs at the *mop1*-affected CHH TCM DMRs. HP, high parent (parent with higher methylation). LP, low parent (parent with lower methylation). MPV, the middle parent value. RPKM, 24-nt siRNA reads per kilobase (DMR length) per million uniquely mapped reads. **(D)** Ratios of 24-nt siRNAs of the high parent to the low parent, and of the high-parent allele to the low-parent allele at the *mop1*-affected CHH TCM DMRs. **(E)** Number of single nucleotides polymorphisms between TCM and TCdM. **, $P < 0.01$, *, $P < 0.05$, Student's *t* test. DMRs, differentially methylated regions. TCM, trans-chromosomal methylation. TCdM, trans-chromosomal demethylation.

Fig 6. CHH methylation is associated with both suppressed and enhanced expression of their flanking genes. (A) Two possible scenarios of the effects of CHH methylation on gene expression. Only examples of Mo17 CHH TCM DMRs are shown. (B) Number of genes identified based on the models in (A). The ratios of expression values of B73 to Mo17 between the parents and WTF1 were used to distinguish the scenarios. (C) Histone modification of 16 CHH TCM DMRs that are associated with the suppressed expression of flanking genes and 31 CHH TCM DMRs that are associated with the enhanced expression of flanking genes. **, $P < 0.01$, Student's t test. (D) Gene properties of the 16 suppressed and 31 enhanced genes. **, $P < 0.01$, *, $P < 0.05$, Student's t test. (E) Methylation changes in *mop1* mutants at the 31 CHH TCM DMRs that are associated with the enhanced expression of flanking genes. **, $P < 0.01$, Student's paired t test. (F) Gene expression changes of the 16 suppressed and 31 enhanced genes in *mop1* mutants. *, $P < 0.01$, Student's paired t test. DMRs, differentially methylated regions. TCM, trans-chromosomal methylation.

Fig 7. Newly triggered methylation at CG and CHG TCM DMRs in F1 plants is maintained in the next generation. (A) Hypothetical model of maintenance of B73 CG and CHG TCM DMRs. Asterisks denote the newly converted (methylated) allele. (B) Hypothetical model of maintenance of Mo17 CG and CHG TCM DMRs. (C) Methylation changes of homozygous B73 CG and CHG TCM DMRs. (D) Methylation changes of heterozygous B73 CG and CHG TCM DMRs. (E) Methylation changes of homozygous Mo17 CG and CHG TCM DMRs. (F) Methylation changes of heterozygous Mo17 CG and CHG TCM DMRs. DMRs, differentially methylated regions. TCM, *trans*-chromosomal methylation. Homo, homozygous. Hetero, heterozygous. WTBC1, Mo17/B73;+/+ × B73. *mop1*-derived BC1, Mo17/B73; *mop1*/ *mop1* × B73.

Fig 8. Initiation of the changes in the epigenetic state of *trans*-chromosomal CHH methylation in maize does not require Mop1. (A) Hypothetical model of maintenance of B73 CHH TCM DMRs. Asterisks denote the newly converted (methylated) allele. (B) Hypothetical model of maintenance of Mo17 CHH TCM DMRs. (C) Methylation changes of homozygous B73 CHH TCM DMRs. (D) Methylation changes of heterozygous B73 CHH TCM DMRs. (E) Methylation changes of homozygous Mo17 CHH TCM DMRs. (F) Methylation changes of heterozygous Mo17 CHH TCM DMRs. (G) Distribution and methylation levels of two examples of Mo17 CHH TCM DMRs. DMRs, differentially methylated regions. TCM, *trans*-chromosomal methylation. Homo, homozygous. Hetero, heterozygous. WTBC1, Mo17/B73;+/+ × B73. mop1-derived BC1, Mo17/B73;mop1/mop1 × B73.