

1 **Title: Somatic mutation rates scale with time not growth rate in long-lived**
2 **tropical trees**

3
4 **Authors:** Akiko Satake^{1†*}, Ryosuke Imai^{1†}, Takeshi Fujino², Sou Tomimoto¹, Kayoko Ohta¹,
5 Mohammad Na’iem³, Sapto Indrioko³, Widiyatno³, Susilo Purnomo⁴, Almudena Mollá-
6 Morales⁵, Viktoria Nizhynska⁵, Naoki Tani^{6,7}, Yoshihisa Suyama⁸, Eriko Sasaki¹, Masahiro
7 Kasahara²

8
9 **Affiliations:**

10 ¹ Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan.

11 ² Department of Computational Biology and Medical Sciences, Graduate School of Frontier
12 Sciences, The University of Tokyo, 277-8561, Chiba, Japan.

13 ³ Faculty of Forestry, Universitas Gadjah Mada, Jl. Agro No. 1 Bulaksumur Yogyakarta 55281,
14 Indonesia.

15 ⁴ PT. Sari Bumi Kusuma, Sungai Raya, Pontianak Kota, Pontianak, West Kalimantan 78391,
16 Indonesia.

17 ⁵ Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna
18 BioCenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria.

19 ⁶ Forestry Division, Japan International Research Center for Agricultural Sciences, Tsukuba,
20 Ibaraki, 305-8686, Japan.

21 ⁷ Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8686,
22 Japan.

23 ⁸ Field Science Center, Graduate School of Agricultural Science, Tohoku University, 232-3
24 Yomogida, Naruko-onsen, Osaki, Miyagi, 989-6711, Japan.

25
26 [†] These two authors contributed equally to this work

27 *Correspondence to:

28 Akiko Satake (akiko.satake@kyudai.jp)

29
30 **Abstract**

31 The rates of appearance of new mutations play a central role in evolution. However,
32 mutational processes in natural environments and their relationship with growth rates are
33 largely unknown, particular in tropical ecosystems with high biodiversity. Here, we
34 examined the somatic mutation landscapes of two tropical trees, *Shorea laevis* (slow-growing)
35 and *S. leprosula* (fast-growing), in central Borneo, Indonesia. Using newly-constructed
36 genomes, we identified a greater number of somatic mutations in tropical trees than in
37 temperate trees. In both species, we observed a linear increase in the number of somatic
38 mutations with physical distance between branches. However, we found that the rate of

39 somatic mutation accumulation per meter of growth was 3.7-fold higher in *S. laevis* than in
40 *S. leprosula*. This difference in the somatic mutation rate was scaled with the slower growth
41 rate of *S. laevis* compared to *S. leprosula*, resulting in a constant somatic mutation rate per
42 year between the two species. We also found that somatic mutations are neutral within an
43 individual, but those mutations transmitted to the next generation are subject to purifying
44 selection. These findings suggest that somatic mutations accumulate with absolute time and
45 older trees have a greater contribution towards generating genetic variation.

46

47 Significance Statement

48 The significance of our study lies in the discovery of an absolute time-dependent accumulation of
49 somatic mutations in long-lived tropical trees, independent of growth rate. Through a comparative
50 analysis of somatic mutation landscapes in slow- and fast-growing species, we observed a clock-
51 like accumulation of somatic mutations in both species, regardless of their growth rates. Although
52 the majority of somatic mutations were restricted to a single branch, we also identified mutations
53 present in multiple branches, likely transmitted during growth. Our findings suggest that older
54 trees make a greater contribution towards generating genetic variation.

55

56 Keywords

57 Somatic mutations; mutational spectrum; genetic diversity; tropical ecosystems; Shorea

58

59 Main text

60 Biodiversity ultimately results from mutations that provide genetic variation for organisms to adapt
61 to their environments. However, how and when mutations occur in natural environments is poorly
62 understood¹⁻³. Recent genomic data from long-lived multicellular species have begun to uncover
63 the somatic genetic variation and the rate of naturally occurring mutations^{4,5}. The rate of somatic
64 mutations per year in a 234-year-old oak tree has been found to be surprisingly low⁶ compared to
65 the rate in an annual herb⁷. Similar analyses in other long-lived trees have also shown low mutation
66 rates in both broadleaf trees⁸⁻¹² and conifers¹³. Despite the growing body of knowledge of somatic
67 mutation landscapes in temperate regions, there is currently no knowledge on the somatic mutation
68 landscapes in organisms living in tropical ecosystems, which are among the most diverse biomes
69 on Earth.

70 Mutations can arise from errors during replication¹⁴, or from DNA damage caused by
71 exogenous mutagens or endogenous reactions at any time during cell growth¹⁵. While DNA
72 replication errors have long been assumed to be major sources of mutations^{16,17}, a modeling study
73 that relates the mutation rate to rates of DNA damage, repair and cell division¹⁵ and experimental
74 studies in yeast¹⁸, human¹⁹, and other animals²⁰ have shown the importance of mutagenic processes
75 that do not depend on cell division. Consequently, it remains largely unknown which source of
76 mutations, whether replicative or non-replicative, predominates in naturally growing organisms.

77 To investigate the rates and patterns of somatic mutation and their relation to growth rates
78 in tropical organisms, we studied the somatic mutation landscapes of slow- and fast-growing
79 tropical trees in a humid tropical rain forest of Southeast Asia. By comparing the somatic mutation
80 landscape between slow- and fast-growing species in a tropical ecosystem, we can gain insights
81 into the mutagenesis that occurs in a natural setting. This comparison provides a unique
82 opportunity to understand the impact of growth rate on somatic mutations and its potential role in
83 driving evolutionary processes.

84

85 **Detecting somatic mutations in slow- and fast-growing tropical trees**

86 The humid tropical rainforests of Southeast Asia are characterized by a preponderance of trees of
87 the Dipterocarpaceae family²¹. Dipterocarp trees are highly valued for both their contribution to
88 forest diversity and their use in timber production. For the purposes of this study, we selected
89 *Shorea laevis* and *S. leprosula*, both native hardwood species of the Dipterocarpaceae family
90 (Supplementary Fig. 1a). *S. laevis* is a slow-growing species²², with a mean annual increment
91 (MAI) of diameter at breast height (DBH) of 0.38 cm/year (as measured over a 20 year period in
92 $n = 2$ individuals; Supplementary Data 1). In contrast, *S. leprosula* exhibits a faster growth rate²²,
93 with an MAI of 1.21 cm/year ($n = 18$; Supplementary Data 1), which is 3.2 times greater than that of
94 *S. laevis*. We selected the two largest individuals of each species (S1 and S2 for *S. laevis* and F1
95 and F2 for *S. leprosula*; Fig. 1a) at the study site, located just below the equator in central Borneo,
96 Indonesia (Supplementary Fig. 1b). We collected leaves from the apices of seven branches and a
97 cambium from the base of the stem from each tree (Fig. 1a; Supplementary Fig. 2), resulting in a
98 total of 32 samples. To determine the physical distance between the sampling positions, we
99 measured the length of each branch (Supplementary Data 2) and DBH (Supplementary Table 1).
100 The average heights of the slow- and fast-growing species were 44.1 m and 43.9 m, respectively
101 (Fig. 1a; Supplementary Data 1). While it is challenging to accurately estimate the age of tropical
102 trees due to the absence of annual rings, we used the DBH/MAI to approximate the average age of
103 the slow-growing species to be 256 years and the fast-growing species to be 66 years
104 (Supplementary Table 1).

105 To identify somatic mutations, we constructed new reference genomes of the slow- and
106 fast-growing species. We generated sequence data using long-read PacBio RS II and short-read
107 Illumina sequencing and assembled the genome using DNA extracted from the apical leaf at branch
108 1-1 of the tallest individual of each species (S1 and F1). The genomes were estimated to contain
109 52,935 and 40,665 protein-coding genes, covering 97.9% and 97.8% of complete BUSCO genes
110 (eudicots_odb10) for the slow- and fast-growing species (Supplementary Table 2). Genome sizes
111 estimated using k-mer distribution were 347 and 376 Mb for the slow- and fast-growing species,
112 respectively. The synteny relationship between *S. laevis* and *S. leprosula* exhibited a high level of
113 conservation overall (Supplementary Fig. 3).

114 To accurately identify somatic mutations, we extracted DNA from each sample twice to
115 generate two biological replicates (Supplementary Fig. 2). A total of 64 DNA samples were
116 sequenced, yielding an average coverage of 69.3 and 56.5 \times per sample for the slow- and fast-
117 growing species, respectively (Supplementary Data 5). We identified Single Nucleotide Variants

(SNVs) within the same individual by identifying those that were identical within two biological replicates of each sample (Supplementary Fig. 2). We identified 728 and 234 SNVs in S1 and S2, and 106 and 68 SNVs in F1 and F2, respectively (Supplementary Fig. 2; Supplementary Data 4). All somatic mutations were unique and did not overlap between individuals. We conducted an independent evaluation of a subset of the inferred single nucleotide variants (SNVs) using amplicon sequencing. Our analysis demonstrated accurate annotation for 31 out of 33 mutations (94% overall), with 22 out of 24 mutations on S1 and all 9 mutations on S2 (Supplementary Table 5).

Somatic mutation rates per year is independent of growth rate

Phylogenetic trees constructed using somatic mutations were almost perfectly congruent with the physical tree structures (Fig. 1a), even though we did not incorporate knowledge of the branching topology of the tree in the SNV discovery process. The majority of somatic mutations were present at a single branch, but we also identified somatic mutations present in multiple branches (Fig. 1b) which are likely transmitted to new branches during growth. We also observed somatic mutations that did not conform to the branching topology (Fig. 1b), as theoretically predicted due to the stochastic loss of somatic mutations during branching²³.

Our analysis revealed that the number of SNVs increases linearly as the physical distance between branch tips increases (Fig. 2a). The somatic mutation rate per site per meter was determined by dividing the slope of the linear regression of the number of SNVs against the physical distance between branch tips by the number of callable sites from the diploid genome of each tree (Fig. 2b; Supplementary Table 3). The somatic mutation rate per nucleotide per meter was 7.08×10^{-9} (95% CI: $6.41\text{--}7.74 \times 10^{-9}$) and 4.27×10^{-9} (95% CI: $3.99\text{--}4.55 \times 10^{-9}$) for S1 and S2, and 1.77×10^{-9} (95% CI: $1.64\text{--}1.91 \times 10^{-9}$) and 1.29×10^{-9} (95% CI: $1.05\text{--}1.53 \times 10^{-9}$) for F1 and F2, respectively. The average rate of somatic mutation for the slow-growing species was 5.67×10^{-9} nucleotide $^{-1}$ m $^{-1}$, which is 3.7-fold higher than the average rate of 1.53×10^{-9} nucleotide $^{-1}$ m $^{-1}$ observed in the fast-growing species (Fig. 2b; Supplementary Table 3). This result indicates that the slow-growing tree accumulates more somatic mutations compared to the fast-growing tree to grow the unit length. This cannot be explained by differences in the number of cell divisions, as the length and diameter of fiber cells in both species are not substantially different (1.29 mm and 19.0 μ m for the slow-growing species²⁴ and 0.91mm and 22.7 μ m for the fast-growing species²⁵).

Based on the estimated age of each tree, somatic mutation rate per nucleotide per year was calculated for each tree. On average, resultant values were largely similar between the two species, with 7.71×10^{-10} and 8.05×10^{-10} nucleotide $^{-1}$ year $^{-1}$ for the slow- and fast-growing species, respectively (Fig. 2b; Supplementary Table 3). This result suggests that somatic mutation accumulates in a clock-like manner as they age regardless of tree growth. The result suggests that somatic mutation accumulates in a clock-like manner as they age regardless of tree growth. Our estimates of somatic mutation rates per nucleotide per year in *Shorea* are higher than those previously reported in other long-lived trees such as *Quercus robur*⁶, *Populus trichocarpa*¹¹, *Eucalyptus melliodora*¹⁰ and *Picea sitchensis*¹³. This might suggest that long-lived trees in the tropics do not necessarily suppress somatic mutation rates to the same extent as their temperate

159 counterparts. To validate this assertion, additional studies are required to compare somatic
160 mutation rates among trees in tropical, temperate, and boreal regions, employing standardized
161 methodologies.

163 **Mutational spectra are similar between slow- and fast-growing trees**

164 Somatic mutations may be caused by exogenous factors such as ultraviolet and ionizing radiation,
165 or endogenous factors such as oxidative respiration and errors in DNA replication. To identify
166 characteristic mutational signatures caused by different mutagenic factors, we characterized
167 mutational spectra by calculating the relative frequency of mutations at the 96 triplets defined by
168 the mutated base and its flanking 5' and 3' bases (Fig. 3; Supplementary Fig. 4). Across species,
169 the mutational spectra showed a dominance of cytosine-to-thymine (C>T and G>A on the other
170 strand, noted as C:G>T:A) substitutions at CpG sites with CG (Fig. 3a, b). This is believed to result
171 from the spontaneous deamination of 5-methylcytosine^{26,27}. Methylated CpG sites spontaneously
172 deaminate, leading to TpG sites and increasing the number of C>T substitutions²⁸. Compared to
173 the proportion of CpG sites in the reference genomes, the proportion of somatic mutations at CpG
174 sites showed a 3.38-fold and 2.56-fold increase for F1 and F2, and a 4.54-fold and 3.53-fold
175 increase for S1 and S2, respectively.

176 We compared the mutational spectra of our tropical trees to single-base substitution (SBS)
177 signatures in human cancers using the Catalogue Of Somatic Mutations In Cancer (COSMIC)
178 compendium of mutation signatures (COSMICv.2²⁹⁻³¹). The mutational spectra were largely
179 similar to the dominant mutation signature in humans known as SBS1 (cosine similarity = 0.789
180 and 0.597 for the slow- and fast-growing species; Supplementary Data 6). SBS1 is believed to
181 result from the spontaneous deamination of 5-methylcytosine. The mutational spectra were also
182 comparable to another dominant signature in all human cancers, SBS5 (cosine similarity = 0.577
183 and 0.558 for the slow- and fast-growing species; Supplementary Data 6), the origin of which
184 remains unknown. Our finding that somatic mutations in tropical trees accumulate in a clock-like
185 manner (Fig. 2a) is consistent with the clock-like mutational process observed in SBS1 and SBS5
186 in human somatic cells^{32,33}. This suggests that the mutational processes in plants and animals are
187 conserved, despite the variation in their life forms and environmental conditions.

189 **Somatic mutations are neutral but inter-individual SNVs are subject to selection**

190 We tested whether the somatic mutations and inter-individual SNVs are subject to selection (Fig.
191 4a). The observed rate of non-synonymous somatic mutations did not deviate significantly from
192 the expected rate under the null hypothesis of neutral selection in both the slow- (binomial test: P
193 = 0.71) and fast-growing (binomial test: P = 1.0) species (Fig. 4b; Supplementary Table 4). In
194 contrast, the number of inter-individual SNVs were significantly smaller than expected ($P < 10^{-15}$
195 for both species: Fig. 4c). These results indicate that somatic mutations are largely neutral within
196 an individual, but mutations passed to next generation are subject to strong purifying selection
197 during the process of embryogenesis, seed germination and growth.

198 Overall, the mutational spectra were similar between somatic and inter-individual SNVs
199 (Supplementary Fig. 4). However, the fraction of C>T substitutions, in particular at CpG sites, was

200 lower in inter-individual SNVs compared to somatic SNVs (Fig. 4d). This observation may be
201 indicative of the potential influence of GC-biased gene conversion during meiosis³⁴ or biased
202 purifying selection for C>T inter-individual nucleotide substitutions.

203
204 **Discussion**

205 Our study demonstrates that while the somatic mutation rate per meter is higher in the slow- than
206 in fast-growing species, the somatic mutation rate per year is independent of growth rate. To gain
207 deeper understanding of these findings, we developed a simple model that decomposes the
208 mutation rate per site per cell division (μ) into the two components: DNA replication dependent
209 (α) and replication independent (β) mutagenesis. This can be represented as $\mu = \alpha + \beta\tau$, where τ
210 is the duration of cell cycle measured in years. The replication dependent mutation emanates from
211 errors that occur during DNA replication, such as the misincorporation of a nucleotide during DNA
212 synthesis. The replication independent mutation arises from DNA damage caused by endogenous
213 reactions or exogenous mutagens at any time of cell cycle. Since the number of cell division per
214 year is given as $r = 1/\tau$, the mutation rate per year becomes $r\mu = \alpha/\tau + \beta$. From the relationship,
215 the number of nucleotide substitution per site accumulated over t years, denoted as $m(t)$, is given
216 by $m(t) = (\alpha/\tau + \beta)t$. The formula indicates that when β is significantly greater than α , somatic
217 mutations accumulate with tree age rather than with tree growth.

218 We estimated the relative magnitudes of α and β by using the results obtained from our
219 study. Given that the cell cycle duration is likely inversely proportional to MAI, we have $\tau_S/\tau_F =$
220 3.2 (Supplementary Data 1), where τ_S and τ_F denote the cell cycle duration for the slow- and fast-
221 growing species, respectively. It is also reasonable to assume that the same number of cell divisions
222 are required to achieve 1 m of growth in both species as the cell size is similar between the two
223 species. Based on our estimates of the somatic mutation rate per site per meter for the slow- (μ_S)
224 and fast-growing species (μ_F), we have $\mu_S/\mu_F = (\alpha + \beta\tau_S)/(\alpha + \beta\tau_F) = 3.7$, which is close to the
225 ratio of cell cycle duration τ_S/τ_F . This consistency can be explained by the substantial contribution
226 of the replication independent mutagenesis to the somatic mutation rate (i.e. $\beta \gg \alpha$), as long as
227 the magnitudes for α and β are similar between the two species. The time required for a unit length
228 to grow can vary even within the same species, depending on microenvironmental conditions such
229 as the availability of light and nutrients. These variations could explain the differences in somatic
230 mutation rates per unit growth between two individuals within the same species (Fig. 2).

231 This argument concords with previous studies in human and other animals, which showed
232 the presence of mutations that do not track cell division^{19,20}. This study contributes to
233 understanding the importance of non-replicative mutagenesis in naturally grown trees by
234 decoupling the impacts of growth and time on the rate of somatic mutation. The preponderance of
235 non-replicative mutational process can be attributed to its distinct molecular origin, the
236 accumulation of spontaneous CpG mutations with absolute time. The neutral nature of newly
237 arising somatic mutations within the tree results in a molecular clock, a constant rate of molecular
238 evolution³⁵⁻³⁷. For our argument, we made an intuitive assumption that the number of stem cell
239 divisions increases with distance regardless of species when cell size is similar. However, to
240 further validate this assumption, we require mathematical models that consider the asymmetric

241 division of stem cells within the meristem^{38,39} and complex stem cell population dynamics during
242 elongation and branching in tree growth^{23,40}. Moreover, understanding establishment timing of
243 germlines during development is crucial in addressing the impact of somatic mutation on the next
244 generation³⁹. The model we have presented here is based on the assumption that genetic drift is
245 prominent within a stem cell population, and that a single stem cell lineage becomes fixed within
246 a meristem. However, future studies could explore relaxing this assumption to consider the
247 contribution of multiple stem cell lineages. By doing so, we can gain insights into how the
248 relationship between pairwise genetic differences and the distance between branch tips is
249 influenced by the branching architecture of the tree and the strength of genetic drift. Furthermore,
250 improving the accuracy of our argument, as derived from the model, can be achieved through
251 future investigations that directly estimate the cell cycle duration for each individual tree.

252 The relative importance of replication independent mutagenesis, represented as the
253 relative magnitude of β compared to α , can vary through evolution possibly through selection on
254 DNA repair pathways. The selection pressure that leads to different magnitudes either or both for
255 α or β may explain the differential somatic mutation rate per year in mammals with different
256 lifespan⁴¹. Conversely, in plants, the selection pressure to constrain somatic mutation rates to lower
257 levels in long-lived trees might be less significant. A definitive answer to this query awaits the
258 accumulation of additional data on somatic mutation rates in closely related plant species
259 inhabiting the same environment but exhibiting different growth rates.

261 References

1. Whitham, T. G. & Slobodchikoff, C. N. Evolution by individuals, plant-herbivore interactions, and mosaics of genetic variability: The adaptive significance of somatic mutations in plants. *Oecologia* **49**, 287–292 (1981).
2. Gill, D. E., Chao, L., Perkins, S. L. & Wolf, J. B. Genetic mosaicism in plants and clonal animals. *Annu Rev Ecol Syst* **26**, 423–444 (1995).
3. Schoen, D. J. & Schultz, S. T. Somatic mutation and evolution in plants. *Annu. Rev. Ecol. Evol. Syst* **50**, 49–73 (2019).
4. Yu, L. *et al.* Somatic genetic drift and multilevel selection in a clonal seagrass. *Nature Ecology & Evolution* **2020** *4*:74, 952–962 (2020).
5. Reusch, T. B. H., Baums, I. B. & Werner, B. Evolution via somatic genetic variation in modular species. *Trends Ecol Evol* **36**, 1083–1092 (2021).
6. Schmid-Siegert, E. *et al.* Low number of fixed somatic mutations in a long-lived oak tree. *Nat Plants* **3**, 926–929 (2017).
7. Ossowski, S. *et al.* The rate and molecular spectrum of spontaneous mutations in *Arabidopsis thaliana*. *Science* **327**, 92–94 (2010).
8. Plomion, C. *et al.* Oak genome reveals facets of long lifespan. *Nat Plants* **4**, 440–452 (2018).
9. Wang, L. *et al.* The architecture of intra-organism mutation rate variation in plants. *PLoS Biol* **17**, 1–29 (2019).
10. Orr, A. J. *et al.* A phylogenomic approach reveals a low somatic mutation rate in a long-lived plant. *Proceedings of the Royal Society B: Biological Sciences* **287**, (2020).
11. Hofmeister, B. T. *et al.* A genome assembly and the somatic genetic and epigenetic mutation rate in a wild long-lived perennial *Populus trichocarpa*. *Genome Biol* **21**, 1–27 (2020).
12. Duan, Y. *et al.* Limited accumulation of high-frequency somatic mutations in a 1700-year-old *Osmanthus fragrans* tree. *Tree Physiol* **42**, 2040–2049 (2022).
13. Hanlon, V. C. T., Otto, S. P. & Aitken, S. N. Somatic mutations substantially increase the per-generation mutation rate in the conifer *Picea sitchensis*. *Evol Lett* **3**, 348–358 (2019).
14. Reijns, M. A. M. *et al.* Lagging-strand replication shapes the mutational landscape of the genome. *Nature* **518**, 502–506 (2015).

290 15. Gao, Z., Wyman, M. J., Sella, G. & Przeworski, M. Interpreting the dependence of mutation rates on age and
291 time. *PLoS Biol* **14**, e1002355 (2016).

292 16. Makova, K. D. & Li, W.-H. *Strong male-driven evolution of DNA sequences in humans and apes*. *Nature*
293 **416**, 624–626 (2002).

294 17. Tomasetti, C. & Vogelstein, B. Variation in cancer risk among tissues can be explained by the number of
295 stem cell divisions. *Science* **347**, 78–81 (2015).

296 18. Liu, H. & Zhang, J. Yeast Spontaneous mutation rate and spectrum vary with environment. *Current Biology*
297 **29**, 1584–1591.e3 (2019).

298 19. Abascal, F. *et al.* Somatic mutation landscapes at single- molecule resolution.

299 20. De Manuel, M., Wu, F. L. & Przeworski, M. A paternal bias in germline mutation is widespread in amniotes
300 and can arise independently of cell division numbers. *Elife* **11**, (2022).

301 21. J, G. *Dipterocarp Biology, Ecology, and Conservation*. (Oxford University Press, 2016).

302 22. Widiyatno, W., Soekotjo, S., Naiem, M., Purnomo, S. & Setiyanto, P. E. Early performance of 23
303 dipterocarp species planted in logged-over rainforest. *Journal of Tropical Forest Science* **26**, 259–266
304 (2014).

305 23. Tomimoto, S. & Satake, A. Modelling somatic mutation accumulation and expansion in a long-lived tree
306 with hierarchical modular architecture. *Journal of Theoretical Biology* **565**, 111465 (2023).

307 24. Usami, K. Tropical Woods as Pulp Stuffs. *Journal of Agricultural Research Quarterly* **12**, 109–114 (1978).

308 25. Praptoyo, H. & Mayaningsih, R. Anatomical features of wood from some fast growing red meranti.
309 *Proceeding of The 4th International Symposium of IWoRs* **7**, 8 (2012).

310 26. Coulondre, C., Miller, J. H., Farabaugh, P. J., & Gilbert, W. Molecular basis of base substitution hotspots
311 *Escherichia coli*. *Nature* **274**, 568–571 (1978).

312 27. Duncan, B. K. & Miller, J. H. Mutagenic deamination of cytosine residues in DNA. *Nature* **287**, 560–561
313 (1980).

314 28. Cooper, D. N. & Krawczak, M. Cytosine methylation and the fate of CpG dinucleotides in vertebrate
315 genomes. *Hum Genet* **83**, 181–188 (1989).

316 29. Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C., Campbell, P. J. & Stratton, M. R. Deciphering signatures of
317 mutational processes operative in human cancer. *Cell Rep* **3**, 246–259 (2013).

318 30. Nik-Zainal, S. *et al.* Landscape of somatic mutations in 560 breast cancer whole-genome sequences. *Nature*
319 **534**, 47–54 (2016).

320 31. Alexandrov, L. B. *et al.* The repertoire of mutational signatures in human cancer. *Nature* **578**, 94–101
321 (2020).

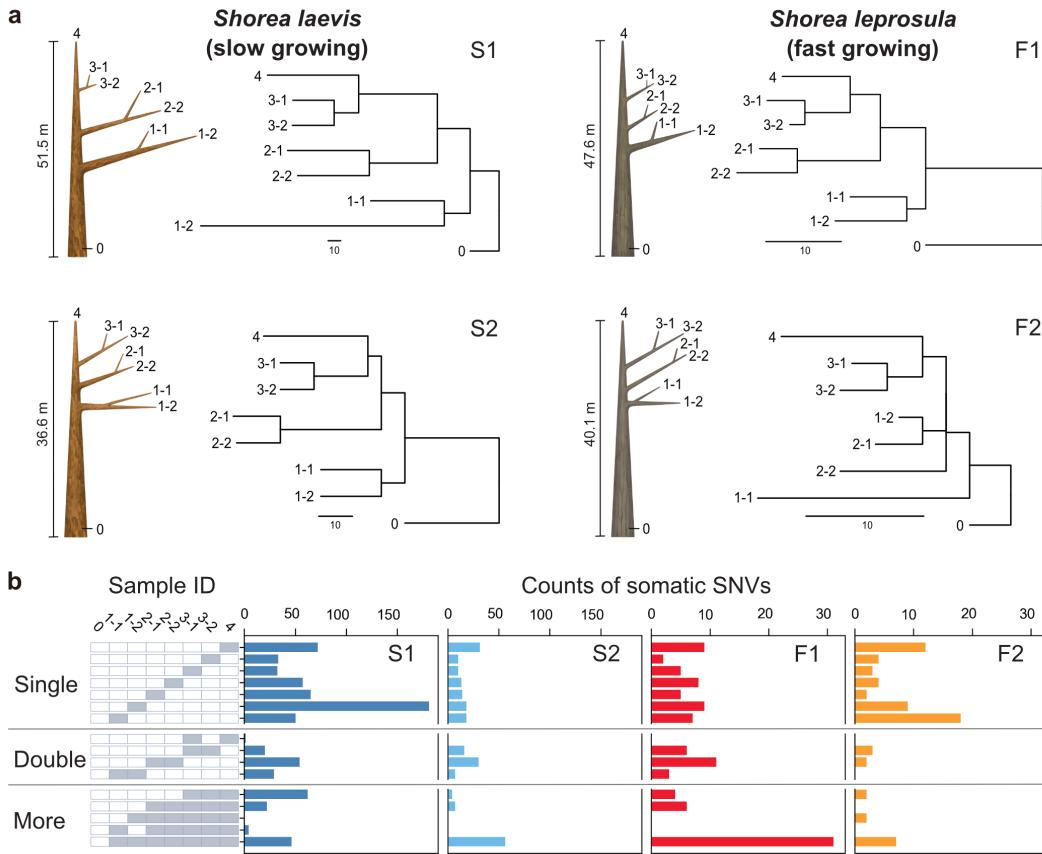
322 32. Alexandrov, L. B. *et al.* Clock-like mutational processes in human somatic cells. Europe PMC Funders
323 Group. *Nat Genet* **47**, 1402–1407 (2015).

324 33. Lee-Six, H. *et al.* The landscape of somatic mutation in normal colorectal epithelial cells. *Nature* **574**, 532–
325 537 (2019).

326 34. Duret, L. & Galtier, N. Biased gene conversion and the evolution of mammalian genomic landscapes. *Annu
327 Rev Genomics Hum Genet* **10**, 285–311 (2009).

328 35. Zuckerkandl, E. & Pauling, L. *Evolving Genes and Proteins*. (Academic Press, 1965).

329 36. Kimura, M. & Ohta, T. On the rate of molecular evolution. *J Mol Evol* **1**, 1–17 (1971).

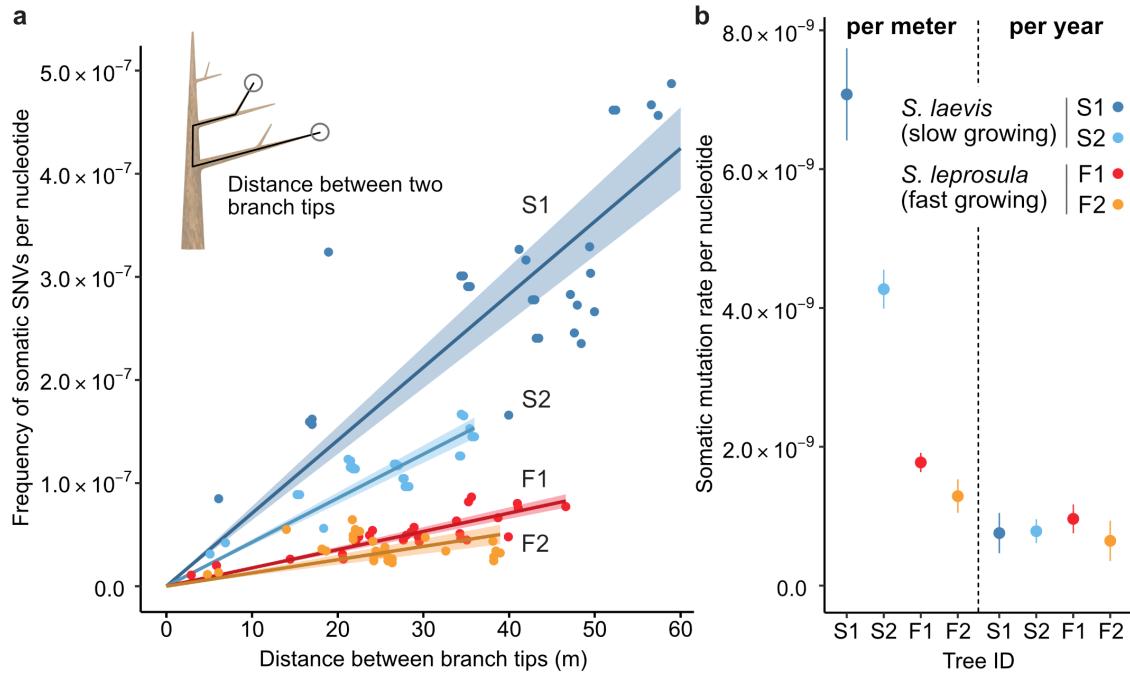

330 37. Kimura, M. The Neutral theory of molecular evolution. (Cambridge University Press, 1983).
331 doi:10.1017/CBO9780511623486.

332 38. Watson, J. M. *et al.* Germline replications and somatic mutation accumulation are independent of vegetative
333 life span in *Arabidopsis*. *Proc Natl Acad Sci U S A* **113**, 12226–12231 (2016).

334 39. Lanfear, R. Do plants have a segregated germline? *PLoS Biol* **16**, e2005439 (2018).

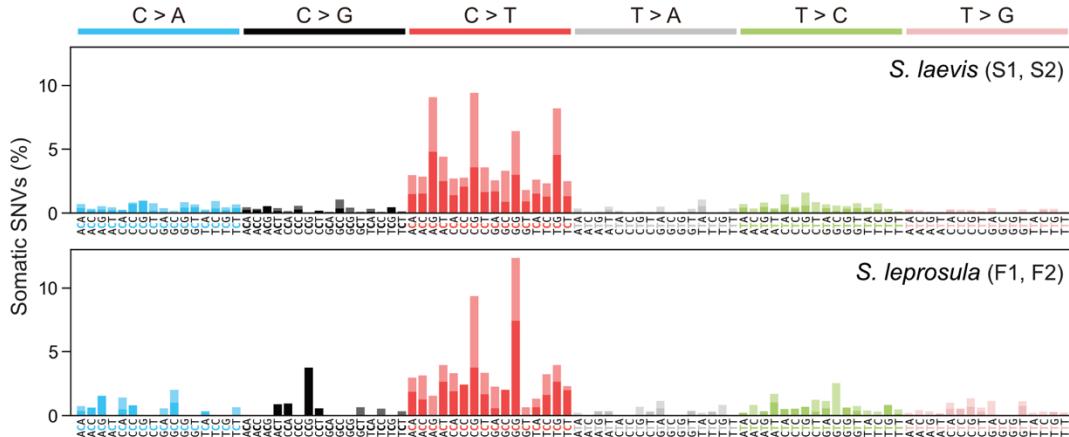
335 40. Iwasa, Y., Tomimoto, S. & Satake, A. The genetic structure within a single tree is determined by the
336 behavior of the stem cells in the meristem. *Genetics* (2023) doi:10.1093/GENETICS/IYAD020.

337 41. Cagan, A. *et al.* Somatic mutation rates scale with lifespan across mammals. *Nature* **604**, 517–524 (2022).

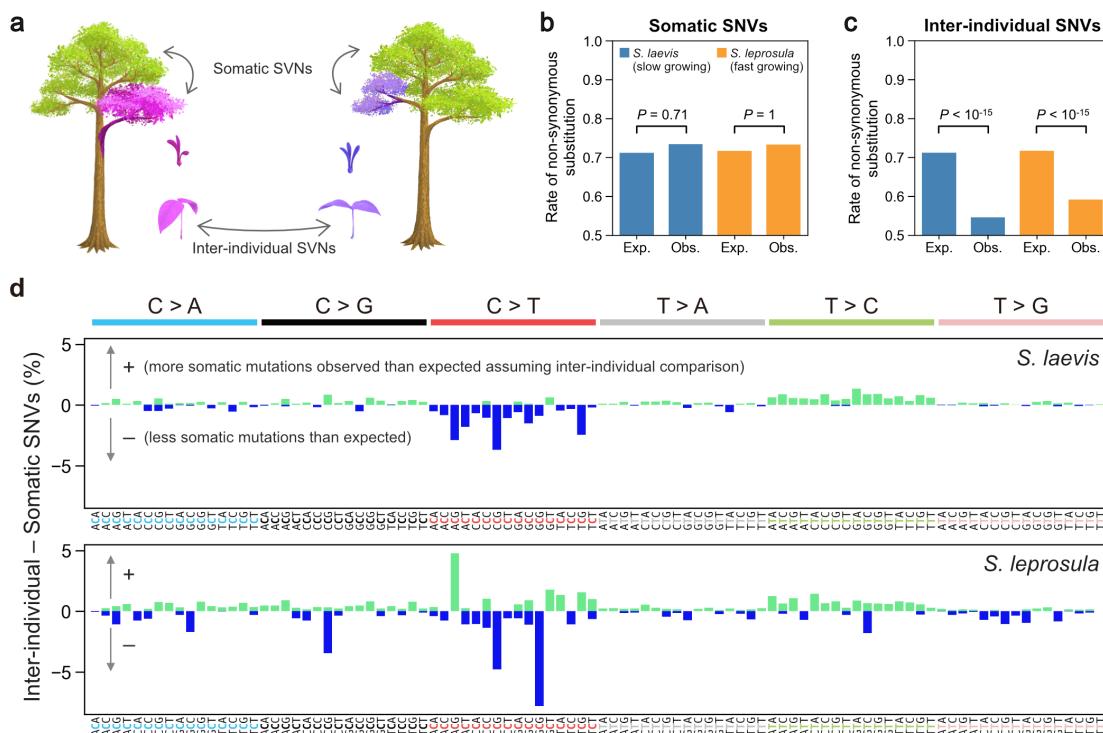


338

339


Fig. 1 | Physical tree structures and phylogenetic trees constructed from somatic mutations.

340 **a**, Comparisons of physical tree structures (left, branch length in meters) and neighbor-joining (NJ) 341 trees (right, branch length in the number of nucleotide substitutions) in two tropical tree species: 342 *S. laevis*, a slow-growing species (S1 and S2), and *S. leprosula*, a fast-growing species (F1 and 343 F2). IDs are assigned to each sample from which genome sequencing data were generated. Vertical 344 lines represent tree heights. **b**, Distribution of somatic mutations within tree architecture. A white 345 and gray panel indicates the presence (gray) and absence (white) of somatic mutation in each of 346 eight samples compared to the genotype of sample 0. Sample IDs are the same between panels **a** 347 and **b**. The distribution pattern of somatic mutations is categorized as Single, Double, and More 348 depending on the number of samples possessing the focal somatic mutations. Among $2^7 - 1$ 349 possible distribution patterns, the patterns observed in at least one of the four individuals are shown. 350


351
352 **Fig. 2 | The relationship between the physical distance and the numbers of SNVs.** **a**, Linear
353 regression of the number of SNVs against the pair-wise distance between branch tips with an
354 intercept of 0 for each tree (S1: blue, S2: right blue, F1: red, and F2: orange). Shaded areas
355 represent 95% confidence intervals of regression lines. Regression coefficients are listed in
356 Supplementary Table 3. **b**, Comparison of somatic mutation rates per nucleotide per growth and
357 per year across four tropical trees. Bars indicate 95% confidence intervals.

351
352
353
354
355
356
357
358

359

360 **Fig. 3 | Mutational spectra of somatic SNVs.** Somatic mutation spectra in *S. laevis* (upper panel)
361 and *S. leprosula* (lower panel). The horizontal axis shows 96 mutation types on a trinucleotide
362 context, coloured by base substitution type. Different colours within each bar indicate
363 complementary bases. For each species, the data from two trees (S1 and S2 for *S. laevis* and F1
364 and F2 for *S. leprosula*) were pooled to calculate the fraction of each mutated triplet.
365

366
367

368 **Fig. 4 | Detecting selection on somatic and inter-individual SNVs.** **a**, An illustration of somatic
369 and inter-individual SNVs. Different colours indicate different genotypes. **b**, Expected (Exp.) and
370 observed (Obs.) rates of somatic non-synonymous substitutions. **c**, Expected (Exp.) and observed
371 (Obs.) rates of inter-individual non-synonymous substitutions. **d**, The difference between the
372 fractions of inter-individual and somatic substitutions spectra in *S. laevis* (upper panel) and *S.*
373 *leprosula* (lower panel). The positive and negative values are plotted in different colours. The
374 horizontal axis shows 96 mutation types on a trinucleotide context, coloured by base substitution
375 type.

377

Materials and Methods

378

Study site and sampling methods

379

The study site is in a humid tropical rain forest in Central Borneo, Indonesia (00°49' 45.7" S, 380 112°00' 09.5" E; Supplementary Fig. 1b). The forest is characterized by a prevalence of trees of 381 the Dipterocarpaceae family and is managed through a combination of selective logging and line 382 planting (Tebang Pilih Tanam Jalur, TPTJ). The mean annual temperature range from 2001 to 383 2009 was between 22 to 28°C at night and 30 to 33°C during the day, with an average annual 384 precipitation of 3376 mm⁴¹.

385

The study focuses on two native Dipterocarpaceae species, *S. laevis* and *S. leprosula* (Supplementary Fig. 1a). We logged two individuals from each species (S1 and S2 for *S. laevis* and F1 and F2 for *S leprosula*; Supplementary Fig. 1a) on July 17–18, 2018 and collected samples prior to their transportation for timber production. Approximately 0.4–1.0 g of leaf tissue was collected from each of the apices of seven branches and approximately 5 g of cambium tissue was taken from the base of the stem per individual (Supplementary Fig. 2). To calculate the physical distance between sampling positions within the tree architecture, we measured the length of each branch (Supplementary Data 2). Samples were promptly preserved in a plastic bag with silica gel following harvest and transported to the laboratory within 4 days of sampling. During transportation, samples were kept in a cooler box with ice to maintain a low temperature. Once in the laboratory, samples were stored at –80°C until DNA and RNA extraction.

396

DBH have been recorded for the trees with DBH greater than 10 cm every two years since 397 1998 within three census plots of 1 hectare (100 × 100 m) in size located near the target trees. The 398 mean growth was calculated by taking the average of MAI of DBH for 2 and 18 trees for the slow- 399 and fast-growing species, respectively (Supplementary Data 1).

400

DNA extraction

401

For short-read sequencing, DNA extraction was performed using a modified version of the method 402 described previously⁴² as follows: Frozen leaves were ground in liquid nitrogen and washed up to 403 five times with 1 mL buffer (including 100 mM HEPES pH 8.0, 1% PVP, 50 mM Ascorbic acid, 404 2% (v/v) β-mercaptoethanol)⁴³. DNA was treated with Ribonuclease (Nippogen, Tokyo, Japan) 405 according to the manufacturer's instruction. DNA was extracted twice independently from each 406 sample for two biological replicates. The DNA yield was measured on a NanoDrop ND-2000 407 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA) and Qubit4 Fluorometer 408 (Thermo Fisher Scientific). For long-read sequencing, we extracted high molecular weight 409 genomic DNA from branch 1-1 leaf materials of S1 and F1 individuals using a modified CTAB 410 method⁴⁴.

412

RNA extraction and sequencing

413

For genome annotation, total RNA was extracted from the cambium sample of the S1 individual 414 of *S. laevis* in accordance with the method described in a previous study⁴⁵. RNA integrity was 415 measured using the Agilent RNA 6000 Nano kit on a 2100 Bioanalyzer (Agilent Technologies, 416 Santa Clara, CA, USA), and the RNA yield was determined using a NanoDrop ND-2000 417

418 spectrophotometer (Thermo Fisher Scientific). The extracted RNA was sent to Pacific Alliance
419 Lab (Singapore), where a cDNA library was prepared with a NEBNext® Ultra™ RNA Library
420 Prep Kit for Illumina (New England BioLabs, Ipswich, MA, USA) and 150 paired-end
421 transcriptome sequencing was conducted using an Illumina NovaSeq6000 sequencer (Illumina,
422 San Diego, CA, USA). For *S. leprosula*, we used published RNA-seq data⁴⁶.
423

424 **Illumina short-read sequencing and library preparation**

425 For Illumina short-read sequencing, the DNA sample from the first replicate of the S1 individual
426 of *S. laevis* was sent to the Next Generation Sequencing Facility at Vienna BioCenter Core
427 Facilities (VBCF), a member of the Vienna BioCenter (VBC) in Austria, for library preparation
428 and sequencing on the Illumina HiSeq2500 platform (Illumina). The library was prepared using
429 the on-bead tagmentation library prep method according to the manufacturer's protocol and was
430 individually indexed with the Nextera index Kit (Illumina) by PCR. Insert size was adjusted to
431 around 450 bp. The quantity and quality of each amplified library were analyzed using the
432 Fragment Analyzer (Agilent Technologies) and the HS NGS Fragment Kit (Agilent Technologies).
433

434 The DNA sample from the second replicate of the S1 individual and two replicates from
435 the S2, F1, and F2 individuals were sent to Macrogen Inc. (Republic of Korea) for sequencing on
436 the Illumina HiseqX platform (Illumina). DNA was sheared to around 500 bp fragments in size
437 using dsDNA fragmentase (New England BioLabs). Library preparation was performed using the
438 NEBNext Ultra II DNA Library Prep Kit (New England BioLabs) according to the manufacturer's
439 protocol, and the libraries were individually indexed with the NEBNext Multiplex Oligos for
440 Illumina (New England BioLabs) by PCR. The quality and quantity of each amplified library were
441 analyzed using the Bioanalyzer 2100 (Agilent Technologies), the High Sensitivity DNA kit
442 (Agilent Technologies), and the NEBNext Library Quant Kit for Illumina (New England BioLabs).
443 In total, 64 samples (16 samples per individual) were used for short-read sequencing.

444 **PacBio long-read sequencing and library preparation**

445 To construct the reference genome of *S. laevis* and *S. leprosula*, high molecular weight DNA
446 samples were extracted from branch 1-1 leaf materials of S1 and F1 individuals of each species,
447 and sequenced using PacBio platforms. For *S. laevis*, library preparation and sequencing were
448 performed at VBCF. The library was prepared using the SMRTbell express Kit (PacBio, Menlo
449 Park, CA, USA), and sequenced on the Sequel platform with six SMRT cells (PacBio). For *S.
450 leprosula*, library preparation and sequencing were performed by Macrogen Inc. (Republic of
451 Korea). The library for *S. leprosula* was prepared using the HiFi SMARTbell library preparation
452 system (PacBio) according to the manufacturer's protocol, and was sequenced on the Sequel II
453 platform (PacBio) with one SMRT cell.
454

455 **Genome assembly**

456 The PacBio continuous long reads of *S. laevis* were assembled using Flye 2.7-b158⁴⁷ with 12
457 threads and with an estimated genome size of 350 Mbp. We subsequently used HyPo v1.0.3⁴⁸ for
458 polishing the contigs. The Illumina read alignments provided to HyPo were created using Bowtie

459 v2.3.4.3⁴⁹ with `--very-sensitive` option and using 32 threads. We used the Illumina reads from
460 all branches of the individual S1 rather than utilizing exclusively those of branch 1-1, in order to
461 capitalize on the increased aggregate sequencing depth.

462 The PacBio HiFi reads of *S. leprosula* with an average Quality Value (QV) 20 or higher
463 were extracted, and subsequently assembled using Hifiasm 0.16.1-r375⁵⁰, with `-z10` option and
464 using 40 threads. The primary assembly of *S. leprosula* was used for further analysis. The quality
465 and completeness of the genome assembly were assessed by searching for a set of 2,326 core genes
466 from eudicots_odb10 using BUSCO v5.3.0⁵¹ for each species (Supplementary Table 2).

467

468 Genome annotation

469 We constructed repeat libraries of *S. laevis* and *S. leprosula* using EDTA v2.0.0⁵². Using the
470 libraries, we ran RepeatMasker 4.1.2-p1⁵³ with `-s` option and with `Cross_match` as a search engine,
471 to perform soft-masking of repetitive sequences in the genomes. The estimated percentages of the
472 repetitive sequences were 42.4% for *S. laevis* and 39.5% for *S. leprosula* (Supplementary Table
473 2).

474 We ran BRAKER 2.1.6⁵⁴ to perform gene prediction by first incorporating RNA-seq data
475 and subsequently utilizing a protein database, resulting in the generation of two sets of gene
476 predictions for each species. To perform RNA-seq-based prediction, we mapped the RNA-seq
477 reads (see RNA extraction in Methods section) to the genomes using HISAT 2.2.1⁵⁵, with the
478 alignments subsequently being employed as training data for BRAKER. For protein-based
479 prediction, we used proteins from the Viridiplantae level of OrthoDB v10⁵⁶ as the training data.

480 The two sets of gene predictions were merged using TSEBRA (commit 0e6c9bf in the
481 GitHub repository)⁵⁷ to select reliable gene predictions for each species. Although in principle
482 TSEBRA groups overlapping transcripts and considers them as alternative spliced isoforms of the
483 same gene, we identified instances where one transcript in a gene overlapped with another
484 transcript in a separate gene. In such cases, we manually clustered these transcripts into the same
485 gene.

486 We used EnTAP 0.10.8⁵⁸ with default parameters for functional annotation. The
487 databases employed were: UniProtKB release 2022_05⁵⁹, NCBI RefSeq plant proteins release
488 215⁶⁰, EnTAP Binary Database v0.10.8⁵⁸ and EggNOG 4.1⁶¹. We constructed the standard gene
489 model by utilizing the gene predictions of each species, eliminating any gene structures that lacked
490 a complete ORF. Transcripts containing Ns were also excluded. Following the filtering process,
491 the splice variant displaying the longest coding sequence (CDS) was selected as the primary
492 isoform for each gene. The set of primary isoforms was used as the standard gene model.

493

494 Genome size estimation

495 We estimated genome size of two species using GenomeScope⁶². We counted k-mer from forward
496 sequence data of branch 1-1 from the S1 and F1 individuals using KMC 3⁶³ ($k = 21$). The genome
497 size and heterozygous ratio were estimated by best model fitting. Estimated genome sizes were
498 347 Mb for the slow-growing species and 376 Mb for the fast-growing species. These estimates
499 were 8% and 7% smaller than the estimates obtained through flow cytometry⁶⁴, respectively. The

500 genome size of the fast-growing species was nearly identical to that previously reported for *S.*
501 *leprosula* in peninsular Malaysia⁴⁶.

502

503 Genome synteny analysis

504 To investigate the synteny relationship between *S. laevis* and *S. leprosula*, the synteny analysis
505 performed using the MCScanX in TBtools-II (Toolbox for Biologists) v1.120
506 (<https://github.com/CJ-Chen/TBtools/releases>) with default parameters. For the synteny analysis,
507 we selected 20 contigs from *S. leprosula* because these were the only ones that exhibited synteny
508 blocks between the two species. 20 contigs covers more than 99.5% of the *S. leprosula* genome.
509 The synteny blocks spanning more than 30 genes were displayed in the synteny map
510 (Supplementary Fig. 3).

511

512 Somatic (intra-individual) SNV discovery

513 We filtered low quality reads out and trimmed adapters using fastp v22.0⁶⁵ with following options:
514 -q 20 -n 10 -t 1 -T 1 -l 20 -w 16. The cleaned reads were mapped to the reference genome using
515 bwa-mem2 22.1⁶⁶ with default parameters. We removed PCR duplicates using fixmate and
516 markdup function of samtools 1.13⁶⁷. The sequence reads were mapped to the reference genome,
517 yielding average mapping rates of 91.61% and 89.5% for the slow- and fast-growing species,
518 respectively. To identify reliable SNVs, we utilized two SNP callers (bcftools mpileup^{67,68} and
519 GATK (4.2.4.0) HaplotypeCaller⁶⁹) and extracted SNVs detected by both (Supplementary Fig. 2).

520 We first called SNVs with BCFtools 1.13⁷⁰ mpileup at three different thresholds;
521 threshold 1 (T40): mapping quality (MQ) = 40, base quality (BQ) = 40; threshold 2 (T30): MQ =
522 30, BQ = 30; threshold 3 (T20): MQ = 20, BQ = 20. SNVs detected under each threshold were
523 pooled for further analyses, with duplicates removed. We normalized indels using bcftools norm
524 for vcf files. We removed indels and missing data using vcftools 0.1.16⁷¹.

525 Second, we called SNVs using GATK (4.2.4.0) HaplotypeCaller and merged the
526 individual gvcfs into a vcf file containing only variant sites. We removed indels from the vcf using
527 the GATK SelectVariants. We filtered out unreliable SNVs using GATK VariantFiltration with
528 the following filters: QD (Qual By Depth) < 2.0, QUAL (Base Quality) < 30.0, SOR (Strand Odds
529 Ratio) > 4.0, FS (Fisher Strand) > 60.0, MQ (RMS Mapping Quality) < 40.0, MQRankSum
530 (Mapping Quality Rank Sum Test) < -12.5, ReadPosRankSum (Read Pos Rank Sum Test) < -8.0.
531 After performing independent SNV calling for each biological replicate using each SNP caller, we
532 extracted SNVs that were detected in both replicates for each SNP caller. We further extracted
533 SNVs that were detected by both bcftools mpileup and GATK HaplotypeCaller (Supplementary
534 Fig. 2) using Tassel5⁷² and a custom python script, generating potential SNVs for each threshold.
535 Finally, SNVs detected at any of the three thresholds were extracted to obtain candidate SNVs.
536 The number of SNVs at each filtering step can be found in Supplementary Data 4.

537 The candidate SNV calls were manually confirmed by two independent researchers using
538 the IGV browser⁷³. We removed sites from the list of candidates if there were fewer than five high-
539 quality reads (MQ > 20) in at least one branch sample among the 16 samples. After labeling
540 branches carrying the called variant as somatic mutations, we compared the observed pattern with

541 the genotyping call and extracted SNVs that were supported more than one read in both biological
542 replicates (Supplementary Fig. 5a). We illustrated three types of false positive SNVs that were
543 removed from the list of candidates in Supplementary Fig. 5b–d. The final set of SNVs can be
544 found in Supplementary Data 7. Proportion of potential false positive and negative SNVs for each
545 threshold are illustrated in Supplementary Fig. 6 and 7.

546 The NJ tree for each individual was generated using MEGA11⁷⁴ based on the matrix of
547 the number of sites with somatic SNVs present between each pair of branches and edited using
548 FigTree v1.4.4 (<http://tree.bio.ed.ac.uk/software/figtree/>). Most of the somatic SNVs were
549 heterozygous, whereas 4% of the total SNVs (46/1136) were homozygous (Supplementary Data
550 7). The homozygous sites were treated as a single mutation due to the likelihood of a genotyping
551 error being higher than the probability of two mutations occurring at the same site.

552 553 **Inter-individual SNV discovery**

554 We also identified SNVs between pairs of individuals within each species as inter-individuals
555 SNVs. The method for calling inter-individual SNVs was the same as for intra-individual SNVs,
556 except that only threshold 2 (MQ = 30, BQ = 30) for BCFtools 1.13⁷⁰ was used. We extracted
557 SNVs that are present in all branches within an individual using Tassel5⁷². To exclude ambiguous
558 SNV calls, we removed SNVs within 151 bp of indels that were called with BCFtools 1.13⁷⁰ with
559 the option of threshold 2. We eliminated SNVs within 151 bp of sites with a depth value of zero
560 that occur in more than ten consecutive sites. We also removed SNVs that had a depth smaller than
561 five or larger than $d + 3\sqrt{d}$, where d represents the mean depth of all sites⁷⁵. Due to the large
562 number of candidates for inter-individual SNVs, the manual checking process was skipped.

563 564 **Somatic SNVs confirmation by amplicon sequencing**

565 We verified the reliability of the final set of somatic SNVs by amplicon sequencing approximately
566 5% of the SNVs in *S. laevis* (31 and 10 SNVs for S1 and S2, respectively). We used multiplexed
567 phylogenetic marker sequencing method (MPM-seq⁷⁶) with modifications to the protocol as
568 follows: to amplify 152–280 bp fragments, the first PCR primers comprising tail sequences for the
569 second PCR primers were designed on the flanking regions of each SNV. The first PCR was
570 conducted using the Fast PCR cycling kit (Qiagen, Düsseldorf, Germany) under the following
571 conditions: an initial activation step at 95°C for 5 minutes, followed by 30 cycles of denaturation
572 at 96°C for 5 seconds, annealing at 50/54/56°C for 5 seconds, and extension at 68°C for 10 seconds.
573 This was followed by a final incubation at 72°C for 1 minute. Subsequent next-generation
574 sequencing was performed on an Illumina MiSeq platform using the MiSeq Reagent Kit v2 (300
575 cycles: Illumina).

576 Amplicon sequencing reads were mapped to the reference genome using bwa-mem2
577 22.1⁶⁶ with default parameters. Using bcftools mpileup⁷⁰, we called the genotypes of all sites on
578 target regions and eliminated candidate sequences with MQ and BQ less than 10. The final set of
579 sites selected for confirmation consisted of 24 for the S1 individual and 9 for the S2 individual.
580 We manually confirmed the polymorphic patterns at the target sites using the IGV browser⁷³. If
581 the alternative allele was present or absent in all eight branches in the amplicon sequence, the site

582 was determined as fixed. The site was determined as mismatch if the difference of polymorphic
583 patterns between the somatic SNV calls and amplicon sequence was supported by more than four
584 reads per branch. The sites that were neither fixed nor mismatched were determined as true. 94%
585 (31/33) of SNVs at the final target sites, with 22 out of 24 mutations on S1 and all 9 mutations on
586 S2, were confirmed to exhibit a polymorphic pattern that exactly matched between the somatic
587 SNV calls and amplicon sequence (Supplementary Data 5). It is important to note that the SNVs
588 that were not matched with amplicon sequencing data could potentially represent true somatic
589 mutations. This discrepancy could be attributed to a low allele frequency, where the call is not
590 identified as heterozygous despite the presence of a true mutation.
591

592 **Somatic mutation rates per growth and per year**

593 To estimate the somatic mutation rate per nucleotide per growth (μ_g), a linear regression analysis
594 of the number of somatic SNVs against the physical distance between sampling positions within
595 an individual was conducted using the lm package, with an intercept of zero, in R version 3.6.2.
596 The somatic mutation rate per nucleotide per growth was estimated as:
597

$$598 \mu_g = \frac{b}{2 \times R},$$

600 where b indicates the slope of linear regression and R denotes the number of callable sites,
601 respectively. Note that the denominator includes a factor of two due to diploidy. A site was
602 considered callable when it passed the filters as the polymorphic sites, that is, a mapping quality
603 of at least 40 using GATK, a mapping quality of at least 20 using BCFtools, and a depth greater
604 than or equal to 5. This resulted in 388,801,756 and 320,739,335 base pairs for S1 and S2 and
605 327,435,618 and 263,488,812 base pairs for F1 and F2, respectively.

606 The somatic mutation rate per nucleotide per year (μ_y) was estimated as:
607

$$608 \mu_y = \frac{M}{2 \times R \times A}.$$

610 Here, M indicate the total number of SNVs accumulated from the base (ID 0 in Fig. 1a;
611 Supplementary Data 2) to the branch tip and A represents tree age, respectively. R denotes the
612 number of callable sites that was also used to estimate μ_g . Because there are seven branch tips for
613 each tree (Fig. 1a), we estimated μ_y for each of branch tips and then calculated the mean and 95%
614 confidence interval for each tree (Supplementary Table 3).
615

616 **Mutational spectrum**

617 Mutational spectra were derived directly from the reference genome and alternative alleles at each
618 variant site. There are a total of six possible classes of base substitutions at each variant site:
619 A:T>G:C (T>C), G:C>A:T (C>T), A:T>T:A (T>A), G:C>T:A (C>A), A:T>C:G (T>G), and
620 G:C>C:G (C>G). By considering the bases immediately 5' and 3' to each mutated base, there are
621 a total of 96 possible mutation classes, referred to as triplets, in this classification. We used seqkit⁷⁷

622 to extract the triplets for each variant site. To count the number of each triplet, we used the
623 Wordcount tool in the EMBOSS web service ([https://www.bioinformatics.nl/cgi-
624 bin/emboss/wordcount](https://www.bioinformatics.nl/cgi-bin/emboss/wordcount)). We calculated the fraction of each mutated triplet by dividing the number
625 of mutated triplets by the total number of triplets in the reference genome.

626 We compared the mutational signatures of our tropical trees to those of single-base
627 substitution (SBS) signatures in human cancers using Catalogue Of Somatic Mutations In Cancer
628 (COSMIC) compendium of mutation signatures (COSMICv.2⁷⁸⁻⁸⁰, available at
629 https://cancer.sanger.ac.uk/cosmic/signatures_v2). Cosine similarity was calculated between each
630 tropical tree species and each SBS signature in human cancers.
631

632 **Testing selection of somatic and inter-individual SNVs**

633 To test whether somatic and inter-individual SNVs are subject to selection, we calculated the
634 expected rate of non-synonymous mutation. For the CDS of length L_{cds} , there are possible numbers
635 of mutations of length of $3L_{cds}$ (Supplementary Fig. 8). We classified all possible mutations into
636 three types based on the codon table: synonymous, missense, and nonsense (Supplementary Fig.
637 8). Each type of mutation was counted for each of the six base substitution classes (Supplementary
638 Fig. 8). We generated count tables based on two distinct categories of CDS: those that included all
639 isoforms and those that only encompassed primary isoforms (Supplementary Data 8). As the two
640 tables were largely congruent, we employed the version which included all isoforms of CDS.

641 Using the count table and background mutation rate for each category of substitution class,
642 we calculated the expected number of synonymous (λ_S) and non-synonymous mutations (λ_N)
643 (Supplementary Fig. 8). As a background mutation rate, we adopted the observed somatic mutation
644 rates in the six substitution classes in the intergenic region (Supplementary Table 5), assuming that
645 the intergenic region is nearly neutral to selection. Because the number of nonsense somatic
646 mutation is small, we combined missense and nonsense mutations as non-synonymous. The
647 intergenic regions were identified as the regions situated between 1 kbp upstream of the start codon
648 and 500 bp downstream of the stop codon. Expected rate of synonymous mutation (p_N) is given
649 as $\lambda_N/(\lambda_S + \lambda_N)$. Given the observed number of non-synonymous and synonymous mutations, we
650 rejected the null hypothesis of neutral selection using a binomial test with the significance level of
651 5% (Supplementary Table 4). We used the package binom.test in R v3.6.2.

652 We also used the observed somatic mutation rate in the whole genome (Supplementary
653 Table 5), including genic and intergenic regions, as the background mutation rate and confirmed
654 the robustness of our conclusion (Supplementary Tables 4). The somatic mutation rates in the
655 intergenic region and the whole genome were calculated for each species by pooling the data from
656 two individuals (Supplementary Table 5). While cancer genomics studies have accounted for more
657 detailed context-dependent mutations, such as the high rate of C>T at CpG dinucleotides⁸¹ or
658 comprehensive analysis of 96 possible substitution classes in triplet context⁸², the number of SNVs
659 in our tropical trees is too small to perform such a comprehensive analysis. Therefore, we used the
660 relatively simple six base substitution classes. The genes with somatic SNVs can be found in
661 Supplementary Data 7.
662

663 **Data availability**

664 The raw sequencing data have been deposited to DDBJ under accessions DRX404986-DRX405036
665 for *S. laevis* and DRX412534-DRX412566 for *S. leprosula*. The genome assembly and the gene
666 annotation are available under accessions BSQA01000001-BSQA01007745 for *S. laevis* and
667 BSQB01000001-BSQB01000070 for *S. leprosula*.

668 **Code availability**

669 The codes for the bioinformatics pipeline to process whole genome sequencing data is available
670 from https://github.com/ku-biomath/Shorea_mutation_detection.

671 **Acknowledgements**

672 The authors would like to thank to M. Ohno for her insightful discussion, M. Seki for his assistance
673 with statistical analysis, S.K. Hirota for his technical support in molecular experiments, and Y.
674 Ikezaki for her support in synteny analyses. We also thank Y. Iwasa, H. Tachida, M.M. Manuel,
675 N. Spisak, M. Przeworski and M. Nordborg for their very insightful comments on the initial draft
676 of our manuscript.

677 **Authors contributions**

678 A.S. conceived and designed the analysis; M.N, S.I, W., S.P., N.T., Y.S. and A.S. collected
679 samples; K.O., R.I., A.M.M., V.N., and Y.S. performed molecular experiments; R.I., E.S., S.T.
680 and A.S. analyzed data; T.F. and M.K. performed reference genome construction. A.S. leaded
681 writing the paper with input from all authors. This study was funded by JSPS KAKENHI
682 (JP17H06478, JP23H04966, JP23H04965, and JP23H04966 to A.S. and JP22H04925 (PAGS) to
683 M.K.).

684 **Additional information**

685 Additional supporting information will be found in the online version of this article.

686 **Methods references**

- 687 41. Widiyatno, W., Soekotjo, S., Naiem, M., Purnomo, S. & Setiyanto, P. E. Early performance of 23
688 dipterocarp species planted in logged-over rainforest. *Journal of Tropical Forest Science* **26**, 259–266
689 (2014).
- 690 42. Doyle, J. J. & Doyle, J. L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue.
691 *Phytochemical Bulletin* **19**, 11–15 (1987).
- 692 43. Toyama, H. *et al.* Effects of logging and recruitment on community phylogenetic structure in 32 permanent
693 forest plots of Kampong Thom, Cambodia. *Philosophical Transactions of the Royal Society B: Biological
694 Sciences* **370**, 1–13 (2015).
- 695 44. Doyle, J. DNA Protocols for plants in molecular techniques in taxonomy. (Springer, 1991).
696 doi:https://doi.org/10.1007/978-3-642-83962-7_18.
- 697 45. Yeoh, S. H. *et al.* Unravelling proximate cues of mass flowering in the tropical forests of South-East Asia
698 from gene expression analyses. *Mol Ecol* **26**, 5074–5085 (2017).
- 699 46. Ng, K. K. S. *et al.* The genome of *Shorea leprosula* (Dipterocarpaceae) highlights the ecological relevance
700 of drought in aseasonal tropical rainforests. *Commun Biol* **4**, 1–14 (2021).
- 701 47. Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat
702 graphs. *Nat Biotechnol* **37**, 540–546 (2019).
- 703 48. Kundu, R., Casey, J. & Sung, W.-K. HyPo: Super Fast & Accurate polisher for long read genome
704 assemblies. *bioRxiv* (2019).

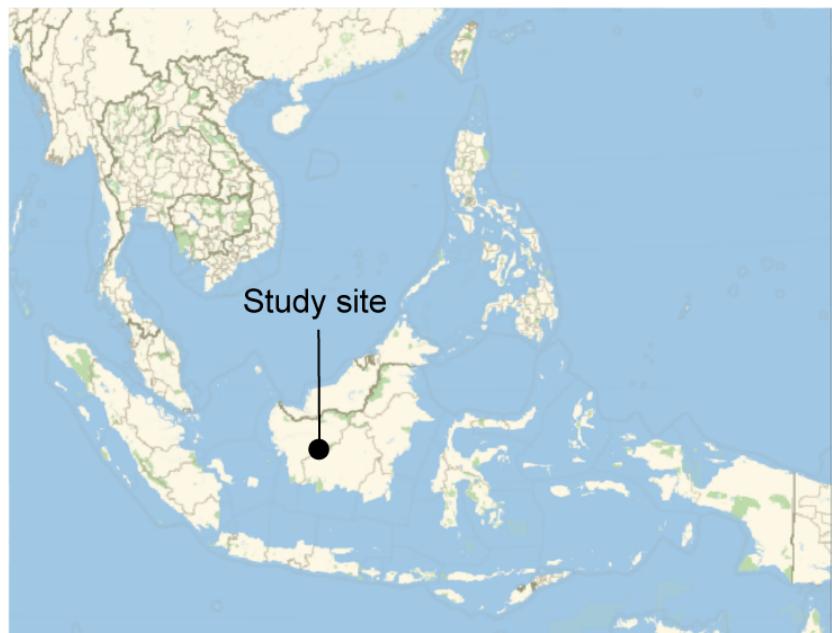
710 49. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. *Nat Methods* **9**, (2012).
711 50. Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using
712 phased assembly graphs with hifiasm. *Nat Methods* **18**, (2021).
713 51. Manni, M., Berkeley, M. R., Seppey, M., Simão, F. A. & Zdobnov, E. M. BUSCO Update: Novel and
714 streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic,
715 prokaryotic, and viral genomes. *Mol Biol Evol* **38**, (2021).
716 52. Ou, S. *et al.* Benchmarking transposable element annotation methods for creation of a streamlined,
717 comprehensive pipeline. *Genome Biol* **20**, (2019).
718 53. Smit, A., Hubley, R. & Green, P. RepeatMasker Open-4.0. <http://www.repeatmasker.org>.
719 54. Brúna, T., Hoff, K. J., Lomsadze, A., Stanke, M. & Borodovsky, M. BRAKER2: Automatic eukaryotic
720 genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein database. *NAR Genom
721 Bioinform* **3**, (2021).
722 55. Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and
723 genotyping with HISAT2 and HISAT-genotype. *Nat Biotechnol* **37**, (2019).
724 56. Zdobnov, E. M. *et al.* OrthoDB in 2020: Evolutionary and functional annotations of orthologs. *Nucleic
725 Acids Res* **49**, (2021).
726 57. Gabriel, L., Hoff, K. J., Brúna, T., Borodovsky, M. & Stanke, M. TSEBRA: transcript selector for
727 BRAKER. *BMC Bioinformatics* **22**, (2021).
728 58. Hart, A. J. *et al.* EnTAP: Bringing faster and smarter functional annotation to non-model eukaryotic
729 transcriptomes. *Mol Ecol Resour* **20**, (2020).
730 59. Bateman, A. *et al.* UniProt: the universal protein knowledgebase in 2021. *Nucleic Acids Res* **49**, (2021).
731 60. O’Leary, N. A. *et al.* Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion,
732 and functional annotation. *Nucleic Acids Res* **44**, (2016).
733 61. Powell, S. *et al.* EggNOG v4.0: Nested orthology inference across 3686 organisms. *Nucleic Acids Res* **42**,
734 (2014).
735 62. Vurture, G. W. *et al.* GenomeScope: Fast reference-free genome profiling from short reads. *Bioinformatics*
736 **33**, 2202–2204 (2017).
737 63. Kokot, M., Dlugosz, M. & Deorowicz, S. KMC 3: counting and manipulating k-mer statistics.
738 *Bioinformatics* **33**, 2759–2761 (2017).
739 64. Ng, C. H. *et al.* Genome size variation and evolution in Dipterocarpaceae. *Plant Ecol Divers* **9**, 437–446
740 (2016).
741 65. Chen, S., Zhou, Y., Chen, Y. & Gu, J. Fastp: An ultra-fast all-in-one FASTQ preprocessor. *Bioinformatics*
742 **34**, i884–i890 (2018).
743 66. Vasimuddin, M., Sanchit, M., Heng, L. & Srinivas, A. Efficient architecture-aware acceleration of BWA-
744 MEM for multicore systems. *Proceedings - 2019 IEEE 33rd International Parallel and Distributed
745 Processing Symposium, IPDPS 2019* 314–324 (2019) doi:10.1109/IPDPS.2019.00041.
746 67. Li, H. *et al.* The sequence alignment/map format and SAMtools. *Bioinformatics* **25**, 2078–2079 (2009).
747 68. Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population
748 genetical parameter estimation from sequencing data. *Bioinformatics* **27**, 2987–2993 (2011).
749 69. McKenna, A. *et al.* The genome analysis toolkit: A MapReduce framework for analyzing next-generation
750 DNA sequencing data. *Genome Res* **20**, (2010).
751 70. Danecek, P. *et al.* Twelve years of SAMtools and BCFtools. *Gigascience* **10**, 1–4 (2021).
752 71. Danecek, P. *et al.* The variant call format and VCFtools. *Bioinformatics* **27**, 2156–2158 (2011).
753 72. Bradbury, P. J. *et al.* TASSEL: Software for association mapping of complex traits in diverse samples.
754 *Bioinformatics* **23**, (2007).
755 73. Robinson, J. T., Thorvaldsdóttir, H., Wenger, A. M., Zehir, A. & Mesirov, J. P. Variant review with the
756 integrative genomics viewer. *Cancer Research* vol. 77 Preprint at <https://doi.org/10.1158/0008-5472.CAN-17-0337> (2017).
757 74. Tamura, K., Stecher, G. & Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. *Mol
758 Biol Evol* **38**, (2021).
759 75. Li, H. & Wren, J. Toward better understanding of artifacts in variant calling from high-coverage samples.
760 *Bioinformatics* **30**, 2843–2851 (2014).
761 76. Suyama, Y. *et al.* Complementary combination of multiplex high-throughput DNA sequencing for
762 molecular phylogeny. *Ecol Res* **37**, 171–181 (2022).
763 77. Shen, W., Le, S., Li, Y. & Hu, F. SeqKit: A cross-platform and ultrafast toolkit for FASTA/Q file
764 manipulation. *PLoS One* **11**, 1–10 (2016).

766 78. Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C., Campbell, P. J. & Stratton, M. R. Deciphering signatures
767 of mutational processes operative in human cancer. *Cell Rep* **3**, 246–259 (2013).
768 79. Nik-Zainal, S. *et al.* Landscape of somatic mutations in 560 breast cancer whole-genome sequences. *Nature*
769 **534**, 47–54 (2016).
770 80. Alexandrov, L. B. *et al.* The repertoire of mutational signatures in human cancer. *Nature* **578**, 94–101
771 (2020).
772 81. Greenman, C., Wooster, R., Futreal, P. A., Stratton, M. R. & Easton, D. F. Statistical analysis of
773 pathogenicity of somatic mutations in cancer. *Genetics* **173**, 2187–2198 (2006).
774 82. Martincorena, I. *et al.* Universal patterns of selection in cancer and somatic tissues. *Cell* **171**, 1029–
775 1041.e21 (2017).

776
777 **Competing interest**

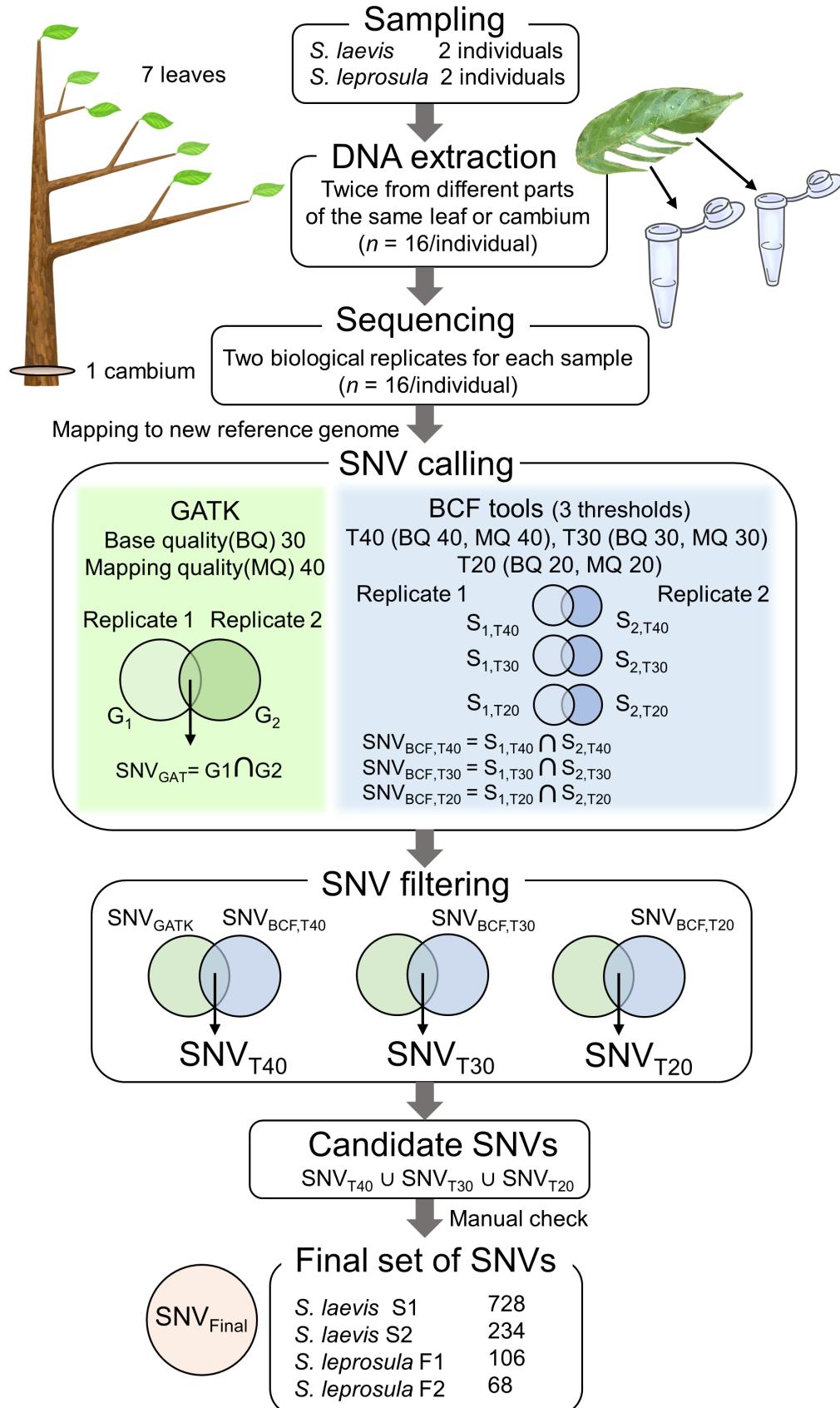
778 The authors declare that they have no competing financial and non-financial interests.
779

781

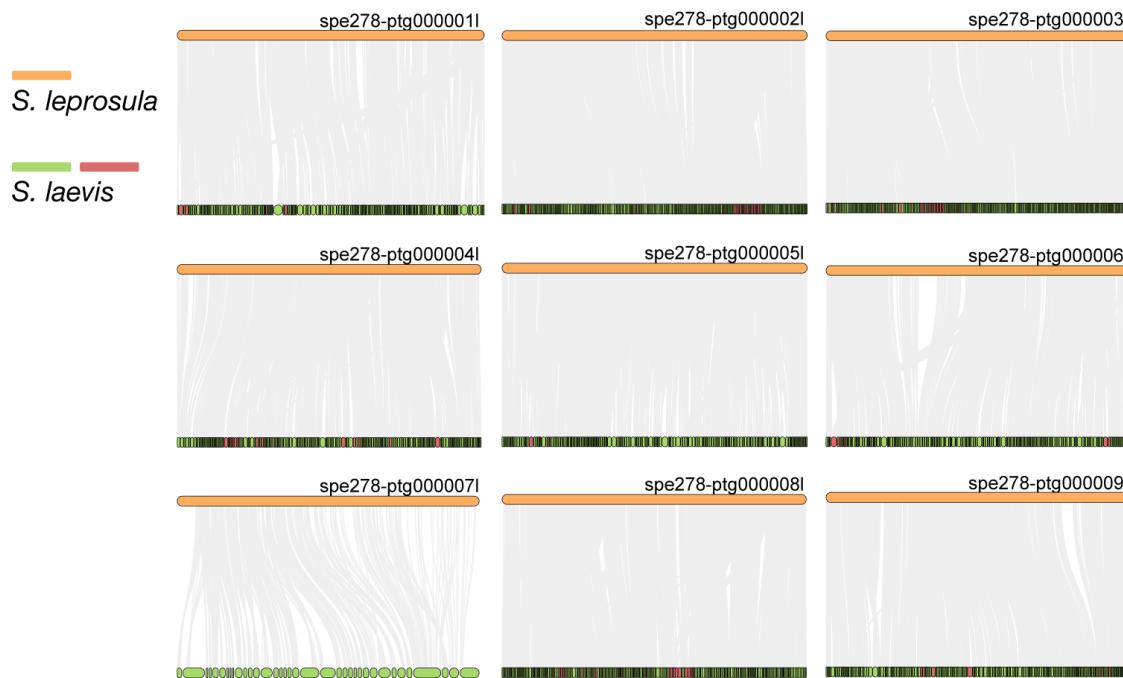

a

Shorea laevis

Shorea leprosula


b

782
783


784 **Supplementary Fig. 1 | Target tropical trees and location of study site. a**, Images of *S. laevis*
785 (S1), a slow-growing species, and *S. leprosula* (F1), a fast-growing species. **b**, Location of the
786 study site in central Borneo, Indonesia.

787
788

790 **Supplementary Fig. 2 | Workflow for identifying *de novo* somatic SNVs.** 8 samples (seven
791 leaves and one cambium) were collected from four trees (two trees from each species). DNA was
792 extracted twice independently from each sample and sequenced independently. Reads were
793 mapped to the reference genome and used for SNV calling and filtering. SNVs over 8 samples
794 were called using GATK HaplotypeCaller (GATK) and Bcftools mpileup (BCF tools) for each set
795 of biological replicates from 7 branches and 1 cambium independently, generating potential SNVs
796 for each set of replicates and for each SNP caller (G_1 and G_2 for GATK, B_1 and B_2 for BCF tools).
797 For BCF tools, we set three thresholds (T40, T30, and T20) with different base quality (BQ) and
798 mapping quality (MQ). SNVs detected in both replicates were extracted for each SNP callers and
799 generated potential SNVs for each SNP caller, SNV_{GATK} for GATK and SNV_{BCF} for Bcftools with
800 three thresholds. These SNVs were filtered by extracting SNVs detected in both SNP callers,
801 generating potential SNVs for each threshold: SNV_{T40} , SNV_{T30} , and SNV_{T20} . Finally, SNVs
802 detected at any of the three thresholds were extracted to obtain candidate SNVs. We checked the
803 candidate SNVs manually and obtained a final set of SNVs, SNV_{Final} .
804

805

806

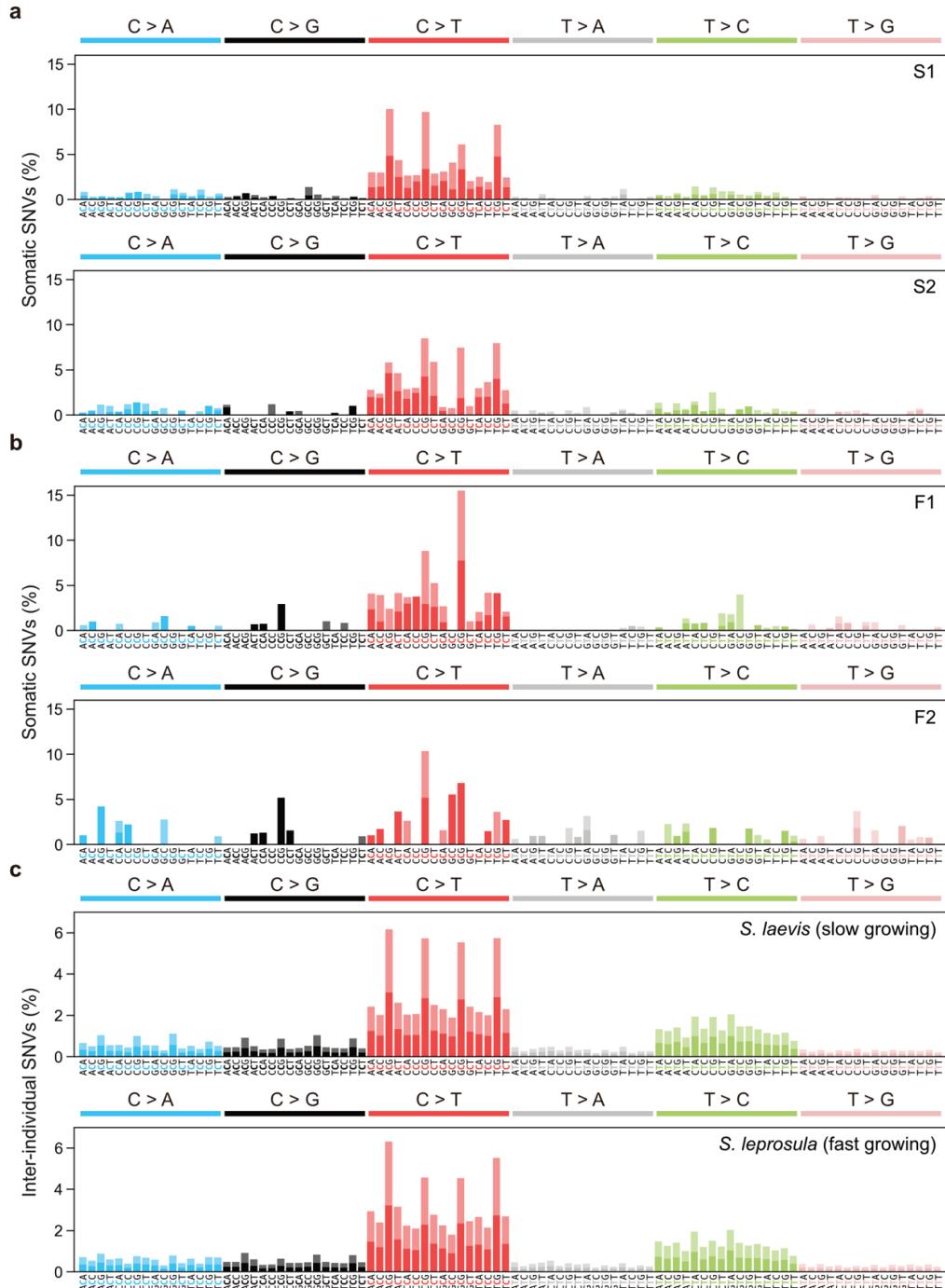
807

808

809

810

811


812

813

814

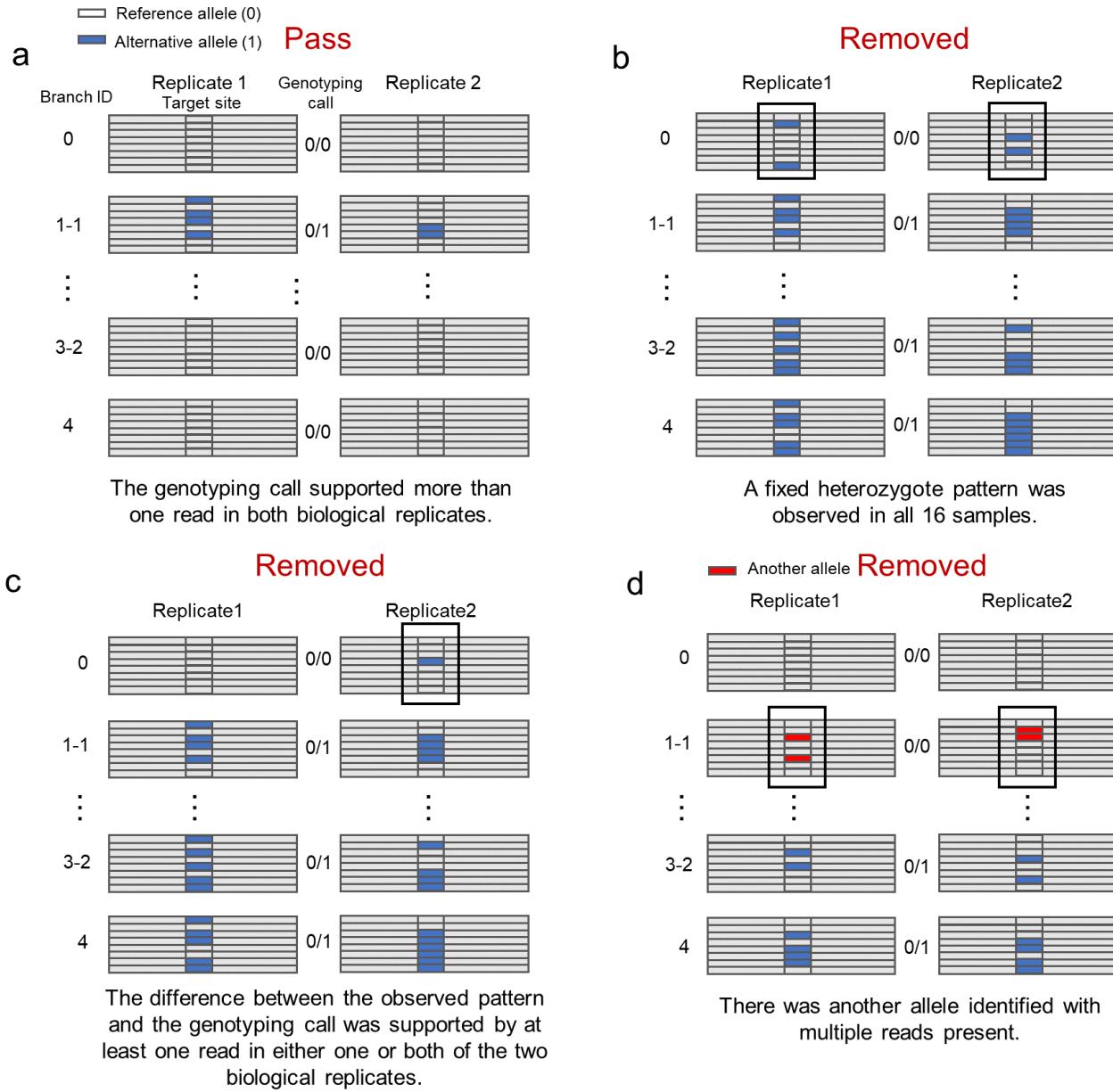
815

Supplementary Fig. 3 | Synteny relationship between *S. laevis* and *S. leprosula*. The collinear blocks within the genomes of *S. leprosula* and *S. laevis* were displayed by gray lines, with orange objects representing the contigs of the *S. leprosula* genome and green objects denoting the contigs of the *S. laevis* genome. In cases where the direction of a contig in *S. laevis* was partly different from that in *S. leprosula*, the contigs of the *S. laevis* genome were colored in red, otherwise it is indicated as green.

816

817

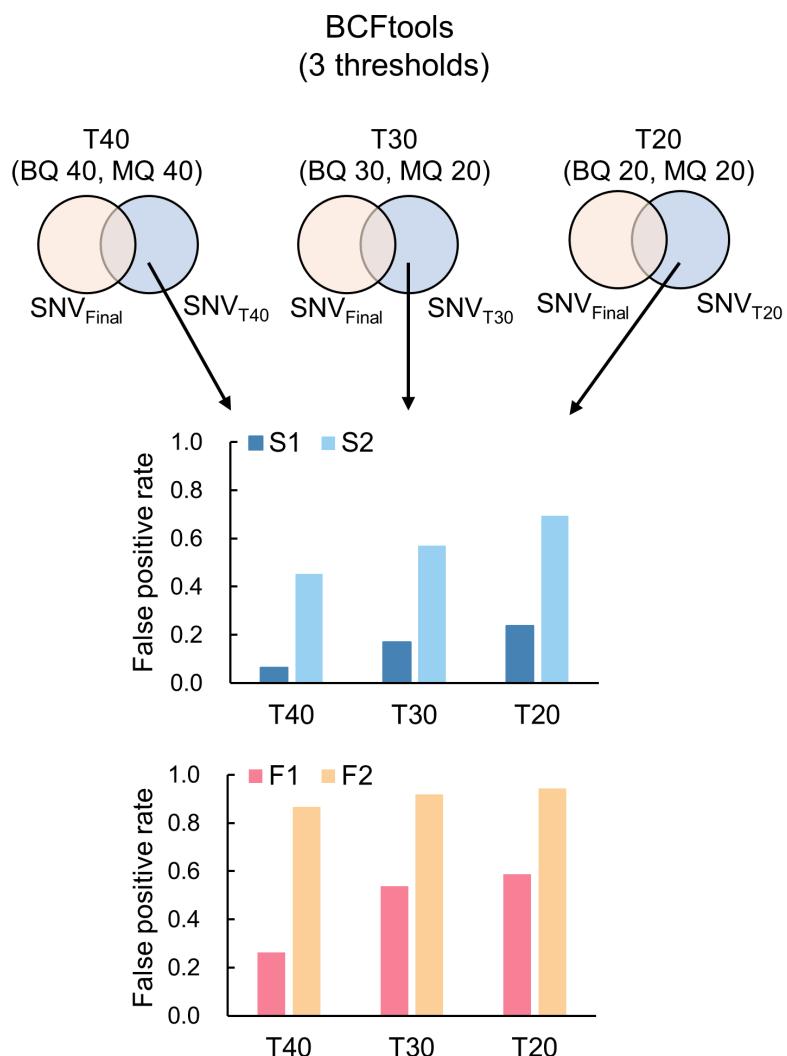
818


819

820

821

822


Supplementary Fig. 4 | Mutational spectra of somatic and inter-individual substitutions. a, Somatic mutation spectra for S1 and S2 individuals in *S. laevis*. **b,** Somatic mutation spectra for F1 and F2 individuals in *S. leprosula*. **c,** Inter-individual SNVs between S1 and S2 (upper panel) and between F1 and F2 (lower panel). The horizontal axis shows 96 mutation types on a trinucleotide context, coloured by base substitution type. Different colours in each bar indicate complementary bases.

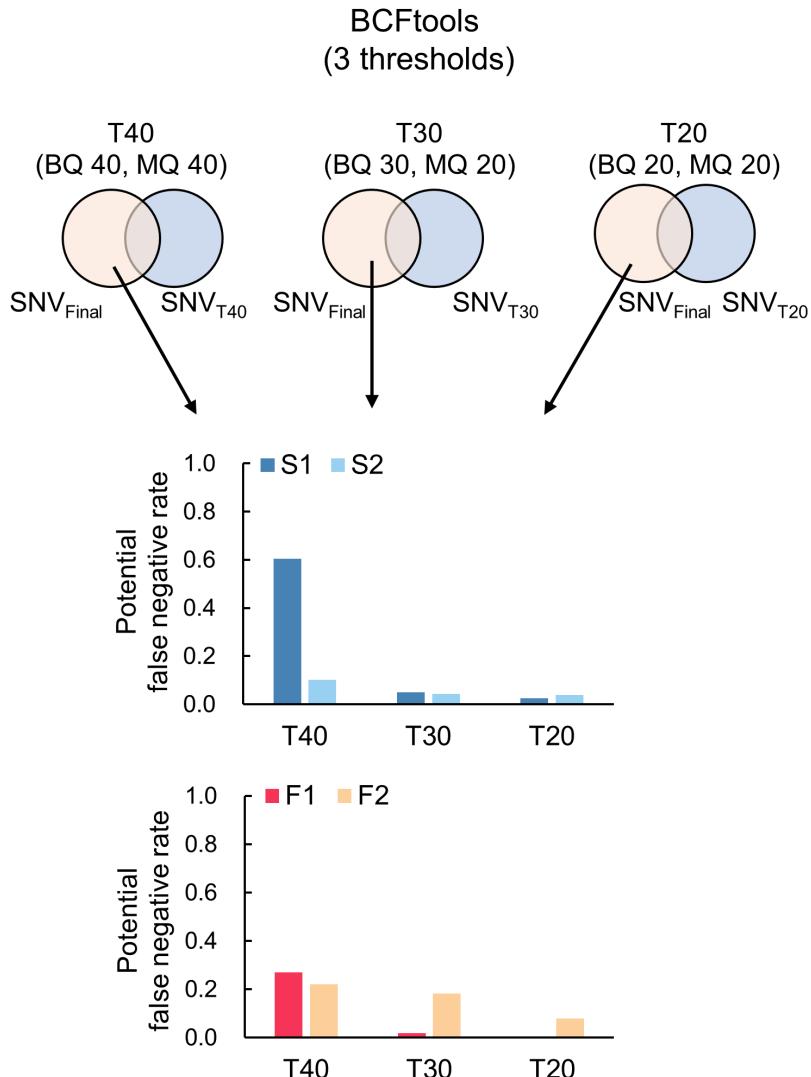
823
824
825
826
827
828

Supplementary Fig. 5 | Manual confirmation of candidate SNVs. **a**, SNVs that passed manual confirmation. **b**, SNVs that were removed due to their fixed heterozygote pattern. **c**, SNVs that have been removed due to the difference between the observed pattern and the genotyping call. **d**, SNVs that were removed due to the presence of another allele with multiple reads.

829

830

831


832

833

834

835

Supplementary Fig. 6 | Proportion of potential false positive SNVs for *S. laevis* (S1, S2) and *S. leprosula* (F1, F2). Potential false positive SNVs was identified as the subset of candidate SNVs that were not included in the final set for each threshold (T40, T30, and T20). This subset was then divided by the total number of potential SNVs at each threshold to determine the proportion.

836
837

838 **Supplementary Fig. 7 | Proportion of potential false negative SNVs for *S. laevis* (S1, S2) and**
839 ***S. leprosula* (F1, F2).** Potential false negative SNVs was identified as the subset of potential SNVs
840 present in the final set but excluded from the candidate SNVs for each threshold (T40, T30, and
841 T20). This subset was then divided by the total number of potential SNVs at each threshold to
842 calculate the proportion.

843

844

845

846

847

848

849

850

851

852

Supplementary Fig. 8 | A calculation scheme for the expected rate of non-synonymous mutation. The possible numbers of synonymous (N_S), missense (N_M), and nonsense (N_{Non}) mutations were counted for each of six base substitution classes from all possible mutations in CDS of length L_{cds} and used for the calculation of expected rate of non-synonymous mutation. For non-synonymous mutation, we pooled the number for missense and nonsense mutations. The background mutation rate for each substitution class i (r_i) is calculated from the observed somatic substitutions in intergenic regions.

853
854
855
856
857

Supplementary Table 1.

Summary statistics of the studied trees.

Height and DBH were directly measured for two individuals of *S. laevis* and *S. leprosula*. Age was estimated as DBH divided by a mean annual increment (MAI).

Species	Individual ID	Height (m)	DBH (cm)	Estimated age (year)
<i>S. laevis</i>	S1	51.5	122.8	324.9
<i>S. laevis</i>	S2	36.6	70.7	187.0
<i>S. leprosula</i>	F1	47.6	95.5	78.8
<i>S. leprosula</i>	F2	40.1	65.6	54.1

858
859

860
861
862
863
864

Supplementary Table 2.

Summary statistics of genome assemblies for *S. laevis* and *S. leprosula*. We assembled the genome using DNA extracted from the apical leaf at branch 1-1 of the tallest individual of each species (S1 and F1). Summary statistics of genome assemblies are listed here.

Category	Features	<i>S. laevis</i>	<i>S. leprosula</i>
Assembly	Sequencing Technology	PacBio CLR + Illumina	PacBio HiFi
	Number of Contigs	7,695	70
	Total length of contigs (nt)	539,910,052	378,538,404
	Contig N50 (nt)	206,905	39,554,423
	Number of Scaffolds	7,745	70
	Total length of scaffolds (nt)	540,441,910	378,538,404
	Scaffold N50 excluding gaps (nt)	219,154	39,554,423
	Maximum scaffold length excluding gaps (nt)	3,442,711	58,083,003
	Number of scaffolds > 1kbp	7,427	70
	Number of N's per 100 kbp	1	0
Annotation	GC-content (%)	33.71	33.14
	Number of protein-coding genes	52,935	40,665
	% of repetitive sequences (identified by EDTA)	42.4	39.5
	% of Complete BUSCO genes	97.9	97.8
	% of Complete and single-copy BUSCO genes	65.8	76.7

865
866

867
868
869
870
871
872
873

Supplementary Table 3.

Somatic mutation rates. The somatic mutation rate per nucleotide per meter was estimated as $\mu_g = \frac{b}{2 \times R}$, where b indicates the slope of linear regression. The somatic mutation per nucleotide per year (μ_y) was estimated as $\mu_y = \frac{M}{2 \times R \times A}$, where M indicates the total number of SNVs accumulated from the base to the branch tip and A represents tree age, respectively. R denotes the number of callable sites.

874

Species	<i>S. laevis</i>		<i>S. leprosula</i>	
individual ID	S1	S2	F1	F2
Coefficient of linear regression (95% confidence interval)	5.503 (4.985–6.020)	2.740 (2.561–2.919)	1.149 (1.06–1.239)	0.679 (0.552–0.806)
μ_g (95% confidence interval)	7.08×10^{-9} (6.41 – 7.74×10^{-9})	4.27×10^{-9} (3.99 – 4.55×10^{-9})	1.77×10^{-9} (1.64 – 1.91×10^{-9})	1.29×10^{-9} (1.05 – 1.53×10^{-9})
μ_y (95% confidence interval)	7.58×10^{-10} (4.67 – 10.1×10^{-10})	7.85×10^{-10} (6.12 – 9.57×10^{-10})	9.63×10^{-10} (7.56 – 11.7×10^{-10})	6.46×10^{-10} (3.55 – 9.38×10^{-10})
Average of μ_g within species	5.67×10^{-9}		1.53×10^{-9}	
Average of μ_y within species	7.71×10^{-10}		8.05×10^{-10}	

875
876
877
878
879
880
881
882

Supplementary Table 4.

Results of the binomial test for selection on somatic and inter-individual SNVs. To test whether somatic and inter-individual SNVs are subject to selection, we calculated the expected rate of non-synonymous mutation. Given the observed number of non-synonymous and synonymous mutations, we rejected the null hypothesis of neutral selection using a binomial test with the significance level of 5%. p_N _expected and p_N _observed represent the expected and observed rate of non-synonymous substitutions.

Type of SNVs	Genomic region used for background mutation inference	Summary statistics	<i>S. laevis</i>	<i>S. leprosula</i>
Somatic SNVs	Intergenic	p_N _expected	0.712	0.717
		p_N _observed	0.734	0.733
		<i>P</i> value	0.711	1
	Whole genome	p_N _expected	0.716	0.723
		p_N _observed	0.734	0.733
		<i>P</i> value	0.803	1
Inter-individual SNVs	Intergenic	p_N _expected	0.712	0.717
		p_N _observed	0.546	0.592
		<i>P</i> value	$<2.20 \times 10^{-16}$	$<2.20 \times 10^{-16}$
	Whole genome	p_N _expected	0.716	0.723
		p_N _observed	0.546	0.592
		<i>P</i> value	$<2.20 \times 10^{-16}$	$<2.20 \times 10^{-16}$

883

884
885
886
887
888
889
890

Supplementary Table 5.

Somatic mutation rates for six substitution classes. Somatic mutation rates for six substitution classes were calculated based on the observed number of SNVs both from the intergenic region and the whole genome. S1+S2 and F1+F2 represent the use of pooled data from two individuals for each species: *S. laevis* (S1, S2) and *S. leprosula* (F1, F2). The values based on the pooled data (indicated in bold type) were used to calculate the expected rate of non-synonymous mutation.

Genomic region used to determine background mutation rate	Tree ID	Transition			Transversion			Total number of SNVs
		A:T > G:C	G:C > A:T	A:T > T:A	G:C > T:A	A:T > C:G	G:C > C:G	
Intergenic	S1	0.141	0.585	0.105	0.066	0.062	0.041	532
	S2	0.193	0.540	0.107	0.067	0.073	0.020	150
	S1+S2	0.152	0.575	0.106	0.066	0.065	0.037	682
	F1	0.225	0.588	0.025	0.038	0.088	0.038	80
	F2	0.297	0.297	0.162	0.108	0.054	0.081	38
	F1+F2	0.248	0.496	0.068	0.060	0.077	0.051	118
Whole genome	S1	0.168	0.541	0.099	0.087	0.058	0.048	728
	S2	0.205	0.496	0.103	0.090	0.064	0.043	234
	S1+S2	0.177	0.530	0.100	0.087	0.059	0.047	962
	F1	0.208	0.547	0.028	0.066	0.104	0.047	106
	F2	0.250	0.265	0.162	0.103	0.147	0.074	68
	F1+F2	0.224	0.437	0.080	0.080	0.121	0.057	174

891