

1 Transposable element expression with 2 variation in sex chromosome number: 3 insights into a toxic Y effect on human 4 longevity

5 Jordan Teoli^{1,2,3,4*}, Miriam Merenciano², Marie Fablet^{2,5},
6 Anamaria Necsulea², Daniel Siqueira-de-Oliveira², Alessandro
7 Brandulas-Cammarata^{6,7}, Audrey Labalme⁸, Hervé Lejeune⁹,
8 Jean-François Lemaitre², François Gueyffier², Damien
9 Sanlaville⁸, Claire Bardel^{1,2}, Cristina Vieira^{2†}, Gabriel AB
10 Marais^{2,4,10,11†}, Ingrid Plotton^{1,3,9†}

11

12

13 ¹ Laboratoire de Biochimie et Biologie Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de
14 Lyon; Bron, 69500, France.

15 ² Université Claude Bernard Lyon 1, UMR 5558, CNRS, Laboratoire de Biométrie et Biologie Evolutive;
16 Villeurbanne, 69310, France.

17 ³ Université Claude Bernard Lyon 1, Institut Cellule Souche et Cerveau (SBRI), Unité INSERM 1208, Centre de
18 Recherche INSERM; Bron, 69500, France.

19 ⁴ CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus
20 de Vairão, Universidade do Porto; Vairão, 4485-661, Portugal.

21 ⁵ Institut universitaire de France.

22 ⁶ Department of Ecology and Evolution, University of Lausanne; Lausanne, 1015, Switzerland.

23 ⁷ SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland

24 ⁸ Service de Génétique, Hospices Civils de Lyon; Bron, 69500, France.

25 ⁹ Service de médecine de la reproduction, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon; Bron, 69500,
26 France.

27 ¹⁰ Departamento de Biologia, Faculdade de Ciências, Universidade do Porto; Porto, 4099-002, Portugal.

28 ¹¹ BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão; Vairão, 4485-661,
29 Portugal.

30

31 [†]Equal contributions as senior authors

32

33 *Corresponding author

34 Correspondence: jordan.teoli@chu-lyon.fr

35

36

37 ABSTRACT

38 Why women live longer than men is still an open question in human biology. Sex
39 chromosomes have been proposed to play a role in the observed sex gap in longevity, and
40 the Y male chromosome has been suspected of having a potential toxic genomic impact on
41 male longevity. It has been hypothesized that in aging individuals, TE repression is
42 diminished, which could lead to detrimental effects (e.g. somatic mutations, perturbed gene
43 expression) and to an acceleration of the aging process. As the Y chromosome is typically
44 enriched in transposable elements (TE), this could explain why the presence of a Y

45 chromosome is associated with shorter longevity. Using transcriptomic data from humans
46 with atypical karyotypes, we found an association between TE expression and the presence
47 and number of Y chromosomes. These findings are consistent with the existence of a toxic Y
48 effect on men's longevity.

49

50 **Keywords:** transposable elements, lifespan, sex chromosomes, toxic Y effect, transcriptomics,
51 differential expression analysis

Introduction

53 Differences in longevity between sexes are prevalent across the tree of life, a phenomenon known as
54 sex gap in longevity (SGL) (Lemaître et al. 2020). In both vertebrates and invertebrates, the
55 heterogametic sex (males in XY, and females in ZW systems) usually has a reduced longevity compared to
56 the homogametic sex (Lemaître et al. 2020). This SGL is also observed in humans, where on average, life
57 expectancy at birth is five years longer for women than for men (World Health Organization 2023). The
58 female-biased gap in longevity is consistently observed in nearly all human populations (Rochelle et al.
59 2015), and it explains the increased prevalence of women among supercentenarians (Willcox, Willcox,
60 and Ferrucci 2008).

61 Although cultural factors favor the extended longevity in women, several biological hypotheses have
62 also been proposed to underlie the SGL phenomenon, which are not mutually exclusive (Rochelle et al.
63 2015; Luy 2003). First, the sex-specific production of hormones (e.g. androgens) has been suggested to
64 contribute to sexual dimorphism in longevity. In humans, it was found that the removal of sex-specific
65 hormones increases male longevity (Maklakov and Lummaa 2013). Second, due to the exclusive maternal
66 transmission of mitochondria, natural selection cannot target deleterious mutations in the mitochondrial
67 genome that specifically impact male fitness. These mutations can thus freely accumulate and may
68 reduce male longevity, a phenomenon called the mother's curse (Maklakov and Lummaa 2013; Milot et
69 al. 2017; Frank and Hurst 1996). Third, since the heterogametic sex carries one variant of each sex
70 chromosome, it is consequently more susceptible to recessive X-linked (or Z-linked) deleterious genetic
71 mutations, as proposed by the unguarded X hypothesis (Trivers 1985). Both theory and empirical data
72 suggest that the latter mechanism explains a part of the sex gap in longevity (Connallon et al. 2022).

73 Finally, the toxic Y hypothesis has been recently proposed to explain the existence of SGL. This
74 hypothesis relies on the high transposable element (TE) content in Y (or W) chromosomes (reviewed in
75 (Marais et al. 2018; Marais, Lemaitre, and Vieira 2020)). Y (or W) chromosomes frequently exhibit lower
76 rates of recombination, leading to an accumulation of repeated sequences (mainly TEs) on these
77 chromosomes (Erlandsson, Wilson, and Pääbo 2000). TEs are DNA sequences with the ability to move
78 within the genome, highly enriched in heterochromatin, and that contribute to an impressive 44-66% of
79 the human genome sequence (Bennett et al. 2004; Guio and González 2019). In humans, it is estimated
80 that approximately 100 insertions belonging to the long interspersed nuclear elements (LINE-1) family
81 contribute to nearly all observed transposition activities, including the retrotransposition of
82 nonautonomous short interspersed nuclear elements (SINEs) that rely on proteins encoded by LINE-1
83 elements (Deniz, Frost, and Branco 2019). While many TEs have a neutral impact on the host, certain
84 insertions can interfere with gene function or result in detrimental chromosomal rearrangements (Deniz,
85 Frost, and Branco 2019; Bourque et al. 2018). Epigenetic silencing mechanisms exist to prevent TE
86 expression and transposition like DNA methylation, histone modifications and the production of small
87 interfering RNAs (Slotkin and Martienssen 2007). However, aging has been shown to disrupt this
88 epigenetic regulation at constitutive heterochromatin causing an increased TE activation in several
89 organisms including humans (De Cecco, Criscione, Peterson, et al. 2013; De Cecco, Criscione, Peckham, et
90 al. 2013; Van Meter et al. 2014; Dennis et al. 2012; Maxwell, Burhans, and Curcio 2011; Li et al. 2013;
91 Chen et al. 2016; Brown, Nguyen, and Bachtrog 2020), thus enhancing the probability to induce
92 detrimental effects through somatic mutations or through other mechanisms (e.g. accumulation of TE
93 transcripts into the cytoplasm, interaction between TE transcripts and genes/proteins) (Mosaddeghi,
94 Farahmandnejad, and Zarshenas 2023). Since the Y chromosome is rich in TEs, more TEs might become
95 active in old males compared to old females, generating more detrimental effects, accelerating aging and
96 likely reducing longevity in males.

97 The toxic Y hypothesis has already been investigated in the fruit fly *Drosophila melanogaster*, where
98 TE expression was found to be higher in old males compared to old females (Brown, Nguyen, and
99 Bachtrog 2020). This observation was associated with a loss of heterochromatin in repetitive elements
100 during aging in male flies (Brown, Nguyen, and Bachtrog 2020). Moreover, flies with additional Y
101 chromosomes showed decreased longevity, further suggesting that the number of Y chromosome
102 influences organismal survival in this species (Brown, Nguyen, and Bachtrog 2020). However, another
103 recent study using flies with variable levels of heterochromatin in the Y chromosome pointed out that the
104 presence, number, or size of the Y chromosome has no impact on sexual dimorphism in longevity

105 (Delanoue et al. 2023). Hence, the harmful effects of the Y chromosome on longevity are still under
106 debate.

107 In humans, the Y chromosome is relatively small (~57 Mb) compared to the X chromosome (~156
108 Mb), but it is also extremely rich in TE insertions (Skaletsky et al. 2003; "Human Genome Assembly
109 GRCh38.P14," n.d.). Furthermore, men with 47,XYY and 47,XXY abnormal karyotypes (with an extra Y or X
110 chromosome, respectively) have strikingly different longevities: 47,XYY men were associated with a 10
111 year reduction in longevity while 47,XXY men were associated with a two year reduction compared to
112 46,XY individuals (Bojesen et al. 2004; Stochholm, Juul, and Gravholt 2010). This was observed despite
113 the extra Y having smaller observable effects on 47,XYY individual's biology and health than the extra X in
114 47,XXY individuals, which results in the Klinefelter syndrome (Bojesen et al. 2004; Stochholm, Juul, and
115 Gravholt 2010). Yet, in humans, information is lacking about the contribution of TEs in longevity, and thus
116 the possible toxic Y effect in this species.

117 In this work, we first studied whether TE expression is associated with the number of Y chromosomes.
118 We analyzed transcriptomic data obtained from individuals of different karyotype compositions: 46,XX
119 females (normal female karyotype), 46,XY males (normal male karyotype), as well as males with
120 abnormal karyotypes, such as 47,XXY and 47,XYY. We found that the presence and number of Y
121 chromosomes might be associated with increased TE expression. This tendency was observed for several
122 TE subfamilies analyzed. We also tested whether there is an increased TE activation in old men compared
123 to old women by using published transcriptomic data of males and females with normal karyotypes
124 (46,XY for males and 46,XX for females, respectively). However, we did not find an increased TE
125 expression in old males compared to old females probably due to the heterogeneity of the dataset.
126 Overall, this work suggests an association between the Y chromosome and the increased TE activity in
127 males and opens a new window to study the toxic effect of this particular chromosome in human
128 longevity.

129 Results

130 **Males with sex aneuploidies (XXY and XYY) have higher transcriptomic differences than XY males 131 compared to XX females**

132 The toxic Y hypothesis is based on the fact that increased TE expression in males is likely the result of the
133 significantly higher insertion content in the Y chromosome. This implies a potential correlation between
134 the number of Y chromosomes in a karyotype and the levels of TE expression. To test if an association
135 between TE expression and the number of Y chromosomes exists in humans, we generated RNA-seq data
136 from blood samples of males (46,XY) and females (46,XX) from the Lyon University Hospital. In addition,
137 we also generated RNA-seq data from males with different sex chromosome aneuploidies: males with
138 Klinefelter syndrome harboring an additional X chromosome (47,XXY), and males with Jacob syndrome
139 harboring an additional Y chromosome (47,XYY). In total, we obtained blood samples from 24 individuals
140 (six females 46,XX, six males 46,XY, eight males 47,XXY, and four males 47,XYY) (Table S1). Pairwise
141 Wilcoxon tests revealed a significant difference in age distribution only between 46,XX and 47,XXY
142 individuals (p-value = 0.033). This finding suggests that age could act as a confounding factor in the
143 relationship between TE expression and karyotype. However, it is worth noting that any such conclusion
144 would introduce a conservative bias when evaluating the correlation between TE expression and the
145 number of Y chromosomes in a karyotype. Notably, individuals with 47,XXY (mean age 23.4 years) and
146 47,XYY (mean age 29.5 years) tend to be younger compared to those with 46,XX (mean age 39.2 years)
147 and 46,XY (mean age 41.5 years) karyotypes.

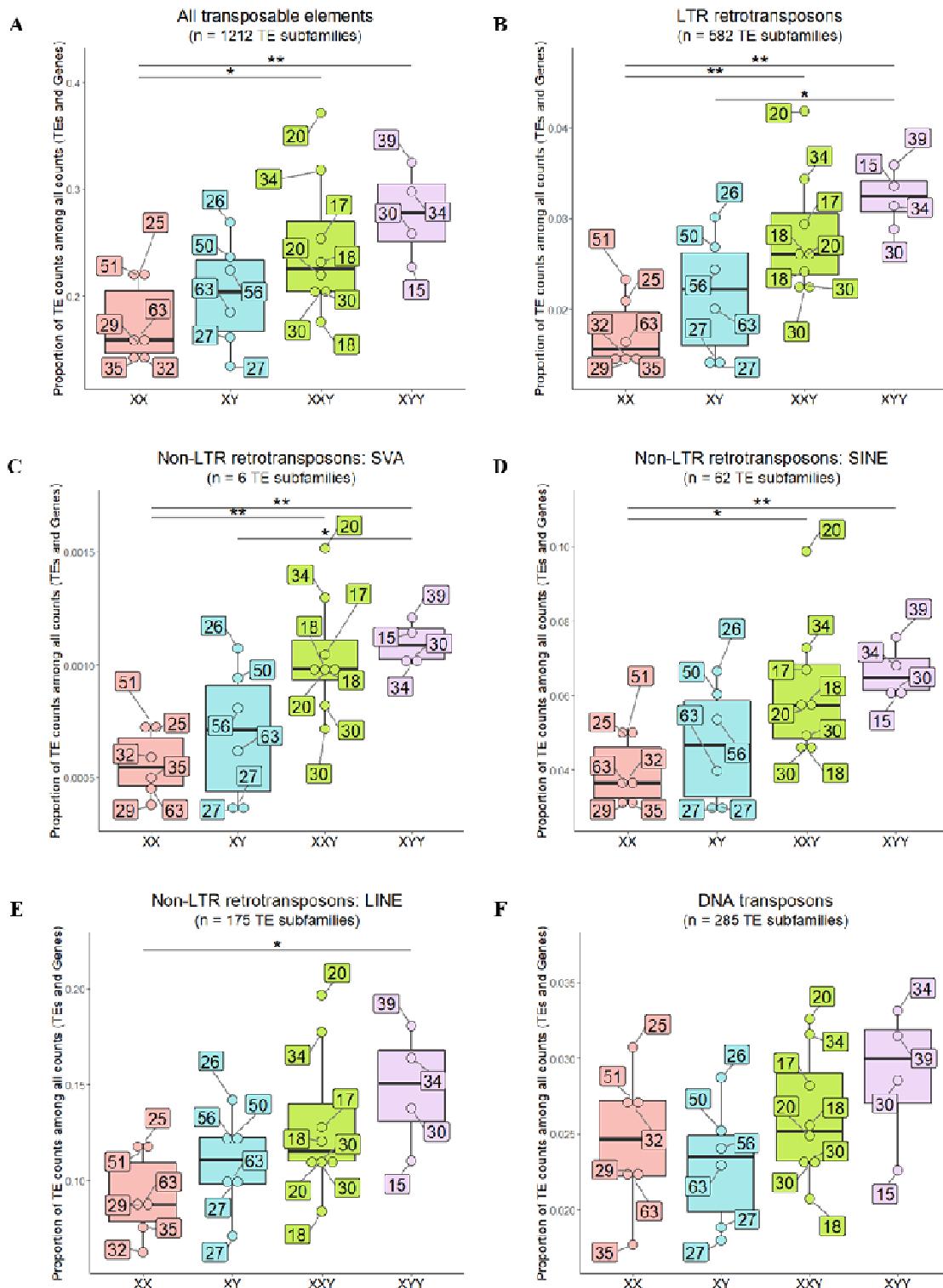
148 We first analyzed gene expression to see whether different karyotypes have changes in their
149 transcriptomic profile (Fig. S1) (see **Materials and Methods**). Principal component analysis (PCA) showed
150 that the highest variation in gene expression was found when comparing females (46,XX) and males (with
151 and without aneuploidies) (Fig. S2). Besides that, we found that the number of significantly differentially
152 expressed genes (DEGs) varied depending on the pair of karyotypes compared (Fig. S3, Table S2).
153 Comparing males 46,XY to females 46,XX samples, 19 (0.10%) and 18 (0.09%) genes were found to be
154 upregulated and downregulated, respectively, among the 19,947 studied genes (Table S2). As expected,
155 we found that while most of the upregulated genes (13/19, 68.42%) were Y-linked genes, most of the
156 downregulated ones (14/18, 77.78%) were X-linked genes (Fig. S4, Tables S2 to S4, Data S1 and S2).

157 Furthermore, we found an increased number of DEGs when comparing samples from individuals with sex
158 chromosome aneuploidies (47,XXY and 47,XYY males) to female (46,XX) than to male (46,XY) samples.
159 Indeed, 47,XXY and 47,XYY males showed 1,893 (9.49%) and 1,510 (7.57%) DEGs compared to 46,XX
160 females, respectively. However, 47,XXY and 47,XYY males only showed 141 (0.71%) and 58 (0.29%) DEGs
161 compared to 46,XY males, respectively (Fig. S3, Table S2, Data S2). We also found a small amount of
162 DEGs when comparing 47,XYY and 47,XXY males (50, 0.25%) (Fig. S3, Table S2).

163 Finally, Gene Ontology (GO) and pathway enrichment analysis found the largest number of significant
164 terms when 47,XXY and 47,XYY were compared to 46,XX but few considering the four other comparisons
165 (Data S3). Overall, terms associated with demethylase activity, cell cycle, and in protein or DNA
166 production were the most shared between the six pairwise karyotype comparisons and between the
167 databases used (GO, KEGG or Reactome) (Fig. S5 to S7). Interestingly, biological pathways concerning
168 senescence, like DNA damage/telomere stress induced senescence, senescence-associated secretory
169 phenotype, and oxidative stress induced senescence, were found downregulated in 47,XXY karyotype
170 compared to 46,XX, 46,XY and 47,XYY karyotypes (Fig. S8, Data S3). Furthermore, some of the DEGs were
171 also previously found in other studies (see **Supplementary text**).

172 Altogether, we observed that males with 47,XYY and 47,XXY aneuploidies exhibit greater disparities in
173 gene transcriptomic profiles compared to 46,XX females, in contrast to the comparison between 46,XY
174 males and 46,XX females.

175


176 **The number of Y chromosomes tend to be associated with an increased TE expression**

177 To check whether the presence of the Y chromosome is associated with overall increased levels of TE
178 expression, we measured TE transcript amounts using the *TEcount* module of *TEtools* (Lerat et al. 2016) in
179 all the RNA samples (Fig. S1). PCA showed that females (46,XX) had different TE expression profiles
180 compared to males (46,XY, 47,XXY, or 47,XYY), similar to what we observed in gene expression (Fig. S9).
181 Specifically, males (46,XY) tended to have an overall increased TE transcript amount compared to females
182 (46,XX), although it was not statistically significant (Wilcoxon test: p-value = 0.310) (Fig. 1A). These results
183 were in line with our expectations, since the Y chromosome is known to harbor many more TE insertions
184 than the X chromosome. We then checked whether the addition of a Y chromosome accentuates our
185 previous findings. Hence, we expected 47,XXY males having more TE transcripts than 46,XX females, and
186 47,XYY males having more TE transcripts than 46,XY males since the extra Y chromosome should bring
187 more TE insertions to these individuals. In agreement with this hypothesis, we found a significant general
188 increase of TE transcript amounts between 46,XX females and 47,XXY males (Wilcoxon test: p-value =
189 0.029) or 47,XYY (Wilcoxon test: p-value = 0.010), and a near significant increased between 46,XY and
190 47,XYY males (Wilcoxon test: p-value = 0.067) (Fig. 1A). Differences in TE transcript amounts between
191 47,XXY and 46,XY, and between 47,XYY and 47,XXY were not significant (Wilcoxon test: p-values = 0.345
192 and 0.283, respectively). Moreover, we saw that the addition of a sex chromosome, either X or Y, tended
193 to increase the overall amounts of TE transcripts probably due to an increase in genomic material and
194 thus in TE load. However, the addition of a Y chromosome seemed to increase the expression of TEs even
195 more than the addition of a X chromosome (Fig. 1A). These results suggested that the presence of the Y
196 chromosome might be associated with an increase in TE transcripts, as postulated in the toxic Y
197 hypothesis, and could contribute to a global deregulation of TEs.

198 We also performed the same analysis as before focusing on TE classes/subclasses (LTR, SVA, SINE,
199 LINE, and DNA elements) (Fig. 1B to F). Considering LTR, SVA, and SINEs: both 47,XXY and 47,XYY
200 individuals had a statistically significant increased TE expression compared to 46,XX females (Wilcoxon
201 test: p-values = 0.003 and 0.010 for LTR respectively, p-values = 0.001 and 0.010 for SVA respectively,
202 and p-values = 0.013 and 0.010 for SINE respectively) (Fig. 1B to D). There were also significant
203 differences in TE transcript amounts between 46,XY and 47,XYY males for LTR (Wilcoxon test: p-value =
204 0.019) (Fig. 1B) and SVA elements (Wilcoxon test: p-value = 0.038) (Fig. 1C). Finally, for LINE elements we
205 only found significant differences between 46,XX females and 47,XYY males (Wilcoxon test: p-value =
206 0.038) (Fig. 1E), and no significant differences in TE expression between any karyotypes for DNA elements
207 (Fig. 1F).

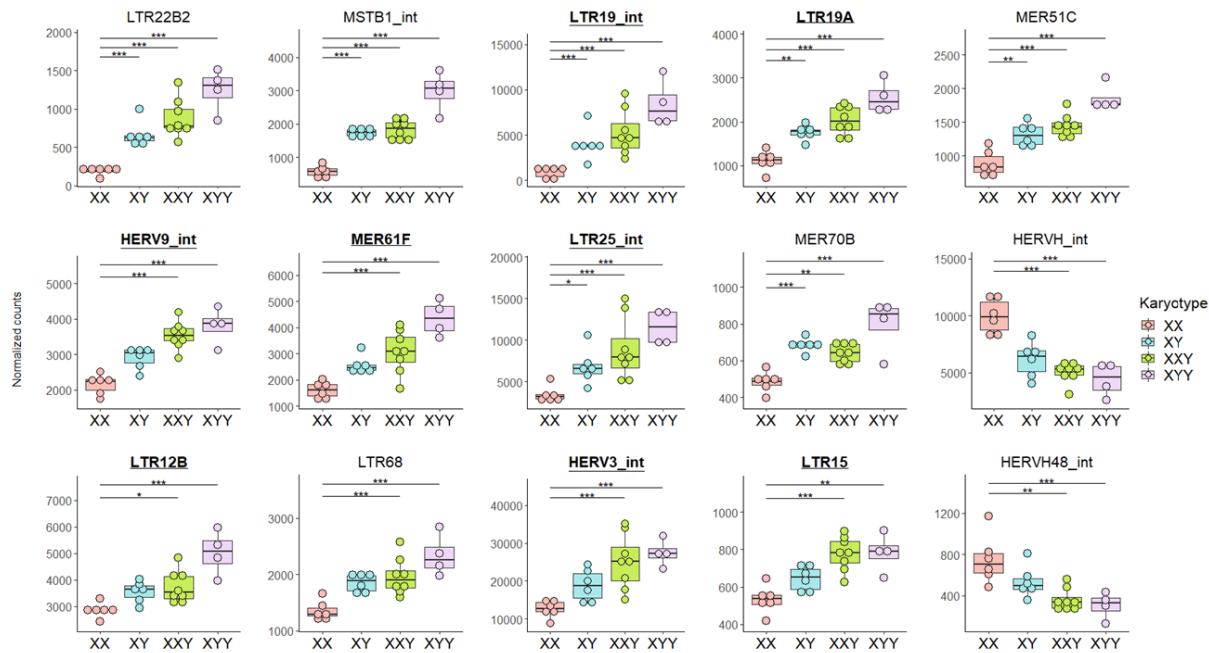
208 In humans, only SVA, HERVK, AluS, L1, and AluY are known to be transcriptionally active (Kojima
209 2018). We found that the proportion of TE transcripts belonging to these groups was significantly
210 increased in 47,XYY males compared to 46,XX females (Wilcoxon test: p-values = 0.010, 0.010, 0.010, and

211 0.038 respectively for SVA, HERVK, AluS and L1 elements) (Fig. S10A to D), except for AluY elements (Fig.
212 S10E). The proportion of TE transcripts was also significantly increased in 47,XXY males compared to
213 46,XX females in SVA (Wilcoxon test: p-value = 0.001) (Fig. S10A), HERVK (Wilcoxon test: p-value = 0.003)
214 (Fig. S10B), and AluS families (Wilcoxon test: p-value = 0.020) (Fig. S10C). Moreover, 47,XYY males also
215 showed a significant increase in TE transcripts in comparison with 46,XY males for SVA (Wilcoxon test: p-
216 value = 0.038) (Fig. S10A) and HERVK families (Wilcoxon test: p-value = 0.019) (Fig. S10B). No significant
217 differences in TE expression between any karyotypes considering AluY elements was found (Fig. S10E).
218

219

220
221
222
223
224

Figure 1. TE expression in the different karyotypes after removing batch effect, considering (A) all TE subfamilies (1,212 TE subfamilies) and (B) TE subfamilies belonging to LTR retrotransposons (582 TE subfamilies), (C) SVA non-LTR retrotransposons (6 TE subfamilies), (D) SINE non-LTR retrotransposons (62 TE subfamilies), (E) LINE non-LTR retrotransposons (175 TE subfamilies), or (F) DNA elements (285 TE subfamilies).


225 Global TE expression was measured in each karyotype (x-axis) as the proportion of TE read counts
226 among all read counts (TEs and genes) (y-axis). In this calculation, read counts were used after
227 DESeq2 normalization ("normalized counts") to remove any depth sequencing bias. Each dot
228 represents one individual. Dots are colored according to karyotype (four levels: XX, XY, XXY, XYY).
229 The age of each individual is indicated in a labeled box linked to the corresponding dot. Batch effect
230 was removed before graphical display. P-values from Wilcoxon test comparing pairwise karyotypes:
231 (*) < 0.05 and (**) < 0.01.

232
233 A similar tendency in TE expression was found when analyzing differentially expressed TE subfamilies
234 between the karyotypes (Fig. S11, Table S5). For the vast majority of them, we found a significant
235 increased TE expression in both 47,XXY and 47,XYY individuals compared to 46,XX, with a tendency to
236 find 47,XYY individuals being the ones with the highest TE expression (Fig. 2 and Fig. S12). For some TE
237 subfamilies, TE transcripts also significantly increased in 46,XY compared to 46,XX (Fig. 2). Indeed, with
238 the exception of some TE subfamilies, female samples (46,XX) were the ones showing less reads mapping
239 to TEs and 47,XYY samples the ones with more reads (Fig. 2 and Fig. S12).

240 We finally estimated which TE subfamilies were enriched in the Y chromosome among the 1,246 TE
241 subfamilies studied herein (Data S4). We found that 9.07% (113/1,246) of all TE subfamilies were
242 enriched in the Y chromosome (binomial test adjusted p-value < 0.05 and number of observed copies
243 located on Y chromosome > expected). Eight TE subfamilies out of the 15 most significant ones according
244 to karyotype (53.33%), were enriched in the Y chromosome and that was greater than expected (p-value
245 < 0.001) (Fig. 2). Among the upregulated TE subfamilies found when we compared 46,XY, 47,XXY, or
246 47,XYY to 46,XX individuals, the proportion of TE subfamilies enriched in the Y chromosome (42.86%
247 (3/7), 26.58% (21/79), and 37.21% (16/43) respectively) were also greater than expected (p-values =
248 0.020, < 0.001, and < 0.001, respectively) (Table S5). Considering downregulated TE subfamilies, we
249 found 12.50% (2/16) of them enriched in the Y chromosome when we compared 47,XXY to 46,XX
250 individuals (p-value = 0.651) and 29.41% (5/17) when we compared 47,XYY to 46,XX individuals greater
251 than expected (p-value = 0.015) (Table S5). The increase of TE subfamily expression when the number of
252 copies of this TE subfamily carried by the Y chromosome increased was more pronounced in the Y-
253 enriched TE subfamily group than in the not Y-enriched TE subfamily group (Fig. S13A). However, the
254 decrease of TE subfamily expression when the proportion of copies of this TE subfamily carried by the Y
255 chromosome increased, was also more pronounced in the Y-enriched TE subfamily group than in the not
256 Y-enriched TE subfamily group (Fig. S13B). Again, we found a significant general increased proportion of
257 TE transcripts in 47,XXY and 47,XYY males compared to 46,XX females and sometimes in 47,XYY males
258 compared to 46,XY males considering separately expression of Y-enriched, Y-depleted, neither Y-enriched
259 nor Y-depleted TE subfamilies, or TE subfamilies with no copies carried by the Y chromosome, the X
260 chromosome or neither (Fig. S14).

261 In summary, these results suggested that TE expression is dependent on the sex chromosomes
262 contained in the karyotype. Particularly, the presence and number of Y chromosomes might be
263 associated with increase TE expression.

264

265

266
267

Figure 2. Boxplots for the 15 most significantly differentially expressed TE subfamilies according to karyotype using the likelihood-ratio test, after removing batch effect.

268
269
270
271
272
273
274
275
276
277

Specific TE subfamily expression was estimated using the number of read counts after DESeq2 normalization ("normalized counts") to remove any depth sequencing bias. Each dot represents one individual. Dots are colored according to karyotype (four levels: XX, XY, XXY, XYY). Batch effect was removed before graphical display. Adjusted p-values from DESeq2: (*) < 0.05 , (**) < 0.01 , (***) < 0.001 . All of these 15 subfamilies had at least one copy on the Y chromosome, except for HERVH48-int, in the TE sequence reference file. All of these 15 subfamilies had at least one copy on the X chromosome in the TE sequence reference file. Underlined bold TE subfamilies are enriched in the Y chromosome (binomial test adjusted p-value < 0.05 and number of observed copies located on Y chromosome $>$ expected). See Fig. S12 for the other significantly differentially expressed TE subfamilies according to karyotype.

278

279
280

47,XYY individuals have an enrichment of upregulated TE subfamilies in upstream region of upregulated genes

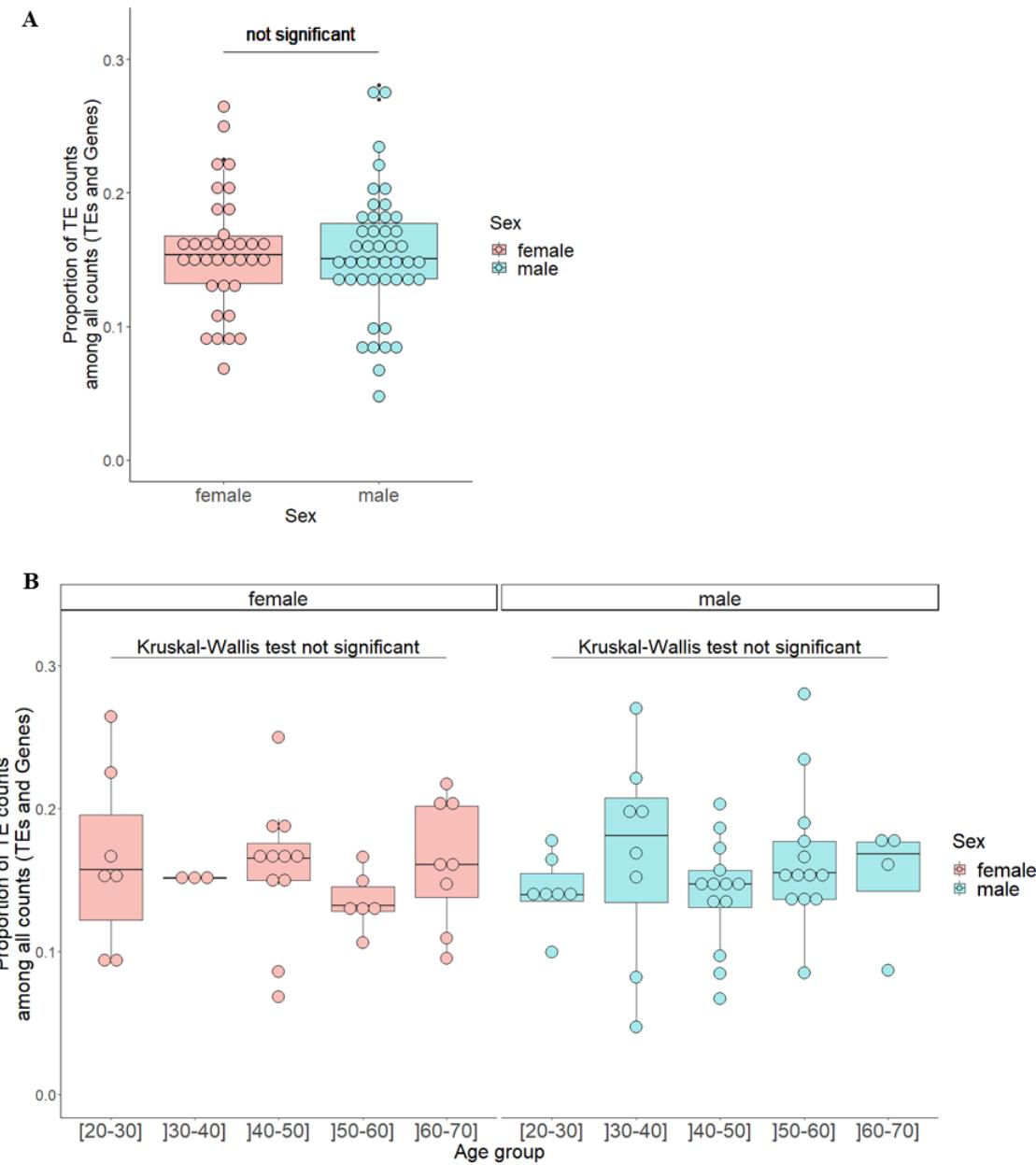
281
282
283
284
285
286
287
288
289
290
291

To see if there was any correlation between differentially expressed TE subfamilies and DEGs, we tested whether insertions from differentially expressed TE subfamilies are enriched or depleted in DEGs upstream regions. To that end, we performed permutation tests for each pairwise karyotype comparison in both upregulated and downregulated genes separately (see **Materials and Methods**). Results revealed an enrichment of TEs from upregulated subfamilies in upstream regions of upregulated genes exclusively in 47,XYY compared to 46,XX karyotype (p -value = 0.017). In contrast, we found a depletion of TE copies from upregulated TE subfamilies in the upstream region of downregulated genes when comparing 47,XYY to 46,XX karyotype (p -value = 0.009). We then used the same approach focusing on TE copies from downregulated TE subfamilies. This time, we only found an enrichment of TE copies in the upstream region of downregulated genes in 47,XYY compared to 46,XX karyotype (p -value = 0.021).

292

Some TE transcripts could come from passive co-transcription with genes

293
294
295
296


In addition to originating from autonomous expression, TE transcripts could also arise from passive co-transcription with genes, such as through intron retention or pervasive intragenic transcription (i.e. non-coding transcription) (Lanciano and Cristofari 2020). In fact, the majority of TE-derived RNA-seq reads typically stem from co-transcription or pervasive transcription (Deininger et al. 2017; Navarro et al.

297 2019). Hence, we checked whether there were TE transcripts that come from gene transcription rather
298 than autonomous transcription and which could contribute to TE subfamily being differentially
299 expressed. To do that, we tested whether TE copies from upregulated subfamilies were enriched within
300 upregulated genes for each pairwise karyotype comparison. Then, we tested whether TE copies from
301 downregulated subfamilies were enriched within downregulated genes for each pairwise karyotype
302 comparison. When we compared 46,XY males with 46,XX females, we found 2 upregulated genes
303 containing one or more TE insertions from upregulated TE subfamilies, but 0 overlap between
304 downregulated genes and TE copies from downregulated TE subfamilies (**Data S5**). Considering the
305 comparison 47,XXY versus 46,XX, these numbers rose to 228 and 88 respectively. There were 71 and 123
306 considering the comparison 47,XYY versus 46,XX (**Data S5**). Except when the number of overlap between
307 genes and TE was equal to 0, we found a higher proportion of upregulated genes containing at least one
308 copy of one of the upregulated TE subfamilies and a higher proportion of downregulated genes
309 containing at least one copy of one of the downregulated TE subfamilies in 46,XY versus 46,XX, 47,XXY
310 versus 46,XX, and 47,XYY versus 46,XX comparisons (**Table S6**).
311

312 **No significant association of TE expression in blood cells with age**

313 The toxic Y hypothesis also relies on the fact that aging disrupts the mechanisms of epigenetic
314 regulation at constitutive heterochromatin, consequently leading to heightened activation of TE (De
315 Cecco, Criscione, Peterson, et al. 2013; De Cecco, Criscione, Peckham, et al. 2013; Van Meter et al. 2014;
316 Dennis et al. 2012; Maxwell, Burhans, and Curcio 2011; Li et al. 2013; Chen et al. 2016; Brown, Nguyen,
317 and Bachtrog 2020). Given the substantial abundance of TE insertions on the human Y chromosome
318 relative to the X chromosome, we investigated whether age impacts TE expression differently between
319 males and females hypothesizing that old males exhibit more TE expression than old females. As such, we
320 used published RNA-seq data from the Genotype-Tissue Expression (GTEx) project. To minimize data
321 heterogeneity and to maintain consistency with our previous analysis, we selected blood samples
322 exclusively from non-Latino and non-Hispanic individuals without any history of persistent viral infection
323 or dementia (**Fig. S15**) (see **Material and Methods**). We thus compared TE expression in 46,XY males and
324 46,XX females belonging to five different age groups from 20 to 70 years old. We divided the dataset in
325 two groups: one excluding data obtained from patients with current or prior histories of cancer or
326 cardiovascular diseases (**Table S7**) and the other including them (**Table S8**).
327

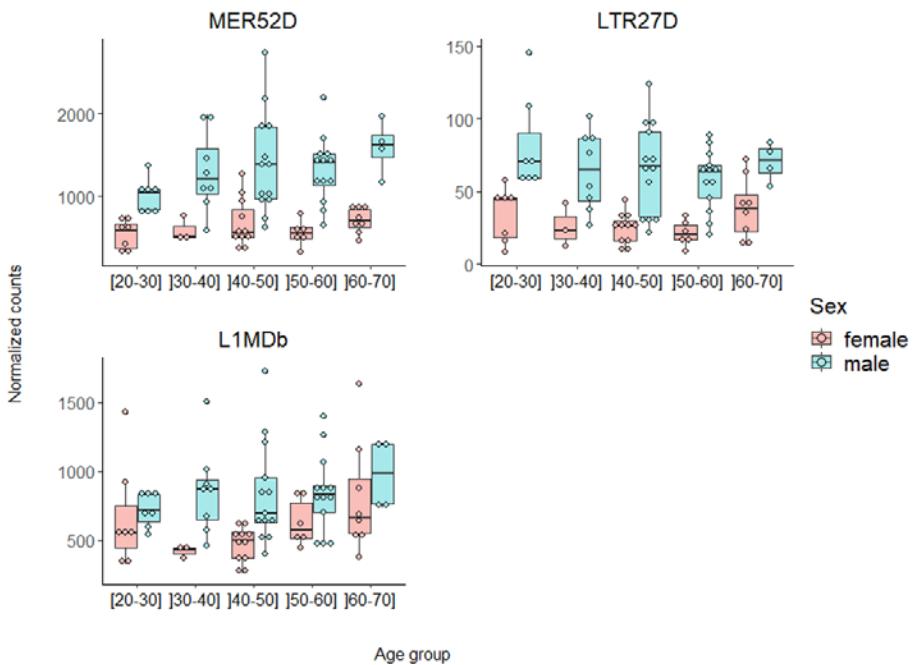
328 In the no disease dataset, there were no significant differences observed in TE expression levels
329 between the oldest males ([50-70] years, n = 17) and the youngest males ([20-50] years, n = 28)
330 (Wilcoxon test: p-value = 0.371). Similarly, no significant differences were found between the oldest
331 females ([50-70] years, n = 14) and the youngest females ([20-50] years, n = 21) (Wilcoxon test: p-value =
332 0.454). Moreover, we observed no difference in TE expression between the oldest males and the oldest
333 females (Wilcoxon test: p-value = 0.399). We then studied more precisely the effect of age in TE
334 expression using 10-year ranges (age groups: [20-30], [30-40], [40-50], [50-60], and [60-70]). Again, global
335 expression of TEs was not significantly associated with sex, age in females, or age in males (p-values =
336 0.788, 0.585, and 0.471, respectively) (**Fig. 3**). Focusing on TE classes/subclasses (LTR, SVA, SINE, LINE, or
337 DNA elements), active TEs (SVA, HERVK, AluS, L1, or AluY), Y-enriched, Y-depleted, or TEs with no copies
338 in the Y chromosome, we found no significant association between TE expression and both sex and age
339 group. Regarding TE subfamilies, none of them were upregulated in oldest males compared to youngest
340 males or when comparing oldest females with youngest females (**Fig. S16A-B**). However, we found
341 several TE subfamilies significantly differentially expressed between some age groups, particularly in
342 males (**Fig S16B and S17, Table S9**). Interestingly, the 30-40 years old group shows the highest number of
343 significantly differentially expressed TE subfamilies when compared with other age groups in males (**Fig.**
344 **S16B, Table S9**). In addition, upon comparing TE expression between males and females in every age
345 group, we did not observe an elevated number of TE subfamilies upregulated in males associated with
346 age (**Fig. S16C-G, Table S10**). Only three TE subfamilies were upregulated in males compared to females
347 adjusted on age group, none were upregulated in females compared to males (**Fig. 4, Table S10**).
347

348

349
350

Figure 3. TE expression in the filtered GTEx dataset (no disease group) according to sex (A) regardless of age group or (B) also according to age group.

351
352
353
354
355


Global TE expression was measured in each karyotype (x-axis) as the proportion of TE read counts among all read counts (TEs and genes) (y-axis). In this calculation, read counts were used after DESeq2 normalization ("normalized counts") to remove any depth sequencing bias. Each dot represents one individual. Dots are colored according to sex. Sex variable has two levels: female, male. Age group has five levels: [20-30], [30-40], [40-50], [50-60], and [60-70].

356
357
358
359

(A) Proportion of TE read counts among all read counts was modeled using a linear model with sex and age group as independent variables. From this model, the p-value testing the effect of sex on proportion of TE read counts among all read counts adjusted on age group was not significant (p-value = 0.788).

360 (B) A Kruskal-Wallis test comparing proportion of TE read counts among all read counts across age
361 groups was used in females and then in males. This test was not significant in females (p-value =
362 0.585) as well as in males (p-value = 0.471).

363

364

365
366
367

Figure 4. Normalized counts according to sex and age group for the 3 TE subfamilies that are differentially expressed between males and females adjusted on age group in the filtered GTEx dataset (no disease group).

368
369
370
371
372
373

Specific TE subfamily expression was estimated using the number of read counts after DESeq2 normalization ("normalized counts") to remove any depth sequencing bias. All of these 3 TE subfamilies had at least one copy on the Y chromosome and one copy on the X chromosome, but none are enriched on the Y chromosome. For boxplots of normalized counts according to sex and age group for the significantly differentially expressed TE subfamilies according to age group see Fig. S17.

374
375
376
377

Including patients who presented or had presented cancers and/or cardiovascular diseases provided similar results regarding overall TE expression and upregulated TE subfamilies (Fig. S18 to S20, Tables S11 and S12).

378
379
380
381
382
383
384
385
386

Given that filtering the GTEx dataset is likely to diminish the statistical power of our analysis, we repeated the same analysis without filtering based on the individual's ethnicity (large GTEx dataset) (Table S13). We identified the variable "COHORT" (2 levels: Organ donor (OPO) individuals, Postmortem individuals), referring to the condition in which the organ donation was held, as a potential confounding factor that we have considered in the subsequent analyses. We found no effect of sex on TE expression after adjustment on age group in Organ donor (OPO) individuals nor in Postmortem individuals (Fig S21A). Once again, we found no relation between age group and TE transcript amounts in the different levels of the variables COHORT (Organ donor (OPO) individuals, Postmortem individuals) and sex (females, males) (Fig. S21B).

387
388
389
390
391
392
393

Overall, using published transcriptomic data of males and females with normal karyotypes (46,XY for males and 46,XX for females), we did not find a clear association between general TE expression and age. Particularly, we did not find an overall increase of TE expression in old males compared to old females contrary to our initial hypothesis. Nevertheless, we identified several differentially expressed TE subfamilies between 46,XY males and 46,XX females. Additionally, our results showed a higher number of differentially expressed TE subfamilies associated with age in males compared to females.

394

Discussion

395 In this study, we investigated the relationship between TE expression and sex chromosome karyotype
396 composition using transcriptomic data obtained from individuals with different karyotypes (46,XX, 46,XY,
397 47,XXY and 47,XYY). We observed a significant overall increase in TE transcript levels in 47,XXY males or
398 47,XYY males compared to 46,XX females, with a near-significant increase observed between 46,XY and
399 47,XYY males. Additionally, it seemed that the presence of an additional sex chromosome, either X or Y,
400 tended to result in an elevated overall abundance of TE transcripts, likely due to increased genomic
401 material and, consequently, TE load. Notably, consistent with the toxic Y hypothesis, the addition of a Y
402 chromosome appeared to amplify TE expression even more than the addition of an X chromosome.

403 Our findings suggest a potential association between the presence of the Y chromosome and elevated
404 TE transcripts, aligning with the toxic Y hypothesis. Interestingly, similar observations were found in *D.*
405 *melanogaster*, where the presence of an additional Y chromosome (in XXY females and in XYY males) was
406 associated with an increased deregulation of Y-linked TE insertions (Brown, Nguyen, and Bachtrog 2020).
407 Moreover, the authors also found that TE silencing mechanisms were compromised even in young flies
408 with a reduction of H3K9me2 histone marks at TE insertions (Brown, Nguyen, and Bachtrog 2020). In
409 those flies, the absence/presence of a Y chromosome correlated with increased/reduced lifespan (Brown,
410 Nguyen, and Bachtrog 2020). Another recent study in the same species proposed that Y chromosomes
411 might affect heterochromatin formation in a size-dependent manner, thereby impacting gene silencing in
412 other chromosomes through the titration of heterochromatin factors (Delanoue et al. 2023). However,
413 when truncating the Y chromosome in different sizes, they did not observe significant differences in male
414 lifespan, suggesting that both the presence and the size of the Y chromosome might not be associated
415 with longevity (Delanoue et al. 2023). Additionally, the authors showed that X0, XY and XYY males
416 displayed identical longevity patterns (Delanoue et al. 2023). In humans, differential TE expression
417 according to sex has already been studied using the GTEx dataset, showing that the number of
418 differentially expressed TE subfamilies between males and females varies significantly across different
419 tissues (Bogu et al. 2019). Nevertheless, in most tissues, including whole blood, differential expression
420 analysis of TE subfamilies between males and females revealed that there was an increased number of
421 upregulated TEs in males compared to downregulated ones (Bogu et al. 2019). The opposite pattern was
422 observed in few tissues such as breast mammary, muscle skeletal, liver, and thyroid (Bogu et al. 2019).
423 Hence, our results with blood samples of 46,XY males and 46,XX females are in agreement with those
424 reported using whole blood GTEx samples, even though different bioinformatic approaches were used.

425 In several animal species, the association between TE expression and aging has already been studied.
426 It is known that L1 elements are upregulated in aging mouse liver (De Cecco, Criscione, Peterson, et al.
427 2013) and that several TE families are upregulated in old flies compared to young ones (Brown, Nguyen,
428 and Bachtrog 2020; Li et al. 2013). Specifically, LINE elements were found to be activated in the aging fly
429 brain leading to an age-dependent memory impairment and shortened lifespan (Li et al. 2013). In
430 humans, differential TE expression with respect to age was investigated in the GTEx dataset (Bogu et al.
431 2019). Considering all tissues, authors found that there were more TE subfamilies that increased
432 expression (679) compared to the ones that decreased expression (63) with age (Bogu et al. 2019). Again,
433 the number of differentially expressed TE subfamilies is strongly dependent on the tissue considered. In
434 whole blood, Bogu et al. found a higher number of TE subfamilies showing a decreased expression with
435 age than an increased expression (Bogu et al. 2019). She et al. drew the same conclusion focusing on
436 differential HERV loci expression according to age in whole blood tissue using GTEx data (She et al. 2022).
437 However, Bogu et al. as well as She et al. did not test the expression of TE subfamilies against interaction
438 between age and sex. Then, and in line with the toxic Y effect, we also explored the association between
439 TE expression and age in males and in females using the GTEx dataset, hypothesizing a greater activation
440 of TEs with aging in males compared to females. However, we could not find any differences in global TE
441 expression levels between old males and old females, or between the oldest individuals and the youngest
442 ones. We suggest that a more homogeneous dataset would be needed to further investigate the
443 relationship between TE expression and age. First, the inclusion of numerous donors with varying
444 conditions and ethnic backgrounds together with factors such as the absence of longitudinal tracking of
445 individuals or survival bias, might introduce biological noise. Secondly, the many different sequencing
446 runs in GTEx data could contribute to technical noise. Furthermore, in humans, it has been recently

447 shown that there is no correlation between retrotransposon expression and chronological age using
448 different human blood tissues (Tsai et al. 2024). However, LTR and LINE expression seem to contribute to
449 biological aging being related with events like cellular senescence, inflammation, and type I interferon
450 response (Tsai et al. 2024).

451 Regardless, it would be of great interest to explore the association between the Y chromosome,
452 aging, and TE expression in other human tissues using a larger dataset and taking advantage of the recent
453 long read sequencing and specific bioinformatic tools (Schwarz et al. 2022; She et al. 2022; Bogu et al.
454 2019).

455 Sex gap in longevity is a multifactorial trait and the toxic Y effect is just one of the possible causes
456 underlying this phenomenon. The present results suggest an association between the Y chromosome and
457 an increase in TE expression. The primary consequence of TE expression as individuals age is the potential
458 for inducing genomic instability through insertional mutagenesis and/or the generation of insertions or
459 deletions. This is facilitated by the occurrence of double-stranded DNA breaks required for TE reinsertion
460 (Levin and Moran 2011; Pray 2008). However, the generation of new somatic mutations with age and the
461 impact of these new TE insertions in the aging process is still to be fully determined in humans (Pabis et
462 al. 2024). Additionally, the sole expression of TEs can also modify in many different ways the expression
463 and structure of genes putatively causing physiological changes that can in turn reduce longevity
464 (Casacuberta and González 2013). Indeed, a recent study in *D. melanogaster* suggested that the number
465 of TE insertions does not increase with age (Schneider et al. 2023). Nonetheless, diminishing the
466 expression of two specific TEs, *412* and *roo*, resulted in an extension of longevity (Schneider et al. 2023).
467 This implies that the expression of TEs, rather than their insertion, play a role in influencing longevity
468 (Schneider et al. 2023). To emphasize the potential impact of TE expression on aging, a recent study
469 demonstrated correlations between LTR and LINE expression in human blood tissues and inflammatory
470 response, while SINE expression was associated with DNA repair processes (Tsai et al. 2024). The latter
471 association suggests a potential link to DNA damage and genome instability (Tsai et al. 2024). Indeed, the
472 detrimental effects of TEs can arise through diverse mechanisms including the accumulation of TE
473 transcripts into the cytoplasm, translation of TE transcripts into proteins, and their interaction of TE
474 transcripts with other genes or proteins (such as the inhibition of tumor suppressor protein). These
475 interactions may activate the immune system, contributing to the “inflammaging” process and
476 potentially promoting cancer development (reviewed in (Mosaddeghi, Farahmandnejad, and Zarshenas
477 2023)).

478 In summary, the findings herein are based on a cohort of a small sample size but are also very
479 promising. They open a new window to study the toxic effect of the Y chromosome in human longevity
480 with a particular emphasis on TEs.

481

482 Materials and Methods

483 Constitution of the datasets used

484 *Gonosome aneuploidy dataset: biological sample collection for 46,XX; 46,XY; 47,XXY; 47,XYY individuals*

485 We obtained blood samples from 24 individuals: six females (46,XX), six males (46,XY), and 12 males
486 with sex chromosome aneuploidies (eight patients with a 47,XXY karyotype and four with a 47,XYY
487 karyotype). All 47,XXY males and 47,XYY males had homogenous 47,XXY or 47,XYY karyotype respectively
488 except for one 47,XXY male (95% of mitoses were XXY, 3% XY, and 2% XXXY) and one 47,XYY male (97% of
489 mitoses were XXY and 3% XY). The median age of the individuals was 30 years old (range: 15 – 63). All
490 individuals signed a consent form for genetic analysis and the study was approved by the ethics
491 committee of the Lyon university hospital (number of the ethics committee: 22_385, number in the
492 register of the *Commission nationale de l'informatique et des libertés*: 22_5385).

493 Blood samples were collected on a PAXgene® tube, kept two hours at room temperature, and then
494 frozen at -80°C until extraction. Blood samples were thawed and then RNA was extracted on a Maxwell®
495 RSC system (Promega, Wisconsin, USA) with the Maxwell® RSC SimplyRNA Blood kit. Quantity
496 (fluorometric concentration) and quality (RNA Integrity Number, RIN) of the extract were assessed by a

497 fluorometric measurement (Quant-iT™ RNA Assay Kit, Broad Range from ThermoFisher Scientific,
498 Massachusetts, USA) on a Spark® reader (Tecan, Männedorf, Switzerland) and by electrophoresis
499 (TapeStation 4200® System from Agilent Technologies, California, USA), respectively. Each sample was of
500 acceptable RNA quantity (fluorometric concentration of nucleic acids between 26.9 and 109.3 ng/µl) and
501 quality (RIN between 5.8 and 9.3).

502 Libraries were prepared using the Illumina TruSeq Stranded Total RNA Lp Gold kit (Illumina Inc,
503 California, USA). Size homogeneity of the fragments was verified using the TapeStation 4200® System.
504 Average length of fragments was between 405 and 498 bp (including adapters). Library concentrations
505 were assessed by fluorometric measurement (Quant-iT™ 1X dsDNA HS Assay Kit from ThermoFisher) on a
506 Spark® reader. Concentrations were between 19.3 and 133.0 nmol/L.

507 Sequencing was performed on a NovaSeq 6000® system (Illumina Inc, California, USA) in paired-end
508 mode (2 x 151 cycles) with a median of 174 million (Min: 132 – Max: 206 million) pairs of reads per
509 sample (after trimming, see below). Demultiplexing was performed with bcl2fastq (v2.20) to obtain
510 FASTQ files. The 24 individuals were divided into two sequencing runs (run 1: 13 individuals, run 2: 11
511 individuals) (Table S1).

512

513 *GTEx datasets*

514 The Genotype-Tissue Expression (GTEx) project regroups samples from a multitude of post-mortem
515 organ donors and from a multitude of tissues. We focused on whole blood tissue to constitute two
516 datasets: one with selection filters to study the most similar individuals as the gonosome aneuploidy
517 dataset generated in this study (one filtered GTEx dataset excluding individuals with current or
518 antecedents of cancer or cardiovascular diseases and one filtered GTEx dataset including them, see
519 below) and one with fewer selection filters (large GTEx dataset).

520 Filtered GTEx dataset (no disease group): to constitute this dataset, we extracted raw expression data
521 (FASTQ containing Illumina reads) from the human expression atlas database GTEx via the dbGaP portal
522 (dbGaP accession number phs000424.v8.p2). We considered only data of RNA-seq ("Assay.Type"
523 variable) for which a file with sra extension was available ("DATASTORE filetype" variable) and generated
524 from RNA extracted from whole blood ("body_site" variable). To reduce data heterogeneity and to get
525 closer to the individuals we sampled in parallel to constitute the gonosome aneuploidy dataset generated
526 herein (see above), we focused on: data collected in non-latino nor hispanic white individuals ("RACE"
527 and "ETHNCTY" variables) and excluded data from individuals with persistent infection by the human
528 immunodeficiency virus (HIV), the hepatitis C virus (HCV) or the hepatitis B virus (HBV)
529 ("LBHCV1NT", "LBHBHCVAB", "LBHIV1NT", "LBHIVAB", "LBHIVO", and "LBHBSAG" variables), with
530 dementia ("MHALZDMT" and "MHALZHMR" variables), with current or antecedents of cancer
531 ("MHCANCER5", "MHCANCERC", and "MHCANCERNM" variables), or cardiovascular diseases
532 ("MHHRTATT", "MHHRTDIS", and "MHHRTDISB" variables). At this step, we removed samples identified
533 by the GTEx analysis working group as suboptimal for use in analysis ("SMTORMVE" variable) and we
534 kept only samples for which the material type experiment was described as RNA:Total RNA ("material
535 type exp" variable). Then, we downloaded the remaining FASTQ files (n = 104). For all subsequent
536 analyses, we generated an "age group" variable from the individuals' age by using five classes of 10-year
537 ranges: [20-30], [30-40], [40-50], [50-60], [60-70]. Then, using PCA on gene expression or TE expression in
538 the whole dataset obtained and in subsets according to sex or by age group, we identified a strong
539 clustering of individuals who were organ donors OPO (Organ Procurement Organization), who were
540 distinct from individuals who were not (Postmortem individuals) from the "COHORT" variable (Fig. S22).
541 We also found that the "COHORT" variable had a statistically significant relation with the age group
542 (Fisher test: p-value < 0.001) but not with the sex (Fisher test: p-value = 0.185). Therefore, we considered
543 the "COHORT" variable as acting as a confounding factor and we excluded the smallest group of
544 individuals, i.e. individuals who were not organ donors OPO (n = 24). Finally, we obtained 80 files suitable
545 for analysis (Fig. S15) (see Table S7 for repartition of samples according to age and sex). The median
546 number of paired-reads (after trimming, see below) was about 44.6 million (Min: 27.0 – Max: 141.1
547 million) for the 80 FASTQ.

548 Filtered GTEx dataset (group including individuals with current or antecedents of cancer or
549 cardiovascular diseases): we constituted the same cohort of individuals as before but including 22

550 individuals with current or antecedents of cancer or cardiovascular diseases (**Table S8**). Therefore, this
551 dataset was composed of 102 individuals. The median number of paired-reads (after trimming, see
552 below) was about 44.3 million (Min: 27.0 – Max: 141.1 million) for the 102 FASTQ.

553 Large GTEx dataset: to constitute this dataset, we used the 318 curated files containing raw human
554 blood expression data (FASTQ containing Illumina reads) of the Bgee project (see supplementary data of
555 (Bastian et al. 2021)) originating from dbGaP (dbGaP accession number phs000424.v6.p1). We excluded
556 one male suspected of having sex chromosome aneuploidy (such as 47,XXY) because of the expression of
557 *XIST* like individuals in possession of two X chromosomes and the expression of *USP9Y* like individuals in
558 possession of one Y chromosome. We generated an “age group” variable from the individuals’ age by
559 using five classes of 10-year ranges: [20-30], [30-40], [40-50], [50-60], [60-70] and we found a significant
560 statistical relation between sex and age group variables (Pearson’s Chi-squared test: p-value = 0.013)
561 (**Table S13**). Again, using PCA on gene expression or TE expression, we identified a strong clustering of
562 individuals who were organ donors OPO (Organ Procurement Organization), who were distinct from
563 individuals who were not (Postmortem and Surgical individuals) from the “COHORT” variable. We also
564 found that the “COHORT” variable had a significant statistical relation with the age group (Pearson’s Chi-
565 squared test: p-value < 0.001, excluding the 3 individuals with “COHORT” = Surgical) and with the sex
566 group (Pearson’s Chi-squared test: p-value = 0.017, excluding the 3 individuals with “COHORT” =
567 Surgical). Then we considered the variable “COHORT” as a potential confounding factor and added it in
568 the DESeq2 statistical model (see below). Therefore, we excluded 3 more individuals for whom “COHORT
569 = Surgical” to guarantee a sufficient number of individuals in each COHORT, sex, and age group levels.
570 Thus, 314 files were used in downstream analysis.

571

572 **Bioinformatic analysis**

573 See pipeline in **Fig. S1**.

574 *Input files*

575 FASTQ files were used after a quality control step with FastQC (v0.11.9) and Trimmomatic (v0.33)
576 softwares (Bolger, Lohse, and Usadel 2014). The whole human reference transcriptome (Human Release
577 32 GRCh38/hg38, gencode v32) was downloaded from the University of California Santa Cruz (UCSC)
578 table browser (https://genome.ucsc.edu/cgi-bin/hgTables?hgSID=814613547_qUmlEGan4K2f39cHvb9AgrKdRVdK&clade=mammal&org=Human&db=hg38&hgta_group=genes&hgta_track=knownGene&hgta_table=0&hgta_regionType=genome&position=chr1%3A11%2C102%2C837-11%2C267%2C747&hgta_outputType=primaryTable&hgta_outFileName=)
579 with output format = “sequence” (fasta file) and used for the differential gene expression analysis. The
580 downloaded file contained 247,541 transcript sequences (5’ and 3’ untranslated regions and coding DNA
581 sequences of each gene were included, introns were discarded, and repeated regions were masked). The
582 GTF file corresponding to release 32 GRCh38/hg38 of the human reference genome was downloaded
583 from the gencodegenes website <https://www.gencodegenes.org/human/> (content = “comprehensive
584 gene annotation”, regions = “CHR”). This file provided a correspondence between transcripts (227,463
585 transcript names) and genes (60,609 genes, including 19,947 protein coding genes). The human reference
586 sequence file (including TE insertion sequences) was downloaded as a fasta from the UCSC table browser
587 (https://genome.ucsc.edu/cgi-bin/hgTables?hgSID=791366369_Zf0cNT7ykVM0ZQ0zErZRArSgvMEO&clade=mammal&org=Human&db=hg38&hgta_group=allTracks&hgta_track=rmsk&hgta_table=0&hgta_regionType=genome&position=chr1%3A11%2C102%2C837-11%2C267%2C747&hgta_outputType=primaryTable&hgta_outFileName=)
588 including the RepeatMasker track from the “Dec. 2013 GRCh38/hg38” assembly of the human reference
589 genome. This file contains sequences of 4,886,205 insertion copies, after excluding transfer RNAs,
590 ribosomal RNAs, small RNAs, repeats U1 to U13, and satellites (microsatellites, GSATX, HSAT5). From this
591 file, we built the “rosetta” file (**Data S6**), which provided a correspondence between the 4,886,205
592 insertion sequences and insertion subfamily names (1,270 repeat subfamilies). Since we did not have
593 access to the genome of the participants, we could not determine the location of each repeat copy in
594 each individual, which may vary from one to another. Therefore, the rosetta file allowed us to regroup
595 read counts per repeat copy into read counts per repeat subfamily, independently of their location in the
596 genome.

597

598

599

600

601

602

603

604 *Alignment and read counting*

605 Gene expression was quantified with Kallisto software (v0.46.1) (Bray et al. 2016) using the transcript
606 sequences from the whole human reference transcriptome. The --rf-stranded option was added to deal
607 with reverse stranded reads when analyzing RNAseq data of the gonosome aneuploidy dataset (contrary
608 to GTEx datasets as GTEx data are non-stranded). Alignments to the reference transcriptome resulted in
609 high mapping efficiency (**Table S1**). Repeat expression (alignment and read count) was analyzed with the
610 TEcount (v1.0.0) software from TEtools (Lerat et al. 2016). This tool uses Bowtie2 (Langmead and
611 Salzberg 2012) as aligner, and we added the --nofw option to deal with reverse stranded RNAseq data
612 when analyzing RNAseq data of the gonosome aneuploidy dataset (contrary to GTEx datasets).

613

614 **Statistical analysis**

615 Statistical analysis was performed using the R software (v3.6.3 to 4.3.2). The significance threshold
616 was set at 0.05 for all statistical tests performed. The GTEx datasets and the gonosome aneuploidy
617 dataset were computed separately using the same procedure described below. We considered as gene or
618 TE “expression” the number of reads aligned (i.e. counts) on each reference transcript or TE sequence
619 and as “differential expression analysis” the statistical procedure to compare gene or TE expression
620 between several conditions (i.e. sex, age group, or karyotype).

621

622 *Data preparation*

623 Differential expression analysis was performed separately for genes and for TEs. Two files were
624 prepared for each purpose. Since one gene can have several transcripts, the tximport R package (v1.14.2,
625 Bioconductor) was used to sum the read counts per gene transcript into read counts per gene using the
626 GTF file mentioned above. Then, a txi file containing the gene identifier (Ensembl nomenclature), the
627 average gene length, and the estimated counts for all genes per sample was obtained. For DE analysis on
628 TEs, we normalized the repeat subfamily read counts based on the normalization factor previously
629 calculated using gene read counts to avoid masking relevant biological information (Lerat et al. 2016). To
630 estimate the normalization factor, the gene identifiers and read counts per gene were extracted from the
631 txi file and merged with the TEcount file containing the repeat subfamily names and read counts per
632 repeat subfamily. The length could not be included in the merged table since this variable was not
633 available from the TEcount table (each repeat subfamily is a collection of copies displaying a diversity of
634 lengths, it is thus difficult to estimate the length of a TE subfamily). This merged table was then imported
635 into the DESeq2 tool (R package DESeq2 v1.26.0, Bioconductor) (Anders and Huber 2010; Love, Huber,
636 and Anders 2014), using the DESeqDataSetFromMatrix function, which normalized the read counts so as
637 to remove any depth sequencing bias. From this step on, we removed read counts on the following 24
638 snRNA, snpRNA, scRNA, or remaining satellites and rRNA repeat subfamilies: 7SLRNA, 7SK, LSAU, D20S16,
639 REP522, SATR1, SATR2, ACRO1, ALR/Alpha, BSR/Beta, CER, 6kbHsap, TAR1, SST1, MSR1, SAR, GA-rich, G-
640 rich, A-rich, HY1, HY3, HY4, HY5,5S. This step allowed us to only consider the 1,246 subfamilies
641 corresponding to TE subfamilies out of the 1,270 repeat subfamilies contained in the rosetta file. Then,
642 genes and TE subfamilies with zero read counts in all individuals were removed leaving 1,212 TE
643 subfamilies to study.

644 For the DE analysis on genes, as the length was available for genes, a more reliable procedure was
645 performed. The raw txi file was directly imported in DESeq2 (DESeqDataSetFromTximport function) and
646 the average length of each gene could be used as a correction term (offset) in the DESeq2 statistical
647 model described below to consider the length bias (Anders and Huber 2010; Love, Huber, and Anders
648 2014). This procedure normalized the read counts in order to remove any depth sequencing bias and also
649 bias related to sequence length.

650

651 *Comparison of the global expression of TE between sex, age group or karyotypes*

652 We first looked at the global TE expression rather than the TE subfamily expression separately. To do
653 that, using the merge table imported into DESeq2, we summed all the normalized counts of each TE

654 subfamily per individual and then we divided by the total number of normalized counts on genes and TE
655 subfamilies per individual. A pairwise Wilcoxon test was used to compare global TE expression between
656 karyotypes in the gonosome aneuploidy dataset. In GTEx datasets, linear models or Wilcoxon tests were
657 used, as appropriate, to compare global TE expression between females and males (adjusted on age
658 group and COHORT variables when necessary), and between the youngest individuals ([20-50] years,
659 obtained by combining individuals from [20-30],]30-40], and]40-50] age groups) and the oldest
660 individuals (]50-70] years, obtained by combining individuals from]50-60], and]60-70] age groups).
661 Kruskall-Wallis tests or ANOVA were also used, as appropriate, to test the relation between global TE
662 expression and age group in the GTEx datasets in males and females separately. The same procedure was
663 made to look at expression of TE classes/subclasses (LTR-retrotransposons, non-LTR retrotransposons:
664 SVA, non-LTR retrotransposons: SINE, non-LTR retrotransposons: LINE, DNA transposons) or some TE
665 groups (SVA, HERVK, AluS, L1, AluY) by summing only normalized counts of TE subfamilies belonging to
666 this TE class/subclass or this TE group according to the "class/family" column of the hg38.fa.out.gz file
667 downloaded from <https://www.repeatmasker.org/species/hg.html> (track hg38 RepeatMasker open-4.0.6
668 - Dfam 2.0) or according to the name of TE subfamilies when necessary.

669

670 *Differential expression analysis on genes and TE subfamilies*

671 Then, we performed a differential expression analysis for each gene and each TE subfamily
672 separately.

673 The R package DESeq2 (v1.26.0, Bioconductor) (Anders and Huber 2010; Love, Huber, and Anders
674 2014) was used to fit a negative binomial model on the log2 of the normalized counts (dependent
675 variable) according to two independent variables: sex (factor with 2 levels: female, male) and age group
676 (factor with 5 levels: [20,30],]30,40],]40,50],]50,60],]60,70]) and the interaction of the two for the GTEx
677 datasets, or karyotype (factor with 4 levels: XX, XY, XXY, XYY) and sequencing batch (factor with 2 levels:
678 first batch, second batch) for the gonosome aneuploidy dataset. The statistical model provided variation
679 of expression of a gene or a TE subfamily between two conditions expressed as log2 fold-change (log2FC)
680 (i.e. log base 2 of the ratio of predicted normalized counts between the two conditions). Log2FC were
681 compared to 0 with a Wald test. A likelihood-ratio test (LR test) was also performed to assess whether
682 adding an independent variable in the model provided relevant information compared to the null model,
683 i.e. to test whether gene or TE subfamily expression was globally impacted by an independent variable
684 having more than two levels (age group or karyotype variables). A 0.05 False-Discovery Rate (FDR)
685 threshold value was used for significance and p-values were adjusted for multiple-testing using the
686 Benjamini & Hochberg procedure (Benjamini and Hochberg 1995). The thresholds for the outlier and the
687 low mean normalized read count filters were set as default. Graphics were generated after the data
688 transformations proposed by the DESeq2 package authors: variance stabilizing transformation for PCA,
689 adaptive shrinkage for Minus-Average plots (MA plots), log2 transformation of the normalized counts for
690 heatmaps (Anders and Huber 2010; Stephens 2016). When specified, the command removeBatchEffect
691 function (for unbalanced batches) from the limma R package (v3.46.0) was used before PCA
692 representations, heatmap representations and before building the different boxplots of proportion of TE
693 read counts or normalized counts to deal with batch effect in the gonosome aneuploidy dataset or
694 COHORT effect in the large GTEx dataset. When necessary, gene name, gene description, and gene
695 localization were determined using the GTF file and the command gconvert from the R package gprofiler2
696 (v0.1.9) (Raudvere et al. 2019; Kolberg et al. 2020) from the Ensembl gene (ENSG) identifier.
697

698

699 *Overlap between the DEGs generated in our study and in published studies*

700 The DEGs generated in our study in the XXY karyotype compared to the XY karyotype was compared
701 to those found in the supplementary materials of Zhang et al. study (Zhang et al. 2020) and to confirmed
702 XCI-escapees in supplementary materials of Wainer-Katsir et al. study (Wainer Katsir and Linial 2019).

702

703 *GO term enrichment analysis*

704 A gene ontology (GO) analysis was performed using the lists of significantly upregulated genes
705 (adjusted p-value < 0.05 and log2-fold change > 0) and significantly downregulated genes (adjusted p-
706 value < 0.05 and log2-fold change < 0) obtained for each of the six pairwise karyotype comparisons
707 (47,XYY vs 46,XX, 47,XXY, 46,XX, 46,XY vs 46,XX, 47,XYY vs 46,XY, 47,XXY vs 46,XY, 47,XYY vs 47,XXY) after
708 adjustment on the batch effect. To generate lists of significant GO terms (**Data S3**), we used the *gost*
709 function from the R package *gprofiler2* (v0.1.9) (Raudvere et al. 2019; Kolberg et al. 2020) with the g:SCS
710 algorithm for multiple testing correction and a significance threshold set at 0.05. Other parameters were
711 set to default. To generate plots (**Fig. S5 to S7**), we used the *compareCluster* function from the R package
712 *clusterProfiler* (v4.10.0) (Wu et al. 2021) with the Benjamini & Hochberg procedure (Benjamini and
713 Hochberg 1995) for multiple testing correction and a significance threshold set at 0.05. Other parameters
714 were set to default. We generated a plot concerning terms in the GO database, KEGG database and
715 Reactome database. Then, we plotted specifically the significant terms from the Reactome database
716 including the word “senescence” in their description (**Fig. S8**).
717

718 *Y enrichment of TE copies*

719 For all of the 1,246 TE subfamilies, an exact Binomial test was performed to test if the observed
720 proportion of TE copies for one TE subfamily carried by the Y chromosome was equal to the expected
721 proportion of 1.85%. The expected proportion of 1.85% (57200/3088200) was calculated according to the
722 length of Y chromosome (57200 kb) compared to the sum of the length of all chromosomes (3088200 kb)
723 (“Human Genome Assembly GRCh38.P14,” n.d.). The observed proportion of TE copies corresponded to
724 the ratio between the observed number of TE copies from a TE subfamily carried by the Y chromosome
725 and the observed total number of TE copies from the same TE subfamily in the human reference
726 sequence file including TE insertion sequences (see above). The expected number of TE copies from a TE
727 subfamily carried by the Y chromosome was determined as the total number of TE copies multiplied by
728 1.85%. The exact Binomial test was two-sided. A 0.05 False-Discovery Rate (FDR) threshold value was
729 used for significance and p-values were adjusted for multiple-testing using the Benjamini & Hochberg
730 procedure. **Data S4** regroups the observed and expected numbers of TE copy carried by the Y or the X
731 chromosome and the adjusted p-values of the exact Binomial test obtained for each of the 1246 TE
732 subfamilies. Then, using **Data S4**, we made 6 groups of TE subfamilies: one concerning Y-enriched TE
733 subfamilies (binomial test adjusted p-value < 0.05 and number of observed copies located on Y
734 chromosome > expected), one concerning Y-depleted TE subfamilies (binomial test adjusted p-value <
735 0.05 and number of observed copies located on Y chromosome < expected), one concerning neither Y-
736 enriched nor Y-depleted TE subfamilies (TE subfamilies that did not meet the conditions for Y-enriched
737 nor Y-depleted TE subfamilies), one concerning TE subfamilies with no copies carried by the Y
738 chromosome, one concerning TE subfamilies with no copies carried by the X chromosome, and one
739 concerning TE subfamilies with no copies carried by either the Y or X chromosomes. Finally, a pairwise
740 Wilcoxon test was used to compare TE expression between karyotypes in these 6 TE groups in the
741 gonosome aneuploidy dataset. In GTEx datasets, linear model was used to compare TE expression
742 between females and males, adjusted on age group, and kruskall-wallis test was used to test the relation
743 between TE expression and age group in males and females separately.

744

745 *Overlap between 3 kb upstream regions of differentially expressed genes and differentially expressed TE*
746 *subfamilies*

747 First, we downloaded a bed file for repeats from
748 <https://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/> (hg38.fa.out.gz file, last update 2014-01-15
749 20:56) and we generated a bed file for genes from the GTF file Release 32 GRCh38/hg38 previously
750 downloaded. From the gene bed file, we generated a bed file containing the 3 kb upstream region of all
751 genes. Then, we filtered this bed file using the list of differentially upregulated (downregulated,
752 respectively) genes obtained for each pairwise karyotype comparison. We filtered the repeat bed file
753 using the list of differentially upregulated (downregulated, respectively) TE subfamilies obtained for each
754 pairwise karyotype comparison. Then, we used the R package *RegioneR* v1.34.0 (Gel et al. 2016)

755 (toGRanges and numOverlaps functions) to obtain the number of TE copies whose sequence overlaps the
756 3 kb upstream sequence of any gene using the filtered bed files previously created. A permutation test
757 was performed to test whether the frequency of genes with TE copies overlapping their 3 kb upstream
758 region was significantly greater or lower than expected by chance. We used the permTest function with
759 the following options:ntimes=5000, randomize.function=resampleRegions,
760 evaluate.function=numOverlaps, count.once=TRUE, alternative = "auto", and the 3 kb upstream region of
761 all genes as universe. We made this procedure four times for each pairwise karyotype comparisons: one
762 considering TE copies from upregulated TE subfamilies and upregulated genes, one considering TE copies
763 from upregulated TE subfamilies and downregulated genes, one considering TE copies from
764 downregulated TE subfamilies and upregulated genes, and one considering TE copies from
765 downregulated TE subfamilies and downregulated genes.

766

767 *Overlap between intragenic regions of differentially expressed genes and differentially expressed TE*
768 *subfamilies*

769 We also looked for overlap between TE copy sequences of upregulated TE subfamilies and sequences of
770 upregulated genes using bedtools intersect (v2.30.0) with -s option to consider the strandness. Then, we
771 made the same procedure considering TE copy sequences of downregulated TE subfamilies and
772 sequences of downregulated genes. Then, we performed an exact binomial test for each pairwise
773 karyotype comparison which compared the observed proportion of upregulated genes containing at least
774 one TE copy from one of the upregulated TE subfamilies among all the upregulated genes to the expected
775 proportion of genes containing at least one TE copy from one of the upregulated TE subfamilies among all
776 genes. The same procedure was also applied considering then downregulated genes and downregulated
777 TE subfamilies.

778

779

Appendices

780 Supplementary material including supplementary Fig. S1 to S22 and supplementary Tables S1 to S13.
781

782 Data S1. List of all differentially expressed genes on X chromosome or Y chromosome according to
783 karyotype using the likelihood-ratio test in the gonosome aneuploidy dataset, first considering all genes
784 and then considering protein-coding genes only.

785 Data S2. List of all differentially expressed genes (regardless if they are protein-coding or not) in each
786 pairwise karyotype comparison after batch adjustment in the gonosome aneuploidy dataset.

787 Data S3. GO analysis in the gonosome aneuploidy dataset.

788 Data S4. Y chromosome enrichment test for TE subfamilies.

789 Data S5. Overlap between genomic positions of upregulated (downregulated, respectively) genes and
790 positions of upregulated (downregulated, respectively) TEs for each pairwise karyotype comparison
791 (when applicable).

792 Data S6. Rosetta file.

793

794

Acknowledgements

795 We thank Yasmine Zerdoumi and Maxime Vallée for their help in the data generation and data
796 analysis, and Vérona Landel (DRS, Hospices Civils de Lyon) for reading the manuscript. We thank Marc
797 Robinson-Rechavi for access to the Bgee database and useful comments on the GTEx analysis and on the
798 manuscript. Part of this work was performed using the computing facilities of the CC LBBE/PRABI-AMSB.
799 The Genotype-Tissue Expression (GTEx) Project was supported by the Common Fund of the Office of the
800 Director of the National Institutes of Health, and by NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS. Filtered

801 GTEx datasets were generated as part of dbGaP Project #28282: "Studying transposable elements activity
802 in human tissues". We gratefully thank the GTEx group for the data provided.

803 A preprint version of this article has been peer-reviewed and recommended by PCI Genomics
804 (<https://doi.org/10.24072/pci.genomics.100293>).

805

806 **Data, scripts, code, and supplementary information availability**

807 Fastq files of the gonosome aneuploidy dataset generated in this study were submitted to the
808 European Genome-phenome Archive (EGA ID of the study: EGAS00001007462).

809 Scripts and code were described in detail in the Materials and methods section. The code of the
810 pipeline used to generate gene and TE count files from FastQ files is available here:
811 <https://github.com/teolijo/longevity/blob/main/pipeline>. More details can be supplied upon request.

812

813 **Conflict of interest disclosure**

814 The authors declare that they comply with the PCI rule of having no financial conflicts of interest in
815 relation to the content of the article.

816

817 **Funding**

818 This study was funded by an internal collaborative grant of LBBE and by ANR (grant number ANR-20-
819 CE02-0015).

820

821 **Authors' contributions**

822 Conceptualization: GABM, IP, CV; Methodology: MF, DS, CV, GABM, IP; Software: JT, MF, AN, DS-O,
823 AB-C, CB; Formal analysis: JT, DS-O; Investigation: JT, AN, AL, HL, DS, CB, GABM, IP; Resources: JT, MF, AN,
824 AB-C, AL, HL, DS, CB, GABM, IP; Data Curation: JT, MF, AN; Writing - Original Draft: JT, GABM; Writing -
825 Review & Editing: JT, MM and all authors; Visualization: JT, MM, CV, GABM, IP ; Supervision: IP, GABM,
826 CV ; Project administration: IP, GABM, CV; Funding acquisition: GABM, IP, CV, FG, DS.

827

828 **References**

829 Anders, Simon, and Wolfgang Huber. 2010. "Differential Expression Analysis for Sequence Count
830 Data." *Genome Biology* 11 (10): R106. <https://doi.org/10.1186/gb-2010-11-10-r106>.

831 Bastian, Frederic B, Julien Roux, Anne Niknejad, Aurélie Comte, Sara S Fonseca Costa, Tarcisio
832 Mendes de Farias, Sébastien Moretti, et al. 2021. "The Bgee Suite: Integrated Curated
833 Expression Atlas and Comparative Transcriptomics in Animals." *Nucleic Acids Research* 49
834 (D1): D831–47. <https://doi.org/10.1093/nar/gkaa793>.

835 Benjamini, Yoav, and Yosef Hochberg. 1995. "Controlling the False Discovery Rate: A Practical and
836 Powerful Approach to Multiple Testing." *Journal of the Royal Statistical Society: Series B
(Methodological)* 57 (1): 289–300. <https://doi.org/10.1111/j.2517-6161.1995.tb02031.x>.

837 Bennett, E Andrew, Laura E Coleman, Circe Tsui, W Stephen Pittard, and Scott E Devine. 2004.
838 "Natural Genetic Variation Caused by Transposable Elements in Humans." *Genetics* 168 (2):
839 933–51. <https://doi.org/10.1534/genetics.104.031757>.

840

841 Bogu, Gireesh K., Ferran Reverter, Marc A. Marti-Renom, Michael P. Snyder, and Roderic Guigó.
842 2019. “Atlas of Transcriptionally Active Transposable Elements in Human Adult Tissues.”
843 *Preprint BioRxiv*. <https://doi.org/10.1101/714212>.

844 Bojesen, Anders, Svend Juul, Niels Birkebæk, and Claus H. Gravholt. 2004. “Increased Mortality in
845 Klinefelter Syndrome.” *The Journal of Clinical Endocrinology & Metabolism* 89 (8): 3830–
846 34. <https://doi.org/10.1210/jc.2004-0777>.

847 Bolger, Anthony M., Marc Lohse, and Bjoern Usadel. 2014. “Trimmomatic: A Flexible Trimmer for
848 Illumina Sequence Data.” *Bioinformatics* 30 (15): 2114–20.
849 <https://doi.org/10.1093/bioinformatics/btu170>.

850 Bourque, Guillaume, Kathleen H. Burns, Mary Gehring, Vera Gorbunova, Andrei Seluanov, Molly
851 Hammell, Michaël Imbeault, et al. 2018. “Ten Things You Should Know about Transposable
852 Elements.” *Genome Biology* 19 (1): 199. <https://doi.org/10.1186/s13059-018-1577-z>.

853 Bray, Nicolas L, Harold Pimentel, Pál Melsted, and Lior Pachter. 2016. “Near-Optimal Probabilistic
854 RNA-Seq Quantification.” *Nature Biotechnology* 34 (5): 525–27.
855 <https://doi.org/10.1038/nbt.3519>.

856 Brown, Emily J., Alison H. Nguyen, and Doris Bachtrog. 2020. “The Y Chromosome May Contribute
857 to Sex-Specific Ageing in Drosophila.” *Nature Ecology & Evolution* 4 (6): 853–62.
858 <https://doi.org/10.1038/s41559-020-1179-5>.

859 Casacuberta, Elena, and Josefa González. 2013. “The Impact of Transposable Elements in
860 Environmental Adaptation.” *Molecular Ecology* 22 (6): 1503–17.
861 <https://doi.org/10.1111/mec.12170>.

862 Chen, Haiyang, Xiaobin Zheng, Danqing Xiao, and Yixian Zheng. 2016. “Age-Associated
863 De-repression of Retrotransposons in the *Drosophila* Fat Body, Its Potential Cause and
864 Consequence.” *Aging Cell* 15 (3): 542–52. <https://doi.org/10.1111/acel.12465>.

865 Connallon, Tim, Isobel J. Beasley, Yasmine MDonough, and Filip Ruzicka. 2022. “How Much Does
866 the Unguarded X Contribute to Sex Differences in Life Span?” *Evolution Letters* 6 (4): 319–
867 29. <https://doi.org/10.1002/evl3.292>.

868 De Cecco, Marco, Steven W. Criscione, Edward J. Peckham, Sara Hillenmeyer, Eliza A. Hamm,
869 Jayameenakshi Manivannan, Abigail L. Peterson, Jill A. Kreiling, Nicola Neretti, and John
870 M. Sedivy. 2013. “Genomes of Replicatively Senescent Cells Undergo Global Epigenetic
871 Changes Leading to Gene Silencing and Activation of Transposable Elements.” *Aging Cell* 12
872 (2): 247–56. <https://doi.org/10.1111/acel.12047>.

873 De Cecco, Marco, Steven W. Criscione, Abigail L. Peterson, Nicola Neretti, John M. Sedivy, and Jill
874 A. Kreiling. 2013. “Transposable Elements Become Active and Mobile in the Genomes of
875 Aging Mammalian Somatic Tissues.” *Aging* 5 (12): 867–83.
876 <https://doi.org/10.1863/aging.100621>.

877 Deininger, Prescott, Maria E. Morales, Travis B. White, Melody Baddoo, Dale J. Hedges, Geraldine
878 Servant, Sudesh Srivastav, et al. 2017. “A Comprehensive Approach to Expression of L1
879 Loci.” *Nucleic Acids Research* 45 (5): e31–e31. <https://doi.org/10.1093/nar/gkw1067>.

880 Delanoue, Rénald, Charlène Clot, Chloé Leray, Thomas Pihl, and Bruno Hudry. 2023. “Y
881 Chromosome Toxicity Does Not Contribute to Sex-Specific Differences in Longevity.”
882 *Nature Ecology & Evolution* 7 (8): 1245–56. <https://doi.org/10.1038/s41559-023-02089-7>.

883 Deniz, Özgen, Jennifer M. Frost, and Miguel R. Branco. 2019. “Regulation of Transposable Elements
884 by DNA Modifications.” *Nature Reviews Genetics* 20 (7): 417–31.
885 <https://doi.org/10.1038/s41576-019-0106-6>.

886 Dennis, Shannon, Ujwal Sheth, Jessica L. Feldman, Kathryn A. English, and James R. Priess. 2012.
887 “C. Elegans Germ Cells Show Temperature and Age-Dependent Expression of Cer1, a
888 Gypsy/Ty3-Related Retrotransposon.” Edited by Shou-Wei Ding. *PLoS Pathogens* 8 (3):
889 e1002591. <https://doi.org/10.1371/journal.ppat.1002591>.

890 Erlandsson, Rikard, James F. Wilson, and Svante Pääbo. 2000. “Sex Chromosomal Transposable
891 Element Accumulation and Male-Driven Substitutional Evolution in Humans.” *Molecular
892 Biology and Evolution* 17 (5): 804–12.
893 <https://doi.org/10.1093/oxfordjournals.molbev.a026359>.

894 Frank, S.A., and L.D. Hurst. 1996. “Mitochondria and Male Disease.” *Nature* 383 (6597): 224.
895 <https://doi.org/10.1038/383224a0>.

896 Gel, Bernat, Anna Díez-Villanueva, Eduard Serra, Marcus Buschbeck, Miguel A. Peinado, and
897 Roberto Malinvern. 2016. “RegioneR: An R/Bioconductor Package for the Association
898 Analysis of Genomic Regions Based on Permutation Tests.” *Bioinformatics* 32 (2): 289–91.
899 <https://doi.org/10.1093/bioinformatics/btv562>.

900 Guio, Lain, and Josefa González. 2019. “Home Evolutionary Genomics Protocol New Insights on
901 the Evolution of Genome Content: Population Dynamics of Transposable Elements in Flies
902 and Humans.” In *Evolutionary Genomics - Statistical and Computational Methods*, second
903 edition, 505–30. Methods in Molecular Biology 1910. https://doi.org/10.1007/978-1-4939-9074-0_16.

904 Hassan, Fatma Mohamed, Heba Abdo Abdel Razik, Miriam Safwat Wadie, and Dina Sabry
905 Abdelfattah. 2019. “XIST and RPS4Y1 Long Non-Coding RNA Transcriptome as Sex
906 Biomarkers in Different Body Fluids.” *Egyptian Journal of Forensic Sciences* 9 (1): 16.
907 <https://doi.org/10.1186/s41935-019-0122-x>.

908 “Human Genome Assembly GRCh38.P14.” n.d. Accessed May 19, 2023.
909 <https://www.ncbi.nlm.nih.gov/grc/human/data>.

910 Kojima, Kenji K. 2018. “Human Transposable Elements in Repbase: Genomic Footprints from Fish
911 to Humans.” *Mobile DNA* 9 (1): 2. <https://doi.org/10.1186/s13100-017-0107-y>.

912 Kolberg, Liis, Uku Raudvere, Ivan Kuzmin, Jaak Vilo, and Hedi Peterson. 2020. “Gprofiler2 -- an R
913 Package for Gene List Functional Enrichment Analysis and Namespace Conversion Toolset
914 g:Profiler.” *F1000Research* 9 (ELIXIR): 709.
915 <https://doi.org/10.12688/f1000research.24956.2>.

916 Lanciano, Sophie, and Gael Cristofari. 2020. “Measuring and Interpreting Transposable Element
917 Expression.” *Nature Reviews Genetics* 21 (12): 721–36. <https://doi.org/10.1038/s41576-020-0251-y>.

918 Langmead, Ben, and Steven L Salzberg. 2012. “Fast Gapped-Read Alignment with Bowtie 2.” *Nature
919 Methods* 9 (4): 357–59. <https://doi.org/10.1038/nmeth.1923>.

920 Lemaître, Jean-François, Victor Ronget, Morgane Tidière, Dominique Allainé, Vérand Berger,
921 Aurélie Cohas, Fernando Colchero, et al. 2020. “Sex Differences in Adult Lifespan and
922 Aging Rates of Mortality across Wild Mammals.” *Proceedings of the National Academy of
923 Sciences* 117 (15): 8546–53. <https://doi.org/10.1073/pnas.1911999117>.

924 Lerat, Emmanuelle, Marie Fablet, Laurent Modolo, Hélène Lopez-Maestre, and Cristina Vieira. 2016.
925 “TEtools Facilitates Big Data Expression Analysis of Transposable Elements and Reveals an
926 Antagonism between Their Activity and That of PiRNA Genes.” *Nucleic Acids Research* 45
927 (4): e17. <https://doi.org/10.1093/nar/gkw953>.

928 Levin, Henry L., and John V. Moran. 2011. “Dynamic Interactions between Transposable Elements
929 and Their Hosts.” *Nature Reviews Genetics* 12 (9): 615–27. <https://doi.org/10.1038/nrg3030>.

930 Li, Wanhe, Lisa Prazak, Nabanita Chatterjee, Servan Grüninger, Lisa Krug, Delphine Theodorou, and
931 Josh Dubnau. 2013. “Activation of Transposable Elements during Aging and Neuronal
932 Decline in Drosophila.” *Nature Neuroscience* 16 (5): 529–31.
933 <https://doi.org/10.1038/nn.3368>.

934 Loda, Agnese, and Edith Heard. 2019. “Xist RNA in Action: Past, Present, and Future.” Edited by
935 Marisa S Bartolomei. *PLOS Genetics* 15 (9): e1008333.
936 <https://doi.org/10.1371/journal.pgen.1008333>.

937 Love, Michael I., Wolfgang Huber, and Simon Anders. 2014. “Moderated Estimation of Fold Change
938 and Dispersion for RNA-Seq Data with DESeq2.” *Genome Biology* 15 (12): 550.
939 <https://doi.org/10.1186/s13059-014-0550-8>.

940 Luy, Marc. 2003. “Causes of Male Excess Mortality: Insights from Cloistered Populations.”
941 *Population and Development Review* 29 (4): 647–76. <https://doi.org/10.1111/j.1728-4457.2003.00647.x>.

942 Maklakov, Alexei A., and Virpi Lummaa. 2013. “Evolution of Sex Differences in Lifespan and
943 Aging: Causes and Constraints: Prospects & Overviews.” *BioEssays* 35 (8): 717–24.
944 <https://doi.org/10.1002/bies.201300021>.

945 Marais, Gabriel, Jean-Michel Gaillard, Cristina Vieira, Ingrid Plotton, Damien Sanlaville, François
946 Gueyffier, and Jean-François Lemaitre. 2018. “Sex Gap in Aging and Longevity: Can Sex
947

950 Chromosomes Play a Role?" *Biology of Sex Differences* 9 (1): 33.
951 <https://doi.org/10.1186/s13293-018-0181-y>.

952 Marais, Gabriel, Jean-François Lemaitre, and Cristina Vieira. 2020. "Y Chromosome Makes Fruit
953 Flies Die Younger." *Peer Community In Evolutionary Biology*, July, 100105.
954 <https://doi.org/10.24072/pci.evolbiol.100105>.

955 Maxwell, Patrick H., William C. Burhans, and M. Joan Curcio. 2011. "Retrotransposition Is
956 Associated with Genome Instability during Chronological Aging." *Proceedings of the
957 National Academy of Sciences* 108 (51): 20376–81. <https://doi.org/10.1073/pnas.1100271108>.

958 Milot, Emmanuel, Claudia Moreau, Alain Gagnon, Alan A. Cohen, Bernard Brais, and Damian
959 Labuda. 2017. "Mother's Curse Neutralizes Natural Selection against a Human Genetic
960 Disease over Three Centuries." *Nature Ecology & Evolution* 1 (9): 1400–1406.
961 <https://doi.org/10.1038/s41559-017-0276-6>.

962 Monkhorst, Kim, Iris Jonkers, Eveline Rentmeester, Frank Grosveld, and Joost Gribnau. 2008. "X-
963 Inactivation Counting and Choice Is a Stochastic Process: Evidence for Involvement of an X-
964 Linked Activator." *Cell* 132 (3): 410–21. <https://doi.org/10.1016/j.cell.2007.12.036>.

965 Mosaddeghi, Pouria, Mitra Farahmandnejad, and Mohammad M. Zarshenas. 2023. "The Role of
966 Transposable Elements in Aging and Cancer." *Biogerontology* 24 (4): 479–91.
967 <https://doi.org/10.1007/s10522-023-10028-z>.

968 Navarro, Fabio CP, Jacob Hoops, Lauren Bellfy, Eliza Cerveira, Qihui Zhu, Chengsheng Zhang,
969 Charles Lee, and Mark B. Gerstein. 2019. "TeXP: Deconvolving the Effects of Pervasive and
970 Autonomous Transcription of Transposable Elements." *PLOS Computational Biology* 15 (8):
971 e1007293. <https://doi.org/10.1371/journal.pcbi.1007293>.

972 Pabis, Kamil, Diogo Barardo, Olga Sirbu, Kumar Selvarajoo, Jan Gruber, and Brian K. Kennedy.
973 2024. "A Concerted Increase in Readthrough and Intron Retention Drives Transposon
974 Expression during Aging and Senescence." *Preprint eLife* 12:RP87811.
975 <https://doi.org/10.7554/eLife.87811.2>.

976 Pray, L. 2008. "Transposons, or Jumping Genes: Not Junk DNA?" *Nature Education* 1 (1): 32.

977 Raudvere, Uku, Liis Kolberg, Ivan Kuzmin, Tambet Arak, Priit Adler, Hedi Peterson, and Jaak Vilo.
978 2019. "G:Profiler: A Web Server for Functional Enrichment Analysis and Conversions of
979 Gene Lists (2019 Update)." *Nucleic Acids Research* 47 (W1): W191–98.
980 <https://doi.org/10.1093/nar/gkz369>.

981 Rochelle, Tina L., Doris K.Y. Yeung, Michael Harris Bond, and Liman Man Wai Li. 2015.
982 "Predictors of the Gender Gap in Life Expectancy across 54 Nations." *Psychology, Health &
983 Medicine* 20 (2): 129–38. <https://doi.org/10.1080/13548506.2014.936884>.

984 Schneider, Blair K, Shixiang Sun, Moonsook Lee, Wenge Li, Nicholas Skvir, Nicola Neretti, Jan
985 Vlijg, and Julie Secombe. 2023. "Expression of Retrotransposons Contributes to Aging in
986 Drosophila." *Genetics* 224 (2): iyad073. <https://doi.org/10.1093/genetics/iyad073>.

987 Schwarz, Robert, Philipp Koch, Jeanne Wilbrandt, and Steve Hoffmann. 2022. "Locus-Specific
988 Expression Analysis of Transposable Elements." *Briefings in Bioinformatics* 23 (1): bbab417.
989 <https://doi.org/10.1093/bib/bbab417>.

990 She, Jianqi, Minghao Du, Zhanzhan Xu, Yueqi Jin, Yu Li, Daoning Zhang, Changyu Tao, Jian Chen,
991 Jiadong Wang, and Ence Yang. 2022. "The Landscape of HervRNAs Transcribed from
992 Human Endogenous Retroviruses across Human Body Sites." *Genome Biology* 23 (1): 231.
993 <https://doi.org/10.1186/s13059-022-02804-w>.

994 Skakkebæk, Anne, Morten Muhlig Nielsen, Christian Trolle, Søren Vang, Henrik Hornshøj, Jakob
995 Hedegaard, Mikkel Wallentin, et al. 2018. "DNA Hypermethylation and Differential Gene
996 Expression Associated with Klinefelter Syndrome." *Scientific Reports* 8 (1): 13740.
997 <https://doi.org/10.1038/s41598-018-31780-0>.

998 Skaletsky, Helen, Tomoko Kuroda-Kawaguchi, Patrick J. Minx, Holland S. Cordum, LaDeana Hillier,
999 Laura G. Brown, Sjoerd Repping, et al. 2003. "The Male-Specific Region of the Human Y
1000 Chromosome Is a Mosaic of Discrete Sequence Classes." *Nature* 423 (6942): 825–37.
1001 <https://doi.org/10.1038/nature01722>.

1002 Slotkin, R. Keith, and Robert Martienssen. 2007. "Transposable Elements and the Epigenetic
1003 Regulation of the Genome." *Nature Reviews Genetics* 8 (4): 272–85.
1004 <https://doi.org/10.1038/nrg2072>.

1005 Stephens, Matthew. 2016. “False Discovery Rates: A New Deal.” *Biostatistics* 18 (2): 275–94.
1006 <https://doi.org/10.1093/biostatistics/kxw041>.

1007 Stochholm, Kirstine, Svend Juul, and Claus H Gravholt. 2010. “Diagnosis and Mortality in 47,XYY
1008 Persons: A Registry Study.” *Orphanet Journal of Rare Diseases* 5 (1): 15.
1009 <https://doi.org/10.1186/1750-1172-5-15>.

1010 Trivers, Robert. 1985. *Social Evolution*. Menlo Park, CA: The Benjamin/Cummings Publishing
1011 Company.

1012 Tsai, Yi-Ting, Nogayhan Seymen, Ian R. Thompson, Xinchen Zou, Warisha Mumtaz, Sila Gerlevic,
1013 Ghulam J. Mufti, and Mohammad M. Karimi. 2024. “Expression of Most Retrotransposons in
1014 Human Blood Correlates with Biological Aging.” *Preprint BioRxiv*.
1015 <https://doi.org/10.1101/2024.02.09.579582>.

1016 Van Meter, Michael, Mehr Kashyap, Sarallah Rezazadeh, Anthony J. Geneva, Timothy D. Morello,
1017 Andrei Seluanov, and Vera Gorbunova. 2014. “SIRT6 Represses LINE1 Retrotransposons by
1018 Ribosylating KAP1 but This Repression Fails with Stress and Age.” *Nature Communications*
1019 5 (1): 5011. <https://doi.org/10.1038/ncomms6011>.

1020 Wainer Katsir, Kerem, and Michal Linial. 2019. “Human Genes Escaping X-Inactivation Revealed by
1021 Single Cell Expression Data.” *BMC Genomics* 20 (1): 201. <https://doi.org/10.1186/s12864-019-5507-6>.

1023 Willcox, Bradley J., D. Craig Willcox, and Luigi Ferrucci. 2008. “Secrets of Healthy Aging and
1024 Longevity From Exceptional Survivors Around the Globe: Lessons From Octogenarians to
1025 Supercentenarians.” *The Journals of Gerontology: Series A* 63 (11): 1181–85.
1026 <https://doi.org/10.1093/gerona/63.11.1181>.

1027 World Health Organization. 2023. “Life Expectancy at Birth (Years).”
1028 <https://www.who.int/data/gho/data/indicators/indicator-details/GHO/life-expectancy-at-birth-years>.

1030 Wu, Tianzhi, Erqiang Hu, Shuangbin Xu, Meijun Chen, Pingfan Guo, Zehan Dai, Tingze Feng, et al.
1031 2021. “ClusterProfiler 4.0: A Universal Enrichment Tool for Interpreting Omics Data.” *The
1032 Innovation* 2 (3): 100141. <https://doi.org/10.1016/j.xinn.2021.100141>.

1033 Zhang, Xianglong, David Hong, Shining Ma, Thomas Ward, Marcus Ho, Reenal Pattni, Zhana Duren,
1034 et al. 2020. “Integrated Functional Genomic Analyses of Klinefelter and Turner Syndromes
1035 Reveal Global Network Effects of Altered X Chromosome Dosage.” *Proceedings of the
1036 National Academy of Sciences* 117 (9): 4864–73. <https://doi.org/10.1073/pnas.1910003117>.

1037