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Abstract

The relationship between brain functional connectivity and structural connectivity has caught extensive
attention of the neuroscience community, commonly inferred using mathematical modeling. Among
many modeling approaches, spectral graph model (SGM) is distinctive as it has a closed-form solution of
the wide-band frequency spectra of brain oscillations, requiring only global biophysically interpretable
parameters. While SGM is parsimonious in parameters, the determination of SGM parameters is non-
trivial. Prior works on SGM determine the parameters through a computational intensive annealing
algorithm, which only provides a point estimate with no confidence intervals for parameter estimates.
To fill this gap, we incorporate the simulation-based inference (SBI) algorithm and develop a Bayesian
procedure for inferring the posterior distribution of the SGM parameters. Furthermore, using SBI
dramatically reduces the computational burden for inferring the SGM parameters. We evaluate the
proposed SBI-SGM framework on the resting-state magnetoencephalography recordings from healthy
subjects and show that the proposed procedure has similar performance to the annealing algorithm
in recovering power spectra and the spatial distribution of the alpha frequency band. In addition, we
also analyze the correlations among the parameters and their uncertainty with the posterior distribution
which can not be done with annealing inference. These analyses provide a richer understanding of the
interactions among biophysical parameters of the SGM. In general, the use of simulation-based Bayesian
inference enables robust and efficient computations of generative model parameter uncertainties and may
pave the way for the use of generative models in clinical translation applications.

Keywords: Bayesian; Connectomes; Magnetoencephalography; Spectral graph theory; Simulation-based
inference

1 Introduction1

A key endeavor in the field of neuroscience is to uncover the relationship between the brain’s complex2

electrophysiological and functional activity, and its underlying structural wiring contained in white matter3

fiber projections [1, 2]. Functional activity between the grey matter regions is estimated with functional4

magnetic resonance imaging (fMRI), electroencephalography (EEG), and magnetoencephalography (MEG),5

while the structural wiring is assessed using diffusion tensor imaging (DTI) from MRI. The brain structure-6

function (SC-FC) relationship is then investigated using various data-driven and mathematical modeling-based7

techniques, assuming structural connectivity (SC) as a graph with different brain regions as graph nodes8

connected to each other via edges that are informed by the white matter fiber projections.9
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While both data-driven [3–17] as well as modeling techniques [18–28] have been employed to uncover the10

brain SC-FC relationships, mathematical models additionally provide insights into the underlying biophysics11

of brain activity. After fitting the model to empirical fMRI, EEG, and MEG data, the inferred model12

parameters can serve as biophysically interpretable markers of disease and brain states [29–34]. For example,13

Zimmermann et al. [33] demonstrated that the model parameters can predict cognition. However, the practical14

impact of model-based biomarkers of pathophysiology is hampered by two key challenges, described below.15

Lack of confidence bounds and posterior probabilities. An important goal of practical model fitting is to16

quantify how well a model’s parameters explain empirical neuroimaging data, and how confidently those17

estimates can be obtained. It is, therefore, necessary to capture their variability and find out all possible18

parameter settings compatible with the observed phenomena [35]. Bayesian inference is the established19

approach for achieving these goals, by making available the posterior distribution of parameters given the20

observations. Posterior distribution in turn provides rich information about how model parameters interact21

together, and quantifies the uncertainty of the model output - potentially critical for obtaining computational22

biomarkers in disease. Unfortunately, Bayesian inference methods have been proven to be quite challenging23

for most current computational models of brain activity.24

Tractability of model inference. We identify three issues limiting the tractability of Bayesian model25

evidence in the field. First, powerful sampling methods like Markov Chain Monte Carlo require extremely26

large samples, numbering in the hundreds of thousands. Most current models, like the coupled neural27

mass models (NMMs), are evaluated via time-consuming numerical integration techniques, which in turn28

impose a prohibitive computational burden on any sampling technique. Second, coupled NMMs involve29

large parameter spaces, i.e. number of internal parameters that must be jointly inferred, making full Bayesian30

inference impractical. Third, due to inherent non-linearity, the theoretical posterior density in even the31

simplest computational models is so convoluted, non-smooth, and non-convex that conventional optimization32

or MCMC sampling techniques encounter huge challenges. Many of these issues were highlighted in previous33

studies [36–38], and together they have ensured that hardly any Bayesian inference is performed in these34

settings.35

In this paper, we present a novel way for Bayesian inference of computational models of neural activity,36

focusing specifically on the recently proposed spectral graph model (SGM), a linear biophysical generative37

model that can accurately capture the steady state wide-band power spectral density (PSD) as well as the38

spatial distribution of the alpha band power obtained from MEG [39]. We choose the SGM for the following39

reasons:40

1. SGM involves a parsimonious set of global biophysically interpretable parameters; in our previous41

paper, we demonstrated that only 7 global, spatially-invariant parameters, each having distinct bio-42

physical meaning, were sufficient to accurately capture empirical MEG PSD [40, 41]. This may be43

compared against previous models that have typically required substantially more spatially-varying44

parameters.45

2. SGM explicitly estimates regional PSD and therefore can directly fit the frequency PSD obtained from46

MEG/EEG. Other models typically provide time-domain simulations only, and their spectral content is47

usually not a target of model fitting.48

3. SGM is extremely fast to evaluate since its solution can be obtained in a closed-form in the frequency49

domain. Other models typically require lengthy time-domain simulations, which can be impractical in50

MCMC or other sampling techniques.51

As a result of its linearity and closed-form evaluation without the need for long simulations, SGM52
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parameter inference is far more tractable compared to non-linear neural mass models – where identifiability53

of model parameter is not guaranteed [36–38].54

In our prior works we had estimated SGM parameters using a global optimization algorithm, the55

dual annealing method, as point estimates [39–41, 37], as a preferred alternative over continuous gradient56

descent-based minimization. However, since the objective function of estimating SGM parameter [39, 40]57

is non-convex, the annealing approach does not guarantee a global optimum, Moreover, a single point58

estimate from the annealing method is far from enough to uncover the underlying entire range and behavior59

of biophysical processes and to lead to new insights. On the contrary, Bayesian method allows the estimation60

of the full posterior distribution of the SGM parameters, which is necessary for biological interpretation. As61

a result, Bayesian method is more suitable for inferring the SGM parameters. However, the conventional62

Bayesian inference is challenging due to the fact that the theoretical posterior density of SGM parameters63

may be rather complicated which causes difficulty in sampling.64

To circumvent the computational difficulty, we propose a novel method to perform Bayesian inference65

of the SGM parameters. The method approximates the posterior density of the SGM parameters by using a66

neural network model, which is trained through a simulation-based inference (SBI) framework [42]. Our67

main contribution is to show that this custom combination of SGM with SBI is exquisitely well-matched for68

estimating posterior distribution of generative model parameters.69

This provides a far more appealing practical utility, which may be exploited in future clinical applications.70

Given its speed, this tool can be used to quickly infer posteriors of model parameters for a large number71

of subjects which can subsequently be used to identify parsimonious markers of disease and brain states.72

Finally, it allows us to benefit from the availability of an unbounded number of simulations, thereby helping73

overcome the critical issue of lack of large sets of empirical data in medical settings.74

Using the SBI tool applied to the SGM model, we demonstrate that the model posteriors can accurately75

capture the empirical spatial distribution of alpha frequency band and PSD in MEG, and the inference76

of posteriors is substantially faster than the point estimate inference algorithm used in prior works. This77

combination of a fast and parsimonious forward model (SGM) with a fast neural network for posterior78

inference (SBI) is not currently available in the field of SC-FC mapping, and could constitute a critical79

advance in the applicability of computational models to practical scenarios.80

2 Methods81

2.1 Dataset82

We study the resting-state Magnetoencephalography (MEG) data obtained from 36 healthy subjects (2383

males, 13 females; 26 left-handed, 10 right-handed; mean age 21.75 years, age range 7-51 years) as also84

reported in Raj et al.’s study [39, 43]. Data collection procedure was describled in [39, 40]. All study85

procedures were approved by the institutional review board at the University of California at San Francisco86

and were in accordance with the ethics standards of the Helsinki Declaration of 1975 as revised in 2008.87

MEG recordings were collected for 5 minutes while the subjects were resting and had their eyes closed. Out88

of the 5-minute recording, a 1-minute snippet was chosen which was most noise free. MRI followed by89

tractography was used to generate the connectivity and distance matrices. The publicly available dataset90

consisted of processed connectivity and distance matrices, and PSD for every subject. MEG recordings were91

downsampled to 600 Hz, followed by a bandpass filtering of the signals between 2 to 45 Hz using firls92

in MATLAB [44] and generation of the static frequency PSD for every region of interest using the pmtm93

algorithm in MATLAB [44].94
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2.2 Spectral graph model95

Spectral graph model (SGM) is a hierarchical, linear, analytic model of brain oscillations, which has a96

closed-form solution in the Fourier frequency domain via the eigen-decomposition of a graph Laplacian97

[39–41]. A typical SGM has two model layers, a mesoscopic layer for the local neuronal subpopulations98

of every brain region and a macroscopic layer for the long-range excitatory neuronal subpopulations of the99

whole brain. SGM is briefly described below, and detailed illustrations can be found in the supplementary100

document and in prior publications [39, 40].101

SGM is characterized by eight parameters, which include the excitatory and inhibitory time constants102

τe, τi and neural gains gee, gei and gii at the mesoscopic level, and long-range excitatory time constant τG,103

coupling constant α, speed v at the macroscopic level. The neural gain gee is kept as 1 to ensure parameter104

identifiability [39], so the parameters of interest to be inferred in SGM are s = (τe, τi, α, v, gei, gii, τG)
T.105

Given the signals with N regions of interest (ROIs) in the time domain is [x1(t), . . . , xN (t)]T, the closed-form106

solution of SGM is obtained in the Fourier domain:107

X(s, ω)=[ F(x1(t)), · · · , F(xN (t))]T

=

(
jωI+

1

τG
FG(τG;ω)L(α, v;ω)

)−1

Hlocal(τe, τi, gei, gii;ω)P(ω), (1)

where ω is the angular frequency, X(s, ω) is a vector of the Fourier transformation, or equivalently the PSD,108

of the macroscopic signal over all brain regions of interest at frequency ω, F is the Fourier transformation,109

L is the complex Laplacian, Hlocal is the mesoscopic model’s transfer function, P(ω) is the input noise110

spectrum, and FG(ω) is the Fourier transform of a Gamma-shaped neural response function, given as111

1/τ2G
(jω+1/τG)2

. This response function is governed by the characteristic long-range excitatory time constant τG,112

and the function is intended to serve as a lumped model of various processes, including dendritic arborization,113

somatic conductance, synaptic capacitance, etc [39].114

2.3 Simulation-based inference for SGM115

Simulation-based inference (SBI) is a powerful tool for the inference of large complex statistical models that116

have been extensively applied in many areas of science and engineering [45–47]. We adapt the SBI method117

for SGM parameter estimation and inference (referred to as SBI-SGM). Let X(s,Ω) = {X(s, ω)}ω∈Ω be the118

model output PSD in dB scale[48] where Ω is the set of the frequency points we used and it contains 40 equally119

spaced frequencies in the range 2-45 Hz in the manuscript. G{X(s,Ω)} is a monotonic transformation that120

standardizes the PSD across the frequency into a z-score; standardizes the regional distribution of alpha band121

power (i.e. summation of PSD from 8-12 Hz); and finally concatenates both into a single vector. Here and122

throughout the text, we present the PSD in dB scale. In our SBI-SGM framework, we assume the data model123

is124

y = G {X(s,Ω)}+ ϵ, (2)

where ϵ ∼ N(0, σ2I) is additive i.i.d. noise with standard deviation (SD) σ.125

The random noise in (2) captures the biological noise, artifacts, and measurement error in the MEG data.126

Without this random noise, the target posterior density is discontinuous, which is difficult to estimate due to127

the well-known Gibbs phenomenon [49]. Adding this random noise to the model results in a smooth posterior128

distribution of SGM parameters, which can be accurately approximated by a neural network [50].129
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Similarly, we define the observed samples yo = G {XMEG(Ω)} where XMEG(Ω) is the observed MEG130

PSD.131

Since the parameters in the SGM model are assumed to be bounded to satisfy biological constraints,132

bounded priors are typically adopted for them, which causes difficulties for posterior sampling with SBI [51].133

To address this issue, we re-parameterize the parameters so that the posterior sampling can be performed on134

the real line. More specifically, letH(x) be a scaled logit transformation function [52] defined as135

H(x) ≡ 10× log
{

(x− xl)/(xu − xl)

1− (x− xl)/(xu − xl)

}
, for x ∈ [xl, xu],

where xl and xu are lower and upper bounds of variable x, respectively. Slightly abusing the notation, let136

θ = H(s), whereH(s) represents the values of functionH applied on each element of s.137

Under a Bayesian framework, we are interested in the posterior distribution of θ given y, particularly138

the Bayesian credible interval of θ, which captures the uncertainty of the SGM parameters. To obtain the139

credible interval, we estimate the posterior distribution of θ through the SBI procedure [42]. The density140

of y is denoted by p(y|θ) following (2), which is a multivariate Gaussian density function. We impose a141

multivariate Gaussian prior π(θ) on θ. The posterior density is qΦ(θ|y) ∝ π(θ)p(y|θ), where Φ is the142

unknown parameters that determine the posterior distribution. Instead of obtaining the posterior density for143

the SGM parameters s directly, we first derive the posterior density for θ, which results in the target posterior144

distribution through a Jacobian transformation [53].145

We use a deep learning architecture, namely neural spline flow (NSF) [47], to model the functional form146

of qΦ, where Φ is the parameters in the deep learning network. The dimension of Φ increases with the147

number of network layers in NSF, and when the dimension of Φ approaches infinity, qΦ approaches the148

true posterior distribution. When the deep learning architecture is given, Φ is the only unknown parameter149

in qΦ(θ|y). Hence estimating the posterior density is equivalent to estimating Φ. Now note that the true150

posterior distribution maximizes E[log{qΦ(θ|y)}], where the expectation is taken with respect to y and θ,151

we propose to obtain an estimator for Φ through maximizing the empirical version of E[log{qΦ(θ|y)}], that152

is 1
M

∑M
m=1 log {qΦ(θm|ym)}, where the samples ym and θm, m = 1, . . . ,M are the simulated realizations153

of y and θ based on p(y|θ) and π(θ), respectively.154

To obtain the posterior density for s given the observed sampled from the empirical PSD of MEG data155

yo = G {XMEG(Ω)}, we can feed yo in the neural network and obtain the estimated posterior distribution156

qΦ(θ|yo) with the estimated parameter Φ̂. The target posterior distribution of s is q
Φ̂
× |det(J)| where J is157

the Jacobian matrix, i.e., J = ∂θ/∂s. We illustrate the details of obtaining the posterior distribution of θ in158

Algorithm 1, which contains a simulation step and an optimization step.159

2.4 Implementation details160

For each subject, we use their MEG data from 68 cortical regions according to the Desikan–Killiany atlas161

[54] to obtain the posterior samples of the SGM parameters s. Under this atlas, we obtain a 68-region X(s, ω)162

at frequency ω, and the dimension of G {X(s,Ω)} is 2788.163

We implement SBI-SGM using the sbi package in Python (https://www.mackelab.org/sbi/) [55], where164

the hyperparameters in the original SBI algorithms are adopted as the default values provided in the package.165

We discuss the choice of the standard deviation of the noise σ and the number of simulation samples in166

Simulation step in Algorithm 1 in the next section.167

In SBI-SGM, we adopt an average template structural connectome created via openly available diffusion168

MRI data obtained from the MGH-USC human connectome project (HCP) for training a universal posterior169

mapping from observation to the posterior distribution using Algorithm 1. After obtaining a trained posterior170
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Algorithm 1 Posterior estimation with re-parameterization
Require: A multivariate Gaussian prior π(θ) ∼ N(0, 100I) a likelihood p(y|θ), an observation yo.

Simulation:
for m = 1, . . . ,M do

Sample θm ∼ π(θ)
Sample ym ∼ p(y|θm)

end for
Optimization:
Φ̂← argmin

Φ
− 1

M

∑M
m=1 log {qΦ(θm|ym)}

return q
Φ̂
(θ|yo) as the estimate of the posterior distribution of θ. The posterior distribution of s is

q
Φ̂
× | det(J)|, where J is the Jacobian matrix, i.e., J = ∂θ/∂s.

Figure 1: The pipeline of SBI inference for SGM.

density for each observed yo, we draw a posterior sample of SGM parameters, denoted by s̃. We then obtain171

X(s̃,Ω) using (1). Finally, we construct the standardized PSD and spatial distribution of the alpha band PSD172

as a G transformation of X(s̃,Ω), where the function G is defined in (2). We perform this posterior sampling173

process 1000 times to obtain a set of posterior samples of the standardized PSD and spatial distribution of the174

alpha band PSD for each observed yo. The pipeline of SBI inference for SGM is presented in Figure 1.175

We compare the performance of SBI-SGM with the performance of the annealing SGM approach [39–41],176

namely Ann-SGM, on our MEG data. The details of the annealing implementation can be found in [40].177

SGM model assumes the parameters have finite supports as the ones listed in Table 1. In Ann-SGM, three178

different bounds are evaluated for gei and gii sequentially, and the largest bounds that satisfy the stability179

condition defined by [41] are chosen in the subsequent estimation. In SBI-SGM, the largest bounds in Table 1180

are adopted for parameters (gei, gii) and we only retain the posterior samples of the SGM parameters within181

the stability boundary defined in [41]. For the other five parameters, SBI-SGM uses the same bounds as182

Ann-SGM does.183
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Table 1: SGM parameters and bounds for the parameter estimation for SBI and annealing.

Name Symbol Lower/upper
bound

Excitatory time constant τe [0.005 s, 0.03 s]
Inhibitory time constant τi [0.005 s, 0.2 s]
Long-range connectivity coupling constant α [0.1, 1]
Transmission speed v [5 m/s, 20 m/s]
Alternating population gain gei [0.001,0.7], [0.001,0.5], [0.001,0.4]
Inhibitory gain gii [0.001,2.0], [0.001,1.5], [0.001,1.5]
Graph time constant τG [0.005 s, 0.03 s]
Excitatory gain gee n/a

3 Results184

3.1 Adding random noise to the SGM improves the reconstructing accuracy of the PSD185

For each subject, we obtain the reconstructed PSD by taking the mean of the posterior samples of the PSD.186

We then study how the change in noise variation affects the performance of SBI-SGM in reconstructing187

the observed PSD. We compare the median Pearson’s correlation between the reconstructed PSD and the188

observed PSD from MEG. Specifically, for each ROI, we calculate the correlation between the reconstructed189

PSD and observed PSD from MEG. We then average the correlations over all ROIs and obtain the median of190

this average correlation over 36 subjects. In this study, the number of simulations samples is fixed at 100, 000191

in the Simulation step in Algorithm 1 and the standard deviation of ϵ varies from 0 to 3.2. We report the192

mean results over 10 repetitions. Note that when σ = 0, there is no random noise added.193

Figure 2A shows that compared to the model without random error (when the σ = 0), adding random noise194

in (2) significantly reduces the reconstruction errors. This result is consistent with our theoretical conclusion195

that adding random noise results in a smooth posterior density which can be accurately approximated by a196

neural network. The Pearson’s correlation between the reconstructed and the observed PSD increases when197

σ < 1.6 and starts to decrease after σ reaches 1.6, when the signal-to-noise ratio is not sufficiently large for198

the SBI-SGM to recover the observed PSD. In practice, we suggest choosing σ in [0.8, 2.0], which yields199

satisfactory performance with over 0.9 correlation between reconstructed and observed PSD. For all the200

following experiments, we fix σ = 1.6.201

3.2 Increasing the number of simulation samples improves the SBI-SGM fit202

We also investigate how the performance of SBI-SGM changes with the number of simulations in Simulation203

step in Algorithm 1. Figure 2B shows that a larger number of simulations yields a better SBI-SGM fit with a204

higher correlation between reconstructed and observed PSD. As indicated by the right panel of Figure 2B,205

the changes in Pearson’s correlation are not very notable and it varies from 0.887 to 0.906. However, when206

considering the standardized PSD curves for different numbers of samples, a clear trend is observed that207

typically larger sample size leads to a better fit visually. It is also worth noting that the performance of SBI-208

SGM is stable after the number of simulations reaches 100, 000. Therefore, we choose 100, 000 simulations209

in the Simulation step in Algorithm 1 in the subsequent analyses.210
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Figure 2: The performance of SBI-SGM when varying the noise SD and the number of simulation samples.
A: Left: Median standardized power spectral density (PSD) obtained from MEG and SBI-SGM with different
noise SDs. Right: Change of Pearson’s correlation between reconstructed average PSD and the observed PSD
when varying noise SDs. The red shadow indicates its 95% confidence interval. B: Left: Median standardized
PSD obtained from MEG and SBI-SGM with different number of simulation samples. Right: Change of
Pearson’s correlation between reconstructed average PSD and the observed PSD when varying the number of
simulation samples. The red shadow indicates its 95% confidence interval.

3.3 Results from two representative MEG data211

We show the results from two representative subjects whose Pearson’s correlations between reconstructed212

PSD and the observed PSD are the top two closest to the median correlation across 36 subjects in one213
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Figure 3: Result analysis from SBI-SGM for two representative MEG data. A/B: Left: Posterior density of 7
parameters for one subject in the MEG dataset. The red vertical line and red star indicate the location of the
point estimate from the annealing algorithm. Middle: Posterior mean PSD and the 95% credible interval for
the subject. The black curve indicates the observed average PSD. Right: Density estimations and observed
values of low-dimensional representations after mapping raw PSDs to a 5-dimensional embedding manifold
with the uniform manifold approximation and projection (UMAP). The red vertical line and red star indicate
the location of the representation for observed MEG data in the manifold.

experiment. To make it representative, we repeat the SBI-SGM procedure 10 times and choose the experiment214

which yields an overall correlation closest to the mean level in the 10 repetitions for the analysis.215

The posterior samples of the seven parameters as well as the PSD for two subjects are displayed in216

Figures 3A and B. In the left panels, we compare the posterior density of SBI-SGM with the point estimate217

from Ann-SGM. We can observe multiple modes from the posterior densities. For τe, v, and gii, the point218

estimates from Ann-SGM are close to one of the modes of the posterior distributions, while the estimates of219

the rest of the parameters from Ann-SGM are far away from the posterior modes from SBI-SGM.220

The middle panels of Figure 3 shows the posterior mean and 95% credible interval (CrI) of the PSD from221

SBI-SGM. In each subject, the 95% CrI covers the observed PSD at low frequencies (lower than 20 Hz),222

which is consistent with the fact that SGM can successfully recover the low-frequency PSD [40].223

Moreover, we project the reconstructed and observed PSDs and map them onto a 5-dimensional manifold224

using the uniform manifold approximation and projection (UMAP) method proposed by [56]. As shown in225
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the right panels of Figure 3, the projection of the observed PSD falls within the support of the projection of226

the reconstructed PSDs in the manifold, which further validates our Bayesian inference [57].227

Figure 4: Cohort level SBI-SGM across the 36 MEG datasets. A: The median standardized power spectral
densities (PSDs) obtained from SBI-SGM in 10 repetitions under noise SD 1.6 and number of simulation
samples 100, 000. The correlations between reconstructed and observed PSDs are between 0.905 and 0.907
in the 10 repetitions. B: Partial correlation between each pair of parameters averaged over 36 subjects. C:
Histograms and the corresponding kernel density estimations of the posterior SGM parameters.

10

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2023. ; https://doi.org/10.1101/2023.03.01.530704doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.01.530704
http://creativecommons.org/licenses/by/4.0/


Figure 5: PSD representations after mapping the simulated PSDs and 36 observed PSDs to a 2-dimensional
embedding manifold with the UMAP.

3.4 Cohort level analysis of MEG datasets228

In SBI, the variability of the posterior distribution exists due to the randomness of the simulated samples229

in the Simulation step and the randomness in the posterior sampling procedure using the trained posterior230

distribution. We evaluate the robustness of SBI-SGM in 10 repetitions. In Figure 4A, we show the median231

of the reconstructed PSDs over 36 subjects for each repetition, the PSD Pearson’s correlation is changed232

between [0.905, 0.907] (shown in the caption). The results indicate that SBI-SGM is robust throughout the233

repetitions. We choose an experiment that yields a correlation closest to the mean level in the 10 repetitions234

in the subsequent analyses.235
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We analyze the posterior samples of the SGM parameters from SBI-SGM across 36 MEG data. We first236

study the pair-wise correlation between the SGM parameters using the partial correlation method [58], which237

examines the correlation between any given two parameters after removing the effect from other parameters,238

Figure 4B shows the pair-wise partial correlation averaged over 36 subjects. As shown in Figure 4B, speed v239

has no correlation with the other parameters. The two time constants τe, τi have weak positive correlation,240

and the graph time constant τG shows moderate negative correlation with the exhibitory time constant τe241

and small positive correlation with the inhibitory time constant τi. Figure 4C shows the distribution of the242

pooled posterior samples of the SGM parameters over 36 MEG data. Among the seven SGM parameters, the243

posterior distributions of τi, τG are highly concentrated, which indicates their variabilities across different244

subjects are small. The histogram of the inhibitory time constant τi presents a second peak around 0.15s. The245

speed v has the highest density round 15 m/s.246

We further investigate whether the SGM model in (1) can generate the observed PSDs. We generate 1000247

SGM parameters from the prior distribution of s, and obtain simulated PSDs through (1). We then compare248

the simulated PSDs with the observed ones. To facilitate the visualization, we utilize the UMAP method249

to project the simulated samples of PSDs and observed PSDs to a 2-dimensional embedding manifold. As250

shown in Figure 5, in the embedded manifold, all the observed projections fall within the projections of the251

simulated samples, which indicates that the SGM model captures the generating mechanism of the observed252

PSD, and therefore is a reasonable likelihood of the data.253

3.5 SBI-SGM and Ann-SGM comparision254

We compare SBI-SGM with Ann-SGM. In Figure 6A, we show the correlations between the reconstructed255

and observed PSDs and the correlations between reconstructed and observed spatial distributions of the256

alpha band PSD resulting from SBI-SGM and Ann-SGM. We also perform statistical tests on the difference257

between the results from the two inference methods. Specifically, we calculate the Pearson’s correlations for258

each ROI between the reconstructed and observed PSDs and take the average across ROIs. Furthermore, we259

obtain the spatial correlation as the inner product between the reconstructed and observed spatial distribution260

of the alpha band PSD weighted by D+ wI where D is the row degree normalized structural connectivity261

matrix, I is the identity matrix, w is an empirical weight, and we adopt w = 10 as suggested by [37].262

As shown in Figure 6A, SBI-SGM gives similar average correlation and spatial correlation as Ann-SGM263

does with insignificant p-values from two-sample t-tests. In Figure 6B, we observe very similar spatial264

distributions of the alpha band PSD from SBI-SGM and Ann-SGM, and both of them are similar to the265

observed one from MEG data.266

One notable advantage of SBI-SGM is that it is much faster than Ann-SGM. When a template connectome267

is given, SBI-SGM provides a universal posterior distribution that can be applied to all the 36 MEG data268

after one training. SBI-SGM takes approximately 2 hours to accomplish the Bayesian inference on SGM269

parameters for all subjects. On the other hand, Ann-SGM takes about 8 hours for each subject and the270

algorithm needs to repeat for each subject. Parallel computing can further improve the computational speed271

of SBI-SGM. In conclusion, SBI-SGM has a similar performance as Ann-SGM on recovering observed PSD272

and spatial distribution from the alpha band but is much more computationally efficient.273

4 Discussion274

Models with complex and stochastic simulators have been extensively applied in many areas of science and275

engineering [59]. In neuroscience, such computational models are typically built via incorporating biological276

12

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2023. ; https://doi.org/10.1101/2023.03.01.530704doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.01.530704
http://creativecommons.org/licenses/by/4.0/


Figure 6: Performance of SBI and annealing on SGM is comparable. A: Pearson’s correlation of PSD from
each ROI and spatial correlation for the alpha frequency band. P-values are from two-sample t-tests. B:
Comparison of the observed and reconstructed spatial distributions from the SBI and annealing algorithms of
the alpha frequency band, averaged over all the subjects

mechanisms and hypothetical intuitions to explain the observed phenomena inferred from the neuroimaging277

data [35]. These models involve several free parameters that are required to be compatible with the observed278

phenomena. Due to the complexity of neural models and neural data, the determination of the free parameters279

generally relies on computation-intensive optimization routines like grid search [60], genetic algorithm [61]280

or simulated annealing [39, 40].281

However, these algorithms are far from meeting the needs of the neuroscience community, as they282

can only provide a single point estimate of the free parameters, and make it difficult to incorporate prior283

knowledge about related neural processes. In neural models, it is always desirable to find out not only the284

best, but all parameter settings compatible with the observed data. The variability of the parameters under285

the observation can provide more insights into the neural models and processes [35, 62]. Moreover, neural286

model parameters, e.g. of SGM, typically have biological meaning, hence their inference must accommodate287

the underlying biological mechanisms and their constraints, in order to avoid unreasonable solutions. Using288
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the prior knowledge of these biological quantities can not only increase the optimization efficiency but also289

robustify the inferred models. Most importantly, the practical applicability of model fitting demands a solid290

assessment of the confidence bounds and variability associated with fitted parameters - something quite291

lacking in current methods. Due to these reasons, full Bayesian inference of posteriors is preferable to292

point estimates. However, the intricacy of the neural models typically results in intractable or complicated293

likelihood which makes the likelihood-based inference inaccessible.294

Luckily, the SBI approach fills this gap by bypassing the evaluation of the likelihood function and giving295

the posterior samples directly. The results presented in this study have highlighted the key ways in which the296

proposed combination of SGM and SBI is exquisitely well-suited to the task of model inference of neural297

systems. First, the parsimony of SGM obviates a key weakness of SBI, which typically prefers to infer a298

small set of parameters [42, 47]. For this reason, SBI may be challenging for coupled non-linear models299

such as NMMs and the Virtual Brain [63] which consist of a potentially large set of parameters. Second, SBI300

requires a large number of forward-model evaluations to generate enough simulation samples for training,301

which would render large coupled NMMs unfeasible [24, 64, 27, 26], but this is far less problematic for SGM302

due to its fast forward evaluation. Third, SBI requires far fewer empirical samples compared to simulation303

samples [47, 42], which is an important consideration in real data-poor medical settings. Lastly, while the304

training of the neural network requires a high upfront cost involving numerous simulations, the trained SBI305

model can be applied almost instantaneously to new empirical data directly, which enhances the practical306

utility and amortizes the computational cost of fitting by front-loading the simulation effort.307

We were able to show that the SBI-SGM framework gives speedy estimates of the full posterior distri-308

bution, achievable in a matter of seconds per subject. Using these posteriors, point estimates, e.g. mean or309

mode of the posterior, can be quickly produced, which we showed has comparable performance to prior point310

estimation methods like dual annealing, at a fraction of the computation time. Lastly, our posterior analysis311

showed that the model parameters were generally weakly correlated, implying that all of them are required to312

obtain model outputs that match the spectral and spatial patterns obtained from empirical MEG. This is a313

crucial finding since it suggests that we can identify unique markers of diseases and brain states in the form314

of inferred SGM parameters.315

4.1 Relationship to previous works316

For models closely related to SGM, such as the non-linear neural mass models or the dynamic causal models317

(DCM), Bayesian inferencing algorithms such as variational Bayes have been used previously. DCM employs318

variation Bayes to obtain effective functional connectivity [65, 66]. A key difference is that DCM is primarily319

used to obtain effective connectivity from smaller networks and that these connectivities are obtained from320

second-order statistics such as cross-spectra using spectral DCM [67]. In contrast, SGM directly computes321

the PSD rather than individual elements of the second-order effective connectivity matrix. SGM instead322

employs an explicit structure-based model, where the inter-regional connectivity comes directly from the323

measured structural connectome. In this manner, SGM is better suited for SBI than DCM, since the latter324

would be required to infer an entire matrix of effective connectivities, in addition to other regional or global325

parameters.326

The key challenges with inferring parameters of coupled non-linear neural mass models are that they327

require time-consuming simulations. These models exhibit bifurcations yielding discontinuities in the model328

solutions [37], and parameter identifiability is not guaranteed [36]. These challenges have been discussed in329

detail elsewhere [38, 37]. SGM overcomes these challenges by providing a closed-form solution that can be330

simulated within seconds, and by consisting of only a parsimonious set of global model parameters.331

Another potential way to conduct Bayesian inference for SGM is Markov chain Monte Carlo (MCMC)332
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methods [68] as SGM has a closed-form solution in the Fourier frequency domain. However, even under an333

explicit frequency domain solution, the likelihood function of SGM can be complicated [41], which hampers334

analyzing the properties of the posterior density. Moreover, MCMC methods require a long burn-in step335

to reach the equilibrium distribution and samples from the equilibrium distribution are correlated. These336

properties make sampling from MCMC rather time-consuming for SGM. In addition, the computational cost337

of MCMC methods can not be amortized which means the time-consuming MCMC procedure needs to be run338

anew for each observation, regardless of prior observations. A previous MCMC-based inference was unable339

to capture the spectral features using a nonlinear neural mass model [38]. In comparison, SBI is more flexible340

than MCMC methods. Due to the powerful neural network, it can easily handle the complicated likelihood341

function. More importantly, SBI is trained with simulation samples that help to reduce the requirements of342

real data. Once the model is trained, it can be applied to new observations without retraining. Therefore,343

compared with MCMC methods, SBI may be preferable for practical Bayesian inference.344

It is worth noting that while this paper focuses on SGM, the SBI approach can be a robust and efficient345

alternative for parameter estimation of any complex generative model, e.g. above-mentioned coupled neural346

mass or DCM models. The key trade-off involves whether upfront simulation of a large number of forward347

model runs is practical and whether there is a compelling use case for achieving rapid inference of an unseen348

observation.349

4.2 Limitations of the current approach350

In the current inference procedure, our simulator outputs include the regional PSD and the spatial distribution351

of alpha band power - together they form a relatively high-dimensional feature space. While Algorithm 1 is352

capable of handling this, the high dimensionality of output features increases the computational burden and353

causes difficulty in learning useful information with neural networks from the data. Although we reported354

some basic diagnostics in Figure 4 to verify the validity of our inference, the high-dimensional output hampers355

more extensive posterior diagnostics. Possible workarounds to deal with this issue include extracting some356

key features from the PSD and spatial distribution manually or embedding a neural network to learn the357

key features automatically. More experiments are required in this direction. Another limitation is the large358

number of simulation samples required in SBI-SGM, which slows the inference procedure and increases359

the computational burden. The number of required simulation samples can be dramatically reduced with360

multi-round inference [46] via focusing the training on a particular observation. Although the trained model361

loses the generality for other observations, it can be very useful when we are only interested in one specific362

observed dataset.363

4.3 Potential applications and future work364

In clinical practice, it can sometimes be even more important to know how accurate our estimate is than365

simply to know the best point estimate [69]. For example, using only point estimates, it can be difficult to366

compare computational biomarkers from different cohorts. Even if two cohorts have very different values of367

the biophysical parameters, no statistically robust conclusion can be drawn without knowing the uncertainty368

of those estimates. In such cases, SBI-SGM will be extremely helpful as it gives the posterior distributions369

of the parameters which fully captures the uncertainty of estimates. With posterior distributions, credible370

intervals and other measures of uncertainty can be easily obtained. This can also be used to obtain population-371

level parameters that are homogeneous across a population despite the individual variability, which can372

aid in establishing the descriptive validity of models like SGM [70]. Lastly, it can also be used to obtain373
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time-varying posteriors of model parameters that can capture the fast temporal fluctuations in MEG, as has374

been done previously using point estimates [41].375

Data availability

The code and processed datasets for this work can be found in this github repository: https://github.com/JINhuaqing/SBI-
SGM.
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Supplementary

Spectral graph model

Notation All the vectors and matrices are written in boldface and the scalars are written in normal font.
The frequency f of a signal is specified in Hertz (Hz), and the corresponding angular frequency ω = 2πf
is used to obtain the Fourier transforms. The connectivity matrix is defined as C = cjk, where cjk is the
connectivity strength between regions j and k, normalized by the row degree.

Mesoscopic model

Given region k out of N regions, we denote the local excitatory signal as xe(t), local inhibitory signal as
xi(t), and the long-range macroscopic signals as xk(t). Combining the decay of individual signals, coupling
of excitatory and inhibitory signals as well as input white Gaussian noise, the evolution models of xe(t) and
xi(t) are:

dxe(t)

dt
= −fe(t)

τe
⋆
(
gee xe(t)− gei fi(t) ⋆ xi(t)

)
+ p(t) , and, (3)

dxi(t)

dt
= −fi(t)

τi
⋆
(
gii xi(t) + gei fe(t) ⋆ xe(t)

)
+ p(t) , (4)

where fe(t) and fi(t) are the ensemble average neural impulse response function, ⋆ stands for convolution,
p(t) is input noise, parameters gee, gii, gei are neural gain terms, and parameters τe, τi are characteristic time
constants, which are shared for every region k. We assume Gamma-shaped fe(t) and fi(t) as

fe(t) =
1

τ2e
exp

(
−t
τe

)
and fi(t) =

1

τ2i
exp

(
−t
τi

)
.
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Macroscopic model

Accounting for long-range connections between brain regions, the macroscopic signal xk is assumed to
conform to the following evolution model:

dxk(t)

dt
= − 1

τG
fG(t) ⋆ xk(t) +

α

τG
fG(t) ⋆

N∑
j=1

cjkxj(t− τvjk) +
(
xe(t) + xi(t)

)
, (5)

where, τG is the graph characteristic time constant, α is the global coupling constant, cjk are elements of the
connectivity matrix, τvjk is the delay in signals reaching from the jth to the kth region, v is the cortico-cortical
fiber conduction speed with which the signals are transmitted. The delay τvjk is calculated as djk/v, where
djk is the distance between regions j and k and xe(t) + xi(t) is the input signal determined from Equations
(3) and (4).

SGM only includes 8 global parameters as listed in Table 1. The neural gain gee is kept as 1 to ensure
parameter identifiability. Thus, there are only 7 parameters required to be estimated to determine SGM.

Closed-form model solution in the Fourier domain

A salient feature of SGM is that it provides a closed-form solution of brain oscillations under the frequency
domain. Let F be the Fourier transform at angular frequency ω = 2πf . Note that the mesoscopic models for
different regions share the same parameters, therefore, without loss of generality, we can drop the subscript k.

The solutions for xe(t) and xi(t) under the frequency domain are

Xe(ω) = F(xe(t)) =

{
1 + geiFe(ω)Fi(ω)/τe

jω+giiFi(ω)/τi

}
P (ω)

jω + geeFe(ω)/τe +
(geiFe(ω)Fi(ω))2

τeτi(jω+giiFi(ω)/τi)

= He(ω)P (ω),

and

Xi(ω) = F(xi(t)) =

{
1 + geiFe(ω)Fi(ω)/τi

jω+geeFe(ω)/τe

}
P (ω)

jω + giiFi(ω)/τi +
(geiFe(ω)Fi(ω))2

τeτi(jω+geeFe(ω)/τe)

= Hi(ω)P (ω),

where P (ω), Fe(ω), Fi(ω) are the Fourier transform of p(t), fe(t) and fi(t) at angular frequency ω.
We define the complex Laplacian matrixL(ω) = I−αC∗(ω) where C∗(ω) = [cij exp(−jωτ vij)]i,j=1,...,N .

The solution of the macroscopic signals at a angular frequency ω is

X(ω) = [ F(x1(t)), · · · , F(xN (t))]T =

(
jω +

1

τG
FG(ω)L(ω)

)−1

Hlocal(ω)P(ω), (6)

where Hlocal(ω) = He(ω) +Hi(ω).
As SGM provides a closed-form solution X(ω), we can compare the modeled and empirical power

spectra to estimate the global parameters.
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