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Abstract

Grouping gene expression into gene set activity scores (GSAS) provides better biological insights than
studying individual genes. However, existing gene set projection methods cannot return

representative, robust, and interpretable GSAS. We developed NetActivity, a framework based on a
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sparsely-connected autoencoder and a three-tier training that yields robust and interpretable GSAS.
NetActivity was trained with 1,518 well-known gene sets and all GTEx samples, returning GSAS
representative of the original transcriptome and assigning higher importance to more biclogically
relevant genes. Moreover, NetActivity returns GSAS with a more consistent definition than GSVA and
hipathia, state-of-the-art gene set projection methods. Finally, NetActivity enables combining bulk
RNA-seq and microarray datasets in a meta-analysis of prostate cancer progression, highlighting
gene sets related to cell division. When applied to metastatic prostate cancer, gene sets associated
with cancer progression were also altered due to drug resistance, while a classical enrichment

analysis identified gene sets irrelevant to the phenotype.

Introduction

Although gene expression analyses have greatly improved our understanding of the physiopathology
of multiple diseases and conditions, gene expression analyses performed at the gene level can be
difficult to interpret, particularly when hundreds of genes are identified as differentially expressed,
or when differentially expressed genes have an unknown function. In addition, measures of the
same gene with different technologies (such as RNA-seq and microarrays) may present a reduced
correlation®, resulting in different genes detected as differentially expressed’. Combining gene
expression measurements into gene set activity scores (GSAS) have shown to address these critical
issues™®. To perform gene expression analyses, GSAS should have three important properties: (1)
representativeness - GSAS should properly encode the transcriptional variance of the dataset; (2)
robustness - biological insights provided by the GSAS should not change if GSAS are recomputed,
and GSAS computed on similar samples using different technologies should be highly correlated; and
(3) interpretability - researchers should be able to know which genes have higher importance in

GSAS calculation.

Methods to project individual gene expression values into GSAS either prioritize their robustness and
interpretability or their representativity. Methods that prioritize robustness and interpretability
employ a weighted sum of the expression of the genes within the gene set. These weights can be
uniform for all genes®, or assign positive and negative weights to genes based on the literature®’.
Fixing the gene weights ensures that GSAS definition remains consistent across datasets and the
contributing genes are known. However, these methods lack representativity, as the gene weights
are not proportional to the genes' significance within the gene set. Alternative methods have been
developed to model GSAS so they effectively capture the variability of the transcriptome. These

methods include utilizing gene ranks®®, maximizing the variability of genes within a gene set',
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incorporating topological information from gene-gene co-expression networks'*?

, or modeling the
propagation of signals within pathways®™. As the GSAS’ representativity is maximized within each
dataset, it may lead to potential differences in the most relevant genes across datasets due to
overfitting, compromising the GSAS robustness. Further, they present challenges in terms of

interpretation, as researchers cannot readily determine which specific genes are more relevant for

GSAS computation.

Shallow sparsely-connected autoencoders pose as ideal alternatives to address the shortcomings of

14-16

current gene set projection methods™ . Autoencoders are neural networks (NN) where the input

data is reduced to a lower dimension and then expanded to reconstruct the original input data.

14-16
, where

Recently, shallow sparsely-connected autoencoders have been proposed to define GSAS
each gene set is represented by a neuron of the inner layer and is only connected to the genes in the
gene set. The model aims to learn the low-dimensional embedding (i.e., the set of gene set scores)
that best represents the input data. These methods also yield highly representative and
interpretable GSAS, as GSAS are a weighted sum of the genes in the gene set. Nonetheless, current

approaches generate GSAS heavily depending on the parameters’ initialization, and hence they are

not robust.

In this work, we propose a computational framework, NetActivity, to define highly representative,
robust, and interpretable gene set activity scores based on shallow sparsely-connected

17,18

autoencoders. We trained the model by selecting gene sets from Gene Ontology (GO) Biological

19-21

Processes and KEGG pathways and using the entire GTEx project® data, showing that NetActivity
generates GSAS independent of the initialization parameters that translate to unseen datasets
representing different conditions. Further, NetActivity returns an importance score for each gene
that agrees with their biological relevance in the studied context. The main model is distributed in a
Bioconductor package to facilitate the computation of GSAS on new datasets. We compared
NetActivity with GSVA and hipathia, two widely used state-of-the-art gene set projection methods,
and found that NetActivity had the highest overall performance. Finally, we demonstrated some
applications of NetActivity by (1) performing a meta-analysis in prostate cancer combining datasets

from three different gene expression platforms; and (2) finding new biological insights in a

metastatic castration-resistant prostate cancer dataset.
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Results

NetActivity framework and main model

We have developed NetActivity, a framework to define sample-wise gene set activity scores (GSAS)
from gene expression data. NetActivity consists of an autoencoder-like neural network (NN) that
learns a low-dimensional representation of the gene expression data. The encoder maps the input
gene expression vector x € R™ onto a p-dimensional embedded representation (with n > p). Each
neuron on the embedded space represents a known biological gene set, so each neuron is only
connected to the genes of this gene set (Figure 1A). GSAS are defined as the output of the
embedded code before the activation function. Finally, the decoder is composed of a fully connected

layer that aims to reconstruct the input gene expression vector from the GSAS (Figure 1A).

NetActivity’s architecture ensures that GSAS are interpretable, while our three-step training ensures
that GSAS are representative and robust. In step 1, we initialize the encoder layer of NetActivity by
training an autoencoder for each gene set, with the genes in the gene set as input features and one
neuron in the embedding layer (Figure 1B). This step learns the weights so that the output of the
embedding layer maximizes the representativity of the expression of the genes in the gene set. In
step 2, we freeze the weights from the encoder layer and train the decoder. This step ensures that
GSAS are independent of the initialization parameters and hence, robust, by ensuring a smooth
training, as done in transfer learning®. In step 3, we unfreeze all the weights and fine-tune the
network by training for additional epochs (Figure 1B). At the end of the training, the set of all GSAS
will accurately encode the input gene expression, hence optimizing the representativity of the whole

transcriptional variability.

NetActivity's main model had one layer on both the encoder and decoder. Our main model
contained a selection of 1,518 well-known biological gene sets (Sup Table 1): 1,485 (Gene Ontology)
Biological Processes'”*® (BP) (Sup Table 2) and 33 KEGG*™ Pathways (Sup Table 3). The model was
trained using all GTEx project® samples (9,662), so the model defined GSAS representative of
multiple tissues and biological functions (Figure 1C). This selection of gene sets in combination with
the three-step training returned highly robust GSAS, i.e. independent of the weights’ initialization
(Figure 1D). In contrast, including all GO terms and KEGG pathways reduced the GSAS robustness
(Sup Fig 1). While NetActivity enables adding additional hidden layers or dropout, none of these
configurations significantly improved the performance to compensate for the increased complexity

and reduced interpretability of the model (Sup Figs 2-5). Finally, this model is openly distributed in a
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Bioconductor package (www.bioconductor.org/packages/NetActivity) to facilitate the computation

of GSAS on new datasets (Figure 1C).
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Figure 1: NetActivity framework to define gene set activity scores. A: Encoding and decoding layers.
The gene set encoder layer encodes information from genes to gene sets. Each gene set neuron only
receives information from the genes present in the gene set. The decoder layer aims to reconstruct
the original gene expression matrix by combining the information from all gene sets via a fully
connected layer. NetActivity framework enables to include multiple layers in the gene set encoder
and decoder. B: NetActivity three-step training. In step 1, an autoencoder is trained for each gene
set. In step 2, weights from the encoders of step 1 are used to initialize the gene set encoder layer.
The weights of this layer are frozen (represented by dashed lines), while the decoder is trained. In
step 3, the whole network is trained. GSAS: Gene Set Activity Scores. C: Definition of the main
model. The main model is trained using GTEx data and includes GO (Gene Ontology) Biological
Processes (BP) and KEGG Pathways as gene sets. The trained gene set encoder is used to compute
GSAS in other datasets. D: Robustness of model training. Robustness measures how robust each
GSAS is to parameters initialization. A 0 means that the GSAS completely depends on the parameter
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initialization while a 1 means that is completely independent. We evaluated the robustness of three
training processes: Step 3, i.e., directly training the whole autoencoder; Step 1 + Step 3, i.e., training
the whole autoencoder after initializing the parameters by running an autoencoder in each gene set;
Step 1 + Step 2 + Step 3, i.e., using the three-steps training. E-F: Biological relevance of NetActivity
weights. NetActivity gene relevance estimates the importance of a gene for defining GSAS. The
higher the gene relevance, the more gene sets a gene has a strong influence on. E: Correlation
between NetActivity gene relevance and number of diseases associated with a gene. Genes are
grouped by the number of gene sets they belong to (1, 2, 3-5, 5+). X-axis represents the number of
diseases a given gene is associated with in the DisGeNET database®. F: Correlation between
NetActivity gene relevance and loss of function intolerance (pLl). Gene Sets per gene: number of
gene sets where a gene is included. Gene constraint: a measure of the intolerance of a gene to loss
of function mutations. Gene constraint categories are computed based on pLl scores from gnomAD:
low (<0.1), medium (0.1-0.9), and high (>0.9). A higher pLl means a stronger depletion of loss of
function mutations and higher biological relevance. G: Representativity of the GSAS.
Representativity measures the proportion of variance of the original gene expression matrix
contained in the whole GSAS matrix. Representativity was measured in the dataset used to train the
data (GTEx) and in an external dataset (TCGA). H-lI: correlation between the top 10 principal
components (PCs) of the gene expression matrix and the GSAS matrix in an IBD cohort (H) and the
tumor cohort PRAD from TCGA (I).

NetActivity’s three-tier training produces interpretable and
biologically consistent GSAS

We evaluated whether NetActivity produced biologically relevant and interpretable GSAS.
NetActivity gene relevance was defined as the sum of the genes’ weights magnitudes across multiple
gene sets (see Methods). We compared the inferred NetActivity gene relevance with two measures
of biological relevance: (1) the number of diseases associated with a gene in DisGeNET, a database of
gene-disease associations™; and (2) the intolerance to loss of function mutations (pLl) from
gnomAD?®®. Genes with a high intolerance to loss of function mutations are likely to be essential for
normal biological function. Genes with higher NetActivity relevance were associated with more
diseases (Figure 1E, p-value < 2e-16) and were more intolerant to loss of function mutation (Figure
1F, p-value = 1.1e-5), after correcting for the number of gene sets a gene is included into. These

results support that NetActivity gene relevance is correlated with biological gene relevance.

To delve into the learning process of NetActivity, we investigated the gene set weights and the
corresponding GSAS for the hsa00430 KEGG pathway (taurine and hypotaurine metabolism) (Sup
Figure 6) at the three training steps. In step 1, the two main clusters of correlated genes were
initialized with the largest weights (Sup Fig 7-8), indicating that weights are capturing the largest

sources of variance (i.e., information) in the data. Further, the model converged to similar weights
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across different parameter initializations (Sup Fig 7), due to the much lower number of parameters
(between 10 and 30, corresponding to the number of genes in a gene set) with respect to the 9,662
samples of GTEx. Step 2 ensures that gene weights are robust after step 3 (Sup Fig 7), as it avoids
losing the information stored in the encoder while the decoder weights are transitioning from their
random initialization®®. Finally, step 3 refined the encoder and decoder weights to obtain a
biologically meaningful representation of the gene set. On one hand, step 3 reduced the weights of
GAD1 and GAD2 to close to O (Sup Fig 9). While the role of GAD1 and GAD2 in the
taurine/hypotaurine metabolism in humans is not well supported, both genes were expressed
almost exclusively in the brain (Sup Fig 10), representing a relevant source of the gene set variance.
On the other hand, step 3 further increased the weight of FMO1 (Flavin containing monooxygenase
1)(Sup Fig 9), the main gene involved in the catalysis of hypotaurine to taurine reaction”. Therefore,
step 3 increased the weights of genes relevant to the gene set function, while reducing the weights

of irrelevant genes, although they contribute to the gene set variance.

GSAS from NetActivity were also representative of the whole transcriptome, retaining most of the
transcriptional variance of the input samples, both in the training dataset (GTEx) and in a new
dataset of cancer samples (TCGA) (Figure 1G). Further, principal components (PCs) of GSAS explained
a similar proportion of variance to PCs of the input gene matrix (r = 0.99), both in an external
common disease cohort (IBD cohort) or in each TCGA tumor subtype (cancer). Indeed, the first 10
PCs of the original gene matrix were highly correlated with one of the first 10 PCs of the GSAS matrix

in both cases (Figure 1H-1).

NetActivity, unlike previous methods, yields robust GSAS across

different technologies and datasets

We compared the robustness of NetActivity GSAS with two state-of-the-art methods to encode
GSAS: GSVA® and Hipathials. First, we evaluated the consistency of the GSAS definition across
datasets, defined as the correlation between the GSAS and the expression of the genes in the gene
set (see Methods). Thus, a method would return consistent GSAS definitions if the GSAS computed
in different datasets are correlated with the same genes. We explored the consistency of the GSAS
definition in: (1) subsamples in a dataset; (2) datasets generated with different technologies; and (3)

datasets from different tissues.

We computed GSAS using all TCGA-PRAD samples (prostate cancer project from TCGA) or only the

subset of healthy tissue samples, and compared the GSAS of healthy samples in both approaches.
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NetActivity and Hipathia returned equivalent GSAS (i.e. GSAS whose Pearson correlation > 0.9) and
consistent GSAS definitions for more than 90% of the gene sets (Figure 2A). In contrast, only 71% of
GSVA GSAS had equivalent values and 44% consistent definitions. Next, we compared GSAS
definitions in TCGA-PRAD with those obtained in a dataset from: (1) the same tissue (prostate
cancer) but generated with another technique (gene expression microarray samples from
GSE169038, GEO-PRAD); or (2) a different tissue (breast cancer, TCGA-BRCA) generated with the
same technique (RNA-seq). In both cases, NetActivity returned the most consistent GSAS definitions
(Figure 2B), having the highest proportion of gene sets with a highly consistent definition. In GSVA
most of the gene sets had different GSAS definitions, either when comparing different technologies

or different tissues.

Second, we evaluated the biological replicability of the GSAS. We first performed a differential
expression analysis between samples with low or high Gleason score, a histologic measure of tumor
progression, in: (1) PRAD samples from TCGA, generated with RNA-seq (TCGA-PRAD); and (2)
prostate cancer samples from GSE169038, generated with a gene expression array (GEO-PRAD). We
evaluated the concordance of the results when using single gene expression analysis or the gene set
projection methods (NetActivity, GSVA, and Hipathia) (Figure 2C-F). Hipathia presented the lowest
reproducibility (Figure 2E), even with gene sets significant in both datasets but in opposite
directions; while NetActivity and GSVA had the most replicable results (Figure 2D and 2F). For both
methods, all gene sets differentially expressed in both datasets had a concordant direction.
However, gene sets differentially expressed in GSVA had a modest overlap with the gene sets
differentially expressed with NetActivity (Sup Fig 11) because GSVA was limited to gene sets where
genes had coherent differences between the groups (Sup Fig 12). Notice that differential expression
using individual gene expression measurements was noisier, with some genes presenting large gene
expression differences in one dataset but not in the other (Figure 2C), probably due to technological

differences.
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Figure 2: Comparison of gene set projection methods. A-B: Consistency of GSAS definitions.
Equivalent: value > 0.9. High: value > 0.7. Low/Inter.: value > 0. Opposite: value < 0. A: Consistency
of gene set score definitions depending on the overall population. For the three methods, we
computed gene set scores on control samples from TCGA-PRAD. We computed the scores using two
populations: (1) all PRAD samples; and (2) control PRAD samples. Score replicability: Pearson
correlation between the gene set scores computed in populations 1 and 2. Definition consistency:
we defined the definition of a gene set score as the Pearson correlation between each gene and the
gene set score it belongs to. Definition consistency was the Pearson correlation between the gene
set definitions in populations 1 and 2. B: Consistency of gene set score definitions in different
datasets. Technology: consistency of the gene set score definition in two datasets from prostate
cancer generated with RNA-seq and gene expression microarray. Tissue: consistency of the gene set
score definition in two datasets from prostate cancer and breast cancer generated with RNA-seq. C-
F: Differences in gene expression between Gleason low and high using 4 approaches and 2 datasets
(TCGA-PRAD: PRAD samples; GEO-PRAD: GSE169038). C: Differential expression of genes. logFC:
differential expression estimates from limma. log2FC: differential expression estimates from DESeq2.
D: Differential expression of GSVA scores. E: Differential expression of hipathia pathways. Axes
report the U statistic of the Wilcoxon test. F: Differential expression of NetActivity GSAS. LogFC is the
differential expression estimate from /imma. Gene sets (or genes) were colored by their statistical
sighificance in the datasets: Both (green) - features with different expression in both datasets (FDR <
0.05); TCGA (yellow) - features with different expression in TCGA-PRAD (FDR < 0.05) but not in GEO-
PRAD (FDR > 0.05); GEO (blue)} - features with different expression in GEO-PRAD (FDR < 0.05) but not
TCGA-PRAD (FDR > 0.05); None (grey) - features without differences of expression in any of the
datasets (FDR > 0.05).
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NetActivity enables performing an interpretable gene set meta-
analysis combining multiple gene expression platforms

We run a GSAS meta-analysis on differences between Gleason low and Gleason high prostate cancer
samples. We included nine prostate cancer datasets: three generated with RNA-Seq, three with
lllumina HumanHT-12 array, and three with the Affymetrix HuEx1.0 array (Sup Table 4). 152 gene
sets had differential GSAS between Gleason low and high samples (FDR < 0.05). Several of them
were associated with cell division and morphogenesis (Sup Table 5), coherent with differences in
tumor progression between Gleason low and high. The magnitude of the GSAS was comparable

between the different technologies (Figure 3), which is essential to enable a meta-analysis.

Further, we explored the two top gene sets associated with Gleason scores: G0:0048012
(hepatocyte growth factor receptor signaling pathway) and G0:0051984 (regulation of chromosome
segregation). Individuals with high Gleason scores had lower GSAS of the hepatocyte growth factor
receptor signaling pathway, a well-known pathway of prostate cancer progression® (Figure 3A). This
GSAS is mainly driven by ESM1, which has negative weights indicating the negative correlation of
ESM1 expression with the activity of the hepatocyte growth factor receptor signaling pathway
(Figure 3B). Thus, individuals with high Gleason scores had higher expression of ESM1 (Figure 3C).
Similarly, individuals with high Gleason scores had lower GSAS of positive regulation of chromosome
segregation (Figure 3D). In this case, three genes (SMC6, CDT1, and RAD18) drive this gene set’s
GSAS, the three with negative weights (Figure 3E). In general, individuals with high Gleason had
higher expression of these genes (Figure 3F), although individual gene expression had more variable

differences than the GSAS.
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Figure 3: Gene set meta-analysis in prostate cancer. Differences in gene set scores between Gleason
low and high samples were analyzed in nine cohorts. A-C: Analysis of GO:0048012 gene set. A: Meta-
analysis of GO:0048012 gene set. Forest plot shows the effects' magnitude and their standard error
in the 9 datasets. B: Weights for GO:0048012 in NetActivity. Weights are in absolute value to
compare their magnitude. C: Difference in expression in high Gleason samples with respect to low
Gleason samples. Gene expression values were standardized before running the analyses, so the
coefficients are comparable. Bars highlighted in black represent associations nominally significant (p-
value < 0.05). D-F: Analysis of GO:0051984 gene set. D: Meta-analysis of GO: 0051984 gene set. E:
Weights for GO:0051984 in NetActivity. F: Difference in expression in high Gleason samples with
respect to low Gleason samples. Gene expression values were standardized before running the
analyses, so the coefficients are comparable. Bars highlighted in black represent associations

nominally significant (p-value < 0.05). LogFC is the differential expression estimate from limma.

NetActivity advances the knowledge of prostate cancer

We applied NetActivity to the PROMOTE study®*° to show its performance in a clinical dataset. The
PROMOTE study consists of bone metastatic samples from metastatic castration-resistant prostate
cancer patients treated with abiraterone. We characterized whether differences in gene expression
were associated with a better response to abiraterone (higher Time To Treatment Change or TTTC),
using NetActivity and a traditional differential expression analysis. 30 gene sets had GSAS associated
with response to treatment (FDR < 0.05), with top gene sets related to cell division and cell cycle

processes (Sup Table 6). Interestingly, 19 top gene sets associated with response to treatment were
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also associated with tumor progression in the prostate cancer meta-analysis, suggesting that
abiraterone treatment reverts cancer progression. Differential gene expression analyses revealed
592 genes differentially expressed (FDR < 0.05 and log2 fold-change > 1, Sup Table 7) and 248
enriched biological process GO terms (Sup Table 8, FDR < 0.05). In contrast, most of the top enriched
terms were related to muscle tissue, hence irrelevant for the phenotype, while only a few were
related to cell cycle and mitosis (Sup Fig 13). Even when restricting the analysis to genes and GO
terms present in NetActivity (Sup Table 9), a high proportion of enriched terms were still related to

muscle tissue.

NetActivity GSAS correlated better with response to treatment than individual genes. For instance,
GSAS of the top significant gene set, regulation of attachment of spindle microtubules to
kinetochore (GO:0051988), had a stronger association with TTTC (R* = 0.41) than any of these genes
individually (Sup Figure 14). In this gene set, samples with a better response (higher TTTC) had lower
GSAS (Figure 4A). NetActivity assigned positive weights to the top three genes of this gene set
(KNSTRN, ECT2, and RCC2) (Figure 4B), so these genes also had a negative correlation with TTTC
(Figure 4C). Nonetheless, KNSTRN, ECT2, and RCC2 were not significantly associated with response
to treatment after accounting for multiple testing, so these genes were not identified in the
traditional gene expression analysis. Therefore, NetActivity can uncover relevant differences in key

gene sets which might be missed in a traditional gene expression analysis.

PATHWAY: Regulation Of Attachment Of Spindle Microtubules To Kinetochore (GO:0051988)
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Figure 4: NetActivity application on PROMOTE study. A: NetActivity scores on GO:0051988 pathway
by response phenotype (TTTC) and the fit of a simple linear regression model. B: NetActivity
G0:0051988 weights; highlighted genes are differentially expressed on the DESeq2 pipeline. C:
normalized gene expression of top 3 genes of GO:0051988 by response phenotype with simple linear
model regression on the TTTC. Patients are colored based on adjusted TTTC quartiles: ‘high’ - highest
quartile so better response to therapy; ‘low’ - lowest quartile so considered as resistant to therapy;

‘medium’ — second and third quantiles.

NetActivity framework is publicly available in Bioconductor and as a
Nextflow pipeline

We have implemented the framework in NetActivityTrain
(https://github.com/yocra3/NetActivityTrain), a Nextflow pipeline® containing the steps for
preprocessing the data, training the model, and applying it to new datasets. The model training is
performed in Tensorflow - Keras 2.7%%. NetActivityTrain outputs the model and the weights required
for computing the gene set activity scores in new datasets and can be also used to compute gene set
activity scores in new datasets. All the software and dependencies required to run NetActivityTrain

are encapsulated in two docker images, publicly available in DockerHub (https://hub.docker.com/).

We have also developed a R/Bioconductor package, NetActivity
(https://bioconductor.org/packages/NetActivity), that facilitates the computation of gene set
activity scores in new datasets. The current implementation comes with the model trained in GTEx
using selected GO biological processes terms and KEGG pathways. NetActivity can also standardize
the data and manage genes present in the model but absent in the input data. NetActivity can also

be used to compute the gene set activity scores of other models trained with the NetActivityTrain.

Discussion

In this work, we propose NetActivity, a computational framework to define gene set activity scores
(GSAS) from individual gene expression values using a sparse autoencoder-like neural network.
NetActivity GSAS addresses three long-sought features in GSAS: they are representative of the input
gene expression, robust to different initializations and technological biases, and interpretable such
that biological insights can be inferred from the weights assigned to genes. Specifically, NetActivity
first learns the best representation of each gene set in a reference dataset, assigning a weight for

each gene in a gene set. Thus, NetActivity can accommodate gene sets with genes operating in
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opposite directions and give less weight to less relevant genes. In contrast, some gene set project
methods, such as z-score’ or singscore’, assign the same weight to each gene in a gene set and are
designed to detect gene sets with genes expressed in the same direction. Second, NetActivity defines
robust GSAS, as the same weights are used to infer GSAS in new datasets. In contrast, gene set
projection methods, such as z-score, ssGSEAS, GSVAg, iPASsa, PLAGElO, or Pathiﬁer34, define gene
weights based on the data, so the GSAS definition depends on the dataset where they are created.
Thus, a high GSAS can be associated with high expression of a different set of genes depending on
the dataset. Indeed, as shown for GSVA, the GSAS of a sample might depend on the samples
included in the score computation. Third, although NetActivity starts by defining GSAS that maximize
the variability of the genes in each gene set, the model can learn a gene set representation more
representative of the gene set biology, especially when the gene set might not be accurately
defined, as in the KEGG pathway hsa00430. Thus, gene set projection methods that maximize the
variability of the genes in the gene set, such as PLAGE or Pathifier, might return gene set activity
scores that do not represent the biological activity of the gene set. Fourth, the proposed framework
allows training a model including any gene set, without additional biological knowledge. By contrast,
methods such as Oncofinder®, iPANDAY, or singscore, require knowing which genes are positively or
negatively associated with the gene set activity; while others, such as TAPPA™ or Hipathia™, require
knowing the relationships between the genes in the gene set, restricting their application to well-
defined pathways. Finally, once the model is trained and the gene set weights defined, NetActivity
GSAS are computed individually for each sample. In contrast, some gene set projection methods,
such as Pathifier, iPAS, or GRAPE®, require a reference panel to define the scores so they are not
suitable for settings such as in epidemiology - where all samples are healthy and small differences

are expected - or in some clinical trials - where all individuals are cases and present unique features.

NetActivity R/Bioconductor package implements our model trained with GTEx project® data based
on 1,518 GO'"*® biological process terms and KEGG' ™ pathways. This package enables users to
compute GSAS in new datasets and currently is the best approach to define representative, robust,
and interpretable GSAS from individual gene expression values. NetActivity generates scores with
high replicability and independent of the population, can be applied to RNA-seq or gene expression
array data, and has good biological reproducibility, as it can replicate the same biological results in

datasets generated with different techniques.

NetActivity training can be used to gain insights into gene regulatory programs. Genes with low
weights after training are considered less relevant for the gene set function. Thus, this information

could be extracted from the model to remove less relevant genes and refine the gene sets.
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NetActivity also enables integrating different gene set collections in the same model. We trained our
main model using GO biological processes terms and KEGG pathways, expecting to cover most of the
human tissue functionalities. Nonetheless, NetActivity models can accommodate additional gene

sets representing other biological functions®, gene regulatory networks®, disease transcriptomic

36,38 3938,39

signatures™ ", drug perturbation signatures , or even custom gene sets. As shown in the main
model, GSAS replicability can help us define a list of gene sets with independent biological functions.
For example, if the model includes two gene sets sharing a high proportion of genes, they are very
likely to represent the same unique biological function. As such, the corresponding GSAS will highly
depend on the initialization of the weights. Based on this idea, we can remove gene sets until all
included gene sets are robust, to identify an independent list of gene set functions (potentially from
different collections). Finally, large gene sets had lower GSAS robustness, possibly because they do

not represent a single biological function.

NetActivity advances in the integration of gene expression results and datasets obtained from
different platforms. NetActivity returns gene set activity scores for 1,518 gene sets, independent of
the platform; and the data preprocessing ensures that the GSAS are on the same scale. Thus,
NetActivity facilitates performing large meta-analyses including datasets from different platforms, as
we exemplified in a meta-analysis of nine public prostate cancer datasets generated with three
platforms. Our meta-analysis demonstrated that GSAS reflect consistent biological processes that
are associated with the phenotypes of interest. In our case, the top identified gene sets were
relevant for prostate cancer progression, such as the hepatocyte growth factor receptor signaling
pathway®®. Hence NetActivity overcomes the current limitations of meta-analyses combining
different gene expression platforms, such as having different features measured in different
platforms® or having the gene expression measured on different scales. NetActivity standardization
achieves similar statistical properties to preprocessing gene expression data with quantile
normalization and log2 transformation, an approach successfully applied to run a meta-analysis
using effect estimates in Down Syndrome™. NetActivity also has some advantages over QUSAGE™, a
method to perform meta-analysis based on gene set activity scores. As QUSAGE does not include any
previous information about the relationships between genes, GSAS might represent overexpression
of different genes in different datasets. In addition, QUSAGE has not been shown to be capable of
integrating gene expression results from different platforms. Thus, NetActivity appears as the best-

performing method to perform meta-analyses of multiple gene expression platforms.

NetActivity GSAS are also highly interpretable. Specifically, based on NetActivity weights, researchers

can identify which genes are driving the GSAS and check the expression of these genes. Thus, in the
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meta-analyses of prostate cancer, we explored two top gene sets whose GSAS were driven by ESM1,
and by SMC6, CDT1, and RAD18. Interestingly, ESM1 and CDT1 have been previously associated with

42,43

prostate tumor progression . Similarly, the top gene set whose GSAS was different between

resistant and sensitive metastatic prostate samples to abiraterone treatment was driven by KNSTRN,
ECT2, and RCC2 genes, three genes previously associated with prostate cancer progression™ .
Therefore, NetActivity identifies gene sets associated with a condition, as well as the specific genes
that drive this gene set scores, enabling researchers to conduct experimental validation of their

results. This validation cannot be performed with commonly used gene set projection methods, such

as GSVA, as they do not report the genes that drive the score computation.

In addition, NetActivity can improve the interpretability of standard gene expression analysis. In our
application to metastatic-prostate cancer samples, NetActivity GSAS identified that abiraterone
treatment modified gene sets associated with cell division and cell cycle. In addition, different gene
sets presented similar differences in GSAS due to tumor progression (difference between Gleason
high and low samples) or to abiraterone treatment, suggesting that effective abiraterone treatment
reverses tumor progression. In contrast, traditional gene expression analysis identified gene sets
related to muscle function, which are not relevant neither to the phenotype (metastatic prostate
cancer) or to the tissue (bone). Two reasons can explain the better performance of NetActivity over
traditional gene expression enrichment analysis. First, NetActivity can combine individual genes with
small associations with the phenotype into a score, even if none of the individual genes pass the
multiple testing corrections; whereas gene set enrichment analysis only considers genes passing the
multiple testing correction. Second, NetActivity gives a different weight to each gene in the gene set,
so relevant genes can have higher importance; while the traditional enrichment analysis gives the
same importance to all genes. These features highlight the potential of NetActivity to get new

biological insights from gene expression data.

NetActivity also has some limitations. First, GSAS sign is arbitrary and depends on the weights’
initialization. Thus, positive and negative values were considered equivalent, and all robustness
measures were reported in absolute value. Nonetheless, exploring the magnitude and direction of
the weights of the genes in the gene set enables us to understand what the GSAS represent. Second,
the biological function of the gene set can be difficult to define. For instance, in gene metabolic
pathways, a gene set can represent the production of different metabolites, which are not defined a
priori. Therefore, further analyses and experiments are required to better characterize each gene set
function. Finally, extending the model to new gene sets requires training the whole model in a large

dataset. This requirement might not be feasible if we aim to define gene sets specific to rare
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conditions. One solution could be to fine-tune the model with the new dataset using techniques
from transfer learning. More gene sets could also be included by adding new nodes in the encoder
and initializing the weights with the pre-trained ones. Further studies are required to ascertain the

validity of these approaches.

Methods

Gene set activation framework

NetActivity is based on an autoencoder-like neural network (NN). On its main configuration,
NetActivity consists of an input layer (gene expression vector), a single encoder layer (gene set
activity scores or GSAS), and a decoder layer (reconstructed gene expression vector). The network is
trained in three steps, as described in the main results section. In all three steps, the training aims to
reduce the mean square error between the input and the reconstructed gene expression vector.

Model parameters are updated using Adam optimizer.

NetActivity enables adding additional hidden layers in the encoder or decoder layers. A hidden layer
added to the encoder would represent multiple scores for the gene sets, and each neuron will only
be connected to genes in the corresponding gene set. Then, all neurons in the additional hidden
layer representing the same gene set will be connected to the corresponding gene set neuron in the
output of the encoder. A hidden layer placed in the decoder will be connected to all neurons of the
encoder and all neurons of the output. NetActivity also enables tuning the hyperparameters of the
different training steps: the number of epochs and learning rate of each training step, the batch size,

or the activation function for the hidden and output layers.

Training of the main model

17,18 19-21

We trained a model based on GO (Gene Ontology) biological processes and KEGG pathways
using the 9,662 samples from GTEx v8%. Count and phenotype data were downloaded using
recount2”’ R package and count data was transformed using Variance Stabilizing Transformation
(VST) from DESeq2®® R package. Next, we selected the 19,423 coding genes, based on GENCODE v33
annotation®, and standardized the data at the gene level (each gene has a mean expression of 0 and

a standard deviation of 1). We used 80% of the samples for training and 20% for validation,

preserving this proportion for the different GTEx tissues (brain tissues were considered as one
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tissue). In total, 7,729 samples were used for training and 1,933 samples for validation.

Hyperparameters used for training can be found in Sup Table 10.

We first trained a model including all the GO terms and a selection of KEGG terms. We removed
KEGG terms representing collections, i.e., groups of genes that do not have a common function (e.g.,
hsa02010, which contains a collection of ABC transporters), or terms that contain different
independent pathways (e.g., hsa04742). We only selected gene sets with more than 10 genes,
leading to an initial model with 6,915 gene sets (all GOs + KEGGs model), 6,727 biological processes,
and 188 manually filtered KEGG pathways. We trained this model using 6 different weights
initializations and computed the Spearman’s rank correlation coefficient between the GSAS for each
pair of initializations, using all GTEx samples (train and test samples). We defined replicability as the
minimum correlation in absolute value between two initializations. We use the absolute value due
to the arbitrariness of the GSAS sign. Thus, a replicability of 1 means that the GSAS had the same
values (ignoring the sign) in the 6 initializations, while a replicability of 0 means that in at least two

initializations, the correlation between the GSAS was 0.

Next, we removed gene sets with more than 30 genes (Sup Figure 15) and gene sets sharing more
than 50% of genes with other gene sets. We retrained the model and evaluated the replicability.
Finally, we removed gene sets with replicability < 0.7 and retrained the model. The resulting model,
with 1,518 gene sets (Sup Table 1), 1,485 from GO (Sup Table 2), and 33 from KEGG (Sup Table 3),

was the main model in the subsequent analyses.

Other network configurations

We evaluated the performance of networks with additional hidden layers, maintaining the output of
the encoder with 1,518 gene sets. Three additional architectures were tested: (a) Gene Set + Dense -
where an additional hidden layer of 1,000 neurons was added at the decoder; (b) Dense + Gene Set -
where an additional hidden layer of 10 neurons per gene set was added at the encoder; and (c)

Dense + Gene Set + Dense - which combines (a) and (b).

We also tested the effect of adding a dropout layer in the decoder in Step 3 of the training. We
trained two models: in “Whole training + dropout” we used the same training as the main model
while in “Step 1 + step 3 + dropout”, step 2 of training was not run. In both cases, the dropout rate
was set to 0.3, while the remaining hyperparameters were those used for the main model (Sup Table

10).
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Training steps

We evaluated how the different training steps affected the gene set activity scores. To this end, we
computed the replicability obtained when training a model with the initial gene sets (6,915 gene
sets) or with the final gene sets (1,518 gene sets) using only step 1 or only steps 1 and 3. We used

the same hyperparameters for training these models as for the main model (Sup Table 10).

Next, we assessed whether NetActivity gave more relevance to more biologically relevant genes. To
compute NetActivity gene relevance, we computed the marginal gene relevance for each gene set as
the weight of each gene divided by the sum of the weights of all genes in the gene set. Weights were
transformed to the absolute value before this computation. Then, NetActivity gene relevance was
computed as the sum of marginal gene relevance across all the gene sets a gene is included into. The
association between NetActivity gene relevance and the number of diseases per gene or pLI was run
using a linear regression adjusted for the number of gene sets a gene is included into. For the
regressions, the number of diseases per gene was log10 transformed adding a 0.1 offset, while pLI

values were logit transformed.

Next, we explored how the model defined the gene weights at different training steps. To this end,
we extracted the weights of the hsa00430 KEGG pathway in the models fully trained or trained up to
step 1. We used the 6 models trained with different weights initialization to assess the model
stability, while we used the main model and the first model of step 1 training to perform detailed
comparisons of weights and gene set activity scores. Finally, we used GTEx VST transformed data to
compute a Principal Component Analysis (PCA) of hsa00430 genes and the Pearson’s correlation

between hsa00430 genes.

Gene set representativity

We evaluated whether the gene set activity scores contained the information present in the full
gene expression matrix. First, we computed the variance of the original gene expression matrix
explained by the GSAS in GTEx and TCGA samples using redundancy analysis from the vegan R
package (https://CRAN.R-project.org/package=vegan). TCGA RNA-seq data was downloaded using

TCGAbiolinks® > R package and the effect of the sequencing center was removed with ComBat-seq™
R package, protecting for project id and sample type (tumor vs normal). Data was transformed using
VST from DESeq2. The 19,423 genes included in the main model were selected and the data was

standardized at the gene level.
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Second, we assessed the correlation between the Principal Components (PCs) of the original gene
expression matrix and the GSAS in each TCGA project and an IBD cohort (GEO ID: GSE57945)°***. In
TCGA, data was standardized at the gene level independently in each project. GSE57945 consisted of
an RNA-seq cohort of Intestinal Bowel Disease (IBD), comprising 41 controls, 213 individuals with
Crohn’s disease (CD), and 60 with Ulcerative Colitis (UC). Data was downloaded using the recount2®’
R package and transformed with VST. We selected the 19,423 genes in the main model and
standardized the data at the gene level. Gene set activity scores were computed with NetActivity in
each TCGA project and GSE57945. For evaluating the gene set representativity, we run PCA in the
original gene matrix and the GSAS matrix of each TCGA project and the IBD cohort. We computed
the variability of the first ten GSAS in the original gene expression matrix using Redundancy Analysis
from vegan R package. We further explored the gene set representativity in TCGA prostate cancer
samples (PRAD) and the IBD cohort, by computing the Pearson's correlation between the top ten PCs

of the original gene matrix and the top ten PCs of the gene activity scores.

Comparison of NetActivity with other gene set projection methods

We compared the performance of NetActivity with two other gene set projection methods: GSVA
and hipathia. GSVA scores were computed using the GSVA R package® with the same gene sets as in
the main model; while Hipathia scores were computed using hipathia R package®® and the default

pathways.
Stability of gene set scores definition

To evaluate the stability of gene set scores definition, i.e., whether the gene set scores of a sample
are stable to changes in the population, we computed GSAS with NetActivity, GSVA, and hipathia,
using all PRAD samples or including only control samples. Then, we defined two measures: (1) score
replicability; and (2) definition consistency. Score replicability was defined as the Pearson correlation
between the GSAS of control samples when computed using all PRAD samples or only control
samples. To compute the definition consistency, we computed, for each gene set, the Pearson
correlation between the expression of the genes in the gene set and the GSAS. These correlations
were considered as a proxy of the gene set score definition. Thus, we computed the Pearson
correlation between the genes’ correlation when computing the GSAS using all PRAD samples or

only control samples.

Next, we evaluated whether the gene set score definitions were consistent in different datasets. We

used three different datasets: TCGA-PRAD, TCGA-BRCA, and GEO-PRAD. TCGA-PRAD consisted of the
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334 prostate cancer samples from TCGA that contained Gleason information®. We classified the 334
samples from PRAD in 88 samples with high Gleason (Gleason > = 8), and 246 with low Gleason
(Gleason < 8). TCGA-BRCA are 1,066 well-characterized breast cancer samples from TCGA>’. TCGA-
PRAD and TCGA-BRCA were generated with RNA-seq. GEO-PRAD are 1,131 prostate cancer samples
from GSE169038° generated with Affymetrix Human Exon 1.0 ST Array. We downloaded GSE169038
with GEOquery R package™, which consisted of 1,152 prostate cancer samples from European and
American ancestries. After discarding samples with a very initial prostate cancer stage (Gleason
score < 3), we had 1,131 samples, 115 with high Gleason (>= 8), and 1,016 with low Gleason (< 8). To
prepare the data for NetActivity, we mapped GSE169038 features to ENSEMBL ids, using the
platform annotation. If multiple features were mapped to the same ENSEMBL id, the feature with
more probes was selected. NetActivity was then used to standardize the data and compute the
scores. We computed GSAS with NetActivity, GSVA, and hipathia in TCGA-PRAD, TCGA-BRCA, and
GEO-PRAD. We compared the GSAS definition between TCGA-PRAD and GSE169038 (same tissue,
different technology - RNA-seq vs Affymetrix Human Exon 1.0 ST Array), and between TCGA-PRAD
and TCGA-BRCA (different tissue, same technology).

Replicability

We evaluated whether we obtained the same results when performing the same analysis for
different projection methods (NetActivity, GSVA, and hipathia) and individual gene expression in
different datasets of the same disease. We compared the gene expression between prostate
samples with low or high Gleason scores, a histological marker of tumor progression. We computed
the gene set scores using NetActivity, GSVA, and hipathia, based on VST values for TCGA-PRAD and

the original gene expression values for GEO-PRAD.

All models in PRAD were adjusted for tumor subtype, age, and ancestry, while models in GSE169038
were adjusted for ancestry and decipher classification. Individual gene differential expression
analysis was run using raw counts and DEseq2 R package for PRAD and original gene expression
values and limma® R package for GEO-PRAD. In both cases, we used all available genes for
differential expression analysis and false discovery rate (FDR) computation. Then, GEO-PRAD
features were mapped to ENSEMBL ids, and genes annotated to the same ENSEMBL id were
selected. The differential expression analysis for NetActivity and GSVA gene set scores was run using
limma R package. For hipathia gene set scores, the differential expression analysis was run using the
Wilcoxon test implemented in hipathia R package. Finally, we computed the correlation between the
differential expression estimates in both datasets: (1) genes - log2FC from DESeq2 and logFC in

limma; (2) NetActivity and GSVA - logFC in limma; and (3) hipathia - U-statistic.
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Application of NetActivity

Meta-analysis of prostate cancer

We run a meta-analysis of differences in gene expression due to cancer progression in prostate
cancer to show the applicability of NetActivity. We included nine datasets generated with three
platforms: RNA-seq, lllumina HumanHT-12 array, and Affymetrix Human Exon 1.0 ST Array (Sup
Table 4).

We preprocessed GSE46691 and GSE21034 CEL files with the rma algorithm from oligo®
Bioconductor package, summarizing expression values into core genes. Gene probes were mapped
to ENSEMBL ids using huex10sttranscriptcluster.db Bioconductor package. We normalized count
data from GSE183019 and GSE201284 using VST from DESeq2 R package, while we used normalized
gene expression values from GEO for GSE141551, GSE70768, GSE70769. Gene SYMBOL identifiers
were  converted to  ENSEMBL ids with org.Hs.eg.db  Bioconductor  package
(https://bioconductor.org/packages/org.Hs.eg.db) in GSE141551, GSE70768, GSE70769, GSE183019
and GSE201284. Pre-processing of TCGA-PRAD and GSE169038 was defined in the previous section.

In all datasets, NetActivity was used to standardize gene values and to compute GSAS.

In each dataset, we run a differential expression analysis between samples with low (<8) or high
(>=8) Gleason scores with limma, adjusting for the most relevant covariates in each dataset (Sup
Table 4). We regressed out the first 2 surrogate variables from GSE183019, computed with sva®
Bioconductor package, to correct a clustering of the samples not related to any biological variable.
Meta-analysis of effect estimates was run with METAL®. To interpret the results, we run a
differential expression analysis using the standardized gene values computed in the previous

sections, imma, and the relevant covariates defined in the previous section.

Application to metastatic prostate cancer

We applied NetActivity to the RNA-seq data from the PROMOTE study®® available at dbGAP
database with accession number phs001141.v2.p1. PROMOTE study aims to identify the molecular
mechanisms associated with abiraterone therapy resistance in metastatic castration-resistant
prostate cancer. Samples were taken after 12 weeks of abiraterone acetate/prednisone treatment
and the primary outcome was determined by the time-to-treatment-change (TTTC), i.e., the time the

patients were under the therapy before they changed to another alternative due to disease relapse
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or progression. We evaluated the association between the TTTC with the gene expression from RNA-

seq data and the activity scores computed from it by NetActivity.

We select the 47 samples from bone metastatic tissue, the tissue with the largest number of
samples. Original gene Symbols were updated to the newest version based on the HGNG HUGO
Gene Nomenclature Committee

(https://ftp.ebi.ac.uk/pub/databases/genenames/hgnc/archive/monthly/tsv/hgnc _complete set 20

22-10-01.txt, accessed the 07/10/2022) and mapped to ENSEMBL ids using AnnotationsDbi

(https://bioconductor.org/packages/AnnotationDbi) and org.Hs.eg.db R packages. Count expression

data was normalized using VST from DESeq2 R package, before computing GSAS with NetActivity.
We explored the effect of log10(TTTC adjusted) (for simplicity from here on referred to as TTTC) on
gene expression, using the transformed gene expression matrix or GSAS. Differential gene
expression analysis was performed with DESeq2 R package, while the association of GSAS with TTTC
was estimated using a linear model with the /imma R package. Additionally, we used a linear
regression model to estimate the effect of the gene expression of the top gene and the whole set of
genes for each of the significantly activated pathways on the TTTC. We calculated the adjusted R* of
these models and compared them with the model computed with the activity scores for those same

pathways.

For calculating the differentially expressed genes we used the standard differential expression
analysis of DESeq2 R package using Benjamini and Hochberg’s method for multiple test correction.
Overrepresentation enrichment analysis was performed using the function enrichGO from the R

64,65

package clusterProfiler R package with size of gene sets to test between 10-5000, using either all

genes or just genes included in NetActivity.

Availability of data

Accession codes for public data is referenced in the methods section or in Supplementary Table 4.
The code to reproduce the figures, tables and results is deposited in Github

(https://github.com/yocra3/NetActivity_paper). A docker container to reproduce the environment

used to process the data is available in DockerHub
(https://hub.docker.com/r/yocra3/netactivity_analysis). NetActivity framework is available in GitHub

(https://github.com/yocra3/NetActivityTrain), while NetActivity model is available in a

R/Bioconductor package (https://bioconductor.org/packages/NetActivity).
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