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Abstract 

Grouping gene expression into gene set activity scores (GSAS) provides better biological insights than 

studying individual genes. However, existing gene set projection methods cannot return 

representative, robust, and interpretable GSAS. We developed NetActivity, a framework based on a 
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sparsely-connected autoencoder and a three-tier training that yields robust and interpretable GSAS. 

NetActivity was trained with 1,518 well-known gene sets and all GTEx samples, returning GSAS 

representative of the original transcriptome and assigning higher importance to more biologically 

relevant genes. Moreover, NetActivity returns GSAS with a more consistent definition than GSVA and 

hipathia, state-of-the-art gene set projection methods. Finally, NetActivity enables combining bulk 

RNA-seq and microarray datasets in a meta-analysis of prostate cancer progression, highlighting 

gene sets related to cell division. When applied to metastatic prostate cancer, gene sets associated 

with cancer progression were also altered due to drug resistance, while a classical enrichment 

analysis identified gene sets irrelevant to the phenotype.  

Introduction 

Although gene expression analyses have greatly improved our understanding of the physiopathology 

of multiple diseases and conditions, gene expression analyses performed at the gene level can be 

difficult to interpret, particularly when hundreds of genes are identified as differentially expressed, 

or when differentially expressed genes have an unknown function. In addition, measures of the 

same gene with different technologies (such as RNA-seq and microarrays) may present a reduced 

correlation
1
, resulting in different genes detected as differentially expressed

2
. Combining gene 

expression measurements into gene set activity scores (GSAS) have shown to address these critical 

issues3,4. To perform gene expression analyses, GSAS should have three important properties: (1) 

representativeness - GSAS should properly encode the transcriptional variance of the dataset; (2) 

robustness - biological insights provided by the GSAS should not change if GSAS are recomputed, 

and GSAS computed on similar samples using different technologies should be highly correlated; and 

(3) interpretability - researchers should be able to know which genes have higher importance in 

GSAS calculation.   

Methods to project individual gene expression values into GSAS either prioritize their robustness and 

interpretability or their representativity. Methods that prioritize robustness and interpretability 

employ a weighted sum of the expression of the genes within the gene set. These weights can be 

uniform for all genes5, or assign positive and negative weights to genes based on the literature6,7. 

Fixing the gene weights ensures that GSAS definition remains consistent across datasets and the 

contributing genes are known. However, these methods lack representativity, as the gene weights 

are not proportional to the genes' significance within the gene set. Alternative methods have been 

developed to model GSAS so they effectively capture the variability of the transcriptome. These 

methods include utilizing gene ranks8,9, maximizing the variability of genes within a gene set10, 
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incorporating topological information from gene-gene co-expression networks11,12, or modeling the 

propagation of signals within pathways
13

. As the GSAS’ representativity is maximized within each 

dataset, it may lead to potential differences in the most relevant genes across datasets due to 

overfitting, compromising the GSAS robustness. Further, they present challenges in terms of 

interpretation, as researchers cannot readily determine which specific genes are more relevant for 

GSAS computation. 

Shallow sparsely-connected autoencoders pose as ideal alternatives to address the shortcomings of 

current gene set projection methods14–16. Autoencoders are neural networks (NN) where the input 

data is reduced to a lower dimension and then expanded to reconstruct the original input data. 

Recently, shallow sparsely-connected autoencoders have been proposed to define GSAS
14–16

, where 

each gene set is represented by a neuron of the inner layer and is only connected to the genes in the 

gene set. The model aims to learn the low-dimensional embedding (i.e., the set of gene set scores) 

that best represents the input data. These methods also yield highly representative and 

interpretable GSAS, as GSAS are a weighted sum of the genes in the gene set. Nonetheless, current 

approaches generate GSAS heavily depending on the parameters’ initialization, and hence they are 

not robust.  

In this work, we propose a computational framework, NetActivity, to define highly representative, 

robust, and interpretable gene set activity scores based on shallow sparsely-connected 

autoencoders. We trained the model by selecting gene sets from Gene Ontology (GO)17,18 Biological 

Processes and KEGG19–21 pathways and using the entire GTEx project22 data, showing that NetActivity 

generates GSAS independent of the initialization parameters that translate to unseen datasets 

representing different conditions. Further, NetActivity returns an importance score for each gene 

that agrees with their biological relevance in the studied context. The main model is distributed in a 

Bioconductor package to facilitate the computation of GSAS on new datasets. We compared 

NetActivity with GSVA and hipathia, two widely used state-of-the-art gene set projection methods, 

and found that NetActivity had the highest overall performance. Finally, we demonstrated some 

applications of NetActivity by (1) performing a meta-analysis in prostate cancer combining datasets 

from three different gene expression platforms; and (2) finding new biological insights in a 

metastatic castration-resistant prostate cancer dataset.  
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Results 

NetActivity framework and main model 

We have developed NetActivity, a framework to define sample-wise gene set activity scores (GSAS) 

from gene expression data. NetActivity consists of an autoencoder-like neural network (NN) that 

learns a low-dimensional representation of the gene expression data. The encoder maps the input 

gene expression vector � � �� onto a �-dimensional embedded representation (with � � �). Each 

neuron on the embedded space represents a known biological gene set, so each neuron is only 

connected to the genes of this gene set (Figure 1A). GSAS are defined as the output of the 

embedded code before the activation function. Finally, the decoder is composed of a fully connected 

layer that aims to reconstruct the input gene expression vector from the GSAS (Figure 1A). 

NetActivity’s architecture ensures that GSAS are interpretable, while our three-step training ensures 

that GSAS are representative and robust. In step 1, we initialize the encoder layer of NetActivity by 

training an autoencoder for each gene set, with the genes in the gene set as input features and one 

neuron in the embedding layer (Figure 1B). This step learns the weights so that the output of the 

embedding layer maximizes the representativity of the expression of the genes in the gene set. In 

step 2, we freeze the weights from the encoder layer and train the decoder. This step ensures that 

GSAS are independent of the initialization parameters and hence, robust, by ensuring a smooth 

training, as done in transfer learning23. In step 3, we unfreeze all the weights and fine-tune the 

network by training for additional epochs (Figure 1B). At the end of the training, the set of all GSAS 

will accurately encode the input gene expression, hence optimizing the representativity of the whole 

transcriptional variability.  

NetActivity's main model had one layer on both the encoder and decoder. Our main model 

contained a selection of 1,518 well-known biological gene sets (Sup Table 1): 1,485 (Gene Ontology) 

Biological Processes17,18 (BP) (Sup Table 2) and 33 KEGG19–21 Pathways (Sup Table 3). The model was 

trained using all GTEx project22 samples (9,662), so the model defined GSAS representative of 

multiple tissues and biological functions (Figure 1C). This selection of gene sets in combination with 

the three-step training returned highly robust GSAS, i.e. independent of the weights’ initialization 

(Figure 1D). In contrast, including all GO terms and KEGG pathways reduced the GSAS robustness 

(Sup Fig 1). While NetActivity enables adding additional hidden layers or dropout, none of these 

configurations significantly improved the performance to compensate for the increased complexity 

and reduced interpretability of the model (Sup Figs 2-5). Finally, this model is openly distributed in a 
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Bioconductor package (www.bioconductor.org/packages/NetActivity) to facilitate the computation 

of GSAS on new datasets (Figure 1C). 

 

Figure 1: NetActivity framework to define gene set activity scores. A: Encoding and decoding layers. 

The gene set encoder layer encodes information from genes to gene sets. Each gene set neuron only 

receives information from the genes present in the gene set. The decoder layer aims to reconstruct 

the original gene expression matrix by combining the information from all gene sets via a fully 

connected layer. NetActivity framework enables to include multiple layers in the gene set encoder 

and decoder. B: NetActivity three-step training. In step 1, an autoencoder is trained for each gene 

set. In step 2, weights from the encoders of step 1 are used to initialize the gene set encoder layer. 

The weights of this layer are frozen (represented by dashed lines), while the decoder is trained. In 

step 3, the whole network is trained. GSAS: Gene Set Activity Scores. C: Definition of the main 

model. The main model is trained using GTEx data and includes GO (Gene Ontology) Biological 

Processes (BP) and KEGG Pathways as gene sets. The trained gene set encoder is used to compute 

GSAS in other datasets. D: Robustness of model training. Robustness measures how robust each 

GSAS is to parameters initialization. A 0 means that the GSAS completely depends on the parameter 
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initialization while a 1 means that is completely independent. We evaluated the robustness of three 

training processes: Step 3, i.e., directly training the whole autoencoder; Step 1 + Step 3, i.e., training 

the whole autoencoder after initializing the parameters by running an autoencoder in each gene set; 

Step 1 + Step 2 + Step 3, i.e., using the three-steps training. E-F: Biological relevance of NetActivity 

weights. NetActivity gene relevance estimates the importance of a gene for defining GSAS. The 

higher the gene relevance, the more gene sets a gene has a strong influence on. E: Correlation 

between NetActivity gene relevance and number of diseases associated with a gene. Genes are 

grouped by the number of gene sets they belong to (1, 2, 3-5, 5+). X-axis represents the number of 

diseases a given gene is associated with in the DisGeNET database24. F: Correlation between 

NetActivity gene relevance and loss of function intolerance (pLI). Gene Sets per gene: number of 

gene sets where a gene is included. Gene constraint: a measure of the intolerance of a gene to loss 

of function mutations. Gene constraint categories are computed based on pLI scores from gnomAD: 

low (<0.1), medium (0.1-0.9), and high (>0.9). A higher pLI means a stronger depletion of loss of 

function mutations and higher biological relevance. G: Representativity of the GSAS. 

Representativity measures the proportion of variance of the original gene expression matrix 

contained in the whole GSAS matrix. Representativity was measured in the dataset used to train the 

data (GTEx) and in an external dataset (TCGA). H-I: correlation between the top 10 principal 

components (PCs) of the gene expression matrix and the GSAS matrix in an IBD cohort (H) and the 

tumor cohort PRAD from TCGA (I).  

NetActivity’s three-tier training produces interpretable and 

biologically consistent GSAS 

We evaluated whether NetActivity produced biologically relevant and interpretable GSAS. 

NetActivity gene relevance was defined as the sum of the genes’ weights magnitudes across multiple 

gene sets (see Methods). We compared the inferred NetActivity gene relevance with two measures 

of biological relevance: (1) the number of diseases associated with a gene in DisGeNET, a database of 

gene-disease associations25; and (2) the intolerance to loss of function mutations (pLI) from 

gnomAD
26

. Genes with a high intolerance to loss of function mutations are likely to be essential for 

normal biological function. Genes with higher NetActivity relevance were associated with more 

diseases (Figure 1E, p-value < 2e-16) and were more intolerant to loss of function mutation (Figure 

1F, p-value = 1.1e-5), after correcting for the number of gene sets a gene is included into. These 

results support that NetActivity gene relevance is correlated with biological gene relevance.  

To delve into the learning process of NetActivity, we investigated the gene set weights and the 

corresponding GSAS for the hsa00430 KEGG pathway (taurine and hypotaurine metabolism) (Sup 

Figure 6) at the three training steps. In step 1, the two main clusters of correlated genes were 

initialized with the largest weights (Sup Fig 7-8), indicating that weights are capturing the largest 

sources of variance (i.e., information) in the data. Further, the model converged to similar weights 
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across different parameter initializations (Sup Fig 7), due to the much lower number of parameters 

(between 10 and 30, corresponding to the number of genes in a gene set) with respect to the 9,662 

samples of GTEx. Step 2 ensures that gene weights are robust after step 3 (Sup Fig 7), as it avoids 

losing the information stored in the encoder while the decoder weights are transitioning from their 

random initialization
23

. Finally, step 3 refined the encoder and decoder weights to obtain a 

biologically meaningful representation of the gene set. On one hand, step 3 reduced the weights of 

GAD1 and GAD2 to close to 0 (Sup Fig 9). While the role of GAD1 and GAD2 in the 

taurine/hypotaurine metabolism in humans is not well supported, both genes were expressed 

almost exclusively in the brain (Sup Fig 10), representing a relevant source of the gene set variance. 

On the other hand, step 3 further increased the weight of FMO1 (Flavin containing monooxygenase 

1)(Sup Fig 9), the main gene involved in the catalysis of hypotaurine to taurine reaction27. Therefore, 

step 3 increased the weights of genes relevant to the gene set function, while reducing the weights 

of irrelevant genes, although they contribute to the gene set variance. 

GSAS from NetActivity were also representative of the whole transcriptome, retaining most of the 

transcriptional variance of the input samples, both in the training dataset (GTEx) and in a new 

dataset of cancer samples (TCGA) (Figure 1G). Further, principal components (PCs) of GSAS explained 

a similar proportion of variance to PCs of the input gene matrix (r = 0.99), both in an external 

common disease cohort (IBD cohort) or in each TCGA tumor subtype (cancer). Indeed, the first 10 

PCs of the original gene matrix were highly correlated with one of the first 10 PCs of the GSAS matrix 

in both cases (Figure 1H-I). 

NetActivity, unlike previous methods, yields robust GSAS across 

different technologies and datasets 

We compared the robustness of NetActivity GSAS with two state-of-the-art methods to encode 

GSAS: GSVA
9
 and Hipathia

13
. First, we evaluated the consistency of the GSAS definition across 

datasets, defined as the correlation between the GSAS and the expression of the genes in the gene 

set (see Methods). Thus, a method would return consistent GSAS definitions if the GSAS computed 

in different datasets are correlated with the same genes. We explored the consistency of the GSAS 

definition in: (1) subsamples in a dataset; (2) datasets generated with different technologies; and (3) 

datasets from different tissues. 

We computed GSAS using all TCGA-PRAD samples (prostate cancer project from TCGA) or only the 

subset of healthy tissue samples, and compared the GSAS of healthy samples in both approaches. 
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NetActivity and Hipathia returned equivalent GSAS (i.e. GSAS whose Pearson correlation > 0.9) and 

consistent GSAS definitions for more than 90% of the gene sets (Figure 2A). In contrast, only 71% of 

GSVA GSAS had equivalent values and 44% consistent definitions. Next, we compared GSAS 

definitions in TCGA-PRAD with those obtained in a dataset from: (1) the same tissue (prostate 

cancer) but generated with another technique (gene expression microarray samples from 

GSE169038, GEO-PRAD); or (2) a different tissue (breast cancer, TCGA-BRCA) generated with the 

same technique (RNA-seq). In both cases, NetActivity returned the most consistent GSAS definitions 

(Figure 2B), having the highest proportion of gene sets with a highly consistent definition. In GSVA 

most of the gene sets had different GSAS definitions, either when comparing different technologies 

or different tissues.  

Second, we evaluated the biological replicability of the GSAS. We first performed a differential 

expression analysis between samples with low or high Gleason score, a histologic measure of tumor 

progression, in: (1) PRAD samples from TCGA, generated with RNA-seq (TCGA-PRAD); and (2) 

prostate cancer samples from GSE169038, generated with a gene expression array (GEO-PRAD). We 

evaluated the concordance of the results when using single gene expression analysis or the gene set 

projection methods (NetActivity, GSVA, and Hipathia) (Figure 2C-F). Hipathia presented the lowest 

reproducibility (Figure 2E), even with gene sets significant in both datasets but in opposite 

directions; while NetActivity and GSVA had the most replicable results (Figure 2D and 2F). For both 

methods, all gene sets differentially expressed in both datasets had a concordant direction. 

However, gene sets differentially expressed in GSVA had a modest overlap with the gene sets 

differentially expressed with NetActivity (Sup Fig 11) because GSVA was limited to gene sets where 

genes had coherent differences between the groups (Sup Fig 12). Notice that differential expression 

using individual gene expression measurements was noisier, with some genes presenting large gene 

expression differences in one dataset but not in the other (Figure 2C), probably due to technological 

differences. 
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Figure 2: Comparison of gene set projection methods. A-B: Consistency of GSAS definitions. 

Equivalent: value > 0.9. High: value > 0.7. Low/Inter.: value > 0. Opposite: value < 0. A: Consistency 

of gene set score definitions depending on the overall population. For the three methods, we 

computed gene set scores on control samples from TCGA-PRAD. We computed the scores using two 

populations: (1) all PRAD samples; and (2) control PRAD samples. Score replicability: Pearson 

correlation between the gene set scores computed in populations 1 and 2. Definition consistency: 

we defined the definition of a gene set score as the Pearson correlation between each gene and the 

gene set score it belongs to. Definition consistency was the Pearson correlation between the gene 

set definitions in populations 1 and 2. B: Consistency of gene set score definitions in different 

datasets. Technology: consistency of the gene set score definition in two datasets from prostate 

cancer generated with RNA-seq and gene expression microarray. Tissue: consistency of the gene set 

score definition in two datasets from prostate cancer and breast cancer generated with RNA-seq. C-

F: Differences in gene expression between Gleason low and high using 4 approaches and 2 datasets 

(TCGA-PRAD: PRAD samples; GEO-PRAD: GSE169038). C: Differential expression of genes. logFC: 

differential expression estimates from limma. log2FC: differential expression estimates from DESeq2. 

D: Differential expression of GSVA scores. E: Differential expression of hipathia pathways. Axes 

report the U statistic of the Wilcoxon test. F: Differential expression of NetActivity GSAS. LogFC is the 

differential expression estimate from limma. Gene sets (or genes) were colored by their statistical 

significance in the datasets: Both (green) - features with different expression in both datasets (FDR < 

0.05); TCGA (yellow) - features with different expression in TCGA-PRAD (FDR < 0.05) but not in GEO-

PRAD (FDR > 0.05); GEO (blue) - features with different expression in GEO-PRAD (FDR < 0.05) but not 

TCGA-PRAD (FDR > 0.05); None (grey) - features without differences of expression in any of the 

datasets (FDR > 0.05). 
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NetActivity enables performing an interpretable gene set meta-

analysis combining multiple gene expression platforms 

We run a GSAS meta-analysis on differences between Gleason low and Gleason high prostate cancer 

samples. We included nine prostate cancer datasets: three generated with RNA-Seq, three with 

Illumina HumanHT-12 array, and three with the Affymetrix HuEx1.0 array (Sup Table 4). 152 gene 

sets had differential GSAS between Gleason low and high samples (FDR < 0.05). Several of them 

were associated with cell division and morphogenesis (Sup Table 5), coherent with differences in 

tumor progression between Gleason low and high. The magnitude of the GSAS was comparable 

between the different technologies (Figure 3), which is essential to enable a meta-analysis.  

Further, we explored the two top gene sets associated with Gleason scores: GO:0048012 

(hepatocyte growth factor receptor signaling pathway) and GO:0051984 (regulation of chromosome 

segregation). Individuals with high Gleason scores had lower GSAS of the hepatocyte growth factor 

receptor signaling pathway, a well-known pathway of prostate cancer progression
28

 (Figure 3A). This 

GSAS is mainly driven by ESM1, which has negative weights indicating the negative correlation of 

ESM1 expression with the activity of the hepatocyte growth factor receptor signaling pathway 

(Figure 3B). Thus, individuals with high Gleason scores had higher expression of ESM1 (Figure 3C). 

Similarly, individuals with high Gleason scores had lower GSAS of positive regulation of chromosome 

segregation (Figure 3D). In this case, three genes (SMC6, CDT1, and RAD18) drive this gene set’s 

GSAS, the three with negative weights (Figure 3E). In general, individuals with high Gleason had 

higher expression of these genes (Figure 3F), although individual gene expression had more variable 

differences than the GSAS. 
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Figure 3: Gene set meta-analysis in prostate cancer. Differences in gene set scores between Gleason 

low and high samples were analyzed in nine cohorts. A-C: Analysis of GO:0048012 gene set. A: Meta-

analysis of GO:0048012 gene set. Forest plot shows the effects' magnitude and their standard error 

in the 9 datasets. B: Weights for GO:0048012 in NetActivity. Weights are in absolute value to 

compare their magnitude. C: Difference in expression in high Gleason samples with respect to low 

Gleason samples. Gene expression values were standardized before running the analyses, so the 

coefficients are comparable. Bars highlighted in black represent associations nominally significant (p-

value < 0.05). D-F: Analysis of GO:0051984 gene set. D: Meta-analysis of GO: 0051984 gene set. E: 

Weights for GO:0051984 in NetActivity. F: Difference in expression in high Gleason samples with 

respect to low Gleason samples. Gene expression values were standardized before running the 

analyses, so the coefficients are comparable. Bars highlighted in black represent associations 

nominally significant (p-value < 0.05). LogFC is the differential expression estimate from limma. 

NetActivity advances the knowledge of prostate cancer 

We applied NetActivity to the PROMOTE study29,30 to show its performance in a clinical dataset. The 

PROMOTE study consists of bone metastatic samples from metastatic castration-resistant prostate 

cancer patients treated with abiraterone. We characterized whether differences in gene expression 

were associated with a better response to abiraterone (higher Time To Treatment Change or TTTC), 

using NetActivity and a traditional differential expression analysis. 30 gene sets had GSAS associated 

with response to treatment (FDR < 0.05), with top gene sets related to cell division and cell cycle 

processes (Sup Table 6). Interestingly, 19 top gene sets associated with response to treatment were 
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also associated with tumor progression in the prostate cancer meta-analysis, suggesting that 

abiraterone treatment reverts cancer progression. Differential gene expression analyses revealed 

592 genes differentially expressed (FDR < 0.05 and log2 fold-change > 1, Sup Table 7) and 248 

enriched biological process GO terms (Sup Table 8, FDR < 0.05). In contrast, most of the top enriched 

terms were related to muscle tissue, hence irrelevant for the phenotype, while only a few were 

related to cell cycle and mitosis (Sup Fig 13). Even when restricting the analysis to genes and GO 

terms present in NetActivity (Sup Table 9), a high proportion of enriched terms were still related to 

muscle tissue.  

NetActivity GSAS correlated better with response to treatment than individual genes. For instance, 

GSAS of the top significant gene set, regulation of attachment of spindle microtubules to 

kinetochore (GO:0051988), had a stronger association with TTTC (R
2
 = 0.41) than any of these genes 

individually (Sup Figure 14). In this gene set, samples with a better response (higher TTTC) had lower 

GSAS (Figure 4A). NetActivity assigned positive weights to the top three genes of this gene set 

(KNSTRN, ECT2, and RCC2) (Figure 4B), so these genes also had a negative correlation with TTTC 

(Figure 4C). Nonetheless, KNSTRN, ECT2, and RCC2 were not significantly associated with response 

to treatment after accounting for multiple testing, so these genes were not identified in the 

traditional gene expression analysis. Therefore, NetActivity can uncover relevant differences in key 

gene sets which might be missed in a traditional gene expression analysis. 
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Figure 4: NetActivity application on PROMOTE study. A: NetActivity scores on GO:0051988 pathway 

by response phenotype (TTTC) and the fit of a simple linear regression model. B: NetActivity 

GO:0051988 weights; highlighted genes are differentially expressed on the DESeq2 pipeline. C:  

normalized gene expression of top 3 genes of GO:0051988 by response phenotype with simple linear 

model regression on the TTTC. Patients are colored based on adjusted TTTC quartiles: ‘high’ - highest 

quartile so better response to therapy; ‘low’ - lowest quartile so considered as resistant to therapy; 

‘medium’ – second and third quantiles.  

NetActivity framework is publicly available in Bioconductor and as a 

Nextflow pipeline 

We have implemented the framework in NetActivityTrain 

(https://github.com/yocra3/NetActivityTrain), a Nextflow pipeline31 containing the steps for 

preprocessing the data, training the model, and applying it to new datasets. The model training is 

performed in Tensorflow - Keras 2.7
32

. NetActivityTrain outputs the model and the weights required 

for computing the gene set activity scores in new datasets and can be also used to compute gene set 

activity scores in new datasets. All the software and dependencies required to run NetActivityTrain 

are encapsulated in two docker images, publicly available in DockerHub (https://hub.docker.com/).  

We have also developed a R/Bioconductor package, NetActivity 

(https://bioconductor.org/packages/NetActivity), that facilitates the computation of gene set 

activity scores in new datasets. The current implementation comes with the model trained in GTEx 

using selected GO biological processes terms and KEGG pathways. NetActivity can also standardize 

the data and manage genes present in the model but absent in the input data. NetActivity can also 

be used to compute the gene set activity scores of other models trained with the NetActivityTrain. 

Discussion 

In this work, we propose NetActivity, a computational framework to define gene set activity scores 

(GSAS) from individual gene expression values using a sparse autoencoder-like neural network. 

NetActivity GSAS addresses three long-sought features in GSAS: they are representative of the input 

gene expression, robust to different initializations and technological biases, and interpretable such 

that biological insights can be inferred from the weights assigned to genes. Specifically, NetActivity 

first learns the best representation of each gene set in a reference dataset, assigning a weight for 

each gene in a gene set. Thus, NetActivity can accommodate gene sets with genes operating in 
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opposite directions and give less weight to less relevant genes. In contrast, some gene set project 

methods, such as z-score
5
 or singscore

7
, assign the same weight to each gene in a gene set and are 

designed to detect gene sets with genes expressed in the same direction. Second, NetActivity defines 

robust GSAS, as the same weights are used to infer GSAS in new datasets. In contrast, gene set 

projection methods, such as z-score, ssGSEA
8
, GSVA

9
, iPAS

33
, PLAGE

10
, or Pathifier

34
, define gene 

weights based on the data, so the GSAS definition depends on the dataset where they are created. 

Thus, a high GSAS can be associated with high expression of a different set of genes depending on 

the dataset. Indeed, as shown for GSVA, the GSAS of a sample might depend on the samples 

included in the score computation. Third, although NetActivity starts by defining GSAS that maximize 

the variability of the genes in each gene set, the model can learn a gene set representation more 

representative of the gene set biology, especially when the gene set might not be accurately 

defined, as in the KEGG pathway hsa00430. Thus, gene set projection methods that maximize the 

variability of the genes in the gene set, such as PLAGE or Pathifier, might return gene set activity 

scores that do not represent the biological activity of the gene set. Fourth, the proposed framework 

allows training a model including any gene set, without additional biological knowledge. By contrast, 

methods such as Oncofinder
6
, iPANDA

11
, or singscore, require knowing which genes are positively or 

negatively associated with the gene set activity; while others, such as TAPPA
12 or Hipathia

13, require 

knowing the relationships between the genes in the gene set, restricting their application to well-

defined pathways. Finally, once the model is trained and the gene set weights defined, NetActivity 

GSAS are computed individually for each sample. In contrast, some gene set projection methods, 

such as Pathifier, iPAS, or GRAPE
35, require a reference panel to define the scores so they are not 

suitable for settings such as in epidemiology - where all samples are healthy and small differences 

are expected - or in some clinical trials - where all individuals are cases and present unique features. 

NetActivity R/Bioconductor package implements our model trained with GTEx project
22

 data based 

on 1,518 GO17,18 biological process terms and KEGG19–21 pathways. This package enables users to 

compute GSAS in new datasets and currently is the best approach to define representative, robust, 

and interpretable GSAS from individual gene expression values. NetActivity generates scores with 

high replicability and independent of the population, can be applied to RNA-seq or gene expression 

array data, and has good biological reproducibility, as it can replicate the same biological results in 

datasets generated with different techniques. 

NetActivity training can be used to gain insights into gene regulatory programs. Genes with low 

weights after training are considered less relevant for the gene set function. Thus, this information 

could be extracted from the model to remove less relevant genes and refine the gene sets. 
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NetActivity also enables integrating different gene set collections in the same model. We trained our 

main model using GO biological processes terms and KEGG pathways, expecting to cover most of the 

human tissue functionalities. Nonetheless, NetActivity models can accommodate additional gene 

sets representing other biological functions36, gene regulatory networks37, disease transcriptomic 

signatures
36,38

, drug perturbation signatures
3938,39

, or even custom gene sets. As shown in the main 

model, GSAS replicability can help us define a list of gene sets with independent biological functions. 

For example, if the model includes two gene sets sharing a high proportion of genes, they are very 

likely to represent the same unique biological function. As such, the corresponding GSAS will highly 

depend on the initialization of the weights. Based on this idea, we can remove gene sets until all 

included gene sets are robust, to identify an independent list of gene set functions (potentially from 

different collections). Finally, large gene sets had lower GSAS robustness, possibly because they do 

not represent a single biological function. 
 

NetActivity advances in the integration of gene expression results and datasets obtained from 

different platforms. NetActivity returns gene set activity scores for 1,518 gene sets, independent of 

the platform; and the data preprocessing ensures that the GSAS are on the same scale. Thus, 

NetActivity facilitates performing large meta-analyses including datasets from different platforms, as 

we exemplified in a meta-analysis of nine public prostate cancer datasets generated with three 

platforms. Our meta-analysis demonstrated that GSAS reflect consistent biological processes that 

are associated with the phenotypes of interest. In our case, the top identified gene sets were 

relevant for prostate cancer progression, such as the hepatocyte growth factor receptor signaling 

pathway28. Hence NetActivity overcomes the current limitations of meta-analyses combining 

different gene expression platforms, such as having different features measured in different 

platforms1 or having the gene expression measured on different scales. NetActivity standardization 

achieves similar statistical properties to preprocessing gene expression data with quantile 

normalization and log2 transformation, an approach successfully applied to run a meta-analysis 

using effect estimates in Down Syndrome40. NetActivity also has some advantages over QuSAGE41, a 

method to perform meta-analysis based on gene set activity scores. As QuSAGE does not include any 

previous information about the relationships between genes, GSAS might represent overexpression 

of different genes in different datasets. In addition, QuSAGE has not been shown to be capable of 

integrating gene expression results from different platforms. Thus, NetActivity appears as the best-

performing method to perform meta-analyses of multiple gene expression platforms. 

NetActivity GSAS are also highly interpretable. Specifically, based on NetActivity weights, researchers 

can identify which genes are driving the GSAS and check the expression of these genes. Thus, in the 
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meta-analyses of prostate cancer, we explored two top gene sets whose GSAS were driven by ESM1, 

and by SMC6, CDT1, and RAD18. Interestingly, ESM1 and CDT1 have been previously associated with 

prostate tumor progression42,43. Similarly, the top gene set whose GSAS was different between 

resistant and sensitive metastatic prostate samples to abiraterone treatment was driven by KNSTRN, 

ECT2, and RCC2 genes, three genes previously associated with prostate cancer progression
44–46

. 

Therefore, NetActivity identifies gene sets associated with a condition, as well as the specific genes 

that drive this gene set scores, enabling researchers to conduct experimental validation of their 

results. This validation cannot be performed with commonly used gene set projection methods, such 

as GSVA, as they do not report the genes that drive the score computation.  

In addition, NetActivity can improve the interpretability of standard gene expression analysis. In our 

application to metastatic-prostate cancer samples, NetActivity GSAS identified that abiraterone 

treatment modified gene sets associated with cell division and cell cycle. In addition, different gene 

sets presented similar differences in GSAS due to tumor progression (difference between Gleason 

high and low samples) or to abiraterone treatment, suggesting that effective abiraterone treatment 

reverses tumor progression. In contrast, traditional gene expression analysis identified gene sets 

related to muscle function, which are not relevant neither to the phenotype (metastatic prostate 

cancer) or to the tissue (bone). Two reasons can explain the better performance of NetActivity over 

traditional gene expression enrichment analysis. First, NetActivity can combine individual genes with 

small associations with the phenotype into a score, even if none of the individual genes pass the 

multiple testing corrections; whereas gene set enrichment analysis only considers genes passing the 

multiple testing correction. Second, NetActivity gives a different weight to each gene in the gene set, 

so relevant genes can have higher importance; while the traditional enrichment analysis gives the 

same importance to all genes. These features highlight the potential of NetActivity to get new 

biological insights from gene expression data. 

NetActivity also has some limitations. First, GSAS sign is arbitrary and depends on the weights’ 

initialization. Thus, positive and negative values were considered equivalent, and all robustness 

measures were reported in absolute value. Nonetheless, exploring the magnitude and direction of 

the weights of the genes in the gene set enables us to understand what the GSAS represent. Second, 

the biological function of the gene set can be difficult to define. For instance, in gene metabolic 

pathways, a gene set can represent the production of different metabolites, which are not defined a 

priori. Therefore, further analyses and experiments are required to better characterize each gene set 

function. Finally, extending the model to new gene sets requires training the whole model in a large 

dataset. This requirement might not be feasible if we aim to define gene sets specific to rare 
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conditions. One solution could be to fine-tune the model with the new dataset using techniques 

from transfer learning. More gene sets could also be included by adding new nodes in the encoder 

and initializing the weights with the pre-trained ones. Further studies are required to ascertain the 

validity of these approaches. 

Methods 

Gene set activation framework 

NetActivity is based on an autoencoder-like neural network (NN). On its main configuration, 

NetActivity consists of an input layer (gene expression vector), a single encoder layer (gene set 

activity scores or GSAS), and a decoder layer (reconstructed gene expression vector). The network is 

trained in three steps, as described in the main results section. In all three steps, the training aims to 

reduce the mean square error between the input and the reconstructed gene expression vector. 

Model parameters are updated using Adam optimizer. 

NetActivity enables adding additional hidden layers in the encoder or decoder layers. A hidden layer 

added to the encoder would represent multiple scores for the gene sets, and each neuron will only 

be connected to genes in the corresponding gene set. Then, all neurons in the additional hidden 

layer representing the same gene set will be connected to the corresponding gene set neuron in the 

output of the encoder. A hidden layer placed in the decoder will be connected to all neurons of the 

encoder and all neurons of the output. NetActivity also enables tuning the hyperparameters of the 

different training steps: the number of epochs and learning rate of each training step, the batch size, 

or the activation function for the hidden and output layers.  

Training of the main model 

We trained a model based on GO (Gene Ontology) biological processes17,18 and KEGG pathways19–21
 

using the 9,662 samples from GTEx v822. Count and phenotype data were downloaded using 

recount2
47 R package and count data was transformed using Variance Stabilizing Transformation 

(VST) from DESeq2
48

 R package. Next, we selected the 19,423 coding genes, based on GENCODE v33 

annotation49, and standardized the data at the gene level (each gene has a mean expression of 0 and 

a standard deviation of 1). We used 80% of the samples for training and 20% for validation, 

preserving this proportion for the different GTEx tissues (brain tissues were considered as one 
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tissue). In total, 7,729 samples were used for training and 1,933 samples for validation. 

Hyperparameters used for training can be found in Sup Table 10.  

We first trained a model including all the GO terms and a selection of KEGG terms. We removed 

KEGG terms representing collections, i.e., groups of genes that do not have a common function (e.g., 

hsa02010, which contains a collection of ABC transporters), or terms that contain different 

independent pathways (e.g., hsa04742). We only selected gene sets with more than 10 genes, 

leading to an initial model with 6,915 gene sets (all GOs + KEGGs model), 6,727 biological processes, 

and 188 manually filtered KEGG pathways. We trained this model using 6 different weights 

initializations and computed the Spearman’s rank correlation coefficient between the GSAS for each 

pair of initializations, using all GTEx samples (train and test samples). We defined replicability as the 

minimum correlation in absolute value between two initializations. We use the absolute value due 

to the arbitrariness of the GSAS sign. Thus, a replicability of 1 means that the GSAS had the same 

values (ignoring the sign) in the 6 initializations, while a replicability of 0 means that in at least two 

initializations, the correlation between the GSAS was 0.  

Next, we removed gene sets with more than 30 genes (Sup Figure 15) and gene sets sharing more 

than 50% of genes with other gene sets. We retrained the model and evaluated the replicability. 

Finally, we removed gene sets with replicability < 0.7 and retrained the model. The resulting model, 

with 1,518 gene sets (Sup Table 1), 1,485 from GO (Sup Table 2), and 33 from KEGG (Sup Table 3), 

was the main model in the subsequent analyses.  

Other network configurations 

We evaluated the performance of networks with additional hidden layers, maintaining the output of 

the encoder with 1,518 gene sets. Three additional architectures were tested: (a) Gene Set + Dense - 

where an additional hidden layer of 1,000 neurons was added at the decoder; (b) Dense + Gene Set - 

where an additional hidden layer of 10 neurons per gene set was added at the encoder; and (c) 

Dense + Gene Set + Dense - which combines (a) and (b).  

We also tested the effect of adding a dropout layer in the decoder in Step 3 of the training. We 

trained two models: in “Whole training + dropout” we used the same training as the main model 

while in “Step 1 + step 3 + dropout”, step 2 of training was not run. In both cases, the dropout rate 

was set to 0.3, while the remaining hyperparameters were those used for the main model (Sup Table 

10). 
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Training steps 

We evaluated how the different training steps affected the gene set activity scores. To this end, we 

computed the replicability obtained when training a model with the initial gene sets (6,915 gene 

sets) or with the final gene sets (1,518 gene sets) using only step 1 or only steps 1 and 3. We used 

the same hyperparameters for training these models as for the main model (Sup Table 10).  

Next, we assessed whether NetActivity gave more relevance to more biologically relevant genes. To 

compute NetActivity gene relevance, we computed the marginal gene relevance for each gene set as 

the weight of each gene divided by the sum of the weights of all genes in the gene set. Weights were 

transformed to the absolute value before this computation. Then, NetActivity gene relevance was 

computed as the sum of marginal gene relevance across all the gene sets a gene is included into. The 

association between NetActivity gene relevance and the number of diseases per gene or pLI was run 

using a linear regression adjusted for the number of gene sets a gene is included into. For the 

regressions, the number of diseases per gene was log10 transformed adding a 0.1 offset, while pLI 

values were logit transformed.  

Next, we explored how the model defined the gene weights at different training steps. To this end, 

we extracted the weights of the hsa00430 KEGG pathway in the models fully trained or trained up to 

step 1. We used the 6 models trained with different weights initialization to assess the model 

stability, while we used the main model and the first model of step 1 training to perform detailed 

comparisons of weights and gene set activity scores. Finally, we used GTEx VST transformed data to 

compute a Principal Component Analysis (PCA) of hsa00430 genes and the Pearson’s correlation 

between hsa00430 genes. 

Gene set representativity 

We evaluated whether the gene set activity scores contained the information present in the full 

gene expression matrix. First, we computed the variance of the original gene expression matrix 

explained by the GSAS in GTEx and TCGA samples using redundancy analysis from the vegan R 

package (https://CRAN.R-project.org/package=vegan). TCGA RNA-seq data was downloaded using 

TCGAbiolinks
50–52

 R package and the effect of the sequencing center was removed with ComBat-seq
53

 

R package, protecting for project id and sample type (tumor vs normal). Data was transformed using 

VST from DESeq2. The 19,423 genes included in the main model were selected and the data was 

standardized at the gene level. 
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Second, we assessed the correlation between the Principal Components (PCs) of the original gene 

expression matrix and the GSAS in each TCGA project and an IBD cohort (GEO ID: GSE57945)
54,55

. In 

TCGA, data was standardized at the gene level independently in each project. GSE57945 consisted of 

an RNA-seq cohort of Intestinal Bowel Disease (IBD), comprising 41 controls, 213 individuals with 

Crohn’s disease (CD), and 60 with Ulcerative Colitis (UC). Data was downloaded using the recount2
47

 

R package and transformed with VST. We selected the 19,423 genes in the main model and 

standardized the data at the gene level. Gene set activity scores were computed with NetActivity in 

each TCGA project and GSE57945. For evaluating the gene set representativity, we run PCA in the 

original gene matrix and the GSAS matrix of each TCGA project and the IBD cohort. We computed 

the variability of the first ten GSAS in the original gene expression matrix using Redundancy Analysis 

from vegan R package. We further explored the gene set representativity in TCGA prostate cancer 

samples (PRAD) and the IBD cohort, by computing the Pearson's correlation between the top ten PCs 

of the original gene matrix and the top ten PCs of the gene activity scores.  

Comparison of NetActivity with other gene set projection methods 

We compared the performance of NetActivity with two other gene set projection methods: GSVA 

and hipathia. GSVA scores were computed using the GSVA R package
9
 with the same gene sets as in 

the main model; while Hipathia scores were computed using hipathia R package13 and the default 

pathways. 

Stability of gene set scores definition 

To evaluate the stability of gene set scores definition, i.e., whether the gene set scores of a sample 

are stable to changes in the population, we computed GSAS with NetActivity, GSVA, and hipathia, 

using all PRAD samples or including only control samples. Then, we defined two measures: (1) score 

replicability; and (2) definition consistency. Score replicability was defined as the Pearson correlation 

between the GSAS of control samples when computed using all PRAD samples or only control 

samples. To compute the definition consistency, we computed, for each gene set, the Pearson 

correlation between the expression of the genes in the gene set and the GSAS. These correlations 

were considered as a proxy of the gene set score definition. Thus, we computed the Pearson 

correlation between the genes’ correlation when computing the GSAS using all PRAD samples or 

only control samples.  

Next, we evaluated whether the gene set score definitions were consistent in different datasets. We 

used three different datasets: TCGA-PRAD, TCGA-BRCA, and GEO-PRAD. TCGA-PRAD consisted of the 
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334 prostate cancer samples from TCGA that contained Gleason information56. We classified the 334 

samples from PRAD in 88 samples with high Gleason (Gleason > = 8), and 246 with low Gleason 

(Gleason < 8). TCGA-BRCA are 1,066 well-characterized breast cancer samples from TCGA57. TCGA-

PRAD and TCGA-BRCA were generated with RNA-seq. GEO-PRAD are 1,131 prostate cancer samples 

from GSE169038
58

 generated with Affymetrix Human Exon 1.0 ST Array. We downloaded GSE169038 

with GEOquery R package59, which consisted of 1,152 prostate cancer samples from European and 

American ancestries. After discarding samples with a very initial prostate cancer stage (Gleason 

score < 3), we had 1,131 samples, 115 with high Gleason (>= 8), and 1,016 with low Gleason (< 8). To 

prepare the data for NetActivity, we mapped GSE169038 features to ENSEMBL ids, using the 

platform annotation. If multiple features were mapped to the same ENSEMBL id, the feature with 

more probes was selected. NetActivity was then used to standardize the data and compute the 

scores. We computed GSAS with NetActivity, GSVA, and hipathia in TCGA-PRAD, TCGA-BRCA, and 

GEO-PRAD. We compared the GSAS definition between TCGA-PRAD and GSE169038 (same tissue, 

different technology - RNA-seq vs Affymetrix Human Exon 1.0 ST Array), and between TCGA-PRAD 

and TCGA-BRCA (different tissue, same technology).  

Replicability 

We evaluated whether we obtained the same results when performing the same analysis for 

different projection methods (NetActivity, GSVA, and hipathia) and individual gene expression in 

different datasets of the same disease. We compared the gene expression between prostate 

samples with low or high Gleason scores, a histological marker of tumor progression. We computed 

the gene set scores using NetActivity, GSVA, and hipathia, based on VST values for TCGA-PRAD and 

the original gene expression values for GEO-PRAD. 

All models in PRAD were adjusted for tumor subtype, age, and ancestry, while models in GSE169038 

were adjusted for ancestry and decipher classification. Individual gene differential expression 

analysis was run using raw counts and DEseq2 R package for PRAD and original gene expression 

values and limma
60

 R package for GEO-PRAD. In both cases, we used all available genes for 

differential expression analysis and false discovery rate (FDR) computation. Then, GEO-PRAD 

features were mapped to ENSEMBL ids, and genes annotated to the same ENSEMBL id were 

selected. The differential expression analysis for NetActivity and GSVA gene set scores was run using 

limma R package. For hipathia gene set scores, the differential expression analysis was run using the 

Wilcoxon test implemented in hipathia R package. Finally, we computed the correlation between the 

differential expression estimates in both datasets: (1) genes - log2FC from DESeq2 and logFC in 

limma; (2) NetActivity and GSVA - logFC in limma; and (3) hipathia - U-statistic.  
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Application of NetActivity 

Meta-analysis of prostate cancer 

We run a meta-analysis of differences in gene expression due to cancer progression in prostate 

cancer to show the applicability of NetActivity. We included nine datasets generated with three 

platforms: RNA-seq, Illumina HumanHT-12 array, and Affymetrix Human Exon 1.0 ST Array (Sup 

Table 4). 

We preprocessed GSE46691 and GSE21034 CEL files with the rma algorithm from oligo
61 

Bioconductor package, summarizing expression values into core genes. Gene probes were mapped 

to ENSEMBL ids using huex10sttranscriptcluster.db Bioconductor package. We normalized count 

data from GSE183019 and GSE201284 using VST from DESeq2 R package, while we used normalized 

gene expression values from GEO for GSE141551, GSE70768, GSE70769. Gene SYMBOL identifiers 

were converted to ENSEMBL ids with org.Hs.eg.db Bioconductor package 

(https://bioconductor.org/packages/org.Hs.eg.db) in GSE141551, GSE70768, GSE70769, GSE183019 

and GSE201284. Pre-processing of TCGA-PRAD and GSE169038 was defined in the previous section. 

In all datasets, NetActivity was used to standardize gene values and to compute GSAS.  

In each dataset, we run a differential expression analysis between samples with low (<8) or high 

(>=8) Gleason scores with limma, adjusting for the most relevant covariates in each dataset (Sup 

Table 4). We regressed out the first 2 surrogate variables from GSE183019, computed with sva
62 

Bioconductor package, to correct a clustering of the samples not related to any biological variable. 

Meta-analysis of effect estimates was run with METAL
63

. To interpret the results, we run a 

differential expression analysis using the standardized gene values computed in the previous 

sections, limma, and the relevant covariates defined in the previous section.  

Application to metastatic prostate cancer 

We applied NetActivity to the RNA-seq data from the PROMOTE study
29,30

 available at dbGAP 

database with accession number phs001141.v2.p1. PROMOTE study aims to identify the molecular 

mechanisms associated with abiraterone therapy resistance in metastatic castration-resistant 

prostate cancer. Samples were taken after 12 weeks of abiraterone acetate/prednisone treatment 

and the primary outcome was determined by the time-to-treatment-change (TTTC), i.e., the time the 

patients were under the therapy before they changed to another alternative due to disease relapse 
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or progression. We evaluated the association between the TTTC with the gene expression from RNA-

seq data and the activity scores computed from it by NetActivity.  

We select the 47 samples from bone metastatic tissue, the tissue with the largest number of 

samples. Original gene Symbols were updated to the newest version based on the HGNG HUGO 

Gene Nomenclature Committee 

(https://ftp.ebi.ac.uk/pub/databases/genenames/hgnc/archive/monthly/tsv/hgnc_complete_set_20

22-10-01.txt, accessed the 07/10/2022) and mapped to ENSEMBL ids using AnnotationsDbi 

(https://bioconductor.org/packages/AnnotationDbi) and org.Hs.eg.db R packages. Count expression 

data was normalized using VST from DESeq2 R package, before computing GSAS with NetActivity. 

We explored the effect of log10(TTTC adjusted) (for simplicity from here on referred to as TTTC) on 

gene expression, using the transformed gene expression matrix or GSAS. Differential gene 

expression analysis was performed with DESeq2 R package, while the association of GSAS with TTTC 

was estimated using a linear model with the limma R package. Additionally, we used a linear 

regression model to estimate the effect of the gene expression of the top gene and the whole set of 

genes for each of the significantly activated pathways on the TTTC. We calculated the adjusted R
2
 of 

these models and compared them with the model computed with the activity scores for those same 

pathways. 

For calculating the differentially expressed genes we used the standard differential expression 

analysis of DESeq2 R package using Benjamini and Hochberg’s method for multiple test correction. 

Overrepresentation enrichment analysis was performed using the function enrichGO from the R 

package clusterProfiler
64,65 R package with size of gene sets to test between 10-5000, using either all 

genes or just genes included in NetActivity. 

Availability of data 

Accession codes for public data is referenced in the methods section or in Supplementary Table 4. 

The code to reproduce the figures, tables and results is deposited in Github 

(https://github.com/yocra3/NetActivity_paper). A docker container to reproduce the environment 

used to process the data is available in DockerHub 

(https://hub.docker.com/r/yocra3/netactivity_analysis). NetActivity framework is available in GitHub 

(https://github.com/yocra3/NetActivityTrain), while NetActivity model is available in a 

R/Bioconductor package (https://bioconductor.org/packages/NetActivity). 
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