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Abstract

Genome-wide association studies (GWAS) have proven a powerful tool for human geneticists
to generate biological insights or hypotheses for drug discovery. Nevertheless, a dependency
on sensitive individual-level data together with ever-increasing cohort sample sizes, numbers
of variants and phenotypes studied put a strain on existing algorithms, limiting the GWAS
approach from maximising potential. Here we present in-silico GWAS (isGWAS), a uniquely
scalable algorithm to infer regression parameters in case-control GWAS from cohort-level
summary data. For any sample size, isSGWAS computes a variant-disease association
parameter in ~1 millisecond, or ~11m variants in UK-Biobank within ~4 minutes (~1500-fold
faster than state-of-the-art). Extensive simulations and empirical tests demonstrate that
iISGWAS results are highly comparable to traditional regression-based approaches. We further
introduce a heuristic re-sampling algorithm, leapfrog re-sampler (LRS), to extrapolate
association results to semi-virtually enlarged cohorts. Owing to significant computational
gains we anticipate a broad use of iISGWAS and LRS which are customizable on a web

interface.

Main

Genome wide association studies (GWAS) have been immensely successful in unravelling the
genetic contribution to human disease. Cost-effective genotyping and large biobank cohorts
now make it possible to routinely conduct GWAS for tens of millions of variants in hundreds
of thousands of individuals across thousands of phenotypes[1]. With the advent of population-
scale whole genome sequencing and expansion of GWAS to research participants of non-
European ancestries, these numbers can be expected to increase by another magnitude over the

next few years[2], [3].
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Current GWAS approaches that compute variant-disease associations in a regression
framework, such as PLINK]J4], fastGWA[5], BOLT-LMM[6], SAIGE[7] and REGENIE[8],
require access to and input from ever increasing individual-level data (ILD). The efforts of
individual-level GWAS sample collection, genotyping and data analysis tend to grow as a
polynomial function of sample size[7], [8]. Moreover, the exchange of ILD between researchers
is non-trivial due partly to data size but increasingly to strict — but essential - data protection
regulations, which can limit the scope of collaborative analyses and biological insights
gained[9]-[12]. Finally, the substantial computational and financial burden of running massive-
scale GWAS, especially for binary disease outcomes, is exacerbating inequity between
researchers, typically favouring already well-equipped institutions. There is therefore a pressing
need for innovative approaches that help attenuate the increasing resource and financial
inequities for conducting contemporary GWAS and to help decide where limited resources

should best be allocated.

Here we present in-silico GWAS (isSGWAS), a biobank-scalable and computationally highly
efficient algorithm to infer genetic regression parameters in case-control GWAS from just four
broadly ascertained cohort-level summary parameters: the counts of cases and controls within
a cohort, as well as case and control minor allele frequencies (MAFs). iSGWAS is highly
parallelisable, exceeding efficiencies of current GWAS analysis tools by several orders of
magnitude. Furthermore, we demonstrate that iISGWAS yield association summary statistics
highly comparable to traditional ILD regression-based approaches through extensive
simulations and empirical tests in UK Biobank[13], Biobank Japan[14] and the Psychiatric
Genomics Consortium cohort[15]. Owing to the sizeable computational gains, we introduce a

heuristic re-sampling algorithm, called the leapfrog re-sampler (LRS), which can confidently
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extrapolate GWAS results to larger sample sizes, both at a locus or genome-wide scale. Our
underlying methodology also leads to several desirable high-utility properties. We release a

web tool available to the wider public to conduct customized iSGWAS at www.optima-

ISgwas.com.
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Results

Genome-wide association testing from sufficient statistics

iISGWAS assumes disease-variant associations can be evaluated via a logistic-link function and,
similar to widely used methods[7], [8], uses a Firth adjusted maximum likelihood procedure
and Newton-Raphson solver to estimate genetic effects, standard errors and association p-
value[7], [8], [16]. isGWAS’ notable advance is based on the insight that the Newton-Raphson
procedure can be simplified so that: (a) elements of the Fisher information matrix and score
function vector are collapsed by taking expectation over the empirical or a priori distribution
of a genetic variant; and (b) sufficient statistics — a specific type of summary data - are used as
input variables in the score function (see Methods for details). We provide several options to
initialise the Newton-Raphson algorithm[17], [18] that improve computational performance
and reduce analysis time (Supplementary Information). In brief, let y; denote disease status
for the i-th individual and g;; », denote the j-th genetic variant under model M (e.g., additive,

recessive or dominant). The sufficient statistic triple used by iSGWAS is:

Nj Nj Nj
— — * — —
le—zyi—Nj' sz_ZYigij,M: T3j—zgij,M )
i=1 i=1 i=1

where Ty is the total number of cases for variant j, T,; is the covariance between the outcome
y and genotype g for variant j under model M, and Tj; is the minor allele count for variant j
under model M. For each variant, data can be provided as either: the sufficient statistic triple
{le,sz,ng} plus sample size N; (necessary for computing standard errors) or separately, on
assuming Hardy-Weinberg equilibrium (HWE), as {N;, N, MAF; y;, MAF}";; }. Default GWAS
analyses assume HWE, making input data widely available[13]-[15], [19]-[21] for researchers

to perform isGWAS, replicate or further expand on classical GWAS analyses (Methods). If

MAFs for cases and controls are supplied, isGWAS will automatically convert to the pair
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{MAF; )y, MAF;};} (Methods). After convergence, which is guaranteed for most scenarios by a
re-initialization approach (empirically all scenarios converged using isSGWAS-Firth), the
estimated genetic effect parameter Bj_M and standard error SE (,L?j,M) are used to construct Wald
p-values (Methods). Additional options include a sample-level likelihood ratio-test or p-values
computed using sandwich-robust standard errors (Supplementary Methods). A simplified
illustration highlighting differences and computational advantages of isGWAS against ILD-

based genetic association analyses is summarised in Figure 1.

iISGWAS reliably identifies genetic associations across cohorts and diseases

We benchmarked isGWAS in real-data settings and performed simulation studies to compare
iISGWAS performance and results relative to several existing individual-level data (ILD)-based
approaches. Our assessments broadly fall into two categories: (1) methods which require ILD,
i.e., REGENIE[8], logistic and Firth corrected regression[16], and (2) approaches which do not
require ILD directly, i.e., the logistic ad-hoc estimator[17] and Fisher’s Exact Test (FET)[22].
We note FET was successfully leveraged for efficient large-scale GWAS analyses recently[23].
Using data from UK Biobank (UKB), we first assessed iSGWAS performance against the
popular ILD based regression approach REGENIE[8] by deploying both methods for analyses
of seven diseases some of which were previously used for establishing GWAS methodology|[5],
[7], [8]. Second, we evaluated isGWAS’s ability to replicate 309 significantly associated
variants from the Biobank Japan (BBJ) meta-analysis of 30 diseases[24] using only the
published sample-summaries, i.e., without access to ILD, per variant and disease pair. Lastly,
by considering multiple iterations of nested schizophrenia meta-analysis GWAS[25]-[27] we
assessed isSGWAS’s ability to accurately predict genomic regions and significant novel

associations. The isGWAS sample size of the meta-analysis from 2014 was virtually expanded
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100  to match the numbers from the larger 2022 GWAS whilst holding constant the allele frequency
101  and prevalence information in 2014 cohort.

102

103  Performance against ILD based regression GWAS in UK Biobank

104  We compared isGWAS results and computational performance against the state-of-the-art ILD-
105 based method REGENIE for seven diseases in UKB: asthma (1C10:J45); atherosclerosis
106  (IC10:125); colon cancer (1C10:C18); hypertension (1C10:110); glaucoma (IC10:H40); stroke
107  (IC10:163); and thyroid gland cancer (IC10:C73). Case-control ratios varied from 1:2 in
108  hypertension to 1:669 in thyroid gland cancer across the diseases (Supplementary Table 1a),
109 allowing for the review of performance in near balanced to highly imbalanced case-control
110  settings. To help attenuate the possible influence of confounders when deploying iISGWAS,
111  particularly sample relatedness and population structure, we describe and apply additional data
112 quality control (QC) steps before computing the required sample-level sufficient statistics
113  (Methods). After additional QC, the total sample size analysed was ~335,000 individuals per
114  disease (Supplementary Table 1). This sample was used to perform and contrast analyses in
115  both isGWAS and REGENIE. We review approaches which leverage additional insight from
116  any removed samples in the Discussion. For each of the seven diseases, we applied iISGWAS
117  (no covariates) and two-step REGENIE with Firth correction (including the covariates age, sex
118  and ethnicity principal components) to ~11 million autosomal variants. Results are presented
119 in Table 1, Figures 2-3, Supplementary Figures 1-15, Supplementary Tables 1-9 and
120  Supplementary Files 1-2.

121

122 Across all seven traits tested we observed close to perfect consistency between REGENIE and
123 isSGWAS association results, as illustrated in the mirrored Manhattan and p-p plots for asthma

124  (Figure 2a) and other diseases (Supplementary Figures 1-6). Concordance between
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125 REGENIE and isGWAS is further validated by benchmarking accuracy (Table 1) and Pearson
126  correlations between estimated p-values (cor(pisg,pr)) > 094 at log,, scale
127  (Supplementary Tables 2-3). The results are consistent for varying prevalence levels
128  (Supplementary Figures 1-6) and are not affected by covariate adjustment (Supplementary
129  Tables 2-3). The consistency translated to the regional locus level. This is exemplified by a
130  locus zoom plot of the FLG2 gene region for asthma (Figure 2b) where isSGWAS not only
131  nominated the identical GWAS lead variants but also largely recapitulated the overall
132 association pattern identified through REGENIE. This observation is consistent across the lead
133  independent loci from the asthma GWAS (Supplementary Figure 7) and translates to all other
134  diseases studied (Supplementary Figure 8). For a comprehensive numerical comparison of
135  association results, we took REGENIE derived p-values as the ground truth, retaining all SNPs
136  with p < 0.01 and setting the true positive threshold as p <5 x 1078 (excluding stroke
137  (Supplementary Figure 4) which did not yield any significant associations). We computed the
138  accuracy, false positive (FPR), true positive (TPR) and false discovery rates (FDR) of isSGWAS
139  (Figure 3a and Table 1). Accuracy of iSGWAS was > 99.98% for each disease, highlighting
140  excellent overall correspondence between methods. The FPR was low, i.e., FPR < 107°, and
141  TPR was generally good at > 88% - excluding hypertension which had a TPR = 0.63. The
142  FDR was below < 5% for each disease, revealing that the positive predictive value of iSGWAS
143  was greater than 95%.

144

145  Importantly, isGWAS and REGENIE results differed for two broad categories: (i) the
146  estimation of genetic effect sizes; and (ii) computational performance. When non-confounding

147  covariates are excluded (S, ¢o») O included (B.o,) In a model, previous and extensive
148  investigations of effect size estimates in logistic regression deduce that |8, cov| < 1Bcovl, i-€.,

149  regression estimates are smaller in magnitude when excluding covariates but the null-
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150 hypothesis of no association is maintained[28], [29]. Overall, we replicate these results in our
151  analyses. isGWAS computed effect sizes are smaller in absolute value, but largely concordant
152 with covariate-adjusted REGENIE. Moreover, we fail to reject the null hypothesis for the same
153  variants almost always between methods - suggesting that the isGWAS QC helps attenuate
154  issues of population confounding (Figures 2d-e, Supplementary Figures 1d-e — 6d-e, 9, 10
155 and 11). Aninvestigation of the performance of isGWAS without removing related individuals
156  highlights potential expansion of iSGWAS beyond the recommended QC (Methods,
157  Supplementary Information), but further investigation — possibly leveraging the re-sampling
158  potential of iSGWAS - is required on the reliability of iSGWAS in family-based cohorts and
159 ethnically diverse populations (Supplementary Figures 12-13, Supplementary Tables 5-7).
160  In our full-QC analyses, all estimated effects between isSGWAS and REGENIE were observed
161 to be in the same direction, and the correlation between estimates was on average
162  cor(Bisg, Precenie) = 0.7 (Supplementary Tables 1-3). The relative drop in the correlation
163  between effect estimates (= 0.7) and p-values (= 0.94) is anticipated[28] and can be explained
164  onnoting that, across all diseases more precise effect estimates (i.e., those with smaller standard
165  errors) have stronger concordance between approaches (Figure 2e and Supplementary
166  Figures 1d-6d). Overall, we found that at least 98% of iSGWAS and REGENIE confidence
167 intervals (Cl) overlap, (Supplementary Table 4). When effect estimates are viewed as a
168  function of MAF, the absolute value of REGENIE-derived estimates seemingly increase (along
169  with standard errors) as MAF decreases across all scenarios. This contrasts with isGWAS where
170  the relationship between MAF and effect size is less clear: fewer variants with low MAF are
171  associated with relatively larger effect sizes. However, the correspondingly narrower standard
172  errors guarantee the same significance p-values as REGENIE. The isGWAS derived
173  distribution of effect sizes is consistent with the hypothesis of a flattened heritability

174  distribution under negative selection[30]. Genomic inflation computed from iSGWAS results
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175  across all analyses was on average = 1.07 and ranged between (0.94, 1.26) which was similar
176 to REGENIE with average ~ 1.1 and range (1.01,1.3) (Supplementary Figure 14 and
177  Supplementary Table 8). We deploy isGWAS with genotype imputation in our primary
178 analyses and, as secondary sensitivity analyses, without imputation. Our investigation reveals
179  some surprising results. Imputation occasionally led to changes in MAF between cases and
180  controls such that estimated genetic effects switched sign (i.e., effect direction) relative to
181  results computed from non-imputed data (Supplementary Figure 15, Supplementary Table
182 3, Supplementary Files 2-3). The approach might be used to efficiently flag ambiguous
183  significant results in analyses that are the result of the missing values imputation strategy
184  (mean-imputed in the case of REGENIE).

185

186  Finally, the computational gains of isGWAS relative to REGENIE Step 2 are striking: a full
187  genome-wide association assessment for each disease took approximately 4 minutes using
188  isSGWAS and, on average over different prevalence, this is around 1,300 times faster than a like-
189  for-like assessment using REGENIE Step-2 (Figure 7, Supplementary Table 9, and
190  Supplementary File 4).

191

192  Replicating significant associations in Biobank Japan analyses

193  Using only publicly available summary information from Biobank Japan (BBJ), i.e., without
194  access to ILD, we looked to compare and replicate BBJ GWAS results across 42 diseases[24].
195  We considered 309 variants that were identified in [24] as genome-wide significant (p <
196 5% 1078) across 30 of the 42 diseases. Our results reveal very close alignment between
197  isSGWAS computed associations and those of [24] - correlation between p-values at log,, scale
198 was cor(pise, Prry) = 0.98 with 92.2% of isGWAS computed genetic effects within the 95%

199 CI of the original study (Supplementary Figure 16). Using the published study-level

10
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200  results[24] as the ground truth, isSGWAS demonstrated good sensitivity and specificity
201  (Supplementary Figure 17). We alternatively assessed performance when setting more
202  stringent significance thresholds - returning near identical conclusions when classifying
203  variants at p < 9.58 x 107° (used in the original publication). Results for X-chromosome
204  variants in males and females were similarly concordant (results not presented).

205

206  iISGWAS model validation using simulations

207  We generated simulated datasets to assess performance of isGWAS - with and without Firth
208  correction - against a variety of classical methods which either: (a) do not require ILD, the
209  logistic ad-hoc estimator[17] and Fisher’s Exact Test[22]; or (b) require ILD, logistic and Firth
210  corrected regression[7], [8], [16]. We perform two simulation studies (Figure 4,
211  Supplementary Figure 18, Supplementary Information). isGWAS-Firth outperformed all
212 other approaches in terms of either computational cost or robustness of results over the range
213  of scenarios considered. It is well documented that computational performance is reduced when
214  using Firth’s bias correction in ILD regression analyses[7], [8], [16], we discover, however,
215  that no-ILD isGWAS-Firth regression has significantly improved performance relative to
216  uncorrected iIsSGWAS (Supplementary Table 21). As anticipated[23], when disease prevalence
217  israre (i.e., < 0.01) parameter estimates computed using non-Firth corrected ILD regression
218  were unreliable. The MSE and distribution of parameters estimated via ILD logistic regression
219  were often orders of magnitude poorer than other methods (Figure 4a-c). Figure 4f-h
220  highlights the chronological evolution of no-ILD p-value estimates, from Sasieni’s logistic ad-
221  hoc estimator (1997)[17], Fisher’s Exact Test (1922)[22] to iSGWAS-Firth, illustrating
222  improvements in estimation via successive approaches. See Supplementary Information for

223  detailed results review.

11
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224

225 Leapfrog re-sampling: using isSGWAS to extrapolate variant association results to
226  larger sample sizes

227  When ILD are available, the computational benefits of isSGWAS make it possible to deploy
228  resampling approaches to estimate empirical effect sizes, p-values and corresponding
229  confidence intervals, previously considered computationally daunting in GWAS[31], [32]. We
230  extend the idea by introducing a heuristic leapfrog re-sampling (LRS) algorithm to help forecast
231  future results in larger hypothetical GWAS sample sizes (Methods). The LRS is summarised
232  in three key steps: (1) specify a target sample size along with the number and size of sub-
233  samples to be generated; (2) (leapfrog-step) compute sufficient statistics in the sub-samples and
234  re-scale the estimated number of cases and controls to match the larger target sample size; and
235  (3) deploy isGWAS in each leapfrog sample to recover a distribution of association p-values
236  over the collection of sub-samples. In our testing of the LRS, we use the median p-value as a
237  generally robust estimate of a target p-value (weighted or distribution-based summaries can
238  alternatively be considered). Thus, the LRS leverages variation in both genotype and disease
239  status between individuals in the current sample to help predict updates of parameters after
240 adding new samples. Despite perceived similarities, traditional GWA power calculators[33]
241  andthe isGWAS-LRS are different. isGWAS-LRS does not require input of case-control ratios,
242  heritability (i.e., beta estimates) or type-1 error rates. Instead, multiple regression analyses are

243  combined to forecast and test parameter estimates in expanding sample sizes.

244 We run the leapfrog re-sampler in both simulation and real-data settings, informed by the seven
245  studied diseases in UKB (Methods and Supplementary Information). We evaluate
246  performance over a range of initialisations, starting from a 10% increase to a maximum of 100%
247  (i.e., 2-fold) increase in GWAS sample size relative to the current actual UKB sample size.

248  Results are presented in Figure 5, Supplementary Tables 10-11. As is standard, we assume a

12
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249  true positive association of p<5x10-8 in the target sample. Our results in simulated scenarios
250  (Figure 5f) reveal that: when doubling sample size from N_,;;ren: = 276,204 to a maximum
251 Nigrger = 552,408 , the accuracy and TPR progressively dropped for subsequent increases in
252  the target sample size, but values for each measurement were typically >80% across the range.
253  Our real world LRS analyses of UK Biobank data replicate and further elucidate performance
254  across the six of the seven diseases (Figure 5a-e). Using a subsample size of N.,,rent =

255 135,000 we increased target sample size up t0 Nygpger = 270,000, taken as the maximum

256  observed sample size we could benchmark against. For all choices of target sample size, and
257  across each disease, we observe high accuracy rates (>95%). However, the TPR was sensitive
258  to disease prevalence, reducing monotonically as the target sample size increased. Broadly,
259  TPR remained reasonable (= 60%) up to a 2-fold increase in sample size, except for the very
260 rare (case-control ratio of 1:669) thyroid gland cancer. This is due to fewer significant variants
261  being included in the assessment as a result of lower percentage of heritability explained, which
262  can artificially reduce the TPR for each new locus with relatively high odds ratios. Naturally,
263  TPR reduces as a function of decreasing disease prevalence, as re-sampling from fewer cases
264  can increase the variability in MAFs and thus isSGWAS forecasting. We note that our theoretical
265  sub-sampling approach had better predictive capabilities, owing to the prevalence preserving

266  sampling strategy taken (Methods and Supplementary Figure 19).

267  We also assessed isGWAS’s ability to extrapolate results when ILD were not available, using
268  ahighly constrained version of the leapfrog re-sampler (Supplementary Information). In this
269  scenario, MAF and disease prevalence per variant are fixed, computed from the maximum
270  current sample (i.e., without sub-sampling), and the number of cases and controls are
271  proportionately increased to match the target sample size. We did this for two GWAS of
272  schizophrenia: (a) 2014 analyses with up to N = 77,096 (cases = 33,640, controls =

273  43456) European ancestry individuals[25]; and (b) the larger (and future) 2022 analyses with

13
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274  up to N = 130,644 (cases = 53386, controls = 77258) European ancestry individuals[27].
275  We treat the 2014 study as the current sample size and the 2022 sample size as the target future
276  state, which we benchmark predictive performance against. The studies were selected because,
277  for each variant j, necessary data to run isGWAS, i.e., {N;, N, MAF;, MAF;}, were made
278  publicly available. Note these data are pooled estimates, computed across all European cohorts.
279  Despite not accessing ILD, our results reveal reasonable concordance between isGWAS 2014
280  extrapolated results and the published analyses of 2022 (Figure 6, Supplementary Figures 20-
281 21, Supplementary Tables 13-16). Like our Biobank Japan analyses, we also used a more
282  stringent significance threshold (p < 1071°) to help attenuate false positives, observing
283  improved overall performance by recovering a good TPR > 70% (Supplementary Table 13).
284  We do not report FDR as these cannot be accurately computed when filtering results based on
285  a p-value inclusion/exclusion threshold. Of the overlapping 608 clumped variants considered,
286  iISGWAS-LRS identified 136 associations that were not yet deemed GWAS significant (i.e,.
287 p > 5e — 8) in the 2014 study but later identified as significant in the 2022 study. Moreover,
288 of the 436 significant associations predicted by iSGWAS, 75% overlap with observed
289  significant associations in 2022. isGWAS predicted an additional 74 associations as significant
290 that were not significant in 2022 — of those 52 were near the significance threshold with p <
291  9e — 07. There were 121 variants not correctly predicted by the 2014 cohort. This could be due
292  toincreased ethnical and relatedness heterogeneity in the 2022 cohort that was not present in

293  the 2014 analysis.

294

295 Computational performance and convergence details

296 iISGWAS is an iterative algorithm whose convergence (i.e., ability to estimate model

297  parameters) depends on several tuning parameters (Methods). Using default parameter settings,

298  isSGWAS-Firth converged in all real-data and simulated scenarios tested (Figure 4e and
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299  Supplementary Tables 17, 19-20). Convergence was achieved in around 0.001 seconds per
300 variant (Supplementary Table 21) ona 2.4 GHz 8-Core Intel Core i9 processor. The non-Firth
301  corrected iSGWAS algorithm may require more iterations, particularly for diseases with lower
302 prevalence (e.g., case:control ratio of 1:94 and lower) which included scenarios where
303  convergence was not achieved (Figure 4e, Supplementary Tables 17-20, Supplementary
304  Information).

305

306  When distributed over 32 CPU cores on a high-performance cluster, Firth-corrected isSGWAS
307 analysed a single disease from UK Biobank across ~11 million SNPs and for ~335,000
308 individuals in ~4 minutes (Figure 7, Supplementary Tables 9 and 18). This means that
309  iIsGWAS-Firth can perform around 1,500 disease GWAS for every one GWAS performed using
310 an alternative methodology. The same analysis with a small number of CPU cores was
311  completed in tens of minutes using iISGWAS-Firth (Figure 7). Further computational gains at
312  larger sample sizes will likely be achieved as ILD methods can scale poorly with sample size,
313  whereas iIsSGWAS has near fixed computational cost at any size. As iSGWAS currently
314  computes associations for each variant independently, additional improvements such as
315  parallelisation are possible. Full details are available in Supplementary File 4.

316

317 Discussion

318 In this study, we developed iSGWAS, an efficient, biobank-scalable method for genetic
319  association testing which can: (a) compute regression parameters and test for a variant-disease
320  association in real-time (i.e., approximately one millisecond) for any sample size; (b) bypass
321  the need to run large-scale GWAS using high-performance computing facilities owing to ultra-
322  low system resource demands (i.e., runtime and memory); and (c) infer GWAS results from

323  virtually enlarged sample sizes using a novel re-sampling procedure. The isGWAS algorithm
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324 design allows analyses to be run without the need to hold or access individual-level data (ILD)
325  directly, thereby providing a single methodological framework to utilise a wide range of data
326 sources such as published summary-level data from biobanks and repositories.

327

328 isGWAS draws inspiration from classical methodologies to overcome significant
329  computational bottlenecks associated with massive-scale analyses. The practical simplicity and
330 quick runtime of classical approaches have seen them deployed in a recent large-scale
331  analysis[23]. Rather than using ILD, as contemporary GWAS regression analyses do, isGWAS
332  distils the required input data down to sufficient statistics — a low-dimensional summary of ILD
333  that captures all necessary information required to compute a genetic-disease association model
334  parameter. In combination with modifications to the Newton-Raphson procedure, used to
335 estimate model parameters in a logistic regression, our use of sufficient statistics dramatically
336  reduces the computational time for disease association testing relative to existing methods.
337  Achieving up to a 1,500-fold improvement in computational runtime, when benchmarked
338 against a state-of-the-art GWAS tool, isGWAS reduced time to genome-wide insight from
339  several days down to ~4 minutes. Thereby unlocking potential for massive scale exploration of
340 genetic-disease associations in real-time and making feasible the routine assessment of
341  thousands of disease endpoints and studies. Computational bottlenecks associated with existing
342  GWAS methodologies are fast approaching. Analyses of resources such as UK Biobank WGS
343 data, the emerging massive cohorts of the Global Biobank Initiative[1], and Our Future
344  Health[34] are expected to push current GWAS tools to their system resource limits with
345  significant associated time-to-insight penalties. Conversely, with no computational sensitivity
346  to sample size, as the number of variants assessed and sample sizes continue to increase, the
347  relative savings and benefits of isGWAS can be expected to grow.

348
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349  To attenuate possible issues of confounding and population stratification, we propose that
350 additional QC-steps are performed before computing sufficient statistics for isGWAS. In our
351 analyses, these steps reduced our UK Biobank sample size from ~408k individuals (used in the
352  original testing of REGENIE[8]) down to a more homogeneous sample of ~335k individuals
353  used to generate and compare results from isGWAS and REGENIE. Our results reveal an often-
354  striking concordance between approaches genome-wide as well as at the regional locus level.
355  The reduction in sample size was compensated by the isGWAS leapfrog re-sampler (LRS),
356  which we demonstrate efficiently helped extrapolate GWA results onto larger sample sizes (up
357  to 2-times). While we note sensitivity of an LRS extrapolation to disease prevalence, across the
358  range considered the TPR and FPR were well calibrated to at least a 1.5-fold increase in sample
359 size. The LRS might therefore be leveraged to aid GWAS cohort design, for example to
360 quantify the potential benefit of sampling more participants with a disease of interest against
361  cost. In our analyses of the PGC Schizophrenia cohort, we deployed a highly restricted (i.e., no
362 ILD) version of the LRS: forecasting results from a smaller 2014 cohort[25] onto a sample size
363  that matched a future 2022 study[27]. Despite no guarantees of sufficiency, isSGWAS LRS
364 identified 75% of significant variants that were later identified in the larger 2022 cohort (almost
365  double the size) while maintaining a low FDR. Unlike extrapolation via the ILD leapfrog re-
366  sampler, this naive extrapolation does not account for differences in the MAF of cases and
367  controls between 2014 and 2022 data. Regardless, the above findings highlight potential for
368 isGWAS to furnish reasonable forecasts of future results without accessing ILD directly. Our
369  recent predictions from FinnGen consortium data[18], [35] provide confidence that the
370  isSGWAS algorithm is applicable also to multi-ethnic GWAS through analyzing each ethnicity
371  separately and combining results in a meta-analysis, as it is common practice[36].

372
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373  Beyond, isGWAS can be applied to help address routinely asked questions about future
374  scenarios and evaluate enrichment contribution of biobanks to disease-specific associations[35]
375  or to protein-specific variant associations[18], particularly in the rare spectrum. isGWAS-Firth
376  provides a timely, rapid regression-based analysis of common, rare and ultra-rare variants.
377  Unlike ILD-based analyses, where Firth’s correction significantly increases computational
378  time[7], [8], there is no computational penalty when using Firth’s correction in the isGWAS
379  framework - in fact, we observe improved computational performance. The advantage of
380  considerable improvements in computational runtime is that it allows for the introduction of
381  forecasting, re-sampling and other non-parametric techniques - the LRS being one example.
382  These might widen robust association testing strategies as well as provide new avenues to tackle
383  confounding or population sub-structure. For now, we envisage the possibility that the wider
384  human genetics community routinely compute and make available the sufficient statistics, i.e.
385 MAF in the cases and the cohort, and the corresponding sample sizes per variant, toward a
386  publicly available, privacy compliant, data asset. In addition to avoiding the need for expensive
387  high-performance computing facilities and memory intensive data storage, the data asset might
388 enhance meta-analyses and biological insight, improve equitable access, and enable faster
389  collaborations between teams and help bridge financial and resource gaps between institutions
390 and research groups internationally.
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Methods

Disease SNP association model

Let Sy, € {1,2} be the maximum number of copies of the effect allele for an individual under
model M € {A, D, R}, where A denotes an additive model, R a recessive model and D a

dominant model, i.e.,

Furthermore let,

MAF; = MAF; | M

MAF}y, = MAF; | M
where, for a given model M, MAF; ,, is the minor allele frequency for variant j in the sample,
ancestry, or population and MAF;,, the minor allele frequency in the cases. We let Y denote
disease status and G; the jth genotype in the sample. For convenience we write G; , = G;|M. It
is assumed that the outcome model for Y, conditional on G;, is given by:

E[Y | G,M] = k™Y (ajpm + BimGim),  Jj=12,..,0Q,

where, conditional on model M, the pair {a]-,M ﬁj,M} denote the intercept and genotype effect
and h is a function linking the outcome to genotype G; y, forall j = 1,2, ..., Q genetic variants
considered. In deriving the iSGWAS estimation procedure we assume that h is the logit

function, i.e.,

e(@jm+BjmGjm)

T[Y|Gj,M = P(y =1 | GJ’M) = 1+ e(a’j,M'l'.Bj.MGj.M).

The isGWAS methodology can, however, be broadened to other link functions and outcome

types. We take {&j,M, BJ,M' 6aj‘M, 6.8j,M} to be sample based estimates of the intercept «; ,, and

coefficient g; ,, and their associated standard errors {5a,- ! 6/3]. M}. We allow the genetic effect
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416 B,y and genotype G; (or an observation thereof g;) to be analyzed on either (i) the standardized

417  scale or (ii) non standardized scale. To accommodate this, we introduce the variable s;,,, so that:

418 {Bsi 9o = {(1 + (og, — 1)S’*”)ﬂf’gj/(l + (0g, — 1)5{%)}

419  Hence, when s,,, = 0 analyses are performed on the non-standardized scale and s;,, = 1 on the
420  standardized scale. Default analyses assume the genetic effect is assessed on the non-
421  standardized scale, i.e., s;;, = 0. Note that, while p-values are generally invariant to the choice
422  of effect scale s,,, betas and standard errors are dependent on the specification of s;,,.

423
424  Sample-Level Newton-Raphson (SaLN-R) algorithm

425 Here we detail the IisGWAS procedure for computing summary statistics

426 {aj,M, Bjm,si, Oty Uﬁj,M,s;n} using only four data points,

N] N] N]
421 Ivj’zyi = Nj*,ZYigij,M ’Z ,gij'M = nj1 + anzl(M = A)
i=1 i=1 i=1

428  or, as we show, the quadruple
429 {N;, N}, MAF, sy, MAF}"\ },

430  where N; denotes the study or population sample size and N;* the number of cases in the sample,
431  see ad-hoc estimator (Supplementary Information) for definitions of n;.. Note that we have
432  allowed the sample size N and number of cases N* to vary by genotype j, this is useful when
433  emulating results from GWAS. This is because the number of individuals analyzed in GWAS
434  can vary by genotype owing to (e.g.,) quality of imputation or available data per variant and
435  participant in a study. Ideally the sample size and number of cases would not vary by genotype
436  and when using iSGWAS to forecast GWAS results, users do not need not vary N;, i.e,.

437 N;=N and N =N~ j=12,..,Q.
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438  Given a vector of observed data {y,g;:}, where y={y1,y2,...,yNj} and g =
439 {g1j,92j» > gNj}, estimates of model parameters are typically derived by maximizing the log-

440 likelihood function
Nj

442 L(Bjsi) = ) 108 P (e By si Gujnsin)
i=1

441  which is equivalent to identifying parameter values B v s+ = {@; m, Bjm,s;, } Which satisfy:

OL(Bjms;)

443
aB J.M,Sm

= V(Bjmsy Ir) = 0,
444 where V(B u.s:, Ir) denotes the logistic score function, i.e.,

445 V(Bjmsi 1) = Gjmsp, (3' ~ Tylg ,-,M,s;n) + 1eK(Bjmss,) = O,

446  with I denoting an indicator function used to highlight that a Firth modified version of the
447  score function has been used. For ease of mathematical presentation initially, we detail the Firth
448  adjusted SaLN-R algorithm later, i.e., we set I = 0 in this section. Additionally, to improve
449  succinctness of notation, we drop the use of the parameter s, - reintroducing where necessary
450  -andset By = {a;m B;m}and Gy = (1,9;u) above, so that B Gy = am + BjmIjm-
451  We compute candidate solutions to by expanding V([} j,M) as a Taylor series about a value

452 Bjom and up to second order, i.e., using the Newton-Raphson (N-R) method:

avV(p;
453 V(Bim) =V(Bjom) + % (B — Bjow) + O ((Bi = Bjom)”),
J Bjom
454 Which is re-written as
455 Bim = Bjom + I (Bjom)V(Bjom) + 0 ((ﬁj,M - ﬁjo,M)z)

456  and generalized into an N-R iterative algorithm:

457 Bigernmsi = Biemsy + I (Bjikmsi)V (Bjiamsy,) + O ((ﬁj(k+1),M,s;n - ﬁjk,M,s,*n)z): k=01,..,K,
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458  where we have re-introduced s;, to highlight that the algorithm is dependent on the choice of

459  effect scale. The variable 7= denotes the inverse Fisher Information matrix, where

aV(B;
460 7(3jk,M) = - %
M Bjm=Bjkm
461 = yj,MTdiag (T[yi|gj,M (1 - nJ’ilgjk,M)) gi,M|

Bim=Bjrm

Nj Nj
z Tyilgijm (1 - ﬂyilgij,M) Z Tyilgijm (1 - T[yl'lgij,M) 9ijm

462 i= t

1l
=

J

| =1
| b
T 1-m Jii T 1-m g2
Yilgijm yilgijm ) Iij.M Yilgijm yilgijm ) Jij.M
i=1

=1

N~

Bim=Bjkm

463  and the score function is given by

464 V(ﬂjk,M) = gj,MT (y - T[ylyj,M)|

Bmji=Bjrkm

Nj

Zi=1 (3’1' - T[yilgij,M)

465 =1
Zi=]1 (yl' o 7T3’i|gij,M) 9ijm

Bjm=Bjrm

466  Both J(B ) and V(B i) above require individual-level data to compute their values.
467  isGWAS aims to estimate values for these variables using sample-level information only,
468  thereby avoiding the immediate need for individual data. To achieve this, we approximate both
469  the Fisher Information matrix and the Score function via the pair {Jo(Bxum), Ve(Bjxm)},

470  where:

471 Ie(Bjim) = N,-( Eajm [ﬂylgj,m (1 - ”ylgj.M)‘ ﬁf""M] Egjm [”ﬂgf.M (1 - ”ﬂgf,M) 9jm Bf"r“])

Eg;u [”ylgj,M (1 - ”ylgj,M) 9jm Bjk.M] Eg;u [”ylgj,M (1 - ”ylgj,M) 9w 3J'k,M]

472  and

N.
Zi=11yi - NJ ]Egj,M [T[ﬂgj,M; Bjk.M]
473 Ve(Bjim) = N;
2i21Yi9ijm — NiEg, [”y|g,-,ng.M ; ﬁjk,M]
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N*—N; E,. |7, s Bikm
474 ~ J J g,,M[ yigimr Pj ] , N]* > 1.
N; [Egj,M[gj.M| y= 1] — NiEg, , ["ylgj,ng.M ) Bjk.M]

475

476  with E " ; Bjx,m] denoting that expectation is taken with respect to g; , and evaluated at

gjml
477 Bjm = Bjxm-Notethat {Jo(Bjxn ), Ve(B 1) } are motivated by switching from empirical, i.e.,
478  sample-based, estimates in {7(Bxm),V(Bjxm)} to their expected value analogues, which
479  reverses the usual mode of estimation. Sample size N; is presumed large and thus switching

480  from sample-based to expected values in the N-R algorithm is well motivated. However, when

481  the number of cases N;" is ‘small’, an approximation of Z?':jlyigm ~ NEg,lgiml vy = 1]

482  becomes weaker and we recommend using the statistic Z?’:"l yig;m- Values for the elements in

483 {Jo(Bjim) Ve (Bjrm)} are computed via:

484 IE:gj,M,s;n [nﬂgj,M,s;n (1 - n)’lgj,M,S;n) g]q,M,s;*n ) ﬁjk,M,s;'i,l] =
Sm l c
_ b 1

. ; "M s B (1 Ty |91'.M=l/ws;{”jk.m,s;‘n) (ws;n> P (gf'M / Ws;‘n)

N (o1,9)
486 =€
487  and
488 ]Egj,M,S;n [nylgj‘M’S;ng]q,M,s;*n | Bjk,M,s,*n ] =

Sm l c
R—

489 ; T[J’ng,M:l/Ws;ni Bikm,si, <W5$n> p (9 j.M / Ws;n)

j— ”'(C!k)
490 = &P,

491  where wg: = (1 + (ag, — 1)5,*n) and the superscript and subscript in e,(v,c'k), é,f,f’k) are used to

492  highlight that expectation has been taken conditional on k-th iteration S, and under
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modelling assumption M (and implicitly effect scale s,,,). Probability mass p (gj,M = l/WS* )

is either defined a-priori or can be approximated empirically, which we detail later. In
combination, therefore, it follows that:

(0k)  (1k)

e. e.

_ M M
7@(3jk.M.sr*n) =N ( (1L,k) (2,k)>

e]’M e],M

and

1

(2,k) (1,k)
( €jm M
(0.k) ,(2,k) @)\ \ =@ Ok J
1Vj<e]-’M eM _(ej,M ) ) j,M j,M

je_l(ﬁjk,M,s,*n) =

Following the same process that led to the above, we re-write the sample-level Score function
V&e(ﬂjk,M,s;‘n) as:

. 5(0,0)

Ni = Nj &y
"(1'0)

Zi:yizl YGijmsy, — Njej,M

V@(ﬁ jk,M,s,*n) = (

* ~(0,0)
N; —N; &y

=~ SMIVJ*MAF}TM B '~(1,0) ) IVJ >> 1;

Ws;n J j,M
where we have used the following approximation:

SulNj MAF

Z Gipmsin = N BgpplGjmsinl v = 1] = — -
m

iry;i=1
Hence, replacing the pair {7(B i ms: ), V(Bjkms;, )} with the sample-level approximations

{9e(Bjrmss, ) Ve(Bjim,s:, )} we furnish the SaLN-R algorithm:

Bicervyms. = Bims: + T (Bjims WVe(Bjrms: )

* ~(0,k)
B + 1 ( e ~em N =N &
= PjkM,sy, 2 (1K) (0, SuN MAF; :
00 @k _ (,w0)2)\ —e! e i MAF k)
Nf(ej,M €jm (ej,M ) ) MM Wy Ni&m

~

O-“j(k+ 1),M,s%,,’ Gﬁj(k+ 1)yMsm,

The standard error of the updates, c’f,;j(kﬂ)M o= { } are given by the

diagonal of the inverse Fisher information matrix, i.e.,
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(2,k)
A €im
511 Odjesymss, N ( 0,0 (Zk) ( K )
j
(0,k)
e
A _ .M
512 O-,Bj(k+1),M,s:n - N ( 0,k) (Zk) ( (Lk) )
j
513 It can be shown from the above that:
5l4 Bijim,sp=1 = O-giﬁjk,M,s;‘nzo'
515 IBjtk+1yMsm=1 = 99iOBj(rs1)Msm=0"

516  We set s;;, = 0 to compute values for the pair {fi’

jk,M,O’O-.Bj(k+1):M:0} and use the above identities

517  to return parameter estimates on the standardized scale s;;, = 1. The data required to run the

518 SaLN-R algorithm are:

N
519 N N*Z] (9m=1) U{(b SM_l}
i ],i=1YLgL],M'p gjm = p(gJM—Z) Sy =2

520  We use the approximations

521 (Gim=1)~2 — MAE; S =1
PAIjm N, N1 |2MAF; (1 — MAF,p), Sy =2,
HWE
— . 2 2
522 P(9im = 2) = 5~ w1 MAFj,
/ HWE

523  where — is used to denote under Hardy-Weinberg equilibrium.

524  The SaLN-R algorithm is extended to include Firth’s penalty function (see Supplementary

525 Information for more details):

‘ }(k 1),M;5m ‘ j‘CrM;Sm
(“ , ) (ﬁ ) (“ ) \
a ]( M a ] M M a ] M

k) _ %ajute k) _ | La
k en N em N- em N]
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(ajm) (ajm) (@m)
( el(wz'k) _ Oty Ke ] _ _e[f}k) + .aﬁi'MK@ : \ / T — é,f,?’k) + Ke ]'M/N. \
527 X Nj N] (ﬁ,J )
1,k aﬁj.MKEeaj'M) (0.k) aﬁj,MKiBj'M) Surt MAF; _ elth) 4 Ke . ,
—ey T ey — Wst, M N;
N;j N;j
528
529  where
0,k) _(2,k) k) (0k) _ o (LK) _(1,k)
530 K.(B,u) = 1 <da,j,Mej,M tdgimeim — 2dgimeim )
e\PjM) — 2 0,k) (2,k) k) _(0k) o 3(1,k) (1,k)
531 and
delsk)
532 A5 = dk) = L
a,j,M B,j,M aﬂj,M
533

534  iISGWAS is computed using sufficient statistics
535  Under Hardy-Weinberg equilibrium, the quadruple {N,-,IVJ-*,MAF]-,M,MAFj’fM} are combined to

536  form the global and local (under a wide radius of convergence) sufficient statistics from the

537  logistic model. Consequently, they hold all necessary information to compute regression

538  parameter estimates {aj,M, Bjm,si, o pp Uﬁf,M,s;‘n} over a broad range of scenarios. Regardless

539  of Hardy-Weinberg being valid or not, we show that the triple {T;, T, ;, T5;},

N] N] N]
540 Tyj = z yi = N, Ty = Z Vi GijM,si T3 = Z Gijmsi, (
i-1 i-1 i=1

541 are the two global and one local sufficient statistics and these can alternatively be used as input

542  variables in iIsSGWAS. To show this, we write:
Nj

543 L(Bj,M,s,*n) = Z 108P(J’i |Bj,M,sT*n'gij,M,s;*n)
i=1
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N] N]
o44 = s, z Vit Bjms;, Z YiGijm,ss,
i=1 i=1
Nj
545 + 3 1og (1= Py = 1185 Gms3,))
i=1
Nj
546 = ajys;T1j+ ﬁj,M,S;szj - z log(l + exp aj‘M,S;n)
i=1
Nj
exp &y sx.
547 — Z log (1 + T+ exp ajpr ((exp Bjm,sz, gij’M_s;n) - 1))
1=
exp aj y s:
548 = sy T+ Biws, <sz “TTexp a,-,;s;n T3j> — Njlog(1 — exp atj,s;,)
exp &y s; 2
549 +0 L St i ot
<1 + EXp aj,M’S:n (ﬁj,M,Smg }JMme) )
exp &y s; 2
550 = (T, Ty, Tais Qing v Bing <z ) + O M,Sm e Oty o
f( 1] 2] 3] aJerSm ﬁ],M,Sm) <1 + exp aj'M’S:n (B],M,Smg }JMme) )

551  and valid when

exp a 7,M,sk,

1+expajygs:,

552

(exp ,Bj,M,s,*n g-j,M,s;;l) - 1| <1.

553  Hence, the global sufficient statistics are {T; T2 j} and (on assuming random g;; »x as in the

554  SalLN-R algorithm) the locally sufficient statistic is {T3j}, where:

Nj N;
555 Tyj = Zyl' =Ny, Ty = ZYi YijM.sy,
i=1 i=1
556 and
o Su =1
Nniq, =1,
557 T3 = ; YijMsy = {nﬁ +2nj,, SZ =2

558  Under Hardy-Weinberg equilibrium, we can write

559 Ty = smNyMAF; and T3 = sp,N;MAF;.
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560
561 Leapfrog re-sampler: forecasting results in target sample sizes
562  To estimate regression parameters {a; v s , Bj m,sz,} in larger target sample sizes, i.e., IV] > N,

563  we propose the following strategy:

564 1. Specify number K, sub-sample y; and target sample y, parameters, where K > 1,
565 0<y; <1 and y, > 1.

566 2. Generate random sub-samples of individuals of size IV] =y, N; < N;. For each of
567 k =1,2,...,K, generate a random sub-sample D, € D, where |Dy,, | = N; = y; N;.
568 3. (Leapfrog-step) Compute subsample quadruple and project to target sample size
569 N;. For each subsample Dy, , compute values {N;;, MAF,;y, MAF*y;} and project
570 these on to the target sample size, e, Ay, =
571 {(ﬁ) Ny, (E) N, MAF, j u, W*UM} for sample D,

572 = Note that (E) Ny; = N; , which is the target ‘future’ sample size.

573 4. Deploy isGWAS across all K (projected) quadruples dy,,, , and record each estimate
574 of the genetic effects, standard error and p-value {Bk, M 5ﬁk,;,M,s¢n' Dk, j'M'S;n}kzl:K.
575 5. Estimate p-value in target sample size as a summary point estimate (e.g., median) or
576 range across all K sub-samples,
577 PtargetiM.sy = median{pk,j,M,s;‘n}kzlzK-
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Data Quality Control: preparation of sufficient statistics for isGWAS

In order to deploy iSGWAS successfully, the sufficient statistics are required to be
prepared in a sample where only a single individual (preferably case) from pairs or n-
tuples of 3", 2" and 1% degree relatives is retained. Additionally, ethnical outliers must
also be removed. In summary, to deploy isGWAS successfully we require either: (a)
access to the sufficient statistics computed after duplications of related n-tuples and
ethnical outliers are removed; or (b) access to the individual level data, whereupon the
sufficient statistics can be prepared as described in (a). We provide a detailed outline of
recommended Quality Control for genetic Individual Level Data (ILD) to running

successfully isGWAS in Supplementary Information.

Application to Biobank data

The GWAS results used in the assessment of isSGWAS were taken from large-scale analyses of
UK Biobank[13], Biobank Japan[14] and the Psychiatric Genomics Consortium[15].

The UK Biobank[13] is a large-scale biomedical database and research resource containing
in-depth genetic and health information from half a million UK participants. From the full
available UK Biobank cohort, we obtain phenotypes for seven different diseases with varying
levels of prevalence. These are Hypertension (IC10:110), Asthma (I1C10:J45), Atherosclerosis
(IC10:125), Glaucoma (IC10:H40), Stroke (1C10:163), Colon Cancer (1C10:C18) and Thyroid
Gland Cancer (IC10:C73) patients. From a total cohort of 502,422 participants, we used the
following inclusion criteria: white British (Field 22006), non-related (>3rd degree), no
patients with difference in reported (Field 31) and genetic (Field 22001) sex, no patients with

aneuploidy (Field 22019), no patients with unusual heterozygosity and high missing rates
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(Field 22027). The ethnicity component is obtained from samples who self-identified as
‘White British' according to Field 21000 and have very similar genetic ancestry based on a
principal components analysis of the genotypes. Retaining one related individual (where we
favour the retention of cases) we obtain a working sample size of ~335,000 individuals; the
approximate value is owing to small differences in the number of cases between disease
phenotypes (Supplementary Information). Comparative analysis for these varying
populations is reported in the main text. The prevalence ratios and exact number of cases and
controls are provided in Supplementary Table 1. The variant based statistics needed for
ISGWAS were obtained from the imputed UK Biobank dataset. A quality info score>0.9 is
applied to the data, and the number of cases and controls per variant and the MAF for variant
in cases and controls is based on patients with non-missing genotypes for the variant using
software PLINK[4]. Sample-level MAF>0.001 is used as inclusion criteria for the variants to
analyse. For each disease, we run isSGWAS analysis using default settings under the ‘additive’
genetic model. In addition, we also perform GWAS analysis using two-step REGENIE[8]
applied to all variants with a MAF>0.001 and Genotype Score>0.99. Firth correction was
enabled and performed on variants with p-value<0.1. REGENIE was also adjusted for
covariate information (age, sex, ancestry). For each disease we provide the following
diagnostic plots: 1) mirrored Manhattan plot comparing directly p-values for isGWAS and
REGENIE, 2) p-value — p-value plots comparing REGENIE and isGWAS, 3) g — f plots

comparing REGENIE and isGWAS where we have colored the values by a) MAF and b)

SE(iSGWAS)

ratios of computed standard error (SE) between methods, i.e., log, (m

) . Across all

diseases and variants considered, we compare performance of iSGWAS and isGWAS-Firth to

REGENIE-Firth.

Schizophrenia data from the Psychiatric Genomics Consortium[15] was used to conduct two

different large-scale GWAS analysis. The first GWAS analysis was executed with data from
30
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627 77,096 European individuals (33,640 cases, 43,456 controls)[25]. The second GWAS analysis
628  was executed with data from the larger 130,644 European individuals (53,386 cases, 77,258
629  controls)[27]. We used the 2014 dataset to infer the 2022 results. To do this, we refine the
630  significant results from both imputed 2014 and 2022 summary statistics using clumping with
631  PLINK. The European 1000 Genomes Project v3[19] dataset was used as a reference population
632  for the clumping procedure. Twelve strategies for clumping were explored: three were LD R?2-
633  based only, the other nine were a combination of clumping by LD block information and p-
634  value thresholding. The refined variants are used to assess the inference capabilities of iSGWAS
635  both within each of the two datasets and the enrichment capabilities of isSGWAS to infer p-
636  values of the 2022 dataset using the 2014 dataset. For the 2014 dataset, 225 variants were
637 remaining after the clumping. For the 2022 dataset, 451 variants were remaining after the

638  clumping. From those, 54 are overlapping and 608 is the unique set between the two datasets.

639 The Biobank Japan data was used to conduct a large-scale GWAS with 212,453 Japanese
640 individuals across 42 different diseases[24]. We obtained the published significantly associated
641 loci (P < 5e-08) in autosomes from the GWAS findings which amounted to 309 variants across
642 30 different diseases. Similarly, we used the significantly associated X chromosome findings
643  for males and females that amounted to a total of nine significantly associated loci across five
644  diseases, although results are omitted from text. We applied isGWAS to the three different sets
645  of variants using default parameters to assess the performance of iSGWAS. To aid association
646 interpretation, we use the following additional statistical tests to assess the accuracy and
647  sensitivity of the isSGWAS calculator for the Biobank Japan data. First, a classical ROC curve
648  was produced where the true/false actual value was determined by various p-value thresholds
649  (benchmarked against published Biobank Japan results). The iSGWAS calculator is an
650 inferential tool thus this usage of the ROC curve is unconventional, however, it provides us

651  with the opportunity to assess the sensitivity to the choice of thresholds used to correct for
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652 multiple testing. These are 1071° 1078 5x107%,1077, where we have also used
653 9.58 x 10~° for Biobank Japan as recommended by the authors[24]. AUC values were not
654  obtained as this is not a standard classification problem and they are not interpretable in this
655  context. Second, an adapted ROC curve was produced which accounts for two different
656  thresholds — one more stringent one to determine the true positive rate and one less stringent
657  one to determine the true negative rate. Supplementary Figure 22 showcases this scenario and
658  highlights the importance of a threshold choice and its impact on a sensitivity analysis. The
659  main aim of isGWAS calculator is to be used as an inferential tool for truly significant or truly
660  non-significant genetic signals. Thus, using two thresholds — one for truly significant and one
661  for truly non-significant — provides us the assess the sensitivity of isGWAS to this scientific
662  question. Third, the obtained £ values were compared to the true ones by obtaining the
663  percentage of 1) predicted g values in the 95% C.l.s of the true S values and 2) 95% C.I.s of

664  the predicted S values in the 95% C.1.s of the true g values.

665  Simulation scenarios

666 In the first scenario, for each individual i and iteration index k, we randomly generate disease
667  status via y;, ~ Ber(m;; ay, ) with probability of disease m;;, = expit(a; + Bgi) and
668 g;x ~ Bin(2,MAF;). Minor allele frequency is randomly selected from the set MAF, €
669 {107%,5x107%0.01} U{ 0.025,0.05, ...,0.5} and the genetic effect on disease risk is fixed as
670 S = 0.5. Inthe second study, we allow the genetic effect to vary, i.e., B = By, by fixing disease
671  status per individual and generating genotype data in controls g;x|yix = 0 ~ Bin(2, MAF},) or
672  cases gix|vik = 1 ~ Bin(2, MAFy), where minor allele frequency in cases is taken as the outer
673  product with the sample minor allele frequency, with a random increase or decrease in
674  frequency (which controls the magnitude and direction of genetic effect), i.e., we introduce the
675 set MAF, € MAF,®(1 + MAF,). The parameter (3, is then estimated via each of the 5

676  estimators using the vector of simulated data {y,, g\ }-
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We compare isGWAS and isGWAS-Firth against classical logistic and Firth corrected
regression[16], [37], [38]. Details for the second scenario are provided alongside full

description of the simulation protocol in the Supplementary Information.

Leapfrog re-sampler: simulation and real-data analyses

The parameters {K, y,,v,} in the leapfrog re-ampler are assessed over a variety of values. To

attenuate the computational burden of a 3-dimensional grid search, we considered scenarios in
which: K =100, y; = 1/),2 and a y,-fold increase in sample size of y, €

{1.1,1.25,1.5, ..., 2.5}, i.e., a 10% to 150% increase in sample size. Furthermore, we take our
working sample size to be 276,204 individuals, which matches the number of all unrelated
individuals in our UKB sample (i.e., on not retaining any member of a related pair — which is
therefore fixed between diseases). We used our simulation protocol (Supplementary
Information) to generate synthetic samples and additionally assessed performance across all
seven disease datasets in UK Biobank. Variants for assessment were selected after pruning in
PLINK]4] was applied to the ~11 million variants with the following parameters: genotype
quality>0.99, MAF>0.01, HWE p < 10e — 15, 1000 bp windows, 100 variant increments,
R? > 0.9. From the pruned variants, 5% were selected uniformly from variants with p >
107° and all variants with p < 107¢ were retained. Final number of variants progressed for
LRS for the seven diseases are provided in Supplementary Table 10. For simulated data,
data for smaller sub-samples were simulated using full cohort and empirical distributions for
MAF and disease prevalence. In our tests of the LRS, we assess the predictive properties of
ISGWAS on real-life data where the ground truth is either computed from the entire sample or
provided in the literature. Predictions from X-fold increases in sample size are compared
using standard accuracy, FDR, FPR and TPR measures based on a putative true significance

threshold of 5e — 08.
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702  Computational resources
703  Real-life analyses were performed using up to 48 virtual CPU cores of a 2.5 GHz Intel Xeon
704  Gold 6240R processor with 64 GB of memory. Simulation analyses were performed using up

705  to 8 virtual CPU cores of a 2.4 GHz Intel Core i9 processor.

706  Computational comparison protocol

707  We contrast the computational performance of isSGWAS and REGENIE (Step-2 only). For
708 clarity, REGENIE Step-1 simplifies the outcome and model by projecting out covariate

709 information, before variant-disease association analyses are performed in Step-2. To directly
710  compare both methods, we performed individual GWA analyses of each of the seven diseases
711  considered in UK Biobank across ~11m variants for ~335,000 individuals. Owing to

712  computational cost of the ILD method, we summarise results from a single GWA analysis per
713  trait. Performance of iSGWAS across repeated runs, for varying numbers of SNPs and

714  available CPUs, up to a maximum of 10m variants, is also performed.

715

716 Data availability

717  The genotype data, phenotype status and allele counts were extracted from UK Biobank[13] to
718  support the findings of this study. The genome-wide association summary data with available
719  allele frequencies and cohort counts that was used to support the findings of this study are

720  available from: Psychiatric Genomics Consortium[15] and Biobank Japan[14].

721 Code availability

722  The tool is available for use on the webportal www.optima-isgwas.com. The iSGWAS

723 algorithm is also available on github (https://github.com/cnfoley/isgwas/).
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Tables

Table 1. Accuracy, true positive rate, false positive rate and false discovery rate of isSGWAS using REGENIE results as gold-
standard and a threshold of p = 5e — 08 as classification rule. Results are obtained on all 11,079,229 variants used for the

analysis of seven diseases in UK Biobank without clumping/finemapping.

Disease (ICD code) Case:control ratio TPR FPR Acc FDR
Hypertension (110) 1:2 0.625 0.000026 0.99961 0.041
Asthma (J45) 1:6 0.982 0.000028 0.99994 0.016
Atherosclerosis (125) 1:9 0.886 0.000011 0.99995 0.043
Glaucoma (H40) 1:26 0.891 0 0.99997 0.036
Stroke (163) 1:56 NA 0 1 NA
Colon Cancer (C18) 1:94 0.944 0 0.99999 0.037
Thyroid Gland Cancer (C73) 1:669 1 0 0.99999 0.051
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Figure 1. Diagram highlighting main differences between isGWAS and other GWAS approaches.
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Figure 2. Comparative results for Asthma (1C10:J45) from UK Biobank. Subplot (a) is a mirror Manhattan plot comparing
—log,, P values for isGWAS and REGENIE-Firth and subplot (b) is a locus zoom of the gene FLG2 region +/-250kbp on
chromosome 7. Subplot (c) plots —log,q P values for isSGWAS and REGNIE-Firth with the standard threshold P-value

indicated colored by population-level MAF. Subplots (d) and (e) showcase g — B effect size estimates for variants with p-

values<0.05 and are coloured by population-level MAF and log, (%

).
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Figure 3. a) Accuracy/TPR/FPR comparing REGENIE-Firth and isSGWAS results, where p = 5e — 08 threshold has been used

as indicator for correct classification accuracy. Results are obtained on all 11,079,229 variants used for the analysis without

clumping/finemapping. See Supplementary Table 1 for full results. Manhattan plots b), c), d), e) and f): Comparative results

for five diseases from UK Biobank. Mirror Manhattan plots comparing — log,, P values for isGWAS and REGENIE-Firth for

six different diseases obtained from UK Biobank. Stroke was excluded from the analysis due to no variants passing significance

threshold.
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Figure 4. Simulation | results. Clockwise from top: a) Mean square error; b) distribution of estimated beta values; c)
distribution of associated standard errors and d) distribution of -log,,(p-value), for each model - logistic regression, firth
regression, ‘isGWAS’, ‘isGWAS Firth’ and, for p-values only, Fisher’s Exact Test - and specification of disease prevalence.
Panel e) presents the relationship between Firth regression derived -log,,(p-value), along the horizontal axis, and the
corresponding ‘isGWAS Firth’ and Fisher’s Exact Test (FET) computed values, on the vertical axis. Results are presented in

the range [0,15] as FET regularly failed to converge for very small p-values and coloured according to value of 78,45, where
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Figure 5. Performance of Leapfrog re-sampler (LRS) benchmarked against results derived from a)-e) the sample of ~276,204

individuals from UK Biobank with five different diseases and b) a simulated sample of 552,408 individuals (i.e., double UK

Biobank sample size). For each value of &, we subset the target sample size down to Nt‘"g"’t/f individuals and deploy the LRS

to compute predictions for the target sample Nig,ge. As the maximum number of UK Biobank samples was 276,204, this was

taken as the target. For example, when & = 2, we subset the full sample to 138,102 individuals and run the LRS to compute

predictions of the larger 276,204 sample. We use results from the disease analysis, benchmarking LRS predictions against

those computed on the pruned genome sampling uniformly across significance associations, resulting in ~3500 variants per

studied disease. Colon cancer and Stroke are excluded from this figure as they don’t have significant variants or a very low

number of such after pruning. In the right panel we generated 1000 simulated datasets under the null of no genetic association

or the alternative (see simulation protocol for details).
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Figure 6. Prediction results for Schizophrenia (2022) using data from Schizophrenia (2014): population-level information for
608 significantly associated loci (P<1e-07) obtained from clumping with parameters (R?> = 0.2,p;, = le — 7,p, = le — 7)
has been used to infer p-values. a) The figure compares reported GWAS Schizophrenia (2014) p-values and isGWAS predicted
p-values using population-level information from Schizophrenia (2014) matching for the larger 2022 cohort size. b) The figure
compares reported GWAS Schizophrenia (2022) p-values and isGWAS predicted p-values using population-level information

from Schizophrenia (2014) matching for the larger 2022 cohort size. The dashed red line represents the threshold P=5e-08.
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Figure 7. a) Computational CPU time (in seconds) for an increasing number of variants. The results compare performance of
iISGWAS with and without Firth distributed over different number of CPU cores. The data was obtained from UK Biobank
ICD10:C73 disease with low disease prevalence (case-control ratio = 1:669). The x- and y-axis are on log,, scale. b)
Computational CPU time (in seconds) for seven UK Biobank diseases on 11,079,229 variants for ~335,000 individuals. We
compare the performance of isSGWAS running on 16 and 30 CPUs vs the performance of REGENIE Step 2 running on 16 CPUs
(with 16 threads) and 30 CPUs (with 30 threads). The computation is performed on the same machine. The y-axis is on

log,o scale.
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