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Abstract  1 

Genome-wide association studies (GWAS) have proven a powerful tool for human geneticists 2 

to generate biological insights or hypotheses for drug discovery. Nevertheless, a dependency 3 

on sensitive individual-level data together with ever-increasing cohort sample sizes, numbers 4 

of variants and phenotypes studied put a strain on existing algorithms, limiting the GWAS 5 

approach from maximising potential. Here we present in-silico GWAS (isGWAS), a uniquely 6 

scalable algorithm to infer regression parameters in case-control GWAS from cohort-level 7 

summary data. For any sample size, isGWAS computes a variant-disease association 8 

parameter in ~1 millisecond, or ~11m variants in UK-Biobank within ~4 minutes (~1500-fold 9 

faster than state-of-the-art). Extensive simulations and empirical tests demonstrate that 10 

isGWAS results are highly comparable to traditional regression-based approaches. We further 11 

introduce a heuristic re-sampling algorithm, leapfrog re-sampler (LRS), to extrapolate 12 

association results to semi-virtually enlarged cohorts. Owing to significant computational 13 

gains we anticipate a broad use of isGWAS and LRS which are customizable on a web 14 

interface.  15 

Main 16 

Genome wide association studies (GWAS) have been immensely successful in unravelling the 17 

genetic contribution to human disease. Cost-effective genotyping and large biobank cohorts 18 

now make it possible to routinely conduct GWAS for tens of millions of variants in hundreds 19 

of thousands of individuals across thousands of phenotypes[1]. With the advent of population-20 

scale whole genome sequencing and expansion of GWAS to research participants of non-21 

European ancestries, these numbers can be expected to increase by another magnitude over the 22 

next few years[2], [3]. 23 
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 24 

Current GWAS approaches that compute variant-disease associations in a regression 25 

framework, such as PLINK[4], fastGWA[5], BOLT-LMM[6], SAIGE[7] and REGENIE[8], 26 

require access to and input from ever increasing individual-level data (ILD). The efforts of 27 

individual-level GWAS sample collection, genotyping and data analysis tend to grow as a 28 

polynomial function of sample size[7], [8]. Moreover, the exchange of ILD between researchers 29 

is non-trivial due partly to data size but increasingly to strict – but essential - data protection 30 

regulations, which can limit the scope of collaborative analyses and biological insights 31 

gained[9]–[12]. Finally, the substantial computational and financial burden of running massive-32 

scale GWAS, especially for binary disease outcomes, is exacerbating inequity between 33 

researchers, typically favouring already well-equipped institutions. There is therefore a pressing 34 

need for innovative approaches that help attenuate the increasing resource and financial 35 

inequities for conducting contemporary GWAS and to help decide where limited resources 36 

should best be allocated. 37 

 38 

Here we present in-silico GWAS (isGWAS), a biobank-scalable and computationally highly 39 

efficient algorithm to infer genetic regression parameters in case-control GWAS from just four 40 

broadly ascertained cohort-level summary parameters: the counts of cases and controls within 41 

a cohort, as well as case and control minor allele frequencies (MAFs). isGWAS is highly 42 

parallelisable, exceeding efficiencies of current GWAS analysis tools by several orders of 43 

magnitude. Furthermore, we demonstrate that isGWAS yield association summary statistics 44 

highly comparable to traditional ILD regression-based approaches through extensive 45 

simulations and empirical tests in UK Biobank[13], Biobank Japan[14] and the Psychiatric 46 

Genomics Consortium cohort[15]. Owing to the sizeable computational gains, we introduce a 47 

heuristic re-sampling algorithm, called the leapfrog re-sampler (LRS), which can confidently 48 
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extrapolate GWAS results to larger sample sizes, both at a locus or genome-wide scale. Our 49 

underlying methodology also leads to several desirable high-utility properties. We release a 50 

web tool available to the wider public to conduct customized isGWAS at www.optima-51 

isgwas.com.   52 
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Results 53 

Genome-wide association testing from sufficient statistics 54 

isGWAS assumes disease-variant associations can be evaluated via a logistic-link function and, 55 

similar to widely used methods[7], [8], uses a Firth adjusted maximum likelihood procedure   56 

and Newton-Raphson solver to estimate genetic effects, standard errors and association p-57 

value[7], [8], [16]. isGWAS’ notable advance is based on the insight that the Newton-Raphson  58 

procedure can be simplified so that: (a) elements of the Fisher information matrix and score 59 

function vector are collapsed by taking expectation over the empirical or a priori distribution 60 

of a genetic variant; and (b) sufficient statistics – a specific type of summary data -  are used as 61 

input variables in the score function (see Methods for details). We provide several options to 62 

initialise the Newton-Raphson algorithm[17], [18] that improve computational performance 63 

and reduce analysis time (Supplementary Information). In brief, let 𝑦𝑖 denote disease status 64 

for the 𝑖-th individual and 𝑔𝑖𝑗,𝑀 denote the 𝑗-th genetic variant under model 𝑀 (e.g., additive, 65 

recessive or dominant). The sufficient statistic triple used by isGWAS is: 66 

{𝑇1𝑗 =∑𝑦𝑖

𝑁𝑗

𝑖=1

= 𝑁𝑗
∗, 𝑇2𝑗 =∑𝑦𝑖

𝑁𝑗

𝑖=1

𝑔𝑖𝑗,𝑀 , 𝑇3𝑗 =∑𝑔𝑖𝑗,𝑀

𝑁𝑗

𝑖=1

}, 67 

where 𝑇1𝑗 is the total number of cases for variant 𝑗, 𝑇2𝑗 is the covariance between the outcome 68 

𝑦 and genotype 𝑔 for variant 𝑗 under model 𝑀, and 𝑇3𝑗 is the minor allele count for variant 𝑗 69 

under model 𝑀. For each variant, data can be provided as either: the sufficient statistic triple 70 

{𝑇1𝑗 , 𝑇2𝑗 , 𝑇3𝑗} plus sample size 𝑁𝑗 (necessary for computing standard errors) or separately, on 71 

assuming Hardy-Weinberg equilibrium (HWE), as {𝑁𝑗 , 𝑁𝑗
∗, 𝑀𝐴𝐹𝑗,𝑀 , 𝑀𝐴𝐹𝑗,𝑀

∗ }. Default GWAS 72 

analyses assume HWE, making input data widely available[13]–[15], [19]–[21] for researchers 73 

to perform isGWAS, replicate or further expand on classical GWAS analyses (Methods). If 74 

MAFs for cases and controls are supplied, isGWAS will automatically convert to the pair 75 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 10, 2023. ; https://doi.org/10.1101/2023.07.21.550074doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.21.550074
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

6 

{𝑀𝐴𝐹𝑗,𝑀 , 𝑀𝐴𝐹𝑗,𝑀
∗ } (Methods). After convergence, which is guaranteed for most scenarios by a 76 

re-initialization approach (empirically all scenarios converged using isGWAS-Firth), the 77 

estimated genetic effect parameter 𝛽̂𝑗,𝑀 and standard error 𝑆𝐸(𝛽̂𝑗,𝑀) are used to construct Wald 78 

p-values (Methods). Additional options include a sample-level likelihood ratio-test or p-values 79 

computed using sandwich-robust standard errors (Supplementary Methods). A simplified 80 

illustration highlighting differences and computational advantages of isGWAS against ILD-81 

based genetic association analyses is summarised in Figure 1. 82 

 83 

isGWAS reliably identifies genetic associations across cohorts and diseases 84 

We benchmarked isGWAS in real-data settings and performed simulation studies to compare 85 

isGWAS performance and results relative to several existing individual-level data (ILD)-based 86 

approaches. Our assessments broadly fall into two categories: (1) methods which require ILD, 87 

i.e., REGENIE[8] , logistic and Firth corrected regression[16], and (2) approaches which do not 88 

require ILD directly, i.e., the logistic ad-hoc estimator[17] and Fisher’s Exact Test (FET)[22]. 89 

We note FET was successfully leveraged for efficient large-scale GWAS analyses recently[23]. 90 

Using data from UK Biobank (UKB), we first assessed isGWAS performance against the 91 

popular ILD based regression approach REGENIE[8] by deploying both methods for analyses 92 

of seven diseases some of which were previously used for establishing GWAS methodology[5], 93 

[7], [8]. Second, we evaluated isGWAS’s ability to replicate 309 significantly associated 94 

variants from the Biobank Japan (BBJ) meta-analysis of 30 diseases[24] using only the 95 

published sample-summaries, i.e., without access to ILD, per variant and disease pair. Lastly, 96 

by considering multiple iterations of nested schizophrenia meta-analysis GWAS[25]–[27] we 97 

assessed isGWAS’s ability to accurately predict genomic regions and significant novel 98 

associations. The isGWAS sample size of the meta-analysis from 2014 was virtually expanded 99 
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to match the numbers from the larger 2022 GWAS whilst holding constant the allele frequency 100 

and prevalence information in 2014 cohort. 101 

 102 

Performance against ILD based regression GWAS in UK Biobank 103 

We compared isGWAS results and computational performance against the state-of-the-art ILD-104 

based method REGENIE for seven diseases in UKB: asthma (IC10:J45); atherosclerosis 105 

(IC10:I25); colon cancer (IC10:C18); hypertension (IC10:I10); glaucoma (IC10:H40); stroke 106 

(IC10:I63); and thyroid gland cancer (IC10:C73). Case-control ratios varied from 1:2 in 107 

hypertension to 1:669 in thyroid gland cancer across the diseases (Supplementary Table 1a), 108 

allowing for the review of performance in near balanced to highly imbalanced case-control 109 

settings. To help attenuate the possible influence of confounders when deploying isGWAS, 110 

particularly sample relatedness and population structure, we describe and apply additional data 111 

quality control (QC) steps before computing the required sample-level sufficient statistics 112 

(Methods). After additional QC, the total sample size analysed was ~335,000 individuals per 113 

disease (Supplementary Table 1). This sample was used to perform and contrast analyses in 114 

both isGWAS and REGENIE. We review approaches which leverage additional insight from 115 

any removed samples in the Discussion. For each of the seven diseases, we applied isGWAS 116 

(no covariates) and two-step REGENIE with Firth correction (including the covariates age, sex 117 

and ethnicity principal components) to ~11 million autosomal variants. Results are presented 118 

in Table 1, Figures 2-3, Supplementary Figures 1-15, Supplementary Tables 1-9 and 119 

Supplementary Files 1-2. 120 

 121 

Across all seven traits tested we observed close to perfect consistency between REGENIE and 122 

isGWAS association results, as illustrated in the mirrored Manhattan and p-p plots for asthma 123 

(Figure 2a) and other diseases (Supplementary Figures 1-6). Concordance between 124 
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REGENIE and isGWAS is further validated by benchmarking accuracy (Table 1) and Pearson 125 

correlations between estimated p-values (𝑐𝑜𝑟(𝑝𝑖𝑠𝐺 , 𝑝𝑅))  > 0.94 at 𝑙𝑜𝑔10 scale 126 

(Supplementary Tables 2-3). The results are consistent for varying prevalence levels 127 

(Supplementary Figures 1-6) and are not affected by covariate adjustment (Supplementary 128 

Tables 2-3). The consistency translated to the regional locus level. This is exemplified by a 129 

locus zoom plot of the FLG2 gene region for asthma (Figure 2b) where isGWAS not only 130 

nominated the identical GWAS lead variants but also largely recapitulated the overall 131 

association pattern identified through REGENIE. This observation is consistent across the lead 132 

independent loci from the asthma GWAS (Supplementary Figure 7) and translates to all other 133 

diseases studied (Supplementary Figure 8). For a comprehensive numerical comparison of 134 

association results, we took REGENIE derived p-values as the ground truth, retaining all SNPs 135 

with 𝑝 < 0.01 and setting the true positive threshold as 𝑝 < 5 × 10−8 (excluding stroke 136 

(Supplementary Figure 4) which did not yield any significant associations). We computed the 137 

accuracy, false positive (FPR), true positive (TPR) and false discovery rates (FDR) of isGWAS 138 

(Figure 3a and Table 1). Accuracy of isGWAS was ≥ 99.98% for each disease, highlighting 139 

excellent overall correspondence between methods. The FPR was low, i.e., 𝐹𝑃𝑅 ≲ 10−5, and 140 

TPR was generally good at > 88% - excluding hypertension which had a 𝑇𝑃𝑅 = 0.63. The 141 

FDR was below ≤ 5% for each disease, revealing that the positive predictive value of isGWAS 142 

was greater than 95%.  143 

 144 

Importantly, isGWAS and REGENIE results differed for two broad categories: (i) the 145 

estimation of genetic effect sizes; and (ii) computational performance. When non-confounding 146 

covariates are excluded (𝛽𝑛𝑜_𝑐𝑜𝑣) or included (𝛽𝑐𝑜𝑣) in a model, previous and extensive 147 

investigations of effect size estimates in logistic regression deduce that |𝛽𝑛𝑜_𝑐𝑜𝑣| ≤ |𝛽𝑐𝑜𝑣|, i.e., 148 

regression estimates are smaller in magnitude when excluding covariates but the null-149 
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hypothesis of no association is maintained[28], [29]. Overall, we replicate these results in our 150 

analyses. isGWAS computed effect sizes are smaller in absolute value, but largely concordant 151 

with covariate-adjusted REGENIE. Moreover, we fail to reject the null hypothesis for the same 152 

variants almost always between methods - suggesting that the isGWAS QC helps attenuate 153 

issues of population confounding (Figures 2d-e, Supplementary Figures 1d-e – 6d-e, 9, 10 154 

and 11). An investigation of the performance of isGWAS without removing related individuals 155 

highlights potential expansion of isGWAS beyond the recommended QC (Methods, 156 

Supplementary Information), but further investigation – possibly leveraging the re-sampling 157 

potential of isGWAS - is required on the reliability of isGWAS in family-based cohorts and 158 

ethnically diverse populations (Supplementary Figures 12-13, Supplementary Tables 5-7). 159 

In our full-QC analyses, all estimated effects between isGWAS and REGENIE were observed 160 

to be in the same direction, and the correlation between estimates was on average 161 

𝑐𝑜𝑟(𝛽𝑖𝑠𝐺 , 𝛽𝑅𝐸𝐺𝐸𝑁𝐼𝐸) ≈ 0.7 (Supplementary Tables 1-3). The relative drop in the correlation 162 

between effect estimates (≈ 0.7) and p-values (≳ 0.94) is anticipated[28] and can be explained 163 

on noting that, across all diseases more precise effect estimates (i.e., those with smaller standard 164 

errors) have stronger concordance between approaches (Figure 2e and Supplementary 165 

Figures 1d-6d). Overall, we found that at least 98% of isGWAS and REGENIE confidence 166 

intervals (CI) overlap, (Supplementary Table 4). When effect estimates are viewed as a 167 

function of MAF, the absolute value of REGENIE-derived estimates seemingly increase (along 168 

with standard errors) as MAF decreases across all scenarios. This contrasts with isGWAS where 169 

the relationship between MAF and effect size is less clear: fewer variants with low MAF are 170 

associated with relatively larger effect sizes. However, the correspondingly narrower standard 171 

errors guarantee the same significance p-values as REGENIE. The isGWAS derived 172 

distribution of effect sizes is consistent with the hypothesis of a flattened heritability 173 

distribution under negative selection[30]. Genomic inflation computed from isGWAS results 174 
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across all analyses was on average ≈ 1.07 and ranged between (0.94, 1.26) which was similar 175 

to REGENIE with average ≈ 1.1 and range (1.01,1.3) (Supplementary Figure 14 and 176 

Supplementary Table 8). We deploy isGWAS with genotype imputation in our primary 177 

analyses and, as secondary sensitivity analyses, without imputation. Our investigation reveals 178 

some surprising results.  Imputation occasionally led to changes in MAF between cases and 179 

controls such that estimated genetic effects switched sign (i.e., effect direction) relative to 180 

results computed from non-imputed data (Supplementary Figure 15, Supplementary Table 181 

3, Supplementary Files 2-3). The approach might be used to efficiently flag ambiguous 182 

significant results in analyses that are the result of the missing values imputation strategy 183 

(mean-imputed in the case of REGENIE).   184 

 185 

Finally, the computational gains of isGWAS relative to REGENIE Step 2 are striking: a full 186 

genome-wide association assessment for each disease took approximately 4 minutes using 187 

isGWAS and, on average over different prevalence, this is around 1,300 times faster than a like-188 

for-like assessment using REGENIE Step-2 (Figure 7, Supplementary Table 9, and 189 

Supplementary File 4).  190 

 191 

Replicating significant associations in Biobank Japan analyses 192 

Using only publicly available summary information from Biobank Japan (BBJ), i.e., without 193 

access to ILD, we looked to compare and replicate BBJ GWAS results across 42 diseases[24]. 194 

We considered 309 variants that were identified in [24] as genome-wide significant (𝑝 <195 

 5 × 10−8) across 30 of the 42 diseases. Our results reveal very close alignment between 196 

isGWAS computed associations and those of  [24] - correlation between p-values at 𝑙𝑜𝑔10  scale 197 

was 𝑐𝑜𝑟(𝑝𝑖𝑠𝐺 , 𝑝𝐵𝐵𝐽) = 0.98 with 92.2% of isGWAS computed genetic effects within the 95% 198 

CI of the original study (Supplementary Figure 16). Using the published study-level 199 
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results[24]  as the ground truth, isGWAS demonstrated good sensitivity and specificity 200 

(Supplementary Figure 17). We alternatively assessed performance when setting more 201 

stringent significance thresholds - returning near identical conclusions when classifying 202 

variants at 𝑝 < 9.58 × 10−9 (used in the original publication). Results for X-chromosome 203 

variants in males and females were similarly concordant (results not presented).  204 

 205 

isGWAS model validation using simulations 206 

We generated simulated datasets to assess performance of isGWAS - with and without Firth 207 

correction - against a variety of classical methods which either: (a) do not require ILD, the 208 

logistic ad-hoc estimator[17] and Fisher’s Exact Test[22]; or (b) require ILD, logistic and Firth 209 

corrected regression[7], [8], [16]. We perform two simulation studies (Figure 4, 210 

Supplementary Figure 18, Supplementary Information). isGWAS-Firth outperformed all 211 

other approaches in terms of either computational cost or robustness of results over the range 212 

of scenarios considered. It is well documented that computational performance is reduced when 213 

using Firth’s bias correction in ILD regression analyses[7], [8], [16], we discover, however, 214 

that no-ILD isGWAS-Firth regression has significantly improved performance relative to 215 

uncorrected isGWAS (Supplementary Table 21). As anticipated[23], when disease prevalence 216 

is rare (i.e., 𝜋 ≤ 0.01) parameter estimates computed using non-Firth corrected ILD regression 217 

were unreliable. The MSE and distribution of parameters estimated via ILD logistic regression 218 

were often orders of magnitude poorer than other methods (Figure 4a-c). Figure 4f-h 219 

highlights the chronological evolution of no-ILD p-value estimates, from Sasieni’s logistic ad-220 

hoc estimator (1997)[17], Fisher’s Exact Test (1922)[22] to isGWAS-Firth, illustrating 221 

improvements in estimation via successive approaches. See Supplementary Information for 222 

detailed results review.  223 
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 224 

Leapfrog re-sampling: using isGWAS to extrapolate variant association results to 225 

larger sample sizes 226 

When ILD are available, the computational benefits of isGWAS make it possible to deploy 227 

resampling approaches to estimate empirical effect sizes, p-values and corresponding 228 

confidence intervals, previously considered computationally daunting in GWAS[31], [32]. We 229 

extend the idea by introducing a heuristic leapfrog re-sampling (LRS) algorithm to help forecast 230 

future results in larger hypothetical GWAS sample sizes (Methods). The LRS is summarised 231 

in three key steps: (1) specify a target sample size along with the number and size of sub-232 

samples to be generated; (2) (leapfrog-step) compute sufficient statistics in the sub-samples and 233 

re-scale the estimated number of cases and controls to match the larger target sample size; and 234 

(3) deploy isGWAS in each leapfrog sample to recover a distribution of association p-values 235 

over the collection of sub-samples. In our testing of the LRS, we use the median p-value as a 236 

generally robust estimate of a target p-value (weighted or distribution-based summaries can 237 

alternatively be considered). Thus, the LRS leverages variation in both genotype and disease 238 

status between individuals in the current sample to help predict updates of parameters after 239 

adding new samples. Despite perceived similarities, traditional GWA power calculators[33] 240 

and the isGWAS-LRS are different. isGWAS-LRS does not require input of case-control ratios, 241 

heritability (i.e., beta estimates) or type-I error rates. Instead, multiple regression analyses are 242 

combined to forecast and test parameter estimates in expanding sample sizes. 243 

We run the leapfrog re-sampler in both simulation and real-data settings, informed by the seven 244 

studied diseases in UKB (Methods and Supplementary Information). We evaluate 245 

performance over a range of initialisations, starting from a 10% increase to a maximum of 100% 246 

(i.e., 2-fold) increase in GWAS sample size relative to the current actual UKB sample size. 247 

Results are presented in Figure 5, Supplementary Tables 10-11. As is standard, we assume a 248 
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true positive association of p<5×10−8 in the target sample.  Our results in simulated scenarios 249 

(Figure 5f) reveal that: when doubling sample size from 𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 276,204 to a maximum 250 

𝑁𝑡𝑎𝑟𝑔𝑒𝑡 = 552,408 , the accuracy and TPR progressively dropped for subsequent increases in 251 

the target sample size, but values for each measurement were typically ≥80% across the range. 252 

Our real world LRS analyses of UK Biobank data replicate and further elucidate performance 253 

across the six of the seven diseases (Figure 5a-e). Using a subsample size of 𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ≈254 

135,000 we increased target sample size up to 𝑁𝑡𝑎𝑟𝑔𝑒𝑡 ≈ 270,000, taken as the maximum 255 

observed sample size we could benchmark against. For all choices of target sample size, and 256 

across each disease, we observe high accuracy rates (≥95%). However, the TPR was sensitive 257 

to disease prevalence, reducing monotonically as the target sample size increased. Broadly, 258 

TPR remained reasonable (≳ 60%) up to a 2-fold increase in sample size, except for the very 259 

rare (case-control ratio of 1:669) thyroid gland cancer. This is due to fewer significant variants 260 

being included in the assessment as a result of lower percentage of heritability explained, which 261 

can artificially reduce the TPR for each new locus with relatively high odds ratios. Naturally, 262 

TPR reduces as a function of decreasing disease prevalence, as re-sampling from fewer cases 263 

can increase the variability in MAFs and thus isGWAS forecasting. We note that our theoretical 264 

sub-sampling approach had better predictive capabilities, owing to the prevalence preserving 265 

sampling strategy taken (Methods and Supplementary Figure 19).  266 

We also assessed isGWAS’s ability to extrapolate results when ILD were not available, using 267 

a highly constrained version of the leapfrog re-sampler (Supplementary Information). In this 268 

scenario, MAF and disease prevalence per variant are fixed, computed from the maximum 269 

current sample (i.e., without sub-sampling), and the number of cases and controls are 270 

proportionately increased to match the target sample size. We did this for two GWAS of 271 

schizophrenia: (a) 2014 analyses with up to 𝑁 = 77,096 (cases = 33,640, controls =272 

43456) European ancestry individuals[25]; and (b) the larger (and future) 2022 analyses with 273 
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up to 𝑁 = 130,644 (cases = 53386, controls = 77258) European ancestry individuals[27]. 274 

We treat the 2014 study as the current sample size and the 2022 sample size as the target future 275 

state, which we benchmark predictive performance against. The studies were selected because, 276 

for each variant 𝑗, necessary data to run isGWAS, i.e., {𝑁𝑗 , 𝑁𝑗
∗, 𝑀𝐴𝐹𝑗 , 𝑀𝐴𝐹𝑗

∗}, were made 277 

publicly available. Note these data are pooled estimates, computed across all European cohorts. 278 

Despite not accessing ILD, our results reveal reasonable concordance between isGWAS 2014 279 

extrapolated results and the published analyses of 2022 (Figure 6, Supplementary Figures 20-280 

21, Supplementary Tables 13-16). Like our Biobank Japan analyses, we also used a more 281 

stringent significance threshold (𝑝 < 10−10) to help attenuate false positives, observing 282 

improved overall performance by recovering a good TPR ≥ 70% (Supplementary Table 13). 283 

We do not report FDR as these cannot be accurately computed when filtering results based on 284 

a p-value inclusion/exclusion threshold. Of the overlapping 608 clumped variants considered, 285 

isGWAS-LRS identified 136 associations that were not yet deemed GWAS significant (i.e,. 286 

𝑝 > 5𝑒 − 8) in the 2014 study but later identified as significant in the 2022 study. Moreover, 287 

of the 436 significant associations predicted by isGWAS, 75% overlap with observed 288 

significant associations in 2022. isGWAS predicted an additional 74 associations as significant 289 

that were not significant in 2022 – of those 52 were near the significance threshold with 𝑝 <290 

9𝑒 − 07. There were 121 variants not correctly predicted by the 2014 cohort. This could be due 291 

to increased ethnical and relatedness heterogeneity in the 2022 cohort that was not present in 292 

the 2014 analysis.  293 

 294 

Computational performance and convergence details 295 

isGWAS is an iterative algorithm whose convergence (i.e., ability to estimate model 296 

parameters) depends on several tuning parameters (Methods). Using default parameter settings, 297 

isGWAS-Firth converged in all real-data and simulated scenarios tested (Figure 4e and 298 
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Supplementary Tables 17, 19-20). Convergence was achieved in around 0.001 seconds per 299 

variant (Supplementary Table 21) on a 2.4 GHz 8-Core Intel Core i9 processor. The non-Firth 300 

corrected isGWAS algorithm may require more iterations, particularly for diseases with lower 301 

prevalence (e.g., case:control ratio of 1:94 and lower) which included scenarios where 302 

convergence was not achieved (Figure 4e, Supplementary Tables 17-20, Supplementary 303 

Information). 304 

 305 

When distributed over 32 CPU cores on a high-performance cluster, Firth-corrected isGWAS 306 

analysed a single disease from UK Biobank across ~11 million SNPs and for ~335,000 307 

individuals in ~4 minutes (Figure 7, Supplementary Tables 9 and 18). This means that 308 

isGWAS-Firth can perform around 1,500 disease GWAS for every one GWAS performed using 309 

an alternative methodology. The same analysis with a small number of CPU cores was 310 

completed in tens of minutes using isGWAS-Firth (Figure 7). Further computational gains at 311 

larger sample sizes will likely be achieved as ILD methods can scale poorly with sample size, 312 

whereas isGWAS has near fixed computational cost at any size. As isGWAS currently 313 

computes associations for each variant independently, additional improvements such as 314 

parallelisation are possible. Full details are available in Supplementary File 4. 315 

 316 

Discussion 317 

In this study, we developed isGWAS, an efficient, biobank-scalable method for genetic 318 

association testing which can: (a) compute regression parameters and test for a variant-disease 319 

association in real-time (i.e., approximately one millisecond) for any sample size; (b) bypass 320 

the need to run large-scale GWAS using high-performance computing facilities owing to ultra-321 

low system resource demands (i.e., runtime and memory); and (c) infer GWAS results from 322 

virtually enlarged sample sizes using a novel re-sampling procedure. The isGWAS algorithm 323 
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design allows analyses to be run without the need to hold or access individual-level data (ILD) 324 

directly, thereby providing a single methodological framework to utilise a wide range of data 325 

sources such as published summary-level data from biobanks and repositories. 326 

 327 

isGWAS draws inspiration from classical methodologies to overcome significant 328 

computational bottlenecks associated with massive-scale analyses. The practical simplicity and 329 

quick runtime of classical approaches have seen them deployed in a recent large-scale 330 

analysis[23]. Rather than using ILD, as contemporary GWAS regression analyses do, isGWAS 331 

distils the required input data down to sufficient statistics – a low-dimensional summary of ILD 332 

that captures all necessary information required to compute a genetic-disease association model 333 

parameter. In combination with modifications to the Newton-Raphson procedure, used to 334 

estimate model parameters in a logistic regression, our use of sufficient statistics dramatically 335 

reduces the computational time for disease association testing relative to existing methods. 336 

Achieving up to a 1,500-fold improvement in computational runtime, when benchmarked 337 

against a state-of-the-art GWAS tool, isGWAS reduced time to genome-wide insight from 338 

several days down to ~4 minutes. Thereby unlocking potential for massive scale exploration of 339 

genetic-disease associations in real-time and making feasible the routine assessment of 340 

thousands of disease endpoints and studies. Computational bottlenecks associated with existing 341 

GWAS methodologies are fast approaching. Analyses of resources such as UK Biobank WGS 342 

data, the emerging massive cohorts of the Global Biobank Initiative[1], and Our Future 343 

Health[34] are expected to push current GWAS tools to their system resource limits with 344 

significant associated time-to-insight penalties. Conversely, with no computational sensitivity 345 

to sample size, as the number of variants assessed and sample sizes continue to increase, the 346 

relative savings and benefits of isGWAS can be expected to grow.  347 

 348 
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To attenuate possible issues of confounding and population stratification, we propose that 349 

additional QC-steps are performed before computing sufficient statistics for isGWAS. In our 350 

analyses, these steps reduced our UK Biobank sample size from ~408k individuals (used in the 351 

original testing of REGENIE[8]) down to a more homogeneous sample of ~335k individuals 352 

used to generate and compare results from isGWAS and REGENIE. Our results reveal an often-353 

striking concordance between approaches genome-wide as well as at the regional locus level. 354 

The reduction in sample size was compensated by the isGWAS leapfrog re-sampler (LRS), 355 

which we demonstrate efficiently helped extrapolate GWA results onto larger sample sizes (up 356 

to 2-times). While we note sensitivity of an LRS extrapolation to disease prevalence, across the 357 

range considered the TPR and FPR were well calibrated to at least a 1.5-fold increase in sample 358 

size. The LRS might therefore be leveraged to aid GWAS cohort design, for example to 359 

quantify the potential benefit of sampling more participants with a disease of interest against 360 

cost. In our analyses of the PGC Schizophrenia cohort, we deployed a highly restricted (i.e., no 361 

ILD) version of the LRS: forecasting results from a smaller 2014 cohort[25] onto a sample size 362 

that matched a future 2022 study[27]. Despite no guarantees of sufficiency, isGWAS LRS 363 

identified 75% of significant variants that were later identified in the larger 2022 cohort (almost 364 

double the size) while maintaining a low FDR. Unlike extrapolation via the ILD leapfrog re-365 

sampler, this naïve extrapolation does not account for differences in the MAF of cases and 366 

controls between 2014 and 2022 data. Regardless, the above findings highlight potential for 367 

isGWAS to furnish reasonable forecasts of future results without accessing ILD directly. Our 368 

recent predictions from FinnGen consortium data[18], [35] provide confidence that the 369 

isGWAS algorithm is applicable also to multi-ethnic GWAS through analyzing each ethnicity 370 

separately and combining results in a meta-analysis, as it is common practice[36].  371 

 372 
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Beyond, isGWAS can be applied to help address routinely asked questions about future 373 

scenarios and evaluate enrichment contribution of biobanks to disease-specific associations[35] 374 

or to protein-specific variant associations[18], particularly in the rare spectrum. isGWAS-Firth 375 

provides a timely, rapid regression-based analysis of common, rare and ultra-rare variants. 376 

Unlike ILD-based analyses, where Firth’s correction significantly increases computational 377 

time[7], [8], there is no computational penalty when using Firth’s correction in the isGWAS 378 

framework - in fact, we observe improved computational performance. The advantage of 379 

considerable improvements in computational runtime is that it allows for the introduction of 380 

forecasting, re-sampling and other non-parametric techniques -  the LRS being one example. 381 

These might widen robust association testing strategies as well as provide new avenues to tackle 382 

confounding or population sub-structure. For now, we envisage the possibility that the wider 383 

human genetics community routinely compute and make available the sufficient statistics, i.e. 384 

MAF in the cases and the cohort, and the corresponding sample sizes per variant, toward a 385 

publicly available, privacy compliant, data asset. In addition to avoiding the need for expensive 386 

high-performance computing facilities and memory intensive data storage, the data asset might 387 

enhance meta-analyses and biological insight, improve equitable access, and enable faster 388 

collaborations between teams and help bridge financial and resource gaps between institutions 389 

and research groups internationally. 390 

 391 

 392 

 393 

  394 
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Methods 395 

Disease SNP association model 396 

Let 𝑆𝑀 ∈ {1,2} be the maximum number of copies of the effect allele for an individual under 397 

model 𝑀 ∈ {𝐴, 𝐷,𝑅}, where 𝐴 denotes an additive model, 𝑅 a recessive model and 𝐷 a 398 

dominant model, i.e., 399 

𝑆𝑀 = {
2,                 𝑀 = 𝐴,
1, 𝑀 = 𝐷 ∩ 𝑅.

 400 

Furthermore let,  401 

𝑀𝐴𝐹𝑗,𝑀 =  𝑀𝐴𝐹𝑗 | 𝑀 402 

𝑀𝐴𝐹𝑗,𝑀
∗ = 𝑀𝐴𝐹𝑗

∗ | 𝑀 403 

where, for a given model 𝑀, 𝑀𝐴𝐹𝑗,𝑀 is the minor allele frequency for variant 𝑗 in the sample, 404 

ancestry, or population and 𝑀𝐴𝐹𝑗,𝑀
∗  the minor allele frequency in the cases. We let 𝑌 denote 405 

disease status and 𝐺𝑗 the 𝑗th genotype in the sample. For convenience we write 𝐺𝑗,𝑀 = 𝐺𝑗|𝑀. It 406 

is assumed that the outcome model for 𝑌, conditional on 𝐺𝑗, is given by: 407 

 𝔼[𝑌 | 𝐺𝑗 ,𝑀] = ℎ
−1(𝛼𝑗,𝑀 + 𝛽𝑗,𝑀𝐺𝑗,𝑀),         𝑗 = 1,2,… , 𝑄,  

where, conditional on model 𝑀, the pair {𝛼𝑗,𝑀 𝛽𝑗,𝑀} denote the intercept and genotype effect 408 

and ℎ is a function linking the outcome to genotype 𝐺𝑗,𝑀 for all 𝑗 = 1,2,… , 𝑄 genetic variants 409 

considered. In deriving the isGWAS estimation procedure we assume that ℎ is the logit 410 

function, i.e., 411 

𝜋𝑌|𝐺𝑗,𝑀 = 𝑃(𝑌 = 1 | 𝐺𝑗 ,𝑀) =  
𝑒(𝛼𝑗,𝑀+𝛽𝑗,𝑀𝐺𝑗,𝑀)

1 + 𝑒(𝛼𝑗,𝑀+𝛽𝑗,𝑀𝐺𝑗,𝑀)
. 412 

The isGWAS methodology can, however, be broadened to other link functions and outcome 413 

types. We take {𝛼̂𝑗,𝑀 , 𝛽̂𝑗,𝑀 , 𝜎̂𝛼𝑗,𝑀, 𝜎̂𝛽𝑗,𝑀} to be sample based estimates of the intercept 𝛼𝑗,𝑀 and 414 

coefficient 𝛽𝑗,𝑀, and their associated standard errors {𝜎̂𝛼𝑗,𝑀, 𝜎̂𝛽𝑗,𝑀}. We allow the genetic effect 415 
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𝛽𝑗,𝑀 and genotype 𝐺𝑗 (or an observation thereof 𝑔𝑗) to be analyzed on either (i) the standardized 416 

scale or (ii) non standardized scale. To accommodate this, we introduce the variable 𝑠𝑚
∗ , so that: 417 

{𝛽𝑗,𝑠𝑚∗ , 𝑔𝑗,𝑠𝑚∗ } = {(1 + (𝜎𝑔𝑖 − 1)𝑠𝑚
∗ )𝛽𝑗 ,

𝑔𝑗
(1 + (𝜎𝑔𝑖 − 1)𝑠𝑚

∗ )⁄ }. 418 

Hence, when 𝑠𝑚
∗ = 0 analyses are performed on the non-standardized scale and 𝑠𝑚

∗ = 1 on the 419 

standardized scale. Default analyses assume the genetic effect is assessed on the non-420 

standardized scale, i.e., 𝑠𝑚
∗ = 0. Note that, while p-values are generally invariant to the choice 421 

of effect scale 𝑠𝑚
∗ , betas and standard errors are dependent on the specification of 𝑠𝑚

∗ . 422 

 423 

Sample-Level Newton-Raphson (SaLN-R) algorithm 424 

Here we detail the isGWAS procedure for computing summary statistics  425 

{𝛼̂𝑗,𝑀 , 𝛽̂𝑗,𝑀,𝑠𝑚∗ , 𝜎̂𝛼𝑗,𝑀, 𝜎̂𝛽𝑗,𝑀,𝑠𝑚∗
} using only four data points, 426 

{𝑁𝑗 ,∑𝑦𝑖

𝑁𝑗

𝑖=1

= 𝑁𝑗
∗,∑𝑦𝑖𝑔𝑖𝑗,𝑀

𝑁𝑗

𝑖=1

,∑𝑔𝑖𝑗,𝑀 = 𝑛𝑗1 + 2𝑛𝑗2𝐼(𝑀 = 𝐴)

𝑁𝑗

𝑖=1

} 427 

or, as we show, the quadruple 428 

{𝑁𝑗 , 𝑁𝑗
∗, 𝑀𝐴𝐹𝑗,𝑀 ,𝑀𝐴𝐹𝑗,𝑀

∗ }, 429 

where 𝑁𝑗 denotes the study or population sample size and 𝑁𝑗
∗ the number of cases in the sample, 430 

see ad-hoc estimator (Supplementary Information) for definitions of 𝑛𝑗∙. Note that we have 431 

allowed the sample size 𝑁 and number of cases 𝑁∗ to vary by genotype 𝑗, this is useful when 432 

emulating results from GWAS. This is because the number of individuals analyzed in GWAS 433 

can vary by genotype owing to (e.g.,) quality of imputation or available data per variant and 434 

participant in a study. Ideally the sample size and number of cases would not vary by genotype 435 

and when using isGWAS to forecast GWAS results, users do not need not vary 𝑁𝑗, i.e,. 436 

𝑁𝑗 = 𝑁    and    𝑁𝑗
∗ = 𝑁∗, 𝑗 = 1,2,… , 𝑄. 437 
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Given a vector of observed data {𝒚,𝒈𝑗,𝑠𝑚∗ }, where 𝒚 = {𝑦1, 𝑦2, … , 𝑦𝑁𝑗} and 𝒈𝑗,𝑠𝑚∗ =438 

{𝑔1𝑗,, 𝑔2𝑗 , … , 𝑔𝑁𝑗}, estimates of model parameters are typically derived by maximizing the log-439 

likelihood function 440 

𝐿(𝜷𝑗,𝑀,𝑠𝑚∗ ) =∑log𝑃(𝑦𝑖 |𝜷𝑗,𝑀,𝑠𝑚∗ , 𝑔𝑖𝑗,𝑀,𝑠𝑚∗ )

𝑁𝑗

𝑖=1

, 442 

which is equivalent to identifying parameter values 𝜷𝑗,𝑀,𝑠𝑚∗ = {𝛼𝑗,𝑀 , 𝛽𝑗,𝑀,𝑠𝑚∗ } which satisfy: 441 

𝜕𝐿(𝜷𝑗,𝑀,𝑠𝑚∗ )

𝜕𝜷𝑗,𝑀,𝑠𝑚∗
=  𝑉(𝜷𝑗,𝑀,𝑠𝑚∗ , 𝐼𝐹) =  0, 443 

where 𝑉(𝜷𝑗,𝑀,𝑠𝑚∗ , 𝐼𝐹) denotes the logistic score function, i.e., 444 

𝑉(𝜷𝑗,𝑀,𝑠𝑚∗ , 𝐼𝐹) =  𝒈̃𝑗,𝑀,𝑠𝑚∗
𝑇 (𝒚 − 𝜋𝒚|𝒈̃𝑗,𝑀,𝑠𝑚∗

)  + 𝐼𝐹Κ(𝜷𝑗,𝑀,𝑠𝑚∗ ) = 0, 445 

with 𝐼𝐹  denoting an indicator function used to highlight that a Firth modified version of the 446 

score function has been used. For ease of mathematical presentation initially, we detail the Firth 447 

adjusted SaLN-R algorithm later, i.e., we set 𝐼𝐹 = 0 in this section. Additionally, to improve 448 

succinctness of notation, we drop the use of the parameter 𝑠𝑚
∗  - reintroducing where necessary 449 

- and set 𝜷𝑗,𝑀 = {𝛼𝑗,𝑀 , 𝛽𝑗,𝑀} and 𝒈̃𝑗,𝑀 = (1,𝑔𝑗,𝑀) above, so that 𝜷𝑗,𝑀𝒈̃𝑗,𝑀
𝑇 = 𝛼𝑗,𝑀 + 𝛽𝑗,𝑀𝑔𝑗,𝑀. 450 

We compute candidate solutions to by expanding 𝑉(𝜷𝑗,𝑀) as a Taylor series about a value 451 

𝜷𝑗0,𝑀 and up to second order, i.e., using the Newton-Raphson (N-R) method: 452 

𝑉(𝜷𝑗,𝑀) = 𝑉(𝜷𝑗0,𝑀) +
𝜕𝑉(𝜷𝑗,𝑀)

𝜕𝜷𝑗,𝑀
|
𝜷𝑗0,𝑀

(𝜷𝑗,𝑀 −𝜷𝑗0,𝑀) +  𝒪 ((𝜷𝑗,𝑀 − 𝜷𝑗0,𝑀)
2
), 453 

Which is re-written as 454 

𝜷𝑗,𝑀 = 𝜷𝑗0,𝑀 + ℐ
−1(𝜷𝑗0,𝑀)𝑉(𝜷𝑗0,𝑀) + 𝒪 ((𝜷𝑗,𝑀 − 𝜷𝑗0,𝑀)

2
) 455 

and generalized into an N-R iterative algorithm: 456 

𝜷𝑗(𝑘+1),𝑀,𝑠𝑚∗ = 𝜷𝑗𝑘,𝑀,𝑠𝑚∗ + ℐ
−1(𝜷𝑗𝑘,𝑀,𝑠𝑚∗ )𝑉(𝜷𝑗𝑘,𝑀,𝑠𝑚∗ ) + 𝒪 ((𝜷𝑗(𝑘+1),𝑀,𝑠𝑚∗ − 𝜷𝑗𝑘,𝑀,𝑠𝑚∗ )

2
) ,     𝑘 = 0,1, … ,𝐾, 457 
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where we have re-introduced 𝑠𝑚
∗  to highlight that the algorithm is dependent on the choice of 458 

effect scale. The variable ℐ−1 denotes the inverse Fisher Information matrix, where 459 

ℐ(𝜷𝑗𝑘,𝑀) =  −
𝜕𝑉(𝜷𝑗,𝑀)

𝜕𝜷𝑗,𝑀
|
𝜷𝑗,𝑀=𝜷𝑗𝑘,𝑀

 460 

= 𝒈̃𝑗,𝑀
𝑇diag (𝜋𝑦𝑖|𝑔𝑗,𝑀 (1 − 𝜋𝑦𝑖|𝑔𝑗𝑘,𝑀)) 𝒈̃𝑗,𝑀|

𝜷𝑗,𝑀=𝜷𝑗𝑘,𝑀

 461 

=

(

 
 
 
 ∑𝜋𝑦𝑖|𝑔𝑖𝑗,𝑀 (1 − 𝜋𝑦𝑖|𝑔𝑖𝑗,𝑀)

𝑁𝑗

𝑖=1

∑𝜋𝑦𝑖|𝑔𝑖𝑗,𝑀 (1 − 𝜋𝑦𝑖|𝑔𝑖𝑗,𝑀)𝑔𝑖𝑗,𝑀

𝑁𝑗

𝑖=1

∑𝜋𝑦𝑖|𝑔𝑖𝑗,𝑀 (1 − 𝜋𝑦𝑖|𝑔𝑖𝑗,𝑀)𝑔𝑖𝑗,𝑀

𝑁𝑗

𝑖=1

∑𝜋𝑦𝑖|𝑔𝑖𝑗,𝑀 (1 − 𝜋𝑦𝑖|𝑔𝑖𝑗,𝑀)𝑔𝑖𝑗,𝑀
2

𝑁𝑗

𝑖=1 )

 
 
 
 

|

|

𝜷𝑗,𝑀=𝜷𝑗𝑘,𝑀

 462 

and the score function is given by 463 

𝑉(𝜷𝑗𝑘,𝑀) = 𝒈̃𝑗,𝑀
𝑇 (𝒚 − 𝜋𝒚|𝒈𝑗,𝑀)|

𝜷,𝑀𝑗=𝜷𝑗𝑘,𝑀
 464 

= (
∑ (𝑦𝑖 − 𝜋𝑦𝑖|𝑔𝑖𝑗,𝑀)
𝑁𝑗
𝑖=1  

∑ (𝑦𝑖 − 𝜋𝑦𝑖|𝑔𝑖𝑗,𝑀) 𝑔𝑖𝑗,𝑀
𝑁𝑗
𝑖=1

)|

𝜷𝑗,𝑀=𝜷𝑗𝑘,𝑀

 465 

Both ℐ(𝜷𝑗𝑘,𝑀) and 𝑉(𝜷𝑗𝑘,𝑀) above require individual-level data to compute their values. 466 

isGWAS aims to estimate values for these variables using sample-level information only, 467 

thereby avoiding the immediate need for individual data. To achieve this, we approximate both 468 

the Fisher Information matrix and the Score function via the pair {ℐ𝕖(𝜷𝑗𝑘,𝑀), 𝑉𝕖(𝜷𝑗𝑘,𝑀)}, 469 

where: 470 

ℐ𝕖(𝜷𝑗𝑘,𝑀) = 𝑁𝑗 (
𝔼𝑔𝑗,𝑀 [𝜋𝑦|𝑔𝑗,𝑀 (1 − 𝜋𝑦|𝑔𝑗,𝑀) ; 𝜷𝑗𝑘,𝑀] 𝔼𝑔𝑗,𝑀 [𝜋𝑦|𝑔𝑗,𝑀 (1 − 𝜋𝑦|𝑔𝑗,𝑀)𝑔𝑗,𝑀 ; 𝜷𝑗𝑘,𝑀]

𝔼𝑔𝑗,𝑀 [𝜋𝑦|𝑔𝑗,𝑀 (1 − 𝜋𝑦|𝑔𝑗,𝑀)𝑔𝑗,𝑀 ; 𝜷𝑗𝑘,𝑀] 𝔼𝑔𝑗,𝑀 [𝜋𝑦|𝑔𝑗,𝑀 (1 − 𝜋𝑦|𝑔𝑗,𝑀)𝑔𝑗,𝑀
2 ; 𝜷𝑗𝑘,𝑀]

) 471 

and  472 

𝑉𝕖(𝜷𝑗𝑘,𝑀) = (
∑ 𝑦𝑖
𝑁𝑗
𝑖=1 − 𝑁𝑗 𝔼𝑔𝑗,𝑀 [𝜋𝑦|𝑔𝑗,𝑀; 𝜷𝑗𝑘,𝑀]

∑ 𝑦𝑖𝑔𝑖𝑗,𝑀
𝑁𝑗
𝑖=1 − 𝑁𝑗𝔼𝑔𝑗,𝑀 [𝜋𝑦|𝑔𝑗,𝑀𝑔𝑗,𝑀 ;  𝜷𝑗𝑘,𝑀]

) 473 
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≈ (
𝑁𝑗
∗ − 𝑁𝑗 𝔼𝑔𝑗,𝑀 [𝜋𝑦|𝑔𝑗,𝑀;  𝜷𝑗𝑘,𝑀]

𝑁𝑗
∗𝔼𝑔𝑗,𝑀[𝑔𝑗,𝑀| 𝑦 = 1] − 𝑁𝑗𝔼𝑔𝑗,𝑀 [𝜋𝑦|𝑔𝑗,𝑀𝑔𝑗,𝑀 ;  𝜷𝑗𝑘,𝑀]

),     𝑁𝑗
∗ ≫ 1. 474 

 475 

with 𝔼𝑔𝑗,𝑀[ ∙  ; 𝜷𝑗𝑘,𝑀] denoting that expectation is taken with respect to 𝑔𝑗,𝑀 and evaluated at 476 

𝜷𝑗,𝑀 = 𝜷𝑗𝑘,𝑀. Note that {ℐ𝕖(𝜷𝑗𝑘,𝑀), 𝑉𝕖(𝜷𝑗𝑘,𝑀)} are motivated by switching from empirical, i.e., 477 

sample-based, estimates in {ℐ(𝜷𝑗𝑘,𝑀), 𝑉(𝜷𝑗𝑘,𝑀)} to their expected value analogues, which 478 

reverses the usual mode of estimation. Sample size 𝑁𝑗 is presumed large and thus switching 479 

from sample-based to expected values in the N-R algorithm is well motivated. However, when 480 

the number of cases 𝑁𝑗
∗ is ‘small’, an approximation of ∑ 𝑦𝑖𝑔𝑗,𝑀

𝑁𝑗
𝑖=1 ≈ 𝑁𝑗

∗𝔼𝑔𝑗,𝑀[𝑔𝑗,𝑀| 𝑦 = 1] 481 

becomes weaker and we recommend using the statistic ∑ 𝑦𝑖𝑔𝑗,𝑀
𝑁𝑗
𝑖=1 . Values for the elements in 482 

{ℐ𝕖(𝜷𝑗𝑘,𝑀), 𝑉𝕖(𝜷𝑗𝑘,𝑀)} are computed via:  483 

𝔼𝑔𝑗,𝑀,𝑠𝑚∗
[𝜋𝑦|𝑔𝑗,𝑀,𝑠𝑚∗

(1 − 𝜋𝑦|𝑔𝑗,𝑀,𝑠𝑚∗
) 𝑔𝑗,𝑀,𝑠𝑚∗

𝑐  ;  𝜷𝑗𝑘,𝑀,𝑠𝑚∗ ] =  484 

∑𝜋𝑦|𝑔𝑗,𝑀=𝑙 𝑤𝑠𝑚∗⁄ ; 𝜷𝑗𝑘,𝑀,𝑠𝑚
∗
(1 − 𝜋𝑦|𝑔𝑗,𝑀=𝑙 𝑤𝑠𝑚∗⁄ ; 𝜷𝑗𝑘,𝑀,𝑠𝑚

∗
)

𝑆𝑀

𝑙=0

(
𝑙

𝑤𝑠𝑚∗
)

𝑐

𝑝 (𝑔𝑗,𝑀 =
𝑙
𝑤𝑠𝑚∗
⁄ ) 485 

= 𝑒𝑗,𝑀
(𝑐,𝑘)

 486 

and 487 

𝔼𝑔𝑗,𝑀,𝑠𝑚∗
[𝜋𝑦|𝑔𝑗,𝑀,𝑠𝑚∗

𝑔𝑗,𝑀,𝑠𝑚∗
𝑐  | 𝜷𝑗𝑘,𝑀,𝑠𝑚∗  ] = 488 

∑𝜋𝑦|𝑔𝑗,𝑀=𝑙 𝑤𝑠𝑚∗⁄ ; 𝜷𝑗𝑘,𝑀,𝑠𝑚
∗

𝑆𝑀

𝑙=0

(
𝑙

𝑤𝑠𝑚∗
)

𝑐

𝑝 (𝑔𝑗,𝑀 =
𝑙
𝑤𝑠𝑚∗
⁄ ) 489 

= 𝑒̃𝑗,𝑀
(𝑐,𝑘), 490 

where 𝑤𝑠𝑚∗ = (1+ (𝜎𝑔𝑖 − 1)𝑠𝑚
∗ ) and the superscript and subscript in 𝑒𝑀

(𝑐,𝑘)
, 𝑒̃𝑀
(𝑐,𝑘)

 are used to 491 

highlight that expectation has been taken conditional on k-th iteration 𝛽𝑗𝑘,𝑀 and under 492 
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modelling assumption 𝑀 (and implicitly effect scale 𝑠𝑚
∗ ). Probability mass 𝑝 (𝑔𝑗,𝑀 =

𝑙
𝑤𝑠𝑚∗
⁄ ) 493 

is either defined a-priori or can be approximated empirically, which we detail later. In 494 

combination, therefore, it follows that: 495 

ℐ𝕖(𝜷𝑗𝑘,𝑀,𝑠𝑚∗ ) = 𝑁𝑗 (
𝑒𝑗,𝑀
(0,𝑘)

𝑒𝑗,𝑀
(1,𝑘)

𝑒𝑗,𝑀
(1,𝑘)

𝑒𝑗,𝑀
(2,𝑘)) 496 

and  497 

ℐ𝕖
−1(𝜷𝑗𝑘,𝑀,𝑠𝑚∗ ) =

1

𝑁𝑗 (𝑒𝑗,𝑀
(0,𝑘)

𝑒𝑀
(2,𝑘)

− (𝑒𝑗,𝑀
(1,𝑘)

)
2
)
(
𝑒𝑗,𝑀
(2,𝑘)

−𝑒𝑗,𝑀
(1,𝑘)

−𝑒𝑗,𝑀
(1,𝑘)

𝑒𝑗,𝑀
(0,𝑘) ). 498 

Following the same process that led to the above, we re-write the sample-level Score function 499 

𝑉𝕖(𝜷𝑗𝑘,𝑀,𝑠𝑚∗ ) as: 500 

𝑉𝕖(𝜷𝑗𝑘,𝑀,𝑠𝑚∗ ) = (
𝑁𝑗
∗ − 𝑁𝑗 𝑒̃𝑗,𝑀

(0,0)

∑ 𝑔𝑖𝑗,𝑀,𝑠𝑚∗𝑖 ∶ 𝑦𝑖=1 −𝑁𝑗 𝑒̃𝑗,𝑀
(1,0)) 501 

≈ (
𝑁𝑗
∗ −𝑁𝑗  𝑒̃𝑗,𝑀

(0,0)

𝑆𝑀𝑁𝑗
∗𝑀𝐴𝐹𝑗,𝑀

∗

𝑤𝑠𝑚∗
− 𝑁𝑗𝑒̃𝑗,𝑀

(1,0)
),      𝑁𝑗

∗ ≫ 1, 502 

where we have used the following approximation:   503 

∑ 𝑔𝑖𝑗,𝑀,𝑠𝑚∗

𝑖 ∶ 𝑦𝑖=1

≈ 𝑁𝑗
∗𝔼𝑔𝑗,𝑀[𝑔𝑗,𝑀,𝑠𝑚∗ | 𝑦 = 1] =

𝑆𝑀𝑁𝑗
∗𝑀𝐴𝐹𝑗,𝑀

∗

𝑤𝑠𝑚∗
. 504 

Hence, replacing the pair {ℐ(𝜷𝑗𝑘,𝑀,𝑠𝑚∗ ), 𝑉(𝜷𝑗𝑘,𝑀,𝑠𝑚∗ )} with the sample-level approximations 505 

{ℐ𝕖(𝜷𝑗𝑘,𝑀,𝑠𝑚∗ ), 𝑉𝕖(𝜷𝑗𝑘,𝑀,𝑠𝑚∗ )} we furnish the SaLN-R algorithm: 506 

𝜷𝑗(𝑘+1),𝑀,𝑠𝑚∗ = 𝜷𝑗𝑘,𝑀,𝑠𝑚∗ + ℐ𝕖
−1(𝜷𝑗𝑘,𝑀,𝑠𝑚∗ )𝑉𝕖(𝜷𝑗𝑘,𝑀,𝑠𝑚∗ ) 507 

= 𝜷𝑗𝑘,𝑀,𝑠𝑚∗ +
1

𝑁𝑗 (𝑒𝑗,𝑀
(0,𝑘)

𝑒𝑗,𝑀
(2,𝑘)

− (𝑒𝑗,𝑀
(1,𝑘)

)
2

)
(
𝑒𝑗,𝑀
(2,𝑘)

−𝑒𝑗,𝑀
(1,𝑘)

−𝑒𝑗,𝑀
(1,𝑘)

𝑒𝑗,𝑀
(0,𝑘) )(

𝑁𝑗
∗ − 𝑁𝑗  𝑒̃𝑗,𝑀

(0,𝑘)

𝑆𝑀𝑁𝑗
∗𝑀𝐴𝐹𝑗,𝑀

∗

𝑤𝑠𝑚∗
− 𝑁𝑗𝑒̃𝑗,𝑀

(1,𝑘)
). 508 

The standard error of the updates, 𝝈̂𝜷𝑗(𝑘+1),𝑀,𝑠𝑚∗
= {𝜎̂𝛼𝑗(𝑘+1),𝑀,𝑠𝑚∗ ,

, 𝜎̂𝛽𝑗(𝑘+1),𝑀,𝑠𝑚∗ }, are given by the 509 

diagonal of the inverse Fisher information matrix, i.e., 510 
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𝜎̂𝛼𝑗(𝑘+1),𝑀,𝑠𝑚∗
= √

𝑒𝑗,𝑀
(2,𝑘)

𝑁𝑗 (𝑒𝑗,𝑀
(0,𝑘)
𝑒𝑗,𝑀
(2,𝑘)

− (𝑒𝑗,𝑀
(1,𝑘))

2
)
, 511 

𝜎̂𝛽𝑗(𝑘+1),𝑀,𝑠𝑚∗ = √
𝑒𝑗,𝑀
(0,𝑘)

𝑁𝑗 (𝑒𝑗,𝑀
(0,𝑘)
𝑒𝑗,𝑀
(2,𝑘)

− (𝑒𝑗,𝑀
(1,𝑘))

2
)
. 512 

It can be shown from the above that: 513 

𝜷𝑗𝑘,𝑀,𝑠𝑚∗ =1 = 𝜎𝑔𝑖𝜷𝑗𝑘,𝑀,𝑠𝑚∗ =0, 514 

𝜎̂𝛽𝑗(𝑘+1),𝑀,𝑠𝑚∗ =1 = 𝜎𝑔𝑖𝜎̂𝛽𝑗(𝑘+1),𝑀,𝑠𝑚∗ =0. 515 

We set 𝑠𝑚
∗ = 0 to compute values for the pair {𝜷 ̂

𝑗𝑘,𝑀,0 , 𝜎̂𝛽𝑗(𝑘+1),𝑀,0} and use the above identities 516 

to return parameter estimates on the standardized scale 𝑠𝑚
∗ = 1. The data required to run the 517 

SaLN-R algorithm are: 518 

{𝑁𝑗 , 𝑁𝑗
∗,∑𝑦𝑖𝑔𝑖𝑗,𝑀

𝑁𝑗

𝑖=1

, 𝑝(𝑔𝑗,𝑀 = 1)}⋃{
∅,                         𝑆𝑀 = 1,

𝑝(𝑔𝑗,𝑀 = 2),     𝑆𝑀 = 2.
} 519 

We use the approximations 520 

𝑝(𝑔𝑗,𝑀 = 1) ≈
𝑛𝑗1
𝑁𝑗
 
𝑁𝑗≫1

𝐻𝑊𝐸

→    {
𝑀𝐴𝐹𝑗,𝑀 ,                                 𝑆𝑀 = 1,

2𝑀𝐴𝐹𝑗,𝑀(1 − 𝑀𝐴𝐹𝑗,𝑀),     𝑆𝑀 = 2,
 521 

𝑝(𝑔𝑗,𝑀 = 2) ≈
𝑛𝑗2
𝑁𝑗
 
𝑁𝑗≫1

𝐻𝑊𝐸

→    𝑀𝐴𝐹𝑗,𝑀
2 ,                                                    522 

where 
𝐻𝑊𝐸
→    is used to denote under Hardy-Weinberg equilibrium. 523 

The SaLN-R algorithm is extended to include Firth’s penalty function (see Supplementary 524 

Information for more details): 525 

𝜷𝑗(𝑘+1),𝑀,𝑠𝑚∗ =  𝜷𝑗𝑘,𝑀,𝑠𝑚∗ +
1

(

 
 
(𝑒𝑀

(0,𝑘) −
𝜕𝛼𝑗,𝑀Κ𝕖

(𝛼𝑗,𝑀)

𝑁𝑗
)(𝑒𝑀

(2,𝑘) −
𝜕𝛽𝑗,𝑀Κ𝕖

(𝛽𝑗,𝑀)

𝑁𝑗
)− (𝑒𝑀

(1,𝑘) −
𝜕𝛽𝑗,𝑀Κ𝕖

(𝛼𝑗,𝑀)

𝑁𝑗
)

2

)

 
 

 526 
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×

(

 
 
 𝑒𝑀

(2,𝑘) −
𝜕𝛼𝑗,𝑀Κ𝕖

(𝛼𝑗,𝑀)

𝑁𝑗
−𝑒𝑀

(1,𝑘) +
𝜕𝛽𝑗,𝑀Κ𝕖

(𝛼𝑗,𝑀)

𝑁𝑗

−𝑒𝑀
(1,𝑘)

+
𝜕𝛽𝑗,𝑀Κ𝕖

(𝛼𝑗,𝑀)

𝑁𝑗
𝑒𝑀
(0,𝑘)

−
𝜕𝛽𝑗,𝑀Κ𝕖

(𝛽𝑗,𝑀)

𝑁𝑗 )

 
 
 

(

  
 

𝜋𝑗
∗ − 𝑒̃𝑀

(0,𝑘) +
Κ𝕖
(𝛼𝑗,𝑀)

𝑁𝑗
⁄

𝑆𝑀𝜋𝑗
∗𝑀𝐴𝐹𝑗,𝑀

∗

𝑤𝑠𝑚∗
− 𝑒̃𝑀

(1,𝑘) +
Κ𝕖
(𝛽𝑗,𝑀)

𝑁𝑗
⁄

)

  
 
, 527 

  528 

where 529 

Κ𝕖(𝜷𝑗,𝑀) =
1

2(𝑒𝑗,𝑀
(0,𝑘)𝑒𝑗,𝑀

(2,𝑘) − (𝑒𝑗,𝑀
(1,𝑘))

2
)
(
𝑑𝛼,𝑗,𝑀
(0,𝑘) 𝑒𝑗,𝑀

(2,𝑘) + 𝑑𝛼,𝑗,𝑀
(2,𝑘) 𝑒𝑗,𝑀

(0,𝑘) − 2𝑑𝛼,𝑗,𝑀
(1,𝑘) 𝑒𝑗,𝑀

(1,𝑘)

𝑑𝛽,𝑗,𝑀
(0,𝑘) 𝑒𝑗,𝑀

(2,𝑘) + 𝑑𝛽,𝑗,𝑀
(2,𝑘)𝑒𝑗,𝑀

(0,𝑘) − 2𝑑𝛽,𝑗,𝑀
(1,𝑘)𝑒𝑗,𝑀

(1,𝑘)
) 530 

and  531 

𝑑𝛼,𝑗,𝑀
(𝑐+1,𝑘) = 𝑑𝛽,𝑗,𝑀

(𝑐,𝑘) =
𝜕𝑒𝑗,𝑀

(𝑐,𝑘)

𝜕𝛽𝑗,𝑀
. 532 

 533 

isGWAS is computed using sufficient statistics 534 

Under Hardy-Weinberg equilibrium, the quadruple {𝑁𝑗 , 𝑁𝑗
∗, 𝑀𝐴𝐹𝑗,𝑀 , 𝑀𝐴𝐹𝑗,𝑀

∗ } are combined to 535 

form the global and local (under a wide radius of convergence) sufficient statistics from the 536 

logistic model. Consequently, they hold all necessary information to compute regression 537 

parameter estimates {𝛼̂𝑗,𝑀 , 𝛽̂𝑗,𝑀,𝑠𝑚∗ , 𝜎̂𝛼𝑗,𝑀, 𝜎̂𝛽𝑗,𝑀,𝑠𝑚∗
} over a broad range of scenarios. Regardless 538 

of Hardy-Weinberg being valid or not, we show that the triple {𝑇1𝑗 , 𝑇2𝑗 , 𝑇3𝑗}, 539 

{𝑇1𝑗 =∑𝑦𝑖

𝑁𝑗

𝑖=1

= 𝑁𝑗
∗, 𝑇2𝑗 =∑𝑦𝑖

𝑁𝑗

𝑖=1

𝑔𝑖𝑗,𝑀,𝑠𝑚∗ , 𝑇3𝑗 =∑𝑔𝑖𝑗,𝑀,𝑠𝑚∗

𝑁𝑗

𝑖=1

} , 540 

are the two global and one local sufficient statistics and these can alternatively be used as input 541 

variables in isGWAS. To show this, we write: 542 

𝐿(𝜷𝑗,𝑀,𝑠𝑚∗ ) =∑log𝑃(𝑦𝑖 |𝜷𝑗,𝑀,𝑠𝑚∗ , 𝑔𝑖𝑗,𝑀,𝑠𝑚∗ )

𝑁𝑗

𝑖=1

 543 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 10, 2023. ; https://doi.org/10.1101/2023.07.21.550074doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.21.550074
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

27 

= 𝛼𝑗,𝑀,𝑠𝑚∗ ∑𝑦𝑖

𝑁𝑗

𝑖=1

+ 𝛽𝑗,𝑀,𝑠𝑚∗ ∑𝑦𝑖

𝑁𝑗

𝑖=1

𝑔𝑖𝑗,𝑀,𝑠𝑚∗544 

+∑log (1 − 𝑃(𝑦𝑖 = 1 |𝜷𝑗,𝑀,𝑠𝑚∗ , 𝑔𝑖𝑗,𝑀,𝑠𝑚∗ ))

𝑁𝑗

𝑖=1

 545 

= 𝛼𝑗,𝑀,𝑠𝑚∗ 𝑇1𝑗 + 𝛽𝑗,𝑀,𝑠𝑚∗ 𝑇2𝑗 −∑log(1 + exp 𝛼𝑗,𝑀,𝑠𝑚∗ )

𝑁𝑗

𝑖=1

546 

−∑log(1 +
exp 𝛼𝑗,𝑀,𝑠𝑚∗

1 + exp 𝛼𝑗,𝑀,𝑠𝑚∗
((exp𝛽𝑗,𝑀,𝑠𝑚∗ 𝑔𝑖𝑗,𝑀,𝑠𝑚∗ ) − 1))

𝑁𝑗

𝑖=1

 547 

= 𝛼𝑗,𝑀,𝑠𝑚∗ 𝑇1𝑗 + 𝛽𝑗,𝑀,𝑠𝑚∗ (𝑇2𝑗 −
exp 𝛼𝑗,𝑀,𝑠𝑚∗

1 + exp 𝛼𝑗,𝑀,𝑠𝑚∗
𝑇3𝑗) − 𝑁𝑗 log(1 − exp 𝛼𝑗,𝑀,𝑠𝑚∗ )548 

+ 𝒪 (
exp 𝛼𝑗,𝑀,𝑠𝑚∗

1 + exp 𝛼𝑗,𝑀,𝑠𝑚∗
(𝛽𝑗,𝑀,𝑠𝑚∗ 𝑔∙𝑗,𝑀,𝑠𝑚∗ )

2
) 549 

= 𝑓(𝑇1𝑗 , 𝑇2𝑗 , 𝑇3𝑗; 𝛼𝑗,𝑀,𝑠𝑚∗ , 𝛽𝑗,𝑀,𝑠𝑚∗ ) + 𝒪 (
exp 𝛼𝑗,𝑀,𝑠𝑚∗

1 + exp 𝛼𝑗,𝑀,𝑠𝑚∗
(𝛽𝑗,𝑀,𝑠𝑚∗ 𝑔∙𝑗,𝑀,𝑠𝑚∗ )

2
) 550 

and valid when 551 

     
exp 𝛼𝑗,𝑀,𝑠𝑚∗

1 + exp 𝛼𝑗,𝑀,𝑠𝑚∗
|(exp 𝛽𝑗,𝑀,𝑠𝑚∗ 𝑔∙𝑗,𝑀,𝑠𝑚∗ ) − 1| < 1. 552 

Hence, the global sufficient statistics are {𝑇1𝑗 , 𝑇2𝑗} and (on assuming random 𝑔𝑖𝑗,𝑀,𝑠𝑚∗  as in the 553 

SaLN-R algorithm) the locally sufficient statistic is {𝑇3𝑗}, where: 554 

𝑇1𝑗 =∑𝑦𝑖

𝑁𝑗

𝑖=1

= 𝑁𝑗
∗, 𝑇2𝑗 =∑𝑦𝑖

𝑁𝑗

𝑖=1

𝑔𝑖𝑗,𝑀,𝑠𝑚∗   555 

and 556 

   𝑇3𝑗 =∑𝑔𝑖𝑗,𝑀,𝑠𝑚∗

𝑁𝑗

𝑖=1

= {
𝑛𝑗1,                   𝑆𝑀 = 1,

𝑛𝑗1 + 2𝑛𝑗2,     𝑆𝑀 = 2.
 557 

Under Hardy-Weinberg equilibrium, we can write 558 

𝑇2𝑗 = 𝑠𝑚
∗ 𝑁𝑗

∗𝑀𝐴𝐹𝑗
∗    and     𝑇3𝑗 = 𝑠𝑚

∗ 𝑁𝑗𝑀𝐴𝐹𝑗 . 559 
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 560 

Leapfrog re-sampler: forecasting results in target sample sizes 561 

To estimate regression parameters {𝛼𝑗,𝑀,𝑠𝑚∗ , 𝛽𝑗,𝑀,𝑠𝑚∗ } in larger target sample sizes, i.e., 𝑁̂𝑗 > 𝑁𝑗,  562 

we propose the following strategy:  563 

1. Specify number 𝐾, sub-sample 𝛾1 and target sample 𝛾2 parameters, where 𝐾 ≥ 1, 564 

0 < 𝛾1 < 1   and  𝛾2 > 1. 565 

2. Generate random sub-samples of individuals of size 𝑁𝑗 = 𝛾1𝑁𝑗 < 𝑁𝑗.  For each of 566 

𝑘 = 1,2,… , 𝐾,  generate a random sub-sample 𝐷𝑘,𝛾1 ⊂ 𝐷, where |𝐷𝑘,𝛾1| = 𝑁𝑗 = 𝛾1𝑁𝑗. 567 

3. (Leapfrog-step) Compute subsample quadruple and project to target sample size 568 

𝑁̂𝑗. For each subsample 𝐷𝑘,𝛾1, compute values {𝑁𝑖𝑗
∗ ,𝑀𝐴𝐹̃𝑘𝑗,𝑀 , 𝑀𝐴𝐹∗̃

𝑘𝑗,𝑀} and project 569 

these on to the target sample size, i.e.,  𝑑𝑘,𝛾1,2 =570 

{(
𝛾2

𝛾1
)𝑁𝑘𝑗 , (

𝛾2

𝛾1
)𝑁𝑖𝑗

∗ , 𝑀𝐴𝐹̃𝑘𝑗,𝑀 , 𝑀𝐴𝐹∗̃
𝑘𝑗,𝑀} for sample 𝐷𝑘,𝛾1 571 

▪ Note that (
𝛾2

𝛾1
)𝑁𝑘𝑗 = 𝑁̂𝑗 , which is the target ‘future’ sample size. 572 

4. Deploy isGWAS across all 𝑲 (projected) quadruples 𝑑𝑘,𝛾1,2 and record each estimate 573 

of the genetic effects, standard error and p-value  {𝛽̂𝑘,𝑗,𝑀,𝑠𝑚∗ ,  𝜎̂𝛽𝑘,𝑗,𝑀,𝑠𝑚∗
, 𝑝𝑘,𝑗,𝑀,𝑠𝑚∗ }

𝑘=1:𝐾
. 574 

5. Estimate p-value in target sample size as a summary point estimate (e.g., median) or 575 

range across all 𝐾 sub-samples, 576 

𝑝𝑡𝑎𝑟𝑔𝑒𝑡𝑗,𝑀,𝑠𝑚∗ = median{𝑝𝑘,𝑗,𝑀,𝑠𝑚∗ }𝑘=1:𝐾
. 577 
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 578 

Data Quality Control: preparation of sufficient statistics for isGWAS 579 

In order to deploy isGWAS successfully, the sufficient statistics are required to be 580 

prepared in a sample where only a single individual (preferably case) from pairs or n-581 

tuples of 3rd, 2nd and 1st degree relatives is retained. Additionally, ethnical outliers must 582 

also be removed. In summary, to deploy isGWAS successfully we require either: (a) 583 

access to the sufficient statistics computed after duplications of related n-tuples and 584 

ethnical outliers are removed; or (b) access to the individual level data, whereupon the 585 

sufficient statistics can be prepared as described in (a). We provide a detailed outline of 586 

recommended Quality Control for genetic Individual Level Data (ILD) to running 587 

successfully isGWAS in Supplementary Information. 588 

 589 

Application to Biobank data 590 

The GWAS results used in the assessment of isGWAS were taken from large-scale analyses of 591 

UK Biobank[13], Biobank Japan[14] and the Psychiatric Genomics Consortium[15]. 592 

The UK Biobank[13] is a large-scale biomedical database and research resource containing 593 

in-depth genetic and health information from half a million UK participants. From the full 594 

available UK Biobank cohort, we obtain phenotypes for seven different diseases with varying 595 

levels of prevalence. These are Hypertension (IC10:I10), Asthma (IC10:J45), Atherosclerosis 596 

(IC10:I25), Glaucoma (IC10:H40), Stroke (IC10:I63), Colon Cancer (IC10:C18) and Thyroid 597 

Gland Cancer (IC10:C73) patients. From a total cohort of 502,422 participants, we used the 598 

following inclusion criteria: white British (Field 22006), non-related (>3rd degree), no 599 

patients with difference in reported (Field 31) and genetic (Field 22001) sex, no patients with 600 

aneuploidy (Field 22019), no patients with unusual heterozygosity and high missing rates 601 
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(Field 22027). The ethnicity component is obtained from samples who self-identified as 602 

'White British' according to Field 21000 and have very similar genetic ancestry based on a 603 

principal components analysis of the genotypes. Retaining one related individual (where we 604 

favour the retention of cases) we obtain a working sample size of ~335,000 individuals; the 605 

approximate value is owing to small differences in the number of cases between disease 606 

phenotypes (Supplementary Information). Comparative analysis for these varying 607 

populations is reported in the main text.  The prevalence ratios and exact number of cases and 608 

controls are provided in Supplementary Table 1. The variant based statistics needed for 609 

isGWAS were obtained from the imputed UK Biobank dataset. A quality info score>0.9 is 610 

applied to the data, and the number of cases and controls per variant and the MAF for variant 611 

in cases and controls is based on patients with non-missing genotypes for the variant using 612 

software PLINK[4]. Sample-level MAF>0.001 is used as inclusion criteria for the variants to 613 

analyse. For each disease, we run isGWAS analysis using default settings under the ‘additive’ 614 

genetic model. In addition, we also perform GWAS analysis using two-step REGENIE[8] 615 

applied to all variants with a MAF>0.001 and Genotype Score>0.99. Firth correction was 616 

enabled and performed on variants with p-value<0.1. REGENIE was also adjusted for 617 

covariate information (age, sex, ancestry). For each disease we provide the following 618 

diagnostic plots: 1) mirrored Manhattan plot comparing directly p-values for isGWAS and 619 

REGENIE, 2) p-value – p-value plots comparing REGENIE and isGWAS, 3) 𝛽 − 𝛽 plots 620 

comparing REGENIE and isGWAS where we have colored the values by a) MAF and b) 621 

ratios of computed standard error (SE) between methods, i.e., 𝑙𝑜𝑔2(
𝑆𝐸(𝑖𝑠𝐺𝑊𝐴𝑆)

𝑆𝐸(𝑅𝐸𝐺𝐸𝑁𝐼𝐸)
) . Across all 622 

diseases and variants considered, we compare performance of isGWAS and isGWAS-Firth to 623 

REGENIE-Firth.   624 

Schizophrenia data from the Psychiatric Genomics Consortium[15] was used to conduct two 625 

different large-scale GWAS analysis. The first GWAS analysis was executed with data from 626 
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77,096 European individuals (33,640 cases, 43,456 controls)[25]. The second GWAS analysis 627 

was executed with data from the larger 130,644 European individuals (53,386 cases, 77,258 628 

controls)[27]. We used the 2014 dataset to infer the 2022 results. To do this, we refine the 629 

significant results from both imputed 2014 and 2022 summary statistics using clumping with 630 

PLINK. The European 1000 Genomes Project v3[19] dataset was used as a reference population 631 

for the clumping procedure. Twelve strategies for clumping were explored: three were LD 𝑅2-632 

based only, the other nine were a combination of clumping by LD block information and p-633 

value thresholding. The refined variants are used to assess the inference capabilities of isGWAS 634 

both within each of the two datasets and the enrichment capabilities of isGWAS to infer p-635 

values of the 2022 dataset using the 2014 dataset. For the 2014 dataset, 225 variants were 636 

remaining after the clumping. For the 2022 dataset, 451 variants were remaining after the 637 

clumping. From those, 54 are overlapping and 608 is the unique set between the two datasets.  638 

The Biobank Japan data was used to conduct a large-scale GWAS with 212,453 Japanese 639 

individuals across 42 different diseases[24]. We obtained the published significantly associated 640 

loci (P < 5e-08) in autosomes from the GWAS findings which amounted to 309 variants across 641 

30 different diseases. Similarly, we used the significantly associated X chromosome findings 642 

for males and females that amounted to a total of nine significantly associated loci across five 643 

diseases, although results are omitted from text. We applied isGWAS to the three different sets 644 

of variants using default parameters to assess the performance of isGWAS. To aid association 645 

interpretation, we use the following additional statistical tests to assess the accuracy and 646 

sensitivity of the isGWAS calculator for the Biobank Japan data. First, a classical ROC curve 647 

was produced where the true/false actual value was determined by various p-value thresholds 648 

(benchmarked against published Biobank Japan results). The isGWAS calculator is an 649 

inferential tool thus this usage of the ROC curve is unconventional, however, it provides us 650 

with the opportunity to assess the sensitivity to the choice of thresholds used to correct for 651 
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multiple testing. These are 10−10, 10−8, 5 × 10−8 , 10−7, where we have also used 652 

9.58 × 10−9 for Biobank Japan as recommended by the authors[24]. AUC values were not 653 

obtained as this is not a standard classification problem and they are not interpretable in this 654 

context. Second, an adapted ROC curve was produced which accounts for two different 655 

thresholds – one more stringent one to determine the true positive rate and one less stringent 656 

one to determine the true negative rate. Supplementary Figure 22 showcases this scenario and 657 

highlights the importance of a threshold choice and its impact on a sensitivity analysis. The 658 

main aim of isGWAS calculator is to be used as an inferential tool for truly significant or truly 659 

non-significant genetic signals. Thus, using two thresholds – one for truly significant and one 660 

for truly non-significant – provides us the assess the sensitivity of isGWAS to this scientific 661 

question. Third, the obtained 𝛽 values were compared to the true ones by obtaining the 662 

percentage of 1) predicted 𝛽 values in the 95% C.I.s of the true 𝛽 values and 2) 95% C.I.s of 663 

the predicted 𝛽 values in the 95% C.I.s of the true 𝛽 values. 664 

Simulation scenarios 665 

In the first scenario, for each individual 𝑖 and iteration index 𝑘, we randomly generate disease 666 

status via 𝑦𝑖𝑘 ∼ 𝐵𝑒𝑟(𝜋𝑖𝑘; 𝛼𝑘 , 𝛽) with  probability of disease 𝜋𝑖𝑘 = 𝑒𝑥𝑝𝑖𝑡(𝛼𝑘 + 𝛽𝑔𝑖𝑘) and 667 

𝑔𝑖𝑘 ∼ 𝐵𝑖𝑛(2,𝑀𝐴𝐹𝑘). Minor allele frequency is randomly selected from the set 𝑀𝐴𝐹𝑘 ∈668 

{10−4, 5 × 10−4, 0.01}⋃{ 0.025, 0.05,… ,0.5} and the genetic effect on disease risk is fixed as 669 

𝛽 = 0.5. In the second study, we allow the genetic effect to vary, i.e., 𝛽 ≡ 𝛽𝑘, by fixing disease 670 

status per individual and generating genotype data in controls 𝑔𝑖𝑘|𝑦𝑖𝑘 = 0 ∼ 𝐵𝑖𝑛(2,𝑀𝐴𝐹𝑘) or 671 

cases 𝑔𝑖𝑘|𝑦𝑖𝑘 = 1 ∼ 𝐵𝑖𝑛(2,𝑀𝐴𝐹𝑘
∗), where minor allele frequency in cases is taken as the outer 672 

product with the sample minor allele frequency, with a random increase or decrease in 673 

frequency (which controls the magnitude and direction of genetic effect), i.e., we introduce the 674 

set 𝑀𝐴𝐹𝑘
∗ ∈ 𝑀𝐴𝐹𝑘⨂(1± 𝑀𝐴𝐹𝑘). The parameter 𝛽𝑘 is then estimated via each of the 5 675 

estimators using the vector of simulated data {𝒚𝑘 , 𝒈𝑘}.  676 
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We compare isGWAS and isGWAS-Firth against classical logistic and Firth corrected 677 

regression[16], [37], [38]. Details for the second scenario are provided alongside full 678 

description of the simulation protocol in the Supplementary Information. 679 

 680 

Leapfrog re-sampler: simulation and real-data analyses 681 

The parameters {𝐾, 𝛾1, 𝛾2} in the leapfrog re-ampler are assessed over a variety of values. To 682 

attenuate the computational burden of a 3-dimensional grid search, we considered scenarios in 683 

which: 𝐾 = 100, 𝛾1 =
1
𝛾2⁄  and a 𝛾2-fold increase in sample size of 𝛾2 ∈684 

{1.1,1.25, 1.5,… , 2.5}, i.e., a 10% to 150% increase in sample size. Furthermore, we take our 685 

working sample size to be 276,204 individuals, which matches the number of all unrelated 686 

individuals in our UKB sample (i.e., on not retaining any member of a related pair – which is 687 

therefore fixed between diseases). We used our simulation protocol (Supplementary 688 

Information) to generate synthetic samples and additionally assessed performance across all 689 

seven disease datasets in UK Biobank. Variants for assessment were selected after pruning in 690 

PLINK[4] was applied to the ~11 million variants with the following parameters: genotype 691 

quality>0.99, MAF>0.01, HWE 𝑝 < 10𝑒 − 15, 1000 bp windows, 100 variant increments, 692 

𝑅2 > 0.9. From the pruned variants, 5% were selected uniformly from variants with 𝑝 >693 

10−6 and all variants with 𝑝 ≤ 10−6 were retained. Final number of variants progressed for 694 

LRS for the seven diseases are provided in Supplementary Table 10. For simulated data, 695 

data for smaller sub-samples were simulated using full cohort and empirical distributions for 696 

MAF and disease prevalence. In our tests of the LRS, we assess the predictive properties of 697 

isGWAS on real-life data where the ground truth is either computed from the entire sample or 698 

provided in the literature.  Predictions from X-fold increases in sample size are compared 699 

using standard accuracy, FDR, FPR and TPR measures based on a putative true significance 700 

threshold of 5𝑒 − 08. 701 
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Computational resources  702 

Real-life analyses were performed using up to 48 virtual CPU cores of a 2.5 GHz Intel Xeon 703 

Gold 6240R processor with 64 GB of memory. Simulation analyses were performed using up 704 

to 8 virtual CPU cores of a 2.4 GHz Intel Core i9 processor. 705 

Computational comparison protocol 706 

We contrast the computational performance of isGWAS and REGENIE (Step-2 only). For 707 

clarity, REGENIE Step-1 simplifies the outcome and model by projecting out covariate 708 

information, before variant-disease association analyses are performed in Step-2.  To directly 709 

compare both methods, we performed individual GWA analyses of each of the seven diseases 710 

considered in UK Biobank across ~11m variants for ~335,000 individuals. Owing to 711 

computational cost of the ILD method, we summarise results from a single GWA analysis per 712 

trait. Performance of isGWAS across repeated runs, for varying numbers of SNPs and 713 

available CPUs, up to a maximum of 10m variants, is also performed. 714 

 715 

Data availability 716 

The genotype data, phenotype status and allele counts were extracted from UK Biobank[13] to 717 

support the findings of this study. The genome-wide association summary data with available 718 

allele frequencies and cohort counts that was used to support the findings of this study are 719 

available from: Psychiatric Genomics Consortium[15] and Biobank Japan[14].  720 

Code availability 721 

The tool is available for use on the webportal www.optima-isgwas.com. The isGWAS 722 

algorithm is also available on github (https://github.com/cnfoley/isgwas/).  723 
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Tables 

Table 1. Accuracy, true positive rate, false positive rate and false discovery rate of isGWAS using REGENIE results as gold-

standard and a threshold of 𝑝 = 5𝑒 − 08 as classification rule. Results are obtained on all 11,079,229 variants used for the 

analysis of seven diseases in UK Biobank without clumping/finemapping. 

Disease (ICD code) Case:control ratio 𝑻𝑷𝑹 𝑭𝑷𝑹 𝑨𝒄𝒄 𝑭𝑫𝑹 

Hypertension (I10)  1:2 0.625 0.000026 0.99961 0.041 

Asthma (J45)  1:6 0.982 0.000028 0.99994 0.016 

Atherosclerosis (I25)  1:9 0.886 0.000011 0.99995 0.043 

Glaucoma (H40) 1:26 0.891 0 0.99997 0.036 

Stroke (I63)  1:56 NA 0 1 NA 

Colon Cancer (C18) 1:94 0.944 0 0.99999 0.037 

Thyroid Gland Cancer (C73) 1:669 1 0 0.99999 0.051 
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Figures

 

Figure 1. Diagram highlighting main differences between isGWAS and other GWAS approaches. 
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Figure 2. Comparative results for Asthma (IC10:J45) from UK Biobank. Subplot (a) is a mirror Manhattan plot comparing 

− 𝑙𝑜𝑔10 𝑃 values for isGWAS and REGENIE-Firth and subplot (b) is a locus zoom of the gene FLG2 region +/-250kbp on 

chromosome 7. Subplot (c) plots − 𝑙𝑜𝑔10 𝑃 values for isGWAS and REGNIE-Firth with the standard threshold P-value 

indicated colored by population-level MAF. Subplots (d) and (e) showcase 𝛽 − 𝛽 effect size estimates for variants with p-

values<0.05 and are coloured by population-level MAF and 𝑙𝑜𝑔2(
𝑆𝐸(𝑖𝑠𝐺𝑊𝐴𝑆)

𝑆𝐸(𝑅𝐸𝐺𝐸𝑁𝐼𝐸)
).  
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Figure 3. a) Accuracy/TPR/FPR comparing REGENIE-Firth and isGWAS results, where 𝑝 = 5𝑒 − 08 threshold has been used 

as indicator for correct classification accuracy. Results are obtained on all 11,079,229 variants used for the analysis without 

clumping/finemapping. See Supplementary Table 1 for full results. Manhattan plots b), c), d), e) and f): Comparative results 

for five diseases from UK Biobank.  Mirror Manhattan plots comparing − 𝑙𝑜𝑔10 𝑃 values for isGWAS and REGENIE-Firth for 

six different diseases obtained from UK Biobank. Stroke was excluded from the analysis due to no variants passing significance 

threshold.  
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Figure 4. Simulation I results. Clockwise from top: a) Mean square error; b) distribution of estimated beta values; c) 

distribution of associated standard errors and d) distribution of -𝑙𝑜𝑔10(p-value), for each model - logistic regression, firth 

regression, ‘isGWAS’, ‘isGWAS_Firth’ and, for p-values only, Fisher’s Exact Test - and specification of disease prevalence. 

Panel e) presents the relationship between Firth regression derived -𝑙𝑜𝑔10(p-value), along the horizontal axis, and the 

corresponding ‘isGWAS_Firth’ and Fisher’s Exact Test (FET) computed values, on the vertical axis. Results are presented in 

the range [0,15] as FET regularly failed to converge for very small p-values and  coloured according to value of 𝜋𝛿𝑀𝐴𝐹 , where 
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𝜋 denotes prevalence and 𝛿𝑀𝐴𝐹 =
(𝑀𝐴𝐹∗ −𝑀𝐴𝐹)

(𝑀𝐴𝐹(1 − 𝑀𝐴𝐹))
⁄  . In panels b)-d) a point denotes the median value and 

error-bars the first and ninth deciles of the range. 

 

 

 

Figure 5. Performance of Leapfrog re-sampler (LRS) benchmarked against results derived from a)-e) the sample of ~276,204 

individuals from UK Biobank with five different diseases and b) a simulated sample of 552,408 individuals (i.e., double UK 

Biobank sample size). For each value of 𝜉, we subset the target sample size down to 
𝑁𝑡𝑎𝑟𝑔𝑒𝑡

𝜉⁄   individuals and deploy the LRS 

to compute predictions for the target sample 𝑁𝑡𝑎𝑟𝑔𝑒𝑡 . As the maximum number of UK Biobank samples was 276,204, this was 

taken as the target. For example, when 𝜉 = 2, we subset the full sample to 138,102 individuals and run the LRS to compute 

predictions of the larger 276,204 sample. We use results from the disease analysis, benchmarking LRS predictions against 

those computed on the pruned genome sampling uniformly across significance associations, resulting in ~3500 variants per 

studied disease. Colon cancer and Stroke are excluded from this figure as they don’t have significant variants or a very low 

number of such after pruning. In the right panel we generated 1000 simulated datasets under the null of no genetic association 

or the alternative (see simulation protocol for details).   
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Figure 6. Prediction results for Schizophrenia (2022) using data from Schizophrenia (2014): population-level information for 

608 significantly associated loci (P<1e-07) obtained from clumping with parameters (𝑅2 = 0.2, 𝑝1 = 1𝑒 − 7, 𝑝2 = 1𝑒 − 7) 

has been used to infer p-values. a) The figure compares reported GWAS Schizophrenia (2014) p-values and isGWAS predicted 

p-values using population-level information from Schizophrenia (2014) matching for the larger 2022 cohort size. b) The figure 

compares reported GWAS Schizophrenia (2022) p-values and isGWAS predicted p-values using population-level information 

from Schizophrenia (2014) matching for the larger 2022 cohort size. The dashed red line represents the threshold P=5e-08.  
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Figure 7. a) Computational CPU time (in seconds) for an increasing number of variants. The results compare performance of 

isGWAS with and without Firth distributed over different number of CPU cores. The data was obtained from UK Biobank 

ICD10:C73 disease with low disease prevalence (case-control ratio = 1:669). The x- and y-axis are on 𝑙𝑜𝑔10 𝑠𝑐𝑎𝑙𝑒. b) 

Computational CPU time (in seconds) for seven UK Biobank diseases on 11,079,229 variants for ~335,000 individuals. We 

compare the performance of isGWAS running on 16 and 30 CPUs vs the performance of REGENIE Step 2 running on 16 CPUs 

(with 16 threads) and 30 CPUs (with 30 threads). The computation is performed on the same machine. The y-axis is on 

𝑙𝑜𝑔10 𝑠𝑐𝑎𝑙𝑒. 
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